
P RO C E S S S Y S T EM S E NG I N E E R I N G

Using process data to generate an optimal control policy via
apprenticeship and reinforcement learning

Max Mowbray1 | Robin Smith1 | Ehecatl A. Del Rio-Chanona2 | Dongda Zhang1

1Department of Chemical Engineering and

Analytical Science, The University of

Manchester, Manchester, UK

2Department of Chemical Engineering,

Imperial College London, London, UK

Correspondence

Ehecatl A. Del Rio-Chanona, Department of

Chemical Engineering, Imperial College

London, South Kensington, London SW7 2AZ,

UK.

Email: a.del-rio-chanona@imperial.ac.uk

Dongda Zhang, Department of Chemical

Engineering and Analytical Science, The

University of Manchester, Oxford Road,

Manchester M1 3BU, UK.

Email: dongda.zhang@manchester.ac.uk

Abstract

Reinforcement learning (RL) is a data-driven approach to synthesizing an optimal con-

trol policy. A barrier to wide implementation of RL-based controllers is its data-

hungry nature during online training and its inability to extract useful information

from human operator and historical process operation data. Here, we present a two-

step framework to resolve this challenge. First, we employ apprenticeship learning

via inverse RL to analyze historical process data for synchronous identification of a

reward function and parameterization of the control policy. This is conducted offline.

Second, the parameterization is improved online efficiently under the ongoing pro-

cess via RL within only a few iterations. Significant advantages of this framework

include to allow for the hot-start of RL algorithms for process optimal control, and

robust abstraction of existing controllers and control knowledge from data. The

framework is demonstrated on three case studies, showing its potential for chemical

process control.

K E YWORD S

apprenticeship learning, inverse reinforcement learning, machine learning, optimal control,
reinforcement learning

1 | INTRODUCTION

Recent initiatives for efficiency improvements in industrial process

operation has driven interest in the development of high performance,

advanced process control (APC) schemes. Reinforcement learning

(RL) has achieved impressive results on benchmark game-based con-

trol tasks,1,2 providing an avenue for research in translation to APC. In

spite of its high potential, RL has yet to produce any meaningful

impact in the (bio)chemical process industry. This work presents a

two-step approach to RL-based policy learning, which leverages pro-

cess data to parameterize an existing control law and then improves

the performance of such control further. Additionally, the approach

promises to increase the learning efficiency of RL-based control poli-

cies, reducing computational and technical investment, as well as data

demand.

RL constitutes a subfield of machine learning (ML), which aims to

learn optimal control policies. Here, the control problem is formulated

as a Markov decision process (MDP), which describes decision-making

as a value maximization problem. MDPs construct a probabilistic

framework for the discrete-time evolution of a stochastic decision

process, with the cost (or value) associated with a control policy, and

ultimately process trajectory, evaluated by a reward function. Explic-

itly, MDPs provide a mathematical basis for sequential decision-

making in stochastic environments, which is a description common to

process control.3 Figure 1 details the interpretation of process control

as an MDP. The structure of MDPs provides natural closed-loop feed-

back control.

Solution to an MDP provides a policy π(�), which minimizes the

expected cost or equivalently maximizes the expected value associ-

ated with the evolution of process state. Such a policy satisfies the

Received: 4 October 2020 Revised: 23 April 2021 Accepted: 3 May 2021

DOI: 10.1002/aic.17306

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. AIChE Journal published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.

AIChE J. 2021;e17306. wileyonlinelibrary.com/journal/aic 1 of 15

https://doi.org/10.1002/aic.17306

https://orcid.org/0000-0003-1398-0469
https://orcid.org/0000-0001-5956-4618
mailto:a.del-rio-chanona@imperial.ac.uk
mailto:dongda.zhang@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/aic
https://doi.org/10.1002/aic.17306

Bellman optimality equation, which is a discrete-time analogue to the

continuous-time Hamilton–Jacobi–Bellman equation.3 Dynamic program-

ming (DP) methods provide exact solution to the Bellman optimality

equation. However, such an approach assumes knowledge of the exact

process dynamics. DP becomes additionally impractical in the highly

dimensional continuous state and action spaces often observed in the

process industries.4 In contrast, RL methods do not require knowledge of

the exact process dynamics to learn a solution policy. Instead, RL learns

from experience of the process, allowing for π(�) to be recalibrated as the

process evolves through time via process data.5 Furthermore, RL has

shown significant industrial potential as demonstrated in a number of

research works, which have explored application to the calibration of PID

controllers;6 set point tracking;7 dynamic optimization of nonlinear, sto-

chastic systems;5,8,9 de novo drug10 and protein design;11 and in augmen-

tation of the performance of various model predictive control (MPC)

approaches.12,13 Indeed, the potential use of RL draws discussion of its

relation to MPC in the development of APC schemes. MPC schemes

require periodic recalibration, which demands expense in technical exper-

tise and often process downtime. The data-driven nature of RL could well

mitigate this. Further, the framework provided by MDPs accounts for

process stochasticity in a closed-loop manner, converse to MPC where

decisions are based on open-loop simulation of the process model, with

the loop only “closed” upon observation of the system state at the next

discrete time index. Hence, inputs from an RL controller will account for

disturbance whereas MPC may not. This provides a theoretical basis for

the benefit of RL over MPC controllers.

One set of RL algorithms are known generally as policy optimiza-

tion methods. Policy optimization methods aim to learn a policy by

implicitly learning the value or cost over the decision space14–16 and

directly parameterizing a policy. There are a number of approaches to

policy optimization as underpinned by evolutionary strategies, finite

difference and policy gradient methods.17,18 Policy optimization

methods have been deployed for tasks including dynamic

optimization of nonlinear stochastic processes19 and tracking prob-

lems6. For further review of RL methods and their application within

the process industries, we direct the reader to the following works.7,20

The learning process encapsulated by RL demands both time and

technical investment in policy training. This is highlighted further given

that RL-based controllers are currently unable to generalize well across

control tasks, for example, different changes of set point, meaning policy

training is typically undertaken for each task.21 As a result, implementa-

tion of RL control policies is computation and expertise expensive. To

solve this problem, this work proposes a method to reduce the time and

resource investment demanded by RL, through leverage of process data

to learn from demonstration provided by an existing (but unknown) con-

trol policy. Then, the initialized RL is improved by learning from the real

process over a short time period, thus outperforming the existing control

policy. This two-step strategy has been recently deployed in domains

including autonomous helicopter flight22 and self-driving cars.23,24 To

demonstrate this approach, Section 2 will introduce the preliminaries

and motivation, Section 3 will outline the methodology, with Section 4

exhibiting different case studies.

2 | PRELIMINARIES

2.1 | Policy gradients and reinforce

Policy gradient methods directly learn a policy. Through the use of

artificial neural networks (ANNs) as parameterization, the policy may

be deployed naturally in either discrete or continuous action spaces

through appropriate network construction.25 Policy gradient methods

do not explicitly learn the value of the policy. Instead, under the policy

gradient theorem, acting with respect to the policy and gaining experi-

ence of the process dynamics provides approximation of the direction

in which value increases fastest in parameter space. Hence, learning

proceeds through gradient ascent to update the parameters of the

policy to ensure control policies of high value (or low cost) are more

probable.18

One policy gradient algorithm, reinforce with baseline, approxi-

mates the direction in which the policy observes increased perfor-

mance through Monte Carlo realizations of the process dynamics

under the current policy parameterization. This algorithm has several

advantages such as convergence to locally optimal solutions in policy

space26 and efficient exploration of the decision space without

requirement for a bandit strategy or further optimization routine for

action selection—as is the case in many pure action-value methods.27

Demonstration of the method is also available.19 Therefore, it is used

in this work to learn an RL parameterization of an existing control pol-

icy from process data. Despite favor of the reinforce with baseline

algorithm, other RL methods capable of operating in continuous action

and state spaces could be implemented, such as entropy regularized

policy optimization methods,16 trust region policy optimization,14 and

proximal policy optimization (PPO) methods.15

2.2 | Learning from demonstrations via
apprenticeship

Learning from demonstrations encompasses an increasingly prevalent

and established group of methods, which leverage data generated

F IGURE 1 Translation of the framework provided by Markov
decision process (MDPs) to process control, where the process is
analogous to an environment, and the controller to an agent. xt is
representative of the true system state at discrete time t; ut is the
control action computed by the control law at discrete time t; and
Rt+1 is the scalar feedback signal (reward) indicative of the quality of
process evolution at time t+1

2 of 15 MOWBRAY ET AL.

from an existing but unknown control policy to aid learning-based

control systems. This concept is generally termed as apprenticeship

learning (AL). AL has been adopted in a number of complex control

domains,22,24 but to our knowledge, this work is the first to propose

use of the method to leverage plant data directly, and this is one of

the primary contributions of this work. The concepts of AL are

expressed in three main subfields including behavioral cloning

(i.e., supervised learning), inverse optimal control, and inverse rein-

forcement learning (IRL).

This study exploited IRL built upon the framework provided by

MDPs.28 MDPs express process objectives mathematically as a reward

function. The reward function provides a scalar feedback signal indica-

tive of the optimality of process evolution. IRL is concerned with the

task of mathematically abstracting the reward function given process

knowledge and demonstrations from an existing control policy. The

IRL problem is formalized as: given observations of an existing policy

over time, sensory inputs available for determination of the originally

demonstrated control law and a model of the process; determine the

reward function that can mostly justify the demonstrated behav-

ior.24,29,30 IRL proceeds on the assumption that demonstrated control

action is noisily optimal under the reward function derived.30,31 How-

ever, it should be noted that this does not necessarily imply that the

policy is optimal in view of the true objectives for process control and

optimization.

As such, IRL leverages process data to learn a reward function

that encodes the control objectives of an existing scheme into a feed-

back signal. A control policy that maximizes the utility of this reward

function within the MDP framework provides a parameterization of

the existing control scheme. Hence the pairing of IRL with RL as an

MDP solver, allows for synchronously learning the parameterization

of an existing but unknown control policy as described in process

data. The generated reward function can be used to compare against

the process objective (if known) and suggest if the extracted control

policy is suitable for online learning. Moreover, manual modifications

are always implemented during process control even if the process

objective is known. These manual modifications cannot be quantified

by human operators, but can be retrieved from historical data by IRL.

Therefore, using IRL to generate a reward function is advantageous

for parameterization of the optimal control policy.

2.3 | Motivation

In the following work, we demonstrate a framework for learning and

optimization of chemical processes. The framework consists of two

steps: offline learning, and online learning and improvement. Here,

the use of terminology is converse to that common in the ML commu-

nity. In this work, offline learning indicates a process of AL (via IRL) to

infer control objectives from process data and the learning of a

corresponding parameterization of the control policy described by

data; online improvement then indicates the transfer of the learned

parameterization to the real system for the purpose of further policy

improvement under the true process objective. The framework

enables the learning of an RL-based control policy, by leveraging pro-

cess data from existing control schemes (offline) and subsequently

improves the learned policy parameterization via further RL (online).

The automation of offline learning and the policy tuning process that

is associated, provides a significant contribution given the technical,

computational and data demands of RL-based policy learning.

Offline learning produces a parameterization of the existing con-

trol policy, which could be deployed directly for control. The parame-

terization will achieve similar performance to that expressed by the

original control scheme. If necessary, the parameterization may then

be transferred to the second stage of online learning for further policy

improvement. It should be emphasized that the leveraging of process

data is significant given the practical difficulties in learning an RL-

based policy “from scratch”.19,32 The framework also lends itself to

the improvement and recalibration of the control scheme temporally.

Figure 2 provides further description of the framework proposed.

3 | METHODOLOGY

3.1 | Problem statement

The following work proceeds on the formulation of the underlying

problem of process control as an MDP. The true dynamics of an MDP

are described as follows:

xtþ1 � p xtþ1 xt,utj Þð ð3:1:1Þ

F IGURE 2 The offline–online framework proposed for the learning and optimization of processes. Offline learning utilizes process data to
learn a reward function R(α*) and a parameterization of the demonstrated policy πpo θ k0ð Þ

� �
. Online learning utilizes the learned parameterization as

initialization for further policy optimization under a reward function Rpo(�) descriptive of the true process objective [Color figure can be viewed at
wileyonlinelibrary.com]

MOWBRAY ET AL. 3 of 15

http://wileyonlinelibrary.com

ytþ1 � p ytþ1ð jxtþ1Þ ð3:1:2Þ

where x∈Rnx is a vector of continuous variables representative of the

true system state, u�ℝnu the manipulated variables (MVs), y� ℝny

the observed control variables and t is indicative of the discrete time

index.33 The process evolution between discrete time indices t and

t+1 is governed by the conditional density function p(xt+1j xt, ut).
Similarly, the observation yt of the true state of the system xt is

governed by the conditional density p(ytjxt). To facilitate learning of a

policy prior to transfer to the real system, approximation of the true

dynamics proceeds based on state-space models and assumptions

regarding process stochasticity, hence:

xtþ1 ¼ f xt,ut,dtð Þ ð3:1:3Þ

ytþ1 ¼ g xtþ1ð Þ ð3:1:4Þ

where f �ð Þ :ℝnx�nu�nd !ℝnx is representative of the process dynamics

and dt � ℝnd is representative of the process disturbance. The map-

ping g �ð Þ :ℝnx !ℝny is the state observation associated with measure-

ment noise2.

The following work deploys RL to learn a control policy from pro-

cess data. The objective of RL is to minimize the expected cost of a

dynamic process (or equivalently to maximize its value). In the follow-

ing, a process trajectory, τ= (x0, y0, u0,…uT�1, xT, yT), describes the

manner in which a process evolves over a given discrete time horizon

of length T. The cost or value G(τ) of the process trajectory over a

finite horizon is denoted:

G τð Þ¼
XT

t¼1
γt�1Rt ð3:1:5Þ

where γ � (0, 1] is a discount factor, which provides a net present

value interpretation of future value; and Rt is the credit (reward)

assigned to the process' evolution between time indices t�1 and t.

However, in view of process stochasticity, the probability of observing

τ adheres to a conditional density p(τj θ) based on the control policy

and process dynamics:

p τ θj Þ ¼ �ρ x0ð Þp y0ð jx0Þ
YT�1

t¼0
π ut yt,θj Þp xtþ1 xt,utj Þp ytþ1ð jxtþ1Þðð

�
ð3:1:6Þ

where �ρ x0ð Þ is the probability density of the initial system state;

π(utj yt, �) is the conditional density function descriptive of the learned

policy, which is parameterized by θ�ℝnθ ; and p(xt+1j xt, ut) is the con-

ditional density function representative of the process dynamics.

Note that the definition of a policy as a conditional density func-

tion implies it is stochastic. This is important in the scope of the learn-

ing process associated with RL but does not necessarily assert the use

of a stochastic policy upon deployment for control of the real system

(only the mode might be used in practice). The objective of the RL

problem and learning process is to find a policy π(�,θ*) that maximizes

the objective J(τ), such that

π �,θ�ð Þ¼ argminπ �,θð Þ � J τð Þ ð3:1:7Þ

J τð Þ¼
ð
p τ θj ÞG τð Þdτð ð3:1:8Þ

Equation (3.1.8) describes the probability-weighted average of trajec-

tory value and hence reformulation may utilize equivalence of J(τ) as

the expectation of trajectory value under the policy parameters θ,

such that

J τð Þ¼τ�p τjθð Þ G τð Þ½ � ð3:1:9Þ

The description provided in this section formalizes the problem of

optimal control under the framework provided by MDPs. One

approach to finding approximate solution to the problem described by

Equations (3.1.7)–(3.1.9) is encompassed by policy optimization RL

methods.

3.2 | Policy gradient and reinforce

Policy gradient methods are a subset of policy optimization methods,

which estimate the gradient of the objective detailed by Equa-

tion (3.1.8) with respect to the parameters of the current policy.

Mathematically, this is described by the policy gradient theorem.18

The Supporting Information (SI) provides full derivation and explana-

tion of the policy gradient theorem. Given an estimate of the true pol-

icy gradient, gradient ascent methods facilitate policy improvement to

make trajectories of higher reward more probable. In this manner, the

policy parameterization is updated (via Equation (3.2.2)) in the direc-

tion provided by the policy gradient (Equation (3.2.1)):

rθ jð Þ J τð Þ¼rθ

ð
p τ θj ÞG τð Þdτð

¼τ�p τjθð Þ G τð Þrθlogp τjθð Þ½ � ð3:2:1Þ

θ jþ1ð Þ ¼ θ jð Þ þωrθ jð Þ J τð Þ ð3:2:2Þ

where j is the iteration of policy optimization, and ω is the step size in the

direction of the policy gradient, rθ jð Þ J τð Þ . The derivation of Equa-

tion (3.2.1) leverages the use of a logarithmic identity (see SI). This

enables mathematical separation of the conditional probability functions

descriptive of the process dynamics and policy (see Equation (3.1.6)).

Given the process dynamics are independent of the parameterization, θ,

of the policy, π(θ, �), examination of Equation (3.1.6) provides:

rθ jð Þlogp τjθð Þ¼
XT�1

t¼0

rθ jð Þlogπ utjyt,θ jð Þ
� � ð3:2:3Þ

4 of 15 MOWBRAY ET AL.

Consequently, the policy gradient described by Equation (3.2.1) is

reformulated as:

rθ jð ÞJ τð Þ¼τ G τð Þ
XT�1

t¼0

rθ jð Þlogπ utjyt,θ jð Þ
� �" #

ð3:2:4Þ

Exact computation of the true policy gradient requires full knowl-

edge of the conditional density functions descriptive of process

dynamics. Given such knowledge of the process dynamics are

unavailable, the policy gradient is approximated by directly sampling

the process under the current policy parameterization over a given

time horizon via a Monte Carlo method.5 This is encapsulated by the

reinforce with baseline algorithm, which is detailed by Algorithm 1.

Through utilization of the Monte Carlo method, an unbiased

approximation of the true policy gradient is obtained. However, due

to the stochastic nature of both the policy and process dynamics, the

gradient may observe high variance. In order to reduce the variance of

approximation, a baseline b is introduced.5 This baseline is formulated

directly as the expectation of cost associated with the realizations of

the policy. In this manner, the update balances the cost of an action

against the expected cost from the current policy.

It is of important note that the parameterization of the policy must

be continuously differentiable as prescribed by the policy gradient the-

orem. Naturally, this lends to application of ANNs for function approxi-

mation in this work. Specifically, a recurrent long short-term memory

(LSTM) neural network was used for parameterization of the control

policy. Recurrent LSTM neural networks have demonstrated utility in

dynamic stochastic control problems with extension to systems charac-

terized by partial observability.2 General detail of the mathematical

operations specific to LSTMs can be found in the following works,34,35

with figurative description of the network used in this application pro-

vided by Section SI.2 of the SI. The investigation utilized the Pytorch

1.3.1 framework and first-order gradient ascent method Adam to train

the LSTM network proposed. The network structure was composed of

two hidden layers, each with 20 LSTM cells. A leaky rectified linear unit

(ReLU) activation function was applied across both hidden layers and a

ReLU6 activation function was applied across the output layer, natu-

rally bounding the output prediction. For a random variable z, the

ReLU6 transformation is described as:

ReLU6 zð Þ¼min max 0,zð Þ,6ð Þ ð3:2:5Þ

The network designed in the context of this work, predicts the

mean (μt) and standard deviation (σt) of a unimodal multivariate normal

distribution. This distribution describes the conditional density

function representative of the control policy, such that: ut �
π ut yt,Ht,θj Þ ¼N μt,σ

2
t

� ��
, where Ht is a learned parameterization of

the history of process states provided by the LSTM cells, and σ2t is the

variance. Here, we formally construct the control policy as stochastic.

However, upon deployment of the policy to the real system, the pol-

icy may be assumed deterministic through selection of the actions

corresponding to the mode (equivalently, the mean) of the multivari-

ate normal distribution, such that ut = μt.

In this section, we have presented an approach to solving the

MDP characteristic of a control problem through use of the policy gra-

dient method, reinforce with baseline, in combination with an LSTM

network for parameterization of the learned policy. In the following,

we introduce an approach to policy learning, namely maximum entropy

IRL (MaxEnt IRL), which utilizes existing process data to learn from

demonstration. Conceptually, this approach is commonly known as AL.

3.3 | AL via IRL

AL via IRL is a general approach to policy learning from demonstration

(i.e., process data). The benefits to such an approach are twofold. First,

AL via IRL provides a parameterization of the existing control policy

expressed in the process data. Second, it facilitates RL-based

policy learning under the “real” process objective as it provides an initial

policy to hot-start the RL procedure. Otherwise, initially, the agent

(or controller) will explore the control action space randomly, which

results in a data hungry and time-consuming approach. These benefits

are exploited by the framework proposed in Section 2.3 as detailed by

Figure 2.

The foundational IRL algorithms construct the reward function

R :Y!ℝ as a linear combination of state features representative of

the system state, φ�ℝd�1, such that:

R¼ α1φ1þα2φ2þ…þαdφd ð3:3:1Þ

where αi are feature weightings and φi :Y!ℝ explicitly represent the

system state (y), but also implicitly encode control objectives.

Algorithm 1 Reinforce with baseline

Input: Initialize: a policy π with initial parameters θ0; learning

rate ω; episode length T; K episodes for Monte Carlo roll-

outs of the policy; and, N training epochs. Early stopping

conditions may also be implemented.

Output: A policy π(u| y, θ)

for j = 1, …, N do

1. Perform Monte Carlo realizations of the policy for T

timesteps and K trajectories. Store all state action pairs

observed ukt ,y
k
t

� �
, as well as the total return from the epi-

sode Gk
t (see Equation (3.1.5))

2. Estimate the policy gradient and update the parameters

of the policy such that θ jþ1ð Þ ¼ θ jð Þ þω jð Þ 1
K

PK
k¼1

Gk�b
� �

rθ
PT�1

t¼0 ln π ukt jykt ,θ jð Þ
� �h i

, where b¼ 1
K

PK
k¼1G

k

MOWBRAY ET AL. 5 of 15

Typically, φ are hand designed based on process and control task

knowledge.29 Knowledge of process objectives can also be applied to

place bounds on the weights α in the reward function; however, this

may not always be desired as one could assert technical bias on the

problem and reduce the feasible region. From this definition of the

reward function R(α, y), consequent reformulation of the policy opti-

mization objective J(τ) in Equation (3.1.9) yields

J τð Þ¼τ�p τjθð Þ
XT
t¼1

γt�1R α,ytð Þ
" #

ð3:3:2Þ

J τð Þ¼
Xd
i¼1

αiτ�p τjθð Þ
XT
t¼1

γt�1φi ytð Þ
" #

ð3:3:3Þ

This may be further decomposed through definition of trajectory

features, υi, such that for the discounted case:

υγi ¼
XT

t¼1
γt�1φi ytð Þ ð3:3:4Þ

J τð Þ¼
Xd
i¼1

αiτ�p τ θj Þ υγ
i½ �ð ð3:3:5Þ

J τð Þ¼αTτ�p τ θj Þ υγ½ �ð ð3:3:6Þ

where α�ℝd�1 and υγ�ℝd�1. Equivalently, undiscounted trajectory

features υ may be recovered by setting γ = 1. The characterization of

a policy and process trajectory in terms of υ enables RL to learn from

multiple, distributed trajectories and reduces the problem to learning

feature weights α*.29,30 Conceivably, a number of different reward

functions exist that recover the desired behavior. The current study

uses the MaxEnt IRL framework proposed by Ziebart et al.,30,36 which

proceeds in identification of α via a probabilistic approach as

underpinned by the principle of maximum entropy.

3.4 | Maximum entropy IRL

In AL, we are interested in learning a policy as described by a condi-

tional probability density function π(utj yt, �), such that upon deploy-

ment of the policy to the real system, the process observes the same

evolution as that described by process data (see Equation (3.1.6)).

Explicitly, the investigation learns the expert's policy expressed by

process trajectories Τ¼ τE1,…,τ
E
K

� �
as characterized by trajectory fea-

tures, υEk
� 	

, where k = 1,…, K. MaxEnt IRL30 is an established method

and poses solution to the problem of learning such an approximate

policy. It learns a reward function that maximizes the likelihood of

observing the demonstrated trajectories Τ given an accurate model of

the process dynamics. Further discussion is provided in SI.3. It follows

that the log-probability of observing a given trajectory τ is propor-

tional to the cumulative undiscounted reward observed between a

start and terminal state,36 such that:

p τð jαÞ¼ exp αTυ τð Þ� 	
Z α, �ð Þ ð3:4:1Þ

where υ= [υ1, υ2,…, υd], and Z(α, �) = P
τ �Τexp{α

Tυ(τ)} is the partition

function, which enforces normalization of the distribution. Formally,

the approach prescribes that each of the demonstrations, τE� Τ, are
independently and identically distributed such that the likelihood of

observing the set of trajectories, Τ, expressed in process data is:

p Τjαð Þ¼
YK

k¼1
p τEk jα
� �¼YK

k¼1

1
Z α, �ð Þexp αTυEk

� 	 ð3:4:2Þ

where Z(α, �) is assumed constant for all τE�Τ;30 and p(Τjα) is the like-

lihood of observing the set of demonstrations. Under the maximum

entropy formulation,30,31,36,39 optimal solution of the feature weights,

α* is:

α� ¼ argmaxα p Τ αj Þ¼ argmaxα
YK

k¼1
p τEk αj Þ��

ð3:4:3Þ

The gradient of the log-likelihood objective (Equation (3.4.3)) with

respect to feature weights, α, is formulated as:

rα ið Þ

XK
k¼1

logp τEk jα ið Þ
� �¼ 1

K

XK
k¼1

υEk �rα ið Þ logZ α ið Þ, �
� � ð3:4:4Þ

rα ið Þ logZ α ið Þ, �
� �¼τπ�p τπ jα ið Þ ,θ

�ð Þ υπ½ � ð3:4:5Þ

where rα ið Þ logZðα ið Þ , �) is estimated via policy optimization in the

underlying MDP to find a policy, π(�, θ*), that maximizes the following

modified objective, and then subsequently performing Monte Carlo

realizations of the solution policy under the process dynamics to pro-

vide sample trajectories, ξ¼ τπ1, ::,τ
π
N

� �
characterized by υπn

� 	
, where

n = 1, …, N. This is also discussed further in Section SI.3. Equa-

tions (3.4.4) and (3.4.5) suggest that the MaxEnt IRL problem finds a

weight vector, α*, which minimizes the differences between the

expected trajectory features of the learned policy and that which is

demonstrated. Gradient-based optimization methods may be

deployed to find solution, α*, by stepping parameter values, α, in the

direction of the gradient.30,36 This work utilizes the first-order gradi-

ent ascent method (Equation (3.4.6)).

α iþ1ð Þ ¼α ið Þ þ κrα ið Þ logp Τ α ið Þ

 �� ð3:4:6Þ

where κ is a learning rate. The problem formulated here constitutes a

bi-level optimization, with the upper level task approached by MaxEnt

IRL and the lower level task handled by the policy gradient method

reinforce. In each iteration i of the upper MaxEnt IRL problem, a new

reward function, R(α(i), �), is abstracted. The underlying MDP is subse-

quently solved by policy optimization and estimation of the partition

function and  υπ½ � provided. The reinforce method and the approach

to solving the lower level optimization task is detailed by Algorithm 1.

6 of 15 MOWBRAY ET AL.

It should be noted that the approaches to policy optimization pro-

vided by PPO and entropy regularization could provide further stabil-

ity in learning and accuracy in estimation of the partition function,

respectively. In view of the length of the horizon specific to many

control tasks, discounted trajectory features υγ, as described by Equa-

tion (3.3.4), should be used rather than the undiscounted features.

This establishes the upper MaxEnt IRL task as a nonconvex optimiza-

tion37 but provides performance improvements in the lower level pol-

icy optimization task. Algorithm 2 details the MaxEnt IRL algorithm

further.

3.5 | Overview of the proposed methodology

The methodology proposed leverages the large amount of process

control data available to industry to learn an RL-based parameteriza-

tion of a previously implemented control scheme through AL via IRL.

This parameterization should express the existing control law as well

as the process knowledge of operators provided the available data is

sufficiently rich. Once a parameterization is constructed offline, it

is deployed as initialization for further RL-based policy improvement

(online). This online learning proceeds under a reward function

descriptive of the real process objectives. Through this approach, we

significantly reduce the computational and technical investment

associated with training an RL-based control policy. Specifically, the

improvements noted are drawn from the offline section of the frame-

work. Here, we combine simulation with the use of IRL to automate

analysis of historical process data. This enables us to directly abstract

a reward function, which provides clear preference (discrimination)

over controls from: (i) knowledge of the process control task we are

concerned with (represented by the basis features, φ, in the reward

function); and (ii) empirical observations of the system and its behav-

ior in response to controls (by optimizing the feature weight α). Learn-

ing under this reward function provides a parameterization of the

existing control scheme expressed in process data. Section 4 presents

a number of computational case studies for empirical demonstration

of the framework described.

4 | COMPUTATIONAL CASE STUDIES

4.1 | Introduction to the case studies

The optimization objective of the following studies is set point tracking

in a multiple-input, multiple-output (MIMO) control scheme. Specifically,

the process is a nonisothermal continuous stirred tank reactor under

operation of an endothermic isomerism reaction of the form: A!B. The

reaction rate temperature dependence is described by the Arrhenius

kinetics. Demonstration is provided in the form of process data gener-

ated by the action of a PID control scheme, produced via a discrete time

Python 3.7.3 implementation. The controlled variables (y) are concentra-

tion of reagent, Cobs
A and temperature of the reactor, Tobs. The MVs (u)

are the temperature of a heating jacket, TE and concentration of the

reagent in the input stream, CA0. Bounds are placed upon the absolute

values of the control space. Definition of process variable follows:

y¼ Cobs
A ,Tobs

h iT
ð4:1:1aÞ

x¼ CA,T½ �T ð4:1:1bÞ

u¼ CA0,TE½ �T ð4:1:1cÞ

In the case studies presented, the process model is of deviation

variable form and was derived from first principles. The deviation vari-

able, z* of random variable, z is expressed as:

z� ¼ z� zss ð4:1:2Þ

where zss is the previous steady-state value of z. Process stochasticity

(disturbance) is assumed zero mean Gaussian, as is the nature of sys-

tem observation. Therefore, approximation of the true underlying pro-

cess dynamics takes the form of a system of stochastic differential

equations, such that

x�tþ1 ¼ x�t þh x�t ,u
�
t

� �
dtþδ x�t

� �
dWt ð4:1:3aÞ

Algorithm 2 MaxEnt inverse reinforcement learning

Input: Initialize: a policy πA0ð Þ with initial parameters θ(0); a

weight vector α; state feature functions φ(x); trajectory fea-

tures representative of the demonstrated trajectories υE;

maximum iterations Nmax; learning rate κ;

Output: optimal weights α* and agent parameterization of

the demonstrated policy πpoðθ k0ð Þ), � for further policy

improvement in online learning.

for n = 1, …, Nmax do

1. Perform policy optimization of πAn�1ð Þ under the current

reward function R(α(n)) via Algorithm 1. Return πAnð Þ as

solution to the MDP defined.

2. Perform Monte Carlo realization of πAnð Þ (via Algorithm

S1) to evaluate the policy. Return the trajectory features

characteristic of the expected process evolution under

the policy  υπ nð Þ½ �.
3. Approximate the gradient of the likelihood of observing

the demonstrated trajectories with respect to the

weights rαlogp Τjαð Þ¼ 1
K

PK
k¼1υ

E
k � υπ nð Þ½ �.

4. Perform gradient ascent such that α(n+1) = α(n)+

κrαlogp (Τ|α)

end

MOWBRAY ET AL. 7 of 15

y�tþ1 ¼ g x�tþ1

� � ð4:1:4aÞ

where function h(�) is descriptive of the underlying process dynamics; δ(�)
the magnitude of disturbance, as described by the Wiener process, Wt

38;

and, g(�) describes the nature of system observation. In the following studies,

h x�t ,u
�
t

� �¼ �3:997 �0:446

�6:092 �1:581

� �
x�t þ

0:500 0

0 0:305

� �
u�t ð4:1:3bÞ

δ x�t
� �¼ 0:500 0

0 0:300

� �
x�t ð4:1:3cÞ

g x�tþ1

� �¼ 1þN 0,0:025ð Þ 0

0 1þN 0,0:025ð Þ

� �
x�tþ1 ð4:1:4bÞ

and the Euler Maryuama method was utilized for system integra-

tion.38 The SI provides formal derivation and parameter values. Given

the formulation of the MIMO problem, the investigation is concerned

with controlling the evolution of error, ε within both the temperature,

Tobs and reagent concentration, Cob
A control loops.

4.2 | Design of state features for AL

The introduction provided in Section 3.4 outlines a framework for

learning the weight vector α*, which provides a linear mapping from

state representations, φ, to scalar cost. Further, for a given represen-

tation, a set of possible process trajectories exist, which match the

counts of state features (trajectory features) of the existing policy.

Therefore, design of φ should consider both the process, optimization

objectives and restriction of the possible set of trajectories. As a

result, this work proposes the use of three types of state features, all

of which provide consistent control objectives temporally and utilize

knowledge of the underlying process control task.

4.2.1 | Type I

The first state feature proposed is encapsulated by the radial basis

function (RBF). The RBF provides a similarity measure and allocates

exponentially lower cost or greater value for those control policies

which achieve set point tracking. The feature is formulated as:

ε̂¼ ysp�y

ysp�yss
ð4:2:1Þ

φI ε̂ð Þ¼ e� βε̂ð Þ2 ð4:2:2Þ

where yss is the previous observed steady state of the system, ysp is

the desired set point, β is the shape parameter and φI ε̂ð Þ¼ 0,1½ � . The
closer the value of β to zero, the greater the offset tolerated and

the denser the reward landscape. Conversely, higher values of β

provide exponentially greater rewards for trajectories closer to the set

point, but a sparser reward landscape. In the following case studies,

the investigation utilized β = 10.

4.2.2 | Type II

Although the Type I feature is an absolute measure of control perfor-

mance, alone it does not fully characterize the evolution of system

response. Furthermore, the set of possible process trajectories, which

could match the representation of the demonstrated policy vE is large.

To restrict the possible set, Type II and III features take inspiration

from the PID control law, which at a given time is a linear combination

of the error, ε = ysp� y, in the control loop at the current time point

(proportional), the manner in which the error has evolved over time

(integral) and the projected evolution of error in the future (deriva-

tive). Hence, the Type II state feature proposed intends to quantify

how the absolute error in a control loop evolves temporally. As such,

Type II state features are described as:

φII ε̂ð Þ¼
ðt
0
j ε̂ j dt≈

Xtc
j¼1

j ε̂ jΔt ð4:2:3Þ

where Δt is equivalent to the sampling time or times at which con-

trol is provided (in this work, the two are synonymous), j � j refers to

the absolute value; j the discrete time index and tc the current time

point. The absolute magnitude of the error provides clear control

objective regardless of whether the error ε̂ is positive or negative in

value. If this was not taken, actions that decrease error in the control

loop may be penalized or rewarded in an RL setting depending upon

whether the integral of the error becomes positive or negative as a

result.

4.2.3 | Type III

The design of Type III state features aims to quantify how the error in

the control loop may evolve into the future. As a result, the feature

approximates the derivative of the error in the control loop at the

sampled time:

φIII ε̂ð Þ¼ d j ε̂ j
dt

≈
j ε̂tc j � j ε̂tc�1 j

Δt
ð4:2:4Þ

where tc�1 is the previous discrete time index. In view of the

proposed state features, the investigation is able to characterize

control trajectories and provide direct and consistent control objec-

tive. As a result, the reward function R of the MDP described is

specified as

R¼ α1φI ε̂C�
A

� �
þα2φI ε̂T�ð Þþα3φII ε̂C�

A

� �
þα4φII ε̂T�ð Þþα5φIII ε̂C�

A

� �
þα6φIII ε̂T�ð Þ

ð4:2:5Þ

8 of 15 MOWBRAY ET AL.

4.3 | Case study definitions

Three case studies demonstrate the use of the framework in different

contexts and control tasks. Table 1 details the specific experimental

setup. Case Study I demonstrates the framework proposed for

deployment when subjectively near optimal control is provided by an

existing control scheme. Case Study II demonstrates the framework is

still effective when the control demonstrated by an existing scheme

is subjectively suboptimal. Case Study III explores the potential to

transfer knowledge within the framework in order to aid efficiency in

learning on different control tasks.

5 | RESULTS AND DISCUSSION

5.1 | Case Study I—Learning from near optimal
demonstrations

The purpose of this case study is to construct an RL controller

which learns from demonstration provided by a near optimal control

policy and then to improve it further. As such, we demonstrate the

full utility of the offline-online framework proposed. First, offline

learning under MaxEnt IRL is deployed to find a linear combination

α* of state features, which infers and encodes control objectives

into a feedback signal or reward function. Under this reward func-

tion, a parameterization of the control policy expressed in process

data is learned in order to match the demonstrated process behav-

ior as characterized through expected trajectory features. The

learned parameterization is then improved under the real process

objective, which in this case is pure tracking. Here the demonstrated

control policy is that of a well-tuned PID controller (PID1 as

detailed by the SI).

5.1.1 | Results of AL via MaxEnt IRL

Utilizing 500 Monte Carlo realizations of the PID1 policy, the method-

ology was able to generate an informative dataset and subsequently

characterize the policy using the six basis features presented in Equa-

tion (4.2.5), with γ = 0.99 and T = 50 indicates the length of the

discrete-time finite horizon. The trajectory feature expectations of

PID1 are outlined in Table 2.

From Table 2, it is concluded that under the characterization of

the PID1 policy υγ,E, Algorithm 2 was able to learn an agent parame-

terization of the demonstrated policy (i.e., PID controller). This was

achieved after just four iterations of the algorithm. Each iteration is

composed of solving an MDP via RL (detailed by Algorithm 1) and

then updating the weight vector α via Equation (3.4.4). The hyper-

parameters for Algorithm 2 and each iteration are detailed by the SI. It

is worth reiterating that there is a set of possible policies, which

observe the same expected trajectory feature counts  υγ,E
� �

as that

of the demonstrated policy. In the context of this work, further

restricting the possible set is not necessary; however, introduction of

further state features φ would facilitate such. Given that φ compose

the reward function and all express inherent set point tracking objec-

tives, intuitively, any of the policies from the possible set, which

match the trajectory features of the demonstrated policy should pro-

vide good initialization for further policy improvement. The learned

weight vector α* may also be interpreted and provide insight into the

dynamics of the respective control loops.

TABLE 1 Conditions of design for the case studies detailed. The real initial state of the controlled variables x0 is drawn from the respective
distributions. The set point y�sp details the new setpoint of the respective control variables as set at t = 0

Case study System parameter Concentration (C�
AÞ control loop Temperature (T*) control loop

I Initial state distribution �ρ x0ð Þ N (0, 0.25) N (0, 0.75)

Set point Y�
sp �1 4

II Initial state distribution �ρ x0ð Þ N (0, 0.25) N (0, 0.75)

Set point Y�
sp 1 4

III Initial state distribution �ρ x0ð Þ N (0, 0.25) N (0, 0.75)

Set point Y�
sp �2.5 3

TABLE 2 The expected discounted trajectory features of PID1 (υγ,E) and the policy learned through AL (υγ,π), and IRL's feature weight (α*)
generated in CS I. Y*� Type indicates the type of trajectory feature and the respective control loop error

Trajectory features

C�
A� I T*� I C�

A� II T*� II C�
A� III T*� III

 υγ,E
� �

21.63 20.68 4.08 7.93 �22.87 �22.43

 υγ,π½ � 21.41 20.76 4.31 7.03 �22.28 �22.71

α* 0.137 0.652 �0.067 �0.630 �0.194 �0.343

Abbreviations: AL, apprenticeship learning; IRL, inverse reinforcement learning.

MOWBRAY ET AL. 9 of 15

The state features that are specific to the temperature control

loop receive a greater weight than the concentration control loop.

This is likely reflective of the endothermic nature of reaction and the

relative changes of set point in the temperature loop and concentra-

tion loop. Compared to changing reactant concentration, an increase

in reactor temperature T will likely shift reaction equilibrium more sig-

nificantly in a manner to increase consumption of reagent. As a result,

the system dynamics act in a way to aid the set point change in the

concentration control loop. Hence, greater weighting is allocated to

control of the temperature control loop.

In this section, we show the utility of the offline learning method

proposed in the context of learning by demonstration (or AL). Subse-

quently, we demonstrate how online learning may be deployed for

further policy improvement.

F IGURE 3 Optimal policy of the agent in Case Study I. (A,B) Control and system response of the concentration control loop and of the
temperature control loop, respectively. (C,D) Zoomed system response in the concentration control loop and in the temperature control loop,
respectively. πA and πE indicate the policy of the agent (after online learning) and the PID, respectively. Solid line represents the mean control
response and the shaded regions indicate the standard deviation. Line colors of manipulated variables: blue—πA; light green—πE. Line colors of
control variables: red—πA; dark green—πE. Line color of set points: orange [Color figure can be viewed at wileyonlinelibrary.com]

10 of 15 MOWBRAY ET AL.

http://wileyonlinelibrary.com

5.1.2 | Online learning and optimal control

Further improvement of the initial policy (Section 5.1.1) utilizes Algo-

rithm 1 and a real process reward function shown as Equa-

tion (5.1.2.1), which expresses pure set point tracking objective

R¼φI ε̂C*
A

� �
þφI ε̂T*

� � ð5:1:2:1Þ

Here, the parameter β in φI (Equation (4.2.2)) is retuned to ensure

that high performance set-point tracking is achieved (β = 30). The

final result of the policy obtained is displayed in Figure 3.

Examination of Figure 3(A) describes the control policies of the

agent and PID1 within the concentration control loop. Given the ini-

tialization provided by IRL, further online RL-based policy improve-

ment learns a control observably similar but relatively smoother, to

that demonstrated by the PID controller. Explicitly, the policy

improvement was provided by two rounds of online learning, with

10 training iterations (epochs) per round. As a result, the agent is able

to facilitate a system response, which meets set point faster with less

overshoot observed than using the PID controller (shown in Figure 3

(C)). Similar observations are made in analysis of Figure 3(B,D), which

demonstrate the response of the temperature control loop. In this

case, the online updated RL yields a better temperature response

characterized by a fast rise time with no observable overshoot.

5.2 | Case Study II—Learning from suboptimal
demonstrations

In Case Study II, the demonstrations (process data) are derived from a

second PID controller (PID2 detailed by the SI). Compared to Case

Study I, the demonstrations provided by the PID controller here are of an

overdamped control response, which subjectively appears suboptimal.

TABLE 3 The expected discounted trajectory features of the PID2 (υγ,E) and the policy learned through AL (υγ,π), and IRL's feature weight (α*)
generated in CS I. Y*� Type indicates the type of trajectory feature and the respective control loop error

Trajectory features υ

C�
A� I T*� I C�

A� II T*� II C�
A� III T*� III

 υγ,E
� �

13.76 8.52 8.02 15.53 �22.49 �20.71

 υγ,π½ � 16.41 7.10 6.46 13.29 �21.82 �18.79

α * �0.259 �0.182 �0.545 �0.093 �0.545 �0.545

Abbreviations: AL, apprenticeship learning; IRL, inverse reinforcement learning.

F IGURE 4 System response over the first 30 control interactions from the policy learned from demonstration during apprenticeship learning
(AL) in Case Study II. (A,B) System response in the concentration control loop and the temperature control loop, respectively. πA and πE indicate
the response associated with the policy of the agent (after offline learning) and that demonstrated, respectively. Solid line represents the mean
control response and the shaded regions indicate the standard deviation. Line colors of control variables: red—πA; dark green—πE. Line color of set
points: orange [Color figure can be viewed at wileyonlinelibrary.com]

MOWBRAY ET AL. 11 of 15

http://wileyonlinelibrary.com

F IGURE 5 Optimal policy of the agent in CS II over the full simulated horizon. (A,B) Control and system response of the concentration
control loop and the temperature control loop, respectively. (C,D) Zoom of the system response in the concentration control loop and in the
temperature control loop, respectively. πA and πE indicate the policy of the agent (after online learning) and the PID, respectively. Solid line
represents the mean control response and the shaded regions indicate the standard deviation. Line colors of manipulated variables: blue—πA; light
green—πE. Line colors of control variables: red—πA; dark green—πE. Line color of set points: orange [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 4 The expected discounted trajectory features of the PID1 generated in CS III. Y*-Type indicates the type of trajectory feature and
the respective control loop error

Trajectory features υ

C�
A� I T*� I C�

A� II T*� II C�
A� III T*� III

 υγ,E
� �

16.07 18.36 8.08 8.35 �21.83 �22.78

 υγ,π½ � 14.00 18.04 9.37 6.50 �19.94 �21.06

α 0.664 0.052 �0.223 �0.226 �0.403 �0.541

12 of 15 MOWBRAY ET AL.

http://wileyonlinelibrary.com

5.2.1 | Results of AL via MaxEnt IRL

In similar fashion to Section 5.1.1, Algorithm S1 was used to charac-

terize the demonstrations from PID2. Table 3 details the resultant tra-

jectory feature expectations  υγ,E
� �

.

Once again, Algorithm 2 facilitates the learning of an agent parame-

terization of the demonstrated policy in three iterations. It is of note,

however, that the methodology was unable to match the trajectory fea-

tures exactly. Instead, a good approximation of the demonstrated policy

was produced. There are two points of discussion here. First, it is likely

that the reward function itself is underspecified and further state fea-

tures, φ, should be proposed. Second, it is possible that the objectives of

the demonstrated control policy cannot be described purely as a linear

combination of the state features31—although the linear approximation

in this case is reasonable, given the similarity of the trajectory features.

In this case study, state features relevant to the concentration

control loop are allocated the greatest weighting. This is because the

set points are changed in the same direction (as detailed by Table 1).

Naturally, a rise in reagent concentration will cause a decrease in tem-

perature (endothermic reaction), whilst a rise in temperature will facili-

tate the conversion of reagent concentration. As the reaction

equilibrium is more sensitive to the temperature change, greater

weightings must be added to the concentration control loop to reach

the new set point.

F IGURE 6 Policy πA generated as a result of knowledge transfer through apprenticeship learning (AL) and online policy optimization. (A,B)
Control and system response of the concentration control loop and the temperature control loop, respectively. (C,D) Zoom of the system
response in the concentration control loop and the temperature control loop, respectively. πA and πE indicate the policy of the agent (after online
learning) and the PID, respectively. Solid line represents the mean control response and the shaded regions indicate the standard deviation [Color
figure can be viewed at wileyonlinelibrary.com]

MOWBRAY ET AL. 13 of 15

http://wileyonlinelibrary.com

Furthermore, Type I state features are allocated negative weights,

which is unusual. Intuitively, Type I features represent a similarity

measure between the current state of the system and the desired set

point. Given that the feature value is non-negative (φI = [0, 1]), a neg-

ative reward weighting means that the IRL learnt objective function

will prevent the process from reaching the new set point. This is the

primarily attributed to the fact that a large proportion of the demon-

strations never reached the new set point (Figures 4 and 5) due to the

overdamped control response. As AL considers the expert's (i.e., PID

controller) actions as a noisily optimal control policy, it will find the

optimal solution of weight vector, α*, to reproduce this overdamped

control response. Therefore, the current result indicates that if the

demonstration data does not contain a good control policy, it is essen-

tial to further improve the AL generated policy through online

learning.

5.2.2 | Online learning and optimal control

As in Section 5.1.2, online learning is performed to improve the AL

policy (initialized for RL). Given that a degree of offset was present in

both control loops as detailed by Figure 4, two short rounds of RL pol-

icy improvement, again consisting of 10 training epochs, proceeded

with hand tuning of the parameter β in each round. Figure 5 details

the final results of the update RL model. From Figure 5, it is found

that the improved policy of the agent πA, observes a faster rise time,

no overshoot and subjectively better set point tracking than the dem-

onstrated policy (PID). In this way, the methodology shows ability to

learn from suboptimal demonstrations and then efficiently improve

the learned parameterization of the demonstrated policy through

online learning (in this work, 24 min spent online to update the RL).

5.3 | Case Study III—Knowledge transfer in
learning from demonstration

Finally, Case Study III demonstrates how knowledge transfer from

one task improves the efficiency of offline AL for further set points.

Here, we again assume the availability of existing demonstrations as

described by process data. The control task (set point change) in this

study is described by Table 1 and is different to both tasks examined

in Case Studies I and II. Again, we would like to learn a parameteriza-

tion of the control policy (offline) expressed in the process data and

then improve it further (online), but we wish to reduce the computa-

tional budget associated with offline AL. Thus, we propose to transfer

knowledge from a previous study to improve computational and

learning efficiency.

Knowledge transfer is in the form of the offline learned policy

parameterization, πpo θ k0ð Þ
� �

and weight vector, α*, from a previous

task. Here, knowledge is transferred from Case Study I, given its bet-

ter PID performance than Case Study II. Both α* and πpo θ k0ð Þ
� �

from

Case Study I are provided as initialization for AL of the new task in

Case Study III. Update of this initialization only takes 80 epochs.

Previously, the two studies recovered demonstrated behavior within

a total of 300 and 250 epochs of policy optimization, respectively.

This reduction in the computational intensity of policy learning dem-

onstrates that the computational burden of AL via IRL—under the

current methodology—may be significantly reduced through knowl-

edge transfer. In this study, process data were generated using

PID1. Table 4 details the corresponding trajectory feature expecta-

tions, υγ,E.

Given the parameterization as learned via IRL, a further two

rounds of 10 epochs of RL enabled further policy improvement online.

The results are presented in Figure 6. Figure 6(A,B) highlights how the

policy learned under knowledge transfer achieves pure set point

tracking with a smoother control policy than that demonstrated by

PID1. Once again, Figure 6(C,D) shows that this control policy suc-

cessfully facilitates a system response with fast rise time, but no over-

shoot or oscillatory behavior around the set point, as is present in the

demonstrations.

6 | CONCLUSIONS

In this article, we propose a framework based on AL to learn a control

law based on process data, this approach allows us to synthesize a neu-

ral network control policy from a previous controller (e.g., PID, MPC, or

human controllers) more robustly than with supervised learning. Having

learned a parameterization of the control law, subsequent deployment

of RL enables further policy improvement by directly interacting with

the real process, thus outperforming the existing control law. Here, AL

is implemented through IRL. Given the data-driven nature of IRL, the

RL-based policy parameterization promises to express the action of the

control scheme and process knowledge of the operators. RL is con-

structed using a policy optimization algorithm, although other methods

could be also applied in the future. Based on the case studies, it is con-

cluded that the proposed framework can effectively extract control

information from available process data, transfer knowledge between

different cases, and can result in a better optimal control policy effi-

ciently. It should be noted that we assume the availability of rich infor-

mative datasets. If the data is not informative, the framework is unlikely

to be effective. Future work will explore implementation of various

data augmentation strategies, based on physical knowledge or statisti-

cal analyses, to artificially synthesize informative datasets.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no experimental datasets

were generated or analysed during the current study.

ORCID

Max Mowbray https://orcid.org/0000-0003-1398-0469

Dongda Zhang https://orcid.org/0000-0001-5956-4618

REFERENCES

1. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through

deep reinforcement learning. Nature. 2015;518(7540):529-52933.

14 of 15 MOWBRAY ET AL.

https://orcid.org/0000-0003-1398-0469
https://orcid.org/0000-0003-1398-0469
https://orcid.org/0000-0001-5956-4618
https://orcid.org/0000-0001-5956-4618

2. Heess N, Hunt JJ, Lillicrap TP, Silver D. Memory-based control with

recurrent neural networks

3. Kirk DE. Optimal Control Theory: An Introduction. New York: Dover

Publications; 1998.

4. Liu D, Wei Q, Wang D, Yang X, Li H. Overview of adaptive dynamic

programming. Adaptive Dynamic Programming with Applications in

Optimal Control. Basel: Springer International Publishing; 2017:1-33.

5. Petsagkourakis P, Sandoval IO, Bradford E, Zhang D, del Rio-

Chanona EA. Reinforcement learning for batch bioprocess optimiza-

tion. Comput Chem Eng. 2020;133:106649.

6. Lawrence NP, Stewart GE, Loewen PD, Forbes MG, Backstrom JU,

Gopaluni RB. Optimal PID and antiwindup control design as a rein-

forcement learning problem. arXiv:200504539 [cs, eess, math].

7. Spielberg S, Tulsyan A, Lawrence NP, Loewen PD, Bhushan GR.

Toward self-driving processes: a deep reinforcement learning

approach to control. AIChE J. 2019;65(10):e16689. https://doi.org/

10.1002/aic.16689.

8. Kim JW, Park BJ, Yoo H, Oh TH, Lee JH, Lee JM. A model-based deep

reinforcement learning method applied to finite-horizon optimal con-

trol of nonlinear control-affine system. J Process Control. 2020;87:

166-178.

9. Kim Y, Lee JM. Model-based reinforcement learning for nonlinear

optimal control with practical asymptotic stability guarantees. AIChE

J. 2020;n/a(n/a):e16544. https://doi.org/10.1002/aic.16544.

10. Gottipati SK, Sattarov B, Niu S, et al. Learning to navigate the syn-

thetically accessible chemical space using reinforcement learning.

arXiv:200412485 [cs].

11. Angermueller C, Dohan D, Belanger D, Deshpande R, Murphy K,

Colwell L. Model-based reinforcement learning for biological sequence

design. International Conference on Learning Representations.

12. Gros S, Zanon M. Data-driven economic NMPC using reinforcement

learning. arXiv:190404152 [cs].

13. Zanon M, Kungurtsev V, Gros S. Reinforcement learning based on

real-time iteration NMPC. arXiv:200505225 [cs, eess].

14. Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P. Trust region pol-

icy optimization. arXiv:150205477 [cs].

15. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal pol-

icy optimization algorithms. arXiv:170706347 [cs].

16. Schulman J, Chen X, Abbeel P. Equivalence between policy gradients

and soft Q-learning. arXiv:170406440 [cs].

17. Lehman J, Chen J, Clune J, Stanley KO. ES is more than just a tradi-

tional finite-difference approximator

18. Sutton RS, McAllester D, Singh S, Mansour Y. Policy gradient

methods for reinforcement learning with function approximation.

Advances in Neural Information Processing Systems. Neural information

processing systems foundation; 2000:1057-1063.

19. Petsagkourakis P, Sandoval IO, Bradford E, Galvanin F, Zhang D, del

Rio-Chanona EA. Chance constrained policy optimization for process

control and optimization. arXiv:200800030 [cs, eess].

20. Shin J, Badgwell TA, Liu K-H, Lee JH. Reinforcement learning—
overview of recent progress and implications for process control.

Comput Chem Eng. 2019;127:282-294. https://doi.org/10.1016/j.

compchemeng.2019.05.029.

21. Beaulieu S, Frati L, Miconi T, et al. Learning to continually learn. arXiv:

200209571 [cs, stat].

22. Coates A, Abbeel P, Ng A. Apprenticeship learning for helicopter con-

trol. Commun ACM. 2009;52(7):97-105.

23. Wu Z, Sun L, Zhan W, Yang C, Tomizuka M. Efficient sampling-

based maximum entropy inverse reinforcement learning with

application to autonomous driving. IEEE Robot Autom Lett. 2020;5

(4):5355-5362.

24. Silver D, Bagnell JA, Stentz A. Learning from demonstration for

autonomous navigation in complex unstructured terrain. Int J Robot

Res. 2010;29(12):1565-1592.

25. Sutton RS. Reinforcement Learning: An Introduction. 2nd ed: The MIT

Press; 2018.

26. Zhang K, Koppel A, Zhu H, Başar T. Global convergence of policy gra-

dient methods to (almost) locally optimal policies. arXiv:190608383

[cs, eess, math, stat].

27. Simmons-Edler R, Eisner B, Mitchell E, Seung S, Lee D. Q-learning for

continuous actions with cross-entropy guided policies. arXiv:

190310605 [cs].

28. Azar NA, Shahmansoorian A, Davoudi M. From inverse optimal con-

trol to inverse reinforcement learning: a historical review. Annu Rev

Control. 2020;50:119-138.

29. Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement

learning. Twenty-First International Conference on Machine Learning -

ICML ‘04. ACM Press; 2004:1. https://doi.org/10.1145/1015330.

1015430.

30. Ziebart B, Maas A, Bagnell JA, Dey AK. Maximum entropy inverse

reinforcement learning. In: Proceedings of the 23rd National Conference

on Artificial Intelligence - Volume 3. AAAI'08. AAAI Press; 2008.

31. Wulfmeier M, Ondruska P, Posner I. Maximum entropy deep inverse

reinforcement learning. arXiv:150704888 [cs].

32. Karg B, Alamo T, Lucia S. Probabilistic performance validation of deep

learning-based robust NMPC controllers. arXiv:191013906 [cs, eess,

math].

33. Rohani S. Coulson and Richardson's Chemical Engineering. Volume 3B,

Process Control. 4th ed. Oxford: Butterworth-Heinemann; 2017.

34. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Com-

put. 1997;9(8):1735-17380.

35. Colah C. Understanding LSTM Networks; 2015. https://colah.github.

io/posts/2015-08-Understanding-LSTMs/

36. Ziebart B. Modeling Purposeful Adaptive Behavior with the Principle

of Maximum Causal Entropy.

37. Zhou Z, Bloem M, Bambos N. Infinite time horizon maximum causal

entropy inverse reinforcement learning. IEEE Trans Automat Contr.

2018;63(9):2787-2802.

38. Mao X. The truncated Euler–Maruyama method for stochastic differ-

ential equations. J Comput Appl Math. 2015;290(C):370-384.

39. Jaynes ET. Information theory and statistical mechanics. Phys Rev.

1957;106(4):620-630. https://doi.org/10.1103/PhysRev.106.620.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Mowbray M, Smith R, Del Rio-

Chanona EA, Zhang D. Using process data to generate an

optimal control policy via apprenticeship and reinforcement

learning. AIChE J. 2021;e17306. https://doi.org/10.1002/aic.

17306

MOWBRAY ET AL. 15 of 15

https://doi.org/10.1002/aic.16689
https://doi.org/10.1002/aic.16689
https://doi.org/10.1002/aic.16544
https://doi.org/10.1016/j.compchemeng.2019.05.029
https://doi.org/10.1016/j.compchemeng.2019.05.029
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1002/aic.17306
https://doi.org/10.1002/aic.17306

	Using process data to generate an optimal control policy via apprenticeship and reinforcement learning
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Policy gradients and reinforce
	2.2 Learning from demonstrations via apprenticeship
	2.3 Motivation

	3 METHODOLOGY
	3.1 Problem statement
	3.2 Policy gradient and reinforce
	3.3 AL via IRL
	3.4 Maximum entropy IRL
	3.5 Overview of the proposed methodology

	4 COMPUTATIONAL CASE STUDIES
	4.1 Introduction to the case studies
	4.2 Design of state features for AL
	4.2.1 Type I
	4.2.2 Type II
	4.2.3 Type III

	4.3 Case study definitions

	5 RESULTS AND DISCUSSION
	5.1 Case Study I-Learning from near optimal demonstrations
	5.1.1 Results of AL via MaxEnt IRL
	5.1.2 Online learning and optimal control

	5.2 Case Study II-Learning from suboptimal demonstrations
	5.2.1 Results of AL via MaxEnt IRL
	5.2.2 Online learning and optimal control

	5.3 Case Study III-Knowledge transfer in learning from demonstration

	6 CONCLUSIONS
	 DATA AVAILABILITY STATEMENT

	REFERENCES

