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ABSTRACT

Case-Control Studies of Genetic and Environmental Factors with Error in Measurement of

Environmental Factors. (August 2006)

Iryna Lobach, B.S., Belarusian State University

Chair of Advisory Committee: Dr. Raymond J. Carroll

It is widely believed that risks of many complex diseases are determined by genetic suscep-

tibilities, including environmental exposures, and their interaction. Chatterjee and Carroll

(2005) have recently developed an efficient retrospective maximum-likelihood method for

analysis of case-control studies that exploits an assumption of gene-environment indepen-

dence and leaves the distribution of the environmental covariates to be completely non-

parametric. We generalize the semiparametric maximum-likelihood approach to situations

when some of the environmental covariates are measured with error and allow genetic in-

formation to be missing on some subjects, e.g., unphased haplotypes. Profile likelihood

techniques and an EM algorithm are developed, resulting in a relatively simple procedure

for parameter estimation. We prove consistency and derive the resulting asymptotic covari-

ance matrix of parameter estimates when variance of measurement error is known and when

it is estimated using replications. The performance of the proposed method is illustrated

using simulation studies emphasizing the case when genetic information is in the form of

a haplotype and missing data arises from haplotype-phase ambiguity and missing genetic

data. Inference is performed via a likelihood-ratio type procedure, one that we show has

better small-sample performance than Wald-type inferences. An application of this method

is illustrated using a case-control study of an association of calcium intake with early stages

of colorectal tumor development.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Many health conditions, including cancer and psychiatric disorders, are believed to have

a complex genetic bias, and genes and environmental factors are likely to interact in the

presence and severity of these conditions. With the advent of modern genotyping technolo-

gies, epidemiologists have been increasingly interested in identifying genetically defined

subgroups within a population with unusual resistence or suceptibility in environmental

exposures both because such interactions may yield insight into mechanisms of action of

exposures and because they can suggest disease prevention strategies. Case-control studies

using unrelated individuals may be an effective approach to identifying genetic variants

underlying complex traits.

1.2 Gene-Environment Interactions

The key objective of research in human genetics is to advance knowledge of how genetic

and environmental factors combine to cause disease. As Clayton and McKeigue (2001)

define, in statistical terms, gene-environment interaction is present when the effect of geno-

type on disease risk depends on the level of exposure to an environmental factor, or vice

versa. This definition depends on how effects on risk are measured. The most usual mea-

sure of effect in epidemiology is the ratio of disease incidence between exposed and unex-

posed individuals, which, in case-control studies can be measured by an odds ratio.

The format and style follow that of Biometrics.
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Case-control studies are often used to model gene-environment interactions. In recent

years, a number of researchers have noted that in case-control studies of genetic epidemiol-

ogy, the efficiency of standard analysis can be improved upon by exploiting certain natural

model assumptions for the underlying genetic and the environmental covariates. In the

context of haplotype-based analysis of case-control studies, Epstein and Satten (2003) and

Satten and Epstein (2004) noted retrospective maximum likelihood methods can be more

efficient than analogous prospective methods by taking full advantage of an assumption of

Hardy-Weinberg-Equilibrium (HWE) for the underlying population. Chatterjee and Carroll

(2005) exploited an assumption of gene-environment independence to yield more precise

maximum-likelihood estimates of the odds-ratio parameters than those obtained from stan-

dard logistic regression analysis.

1.3 Prospective Analysis of Case-Control Studies

The common practice in biostatistics is to analyse retrospectively collected data as if it

were collected prospectively, ignoring the fact that under this design subjects are sampled

retrospectively conditional of their disease status. The validity of this approach relies on

the classic results by Cornfield (1956) who showed the equivalence of prospective- and

retrospective odds-rations. The efficiency of the approach was established in two other

classic papers by Anderson (1970) and Prentice and Pyke (1979) who showed that standard

prospective analysis of case-control data yields the proper maximum-likelihood estimates

of the odds-ratio parameter under the retrospecive design as long as the distribution of the

underlying covaiates are allowed to remain completely unrestricted (nonparametric).

This point has received recent attention. Roeder at al. (1996) extended the approach to

the case of measurement error. Muller and Roeder (1997) took a nonparametric view of the

relationship between a surrogate (W ) and the latent variable (X) and developed Bayesian

procedure that is computationally complex. At the cost of requiring a parametric form for
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the distribution of (W |X,D) the approach of Gustafson et al. (2002) is considerably sim-

pler. Gustafson et al. (2002) echo the call of Roeder et al. (1996) indicating a surprisingly

subtle problem, namely how best to deal with additional precisely measured covariates.

Seaman and Richardson (2001) developed an approach to deal with situations with any

number of categorical covariates. They illustrate the drawbacks of Bayesian methods for

continuous variables, namely the difficulty of numerical integration over high-dimentional

space and therefore in practice they are limited to a small number of covariates. Moreover,

it is difficult to say how the methods could be generalized to allow for both continuous

and discrete covariates. To do this would require a sutable flexible and uninformative prior

density for an exposure space that combines continuous and discrete components.

1.4 Measurement Error in Epidemiologic Studies

Intakes of various foods and drugs (such as fat, fiber, fruits, vegetables, etc.) are prime ex-

amples of exposure variables of considerable interest in medical studies, while also being

hard to measure. In the studies with large number of subjects resource limitations might

only allow for a food-frequency questionnaire (FFQ), on which subjects report the fre-

quency with which they consume specific foods. Measurement error arises from the fact

that participants have imperfect recall when completing questionnaires. Moreover, individ-

uals with high levels of disease-related variables might have tendency to blame suspected

risk factors for their condition, or deny the possibility those factors caused their conditions,

what can result in differential measurement error, see for example Gustafson (2004) and

Weinberg et al. (1994).

A number of large epidemiologic studies of relationship between diet and cancer failed

to find a consistent relationship between dietary components and cancers of the breast,

colon, or rectum (Hunter et al. 1996; Fuchs et al. 1999; Freudenheim et al. 1988; Michels

et al. 2002). This maybe explained by the lack of a true diet-cancer associations, or,
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alternatively, by serious methodological limitations of such studies, especially due to the

FFQ measurement error.

Since FFQs are subject to substantial error, both systematic and random, it can pro-

foundly affect the interpretation of nutritional epidemiologic studies. Dietary mismeasure-

ment often attenuates the estimates of disease relative risks and reduces statistical power to

detect their significance. Hence the important relationship between diet and disease may

be obscured.

In many analyses that arise in biostatistics and epidemiology involve discrete response

variable, i.e. disease status. In such cases logistic regression is the most common inferen-

tial procedure. There is considerable literature on measurement error in binary regression

models, though some of this focuses on probit regression rather than logistic regression

for the sake of numerical tractability (Carroll et al. 1984). Closed form expression for

the bias induced by measurement error do not exist for the logistic regression model. An-

other situation when the impact of misclassification is complex and hard to intuit is when

a polychotomous (categorical with more than two levels) exposure variable is subject to

misclassification. As pointed by Dosemeci at al. (1990), even the impact of nondifferential

misclassification can be quite unpredictable.

1.5 Haplotype-Based studies

Haplotype-based studies are becoming increasingly popular, a number of researches have

developed methods for logistic regression analysis of case-control studies in the presence

of phase ambiguity. One well-established method for estimating haplotype frequencies is

the EM algorithm (see for example Excoffier and Slatkin (1995), Fallin and Schork (2000)).

This algorithm is particulary useful in the context of tightly linked markers where the num-

ber of observed haplotypes is much smaller than the number than the number of theoreti-

cally possible haplotype frequencies. Epstein and Sattern (2003) present an approach based
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on retrospective likelihood for case-control data that integrates over the observed phase as-

signments. Zhao et al. (2003) propose a similar estimating equations approach, although

under a rare disease assumption they calculate frequencies using only controls. Starm et al.

(2003) make use of case and control sampling fractions. Incorporation of environmental

factors, however, is complicated in these approaches, because the retrospective likelihood

involves potentially high dimentional nuisance parameters that specify the distribution of

the environmental factors in the underlying population.

The methodology developed by Chatterjee and Carroll overcomes the majority of de-

scribed above difficulties and has several unique aspects. First, it is exact and does not re-

quire a rare disease assumption, what is very important for studying major genes. Second,

the setting is very flexable and retains all the flexability of the traditional logistic regression

analysis, such as continuous exposures, complex modeling of the regression effects of the

risk factors. Third, it allows incorporation of the external information about the probability

of disease in the population, hence improves efficiency. Finally, the methodology is de-

veloped in a semiparametric framework that allows the distribution of the environmental

factors to be fully nonparametric.

In this dissertation we will extend the profile likelihood approach proposed by Chat-

terjee and Carroll to develop a relatively simple procedure for obtaining the efficient retro-

spective maximum likelihood estimator for case-control studies with missing genetic data

and measurement error in environmental covariates.
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CHAPTER II

METHODOLOGY

2.1 Model and Notations

Let D be the categorical indicator of disease status. To be general, we allow D to have

K + 1 levels with the possibility of K ≥ 1 to accommodate different subtypes of a dis-

ease. Let D = 0 denote the disease-free (control) subjects and D = k, k ≥ 1 denote the

diseased (case) subjects of the k-th subtype. Let Hdip = (H1, H2) denote the diplotype

status, that is, the two haplotypes a subject carriers at the loci of interest on the pair of

homologous chromosomes. Suppose there are M loci of interest within a genomic region.

Let Hdip = (H1, H2) denote the corresponding diplotype status for an individual, that is,

the two haplotypes the individual carries in his/her pair of homologous chromosomes. Let

E = (X,Z) denote all of the environmental (non-genetic) covariates of interest with X de-

noting the factors susceptible to measurement errors. Given the environmental covariates

X and Z and diplotype data Hdip, the risk of the disease in the underlying population is

given by the polytomous logistic regression model

pr(D = d ≥ 1|Hdip, X, Z) =
exp

{
β0d +m(Hdip, X, Z, β)

}

1 +
∑K

j=1 exp {β0j +m(Hdip, X, Z, β)}
. (2.1)

Here m(·) is a known function parameterizing the joint risk of the disease from Hdip, X

and Z in terms of the odds-ratio parameters β.

The model (2.1) cannot be used directly for analysis due to two reasons. First, the

dipotype information Hdip is not measurable using standard genotyping technology. Typi-

cally, multi-locus genotype information, denoted by G = (G1, G2, . . . , GM ), is available.

Due to lack of haplotype-phase information, the same genotype data can be consistent with

multiple configuration of haplotypes for a given subject. For example, if A/a and B/b de-
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note the major/minor alleles in two bi-allelic loci, then subjects with genotypes (Aa) and

(Bb) at the first and the second locus, respectively, are considered “phase ambiguous”: their

genotypes could arise from either the haplotype-pair (A-B,a-b) or the haplotype-pair (A-b,

a-B). LetHdip denote the set of all possible diplotypes in the underlying population. Anal-

ogously, letHdip
G denote the set of all possible diplotypes that are consistent with a particu-

lar genotype vector G. We assume independence ofHdip andE = (X,Z) in the underlying

population. Moreover, we assume a parametric model of the form pr(Hdip) = Q(Hdip, θ).

Note however that our method can be readily extended to a general parametric model for

Hdip given (X,Z). For our numerical examples, we assume HWE so that the distribution

of the diplotypes can be specified in terms of the frequency of the haplotypes. Our general

framework, however, allows use of more flexible models than HWE (see e.g. Satten and

Epstein, 2004; Lin and Zeng, 2006).

A second problem is that in our motivating example, covariate X is measured with

error. Let W denote the error-prone version of X . We assume a parametric model of

the form fmem(w|X,Hdip, Z,D; ξ) for the conditional distribution of W given the true

exposureX , additional environmental factorsZ and disease-statusD. If measurement error

can be assumed to be non-differential by disease status, then one can simplify the model as

fmem(w|X,Hdip, Z,D; ξ) = fmem(w|X,Hdip, Z; ξ). We assume that the joint distribution

of the environmental factors in the underlying population can be specified according to

a semiparametric model of the form fX,Z(x, z) = fX(x|z; η)fZ(z) where fZ(z) is left

completely unspecified.

2.2 Semiparametric Inference Based on a Pseudo-likelihood

For d ≥ 1, define nd to be the number of subjects in the sample with disease at stage d,

πd = nd/pr(D = d), κd = β0d + log(nd/n0)− log(πd/π0), and κ̃ = (κ1, ..., κK)T. Define

κ0 = β00. Let β̃0 = (β01, ..., β0K)T. Let Ω = (β̃T
0 , β

T,ΘT, κ̃T)T, B = (ΩT, ηT)T and
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υ = (ηT, ξT)T. Make the definition

S(d, hdip, x, z,Ω) =
exp

[
I(d≥1)(d)

{
κd +m(hdip, x, z, β)

}]

1 +
∑K

j=1 exp {β0j +m(hdip, x, z, β)}
Q(hdip,Θ).

Consider a sampling scenario where each subject from the underlying population is

selected into the case-control study using a Bernoulli sampling scheme, where the se-

lection probability for a subject given his/her disease status D = d is proportional to

πd = nd/pr(D = d). Let R = 1 denote the indicator of whether a subject is selected

in the case-control sample under the above Bernoulli sampling scheme. We propose pa-

rameter estimation using a pseudo-likelihood of the form

L∗ =
N∏

i=1

pr(Di,Wi,Gi|Zi, R = 1)

Calculations given in the Appendix show that

L(d, g, w, z,Ω, η, ξ) ≡ pr(D = d,W = w,G = g|Z = z,R = 1) (2.2)

=

∫ ∑
hdip∈Hdip

G
S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx

∫ ∑K+1
d∗=0

∑
hdip
∗ ∈Hdip S(d∗, h

dip
∗ , x, z,Ω)fX(x|z, η)dx

.

We observe that conditioning on Z in L∗ allows it to be free of the non-parametric density

function fZ(z), thus avoiding the need of estimating potentially high-dimensional nuisance

parameters.

2.3 Population Stratification

Genetic association analysis of candidate genes can identify gene variants that are asso-

ciated with disease by comparing allele frequencies of presumably biologically relevant

genes in affected and control individuals. In a case-control study, when the allele fre-

quencies of affected individuals are compared to those of controls, the control population

should be carefully selected since there are natural variations in gene fequencies that occur

between between ethnic groups. Hence this phenomenon should be taken into account and

the presented methodology allows for it.
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Moreover, gene-environment assumption can be relaxed by modeling genotype and

environment conditionally on strata. Genetic susceptability and environmental exposures

could be correlated on population level because of their dependence on other factors, such

as ethnicity, smoking status, gender etc.

The proposed methodology can easily account for stratification. It would be necessary

to spesify the distribution of genotype and possibly environment conditionally on strata S.

We also allow the stratum covariate to be in the disease-risk model. The likelihood function

then becomes

pr(D = d,W = w,G|Z = z, S = s,R = 1) (2.3)

=

∫ ∑
h∈HG S(d, h, x, z, s,Ω)fU (w|d, h, x, z, s, ξ)fX(x|z, s, η)dx∫ ∑

d∗

∑
h∗ S(d∗, h∗, x, z, s,Ω)fX(x|z, s, η)dx

= L(d, g, w, z,Ω, η, ξ).

The development of the methodology remains similar just with slight change in notation.

An illustrative example of stratification is the Israeli Ovarian Cancer Study that can be

found in Chatterjee and Carroll (2005).
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CHAPTER III

ESTIMATION

3.1 Introduction

If a random sample has been drawn from a population involving unknown parameters,

the latter may be estimated from the sample by the well-known technique of maximum

likelihood that was first introduced and then extensively studies by R.A. Fisher. In this

section we describe and investigate maximum likelihood estimating procedure based on

the semiparametric likelihood function (2.3).

The widely used method to estimate parameters based on an incomplete data is the EM

algorithm. The EM process is very attractive in part because of simplicity and generality

of the theory, and in part because of the wide application. One of the earliest papers on

EM algorithm is Hartley (1958), but the reference that formalized it and provided a proof

of convergence is Dempster et al. (1977). The EM algorithm cosissts of two steps: E and

M. The E-step requires us to estimate unobserved components given the observed and the

current fitted parameters. The M-step is then quivalent to the complete-data maximization.

In what follows the detailed description of E-steps is provided.

This chapter is organized as follows. In Section 3.2 we describe estimation procedure

for the case when measurment error distribution is known. Section 3.3 provides the esti-

mation procedure in the case when measurement error process is estimated using external

replications. Section 3.4 describes steps of the EM algorithm.

3.2 Estimation with Known Measurement Error Distribution

In this section, we assume that the parameter ξ controlling the distribution of the mea-

surement error is known. We show that maximization of L∗, although it is not the actual
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retrospective-likelihood for case-control data, leads to consistent and asymptotically nor-

mal parameter estimates. Recall that B = (ΩT, ηT)T. Let Ψ(d, g, w, z,Ω, η, ξ) be the

derivative of log{L(d, g, w, z,Ω, η, ξ)} with respect to B. Then define

Ln(Ω, η, ξ) =
n∑

i=1

Ψ(Di, Gi,Wi, Zi,Ω, η, ξ);

I = −n−1E
[
∂{Ln(Ω, η, ξ)}/∂BT

]
;

Λ =
∑

d

nd
n
E {Ψ(D,G,W,Z,Ω, η, ξ)|D = d}

×E {Ψ(D,G,W,Z,Ω, η, ξ)|D = d}T ,

where all expectations are taken with respect to the case-control sampling design. We

propose to estimate B as the solution to

0 = Ln(Ω, η, ξ) = Ln(B, ξ), (3.1)

calling the solution B̂ = (Ω̂T, η̂T)T. Our main technical result, the proof of which is given

in the Appendix, is the limiting properties of B̂.

Theorem 1. The estimating function Ln(Ω, η, ξ) is unbiased, i.e., has mean zero when

evaluated at the true parameter values. In addition, under suitable regulatory conditions,

there is a consistent sequence of solution to (3.1), with the property that

n1/2(B̂ − B)⇒ Normal{0, I−1(I − Λ)I−1}. (3.2)

Remark 1: It is easy to obtain consistent estimates of both I and Λ. For example, to get

an estimate Λ̂, in the definition of Λ, we can estimate E {Ψ(D,G,W,Z,Ω, η, ξ)|D = d}

by n−1
d

∑n
i=1 I(Di = d)Ψ(d,Gi,Wi, Zi, B̂, ξ). Similarly, n−1∂{Ln(B̂, ξ)}/∂BT is a con-

sistent estimate of I . Alternatively, if Σ̂ is the sample covariance matrix of the terms

Ψ(Di, Gi,Wi, Zi, B̂, ξ), then Σ̂ + Λ̂ consistently estimates I .

Remark 2: An EM-algorithm for computation, based along the lines of Spinka, et al.

(2005) is given in the Appendix.
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Remark 3: Similar to the settings of Chatterjee and Carroll (2005) and Spinka et al (2005),

here, the intercept parameters (β0d, d ≥ 1) of the polytomous logistic regression model

are theoretically identifiable from the pseudo-likelihood L∗, even though the sampling is

retrospective. For rare diseases, however, 1 +
∑K

j=1 exp
{
β0j +m(Hdip, X, Z, β)

}
≈ 1

in and so L∗ is expected to contain very little information about βd. If information on

Pr(D = d), is available externally, as could be the situation for population-based case-

control studies, then πd, d ≥ 1, could be treated as fixed known parameters in the definition

of κd allowing estimation of β0d to be much more tractable. If pr(D = d) is not known, one

could employ the rare disease assumption under which β0d’s disappear from the likelihood.

Alternatively, one can estimate parameters (Ω, η, ξ) by maximizing the likelihood function

for the values of πd fixed on a grid and then performing a grid-search method to indentify

the value of πd that maximizes the profile likelihood Ln{Ω(πd), η(πd), ξ}.

3.3 Estimated Measurement Error Distribution

In practice, the parameter ξ controlling the measurement error distribution will be un-

known, and typically additional data are necessary to estimate it. Here we consider the

case of additive mean-zero measurement error with replications of W .

Our convention is that there are at most M replications of the W for any individual.

Let Wi denote this ensemble of the M replicates, and let mi be the number of replicates we

actually observe. Let fmem(w|d, hdip, x, z,m, ξ) be the joint density of the firstm replicates

for m = 1, · · · ,M ; Ψ(D,G,W,Z,Ω, η, ξ, j), Ij , and Λj be matrices defined in the Section

3.2 for the case with exactly m = j replicates for each individual. Assume that mi is

independent of (Di,Wi, Zi, Gi, Xi, H
dip
i ) and that pr(mi = j) = p(j). Further, define I =

∑M
j=1 p(j)Ij . It is shown in appendix that the estimating function for B = (ΩT, ηT, ξT)T
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can be written in the form

0 =
n∑

i=1

M∑

j=1

I(mi=j)(mi)Ψ(Di, Gi,Wi, Zi,Ω, η, ξ, j). (3.3)

Theorem 2. The estimating function (3.3) is unbiased, i.e., has mean zero when evaluated

at the true parameter values. In addition, under suitable regulatory conditions, there is a

consistent sequence of solutions to (3.3), with the property that

n1/2(B̂ − B0)⇒ Normal[0, I−1{I −
M∑

j=1

p(j)Λj}I−1]. (3.4)

Remark 4: Consistent estimates of I and Λj can be obtained by applying formulas that are

analagous to those outlined in the Remark 1.

3.4 EM Steps

In this section, we describe an EM algorithm for solving the score-equations associated

with the pseudo-likelihood L∗. To facilitate the calculations, make the following defini-

tions:

T (d, hdip, x, z,Ω) =
exp

[
I(d≥1)(d)

{
κd +m(hdip, x, z, β)

}]

1 +
∑K

j=1 exp {β0j +m(hdip, x, z, β)}
;

α(hdip, d, z, w,B, ξ) =

∫
T (d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx;

γ(hdip, z,B) =

∫ ∑

d∗

T (d∗, h
dip, x, z,Ω)fX(x|z, η)dx;

Vβ(d, hdip, x, z,Ω) =
∂m(hdip, x, z, β)

∂β

×
[

1

1 +
∑K

j=1 exp{β0j +m(hdip, x, z, β)}
− I(d = 0)

]
.

Note that neither α(•) nor γ(•) depend on Θ.

We split up the EM calculations into a series of steps. All technical arguments are

given in the Appendix C.
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EM Algorithm for Θ Under Hardy - Weinberg Equilibrium, if θi is the frequency of hap-

lotype hi, pr{Hdip = (hi, hj)|Θ} = θ2
i if hi = hj and = 2θiθj if hi 6= hj . Let Nk(H

dip)

be the number of copies of hk in Hdip, and note that as in Spinka, et al., Nk(H
dip)/θk =

∂log{pr(Hdip)}/∂θk. Define

Nk(B) =
n∑

i=1

EB{Nk(H
dip)|Gi, Di,Wi, Zi, Ri = 1};

Vk(B) = 2
n∑

i=1

∑
hs
Q{(hk, hs),Θ}γ{(hk, hs), Zi,B}∑
hdip Q(hdip,Θ)γ(hdip, Zi,B)

.

Then if B(s) is the current value of B, we update θk to θ(s+1)
k as

θ
(s+1)
k = Nk(B(s)){Vk(B(s))}−1. (3.5)

Further, in each iteration we normalize θ(t+1)
k = θ

(t+1)
k /

∑KΘ

k′=1 θ
(t+1)
k′ .

EM Algorithm For κd and β For j = 1, .., K, we update κj by solving the following

equation for κj :

nj =
n∑

i=1

∫ ∑
hdip
∗

∑
d∗ I(d∗=j)(d∗)S(d∗, hdip

∗ , x, Zi,Ω)fX(x|Zi, η)dx
∫ ∑

hdip
∗

∑
d∗ S(d∗, h

dip
∗ , x, Zi,Ω)fX(x|Zi, η)dx

. (3.6)

To update β, we solve

0 =
n∑

i=1

∫ ∑
hdip∈Hdip

G
Vβ(d, hdip, x, zi,Ω)S(di, h

dip, x, zi,Ω)
∫ ∑

hdip∈Hdip
G
S(di, hdip, x, zi,Ω)fmem(w|di, hdip, x, zi, ξ)fX(x|zi, η)dx

×fmem(w|di, hdip, x, zi, ξ)fX(x|zi, η)dx

−
n∑

j=1

∫ ∑
d∗

∑
hdip
∗
Vβ(d, hdip

∗ , x, zi,Ω)S(d∗, hdip
∗ , x, zi,Ω)fX(x|zi, η)dxdz

∫ ∑
d∗

∑
hdip
∗
S(d∗, h

dip
∗ , x, zi,Ω)fX(x|zi, η)dx

. (3.7)

EM Algorithm for β0d and η The updating schemes for β0d and η are of the form (3.7)

with Vβ(•) replaced by Vβ0d
(d, hdip, x, z,Ω) = −pr(D = d ≥ 1|hdip, x, z) and Vη(x, z, η) =

∂log{fX(x|z, η)}/∂η for β0d and η, respectively.
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3.5 Discussion

In our development, we have used a parametric model for the distribution of the environ-

mental covariate measured with error, but we have not specified the form of this distribu-

tion. Our simulations and the example were based upon normal distributions, which seem

reasonable in this context, but clearly more general models are possible, e.g., the semi-

nonparametric family of Zhang and Davidian (2001). While such parametric assumptions

can be wrong, often the resulting inferences are not badly affected, especially for logistic

regression. For example, in the running Framingham data example in Carroll, et al. (2006),

the underlying variable X (transformed systolic blood pressure) appears to be more accu-

rately modeled by a t-distribution with 5 degrees of freedom, but the differences in infer-

ence compared to a normal distribution assumption are hardly noticeable.

For logistic regression when W is unbiased for X and with normally distributed mea-

surement error, there are possible methods that can in principle avoid the use of distribu-

tional assumptions. The most widely used approach aimed at achieving this nonparametric

feature is that of Stefanski and Carroll (1987), who use conditioning on sufficient statistics.

Unfortunately, this approach will not work in our context, because in gene-environment in-

teraction studies the sufficient statistic includes the underlying genetic variable, and hence

cannot be allowed to be missing. Other methods that might be employed are SIMEX (Cook

and Stefanski, 1995; Carroll, et al., 2006) and Monte-Carlo Corrected Scores (MCCS, Ste-

fanski, et al., 2005, Carroll, et al., 2006). Neither method results in actual consistent es-

timation of the parameters, although the latter is generally close to unbiased. However,

MCCS requires the use of complex variable calculations, which users may find to be a

practical hinderance.
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CHAPTER IV

INFERENCE

4.1 Introduction

This chapter concerns likelihood-ratio (LR) type inference for gene-environment interac-

tions based on case-control studies when genetic information may be missing and some

of the environmental variables are measured with error, thus causing biases in parameter

estimates and possibly incorrect inferences, see Carroll, et al. (2006). Traditionally, case-

control data are analyzed using prospective logistic regression method ignoring the fact that

under this design subjects are sampled retrospectively conditional on their disease status.

Hence the unique feature of the LR type inference procedure under investigation is that it

should account for the fact that the data do not come from the parametric model the like-

lihood function is based upon, environmental factors are measured with error and genetic

factor has missing values.

The Calcium Study we are investigating thus has the unique features described above,

specifically the following.

• First, genetic information is missing. We wish to model the effect of CaSR haplo-

types, but these are not observed, and instead we have unphased haplotype informa-

tion in the form of the three SNPs. In haplotype-based studies, where the effect of a

gene is studied in terms of ‘haplotypes’, the combination of alleles at multiple loci

along individual chromosome, missing data arises due to intrinsic “phase ambiguity”

of the locus-specific genotype data.

• Second, one of the environmental variables (calcium intake) is subject to substantial

measurement error because of the use of a FFQ. It is well known that the FFQ as a
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measure of long-term diet is subject both to biases and random errors, as illustrated

in the OPEN study (Subar, et al., 2003).

In this setting it is undesirable to conduct inferences using the Wald-type procedure.

Schafer and Purdy (1996) advocated likelihood analysis for regression models with errors

in explanatory variables, for data problems in which the relevant distributions can be ade-

quately modeled. They point out that the likelihood ratio tests and confidence intervals can

be substantially better than tests and confidence intervals based on estimates and standard

errors, since the sampling distribution of measurement-error corrected estimators are very

often skewed, especially if the measurement errors are large.

4.2 Inference via Likelihood Ratio Techniques

The LR procedure for testing

H0 : B ∈ B0;

H1 : B ∈ B1, (4.1)

is based on the following statistic

λn = sup
B∈B0

Ln(B, ξ)/ sup
B∈B1

Ln(B, ξ). (4.2)

Under the assuption of a correct model Wilks (1938) and Roy (1957) derived the limiting

chi-square distribution of −2log(λn) using consistency and asymptotic normality of the

maximum likelihood estimates. Kent (1982) examined the distribution of the LR statistic

when the data do not come from the parametric model, but when the ’nearest’ member of

the parametric family still satisfies the null hypothesis. These arguments can be extended

to find the limiting distribution of−2log(λn) based on a likelihood-type function, provided

consistency and limiting distribution of the maximum likelihood has been established.
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As it was proved in Theorems 1 and 2, the limiting covariance matrix of parameters

estimates is in the form I−1(I − Λ)I−1 and needs to be accounted for.

In what follows we discuss a likelihood ratio test procedure for testing simple and

composite hypothesis based on the likelihood function (2.2). The critical technical part is

that the data does not come from the parametric model the likelihood function is based on.

Hence the asymototic distribution of the LR test statistic needs to be adjusted to take the

sampling design into account.

4.2.1 Simple Hypothesis

First consider the null hypothesis of the form B = B0. If the second derivative of Ln(B) is

given as LBB(·), denote S−1 = I−1(I − Λ)I−1, then the estimate B̂ satisfies

I + op(1) = n−1LBB(B0); (4.3)

n1/2(B̂ − B0) ⇒ Normal
(
0,S−1

)
. (4.4)

Our main technical result, the proof of which is given in the Appendix, is a limiting property

of the test (4.1) based on a likelihood-type function Ln(B).

Theorem 3. Define V = Normal (0,S−1). Using Cholesky decomposition the covariance

matrix can be factored as S−1 = LLT, where L is a lower-triangular matrix. Let λi, i =

1, . . . , k be eigenvalues of the matrix LILT. Let Z2
1 , Z

2
2 , . . . , Z

2
k denote independent χ2

1

random variables. Then when H0 is true, the likelihood-ratio type statistic based on the

pseudo-likelihood Ln(•) has the limiting distribution that is the same as

VTIV ∼
k∑

i=1

λiZ
2
i . (4.5)

Remark 5: To estimate λi’s we propose to apply Cholesky decomposition to Ŝ = L̂L̂T

and obtain λ̂’s as eigenvalues of L̂ÎL̂T.
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4.2.2 Composite Hypothesis

Let B = (δ, γ), where δ is an r dimentional vector of interest and γ is (k − r) dimentional

nuisance vector. Let the null hypothesis be δ = δ0 whatever γ may be. Define B0 =

{(δ, γ) : B = B0, γ ∈ Γ} and B1 = {(δ, γ) : B 6= B0, γ ∈ Γ}. Here we investigate the

likelihood ratio test for (4.1) based on a likelihood Ln(•).

Define S11 and S22 to be diagonal blocks of the covariance matrix S that correspond to

parameters of interest and nuisance paramaters, respectively. Similary, the corresponding

blocks of I are I11 and I22. Let C = S11 − S12S−1
22 S21, J = I11 − I12I−1

22 I21 and using

Frobenius formula it can be easily seen that

n1/2(δ̂ − δ0) ⇒ Normal
(
0, C−1

)
.

The following theorem is an analog of the Theorem 1 for the case of composite hypothesis.

Theorem 4. Define V1 = Normal (0, C−1). Using Cholesky decomposition the covari-

ance matrix can be factored as C−1 = LLT, where L is a lower-triangular matrix. Let

λi, i = 1, . . . , r be eigenvalues of the matrix LJLT. Let Z2
1 , Z

2
2 , . . . , Z

2
r denote inde-

pendent χ2
1 random variables. Then under H0 likelihood-ratio type statistic based on the

pseudo-likelihood Ln(•) has the limiting distribution that is the same as

V1
TJV1 ∼

r∑

i=1

λiZ
2
i . (4.6)

Remark 5: To estimate λi’s we propose to apply procedure analogous to the one described

in the Remark 1.
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CHAPTER V

SIMULATION STUDY

5.1 The Binary Case

When all variables are binary, it is possible to compute the retrospective likelihood of case-

control data. In this section, we compare of our pseudo-likelihood method with those based

on the full retrospective likelihood, in the case that Hdip is binary and directly observable.

In this case, there are no covariates Z, the retrospective likelihood is given as follows.

Define H{β0 + m(hdip, x, β)} = pr(D = 1|X,Hdip) and H(d, hdip, x, β0, β) = [H{β0 +

m(hdip, x, β)}]d[1−H{β0 +m(hdip, x, β)}]1−d. Then

pr(W = w,Hdip = hdip|D = d)

=

∫
H(d, hdip, x, β0, β)Q(hdip,Θ)fmem(w|d, hdip, x, ξ)fX(x|η)dx∫ ∑

hdip
∗
H(d, hdip

∗ , x, β0, β)Q(hdip
∗ ,Θ)fX(x|η)dx

.

Because we have specified a distribution for X , all variables bare binary, and there is

no Z, the parameters (β0, β, θ, η) are sufficient to identify pr(D = 1), i.e.,

pr(D = 1) =

∫ ∑

hdip
∗

H{β0 +m(hdip
∗ , x, β)}Q(hdip

∗ ,Θ)fX(x|η)dx. (5.1)

Because of this, κ is identified from (β0, β, θ, η) as well. Hence, simply using (2.3) as a

likelihood function will be unstable. The obvious solution is to replace both β0 and κ in

(2.3) by the appropriate functions of pr(D = 1) as given in (5.1) and the definition of κ,

which is what we did.

We did a small simulation experiment in order to illustrate our approach in this simple

case. We assumed that environmental variables (X,W ), genetic variant (G), and disease

status (D) are binary. Given the values of (G,X) we generated a binary disease outcome

D from the following logistic model logit{pr(D|G,X)} = β0 + βxX + βgG+ βxgX ∗G,
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with parameters (βx, βg, βxh) = (1.099, 0.693, 0.693). The misclassification probabilities

were pr(W = 0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10.

We estimated parameters using the foregoing algorithm and investigated the effect of

knowing the probability of disease. We found that our proposed method yielded estimates

that were numerically identical to those based on the full retrospective likelihood: we be-

lieve but have not been able to show that this is true in general. Our method showed no

noticeable bias in the parameter estimates, either in the risk parameters or in the genotype

probabilities, whereas the naive analysis resulted in large biases (Tables 1 and 2).

Table 1: Biases and root mean squared errors for the ordinary logistic regression, ret-
rospective and semiparametric (proposed) approaches, where disease status (D), genetic
variant (G), and environmental covariate (X) are binary and probability of disease is
known. Environmental variable is measured with error with misclassification probabili-
ties pr(W = 0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10. The results are based on a
simulation study with 500 replications for 1000 cases and 1000 controls.

Logistic Retrospective Semiparametric
Parameter True Value Bias RMSE Bias RMSE Bias RMSE

β0 -5.000 4.294 4.295 -0.006 0.108 -0.006 0.108
βg 0.693 0.239 0.323 -0.005 0.305 -0.004 0.305
βx 1.099 -0.327 0.344 0.005 0.155 0.005 0.155
βxg 0.693 -0.284 0.395 0.001 0.327 0.001 0.327

pr(X = 1) 0.100 0.002 0.021 0.002 0.022
pr(G = 1) 0.100 0.000 0.009 0.000 0.008
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Table 2: Biases and root mean squared errors for the ordinary logistic regression, ret-
rospective and semiparametric (proposed) approaches, where disease status (D), genetic
variant (G), and environmental covariate (X) are binary and probability of disease is un-
known. Environmental variable is measured with error with misclassification probabilities
pr(W = 0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10. The results are based on a
simulation study with 500 replications for 1000 cases and 1000 controls.

Logistic Retrospective Semiparametric
Parameter True Value Bias RMSE Bias RMSE Bias RMSE

β0 -5.000 4.294 4.295 -1.016 2.042 -1.016 2.042
βg 0.693 0.239 0.323 -0.009 0.306 -0.009 0.306
βx 1.099 -0.327 0.344 0.004 0.155 0.004 0.155
βxg 0.693 -0.284 0.395 0.013 0.333 0.013 0.333

pr(X = 1) 0.100 0.023 0.022 0.002 0.022
pr(G = 1) 0.100 0.000 0.009 0.000 0.009
pr(D = 1) 0.016 0.002 0.019 0.002 0.019

5.2 Continuous Simulations

In this simulation, we considered a continuous environmental variables and assumed that

the genetic risk depends on the number of copies of a putative haplotype. We simulated the

true environmental covariate (X) from Normal distribution with zero mean and variance

0.1. To simulate observed environmental variables we used additive model of the form

W = X + U , where U is generated from the Normal distribution with zero mean and

variance ξ = 0.25. Given the following haplotype frequencies (h1, h2, h3, h4, h5, h6) =

(0.25, 0.15, 0.25, 0.1, 0.1, 0.15) we generated diplotypes for each subject under the assump-

tion of Hardy-Weinberg Equilibrium. Given the diplotype information Hdip and environ-

mental covariate X we generated binary disease status according to the following model

logit{pr(D = d|Hdip, X)} = β0 + βxX + βgN3(Hdip) + βxgXN3(Hdip)

where N3(Hdip) is the number of copies of h3 in Hdip. In this setting we are interested

in estimating the relative risk parameters and the frequency of haplotype h3. To estimate

probability of disease we used grid-search method by maximizing likelihood function for
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values of probability of disease fixed on a grid and then performing grid-search method to

identify the value of probability of disease that maximized the likelihood. Moreover, we

assessed the effect of missing data by assuming that 50% of subjects were not genotyped

and for those who were genotyped linkage phase is unknown.

We found that for our method there is no noticeable bias in parameter estimates,

whereas the naive approach that ignores existence of the measurement error results in sub-

stantial bias, as illustrated in the Table 3. It is somewhat remarkable that even with 50% of

the genotypes are missing, our method still remains largely unbiased.

Table 3: Biases and root mean squared errors for the naive approach that ignores existence
of measurement error and the proposed method. The results are based on a simulation study
with 500 replications for 1000 cases and 1000 controls, where disease status (D) is binary,
environmental variables (X,W ) are continuous, genetic variant is in the form of diplotype.
Environmental variable is measured with error and error variance is assumed to be 0.25.
Furthermore, the simulation is used to assess the effect of missing genetic data.

Naive Approach Proposed Method
Parameter True Value Bias RMSE Bias RMSE

Complete β0 -5.000 1.207 1.459 0.230 0.086
Data βg 0.693 0.080 0.011 -0.001 0.007

βx 1.099 -0.797 0.645 0.001 0.137
βxg 0.693 -0.478 0.235 0.006 0.088

pr(G = 1) 0.250 0.005 0.000 0.000 0.000
pr(D = 1) 0.046 -0.032 0.001 0.008 0.000

η1 0.000 0.003 0.001
η2 0.100 -0.001 0.000

50% of β0 -5.000 1.206 1.460 0.228 0.084
genetic βg 0.693 0.082 0.015 -0.002 0.007

information βx 1.099 -0.794 0.647 0.013 0.161
is missing βxg 0.693 -0.477 0.243 0.011 0.102

pr(G = 1) 0.250 0.004 0.000 0.000 0.000
pr(D = 1) 0.046 -0.032 0.001 0.008 0.000

η1 0.000 0.003 0.001
η2 0.100 -0.002 0.000
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5.3 Inference in the Binary Case

We estimated parameters using the foregoing algorithm and performed inferences based

on the Wald, Proposed Likelihood Ratio and Naive Likelihood Ratio procedures for small

(n = 400) and moderate (n = 2000) sample sizes. The results are presented in the Table

4 and using histograms in the Appendix G. We found that the proposed method closely

achieves the nominal coverage, while Wald test resulted in rather elevated error rates and

the effect is more apparent for small sample size. The distribution of parameter estimates

is skewed in the presence of measurement error and small sample size. Our simulations

showed that in this setting it is approximately correct to use the standard asymtotics for the

Likelihood Ratio procedure.

Table 4: Coverage probabilities of the 95% Wald and LR confidence intervals for interac-
tion parameters. The results are based on simulation studies with 1000 relications of 200
cases and 200 controls (n = 400); and 1000 relications of 1000 cases and 1000 controls
(n = 2000). Disease status (D), genetic (H) and environmental (X) factors are binary
with pr(D = 1) = 0.0163, pr(G = 1) = 0.1, pr(X = 1) = 0.5.

n = 400 n = 2000
True value of βxg 0.693 0.693

Mean of β̂xg over all simulated datasets 0.848 0.692
Median of β̂xg over all simulated datasets 0.695 0.669

Variance of β̂xg over all simulated datasets 0.707 0.105
5% trimmed mean estimate of variance of β̂xg 1.005 0.091

Coverage of the Wald CI 0.937 0.931
Coverage of the Likelihood Ratio CI 0.954 0.949
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5.4 Inference in the Continuous Case

Here we performed inferences in the Continuous Case assuming probability of disease is

known. Results are presented in the Table 5. The sampling distribution of the parameter

estimates is slightly skewed, as it is illustrated using histograms in the Appendix H, and

skewness is more pronounced for small sample sizes. Hence it is undesirable to use Wald-

type confidence intervals, since they are based on asymptotic normality. The Likelihood

Ratio Type Test inferences performed substantially better and our simulations showed that

in this setting it is approximately correct to use the standard asymtotics for the Likelihood

Ratio procedure.

Table 5: Coverage probabilities of the 95% Wald and adjusted retrospective LR confidence
intervals for interaction parameters with different amounts of measurement error. The re-
sults are based on simulation study with 1000 cases and 1000 controls (n = 2000), where
disease status (D) is binary, environmental variables (X,W ) are continuous and the ge-
netic variant h3 is in the form of diplotype. The environmental variable is measured with
error and the error variance is set to be ξ.

Measurement Error Variance ξ 0.25

True value of βxg 0.693
Mean of β̂xg 0.678

Median of β̂xg 0.700

Robust variance estimate of β̂xg 0.102
5% trimmed mean estimate of variance of β̂xg 0.048

Coverage of the Wald test 0.697
Coverage of the Likelihood Ratio test 0.941



26

CHAPTER VI

CALCIUM DATA ANALYSIS

6.1 Introduction

Here we analyse a case-control study of colorectal adenoma (Peters et al., 2004) designed

to investigate the interactions of dietary calcium intake and genetic variants in the calcium-

sensing receptor (CASR) region. In this study, a total of 772 cases and 778 controls were

sampled from the screening arm of the Prostate, Lung, Colorectal and Ovarian (PLCO)

cancer screening trial. Information on dietary food intake on the participants were available

from a baseline food frequency questionnaire (FFQ). Genotype data were available on three

non-synonymous single neucleotide polymorphisms (SNP) in the CASR region. One of the

major goals of the study was to investigate the interaction of dietary calcium and the CASR

gene based on “haplotypes”, that is the combinations of alleles at three different CASR

loci along individual chromosomes. Two technical problems arose. First, as typical, we

only had locus-specific genotype data which provides information on two alleles a subject

carries on the pair of homologous chromosome, at each locus separately. Such genotype

data lacks the phase information that is which combinations of allele arise together on the

individual chromosomes giving rise to an interesting missing data problem. Second, it is

well known that FFQ as an instrument for measuring dietary intake is prone to both bias

and random error. We will use data from an external study (Potischman, et al., 2002)

to form estimates of the bias and variance of the measurement error. The availability of

such external data gave rise to the opportunity for studying calcium-CASR interaction after

correcting for measurement error due to use of FFQ.
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6.2 Modeling

Here we analyze the colorectal adenoma study data described in the introduction. The ge-

netic data observed were three SNPs in the calcium receptor gene CaSR, the environmental

variable X measured with error was log(1+calcium intake), which was measured by W ,

the result of a food frequency questionnaire. The variables Z measured without error were

age, sex and race. The possible haplotypes in the data were ACG, ACT, AGG, GCG, AGT,

GGG, and GCT. Since haplotypes AGT, GGG, GCT are rare, we pooled them with the next

common haplotype AGT. A few subjects do not have measurements of calcium intake and

we eliminated them from the analysis.

Given calcium intake (X) and diplotype information (Hdip) we considered the follow-

ing risk model

logit{pr(D = 1|Hdip, X)} = β0 + βx ∗X + βh2 ∗N2(Hdip) + βh4 ∗N4(Hdip)

+ βh5 ∗N5(Hdip) + βxh2 ∗X ∗N2(Hdip)

+ βxh4 ∗X ∗N4(Hdip) + βxh5 ∗X ∗N5(Hdip),

where N2(Hdip) is the number of haplotypes ACT observed in a diplotype, N4(Hdip) is the

number of haplotypes GCG observed in a diplotype and N5(Hdip) is number of haplotypes

AGG, AGT, GGG, or GCT observed in a diplotype.

Unfortunately, there is no direct information in the study to assess the measurement

error properties of calcium intakeW . We used a combination of outside data and sensitivity

analysis instead. The outside data come from the WISH Study (Potischman, et al., 2002).

There were ≈ 400 women in this study, which used the same FFQ as in the colorectal

adenoma study and also include the results of 6 24-hour recall measurements, which we
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denote by Tij for the ith individual and jth replicate. The model for these data are that

Wi = α0 + α1Xi + Ui;

Tij = Xi + Vij,

where Ui = Normal(0, σ2
u) and Vij = Normal(0, σ2

v). Using variance components analysis,

we estimated (α0, α1, σ
2
u), and took these as fixed and known in the colorectal adenoma

study, although we also varied σ2
u. The distribution of X was taken to be Gaussian with

mean linear in Z and variance ξ. We used the method of Fuller (1987, Chapter 2,5) and

found estimates α̂0 = 0.22, α̂1 = 0.75, σ̂2
u = ξ̂ = 0.65. To asses sensitivity to the measure-

ment error model specification we considered several scenarios by imposing measurement

error structure estimated using WISH data and varying it.

6.3 Estimation

Four sets of parameter estimates presented in the Table 6 correspond to different values of

the measurement error variance.

The probability of disease was set to be on the interval (0.001, 0.5), but the likeli-

hood function was flat either as a function of the probability of disease, or, equivalently,

as a function of the intercept parameter β0. However, estimates of the risk parameters are

unchanged for different values of probability of disease.

Results presented in the Table 7 illustrate the importance of assessing the measurement

error process, as its incorrect specification results in substantial biases.

Based on estimates of the main effects, we first observed that subjects with the diplo-

type (h1, h1), a unit increase in calcium intake is associated with decreased risk of the

colorectal adenoma development with odds ratio exp(−0.1507) = 0.8601, assuming that

ξ = 0.65. Inspection of the interaction parameter estimates suggests that among carriers of

h4 and h5 haplotypes, increased calcium intake is associated with an even greater decrease
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in risk of colorectal tumor development, especially for larger error variance.

Table 6: Estimates of risk parameters for the colorectal adenoma study assuming different
variances (ξ) of the measurement error.

Parameter Naive ξ = 0.10 ξ = 0.60 ξ = 0.65 ξ = 0.70

βh2 -0.2087 -0.1866 -0.1606 -0.1770 -0.1365
βh4 -0.1663 -0.1908 -0.3710 -0.4289 -0.5377
βh5 -0.2770 -0.3670 -0.6609 -0.7584 -0.9379
βx -0.0852 -0.0683 -0.1402 -0.1507 -0.1850
βxh2 0.0398 0.0394 0.1296 0.1044 0.2224
βxh4 -0.1886 -0.1749 -0.5192 -0.5817 -0.8124
βxh5 -0.2804 -0.2361 -0.7136 -0.8885 -1.1234

Table 7: Standard errors of risk parameter estimates for the colorectal adenoma study as-
suming different variances (ξ) of the measurement error.

Parameter Naive ξ = 0.10 ξ = 0.60 ξ = 0.65 ξ = 0.70

βh2 0.1132 0.1058 0.1175 0.1188 0.1201
βh4 0.1451 0.1304 0.1511 0.1532 0.1554
βh5 0.1815 0.1348 0.1686 0.1719 0.1752
βx 0.0683 0.0679 0.1580 0.1672 0.1764
βxh2 0.0851 0.0838 0.1890 0.1997 0.2105
βxh4 0.0907 0.0895 0.1924 0.2027 0.2130
βxh5 0.1203 0.1004 0.2028 0.2132 0.2236
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6.4 Inference

We performed inference based on the Naive Likelihood Ratio, Proposed Likelihood Ratio,

and Wald testing procedures. We found that Wald confidence intervals are generally wider

than Likelihood Ratio confidence intervals, and hence Wald test announced some of the

parameters to be not significantly different from 0, while the Likelihood Ratio procedure

proved they are significant. For majority of cases λ was very close to 1 and there was no

noticable difference between Naive and Proposed Likelihood Ratio intervals.

We found that at 0.05 significance level the data does not have enough evidence to

indicate that βxh2 is significantly different from 0, as illustrated on the Figure 1. Hence we

considered reduced model by setting βxh2 to be 0. Analysis of the reduced model showed

that βxh5 is significantly different from 0 for all measurement error model specifications

we considered. Wald test announced βxh4 as significant for measurement error variance 0.5

and greater, while the Likelihood Ratio test proved it is significantly different from 0 for

measurement error variance of 0.4 and larger, what can be seen on the Figure 2.
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Figure 1: Wald (dashed black line) and likelihood ratio (red line) confidence intervals for
βxh2 in the full model for different values of measurement error variance ξMEM.
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Figure 2: Wald (dashed black line) and likelihood ratio (red line) confidence intervals for
βxh4 in the reduced model with βxh2 = 0 for different values of measurement error variance
ξMEM.
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CHAPTER VII

SUMMARY AND FUTURE RESEARCH

7.1 Summary

We have considered the problem of relating risk of a complex disease to genetic suscepti-

bilities, environmental exposures, and their interaction when the environmental covariates

are measured with error and some of the genetic information is missing. Utilizing a poly-

chotomous logistic regression model, profile likelihood and a model for the distribution

of underlying gene information, we constructed a relatively simple yet efficient semipara-

metric algorithm for parameter estimation. We have shown that the resulting estimates

are consistent and derived their asymptotic variance when the distribution of measurement

error is known, and when it is estimated from replications.

Our simulation results illustrate that for large studies there is no noticeable bias in our

parameter estimates, whereas the naive approach that ignores the existence of the measure-

ment error results in substantial bias.

We developed a LR-type procedure investigating significance of intraction parameters,

as well as main effects. In our setting it is undesirable to use Wald-type procedure since

it proved to behave aberrantly in the binomial logit model and it can suffer in presence

of measurement error. The LR-type procedure we developed proved to be a successful

alternative. Particularly, in small-sample setting Wald test resulted in rather elevated error

rates, while LR-type procedure closely achieved the nominal coverage.

The methodology was applied to the analysis of the Calcium Study, the main goal of

which was to investigate interaction between dietary calcium intake and CaSR haplotypes.
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7.2 Future Research

This work has several interesting extentions. First, to accomodate different types of disease

we allowed disease status to take K + 1 unordered levels. In many situations, i.e. cancers,

the disease stage is an ordered categorical variable. Hence, it could prove useful to model

ordered disease status. Second, it is often the case that genotypes are misclassified. There-

fore, it would be beneficial to model genotyping errors. Third, sometimes genotypes are

missing informatively, that is the probability of missingness depends on what is being mea-

sured. It would be interesting to investigate robustness of our methodology to the missing

at random assumption and possibly develop a robust version.
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APPENDIX A

PROOF OF (2.2)

The proof of (2.3) is straightforward. Note that

pr(D = d,Hdip = hdip, X = x,W = w|R = 1, Z = z)

∝ pr(D = d,Hdip = hdip, X = x,W = w,R = 1|Z = z)

∝ nd
πd

[1 +
m∑

j=1

exp{β0j +m(hdip, x, z, β)}]−1

exp[I(d≥1)(d){β0d +m(hdip, x, z, β)}]

×Q(hdip,Θ)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)

∝ n0

π0
S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)

=
S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)∑

d∗

∑
hdip
∗

∫
S(d∗, h

dip
∗ , x, z,Ω)fmem(w|d∗, hdip

∗ , x, z, ξ)fX(x|z, η)dwdx

=
S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)∑

d∗

∑
hdip
∗

∫
S(d∗, h

dip
∗ , x, z,Ω)fX(x|z, η)dx

.

Equation (2.3) now follows by appropriate summation over hdip ∈ Hdip
G and integration

over x.



40

APPENDIX B

PROOF OF THEOREM 1

The proof consists of two steps. The first shows that the estimating equation has mean zero

when evaluated at the true parameters. We then show that the estimating function evaluated

at the true parameters has a covariance matrix of the form I − Λ.

We first consider the derivative with respect to Ω. Denote the first partial derivative

of S(d, hdip, x, z,Ω) with respect to Ω by SΩ(d, hdip, x, z,Ω). The semiparametric profile

likelihood score for B(ΩT, ηT)T is the derivative of the logarithm of (2.3) with respect to Ω

and is given as

n−1

n∑

i=1

{C1(Di, Zi,Wi, G)− C2(Zi)} ,

where C1(•) = {AT
1 (•), BT

1 (•)}, C2(•) = {AT
2 (•), BT

2 (•)},

A1(d, z, w, g) =

∑
hdip∈Hdip

G

∫
SΩ(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx

∑
hdip∈Hdip

G

∫
S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx

,

A2(z) =

∫ ∑
d∗

∑
hdip
∗
SΩ(d∗, hdip

∗ , x, z,Ω)fX(x|z, η)dx
∫ ∑

d∗

∑
hdip
∗
S(d∗, h

dip
∗ , x, z,Ω)fX(x|z, η)dx

,

and where B1(•) and B2(•) are defined by replacing SΩ(•) by S(•)sX(x|z, η), where

sX(x|z, η) = ∂ log{fX(x|z, η)}/∂η.

It is useful to note that the density of Z and (W,G,Z) given D = d can be written as

[Z|D = d] = fZ(z)
n0

π0nd

∫ ∑

hdip
∗

S(d, hdip
∗ , x, z,Ω)fX(x|z, η)dx; (B.1)

[W,G,Z|D = d] = fZ(z)
n0

π0nd

∫ ∑

hdip∈Hdip
G

S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)

×fX(x|z, η)dx. (B.2)



41

Then it follows from (B.1) that

E {A2(Z)} =
∑

d∗

nd∗
n

E {A2(Z)|D = d∗}

=

∫ ∑

d∗

n0

nπ0

∑

hdip
∗

S(d∗, h
dip
∗ , x, z,Ω)fX(x|z, η)fZ(z)A2(z)dx dz

=

∫ ∑

d∗

n0

nπ0

∑

hdip
∗

SΩ(d, hdip
∗ , x, z,Ω)fX(x|z, η)fZ(z)dx dz.

It is also straightforward using (B.2) to show that

E {A1(D,Z,W,G)} =
∑

d∗

nd∗
n

E {A1(D,Z,W,G|D = d∗)}

=
n0

nπ0

∫ ∑

d∗

∑

hdip
∗

SΩ(d∗, h
dip
∗ , x, z,Ω)fX(x|z, η)fZ(z)dx dz,

thus showing that the top part of (2.3) has mean zero. That the bottom part also has mean

zero is shown similarly.

Much the same argument holds for the estimating function for ξ. Define

C(w|d, hdip, x, z, ξ) to be the derivative of log{fmem(w|d, hdip, x, z, ξ)} with respect to ξ,

and define

Aξ(d, w, z, g)

=

∑
hdip∈Hdip

G

∫
S(d, hdip, x, z,Ω)C(w|d, hdip, x, z, ξ)

∑
hdip∈Hdip

G

∫
S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx

×fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx.

Then it is easy to show that

E {Aξ(D,W,Z,G)} =
∑

d∗

nd∗
n

E {Aξ(D,Z,W,G|D = d∗)}

=
n0

nπ0

∫ ∑

d∗

∑

hdip
∗

S(d∗, h
dip
∗ , x, z,Ω)fX(x|z, η)fZ(z)

×{
∫
fmem(w|d∗, hdip

∗ , x, z, ξ)C(w|d∗, hdip
∗ , x, z, ξ)dw}dx dz = 0,
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the interior integral being equal to zero by standard likelihood results.

As described above, the estimating equation is given as (2.3). Define

C3(d) = {AT
3 (d), BT

3 (d)}T = E[{C1(D,Z,W,G)− C2(Z)}|D = d].

Then, when evaluated at the true parameters, the estimating function takes the form

n−1/2

n∑

i=1

{C1(Di, Zi,Wi, G)− C2(Zi)− C3(Di)} ,

which is a sum of independent, mean zero random variables. It follows directly that, when

evaluated at the true parameters, the estimating function has covariance matrix

Σ∗ = n−1

n∑

i=1

E
[
{C1(Di, Zi,Wi, G)− C2(Zi)} {C1(Di, Zi,Wi, G)− C2(Zi)}T

]

−Λ. (B.3)

Make the definitions

Q1(d, g, w, z,B, ξ) =

∫ ∑

hdip∈Hdip
G

{
ST

Ω(d, hdip, x, z,Ω), S(d, hdip, x, z,Ω)sT
X(x|z, η)

}T

×fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx;

Q2(d, g, w, z,B, ξ) =

∫ ∑

hdip∈Hdip
G

S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z, ξ)fX(x|z, η)dx;

Q3(z,B, ξ) =

∫ ∑

d∗

∑

hdip
∗

{
ST

Ω(d∗, h
dip
∗ , x, z,Ω), S(d∗, h

dip
∗ , x, z,Ω)sT

X(x|z, η)
}T

×fX(x|z, η)dx;

Q4(z,B, ξ) =

∫ ∑

d∗

∑

hdip
∗

S(d∗, h
dip
∗ , x, z,Ω)fX(x|z, η)dx.

Then it is easy to show that (B.3) can be rewritten as

Σ∗ = A1 −A2 − Λ;

A1 =
n0

nπ0

∫ ∑

d∗

∑

g∗

Q1(d∗, g∗, w, z,B, ξ)QT
1 (d∗, g∗, w, z,B, ξ)

Q2(d∗, g∗, w, z,B, ξ)
dwfZ(z)dz;

A2 =
n0

nπ0

∫ Q3(z,B, ξ)QT
3 (z,B, ξ)

Q4(z,B, ξ) fZ(z)dz.
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We claim that I = A1 −A2. By a direct calculation, I = I1 − I2, where using (B.1),

I2 = −
∑

d∗

nd∗
n
E

[
∂

∂BT

{Q3(Z,B, ξ)
Q4(Z,B, ξ)

∣∣∣∣D = d

}]

= − n0

nπ0

∂2

∂B∂BT

∫ ∑

d∗

∑

hdip
∗

S(d∗, h
dip
∗ , x, z,Ω)fX(x|z, η)fZ(z)dxdz +A2.

In addition, using (B.2), we find that

I1 = −
∑

d∗

nd∗
n
E

[
∂

∂BT

{Q1(d∗, G,W,Z,B, ξ)
Q2(d∗, G,W,Z,B, ξ)

∣∣∣∣D = d

}]

= − n0

nπ0

∂2

∂B∂BT

∫ ∑

d∗

∑

hdip
∗

S(d∗, h
dip
∗ , x, z,Ω)fX(x|z, η)fZ(z)dxdz +A1,

completing the proof.
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APPENDIX C

EM CALCULATIONS

In what follows, we will need the following identities:

pr(Hdip = hdip|Z = z,R = 1) =
Q(hdip,Θ)γ(hdip, z,B)∑
hdip
∗
Q(hdip

∗ ,Θ)γ(hdip
∗ , z,B)

; (C.1)

pr(Hdip = hdip|G,D = d,W = w,Z = z,R = 1) (C.2)

=
Q(hdip,Θ)α(hdip, d, z, w,B, ξ)∑

hdip∈Hdip
G
Q(hdip,Θ)α(hdip, d, z, w,B, ξ) ;

pr(X = x,Hdip = hdip|D,G,W,Z,R = 1) (C.3)

=
S(D, hdip, x, Z,Ω)fmem(W |D, hdip, x, Z, ξ)fX(x|Z, η)∫ ∑

d∗

∑
hdip∈Hdip

G
S(d∗, hdip, x, z,Ω)fmem(w|d∗, hdip, x, z, ξ)fX(x|z, η)dx

;

pr(D = d,Hdip = hdip, X = x|Z,R = 1) (C.4)

=
S(d, hdip, x, Z,Ω)fX(x|Z, η)∫ ∑

d∗

∑
hdip
∗
S(d∗, h

dip
∗ , x, Z,Ω)fX(x|Z, η)dx

.

Argument for (3.5)

As in Spinka, et al., the estimating equation for θk is

0 =
n∑

i=1

E(Ω,η)

[
∂log{Q(Hdip, θ)}

∂θk
|G,Di,Wi, Zi, Ri = 1

]

−
n∑

i=1

EB

[
∂log{Q(Hdip, θ)}

∂θk
|Zi, Ri = 1

]
+ λ.

Note that

∂log[pr{Hdip = (hi, hj)|θ}]
∂θk

= 2/θk, if hi = hj = hk;

= 1/θk, if hi = hk and hj 6= hk, or hj = hk and hi 6= hk;

= 0, if hi 6= hk and hj 6= hk.
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and

E
[
∂log Q{Hdip|θ}

∂θk

]
= (2/θk)pr{Hdip = (hk, hk)}

+(1/θk)
∑

h6=hk
pr{Hdip = (hk, h)}+ (1/θk)

∑

h 6=hk
pr{Hdip = (h, hk)}

= 2θk + 2(1− θk).

Since
∑KΘ

k=1{2θk + 2(1− θk)} = 2KΘ, therefore λ = 0. Using (C.1) and (C.2), we arrive

at (3.5).

Argument for (3.6)

It is readily seen that the estimating function for κj is

0 =
n∑

i=1

E(Ω,v)

[
∂log{T (D,Hdip, X, Z,Ω)}

∂κj
|Gi, Di,Wi, Zi, Ri = 1

]

−
n∑

i=1

EB

[
∂log{T (D,Hdip, X, Z,Ω)}

∂κj
|Zi, Ri = 1

]
.

Since ∂log{T (D,Hdip, X, Z,Ω)}/∂κj = I(D=j)(D), using (C.4), estimation can be

performed by iteratively solving (3.6).

Argument for (3.7)

The estimating function for β is

0 =
n∑

i=1

E(Ω,v)

[
∂log{T (D,Hdip, X, Z,Ω)}

∂β
|Gi, Di,Wi, Zi, Ri = 1

]

−
n∑

i=1

EB

[
∂log{T (D,Hdip, X, Z,Ω)}

∂β
|Zi, Ri = 1

]
.

Using (C.3) and (C.4), we arrive at (3.7). The arguments for updating the β0d and η are

similar.
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APPENDIX D

PROOF OF THEOREM 2

The estimating function for B can be written in the form

0 =
n∑

i=1

M∑

j=1

I(mi=j)(mi)C(Di, Zi,Wi, Gi,mi,B),

where

C(Di, Zi,Wi, Gi,mi,B) =



A1(Di, Zi,Wi, Gi,mi,B)− A2(Zi,B)− A3(Di,B)

A4(Di, Zi,Wi, Gi,mi,B),




A2(•) and A3(•) are independent of m and are given in the Appendix B,

A1(d, z, w, g,m,B) = Q1(d, g, w, z,B, ξ){Q2(d, g, w, z,B, ξ)}−1,

and

A4(d, z, w, g,m,B)

=

∫ ∑

hdip∈Hdip
G

∂

∂ξT
log{fmem(w|d, hdip, x, z,m, ξ)}{Q2(d, g, w, z,B, ξ)}−1

×S(d, hdip, x, z,Ω)fmem(w|d, hdip, x, z,m, ξ)fX(x|z, η)dx,

where Q1(•) and Q2(•) are defined in the Appendix B. The expectation of the right hand

side of (3.3) is

m∑

j=1

p(j) E

{
n∑

i=1

C(Di, Zi,Wi,mi = j,B)

}
= 0,

since we have shown that the expectation is zero if the same number of replicates are used.

Similarly, -(Hessian) of the right hand side of (3.3) is

−
n∑

i=1

M∑

j=1

I(mi=j)(mi)
∂

∂BT
C(Di, Zi,Wi, Gi,mi,B),
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and this has expectation
∑M

j=1 p(j)Ij = I . Finally, the covariance matrix of the right hand

side of (3.3) is

E

{
n∑

i=1

M∑

j=1

I(mi=j)(mi)C(Di, Zi,Wi, Gi,mi,B)CT(Di, Zi,Wi, Gi,mi,B)

}

=
M∑

j=1

p(j)Σj =
M∑

j=1

p(j)(Ij − Λj) = I −
m∑

j=1

p(j)Λj.

This then shows (3.4).
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APPENDIX E

PROOF OF THEOREM 3

The prof consists of two steps. First we will show that the limiting distribution of the

likelihood ratio test statistic is of the form (4.5). We then will show that it is distributed as

a weighted sum of χ2
1 random variables.

Using usual likelihood ratio argument one can easily see that

2
{
L(B0)− L(B̂)

}
=
(
B0 − B̂

)T

LBB(θ∗)
(
B0 − B̂

)
.

where B∗ is between B0 and B̂.

Now use (4.3) and (4.4), so that

2
{
L(B0)− L(B̂)

}
=

{
n1/2(B̂ − B0)

}T

I
{
n1/2(B̂ − B0)

}
+ op(1)

= VTIV + op(1).

Since the covariance matrix S−1 is symmetric and positive definite, using Cholesky decom-

position it can be factored as S−1 = LLT where L is a lower-triangular matrix. Define P to

be an orthogonal matrix of eigenvectors of LILT and Λ is a diagonal matrix of eigenvalues

of LILT. Since LILT is square and symmetric, Singular Value Decomposition can be ap-

plied to it in the following manner PTLILTP = Λ. Let V1 = L−1V and V2 = PV1. Note

that the distribution of VTIV is the same as the distribution of VT
2 ΛV2. It can be easily seen

that V2 has limiting Normal(0, E) distribution, where E is an identity matrix. The fact that

quadratic form VT
2 EV2 is distributed as

∑k
i=1 λiZ

2
i completes the prof.
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APPENDIX F

PROOF OF THEOREM 4

Following ideas the of Roy (1957) it is readily seen that the likelihood ratio takes the

following form

Ln(B̂)− Ln(δ0, γ̂) = (B̂ − B)TLBB(B∗)(B̂ − B)

− (γ̂ − γ)TLBB(δ0, γ∗)(γ̂ − γ), (E.1)

where B∗ is a point between B and B̂, likewise γ∗ is a point between γ and γ̂.

Using arguments of Roy (1957) and Wald (1943), it can be seen that (E.1) for large

samples is equivalent to

{n−1/2(δ̂ − δ0)}TJ {n−1/2(δ̂ − δ0)}.

Applying arguments used while proving the Theorem 1 we arrive to (4.6).
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APPENDIX G

HISTOGRAMS OF INTERACTION PARAMETER ESTIMATES IN THE BINARY

CASE
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Figure 3: Histogram of β̂xg over 1000 simulations. Disease status (D), genetic variant
(G), and environmental covariate (X) are binary and probability of disease is unknown.
Environmental variable is measured with error with misclassification probabilities pr(W =
0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10. The results are based on a simulation
study of 200 cases and 200 controls.
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Figure 4: Histogram of β̂xg over 1000 simulations. Disease status (D), genetic variant
(G), and environmental covariate (X) are binary and probability of disease is unknown.
Environmental variable is measured with error with misclassification probabilities pr(W =
0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10. The results are based on a simulation
study of 1000 cases and 1000 controls.
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APPENDIX H

HISTOGRAMS OF INTERACTION PARAMETER ESTIMATES IN THE

CONTINUOUS CASE
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Figure 5: Histogram of β̂xg for different amounts of measurement error: ξ = 0.01 and ξ =
0.05. Disease status (D), genetic variant (G), and environmental covariate (X) are binary
and probability of disease is unknown. Environmental variable is measured with error with
misclassification probabilities pr(W = 0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10.
The results are based on 1000 replications of 1000 cases and 1000 controls.



53

−0.5 0 0.5 1 1.5 2
0

50

100

150

200

250

ξ = 0.1

−2 −1 0 1 2 3
0

100

200

300

400

ξ = 0.15

Figure 6: Histogram of β̂xg for different amounts of measurement error: ξ = 0.10 and ξ =
0.15. Disease status (D), genetic variant (G), and environmental covariate (X) are binary
and probability of disease is unknown. Environmental variable is measured with error with
misclassification probabilities pr(W = 0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10.
The results are based on 100 replications of 1000 cases and 1000 controls.
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Figure 7: Histogram of β̂xg for different amounts of measurement error: ξ = 0.20 and ξ =
0.25. Disease status (D), genetic variant (G), and environmental covariate (X) are binary
and probability of disease is unknown. Environmental variable is measured with error with
misclassification probabilities pr(W = 0|X = 1) = 0.20 and pr(W = 1|X = 0) = 0.10.
The results are based on 1000 replications of 1000 cases and 1000 controls.
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