
R E S E A R CH A R T I C L E

Multivariate statistical data analysis of cell-free protein
synthesis toward monitoring and control

Carlos A. Duran-Villalobos1 | Olotu Ogonah2 | Beatrice Melinek2 |

Daniel G. Bracewell2 | Trevor Hallam3 | Barry Lennox1

1Department of Electrical and Electronic

Engineering, The University of Manchester,

Manchester, UK

2Department of Biochemical Engineering,

University College London, London, UK

3Sutro Biopharma, Inc., South San Francisco,

California, USA

Correspondence

Carlos A. Duran-Villalobos, Department of

Electrical and Electronic Engineering, The

University of Manchester, Manchester M13

9PL, UK.

Email: carlos.duran@manchester.ac.uk

Funding information

UK Engineering and Physical Sciences

Research Council (EPSRC), Grant/Award

Number: EP/P006485/1

Abstract

The optimization and control of cell free protein synthesis (CFPS) presents an ongoing

challenge due to the complex synergies and nonlinearities that cannot be fully

explained in first principle models. This article explores the use of multivariate statistical

tools for analyzing data sets collected from the CFPS of Cereulide monoclonal anti-

bodies. During the collection of these data sets, several of the process parameters were

modified to investigate their effect on the end-point product (yield). Through the appli-

cation of principal component analysis and partial least squares (PLS), important corre-

lations in the process could be identified. For example, yield had a positive correlation

with pH and NH3 and a negative correlation with CO2 and dissolved oxygen. It was

also found that PLS was able to provide a long-term prediction of product yield. The

presented work illustrates that multivariate statistical techniques provide important

insights that can help support the operation and control of CFPS processes.
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1 | INTRODUCTION

The integration of machine learning techniques into the operation and

control of cell free protein synthesis (CFPS) systems1 offers significant

potential for improving productivity and the quality of materials man-

ufactured using this relatively new processing technique. CFPS offers

advantages over in-vivo protein production for applications that require

more precise control of product physiochemical properties, such as

bispecific antibodies, antibody drug conjugates, vaccines, and membrane

proteins.2 It also offers direct access and control of the synthesis environ-

ment, giving potential for the development of highly productive CFPS

platforms, for the rapid and efficient production of recombinant proteins.3

Guidelines proposed by pharmaceutical regulatory authorities,

such as those published by the International Council for Harmoniza-

tion of Technical Requirements for Pharmaceuticals for Human Use

(ICH), emphasize the importance of identification, control, design

space, and process validation in the development and manufacture of

pharmaceutical products.4 In particular, Q8, Q9, Q10, and Q11 from

the ICH highlight the importance of process modeling as a tool to

implement quality by design.

Models used to describe CFPS production processes and in

particular its application to quality by design can only be useful in

practice if sufficient process knowledge is available to explain the

effect of critical process parameters on critical quality attributes. In

this respect, mechanistic models offer great value in determining cau-

sality to support the optimization of CFPS processes5,6; however, the

development of such models requires significant time and resources

which typically make them impractical.7 In addition, CFPS relies on a

complex network of interacting reactions, reactants, and enzymatic

catalysts, which are not yet fully understood. Although there are
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continuous efforts to improve CFPS mechanistic models such as less

data intensive models based on flux balance analysis,8 models devel-

oped from first principles are still scarcely being used to optimize the

processes9 and hence empirical modeling techniques have been inves-

tigated as a possible alternative. Unfortunately, challenges associated

with the multidimensionality of the data being analyzed, as well as

variations introduced by disturbance factors such as experimental

error and noise can lead to problems for many empirical modeling

techniques. However, multivariate data analysis techniques have been

applied to many other processes where studies have demonstrated

them to be capable of overcoming these challenges, allowing models

to be developed that can be used to support process optimization.10

One approach to modeling multidimensional data is to use artificial

neural networks (ANNs). Multiple publications on bioprocess optimiza-

tion, prediction, delivery and prognoses have shown the capabilities of

ANNs, particularly their ability to predict behavior in CFPS processes.11

The main advantage offered with ANNs is that they are better at cap-

turing nonlinear relationships when compared with traditional statisti-

cal modeling techniques, such as partial least squares (PLS). However,

they require greater computational resources and have a complex

structure requiring model developers to explicitly identify possible

causal relationships between process variables. In addition, model

developers need to go through an empirical process of performing sen-

sitivity analyses on parameters such as learning rates, momentum

terms, and model structure.12 As a result, ANNs models tend to be

opaque and difficult to thoroughly validate and verify.

An alternative approach to modeling multidimensional data is to

use multivariate statistical models, such as those commonly referred to

as multivariate statistical data analysis (MSDA). MSDA techniques have

been applied successfully to pharmaceutical production processes for

optimization, monitoring, online control and detection of sensor faults in

seed, batch, and fed-batch cultivations.10,13-21 For example, the capabili-

ties of MSDA in a cell-culture process for small scale (2 L) and large scale

(2000 L) batches were published in Kirdar et al.22 This work aimed to

evaluate whether MSDA was able to characterize the process through

the analysis of process parameters such as CO2, O2, glucose, pH, lactate,

ammonium ions, purity, viable cell density, viability, and osmolality. The

proposed methodology included analyzing various control charts to

identify fault conditions, with their results demonstrating that MSDA

could be used as a tool for extracting knowledge from such processes.

There has been very little work published that has focused on the

analysis of cell free expression systems using MSDA techniques. In

Reference 23, the authors assessed the differences in the metabolite

profiles of four lysates by analyzing the data collected from the pro-

cess using principal component analysis (PCA), with the aim being to

standardize lysate activity and to design an improved cell free expres-

sion system. The lack of published research in this area indicates a

clear knowledge gap regarding the potential benefits of using MSDA

tools to optimize and control such processes.

The aim of the present work was, therefore, to apply MSDA tech-

niques to experimental data collected from CFPS processes to deter-

mine which process parameters, including pH, temperature, and O2

have the most significant effect on end-point qualities, such as yield

and aggregation. In addition, the work also aimed to identify the suit-

ability of using MSDA techniques to provide long-term predictions of

end-point quality metrics during operation of the process. The specific

case study for the analyses presented in this article is the scalable

cell-free synthesis of monoclonal antibodies (mAb), using the cell-free

lysate system developed by Sutro Biopharma.24,25 Additionally, the

present work aims to provide a generic methodology that allows rapid

process characterization and optimization to the manufacturing of

other therapeutic proteins and biopolymers by developing data-based

relationships between process parameters and process outputs such

as yield, which are likely to be highly dependent on the cell extract

type, target protein, construct design, and so forth.26

Section 2 describes the methodology that was followed when

applying the MSDA techniques, with Section 3 providing the method-

ology for operating the laboratory equipment and collecting data. Sec-

tion 4 presents the results and provides a discussion and finally,

Section 5 provides the conclusions and the authors' perspective on

the use of MSDA techniques as tools for optimizing the performance

of CFPS processes. In addition to the main body of the article, Appendix

A provides a list of abbreviations and Appendix B describes the statistical

tools used in this article. The codes have been shared on GitHub (https://

github.com/CarlosADuranVIllalobos/CFPS-Multivariate-Statistical-Data-

Analysis) to enable use of the same technique to other CFPS reactions.

2 | METHODOLOGY OF THE DATA
ANALYSIS

2.1 | Data set organization

Five sets of experimental data were analyzed in this work and a sum-

mary of these date are provided in Table 1. Four of these data sets

were collected from experiments completed at UCL, D1–D4, with the

fifth, D5, collected from a laboratory operated by Sutro Biopharma,

Inc. All experiments were undertaken by the same person,

Experimenter A, with the exception of D4 which was completed by

Experimenter B. Each data set consisted of the mean process mea-

surements collected every minute from observations from each well

on a 24-well plate. The data sets were averaged to hourly data to

make them robust to instrumental noise and to enable simpler analy-

sis. In some wells, the reaction failed and for these wells, the data

were discarded. The observations column provides the number of

wells that were used in each data set after failures were discarded.

The values for each of the control parameters: temperature, run

length and pH, for the five data sets (D1–D5) are shown in Table 1.

D1–D4 contained online measurements of pH, dissolved oxygen

(DO) and temperature and end-point yields. D5 contained measure-

ments of pH, DO, temperature, volumetric O2, volumetric CO2 and

volumetric NH3, and end-point yields of the quality variables: mAb,

monomer percentage and aggregate percentage.

Set-points for the temperature and pH controllers were held con-

stant for D1, D2, and D5. However, after analyzing the data from

these experiments and observing findings in relevant literature,27- pH
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was seen to be a key factor impacting the reaction yield and to ana-

lyze its effect further the set-point was varied through experiments

D3 by introducing low-frequency pseudo random binary signals

(PRBS). PRBS are often used in system identification to excite the pro-

cess at different times and frequencies of the input variables trajecto-

ries such that it produces small changes in the output. Finally, the set-

points for pH during D4 were specified so that the effect that a

predefined pH trajectory had on the reaction could be compared to

the case were pH was maintained at a fixed level in reactions

operating over a longer duration (12 h).

2.2 | Data preprocessing

Data were arranged into matrices of process measurements, X, and

matrices of end-point qualities, Y. The matrices were then normalized

prior to model identification by subtracting the mean and dividing by

the standard deviation of each variable. For data analysis and predic-

tions that considered temporal information, the matrix X, which con-

tained three-dimensional information (variables of size J, time

intervals of size K, and observations or repeats of size I) was unfolded

into a two-dimensional array using the technique referred to as

multiway unfolding29 as shown in Figure 1(A). This technique has

been used in several previous studies for monitoring batch pro-

cesses.30 In this article, the letter “M” will be used as a prefix of

the model to indicate multiway models (e.g., MPLS will refer to

multiway PLS).

In some cases, the total reaction length, and therefore the number

of observations recorded during the run, or batch, varied, and as a

result, the unfolded data matrix X was incomplete because of the dif-

ference in vector sizes. Uneven vector lengths creates difficulties

when using multiway unfolding as it requires all vectors to be of equal

length. To address this issue three approaches were used: Approach

1 compiled the unfolded X matrix using only those measurements that

were recorded up to the shortest reaction length. Approach 2 com-

piled the unfolded X matrix using only the measurements that were

recorded in the last few hours of each reaction, which all the observa-

tions had in common and Approach 3 compiled the unfolded X matrix

using missing data (MD) techniques. Specifically, the technique of Pro-

jection to the Modal Plane31 was used to estimate the progress of

each run had the reaction been allowed to continue. Figure 1(B)

shows the three approaches used to address uneven vectors.

2.3 | Methodology of the exploratory data analysis

The initial data analysis was provided using the relatively standard

techniques of PCA and PLS and their multiway counterparts (MPCA

and MPLS). Further details of these techniques can be found in

Appendix B.

PCA was initially applied to the five data sets to help in the identi-

fication of critical process parameters that could potentially be used in

the future to control the cell-free synthesis reaction. In addition, PCA

was used to identify similarities and differences between the

TABLE 1 Control parameters of experimental data sets

Data set Location Experimenter Temp. (�C) Run length (h) pH Observations

D1 UCL A 27, 28.5, and 30 4, 6, and 8 6.7, 6.9, 7, and 7.3 22

D2 UCL A 29, 30, and 32 2, 4, and 6 6.7, 7, and 7.3 24

D3 UCL A 30 8 Variable (6.6–7.8) 24

D4 UCL B 30 12 Variable (6.4–7.5) 23

D5 Sutro A 28 10, 12, and 14 6.4, 6.7, and 7 19

F IGURE 1 Preprocessing for
the matrices of process
measurements X. (A) Unfolding
into a two-dimensional array.
(B) Approaches used to address
uneven vectors [Color figure can
be viewed at

wileyonlinelibrary.com]
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observations collected in the experiments conducted by different lab-

oratory experimenters and in different locations. For the PCA models,

the matrix X included the initial and final measurements from the pro-

cess variables and the end-point, quality variable(s). PCA models were

then identified for this matrix using the NIPALS algorithm.29

PLS and MPLS were also used for exploratory data analysis to

observe the effect that each process variable had on the quality

variable(s). The data used to construct the X matrix for PLS and MPLS

were the process variable measurements through each batch. For the

PLS model, the quality variable(s) was used to construct the Y matrix.

The PLS and MPLS models were identified using the SIMPLS algo-

rithm32 and the number of latent variables used in the models was

chosen as being that which minimized the root mean square error of

cross validation when using 10-fold cross validation.

2.4 | Methodology of the prediction assessment

A variety of process control techniques based on MSDA have been

developed and a key factor when demonstrating the ability of these

control techniques to increase the efficiency and the robustness of

CFPS processes is to determine the accuracy that MSDA models can

predict key quality variables. The first part of this analysis provides a

comparison of the ability of different MSDA modeling techniques to

predict end-point quality variable(s). The models that were applied in

this work are listed below, with further details regarding each

technique provided in Appendix B:

• Ordinary least squares (OLS) and multiway OLS (MOLS) regression.

• PLS and MPLS regressions.

• Quadratic PLS (QPLS) and multiway QPLS (MQPLS) regression.

2.5 | Methodology of monitoring using MSDA
control charts

The most frequently used control charts for monitoring purposes are

based on two statistics: the Hotelling's statistic, T2, which provides a

measure of the deviation of an observation from the region covered

by the identification data set and the squared prediction error (SPE) of

x, SPEx, which is the error between the data vector of an observation,

x, and its reconstructed value obtained using the MSDA model. The

confidence limits for the charts were calculated using the bootstrap-

resampling technique used in Duran-Villalobos et al,16 which infers

confidence intervals from an empirical distribution function.

3 | METHODOLOGY OF CFPS

A simple mAb system was chosen to demonstrate proof of principle

for the use of control and optimization in cell-free synthesis. The aim

of this proof of concept study was to determine whether therapeutic

dose levels of a mAb could be achieved within 24 h by modifying the

operating conditions of the process. The focus of the optimization

was on the controllable parameters of the upstream production,

i.e. the reactions producing protein from a pDNA plasmid provided by

Sutro Biopharma, Inc., the exact sequences of the pDNA plasmid are

confidential.

Raw materials for the CFPS reaction were kindly provided by

Sutro Biopharma, Inc. and this included a cell-free extract (XtractCF), a

reaction mix containing amino acids, nucleic acids, salts and energy

source (2x Supermix), plasmids for the heavy chain and light chain of a

mAb and T7 RNA polymerase (prepared in-house and in the form of

an Escherichia coli lysate). None of these components are commer-

cially available. All materials were stored frozen at −80�C and suffi-

cient quantities for each experiment thawed at room temperature

immediately prior to use.

The laboratory procedures that were followed for the CFPS reac-

tion were as follows24,25:

• 30 ml of thawed XtractCF was pretreated with 22.5 μl of 100 mM

iodoacetamide (IAM) (A3221-10VL, Sigma Aldrich) for 30 min at

room temperature (with the aim to stabilize redox potential to

facility disulfide bond formation).

• The IAM-treated extract was added to 50 ml of 2x supermix,

0.5 ml of T7 RNA polymerase produced in-house by Sutro

Biopharma, Inc. to a standard unit activity level, 0.375 and

0.125 ml of the heavy and light chain plasmids, respectively (to a

final concentration 0.005 mg/ml), and the volume made up to

100 ml with milliq water.

• The mixture of reactants and plasmids was mixed by inversion, and

3.5 ml added to each well of a 24-well PERC plate (MRT-PRC-2I,

Pall). The plate was sealed with a breathable AeraSeal membrane

(Excel Scientific) and placed in a Micro-24 micro-bioreactor

(MicroReactor Technologies, Pall, Port Washington), where the

temperature was controlled by heat plates, the pH was controlled

by the addition of CO2 or NH3 gases and DO controlled by addi-

tion of an oxygen-air mix. The controllers on the Micro-24 were

tuned using the Ziegler-Nichols open-loop method, followed by

trial and error, fine-tuning. The agitation rate in the Micro-24 was

set at 600 rpm to ensure the reactants remained well mixed.

• Reaction yields of cereulide mAb were calculated from the UV

absorption at 280 nm of the eluate from a single step protein A purifi-

cation and an extinction coefficient of 1.474 mg/ml/AU. Then, 400 μl

of the final reaction mix was loaded on to a 200 μl MabSelect SuRe

robocolumn (28986107, GE Healthcare Lifesciences), pre-equilibrated

with 800 μl of 25 mM Tris, 100 mM NaCl at pH 7.4, using a tecan liq-

uid handling unit. The robocolumn was washed with 1000 μl of

25 mM Tris, 100 mM NaCl at pH 7.4, eluted with 600 μl of 50 mM

acetate at pH 3.7 and stripped with 600 μl of 100 mM phosphoric

acid. With yields of the order of 0.5 mg/ml the resin loading was

1.5 mg/L resin, well within the quoted binding capacity of the resin

(35 mg hIgG/ml resin). The flow rate at all stages was set to give a

residence time of approximately 5 min. The UV 260, UV 280, and UV

900 of the wash, eluate, and strip were measured with a tecan micro-

plate reader (Infinite M200PRO) and recorded in EVOware.
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• The columns were reused so additional steps were conducted to

restore the columns to their initial condition: a 200 μl flush with

25 mM Tris, 100 mM NaCl at pH 7.4 over 2 min, a clean in place

with 800 μl of 0.5 M NaOH (with a slower flow rate to give a

15-min residence time) and a re-equilibration with 2000 μl of

25 mM Tris, 100 mM NaCl at pH 7.4 over 10 min.

Work conducted at Sutro Biopharma, Inc. (South San Francisco,

CA) used comparable equipment, techniques and materials. Work at

Sutro Biopharma, Inc. also included measurement of % aggregate and

% monomer using a high-performance liquid chromatography and

capillary zone electrophoresis system.

4 | RESULTS AND DISCUSSION

4.1 | Exploratory data analysis

Figure 2(A) shows a PCA Loadings plot of the five data sets (D1–D5).

This figure shows the first three principal components (PCs) which

primarily captured the information contained in the measurements of

yield, length of the reaction and initial (ini) and final (end) process vari-

ables. This type of chart can be used to identify relationships within

the measured data, such as the interdependence of different variables

and their relative impact. The blue lines, which begin at the origin,

show the relationship between variables: two lines close to each other

indicate a strong correlation, two lines at 90� indicates no correlation

and two lines at 180� indicates negative correlation. Furthermore, the

further away from the origin a variable lies, the stronger the impact

that variable has on the model.

Additionally, Figure 2(B) shows the PCA scores plot for the same

five data sets (D1–D5). The colored dots in this figure represent the

value in the score of the objects in the PC space: If the observation

markers lie in the same quadrant of a blue line in the loadings plot, it

suggests a strong association with that variable. The score plot can

also be used to assess the data structure of the observations and

detect clusters, outliers, and trends.

The blue lines in Figure 2(A) suggest that, as might be expected,

yield is strongly correlated to the length of reaction and the end-point

pH, whereas it has little correlation with the end-point DO.

F IGURE 2 Principal component
analysis (PCA) of D1–D5 over the
first three PCs with axis showing in
brackets the variance explained by
each PC. (A) PCA loadings plot.
(B) PCA scores plot [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 3 Comparison of
partial least squares (PLS)
regression coefficients between
shorter and longer reactions, with
error bars indicating twice their
standard uncertainty. (A) PLS
regression coefficients for yield
estimation of a model identified
using D1 and D2. (B) PLS
regression coefficients for yield
estimation of a model identified
using D5 [Color figure can be
viewed at wileyonlinelibrary.com]
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The scatter plot in Figure 2(B) also indicates that the length of

reaction has an impact on yield since the data sets with the longer

experiments, D4 and D5, are grouped closer to the yield variable. In

addition, this plot shows that the data from D4 are separated from

the other data sets. The reason for this could be that the length of the

reaction is substantially longer and that the initial pH was substantially

lower than most of the observations in the other data sets. This vari-

ability could have been partly caused by how the experiments were

designed but it could also have been caused by the differences in how

laboratory experimenters, A and B conducted the experiments.

Furthermore, it is possible that the extract did not freeze uniformly,

giving another possible source of variation between the experiments,

which could have been alleviated by aliquoting the extract before

freezing. Figure 2 provides an overview of the interactions between

process variables, yet the set-points for pH were not constant for D3

and D4 which could provide a wrong representation of the correlation

between pH and yield.

The PLS prediction coefficients offer an additional interpretation

of the effect of process variables on yield. In a PLS coefficients plot,

the prediction coefficients, β, provide a measure of the effect that

each variable has on the predicted dependent variable(s). However,

these effects need to be interpreted with caution since such interpre-

tations assume that the model has accurately captured the cause to

effect relationships within the process.

Figure 3 shows a comparison of PLS regression coefficients, with

error bars indicating twice their standard uncertainty33 that were

obtained using bootstrap34 replications, for the models identified on the

shorter (D1 and D2) and longer (D5) reaction lengths. Process parame-

ters whose error bars cross the axis indicate that either the parameters

were not significant or were unreliable for yield prediction. Additionally,

the PLS regression coefficients for monomer % and aggregate % estima-

tion are shown in Figure 4. In these experiments (D1, D2, and D5), the PI

controller set-points for pH and temperature were kept constant using

different experimental configurations; hence, “sp” was used instead of

“end” following the process variable names.

A summary of the main correlation identified from the PCA and

PLS models are shown in Table 2.

PCA for shorter reactions (D1 and D2) and PCA for the longer

reactions (D5) shows a high correlation between yield and pH for both

data sets. On the other hand, yield had a slightly higher correlation

with short duration batches (D1 and D2), as with the longer reaction

lengths (D5) the reaction may have completed before the end of the

batch. From a biochemical point of view, it is logical that as CFPS

reactions are time limited, due to exhaustion of resources and accu-

mulation of inhibitors, and so after a certain period of time, further

increases in reaction time would lose significance as the reaction

begins to slow.

TABLE 2 Main correlations of process variables

Strong correlations with yield identified from PCA
model

Data sets Positive correlation Negative correlation

All data sets Length of reaction, pH (end),

DO (end)

None captured by

the model

D1 and D2

(2–8 h)

pH (ini), pH (sp), Length of

reaction, T (ini)

DO (ini)

D5 (10–14 h) pH (ini), pH (sp), O2 vol (end),

CO2 vol (end), NH3 vol (end)

T (ini)

Strong correlations with end-point qualities
identified from PLS model

Data sets Positive coefficients
Negative
coefficients

D1 and D2

(yield)

pH (ini), pH (sp), Length of

reaction, T (ini)

DO (ini)

D5 (yield) pH (ini), pH (sp), DO (end) CO2 vol (end)

D5 (monomer) pH (ini), pH (sp), NH3 vol (end) CO2 vol (end)

D5 (aggregate) T (sp), CO2 vol (end) NH3 vol (end)

Abbreviations: DO, dissolved oxygen; PCA, principal components analysis;

PLS, partial least squares.

F IGURE 4 Partial least squares
(PLS) regression coefficients of a
model identified using D5, with error
bars indicating twice their standard
uncertainty. (A) PLS regression
coefficients for monomer %
estimation. (B) PLS regression
coefficients for aggregate %
estimation [Color figure can be

viewed at wileyonlinelibrary.com]
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The PLS regression coefficients of the model identified using D1

and D2 shows similarities with the loadings of the PCA model identi-

fied on these same date-sets as shown in Table 2. Similarly, the PLS

regression coefficients of the model identified using D5 are consistent

with the loadings of the PCA model identified on the same data set,

except for those coefficients corresponding to the volumetric values

of O2 and CO2. This difference suggests two possibilities: that the vol-

umetric O2 and CO2 values in the PC space are correlated with NH3

and/or pH rather than with yield; or that either the PCA or the PLS

model was not able to capture the correlations of these process vari-

ables. Since CO2 and NH3 were used to control pH as the reaction

proceeded, it is logical that there was a relationship between these

three factors.

The prediction coefficients of the PLS model can be extended

over time using data sets with experimental conditions designed to

capture this variability over time (D3) and through the identification

of an MPLS model, as described in Sections 2.1 and 2.2. The coeffi-

cients from this model are shown in Figure 5. Since the PI controller

of pH in D3 was designed to change process conditions over time, the

regression coefficients of the MPLS model identified using D3, shows

the effect that the different process variables have on estimated yield

as the reaction proceeds and as Figure 5 shows the coefficients

related to pH and DO vary with time. The coefficients of temperature

were not included in Figure 5 since they did not provide any signifi-

cant effect on yield. A possible cause for this was that the tempera-

ture set-points were kept constant and hence the model did have

enough information to capture the time-varying behavior of

temperature. The temperature range was selected to give a high and

robust reaction, we would speculate that outside this temperature

range the rate of reaction and thus titer would decrease.

Analysis of time varying MPLS coefficients, such as those shown

in Figure 5, provides a useful tool for the optimization of process

parameter trajectories during the reaction. These trajectories, also

known as manipulated variable trajectories, provide the targets to be

implemented by the feedback controllers that are in operation. Using

this MPLS model, the process could be optimized by identifying an

optimal trajectory for pH and DO that provides the most cost-

effective solution for specific manufacturing requirements, or end-

point qualities. Despite the potential benefits of MPLS models in

CFPS optimization, its effectiveness relies on the accuracy of the

model predictions and confirmation of the cause–effect relationships

between process parameters and yield.

The correlations shown in this article must be interpreted with

caution as the impact of pH and temperature is expected to vary to

some degree from one target product to another and extract type to

another. Simplistically, the ideal temperature and pH will be that

which allows the optimal conformation of the protein or proteins

which catalyze the rate limiting reactions. Additionally, the impact of

pH on aggregation will likely vary depending on the product isoelec-

tric point (pI).35 Some degree of optimum pH and temperature varia-

tion with time is expected, as different reaction steps/sets

(transcription, translation, metabolic) and their attendant enzymes

become limiting. For example, at the beginning of a CFPS reaction

transcription is expected to be limiting for at least 30 min to 1 h, as

F IGURE 5 MPLS regression
coefficients of (A) pH and
(B) dissolved oxygen (DO) of a
model identified using D3 designed
to estimate yield, with error bars
indicating twice their standard
uncertainty [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 3 Comparison of percent

prediction error (SMAPE) using various
modeling techniques [Color table can be
viewed at wileyonlinelibrary.com]

2D (initial and final measurements) 3D (time-variant measurements)

OLS PLS QPLS MOLS MPLS MQPLS

Yield D1 + D2 23.7 24.4 30.8 34.8 21.1 37.9

D3 + D4 15.9 16.2 17.4 28.2 17.8 21.6

D5 29.0 30.0 51.5 56.2 30.8 30

Monomer % D5 4.4 4.5 6.0 5.4 3.4 6.5

Aggregate % D5 30.8 27.5 33.4 48.5 28.4 38.1

Multiple D5 yield n/a 22.9 53.4 n/a 26.4 45.6

D5 agg. n/a 5.1 10.5 n/a 4.1 6.3

D5 mon. n/a 28.1 40.2 n/a 29.4 31.5

Abbreviations: MOLS, multiway OLS; MQPLS, multiway QPLS; OLS, ordinary least squares; PCA,

principal components analysis; PLS, partial least squares; QPLS, quadratic PLS; SMAPE, symmetric mean

absolute percentage error.
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mRNA accumulates.36 Furthermore, there is evidence that the opti-

mum conditions for transcription and translation are different.37

Added to this, exhaustion of resources, in terms of macromolecular

building blocks will differ from one product or DNA construct to

another, while with a change in reaction mix composition and/or

extract the rate at which inhibitors accumulate will also differ, and

thus so may the impact of reaction length. In this context, the use of

the MSDA tools proposed in this work provides a generic methodology

to help identify optimal conditions.

4.2 | Prediction assessment

The accuracy with which the various MSDA modeling techniques

described in Section 2.4 were able to predict the end-point quality

variables from the CFPS process was compared using the symmetric

mean absolute percentage error38 between the estimated and the

measured end-point quality using leave-one-out predictions. Table 3

shows the results of the comparison of the prediction errors from dif-

ferent modeling techniques, with the lowest errors highlighted by

intensity in green and the highest errors highlighted by intensity in

red for each identification data set.

The results for the two-dimensional data in Table 3, which contained

the least complex data sets, show that the performance of the OLS

models for the prediction of a single variable was better than any other

compared technique followed closely by that of the PLS models. On the

other hand, the results for three-dimensional data, where the measure-

ments collected throughout the reaction process are considered, show

that MOLS models had the largest prediction errors. The reason for this is

that the additional measurements included in the X matrix are highly cor-

related and this has an adverse impact on the accuracy of OLS models.39

With respect to the computational speed of the studied modeling

techniques, the difference in computing time was negligible relative to

the long reaction times encountered in CFPS so the use of any of

these techniques for predictive control should be feasible.

Table 4 shows the results of the comparison of the prediction

errors using the approaches to address uneven vectors mentioned in

Section 2.2, with the lowest errors highlighted in green and the

highest errors highlighted in red for each identification data set. The

best results in Table 4 were obtained using the first approach, which

consisted on using measurements that were recorded up to the

shortest reaction length, whereas the worst results were obtained

using the third approach which consisted on using MD algorithms.

Models that use the length of reaction as an input, such as those

shown in Tables 3 and 4, can be used for optimization but they are not

useful for online prediction of end-point parameters (yield). In contrast,

the process measurements used to identify the models from Table 5 did

not need to consider the time of reaction as an input to the model;

hence, the model can be used for online monitoring and control.

Table 5 shows a comparison of the prediction errors when MPLS

models were used to provide long-term predictions of yield during the

reaction, with the lowest errors highlighted by intensity in green and

the highest errors highlighted by intensity in red for each identifica-

tion data set. In each case, the errors that are reported are the errors

when the end-point quality is predicted after the reaction had

proceeded for a length of time, for example, after 1h, 2 h, and so

forth. As discussed in Section 2.2, this introduces problems for some

of the predictions later in the runs, as the lengths of the vectors for

each run will vary depending on the length of time of each reaction

run. Two techniques were applied to address this. The first technique

identified multiple models as the reaction progressed. During the first

hour of reaction, the model was identified using only measurements

collected during the first hour of the reaction; during the second hour,

measurements collected during the first and second hour of reaction

TABLE 4 Comparison of percent prediction error (SMAPE) with
uneven vectors [Color table can be viewed at wileyonlinelibrary.com]

Approach 1
(first hour)

Approach 2
(last hours)

Approach 3
(missing data)

Yield D1 + D2 OLS 33.8 34.8 42.1

PLS 21.8 21.1 22.4

QPLS 37.5 37.9 30.7

Yield D3 + D4 OLS 19.9 28.2 61.6

PLS 18.5 17.8 19.5

QPLS 20.5 21.6 22.1

Abbreviations: OLS, ordinary least squares; PLS, partial least squares;

QPLS, quadratic PLS; SMAPE, symmetric mean absolute percentage error.

TABLE 5 Comparison of percent prediction error (SMAPE) with incomplete measurements [Color table can be viewed at
wileyonlinelibrary.com]

Time during reaction when end-point yield is predicted

1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h 11 h 12 h

MPLS yield D1 and D2 26 25.5 24.3 23.8 22.2 22

D1 and D2 (MD) 68.4 57.4 28.1 28.4 23.5 23 23.2 23.2

D3 and D4 23.5 22.5 20.8 20.4 21 21.6 19.2 19.3

D3 and D4 (MD) 94.8 40.6 26.3 22.2 21.4 20.3 19.8 19.47 19.53 19.6 19.7 19.7

D5 24.8 25.4 26.8 26.2 36 33.8 30.6 31.5 30.4 29.1 28.7 29

D5 VIP 19.8 19.8 19.5 19.3 19.1 19.1 19 18.99 18.96 19.3 19 19.5

D5 VIP (MD) 28 24.1 20.4 18.9 18.9 19.1 18.8 18.9 19 19.1 18 18.1

Abbreviations: SMAPE, symmetric mean absolute percentage error; VIP, variable of importance in projection.
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were used to identify the model and so on. Data collected from the

runs with shorter reaction lengths was then discarded as their reac-

tion lengths were exceeded. Hence, this approach utilized a different

model to predict end-point yield for each hour of reaction.

The second approach calculated a single model with all the avail-

able measurements from all the observations in the data set and used

MD techniques to estimate the “missing” future values of measure-

ments for the shorter reactions and at each new “online” observation,
as described in Section 2.2 (these are labeled MD in Table 5).

The lowest prediction errors in Table 5 were observed later in the

reaction, rather than near the start. This is to be expected as later in the

run, more information is available regarding how the reaction has

proceeded and hence the prediction of end-point yield should be

improved. The exception to this was with D5, where the lowest predic-

tion error was at the start of the reaction. A possible cause of this incon-

sistency could be that many of the variables used to identify the model

were not necessary for the prediction of yield and hence the developed

model was overparameterized. To test if this was the case, a technique

used to identify the most appropriate variables in the model, known as

variable of importance in projection (VIP)40 resulted in reduced predic-

tion errors, particularly toward the middle and end of the batch. High

VIP values were automatically selected to be included in the model, while

lower VIP values were discarded. Lower VIP values were found to be

usually of variables measurements which did not show a significant

effect on yield prediction such as temperature in D5.

Another important observation from Table 5 is that predictions

obtained using only data from the first hour of the reaction provided

useful predictions of final yield using the multiple model approach. In

contrast, predictions using MD algorithms seemed to be accurate only

after about 3 h of reaction. However, the advantage of the MD

procedure is that only one model was required.

4.3 | Postbatch analysis and monitoring using PLS
charts

This section provides an example of CFPS batch analysis and online

monitoring with MPLS statistical charts, with the intention being to

F IGURE 6 MPLS post batch
charts of five observations from D3
and D4. (A) Hotelling's statistic, T2.
(B) Squared prediction error (SPE)
statistic [Color figure can be viewed
at wileyonlinelibrary.com]

F IGURE 7 Normalized

cumulative squared prediction error
(SPE) batch charts [Color figure can
be viewed at wileyonlinelibrary.com]
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determine whether MSDA techniques could be used to monitor the pro-

cess and provide early warning of abnormal operation. The MPLS model

used for these charts was identified with the measurements from

37 observations from D3 and D4 where the yield was consistently higher

than 0.3 mg/ml. Another set of 3 “good” observations (G1, G2, and G3)

with yields closer to the mean value of the 37 observations were used to

validate the procedure. In addition, measurements of two observations

(B1 and B2) from D3 and D4 with yield lower than 0.2 mg/ml were used

to represent poor quality or “faulty” reactions.
Figure 6 shows the post batch (a) T2 and (b) SPE statistics charts

for the faulty and the validation observations. In both charts, the “fau-
lty” batches exceeded the 95% confidence limit, whereas the valida-

tion observations stayed within the 95% confidence interval limit,

suggesting that the technique could be used to characterize different

batches. These charts also show that the confidence limit in T2 is

lower relative to the confidence limit for SPE. This difference was also

observed in another study,41 where the author suggested that limits

on SPE may reduce Type I and Type II errors compared with limits

on T2.

Figure 6 shows that B1 and B2 are outside the 95% confidence

limit. After further analysis of the individual contributions of each vari-

able to the SPE in B1 and B2, it was observed that faulty observations

had larger values corresponding to measurements of pH and Temper-

ature along the entire reaction. These large individual SPE values cor-

responded to measurements of unusually high temperature and lower

than average pH compared to those in the identification data set. B1

and B2 were obtained from D3; hence, it is likely that the PRBS in the

DOE caused these two observations to have a low pH during critical

times of the reaction.

A useful approach for online monitoring of product quality is the

use of cumulative contributions of process variables over time to SPE

and T2. These charts allow engineers to set operating windows for

process measurement deviations, which if violated would suggest an

adverse effect on CFPS performance. Figure 7 shows the cumulative

SPE of faulty and validation observations through the batch, normal-

ized to the magnitude of the confidence limits at each hour.

From the results in the chart, the SPE from B1 and B2 were con-

sistently outside the confidence limit. On the other hand, the SPE of

the validation observations stayed within the confidence limits, except

the first hour of G3. A way to reduce false positives is to use more

relaxed confidence limits (e.g., 99%), particularly in the early stages of

the reaction. It is also important to consider that the observations

used in this example are from experimental data in a research environ-

ment, and that the variability encountered among the observations is

likely to be larger than that encountered in observations from stan-

dardized production.

MSDA could be extremely useful for quality control purposes. For

example, if a fault is detected the operator could induce a response in

the process parameters during the remainder of the reaction to bring

the process back within the control limits. An automated way to

achieve this objective has already been presented in literature for

other applications. For example, in,16 the authors use the same MPLS

charts statistics and confidence limits within a cost function to pro-

vide a model predictive control strategy aimed at reducing quality

variability in a fermentation process.

Table 6 summarizes the capabilities and potential use of MSDA in

improving CFPS operations.

5 | CONCLUSIONS

This article provides a summary of a comprehensive exploratory data

analysis that was carried out on measurements collected from a CFPS

reaction system with the aim of discovering/confirming correlations

between process conditions and final product properties. The ease

with which high throughput data can be derived from CFPS reactions

lends itself particularly well to big data analysis techniques. The aim of

this article therefore was to analyze MSDA techniques available, iden-

tify those which are most suitable for CFPS analysis, and provide tools

to allow CFPS practitioners to make use of these techniques. The

TABLE 6 Summary of MS data analysis techniques

Technique Capabilities Potential usage in CFPS

PCA loadings

plot

Illustrate variables

correlation

Process characterization

and optimization,

scale-up

PCA scores

plot

Illustrate observation

clustering and outliers

Process characterization

and optimization,

scale-up,

comparability

between experiments

PLS loadings Illustrate variables

correlation and

importance to

product quality

variable(s)

Process characterization

and optimization,

scale-up

PLS pred.

coefficients

Illustrate importance of

variables to estimate

product quality

variable(s)

Process characterization

and optimization

MPLS pred.

coefficients

Illustrate importance

over time of variables

to estimate product

quality variable(s)

Process characterization

and optimization

VIP scores Variable selection to

discover the more

relevant features of a

model

Process characterization

and optimization

T2 and SPE

charts

Detect outlying

observations with

respect to control

limits

Offline batch analysis

T2(k) and SPE

(k) charts

Detect outlying

deviations of the

process over time

from control limits

Online monitoring

Abbreviations: CFPS, cell free protein synthesis; PCA, principal

components analysis; PLS, partial least squares; SPE, squared prediction

error; VIP, variable of importance in projection.
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experimental results showed that when temperature and pH were

held constant throughout the reaction using a feedback controller, pH

and NH3 had a positive correlation with yield and CO2 and DO had a

negative correlation. This was not necessarily the case for experi-

ments where the controller set-points varied through the reaction,

where the effect of process variables on yield was shown to vary as

the reaction proceeded. In addition, the length of reaction was found

to have a significant, positive impact on yield; although this impact

and the impact of most of the other process variables were found to

only be relevant in the first 10 h of reaction. Temperature, in the

range of values used in the experiments, did not have a statistically

significant impact on yield. However, temperature was found to have

a strong relationship with monomer % and aggregates % estimation.

Multivariate regression models, and in particular PLS, were shown

to be able to provide accurate prediction of end-point product quality

during the CFPS process. This offers future potential for the develop-

ment of feedback predictive control systems able to regulate end-

point quality metrics by manipulating process variables, such as tem-

perature and pH and is the subject of ongoing work.

Overall, the results presented in this article demonstrate that

MSDA techniques offer a useful tool for extracting information from

experimental data sets in CFPS and can be used for process character-

ization and identifying optimal experimental conditions. Moreover, it

has been shown that these techniques can be effective in predicting

and monitoring end-point quality parameters from measurements of

process variables, even within the first hour of the synthesis reaction,

which could be useful to improve large-scale manufacturing.

The applications for MSDA tools in CFPS range from process

characterization to online automated multivariable control, regardless

of the mode of operation (fed-batch or continuous). However, to

effectively apply this technology, the implementation should consider

which data from different unit operations are collected and analyzed

to provide a robust support tool. In addition, if modeling techniques

are to be successfully applied, automation and standardization are

necessary since it is suspected that the largest sources of variation

found in this study and others42,43 were caused by the change of the

operators, equipment and operating environment.
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