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Abstract—In this paper, the problem of optimal time-
varying attitude tracking control for rigid spacecraft with
system constraints and unknown additive disturbances is
considered. Through the design of a new non-linear tube-
based robust model predictive control (TRMPC) algorithm,
a dual-loop cascaded tracking control framework is estab-
lished. The proposed TRMPC algorithm explicitly considers
the effect of disturbances and applies tightened system
constraints to predict the motion of the nominal system.
The obtained optimal control action is then combined with
a non-linear feedback law such that the actual system tra-
jectories can always be steered within a tube region centred
around the nominal solution. To facilitate the recursive
feasibility of the optimization process and guarantee the
input-to-state stability of the tracking control process, the
terminal controller and the corresponding terminal invari-
ant set are also constructed. The effectiveness of using
the proposed dual-loop TRMPC control scheme to track
reference attitude trajectories is validated by experimental
studies. A number of comparative studies were carried out,
and the obtained results reveal that the proposed design
is able to achieve more promising constraint handling and
attitude tracking performance than that of the other newly
developed methods investigated in this research.

Index Terms—Optimal time-varying attitude tracking,
spacecraft, tube-based robust model predictive control,
constraint tightening.

I. INTRODUCTION

A. Literature Review

OVER the last few decades, the design of an advanced
attitude control system for rigid spacecraft has been

recognized as a fundamental yet important issue. Since a
well-established attitude control system is usually essential
for stable (exo)atmospheric explorations and operations, it
has received much attention from both academia and the
aerospace industry [1], [2]. It is worth highlighting that attitude
control systems are mainly developed to provide spacecraft
with attitude stabilization or tracking capabilities. In terms of
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attitude stabilization, many contributions have been reported
thus far for completing this challenging task [3], [4]. For
example, in [3], a composite attitude stabilization scheme
was constructed by taking advantage of both disturbance
observers and terminal sliding mode control (SMC). Similarly,
the authors of [4] addressed the attitude stabilization problem
of flexible spacecraft by proposing an adaptive fixed-time
sliding mode controller.

In addition to attitude stabilization, another important task
in space/aerospace vehicle control is to steer the attitude
motion to track a pre-assigned reference trajectory. To achieve
this goal, various robust tracking control algorithms have
been developed in recent years with consideration of system
uncertainties and environmental disturbances [5], [6]. Among
these designs, SMC-oriented methods and finite-time control
algorithms (and their extensions) have been recognized as
two of the most promising candidates [7], [8]. Specifically, a
reusable launch vehicle attitude tracking problem was studied
in [7], where the authors designed and advocated a multi-
variable second-order SMC controller to ensure accurate track-
ing performance. In [8], the authors developed a distributed
tracking algorithm for a group of rigid spacecraft in an uncer-
tain environment. In their design, an adaptive neural-network-
based observer was combined with a distributed finite-time
control scheme such that the dynamic leader can be robustly
followed. However, most of these aforementioned investiga-
tions and algorithms did not fully consider the mechanical
constraints, such as the state and input limitations, or simply
assumed the controlled system to be unconstrained. This may
result in poor tracking performance in engineering practice,
where it is necessary to take system constraints into account.
Furthermore, if unknown external disturbances exist in system
equations, the state and input constraints tend to become
more difficult to satisfy, thereby further degrading the control
performance.

As an effective alternative, model predictive control (MPC)
has the ability to deal with constrained systems. The advantage
of applying MPC has been acknowledged in a number of
literature works [9]–[11]. For example, Limon et al. [10] estab-
lished a non-linear MPC scheme for tracking reference signals
and successfully tested their design on an industrial four-tank
process control platform. The authors of [11] investigated
the reference tracking problem for autonomous underwater
vehicles. In their research, a Lyapunov-based MPC scheme,
equipped with a novel contraction constraint, was estab-

e805814
Text Box
IEEE Transactions on Industrial Electronics, Available online 05 May 2021DOI: 10.1109/TIE.2021.3076729

e805814
Text Box
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

e805814
Text Box



lished to enhance the tracking performance. In the context of
spacecraft or unmanned aerial vehicle (UAV) attitude control,
some valuable MPC-based results have been reported [12]–
[14]. For instance, the authors of [12] developed an explicit
MPC scheme to control a linearized spacecraft model subject
to system constraints. An important feature of their design
is that the computational effort required by the algorithm
is inexpensive, thereby making it suitable for systems with
limited CPU resources. In addition, a spacecraft rendezvous
and docking problem was considered in [13], wherein an
MPC approach was successfully constructed and applied to
control the linearized attitude dynamics. However, using a
simplified dynamic model tends to result in infeasibility for
practical systems. To address this issue, the authors of [15]–
[17] investigated the modelling method for UAV trajectory
tracking problems in the presence of external disturbances. In
their works, various UAV system models such as the non-linear
Hammerstein model and the autoregressive exogenous model
were established and analysed. Moreover, in [18], the authors
demonstrated that by installing a three-axis gimbal system on
a UAV, the trajectory tracking performance of the MPC can
be effectively improved. Aiming at optimizing the parameters
used in the controller, in their follow-up work [19], the authors
proposed and utilized a meta-heuristic swarm optimization
algorithm.

Although the authors of the aforementioned works claimed
that most of these proposed algorithms can achieve reliable
attitude control performance, their conclusions are mainly
supported by simulation or experimental studies. Rigorous
mathematical analysis including the recursive feasibility and
closed-loop stability continues to be a challenging problem.
Note that in [20], the authors developed a non-linear MPC
scheme to control the attitude of rigid spacecraft. In their
research, the recursive feasibility and the closed-loop stability
were guaranteed by constructing a homogeneous Lyapunov
function and a locally stable terminal set. However, if the
controlled system is perturbed by additive disturbances, these
theoretical results may easily become invalid. Hence, deriving
explicit conditions to guarantee these important properties
is still difficult, especially for the non-linear robust model
predictive attitude control scheme.

B. Motivations and Contributions

To actively deal with the disturbances or uncertainty existing
in the operating environment, different robust MPC (RMPC)
schemes have been proposed by researchers and engineers.
One typical strategy is to apply a min-max structure. More
specifically, the online optimization process considers all pos-
sible disturbance realizations, thereby obtaining a conserva-
tive robust solution [21], [22]. However, the computational
complexity of this process is usually expensive and tends
to significantly increase as the prediction horizon becomes
wider. Another popular strategy is to use the so-called tube
techniques [23], [24]. This strategy has been widely investi-
gated for stabilizing linear systems. That is, the robust control
law is made up of two parts: an optimized control policy
and a feedback control policy. Here, the optimal control

policy is responsible for steering the nominal states to the
origin, whereas the feedback control policy is responsible for
maintaining the actual state trajectory within a tube centred
around the nominal system trajectory. Using this approach,
several potential advantages such as enhanced robustness and
guaranteed stability are likely to be obtained. However, a
direct application of this strategy to the considered tracking
control problem may be difficult due to the non-linear nature
of the reference trajectory and attitude dynamics. Therefore,
in this research, efforts are devoted to extend tube-based MPC
(TMPC) such that it can be applied to address the considered
problem. To be more specific, we aim to design and implement
a non-linear tube-based robust MPC (TRMPC) scheme for
rigid spacecraft such that the desired time-varying angular
trajectories can be tracked with consideration of the system
constraints and additive disturbances. In summary, different
from other published works, the main contribution of this
research lies in the following four aspects:

1) By developing a non-linear TRMPC algorithm, this work
establishes a novel spacecraft attitude tracking control
framework. The proposed design employs a dual-loop
cascaded control structure and has the ability to track
time-varying angular signals in the presence of distur-
bances and system constraints.

2) A compound feedback law, along with tightened state
and control constraints, is designed such that robust
constraint satisfaction can be achieved for all admissible
disturbances.

3) Terminal controllers and the corresponding terminal in-
variant sets are established to facilitate the recursive
feasibility of the TRMPC optimization process.

4) Explicit conditions are derived to guarantee the input-to-
state stability (ISS) of the dual-loop tracking system and
validated by a number of experimental studies.

To the best of the authors’ knowledge, this paper provides
the first attempt to design and implement a dual-loop TRMPC
scheme with guaranteed feasibility and stability properties for
rigid spacecraft attitude tracking control problems.

C. Organization
The remainder of this article is organized as follows. Sec II

describes the non-linear attitude dynamics of spacecraft and
the tracking control objective. Sec III presents the design of
TRMPC for the outer- and inner-loop tracking systems, while
some important theoretical properties are detailed in Sec IV.
Following that, Sec V verifies the effectiveness of the proposed
design by a number of experimental studies and analyses.
Finally, concluding remarks are provided in Sec VI.

Notation: Let Rn and R stand for the n-dimensional Eu-
clidean space and real space, respectively. The diagonal matrix
is denoted as diag{x1, ..., xn}, where x1, ..., xn are the entries.
For a vector x = [x1, ..., xn]T , |x| = [|x1|, ..., |xn|]T and
‖x‖ =

√
xTx. Similarly, ‖x‖P =

√
xTPx is the P-weighted

norm. Here, P is positive definite. For an n-by-n matrix Z,
‖Z‖ =

√
λmax(ZTZ) stands for its 2-norm. Here, λmax(·)

and λmin(·) represent the maximum and minimum eigenvalues,
respectively. Consider two sets A ⊂ Rn and B ⊂ Rn; we



have the operations A ⊕ B = {x + y|x ∈ A, y ∈ B} and
A	 B = {z ∈ Rn|{z} ⊕ B ⊂ A}.

II. PROBLEM FORMULATION

A. Spacecraft Attitude Dynamics
Consider the attitude dynamics of a rigid spacecraft in the

form of [9], [25], [26]:

Θ̇ =Rω + ∆f

ω̇ =− I−1ΩIω + I−1M + ∆d

(1a)

(1b)

In Eq. (1), Θ = [α, β, σ]T consists of three angular variables:
angle of attack α, sideslip angle β, and bank angle σ. ω =
[p, q, ν]T consists of three angular rate variables: roll rate p,
pitch rate q and yaw rate ν. M = [Mx,My,Mz]

T , where
Mi, i = (x, y, z) represents the roll, pitch and yaw moments.
∆f ∈ R3 and ∆d ∈ R3 stand for the additive disturbances due
to environmental noise and model simplification. The matrix
terms R, I, and Ω ∈ R3×3 are given by:

R =

 − tanβ cosα 1 − tanβ sinα
sinα 0 − cosα

− cosβ cosα − sinβ − cosβ sinα

 (2)

I =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 ,Ω =

 0 −ν q
ν 0 −p
−q p 0

 (3)

In Eq. (3), Iij (i, j = x, y, z) represents the inertia moments.

B. Control Problem Objectives

In this paper, two primary control objectives are expected
to be achieved when designing the attitude controller:
• The actual attitude profiles Θ can be steered to fol-

low the desired spacecraft attitude angle profiles Θr =
[αr, βr, σr]

T in the presence of unknown disturbances ∆f

and ∆d.
• The tracking performance can be optimized while si-

multaneously satisfying the system state and control
constraints.

For the first objective, if we define the tracking error vectors
as Eθ = Θ − Θr ∈ R3 and Eω = ω − ωr ∈ R3, then the
tracking error dynamics for the two subsystems can be written
as

Ėθ =Rω + ∆f − Θ̇r

Ėω =− I−1ΩIω + I−1M + ∆d − ω̇r

(4a)

(4b)

Note that a nominal version of Eq. (4) can be obtained by
ignoring the effects caused by disturbances:

˙̃Eθ =R(Θ̃)ω̃ − Θ̇r

˙̃Eω =− I−1Ω(ω̃)Iω̃ + I−1M̃− ω̇r

(5a)

(5b)

in which Θ̃, ω̃ and M̃ denote the nominal angle, angular rate
and control variables, respectively. Ẽω and Ẽθ are the nominal
tracking error vectors of the inner and outer loops, respectively.

For the second objective, the admissible sets of the angular
and angular rate variables can be defined as XΘ = {Θ :
‖Θ‖ ≤ Θ̄} and Xω = {ω : ‖ω‖ ≤ ω̄}, where Θ̄ and ω̄
are two known positive constants. For the control moment M,
its admissible set is described as UM = {M : ‖M‖ ≤ M̄},

where M̄ is a known positive constant. These types of sys-
tem constraints must be frequently considered in practical
applications, as a spacecraft can manoeuvre only within its
mechanical limitations.
Remark 1. The proposed attitude tracking control scheme
applies an inner-outer loop structure. To be more specific, the
outer loop corresponds to the attitude angle subsystem (1a)
and introduces a virtual control input ωc, which is determined
using the proposed outer-loop TRMPC algorithm (detailed in
Sec III.A). Subsequently, this value is applied as the reference
command (e.g., ωr = ωc) and provided to the inner loop. Here,
the angular rate subsystem (1b) is considered, and the actual
control moment M is produced via the inner-loop TRMPC
algorithm.

C. Assumptions and Preliminaries
To design the TRMPC algorithm, some assumptions are

needed [6], [26].

Assumption 1. The Earth’s rotation is ignored in the mission,
and system variables Θ, ω and M are measurable.

Assumption 2. The attitude angle reference, the desired
angular rate and their derivatives are considered to be smooth
and bounded. That is, ‖Θr‖ ≤ Θ̄0, ‖Θ̇r‖ ≤ Θ̄1, ‖ωr‖ ≤ ω̄0,
and ‖ω̇r‖ ≤ ω̄1.

Assumption 3. For the sideslip angle β, the case of |β| = π
2

is excluded from XΘ during the flight mission.

Assumption 4. The external disturbances are considered to
be bounded. That is, ‖∆f‖ ≤ η1 and ‖∆d‖ ≤ η2.

These assumptions are adopted when deriving the main
theoretical results of the proposed TRMPC. In addition, the
following lemma reveals that with proper specification of Θ,
the 2-norm of R and R−1 has lower and upper bounds.

Lemma 1. If Assumption 3 is satisfied, the 2-norm of R(Θ)
and R−1(Θ) is bounded. That is, we have r ≤ ‖R(Θ)‖ ≤ r̄
and r

′ ≤ ‖R−1(Θ)‖ ≤ r̄′ .

Proof. The 2-norm of R(Θ) can be computed via ‖R(Θ)‖ =√
λmax(RTR). Note that RTR and RRT have same non-zero

eigenvalues. By addressing |λI −RRT | = 0, we can obtain
λ1 = 1 + tan2 β, λ2 = λ3 = 1. Hence, for any β ∈ (−π2 ,

π
2 ),

we have r = 1 and r̄ =
√

1 + tan2 β. Moreover, from Eq.
(2), we have R−1 in the form of

R−1 =

 − cosα sinβ cosβ sinα − cosα cosβ
cos2 β 0 − sinβ

− sinα sinβ cosβ − cosβ − sinα cosβ

 (6)

Its 2-norm is
√
λmax(R−1TR−1). By solving |λI −

(R−1)TR−1| = 0, one can obtain λ1 = cos2 β, λ2 = λ3 = 1.
Hence, we have r

′
= r̄

′
= 1, which completes the proof.

III. DESIGN OF THE TRMPC ALGORITHM

This section presents a novel TRMPC design that is oriented
from TMPC. Previous works on developing TMPC for linear
system regulation problems can provide some guidelines [27],



[28]. However, these tube-based designs cannot be directly
applied to the considered tracking control problem due to the
non-linear nature of the reference trajectory and the attitude
dynamics. Hence, we devote efforts to extend the idea of
tightening system constraints, constructing the terminal con-
troller and invariant set, and designing the feedback law such
that both robust constraint satisfaction and convergent tracking
performance can be achieved for non-linear spacecraft attitude
tracking systems. The designed TRMPC approach serves as
the main controller to stabilize the actual tracking errors Eθ

and Eω toward the origin.

A. Outer-Loop TRMPC Design
In the outer attitude angle control loop, we can define the

objective function at time instant tk ∈ {tk}k∈N in the form of

Jθ(Ẽθ(tk), Ũθ(tk)) =

∫ tk+T

tk

Lθ(Ẽθ(τ |tk), Ũθ(τ |tk))dτ

+gθ(Ẽθ(tk + T |tk))

(7)

In Eq. (7), Lθ(Ẽθ(τ |tk), Ũθ(τ |tk)) = ‖Ẽθ(τ |tk)‖2P +
‖Ũθ(τ |tk)‖2Q with Ũθ(τ |tk) = R(Θ̃(τ |tk))ω̃(τ |tk) − Θ̇r

and gθ(Ẽθ(tk + T |tk)) = ‖Ẽθ(tk + T |tk)‖2R. The matrices
P,Q,R ∈ R3×3 are selected to be diagonal and positive
definite. Their components (e.g., P = diag{pi}3i=1, Q =
diag{qi}3i=1 and R = diag{ri}3i=1) are chosen according to
Lemma 2. T denotes the predictive horizon.

As stated before, the entire control strategy involves two
steps. First, an optimized control action, along with a central
trajectory, is determined by addressing the following nominal
system-based optimization model:

min
ω̃∗c (τ|tk),Θ̃∗(τ|tk)

Jθ(Ẽθ(tk), Ũθ(tk))

s.t. ∀τ ∈ [tk, tk + T ]

Θ(tk) ∈ Θ̃(tk|tk)⊕Oθ
˙̃Θ(τ |tk) = R(Θ̃)ω̃c
˙̃Eθ(τ |tk) = R(Θ̃)ω̃c − Θ̇r

Θ̃(τ |tk) ∈ Xtube
θ

ω̃c(τ |tk) ∈ Utube
ω

˙̃Eθ(tk + T |tk) ∈ Ωtube
θ

(8)

in which

Xtube
θ = {Θ̃ : ‖Θ̃‖ ≤ Θ̄tube}

Θ̄tube = Θ̄−
√

3k̄η1, k̄ = max{1/ki}3i=1

Utube
ω = {ω̃c : ‖ω̃c‖ ≤ ω̄tube

c }
ω̄tube
c = R̃ω̄ −

√
3η1, R̃ = r/r̄

Ωtube
θ = {Ẽθ : ‖Ẽθ‖R ≤ εθ}

εθ =
√
λmin(R) ·min

{
ω̄tube
c − r̄

′
Θ̄1

‖r̄′K̃‖
, Θ̄− Θ̄0 −

√
3k̄η1

}

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

In Eq. (8) and Eq. (9), Xtube
θ and Utube

ω are, respectively, the
tightened state and input constraints. Two gain matrices (e.g.,
K and K̃), along with an initial state set Oθ, are introduced.
Their values can be determined offline by following the results
shown in the next two lemmas. Specifically, in Lemma 2, some
hints regarding how to construct a terminal controller ω̃fc and
the corresponding terminal invariant set Ωtube

θ are provided.
Before presenting Lemma 2, we introduce Definition 1:

Definition 1. For the error system (5a), ω̃fc and Ωtube
θ are

the terminal controller and the terminal invariant set if the
following conditions hold true for any τ ∈ [tk +T, tk+1 +T ]:

Θ̃(τ |tk) ∈ Xtube
θ

ω̃fc (τ |tk) ∈ Utube
ω

ġθ(Ẽθ(τ |tk)) + Lθ(Ẽθ(τ |tk), Ũθ(τ |tk)) ≤ 0

(10a)

(10b)

(10c)

Lemma 2. Ωtube
θ , defined by Eqs. (9e)-(9f), is a terminal

invariant set for system (5a) resulting from the terminal
controller:

ω̃fc = R−1(Θ̃)K̃Ẽθ + R−1(Θ̃)Θ̇r (11)

where K̃ = diag{k̃i}3i=1. In addition, the parameters satisfy

piqi <
r2
i

4 and k̃i ∈
(
ri−
√
r2
i−4piqi

2qi
,
r2
i+
√
r2
i−4piqi

2qi

)
.

Proof. First, attention is paid to the nominal state variable Θ̃
when it enters Ωtube

θ . From (5a), we have Θ̃ = Ẽθ + Θr and

‖Θ̃‖ = ‖Ẽθ‖R√
λmin(R)

+ ‖Θr‖ (12)

Since ‖Ẽθ‖R ≤ εθ and Eq. (9f) hold, we have

‖Θ̃‖ ≤ εθ√
λmin(R)

+ ‖Θr‖

≤Θ̄−
√

3k̄η1 = Θ̄tube
(13)

Moreover, based on the expression of ω̃fc given by (11) and
Lemma 1, it can be obtained that

‖ω̃fc ‖ ≤‖R−1(Θ̃)‖‖K̃‖ ‖Ẽθ‖R√
λmin(R)

+ ‖R−1(Θ̃)‖‖Θ̇r‖

≤r̄
′
‖K̃‖ εθ√

λmin(R)
+ r̄

′
Θ̄1 ≤ ω̄tube

(14)

Next, if we apply ω̃fc over τ ∈ [tk+T, tk+1+T ), the derivative
of Jθ becomes

ġθ(Ẽθ(τ |tk)) + Lθ(Ẽθ(τ |tk),−K̃Ẽθ(τ |tk))

= ‖K̃Ẽθ(τ |tk)‖2Q − K̃‖Ẽθ(τ |tk)‖2R + ‖Ẽθ(τ |tk)‖2R
≤ ‖K̃‖2‖Ẽθ(τ |tk)‖2Q − K̃‖Ẽθ(τ |tk)‖2R

+‖Ẽθ(τ |tk)‖2P

(15)

Since k̃i ∈
(
r2
i−
√
r2
i−4piqi

2qi
,
r2
i+
√
r2
i−4piqi

2qi

)
, it is obvious that

−rik̃i + pi + qik̃
2
i < 0 (16)

Substituting Eq. (16) into Eq. (15) yields the stability condition
ġθ +Lθ < 0. Until now, we have verified all conditions stated
in Definition 1, indicating that ω̃fc and Ωtube

θ are the terminal
controller and the corresponding invariant set for system (5a).

Once the optimized control law and the resulting nominal
trajectory are obtained (denoted as ω̃c

∗(τ |tk) and Θ̃
∗
(τ |tk),

respectively, for τ ∈ [tk, tk + T ]), we further design a robust
control law such that it can be applied to the actual angle
system. Due to the existence of disturbances, applying ω̃c

∗ to
the actual system over τ ∈ [tk, tk+1) may result in a deviation
between the actual angular profile and the optimized one. That



is, Oθ(τ) = Θ(τ)−Θ̃
∗
(τ |tk). Differentiating Oθ(τ), we have

Ȯθ(τ) = R(Θ)ωc(τ)−R(Θ̃
∗
)ω̃∗c(τ |tk) + ∆f (17)

Then, we can design the robust control law in the form of

ωc(τ) = R−1(Θ)
[
R(Θ̃

∗
)ω̃∗c(τ |tk)−KOθ(τ)

]
(18)

where K = diag{ki}3i=1, ki > 0. The next lemma reveals that
by applying the robust control law (18), the actual angular
trajectory can stay within the tube region centred around the
nominal solution while simultaneously satisfying the actual
state and input constraints.

Lemma 3. If ωc(τ) is applied to steer the actual attitude
angle system (1a) over τ ∈ [tk, tk+1) and ∆f is upper
bounded by η1, we have:

1) The system state and input constraints can be satisfied. That is,
Θ(τ) ∈ XΘ and ωc(τ) ∈ Xω;

2) The actual attitude angle trajectory can stay within Θ(τ) ∈
Θ̃
∗
(τ |tk) ⊕ Oθ , where Oθ = {Oθ(τ) : |Oθ| ≤

[−η1/k1,−η1/k2,−η1/k3]T }.

Proof. For 1), by substituting ωc(τ) into Ȯθ(τ), we have

Ȯθ(τ) = ∆f (τ) + KOθ(t), Oθ(0) = 0 (19)

The solution of (19) can be written as

Oθ(τ) = eKτOθ(0) +

∫ τ

0

eK(τ−t)∆f (t)dt (20)

Since ‖∆f‖ ≤ η1, one can obtain

‖Oθ(τ)‖ ≤ η1‖[1/k1, 1/k2, 1/k3]T ‖ ≤
√

3k̄η1 (21)

Based on the definition of Oθ(τ), it holds that

‖Θ(τ)‖ =‖Θ̃∗(τ |tk) +Oθ(τ)‖
≤‖Θ̃∗(τ |tk)‖+ ‖Oθ(τ)‖
≤Θ̄tube +

√
3k̄η1 = Θ̄

(22)

which indicates that Θ ∈ XΘ. Moreover, if we define{
ω̂c = R(Θ)ωc

ω̂∗c = R(Θ̃
∗
)ω̃∗c

(23a)

(23b)

then it is obvious that

ω̂c = ω̂∗c + KOθ (24)

We further define two sets:{
Ûω = {ω̂c : ‖ω̂c‖ ≤ rω̄}
Ûtube
ω = {ω̂∗c : ‖ω̂∗c‖ ≤ r̄ω̄tube

c }
(25a)

(25b)

From (21), one can write

Oθ ={Oθ(τ) : ‖Oθ(τ)‖ ≤ η1[1/k1, 1/k3, 1/k3]T }
⊂{Oθ(τ) : ‖Oθ(τ)‖ ≤

√
3k̄η1}

(26)

After investigating Oθ, Ûω and Ûtube
ω , it follows that

Ûtube
ω ⊕KOθ ∈ Ûω (27)

Thus, if ω̃∗c ∈ Ûtube
ω , based on (23)-(27), we have ω̂∗c ∈ Ûtube

ω

and ω̂c ∈ Ûω . Subsequently, based on (23a) and (9d), one can
conclude that ωc ∈ Xω .

For 2), since Θ(τ) = Θ̃
∗
(τ |tk) + Oθ(τ), it is true that

Θ(τ) ∈ Θ̃
∗
(τ |tk) ⊕ Oθ, indicating that the system state will

stay within a tube region centred around the nominal solution.

B. Inner-Loop TRMPC Design

Results from the outer loop are applied as the reference
command ωr to design the inner-loop tracking controller.
Similar to that of the outer loop, the inner-loop objective
function can be given by

Jω(Ẽω(tk), Ũω(tk)) =

∫ tk+T

tk

Lω(Ẽω(τ |tk), Ũω(τ |tk))dτ

+gω(Ẽω(tk + T |tk))
(28)

in which Lω(Ẽω(τ |tk), Ũω(τ |tk)) = ‖Ẽω(τ |tk)‖2P +
‖Ũω(τ |tk)‖2Q with Ũω(τ |tk) = −I−1Ω(ω̃)Iω̃(τ |tk) − ωr +

I−1M̃(τ |tk) and gω(Ẽω(tk + T |tk)) = ‖Ẽω(tk + T |tk)‖2R.
Again, the components of the matrices P,Q,R are chosen
according to Lemma 4.

Similar to Eq. (8), the optimization model in the inner loop
can be formulated as:

min
ω̃∗(τ|tk),M̃∗(τ|tk)

Jω(Ẽω(tk), Ũω(tk))

s.t. ∀τ ∈ [tk, tk + T ]
ω(tk) ∈ ω̃(tk|tk)⊕Oω
˙̃ω(τ |tk) = −I−1Ω(ω̃)Iω̃ + I−1M̃
˙̃Eω(τ |tk) = −I−1Ω(ω̃)Iω̃ + I−1M̃− ω̇r

ω̃(τ |tk) ∈ Xtube
ω

M̃(τ |tk) ∈ Utube
M

˙̃Eω(tk + T |tk) ∈ Ωtube
ω

(29)
in which

Xtube
ω = {ω̃ : ‖ω̃‖ ≤ ω̄tube}

ω̄tube = ω̄ −
√

3k̄η2, k̄ = max{1/ki}3i=1

Utube
M = {M̃ : ‖M̃‖ ≤ M̄ tube}

M̄ tube = M̄ − c̄+ d̄−
√

3‖I‖η2

Ωtube
ω = {Ẽω : ‖Ẽω‖R ≤ εω}

εω =
√
λmin(R) ·min

{
M̄ tube − d̄− ω̄1‖I‖

‖K̃‖‖I‖
, ω̄tube − ω̄0

}

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

To construct the terminal controller M̃f and the terminal
invariant set Ωtube

ω , the following lemma is derived.

Lemma 4. Ωtube
ω , defined by Eqs. (30e)-(30f), is a terminal

invariant set for the system (5b) resulting from the terminal
controller:

M̃f = Ω(ω̃)Iω̃ + Iω̇r + IK̃Ẽω (31)

where K̃ = diag{k̃i}3i=1. In addition, the parameters satisfy

piqi <
r2
i

4 and ki ∈
(
ri−
√
r2
i−4piqi

2qi
,
r2
i+
√
r2
i−4piqi

2qi

)
.

Proof. Based on the expression of M̃f in (31), one can write

‖M̃f‖ ≤‖Ω(ω̃)Iω̃‖+ ‖I‖‖ω̇r‖+ ‖I‖‖K̃‖‖Ẽω‖ (32)

Note that according to (3), the term Ω(ω)Iω = F (ω) can be
written as

F (ω) =

 F1(ω)
F2(ω)
F3(ω)

 =

 −pqIxz − qνIyy + qνIzz
pνIxx − p2Ixz − ν2Ixz − pνIzz
−pqIxx + pqIyy + qνIxz

 (33)



Define
c̄ = arg maxω∈{ω:‖ω‖≤ω̄} F (ω)

d̄ = arg maxω̃∈Xtube
ω
F (ω)

Eq. (32) can be further written as

‖M̃f‖ ≤d̄+ ω̄1‖I‖+ ‖I‖‖K̃‖‖Ẽω‖

≤d̄+ ω̄1‖I‖+ ‖I‖‖K̃‖ ‖Ẽω‖R√
λmin(R)

≤ M̄ tube (34)

which implies M̃f ∈ Utube
M . The rest of the proof follows a

similar procedure to that of Lemma 2 and thus is omitted
here.

Similar to the case of the outer loop, the deviation Oω(τ)
between the actual and nominal angular rate trajectory when
applying M̃(τ |tk) to system (1b) over [tk, tk+1) is analysed.
More precisely, we have

Ȯω(τ) =− I−1Ω(ω)Iω(τ) + I−1M(τ)

+ I−1Ω(ω̃)Iω̃∗(τ |tk)− I−1M̃∗(τ |tk) + ∆d

(35)

Then, a compound angular rate control law can be given by:

M(τ) = Ω(ω)Iω(τ)−Ω(ω̃∗)Iω̃∗(τ |tk)+M̃∗(τ |tk)− IKOω(τ) (36)

The robust control law (36) is then applied to the actual
angular rate system, and Lemma 5 provides some insights
regarding the actual angular rate trajectory and the robust
constraint satisfaction.

Lemma 5. If M(τ) is applied to steer the actual angular rate
system (1b) over τ ∈ [tk, tk+1) and ∆d is upper bounded by
η2, we have the following:

1) The angular rate and control moment constraints can be satis-
fied. That is, ω(τ) ∈ Xω and M(τ) ∈ UM ;

2) The actual angular rate trajectory can stay within ω(τ) ∈
ω̃∗(τ |tk) ⊕ Oω . Here, Oω = {Oθ(τ) : |Oθ| ≤
[−η2/k1,−η2/k2,−η2/k3]T }.

Proof. The proof follows a similar procedure to that of Lemma
3 and thus is omitted here.

C. Overall Algorithm Framework

A schematic diagram of the spacecraft attitude system under
control is visualized in Fig. 1. To detail the implementation of
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Fig. 1: Schematic diagram of the entire system

the TRMPC scheme, the inner angular rate control loop shown
in Fig. 1 is extracted and expanded in Fig. 2. The correspond-
ing implementation steps are summarised in Algorithm 1.

TRMPC
optimization

Robust feedback
control law

Angular rate 
system

Optimization
process

Establish
initial

conditions

Construct the
optimization

model

Fig. 2: Implementation of the TRMPC scheme

Algorithm 1 TRMPC for angular rate control loop
1: procedure
2: Step 1: At tk, obtain the actual state ω(tk);
3: Step 2: Establish the initial condition ω(tk) ∈ ω̃(tk|tk)⊕Oω
4: and the optimization model (29);
5: Step 3: Address (29) to obtain ω̃∗(τ |tk) and M̃∗(τ |tk);
6: Step 4: Calculate the robust control law M(τ) via (36);
7: Step 5: Use M(τ) to steer system (1b) over τ ∈ [tk, tk+1);
8: Step 6: Set tk ← tk+1 and go back to Step 1;
9: end procedure

Remark 2. Note that the proposed dual-loop TRMPC tracking
controller is robust against external disturbances, which is
mainly achieved by tightening the system variable constraints
for the nominal optimization model, thereby taking the ef-
fect of disturbances into consideration explicitly. Then, as
demonstrated in Algorithm 1, the optimized solution is used
to construct the robust feedback control law. More specifi-
cally, the robust expressions of the proposed inner and outer
TRMPC can be abbreviated as ωc(τ) = κω(Θ̃

∗
, ω̃∗c ,Θ) and

M(τ) = κM (ω̃∗, M̃∗,ω). Here, (Θ̃
∗
, ω̃∗c) and (ω̃∗, M̃∗) are

the solutions to optimization models (8) and (29), respectively.
As discussed in Lemma 3 and Lemma 5, robust constraint
satisfaction can be achieved if ωc(τ) and M(τ) are applied
to control the systems (1a) and (1b). Moreover, the proposed
compound control law can steer the actual state trajectory such
that it stays within a tube region, which is regulated by the
optimized state trajectory, the feedback gain matrix K and the
upper bounds of the external disturbances (η1 or η2).

Remark 3. Different from other related works [23], [24], where
the robust feedback law was obtained by addressing another
MPC to attenuate the effect of additive disturbances, the
feedback laws given by (18) and (36) are determined offline
via feedback linearization of (17) and (35), respectively. This
means that at time instant tk, only a nominal system-based
open-loop optimization problem has to be solved in real time.
Although this strategy might bring difficulties in designing
tightened state/control constraints, one key advantage is that no
additional optimization process is required, thereby alleviating
the online computational burden significantly. Moreover, it is
likely to facilitate practical implementations of the algorithm
for various engineering problems.



IV. ANALYSIS OF FEASIBILITY AND STABILITY

A. Recursive Feasibility
In this section, the main theoretical properties of the pro-

posed TRMPC are analysed. To be more specific, Theorem 1
is established to show the recursive feasibility of applying the
proposed TRMPC control scheme.

Theorem 1. Given the outer and inner tracking error systems
in the form of (4a) and (4b), if a feasible control solution for
optimization problems (8) and (29) at time point tk can be
found, then the optimization problems are recursively feasible
for all tk+1 > tk.

Proof. First, attention is paid to the outer tracking system
(4a) and optimization problem (8). Assume that an optimal
control solution ω̃∗c(τ |tk) is successfully found by solving (8).
Then, the robust control law (18) is calculated and applied to
the actual attitude angle system over [tk, tk+1]. From Lemma
3, we have Θ(tk+1) ∈ Θ̃

∗
(tk+1|tk) ⊕ Oθ, indicating that

Θ̃(tk+1) = Θ̃
∗
(tk+1|tk) is a feasible nominal attitude angle

value for optimization problem (8) at time instant tk+1. With
this initial specification, a candidate control sequence for
problem (8) at tk+1 can be designed as

ω̃c(τ |tk+1) =

{
ω̃∗c(τ |tk) if τ ∈ [tk+1, tk + T )
ω̃fc (τ |tk) if τ ∈ [tk + T, tk+1 + T )

(37)

Note that this candidate control sequence consists of two parts:
the tail of ω̃∗c and the terminal control law given by (10). To
illustrate that ω̃c(τ |tk+1) is a feasible solution at tk+1, Lemma
2 is recalled. It is obvious that ω̃c(τ |tk+1) is able to steer
Ẽθ(τ |tk+1) into Ωtube

θ for τ ∈ [tk+1, tk+T ) without violating
the tightened state and control constraints. Since Ωtube

θ is a
terminal invariant set, we have Ẽθ(τ |tk+1) ∈ Ωtube

θ under the
terminal control ω̃c(τ |tk+1) over [tk + T, tk+1 + T ). This
also implies that Θ̃(τ |tk+1) ∈ Xtube

θ and ω̃c(τ |tk+1) ∈ Utube
ω .

Hence, ω̃c(τ |tk+1) is a feasible solution for (8) at tk+1, and
by induction, the proof can be completed.

For the inner tracking system (4b) and optimization problem
(29), the proof follows the same procedure as that of the outer
loop. Thus, we omit this part.

B. Control Stability
The next theorem (e.g., Theorem 2) reveals that when using

the proposed control scheme, the ISS of the tracking error
system can be guaranteed. This further ensures that the time-
varying attitude angle profiles can be successfully tracked.

Theorem 2. If the optimization process of the dual-loop
TRMPC-based attitude control algorithm is feasible at tk, then
the outer and inner tracking error systems have ISS.

Proof. The proof is shown in the Appendix.

V. PERFORMANCE EVALUATION

A. Parameter Assignment
To validate the effectiveness and performance of the pro-

posed dual-loop TRMPC design, a number of experimental
studies and analyses are executed and presented in this sec-
tion. The attitude-dynamics-related parameters are specified

as follows: Ixx = 434270slug · ft2, Ixz = 17880slug ·
ft2, Iyy = 961200slug · ft2, Izx = 17880slug · ft2 and
Izz = 1131541slug · ft2. Other elements that appear in
I are set to zero. It is required that the system variables
satisfy the constraints XΘ = {Θ : ‖Θ‖ ≤ 45deg}, Xω =
{ω : ‖ω‖ ≤ 5deg/s} and UM =

{
M : ‖M‖ ≤ 1× 105lb · ft

}
.

We consider an attitude tracking scenario where the reference
angular signals are given by αr = 10 + 2.5 sin(0.5t), βr = 0,
and σr = −30+5 cos(0.5t) respectively. The initial conditions
for different variables are set as Θ(0) = [7.5, 10,−30]T ,
ω(0) = [0, 0, 0]T and M(0) = [0, 0, 0]T . Hence, the initial
feasibility is guaranteed. For the TRMPC algorithm, based
on Lemma 2 and Lemma 4, the weight and local gain
matrices are chosen as P = diag{8, 8, 8}, Q = diag{2, 2, 2},
R = diag{1, 1, 1} and K̃ = diag{2.5, 2.5, 2.5} for the
inner- and outer-loop TRMPC. ∆f and ∆d are bounded by
η1 = 0.5 and η2 = 0.1. The feedback gain matrix is selected
as K = diag{5, 5, 5} for the two loops. The sampling period
is set to 0.2 s, while the prediction horizon T = 20 s.

B. Experimental Setup

3-Axis Rotation 
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IMU

Fig. 3: System test platform
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Fig. 4: Working principal of the platform

A hardware-in-the-loop platform is established and applied
to perform the experimental tests. Specifically, as depicted in
Fig. 3, the system test platform includes a spacecraft model
simulator (NI PXIe-8820 2.2 GHz Celeron 1020E Dual-Core,
NI PXI-6723 D/A converting module and PXI-6224 A/D con-
verting module), a controller unit (ADVANTECH 610L with
I5-8500/4G/1TB and PCI-1723-BE D/A converting module),
a 3-axis rotating platform and an inertial measurement unit
(IMU). Fig. 4 illustrates the working principal of the platform.
The spacecraft model, which considers the angular velocity



and attitude angle dynamics, runs on the NI PXI real-time
controller with NI LabVIEW real-time module version 8.0,
which is used to drive the 3-axis rotating platform by using
a D/A converting module. The spacecraft parameters (angle
of attack; sideslip and bank angles; and roll, pitch and yaw
angular rates) obtained by the IMU are sent to the controller
unit via RS232 and then employed to generate the proposed
control law.

C. Tracking Performance Evaluation and Comparative
Studies

The tracking performance achieved by applying the pro-
posed dual-loop TRMPC algorithm in the presence of con-
straints and disturbances can be seen in Fig. 5. From this
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Fig. 5: Attitude tracking and attitude tracking error evolution

figure, it is obvious that the proposed approach is able to offer
a promising tracking performance for the considered problem.
That is, the desired angle profiles can be successfully tracked
in a short time and the tracking errors of Θ can be rapidly
steered to a small neighbourhood of the origin.

0 10 20 30 40 50
Time (sec)

-10

-5

0

5

10

 (
de

g/
s)

TRMPC Result
p trajectory
q trajectory
 trajectory

Bounds

0 10 20 30 40 50
Time (sec)

-10

-5

0

5

10

 (
de

g/
s)

SMC Result

0 10 20 30 40 50
Time (sec)

-10

-5

0

5

10

 (
de

g/
s)

NMPC Result

Fig. 6: Angular rate evolution trajectories

In Fig. 6 and Fig. 7, the corresponding angular rate evolution
trajectories and the input profiles are visualized. It is clear from
these two figures that all the variable constraints (indicated
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Fig. 7: Input evolution trajectories

by the red dashed line) are satisfied during the entire closed-
loop control process. Therefore, the effectiveness of restricting
the nominal system state and input variables to a tightened
region in the TRMPC optimization formulation is verified.
Note that although some irregularity in the shape can be
detected in the obtained angular rate profiles, the trajectory
curves are relatively-smooth. Actually, the irregularity may
caused by multiple reasons such as the consideration of
additive disturbances acting on the angular rate dynamics,
and the nonlinear and periodic characteristics of the reference
angular trajectories. In addition, it is worth highlighting that by
examining the input evolution profiles presented in Fig. 7, one
can observe some small oscillations, which are mainly caused
by the non-linear feedback part of the proposed control law.
That is, the algorithm is trying to reduce the state deviations
between the nominal system and the noise-perturbed system.

To highlight the advantages of applying TRMPC, compara-
tive studies were performed between the proposed scheme and
other newly developed approaches. The methods selected for
comparison are the non-linear MPC (NMPC)-based attitude
tracking method reported in [20] and the sliding mode control
(SMC)-based tracking scheme proposed in [3]. Note that the
selected NMPC can be viewed as a non-robust approach,
as it ignores the disturbances in the dynamics and relies
purely on the inherent robustness of deterministic MPC. The
corresponding attitude angle tracking trajectories, angular rate
and control input evolution profiles are depicted in Figs. 5-
7. To quantitatively compare the reference tracking (steady-
state) performances of different algorithms, the performance
measure Ind1 = (

∫ tf
0
‖Eθ‖2dt)

1
2 is applied. Detailed results,

including the scaled Ind1 and the peak constraint values, are
given in Table I for clear illustration.

TABLE I: Comparative results of different methods

Method Peak constraint
Ind1 max(|p|) max(|q|) max(|ν|)

TRMPC 131.0882 5.0000 3.6108 4.2630
NMPC [20] 137.4215 8.3778 3.7954 6.2475
SMC [3] 131.869 9.3319 5.1652 7.1271

According to the results shown in Figs. 5-7 and Table I,



the proposed TRMPC method is able to achieve a better
reference tracking performance than that of its counterparts
(e.g., smaller Ind1 value). In addition, harsher angular rate
and control evolution profiles are obtained using the NMPC-
and SMC-based tracking approaches. More importantly, it can
be seen from Fig. 6 that the NMPC- and SMC-based methods
fail to maintain the actual angular rate profiles in the defined
constraint regions due to the existence of additive disturbances.
Therefore, we may conclude that the proposed TRMPC control
scheme has advantages in terms of the physical constraints and
disturbance rejection.

D. Case Studies on Algorithm Parameters
An important variable that requires further analysis is OΘ.

Its value reflects the variation between the controlled tra-
jectory and the optimized nominal trajectory, i.e., with and
without the robust feedback control part embedded in the
proposed TRMPC. According to the TRMPC design, OΘ

should be guaranteed to stay inside an invariant tube region.
To better illustrate this point, the evolution trajectories of
OΘ = [αe, βe, σe]

T are visualized in Fig. 8. In addition, based
on Lemma 3, the invariant tube region can be expressed as

OΘ =

{
[αe, βe, σe]

T ∈ R3

∣∣∣∣∣
[
|αe|
|βe|
|σe|

]
≤

[ 1
10
1
10
1
10

]}
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Fig. 8: Angular variable deviation trajectories

In Fig. 8, the tube boundaries are indicated by the blue
dashed lines. From the result, it is obvious that the trajectories
of αe, βe, and σe do not cross the boundary lines during
the entire evolution. This outcome confirms that the proposed
TRMPC is able to maintain the state deviation value in the
invariant tube region.

Comparative case studies were performed to analyse the
impact of selecting different gain matrices K on the tracking
performance. Specifically, three cases are considered:

Case 1 K1 = diag{10, 10, 10}, resulting in O1
Θ = [0.1, 0.1, 0.1]T ;

Case 2 K2 = diag{15, 15, 15}, resulting in O2
Θ = [0.067, 0.067, 0.067]T ;

Case 3 K3 = diag{20, 20, 20}, resulting in O3
Θ = [0.05, 0.05, 0.05]T .

The corresponding state deviation results are visualized in
Fig. 8, where the tube boundaries for Cases 1-3 are indicated

by the blue, red and black dashed lines, respectively. Detailed
tracking results are quantified and reported in Table II, where
an additional indicator Ind2 = (

∫ tf
0
‖M‖2dt) 1

2 is introduced
to measure the control cost. By viewing the state deviation

TABLE II: Results for different cases

Case No. Performance
Ind1 Ind2

Case 1 131.0882 2.8285
Case 2 129.7358 2.9950
Case 3 119.1921 4.8494

curves shown in Fig. 8 and the results reported in Table II, we
find that using a larger feedback gain value tends to result in
a better angle tracking performance. Moreover, it can reduce
the deviation between the actual state trajectories and the
optimized nominal solutions. However, according to Lemma
3, a larger feedback gain value will reduce the size of the state
deviation tube, and because of this, more control efforts are
likely to be consumed such that the actual state variable can
be maintained in a relatively-tight tube region.

VI. CONCLUSIONS

In this work, a dual-loop control framework capable of
tracking the desired spacecraft attitude reference trajectory in
the presence of disturbances and system constraints was estab-
lished. To optimize the tracking performance while preserving
robust constraint satisfaction, a new TRMPC algorithm was
built and used as the controller to generate control actions
for spacecraft angular and angular rate systems. In addition,
through the design of a terminal control law and an invariant
set, explicit conditions regarding the recursive feasibility and
ISS were derived. Based on the obtained experimental results,
it was verified that the proposed TRMPC is able to rapidly
steer the attitude motion to track the desired reference trajec-
tory without violating state and input constraints. Moreover,
according to the comparative studies, the proposed TRMPC
can achieve a better attitude tracking performance than that
of other methods studied in this paper. Hence, we believe that
TRMPC is a promising control algorithm and that it is reliable
to apply the established attitude control scheme to deal with
the considered reference tracking problem.

It is worth highlighting that the main shortcoming of the
proposed TRMPC scheme is that due to the implementation
of a robust feedback law, some degrees of conservativeness are
introduced, thus degrading the solution optimality. Therefore,
future research can be carried out to extend the TRMPC
algorithm such that the conservativeness can be reduced while
preserving system robustness.

APPENDIX
PROOF OF THEOREM 2

Proof. The entire proof contains two steps. First, we illustrate
that the tracking error of the nominal attitude system can
be steered to the origin. Subsequently, we illustrate that
with application of the robust feedback law, the actual state
trajectory can converge to an invariant tube region where
the centre is the optimized trajectory of the nominal system.



Specifically, for the outer attitude angle tracking error system,
the optimal objective Jθ(Ẽ

∗
θ(tk), Ũ∗θ(tk)) is chosen as the

Lyapunov function. Then, the difference in this Lyapunov
function ∆Vθ at tk and tk+1 satisfies the following inequality:

∆Vθ ≤ Jθ(Ẽθ(tk+1), Ũθ(tk+1))− Jθ(Ẽ∗θ(tk), Ũ∗θ(tk))

= −
∫ tk+T

tk

(‖Ẽ∗θ(τ |tk)‖2P + ‖Ũ∗θ(τ |tk)‖2Q)dτ

+

∫ tk+1+T

tk+1

(‖Ẽθ(τ |tk+1)‖2P + ‖Ũθ(τ |tk+1)‖2Q)dτ

− ‖Ẽ∗θ(tk + T |tk)‖2R + ‖Ẽθ(tk+1 + T |tk+1)‖2R

=

∫ tk+1+T

tk+T

(‖Ẽθ(τ |tk+1)‖2P + ‖Ũθ(τ |tk+1)‖2Q)dτ

+

∫ tk

tk+1

(‖Ẽ∗θ(τ |tk)‖2P + ‖Ũ∗θ(τ |tk)‖2Q)dτ

− ‖Ẽ∗θ(tk + T |tk)‖2R + ‖Ẽθ(tk+1 + T |tk+1)‖2R

(38)

In (38), Jθ(Ẽθ(tk), Ũθ(tk)) represents the objective value of
the constructed solution (37). Note that in Lemma 2, we
showed that ġθ(Ẽθ(τ |tk)) + Lθ(Ẽθ(τ |tk), Ũθ(τ |tk)) ≤ 0.
Integrating this equation from tk + T to tk+1 + T and
substituting the outcome into (38), one can obtain ∆Vθ ≤ 0.
Hence, the angle tracking error vector Ẽθ will asymptotically
converge to the origin, and because of this, a K function exists
such that for any t > 0, we have ‖Ẽ∗(t)‖ ≤ K(E∗(0), t).

According to Lemma 3 (2) and Theorem 1, we can obtain
Oθ(t) ∈ Oθ, which means there exists a K∞ function such
that for any t > 0, ‖Oθ(t)‖ ≤ K∞(η1). Consequently, it is
obvious that for any t > 0, one has ‖E(t)‖ ≤ K(E∗(0), t) +
K∞(η1), implying that the actual attitude angle tracking error
is ultimately bounded and that the outer tracking error system
has ISS. The proof for the inner tracking system follows the
same procedure and is thus omitted here.
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