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Abstract
Purpose  The development and application of intelligent models to perform vibration-based condition monitoring in industry 
seems to be receiving attention in recent years. A number of such research studies using the artificial intelligence, machine 
learning, pattern recognition, etc., are available in the literature on this topic. These studies essentially used the machine 
vibration responses with known machine faults to develop smart fault diagnosis models. These models are yet to be tested 
for all kinds of machine faults and/or different operating conditions. Therefore, the purpose is to develop a generic machine 
faults diagnosis model that can be applied blindly to any identical machines with high confidence level in accuracy of the 
predictions.
Methods  In this paper, a supervised smart fault diagnosis model is developed. This model is developed using the available 
measured vibration responses for the different rotor faults simulated on an experimental rotating rig operating at a constant 
speed. The developed smart vibration-based machine learning (SVML) model is then blindly tested to identify the healthy 
and faulty conditions of the rig when operating at different speeds.
Results and conclusions   Several scenarios are proposed and examined during the development of the SVML model. It is 
observed that scenario of the vibration measurements simultaneously from all bearings from a machine is capable to fully 
map the machine dynamics in the VML model. Therefore, this developed when applied blindly to the sets of data at a different 
machine speed, the results are observed to be encouraging. The results clearly show a possibility for a centralised vibration-
based condition monitoring (CVCM) model for identical machines operating at different rotating speeds.

Keywords  Machine fault diagnosis · Vibration analysis · Machine learning · Artificial neural network · Pattern recognition

Introduction

Vibration-based condition monitoring (VCM) in rotating 
machines has been successfully applied in industry for 
fault detection and diagnosis. However, the current and 
future approaches in the VCM are the research topic due 
to rapid changes in the technologies and instrumentation, 
including techniques for data processing and analysis. 

Knowledge-based approaches, such as machine learning 
(ML) models stand out among the developed methods, 
since their lack of dependency on the expertise or knowledge 
level of a person to generate the correlations between the 
identified symptoms and their associated faults. They are 
characterised by their capability of exploring and learning 
from empirical data [1]. This ability is a powerful tool for 
fault identification, for instance through the performance of 
pattern recognition. These methods can also be classified 
according their learning process, which could be either 
unsupervised or supervised.

A wide range of techniques with a supervised learning 
have been used for pattern recognition. For instance, the 
application of support vector machine (SVM) in condition 
monitoring and fault identification has been extended to 
several machines and their components: induction motors 
[2], pumps [3], gearboxes [4], and others. However, most 
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of the studies are concentrated in rolling element bearings 
fault diagnosis [5–7].

Hybrid methods for fuzzy logic have been developed to 
overcome the shortcomings that the individual techniques 
could present. An improved learning ability is achieved by 
neuro-fuzzy classifiers. This technique is applied for fault 
detection in several components such as bearings [8] and 
gearboxes [9].

The application of principal component analysis (PCA) at 
multiple steady speed rotors has allowed the acquirement of 
clearly spaced groups of data points, representing by them 
different defects [10], as well the differentiation from healthy 
condition points against data with introduced failures. Exten-
sion of the classical PCA have been developed to improve 
the limitation of the method regarding the linearity, such as 
kernel principal component analysis (KPCA) [11] and evolv-
ing kernel principal component (EKPCA) [12]. The drawback 
associated with the non-lineal versions is the high usage of 
computational resources for being processed.

Regarding their capability to deal with complex data pro-
cessing problems, artificial neural networks (ANN) have 
been positively implemented in mechanical systems. Nahvi 
and Esfahanian [13] used three-layer feedforward networks to 
detect faults in rotating machines through vibration data, con-
sidering more than 40 different faults. Their study evidenced 
the capability of this method of dealing with a high number 
of features and provide acceptable results in the fault detec-
tion. However, the 100% of accuracy in the diagnosis is not 
achieved at any of the conducted experiments.

The study made by Vyas and Satishkumar [14] in rotor-
bearing system considers the use of moments of time series 
as the input to identify the faults, obtaining, under laboratory 
conditions, over a 90.0% of success in their method. Ben et al. 
[15] also studied bearing fault, using in this case a combination 
of features extracted in time domain with features extracted 
in time–frequency domain to create the inputs for the ANN, 
demonstrating experimentally the ability of the method for 
damage detection at an early stage.

Walker et al. [16] used the sub-synchronous nonlinear fea-
tures of the vibration signal in frequency domain in addition of 
ANN to localise the existent unbalance in a rotating machine. 
Mohammed et al. [17] conducted the crack in shaft identifi-
cation and damage quantification, considering depths from 0 
to 60% of the shaft diameter, obtaining 100% of accuracy at 
some of the measuring locations using a four-layer feedforward 

perceptron in the classification and peak position component 
analysis for the features extraction.

An extensive number of ML techniques have been applied 
to assess the fault detection and diagnosis in rotors, through 
a vibration-based approach. Learning assessment, introduced 
by pattern recognition models, has simplified the fault identi-
fication stage but generally the earlier studies have either not 
included different faults simultaneously in their ML model or 
blindly tested the developed ML at different machine condi-
tions or both. This is required if the ML model to be used in 
the industries. Therefore, the current objective of the paper is 
to develop a smart vibration-based machine learning (SVML) 
model for a machine at an operating condition for the fault 
diagnosis, and then blindly applied and tested the adaptability 
of the model when machine is operating at different condi-
tions. The paper presents the model development, results and 
its blind application to test robustness and reliability of the 
model.

Experimental Rig and Experimental Data

The used data in this study are pre-existent data acquired 
in an experimental rig in laboratory conditions. The rig has 
been used to conduct previous researches at the University 
of Manchester [18–20]. The rig, in Fig. 1, consists in two 
shafts connected by a rigid coupling (C2). The driven 
shaft (Sh1) has a length of 1.0 m and it is coupled by a 
flexible unit (C1) to a three-phase electric motor (0.75 kW). 
This shaft, has installed two balancing discs (D1, D2), 
while the second shaft (Sh2) of a length of 0.5 m has one 
balancing disc (D3). The assembly is mounted over a total 

Fig. 1   Experimental rig [19]

Fig. 2   Accelerometer’s mounting position at bearing
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of four grease lubricated ball bearings (B1, B2, B3, B4). 
Bearings are mounted on the flexible bearing pedestals (P1, 
P2, P3, P4), which are secured by bolts to a steel base that 
acts as foundation of the machinery within a high mass. 
The measured natural frequencies of the rig are 50.66 Hz, 
56.76 Hz, 59.2 Hz and 127 Hz [19].

Vibration data are acquired at the sampling frequency of 
10 kHz from four uniaxial accelerometers simultaneously 
[18–20]. The sensors are located at 45º from the horizon-
tal line in anticlockwise direction as shown in Fig. 2. The 
sampling frequency of 10,000 Hz is used so that the meas-
ured frequency range can cover both rotor faults and bearing 
defects related to high frequency range. The accelerometer 
with a sensitivity of 100 mV/g and the measurement fre-
quency range upto 10 kHz is used. The measured vibration 
data are available at the rotor speeds of 1800 RPM (30 Hz) 
and 2400 RPM (40 Hz) for following conditions.

•	 Healthy condition this is the baseline and it is subject 
of residual misalignment and residual unbalance. It is 
because both are difficult remove fully.

•	 Faulty conditions the four simulated faults are misalign-
ment, looseness, bow and rub. They are considered to 
occur independently from each other. Each type of fault 
is introduced, separately, at two different locations in the 
rig. In the current study, each fault type irrespective of 
their locations in the rig is grouped into one fault class.

Data Preparation and Feature Extraction

The summary of number of vibration measurements 
(samples) per fault (machine condition) is listed in Table 1. 
Four scalar features are extracted from each of the data 
samples. The extracted parameters are arranged in the three 
different proposed scenarios, 1–3. The nomenclature used 
to name these scenarios is shown in Fig. 3.

Spectrum analyses are also carried to observe the dynamic 
behaviour of the rig with different machine conditions. 
Spectrum is showing dominant vibration peak at 1 × (one 
times machine speed) but followed by its harmonics depend-
ing upon the rig fault conditions. However, the only time 
features are considered here to avoid extensive computing 
time and to find the effectiveness of the ML method in the 
VCM. The first selected feature is root mean square (RMS), 
typically used to represents the overall vibration amplitude, 
while the remaining ones are statistical parameters—vari-
ance, skewness and kurtosis. The variance, V, represents the 
signal power [13] and also useful if the mean of the signal is 
not zero. This behaviour is very much likely in the vibration 
response due to presence of faults. The asymmetry of the 
measured signal is represented by skewness, S. The kurto-
sis, K provides information about the shape distribution of 
the sample. These features provide useful information both 
qualitatively and quantitatively for any time domain data. 
Therefore, these parameters are selected as the representa-
tive features of the vibration data for the different machine 
fault conditions.

The four parameters are estimated by following 
Eqs. (1)–(4), where N is the number of points contained in 
the measured signal, z
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Table 1   Summary of number of measurements (samples) per fault 
(rotor condition) at machine operating at 1800 RPM and 2400 RPM

Rotor condition Number of samples (runs)

1800 RPM 2400 RPM

Healthy (residual misalignment and 
residual unbalance)

86 45

Misalignment 121 82
Bow 204 104
Looseness 192 92
Rub 114 58
Total of samples 717 381

SX_Sp1_Sp2

Scenario Number

Training & Validation 
Speed (Hz)

Testing 
Speed (Hz)

Fig. 3   Nomenclature of the scenarios used
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Machine Learning Model Construction

The ANN approach is used to develop the VML model for 
the fault diagnosis in rotating machines. The steps used and 
proposed architecture are discussed in this section.

ANN Method

Artificial neural networks are systems based on knowledge, 
which is generated by a training process that creates a corre-
lation, in this case, between symptoms and their correspond-
ent causes [14]. Since ANNs are not programmed, their per-
formance depends on the quality and pre-processing of the 
acquired data, the network architecture and its design.

One of the first ANN used for simple tasks in 
classification problems is the perceptron, which with a 
simple-layer presents a narrow capability regarding its lack 
of ability to solve problems where the processed data are 
not linearly separable [21]. Because of this, a multi-layered 
network structure is proposed by introducing a hidden layer 
of weights between the inputs and the outputs. Based on 
backpropagation rule, a multi-layer perceptron (MLP) 
algorithm is developed (Fig. 4), with nonlinear activation 
functions which helps also to solve the noise–saturation 
dilemma due a network handling both small and large 
signals [13].

Proposed Architecture

In this study, a MLP is used to perform the pattern 
recognition and classification of acquired vibration data. By 
iterations, the network parameters, such as number of layers, 
number of neurons and types of functions, are adjusted and 
defined to obtain an accurate performance. It results into a 
feedforward network with four hidden layers, each of them 

with a variable quantity of nonlinear neurons. The number 
of neurons varies according to the conducted experiments 
in the different scenarios. Signal components pass the input 
layer and move forward along the hidden layers, finishing 
with the result delivery from the decision layer, which have 
five possible classes as output (target vector, Table 2).

The neural transfer function for the hidden layers is 
hyperbolic tangent sigmoid, given in Eq.  (5) with xj an 
input vector and yj the output returned [22]. In the output 
layer, it is used the normalised exponential transfer func-
tion (softmax), Eq. (6), which finally assigns a class to the 
input provided [23]. These functions are the most typically 
implementation for their respective tasks when conducting 
pattern recognition through ANN.

The weights are obtained from the training process. A 
supervised learning is used for training the network; there-
fore, the processed data have already set the wanted outputs. 
The weights are adjusted according to the actual error of the 
outputs against the desired ones during this process. The 
error for each pair of single output ( yi ) and its correspond-
ing target value ( ti ) is calculated through the Matlab cross-
entropy function (ce) in Eq. (7). This function penalises the 
outputs depending on their accuracy obtained. Consequently, 
the closer are the outputs from the targets, the smaller the 
penalty applied.

Generalisation and Regularisation

Early stopping method is used in this work to avoid the over-
fitting in the network, improving the generalisation through 
a cross-validation of independent data [13]. By this process, 

(5)yj,internal =
2(

1 + e−2∗xj
) − 1,

(6)yj,output =
exj∑n

k=1
exk

.

(7)ce = −ti ∗ log
(
yi
)
.

Fig. 4   Typical multi-layer perceptron neural network [21]

Table 2   Targets associated to each class for supervised pattern 
recognition

Class Target vector

Healthy condition (residual misalignment and unbal-
ance)

[ 1 0 0 0 0 ]�

Misalignment [ 0 1 0 0 0 ]�

Bow [ 0 0 1 0 0 ]�

Looseness [ 0 0 0 1 0 ]�

Rub [ 0 0 0 0 1 ]�
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available data are into three sets. 70% of the samples are 
used for training the network, modifying the weights accord-
ing the learning rule. 15% of the samples are used for vali-
dation, which is conducted by testing the trained network 
with these samples until their classification error reaches a 
desired point of minimum error, giving the order to stop the 
training process. At this point, the weights are the optimal 
for the network and, the last group of unknown data, 15%, 
is tested, providing the generalisation of the network [21].

Depending on the performance reached at the specific 
scenario, either scaled conjugate gradient or Bayesian regu-
larisation functions are used to train the network. They dif-
fer in the manner they update the weights and bias values. 
While the first function uses the scaled conjugate gradient 
method, the second function uses the Levenberg–Marquardt 
optimisation, which allows the regularisation of the network 
through the obtainment of the smallest possible weights.

Target Matrix

As a supervised network, it is possible to identify five dif-
ferent binary target vectors, each one of them related to just 
one specific machine condition (Table 2). The target matrix 
in the ANN method is constructed such that where number 
of rows equals to the target vectors (defined machine condi-
tions) and the number of columns depends on as samples per 
defined machine condition. For example, if three samples are 
used per each defined class (machine condition), the target 
matrix is given by Eq. (8).

(8)Target =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

Model Outputs

The classifier performance is calculated as in Eq. (9). When 
error occurs, samples could be classified as false negative 
or false positive. Both errors have different consequences, 
being a ‘faulty as healthy’ the most critical diagnosis in any 
rotating machine.

Application of the Proposed Method 
with Machine Operating at 1800 RPM

Studied Scenarios

The three scenarios as per Fig. 3 are considered here. The 
scenarios are differentiated by the way the input vectors (i.e., 
4 extracted features—RMS, variance, skewness and kurtosis 
per bearing) are used in the training for the proposed method 
of the ML model. The information related to the data man-
agement and arrangement is summarised in Table 3, while 
the specifications for the pattern recognition ML model for 
each scenario are in Table 4.

Scenario 1 (S1_30_30) In this scenario, each sample 
is taken from just an accelerometer randomly from only 
one bearing. This may be any one bearing from B1 to B4. 
This random data samples are used to generate the inputs 
for training and testing the ANN. The four features from 
Eqs. (1) to (4) are extracted from each sample to build up 
the input vectors. Their structure and nomenclature due the 
acquisition point are shown in Table 5. This scenario could 
be considered as the most complex, but may be useful if it 
is successfully detect the faults even with random measure-
ment locations.

Scenario 2 (S2_30_30) This scenario consider the 
measurement again from one bearing only but the bearing 

(9)%Performance (or%Diagnosis) =
no. correct classifications

total of inputs
∗ 100%.

Table 3   Studied scenarios and data management

Scenario Description of input’s construction and studied scenarios

Data origin Input vector size 
(no. of parameters)

Measure-
ment points

Total of sam-
ples (runs)

Training sam-
ples (70%)

Validation 
samples (15%)

Testing 
samples 
(15%)

S1 Randomly measured at only one 
bearing out of B1, B2, B3, B4

4 1 717 501 108 108

S2 B1 only 4 1 717 501 108 108
B2 only
B3 only
B4 only

S3 B1, B2, B3, B4 combined 16 4 717 501 108 108
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location is always fixed. Therefore, there are four cases (sub-
scenarios), one per bearing with 717 input data samples, 
considered separately for analysis. The same four input 
vectors listed in Table 5 are again used for each case related 
to each bearing. For example, the input matrix for B1 sub-
scenario, InputB1 , is shown in Eq. (10). Inputs at the other 
sub-scenarios for bearing B2, B3 and B4 are similarly 
constructed.

The four sub-scenarios for the scenario S2 have the same 
network architecture which is listed in Table 4. This allows 
to evaluate, through their performances, the quality of the 
information contained by the samples at each bearing loca-
tion for the experimental rig.

Scenario 3 (S3_30_30) This scenario consider the simul-
taneous collection of vibration signal from all four bearings 
(B1–B4). In this scenario, each input vector is compounded 
by the combination of the features extracted from the four 
bearings, shown in Table 5. Therefore, each input contains 
16 parameters per measurement. The i-input vector for sce-
nario S3 is given by Eq. (11).

Results and Discussion

Overall performances achieved at all the studied scenarios 
are presented with the machine conditions in Fig. 5 and also 
diagnoses by each VML model are summarised in Tables 6, 
7, 8, 9, 10, 11 and 12. Scenario S1_30_30 is easiest approach 
for vibration measurements on any industrial machine but 

(10)InputB1 =

⎡⎢⎢⎢⎣

RMS11 … … RMS1717
V11 ⋱ V1717
S11 ⋱ S1717
K11 … … K1717

⎤⎥⎥⎥⎦
.

(11)inputi =
[
RMS1i RMS2i RMS3i RMS4i V1i V2i V3i V4i S1i S2i S3i S4i K1i K2i K3i K4i

]�
.

the results in Table 6 indicate that the VML model was not 
good enough for all machine conditions during the data 
training, validation and testing. The diagnoses for different 
machine conditions for this scenario are listed in Table 7. 
It is observed that nearly 25% chance is that the healthy 
machine conditions may be diagnosed as the faulty machine 
conditions.  

Similar results are also observed in case of Scenario 
S2_30_30 at different bearing numbers (Table 6) during the 
training, validation and testing process for the development 
of the VML model. However the performance of the Sce-
nario S2_30_30 is observed to be much better compared to 
Scenario S1_30_30. It is because the consistent information 
from a particular bearing location provides certain features 

of the machine dynamic behavior, which helps the VML 
model to perform better than the Scenario S1_30_30. The 
diagnosis performances of the VML model for each case 
of the Scenario S2_30_30 are also listed in Tables 8, 9, 10 
and 11. It is also important to note that the performance 
of the VML model, S2_30_30_B3 is showing much better 
compared to other models at bearings B1, B2 and B4. This 

Table 4   Specifications for pattern recognition ANN, all 3 Scenarios

Scenario 1 Scenario 2 Scenario 3

Hidden layer number No. of neurons Hidden layer number No. of neurons Hidden layer number No. of neurons

ANN parameter 1 1000 1 1000 1 1000
2 1000 2 100 2 100
3 100 3 100 3 100
4 10 4 10 4 10

Transfer function hid-
den neurons

Hyperbolic tangent sigmoid Hyperbolic tangent sigmoid Hyperbolic tangent sigmoid

Transfer function 
output neurons

Normalised exponential function 
(Softmax)

Normalised exponential function 
(Softmax)

Normalised exponential function 
(Softmax)

Training function Scaled conjugate gradient backpropa-
gation

Scaled conjugate gradient backpropa-
gation

Bayesian regulation backpropagation

Performance function Cross-entropy Cross-entropy Cross-entropy

Table 5   Input vectors built by features extracted at each measurement 
location in time domain

Measurement point Input vector from ith 
sample (ith run)

B1 [
RMS1

i
V1

i
S1

i
K1

i

]′
B2 [

RMS2
i
V2

i
S2

i
K2

i

]′
B3 [

RMS3
i
V3

i
S3

i
K3

i

]′
B4 [

RMS4
i
V4

i
S4

i
K4

i

]′
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simply indicates the bearing B3 contains better information 
about the machine dynamics behaviour.   

The Scenario S3_30_30 shows the best performance with 
a 100.00% of accuracy in all of the stages of learning and 
training processes, as shown in Table 6 and the diagnosis 
of the machine conditions are listed in Table 12. Table 12 
shows 100% accurate diagnosis of each machine condi-
tion; therefore, model is appropriate for the required pur-
pose. These observations simply indicate that the dynamics 
from all bearing locations are required to map the machine 
dynamics accurately and hence accurate fault diagnosis is 
possible.

Blind Application at a Different Speed

It is very much likely that the prediction capability of the 
VML model is generally good enough if the machine and 
the operating conditions remain same. This is demonstrated 
in “Application of the proposed method with machine 
operating at 1800 RPM”. But the challenge is whether this 
developed ML model can be applied blindly to (a) the same 
machine but different operating conditions, (b) another iden-
tical machines but same operating conditions that was used 
for the VML model development, and (c) the combination 
of both (a) and (b).

Now the developed VML model for the rig at the rotating 
speed of 1800 RPM is blindly applied to the rig data at 
2400 RPM (i.e., different operation condition) without 

any training at 2400 RPM. This test is carried on all 2400 
RPM data listed in Table 1. The model predicts the machine 
conditions accurately in two categories (Table 13)—healthy 
as 100% healthy machine condition and the remaining 
rotor faults as 100% machine faulty condition. The blind 
application of the VML model accurately predicted the 
faults of looseness, bow and rub except the misalignment. 
The healthy and fault wise results are listed in Table 14. 
However, the classification in two categories (Healthy and 
faulty) on the blind application is also an useful information 
for any plant maintenance. Therefore, the results are very 
encouraging for the future development of the VCM using 
the Industry 4.0 IoT. 

Conclusions

A smart vibration-based machine learning (SVML) model 
is developed for the rotor faults diagnosis. The model is 
based on a multi-layer perceptron artificial neural network, 
which showed a successful performance in the diagnosis 
of faulty states in a rotating machine. Several scenarios 
are proposed and examined. It is concluded that the 
VML models based on the partial information about the 
machine (such as the scenarios S1 and S2) are not accurate 
enough for the industrial application. However the VML 
model in the scenario S3 provides 100% accuracy in the 
diagnoses of the machine conditions. This concludes that 
inclusion of the vibration measurements simultaneously 

Healthy Misalignment Bow Looseness Rub Overall data
S1_30_30 75.00% 57.60% 100.00% 50.00% 100.00% 76.50%
S2_30_30 (B1) 94.20% 100.00% 100.00% 99.00% 99.10% 98.90%
S2_30_30 (B2) 86.00% 77.70% 100.00% 97.40% 100.00% 93.90%
S2_30_30 (B3) 100.00% 74.40% 100.00% 100.00% 100.00% 95.70%
S2_30_30 (B4) 100.00% 95.00% 100.00% 73.40% 100.00% 92.10%
S3_30_30 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Fig. 5   Overall performances by fault type classification, all scenarios with testing, validation and training at 1800 RPM
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from all bearings from a machine is capable to fully map 
the machine dynamics in the VML model. Furthermore, 
when this model is blindly tested with sets of data at a 

different speed, the results provide an accurate separation 
of the samples into two categories—faulty and healthy. 
This observation encourages a possibility for centralised 
vibration-based condition monitoring (CVCM) for identical 

Table 6   Performances (%) 
achieved in all scenarios by 
stage

Healthy Misalignment Bow Looseness Rub All data

Performances %
 S1_30_30
  Training 74.1 58.9 100.0 51.1 100.0 77.5
  Validation 74.4 55.4 100.0 48.1 100.0 74.0
  Testing 80.4 54.5 100.0 47.7 100.0 74.2
  Overall 75.0 57.6 100.0 50.0 100.0 76.5

 S2_30_30—B1
  Training 93.8 100.0 100.0 100.0 100.0 99.2
  Validation 85.7 100.0 100.0 96.6 100.0 98.1
  Testing 100.0 100.0 100.0 96.8 93.1 98.1
  Overall 94.2 100.0 100.0 99.0 99.1 98.9

 S2_30_30—B2
  Training 82.3 79.5 100.0 97.7 100.0 93.6
  Validation 91.7 75.0 100.0 92.6 100.0 93.5
  Testing 100.0 70.6 100.0 100.0 100.0 95.4
  Overall 86.0 77.7 100.0 97.4 100.0 93.9

 S2_30_30—B3
  Training 100.0 77.1 100.0 100.0 100.0 96.2
  Validation 100.0 73.7 100.0 100.0 100.0 95.4
  Testing 100.0 63.2 100.0 100.0 100.0 93.5
  Overall 100.0 74.4 100.0 100.0 100.0 95.7

 S2_30_30—B4
  Training 100.0 93.0 100.0 71.7 100.0 90.6
  Validation 100.0 100.0 100.0 82.6 100.0 96.3
  Testing 100.0 100.0 100.0 75.0 100.0 94.4
  Overall 100.0 95.0 100.0 73.4 100.0 92.1

 S3_30_30
  Training 100.0 100.0 100.0 100.0 100.0 100.0
  Validation 100.0 100.0 100.0 100.0 100.0 100.0
  Testing 100.0 100.0 100.0 100.0 100.0 100.0
  Overall 100.0 100.0 100.0 100.0 100.0 100.0

Table 7   Diagnoses (%) by the VML model, S1_30_30

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 75.0 0.0 0.0 0.0 0.0
Misalignment 25.0 57.6 0.0 28.5 0.0
Bow 0.0 17.4 100.0 21.5 0.0
Looseness 0.0 25.0 0.0 50.0 0.0
Rub 0.0 0.0 0.0 0.0 100.0

Table 8   Diagnoses (%) by the VML model, S2_30_30, B1

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 94.2 0.0 0.0 1.0 0.0
Misalignment 1.2 100.0 0.0 0.0 0.0
Bow 0.0 0.0 100.0 0.0 0.9
Looseness 4.7 0.0 0.0 99.0 0.0
Rub 0.0 0.0 0.0 0.0 99.1
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machines operating at different rotating speeds. This smart 
CVCM model can be realised under the concept of Industry 
4.0 Internet of Things (IoT) which is likely to overcome 
the current limitations of the experience and engineering 
judgements required for the machine faults diagnosis. 
Therefore, it allows an optimisation of the resources and 
offering a standard procedure for all identical machines 
across many worldwide plants within an organisation.

Acknowledgements  Jyoti K. Sinha acknowledges his Ph.D. students 
then Dr Keri Elbhbah for the development of the rig, and Dr Akilu 
Kaltungo and Dr Adrian Nembhard for the experiments and 
experimental data that are used in this study. Natalia Fernanda Espinoza 
Sepúlveda acknowledges the support by CONICYT (Comisión 
Nacional de Investigación Científica y Tecnológica/Chilean National 
Commission for Scientific and Technological Research) “Becas Chile” 
Doctorate’s Fellowship programme; Grant no. 72190062 for her Ph.D. 
study.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Dai X, Gao Z (2013) From model, signal to knowledge: a data-
driven perspective of fault detection and diagnosis. IEEE Trans 
Ind Inform 9(4):2226–2238

	 2.	 Gangsar P, Tiwari R (2017) Comparative investigation of 
vibration and current monitoring for prediction of mechanical 
and electrical faults in induction motor based on multiclass-
support vector machine algorithms. Mech Syst Signal Process 
94:464–481

	 3.	 Nourmohammadzadeh A, Hartmann S (2015) Fault classification 
of a centrifugal pump in normal and noisy environment with 
artificial neural network and support vector. In: Dediu AH, 

Table 9   Diagnoses (%) by the VML model, S2_30_30, B2

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 86.0 15.7 0.0 1.0 0.0
Misalignment 10.5 77.7 0.0 1.6 0.0
Bow 0.0 0.0 100.0 0.0 0.0
Looseness 3.5 6.6 0.0 97.4 0.0
Rub 0.0 0.0 0.0 0.0 100.0

Table 10   Diagnoses (%) by the VML model, S2_30_30, B3

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 100.0 0.0 0.0 0.0 0.0
Misalignment 0.0 74.4 0.0 0.0 0.0
Bow 0.0 25.6 100.0 0.0 0.0
Looseness 0.0 0.0 0.0 100.0 0.0
Rub 0.0 0.0 0.0 0.0 100.0

Table 11   Diagnoses (%) by the VML model, S2_30_30, B4

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 100.0 0.0 0.0 0.0 0.0
Misalignment 0.0 95.0 0.0 26.6 0.0
Bow 0.0 0.0 100.0 0.0 0.0
Looseness 0.0 5.0 0.0 73.4 0.0
Rub 0.0 1.0 0.0 0.0 100.0

Table 12   Diagnoses (%) by the VML model, S3_30_30

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 100.0 0.0 0.0 0.0 0.0
Misalignment 0.0 100.0 0.0 0.0 0.0
Bow 0.0 0.0 100.0 0.0 0.0
Looseness 0.0 0.0 0.0 100.0 0.0
Rub 0.0 0.0 0.0 0.0 100.0

Table 13   Performances (%) 
achieved at blind testing of the 
VML model at 2400 RPM

Diagnosis Actual

Healthy Faulty

Healthy 100.0 0.0
Faulty 0.0 100.0

Table 14   Diagnoses (%) by the VML model in blind testing at 2400 
RPM, S3_30_40

Diagnosis Actual

Healthy Misalignment Bow Looseness Rub

Healthy 100.0 0.0 0.0 0.0 0.0
Misalignment 0.0 0.0 0.0 0.0 0.0
Bow 0.0 67.1 100.0 0.0 0.0
Looseness 0.0 0.0 0.0 100.0 0.0
Rub 0.0 32.9 0.0 0.0 100.0

http://creativecommons.org/licenses/by/4.0/


596	 Journal of Vibration Engineering & Technologies (2021) 9:587–596

1 3

Magdalena L, Martín-Vide C (eds) 4th International Conference 
on Theory and practice of Natural Computing.Springer, Cham, pp 
58–70

	 4.	 Li C, Sanchez R, Zurita G, Cerrada M, Cabrera D, Vásquez 
RE (2015) Neurocomputing Multimodal deep support vector 
classification with homologous features and its application to 
gearbox fault diagnosis. Neurocomputing 168:119–127

	 5.	 Liu Z, Cao H, Chen X, He Z, Shen Z (2013) Multi-fault classification 
based on wavelet SVM with PSO algorithm to analyze vibration 
signals from rolling element bearings. Neurocomputing 99:399–410

	 6.	 Shen C, Wang D, Liu Y, Kong F, Tse PW (2014) Recognition of 
rolling bearing fault patterns and sizes based on two-layer support 
vector regression machines. Smart Struct Syst 13(3):453–471

	 7.	 Ao H, Cheng J, Li K, Truong TK (2014) A roller bearing fault 
diagnosis method based on LCD energy entropy and ACROA-
SVM. Shock Vib. https​://doi.org/10.1155/2014/82582​5

	 8.	 Tiwari R, Gupta VK, Kankar PK (2015) Bearing fault diagnosis 
based on multi-scale permutation entropy and adaptive neuro 
fuzzy classifier. J Vib Control 21(3):461–467

	 9.	 Watany M, Eltantawie MA, Abouel-seoud SA (2015) Application 
of an adaptive neuro fuzzy inference system for low speed 
planetary gearbox vibration control. J Low Freq Noise Vib Active 
Control 34(3):323–341

	10.	 Nembhard AD, Sinha JK (2015) Unified multi-speed analysis 
(UMA) for the condition monitoring of aero-engines. Mech Syst 
Signal Process 64–65:84–99

	11.	 Shao R, Hu W, Wang Y, Qi X (2014) The fault feature extraction 
and classification of gear using principal component analysis and 
kernel principal component analysis based on the wavelet packet 
transform. Measurement 54:118–132

	12.	 Sun R, Tsung F, Qu L (2007) Evolving kernel principal component 
analysis for fault diagnosis. Comput Ind Eng 53(2):361–371

	13.	 Nahvi H, Esfahanian M (2005) Fault identification in rotating 
machinery using artificial neural networks. Proc Inst Mech Eng 
Part C J Mech Eng Sci 219(2):141–158

	14.	 Vyas N (2001) Artificial neural network design for fault 
identification in a rotor-bearing system. Mech Mach Theory 
36(2):157–175

	15.	 Ben J, Fnaiech N, Saidi L, Chebel-morello B, Fnaiech F (2015) 
Application of empirical mode decomposition and artificial neural 
network for automatic bearing fault diagnosis based on vibration 
signals. Appl Acoust 89:16–27

	16.	 Walker RB, Vayanat R, Perinpanayagam S, Jennions IK (2014) 
Unbalance localization through machine nonlinearities using 
an artificial neural network approach. Mech Mach Theory 
75:54–66

	17.	 Mohammed AA, Neilson RD, Deans WF, MacConnell P (2014) 
Crack detection in a rotating shaft using artificial neural networks 
and PSD characterisation. Meccanica 49(2):255–266

	18.	 Nembhard AD, Sinha JK (2016) Comparison of experimental 
observations in rotating machines with simple mathematical 
simulations. Measurement 89:120–136

	19.	 Nembhard AD, Sinha JK, Yunusa-Kaltungo A (2015) 
Development of a generic rotating machinery fault diagnosis 
approach insensitive to machine speed and support type. J Sound 
Vib 337:321–341

	20.	 Yunusa-kaltungo A, Sinha JK (2016) Sensitivity analysis of higher 
order coherent spectra in machine faults diagnosis. Struct Health 
Monit 15(5):555–567

	21.	 Tarassenko L (1998) A guide to neural computing applications. 
Arnold, London

	22.	 Vogl TP, Mangis JK, Rigler AK, Zink WT, Alkon DL (1988) 
Accelerating the convergence of the backpropagation method. 
Biol Cybern 59:257–263

	23.	 Bishop CM, Recognition P, Learning M (2006) New York. 
Springer, N.Y

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2014/825825

	Blind Application of Developed Smart Vibration-Based Machine Learning (SVML) Model for Machine Faults Diagnosis to Different Machine Conditions
	Abstract
	Purpose 
	Methods 
	Results and conclusions 

	Introduction
	Experimental Rig and Experimental Data
	Data Preparation and Feature Extraction
	Machine Learning Model Construction
	ANN Method
	Proposed Architecture
	Generalisation and Regularisation
	Target Matrix
	Model Outputs

	Application of the Proposed Method with Machine Operating at 1800 RPM
	Studied Scenarios
	Results and Discussion

	Blind Application at a Different Speed
	Conclusions
	Acknowledgements 
	References




