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1 Introduction

During the last two decades dynamic processes simulation has become an indispens-
able tool for the design and operation of complex chemical plants. The rigorous
modeling of the chemical processes results in large-scale systems of differential and
algebraic equations (DAE). Using an appropriate modeling the differential index of
the resulting DAE systems can be restricted to index 1 in many cases [BP1]. For

details about the numerical solution of DAE systems and the index problem we refer
to [BC1, GH1]. |

For large-scale systems cost—effective numerical methods are needed. Under special
modeling assumptions waveform iteration methods can be used for the concurrent
dynamic process simulation [SM1]. These methods, also called dynamic iteration
methods or Picard-type methods are well suited for the implementation on parallel
computers.

Since the beginning of the 80’th the main application field for waveform iteration
methods has been the circuit simulation of MOS digital integrated circuits [LRS]. In-
vestigations of waveform iteration methods for systems of ordinary differential equa-

tions (ODE) [WS1, JP1, Brl, BBI1] as well as for systems of differential algebraic
equations [LRS, Mil, SL1, SM1] are known. Convergence under certain conditions
on the mathematical problem has been proven in [Brl] for explicit ODE systems and
in [Mil] for linear DAE systems of arbitrary index. Lelarasmee et al. [LRS] and
Schneider [Scl] proved convergence for a semiexplicit type of waveform iteration for
semiexplicit DAEs of Index 1.

In this paper we consider the application of block waveform iteration methods to
initial value problems for implicit DAE systems of index 1 arising in chemical pro-
cess simulation. Block waveform iteration methods permit the concurrent treatment
of blocks of subsystems of the entire system with multirate integration techniques
gaining a coarse granular parallelism. Their convergence properties strongly depend
on the assignment of variables to equations and the partitioning of the system into -
subsystem blocks.

First we proof convergence for waveform iteration methods applied to semiexplicit
DAE sytems of index 1. The convergence conditions are given in a blocksystem
oriented manner, i.e. only the blocksystems have to satisfy some corresponding con-
ditions. Then we show that the convergence conditions are fulfilled for a simplified
modeling of distillation columns. An assignment and partitioning algorithm is given,
which takes the requirements of the convergence theorems into account. '

Based on this investigations a prototype ofa waveform-iteration code has been imple-
mented and tested by means of examples included in the user package of the chemical
process simulator SPEEDUP [PS1].



2 Waveformiteration

We consider the initial value problem (IVP) for a semiexplizit DAE system:

i?l = f(wl,:l'}z,t) (21)
‘ 0 = ib(fl}l, Zq, t)
«'C(to) = QZQ, te {tO;te]

with z = (z1,2)7, 2o the consistent initial value, F: R* x R* x [to,t] — R¥,
h:REx R x [to,te] = Rl and n := k + [.

Let the time interval be denoted by T := [to, ).

For index 1 problems (2.1) the inverse (h,,)™" exists in a neighbourhood of the solu-
tion of the IVP. In the following we assume that (hm2) “exists in the whole domain.

Definition 1 Let f : R*XR!XxR*xR!x T — R*, h: RkXRIXRkXRIXT — R be
functzons with f(mlym%ml) T2, ) - f(mlam% )) h($17m27$17w27t) = h(whmz!t)‘ The
general form of the continuous waveform iteration for the problem (2.1) is then given
by :

i = flahh a0,y (22
0 = h(mllc7w§7m1 l(t) (t),t) ‘
Q’Jk(to) = Zg

fork=1,2,... withz®:T — R™ be any arbztmry a,pproa:zmatzon for the begmmng
of the ztemtwn which satisfies z°(ty) = zo.

For the discrete waveform iteration on subintervals, the so called ”windows”, we refer
b 2

to [Brl].

After partitioning of (2.1) into a set of r semiexplicit mdex 1 problems with T, =
(3311, S z1e)T, T € R, Yki=Fk 2 = (5021, wz,») , Toi € RE S =1,

=k+6L Y,ni=mn,z; = (:1:1,,1:2,) , T = (:z: 1y---,Z)T, one obtai'ns the
followmg block structured representation ~

iliv = fi(«mlla cee 3 L1ry T21, - - - )a:Zrat) (23)

0 = hi(mn, cee 3 Z1py L2y -0y T2, t)
(k) = zo, 1=1(1)r

The corresponding block waveform iteration is then given by

iy = f,(wl,mz,ml '), 257 (), ) (2.4)
0 = h(wlamm (t)awg l(t) )
2 (to) Lr .

Z_4,0, = (



Two special cases are the block Gauss Seidel waveform iteration Where fi and g; are
given by

fz‘(ml;wz;yhyz:t) = fi(mlhmm)-'- » L1dy L24, Y141, Y2i41, - - - 7y1ray2r:t)
hi(z1, T2, Y1,Y2,t) = hi(T11, %21, ..., T1iy Boiy Yrit1, Y2itk 1, - - - > Yirs Y2r, L)

(2.5)

and the block Jacobi waveform iteration with

fi(ﬂ?hwz,yhyz,t) = f(yu,yz1,--- » Y1i-1, Y2i-1, T14y T4, Y1442, Y2542, - - - ,ylryyZT:t)
hi(mh?zyyl, yz,t) = My (y11,y21, <y Y1i-1, Y2i-1, T14, 24, Y1i41, Y2i41,5- - - 7y1r;y2r,t) .
(2.6)

The block Jacobi waveform iteration is especially suitable for parallelization.

3 Convergence considerations

For problems (2.1) with index 1 the existence of an unique solution z, = g(z1,t) of
the algebraic equations 0 = h(zy,zs,t) follows from the implicit function theorem.
Because each blocksystem in (2.3) is assumed to have index 1, every h; is solvable for
zo; as well. Hence in the cases of block Gauss Seidel- and of block Jacobi waveform
iteration the h; are also sovable for z;.

Then (2.4) can formally be rewritten as

:ﬁ,fi = fi(ml’mm 1(t) (t) t) (3'1)
wlzci = gz(wllc’mlzc:wlf 1( )’ Ty ()7t)7

af(to) = zu0  1=1(1)r

In the case of the block Jacobi waveform iteration the g; are even independent of z,,
so that 3.1 has the representation

B = filahab b0, 050, ), (32)
xlzci - gi(mla Ly (t),mg—l(t),t),
T_;0, 1= 1(1)r.

8
El
—
o~
o
~
Il

Let C(T,R™) and C'(T,R") be the spaces of the continuous and the continuous
differentiable n dimensional functions defined on T.

The direct sum Z := C}(T,R*) @ C(T,R') is a set of ordered pairs defined by
Z :={(21,2)" : 21 € CY(T,R¥), 2, € C(T,R"}.
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Let |.|m be aﬁy norm in R™, then for 2, € C(T,R') and 2 € C*(T, RF) exponetially
weighted norms for arbitrary but fixed a > 0 are defined by

lzallat := sup(e™>)[z(2)]1)
teT

e—a(te—to)

1-— .
|lz(to)lx + _T_”zlna,k-

Il

(eI

With this norms a norm for z € Z is defined by
[|2]|z := max{]|z1|x, [| z2]es}-

Lemma 1 {Z,||.||z} is a Banach-space.

Proof:

It 'ha,s to be shown, that the limit z = (21,2)T of an arbitrary Cauchy sequence
(2)2, in {Z,||.||z} is an element of Z. ,

Ve > 0 there Jig such that ||2° — 27|z < € holds Vg, p > 1.
We have that ' - o |

e > |27 — 2P|z = ||(21, 28)7 — (28, 25)" ||z = max {||2] — ||k, |23 — 25 [las}
e—a(te—to)

1-— . . ‘
= max { 28 (t0) = 28(to) e + ———— 112 — &l |25 — zzna,z}

1 — g-olte—to) . ,
sup(e™*~)|2{() — £ (t)]e),

— max { 122(t0) — (o) e +
. teT

sup (e~ 23() — z’z”(t)lz)}
teT

1— é—_a(te—to)

v

s { [<(t) — (1) + e te=t) sup (1) - H(D),
2

€

o—(te=t0) sup lzg(t) — z%’(t)h} :
teT

Since € — 0 for growing q and p it follows that

|23(t0) — 25 (t0)|x — O, suzg |25(¢) — 20(¢)|[k = 0 and stug |23(¢) — 25(¢)|i — O.
te €

So we have uniform convergence for i — 2z, 25 — 2z, and thus 3, € C(T,RF),
z € C(T,RY). Because also 2i(t;) — 2i(to) it follows the uniform convergence
#, — z; and hence 2; € C}(T,RF). '

o

With respect to the partitionedvsystem (2.3) we have z; = (211,. ,21.)7 and z; =
(221, .-+, 22,)F. With z_; := (21, 23:)T we can define function sets Z; corresponding to
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¢ =1,...,r, are Banach-spaces. For z = (z_i,... ,z_,)T €Z,7:= ZIGBZz@.’. .‘63 Z,,
a norm ||.||z is defined by

)}

2]l z ==

7 !

One easily can show that {Z, .||z} is a Banach-space.
For z,y € Z, an operator O : Z x Z — Z is defined by

. ) . :
ds
0 9 t - O ] t = ml’o + "[.t f(ml’ $27y1,y273)
(m y)( ) (mhwz’yl yz)( ) g(;’lym%yl)y%t)

From the definition of the operator O we ﬁnd that the block waveform iteration (3.1)
has the formal representation

with z*(¢5) = z and an arbitrary starting function z° € Z.

We now consider the operator equation
z = 0(z,y).
If this equatisﬁ is uﬁiquely solvable for z, an operator
P27 (3.3)

is defined where z is determined by the equation z = P(y).

In the following Lemma 2 the Banach space {Z, ||.||z} and the operator O are more
generally defined. The coinciding notation is chosen because the above defined Ba-
nach space {Z, .||z} and operator O are applicable to this Lemma, what will be
shown later. ~

The proof of the Lemma 2 also can be found in [Brl].

Lemma 2 Let {Z,|.|z} be a Banach-space and let the operator O : Z X Z — Z
satisfy the following assumptions: '

al O is globally Lipschitz continuous, 1.e. there exist constants K, K, > 0 such that
forall z,y,Z,y

10(z,y) — 0z, 9)l|z < Kzllz - 2[|z + Kylly — ]2,
a2 0'<Kac + Ky < 1.

Then



f1 For each y € Z the equation z = O(z,y) is uniquely solvable for . The operator

P defined in (8.8) is contractive with a Lipschitz—constant M, = 1-{{1%,"

f2 The sequence (z*) defined by
:Bk — O(:I}k,:nk_l)
converges to a unique limit = for any starting function z° € Z.

Proof:
Let y € Z be arbitra:y but fixed. First it is shown, that the operator

Oy :=0(.,y), Oy:2Z — 7

is contractive and has a unique fixpoint. From al it is known that O.y is Lipschitz
continuous with the Lipschitz constant K, and from a2 we have that K, < 1. Thus
the fixpoint theorem of Banach is applicable to Oy which proofs the assertion.

The operator P : Z — Z is defined in that way, that P appoints to every y € Z the
fixpoint of O.y.

For arbitrary v,y € Z with z := P(y) and Z := P(g) we have
|z — 2|z =0(z,y) — O(2,9)llz < Kellz — 2|z + Kylly — 7l 2
and thus

K
— 3l < it
e~ 3llz < 7%

ly — 7|z
Since , ‘
llz —zllz = | P(y) — P(3) 2
K

P is Lipschitz continuous. From a2 it followes that the Lipschitz constant % s
smaller than 1, i.e. P is contractive. This proofs f1.- : ‘

With z := z* and y := z*~*, we have

and thus
z* = P(z"Y).
Because of f1 the fixpoint theorem of Banach is applica.byle to P what proveé.“f2v.
O

IfR™ = R™@R™®...©R™, then an appropriate norm for w = (wy, ... ,w,)" € R™
is defined by |

|w|:= max |wi|m,
€{1,...,.q}



Lemma 3 Let the waveform iteration (3.1) for the partitioned system (2.8) be con-
sidered. If the functions f; and g;, < = 1,... ,r fulfill Lipschitz conditions, i.e. for all
€= (£,6)7.¢ = (&,8)"n = (n,m)",7 = (71,7)" € R*®R', t € T eaist positiv
constants fz'x: fiy)gim7giy with
|fi(&m,t) — i€, 7, t) |w: fialé = &l + figln — 7] (3-4)
Igi(£777: t) - gi(gw 7, t)lli gi::'f - E_l + giyfﬂ - ﬁ‘ (35)

then the following estimations hold forz,y,z,5€ Z:

Ifi(@1(), 22(.)s 91 (), 92(), ) — Fil@1(-), 22, 51(-)s T2 (-); -) ek (3:6)
< fale—zllz+ fully - 9lz

INCIA

€2y 22,3, ), ) = 01 (), (), (), Bl ), s (37)

< gisllz — 2|z + gilly — 72
Proof: With z,y,%,7 € Z one obtains from (3.4)

Vlfi(ml(t% mz(t)’yl(t)ayZ(t)7t) - fi(:ﬁl(t)7 iZ(t); ﬂl(t)’ﬂZ(t)? t) k;
< fizie?lla‘x }{maX{livu(t) — Z15(t) ks, [22:(2) — Z2: () |13} +

for e {mae {3as(8) = GOl ls(t) = T a1}

l;

Let 7 be the index 7 which yields the maximum for the z-component. Then we have

fiz Jpax {max {|z1:(t) — Z1:(?) |k, [22i(t) — Za2:(t)[1:]} }

< S {fonlte) = on(t) + [ (b1s) — (6ol onst) - 0

0

t
< fiz max { |215(t0) — Z15(t0)| + / exlemto)emale=to) |5 (5) — yj(s)|w; s,
to L

ea(t—to)é—“(t—t°)|$2j(t) — Z2;(t)y; }

. ’ o | :
< fimax { |21;(to) — Z15(to)lk; + / cals—to) sup {emC)31(s) — Z15(s)lx; } ds,
to s€ ‘
ea(t—to) sup {e—a(t—to)lxzj(t) - EZJ(t) |l]}}
teT ‘ | -
| . , ,
= fipmax { |z1;(t0) — 9E1j(to)|kj + ||Z15 — 51;‘”:::’%’ / ea(s_tO)ds’ ea(t—tO)”mzj B zzilla’lj}
‘ o ~Jig '
v ex(t-t) 1 z a(t—to) z
_ fim ax { lmly(to) . ilj(tO)lkJ‘ + ||$1] - mlj”a,kj) e 0 ”(112] - $2j]la,lj
t—t : 1 — egalt-to) = z
< fie® ) max { |z15(t0) — Z15(to) ks + T”wlj = Z1jllak; 725 B Zailla;

= 7 £ max {||@1; — Z14lls;, 1225 — Bajlla; } -

7



Because the same estimate holds for the y—component we obtain

lfi(mlb(t): 932@): yl(t): yZ(t)7 t) - fz(ﬁl(t)) EZ(t)a gl(t)) 92(t)) t)lki
< &) (fualle — 2llz + fiully — 3ll)-

Using the norm definition of ||.||o; one obtains (36) ,

Going for g through the same procedure as for f one gets (3.7). |

Theorem 1 Let the assumptions of Lemma 8 be satisfied. If further the Lipschitz
constants Gz, Giy of gi fulfill for every i the condition

Giz + Giy < 17

then the sequence (z*) obtained by the block waveform ztemtzon (8.1) converges in
{Z,]].||z} to the solution of (2.1).

Proof:

 We show that the operator O is globally Lipschitz continuous and the Lipschitz
constants satisfy the condition a2 of Lemma 2. Then f1, f2 can be followed.

We have

0(e,9) = 0@, Dz = I}z = 75 = _mex_{max {1 = Zuls 2 = a1}

Let j be the maximal 7. Using the result of Lemma 3, it follows that
HO(m,y) - 0(57,??)”2 =

’ 1 _ e—a(te—‘to)
= max{|z1j(to) — Zi5(to)| +

= 215 = Z1jllak;, | 225 — 525||a,l,~}

. _ g-alte—to) ( , ,
= max {1—"—”][](371( ) ?2(-)7y1(-)ay2(')7 ) - fj(ﬁl(')’ ﬁz('):gl(')v 372(')1 ‘)”a,k_,-:
lgi(21(-), 22(-), 42(.), w2(.), -) = 93(@1(-), 22(-), (), G () Mleets }

1 - e_a(te_to‘) _ . B ' _ _
{— (ialle = 31z + Fiully = T2)  gislle — 31z + glly - ynz} -

< max

Hence for large enough chosen « the Lipschitz constants of O are
K =gjm, Ky = giy.

Because the assumption g;; + gjy < 1 satisfies the condition a2 of Lemma 2 the proof
is completed.

|



Let z; = (21,22:)F € Z;. Then norms |.|o, |.|1 usually used for the continuous and

continuous differentiable functions are defined by

|zailo = sup{|zai(2)|},
teT
|2z1:)1 == |z1ilo + 210

Further a norm |.|z; for z_; € Z; is defined by
|2_i|z := max{|z1]1, |z2ilo}-
Another norm |.|z for z = (2.1, ... ,2..)T € Z is then defined by
|2|z := max{|z.|z,}

With this definitions {Z, |.|z} is a Banach space.

Theorem 2 With the assumptions of theorem 1 the sequence (z*) obtained by the
block waveform iteration (8.1) converges in {Z,|.|z} to the solution of (2.1). -

Proof:

Let the fixpoint of P be denoted by z*. To show that the block waveform iteration
(3.1) converges to z* € {Z,]|.|z} for k — oo we look for a constant K > 0 such that

|z* — =z |Z <K||a: —-z*||z.
For z = (z.1,... ,2_ )T € Z it holds by definition

|2|z = max {max{lznlz,IZzzlo}}
2

L |

With | o
21i(t) = mi(to) + / iui(s)ds
) to
we have ‘ '
t ,
el < ol + [ €0 indfands
: t0 :
- ]_ ——e—"‘(tc“to) .
< e (il + Nl
and hence .
|z15]0 < ex{te=

| Further it is

|(t) e, = etfolemalt=R) |z, (1),
ea(t—to) ”é]_z

IA

”a7ki
a 1 — g—a(te—to)

1 = e—a(te—to)

A

9

ea(t—to) <|zli(t0)lki + —a—-—”Zh

h



and hence

|21il0 < %e“(t"“)llzn |k
Finally one has ' ’ .
|22i() 1, < ea(tf#o) |22l ;.
and thus ' ‘
|22:]0 < 6a(t’_t°)”22i”a,li
what results in ‘
ez < (1 T ﬁ) I E P (3.8)

Then replacing z by z* — z* in (3.8) leads to the assertion.
O

In summary, for the convergeﬁce of the block waveform iteration (3.1) for semiexplicit
DAE systems of index 1 the Lipschitz continuity of f; and g;,2 = 1,... ,r, is required,
where the Lipschitz constants of g; satisfy the inequality

Giz + g,y <1

A local approximation for the Lipschitz constants giz, giy can be determined by means
of the Jacobians %%, %gj evaluated in a fixed point (1 (t*), z2(t*), y1(t*), y2(¢*),%%). In
the following these arguments are left away.

We remember that the blocksystems h; were solved for z,; = gi(z1, Z2,y1,y2) With g;

independent of zz;. A deduction from the implizit function theorem yields

20 00 00 00 _[ 00 ) [ 0% 00 0h 00
0z, Oz, Oy2 Oy, amzi Oz, 0z, Oys 3?/2

(3.9)

The constants g;; and g;, are then evaluated for the block Jacobi waveform iteration
by

Bg,- . Bh,- -t 8h,‘
iz = = 1
g Oz I [0:62,-] Oxy; (3.10)
, i
dg; [ah,-]-l Oh; [ahi}"l Oh;
iy = |—| = —_— 3.11
gy ay ; B:I:zi aylj s + Z 8$2i ayZJ nas ( )
and for the block Gauss Seidel waveform iteration by
_ 8g:;| < |[0ORh;]7" Bk 2 16m: 17" ok
iz = A B(U - Z [0:1:2,-] 8a:1j N Z [8:1;2;] awzj
i=1 nij 9=l n2j
_ Bg,- . [ ah,; ] -t 6h,’ . [ 6hi :I -1 Bhi
’ Oy j§1 Oz2i ?yl" nij j;;l Ozai]  Oyoj ndj

10



Here the matrix norm |.| is induced by the vector norm |. | The c01nc1d1ng notation
for the norms is used for simplicity.

These conditions just require the Jacobian of the discretized problem (2.1) to be block
diagonal dominanat because the diagonal elements of the Jacobian in the hyperrows,

belonging to the differential part #; — fi = 0 of the DAE system, get arbitrary large
_ with reduction of the stepsize. Th1s comes from the stepsize in the denominator of
the discretized .

Definition 2 A matriz A € R™", A = (4;)X_,, Ay € R, Ef\il n; =mn, is
called block diagonal dominant if

YIAFAG <1, i=1,.. M
i#j

holds.

For an implementation on a computer the evaluation of these Lipschitz constants is
still to expansive. In chapter 5 we give a strategy for the partitioning of implicit
index 1 problems, which is related to the results of this chapter but requieres less
computation time due to some heuristics.

4 Mathematical modeling of distillation columns

The modeling of distillation columns like it has been done in [Wol], [Rel] leads to
linear DAE systems of index 1:

D?l = f(u,v,t) |
0 = h(u,v,t)
(ulto),v(t0))” = (o, 0)"

where D is a diagonal matrix with constant coefficients.
If the modeling is done with the followiﬁg restrictions,
e constant molar hold-up HUZ of the quﬁid phé,se7
e neglectable hold—up HUV of the vapor phase,
e temporal constant pressure profile over c‘olumn hight,
e ideal mixing in liquid i)hase

e phase equ111br1um between vapor and 11qu1d phase with constant tray efficiency.
coefficient,

e no excessive enthalpy,

11



one obtains for each tray of the distillation column, except for the bottom tray, the
following system of equations:

Material balance for each component ¢ = 1(1)N:

d(u,;,jHUf')

i = (Lj+Us+ Ul )uiz — Lioatigon

+(V; + W; + ngzm)”i,j — Vit1Vijpr — F J'Lufj

v, F R, R,
—Fjv;; — Up juin — Wijvi

Energy balance:

d(HFHU* ‘
(—:lt—il = (L;j + U; + UL Hy — L1 H.,
+(V; + Wi + W) H = Vi o — FyHE;
—FY Hipy — UGHE - WiH +Q;
with
N | N
Hf = wighl;, H] =) wi;hl;
i=1 i=1
N N .
L F 1 LF v _ F L V,F
Hi; =) ulzhi, Hpg=) b
=1 =1

Phase equilibrium relation for ¢ = 1(1)N:
Mk jtii — vij + (1 = n;)vij01 = 0.

The tray efficiency coefficients 7; of tray j are smaller than 1 and calculated from

Vg T Vigt
?7.7 - * °
Vi~ Vijg+l

The equilibrium constants k; ; are evaluated by"

0
D; ;
k’lJ = ’Yivj-p_;7

where the activity coefficients «; ; are given by
v'* .p- feeed u- -IY- |pq ..
2,787 1,J (%310,
The following quantities are for the liquid and vapor phase respectively:

12



for liquid | for vapor | explanation
Ff’ FjV feed streams
U; W; side stripping streams
Ug, R | recycle streams
HUF HUY hold-ups
H 4 H 4 specific enthalpies
h,{zj hi’]— specific enthalpies of component 7
Ui j Vi j mol fraction of component 7
b v}; mol fraction of component 7 in equilibrium
p?’ ; vapor pressure of component 7 in tray j
D vapor pressure in tray 7

Now each variable is assigned to an ‘equa,tion, namely

® u;; to the material balance eqﬁation 2,
o H JL to the energy balance equation,
e v;; to the phase equilibrium equation 3.

The given DAE system consists of subsystems corresponding to the trays. Now we
have to find a partitioning which ensures the index 1 property for each blocksystem.
This requirement is already satisfied if each subsystem builds one blocksystem. Other
partitionings can be obtained by merging several subsystems together. As the result
we obtain semiexplicit DAE systems of index 1 for each blocksytem. If using the
block Jacobi waveform iteration the convergence property gjz, + gjy < 1 still has to
be verified. For this we assume that each tray j builds the blocksystem j, for the
other above given partitionings the convergence property can be proved analogously.
To obtain the (21, z2,¥1,y2) notation for the arguments of the functions f; and A; in
(2.6) we define the vectors u; := (uyj, ... ,un,;)7, v; == (vij,...,vn;)T. With the
identity transformations u; — 15, vj — @2; and w — yu, v — yu for [ # j we can
‘proceed with the evaluation of gjz, and gjy.

From the phase equilibrium relations one obtains for the Jacobian matrix

[%%] _ [0 Ohs o Ok o ]
Oz; Oy 021, 0225 Oyaj
i njklj - =1 1- nj
— | o -1 0 1 —n; 0
I - nikn; -1 L=
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Trivially [a—az%] = diag(—1) and hence

| + .\ B - 6hJ -1 ah] ahJ -1 6]2,]
Gjz, G5y = _6$2j 6:1;1] amZ] ayz,j+1
. nj e
ik mi—1
i : - :
—n;ikn; mi—1

o ﬂjk-j+1_nj<l,

for max;eqs,. ny{kii} =1 ki < 1.

Hence the following theorem is proved.

Theorem 3 For the described mathematical model of a distillation column the block
Jacobi waveform iteration (3.2) converges for any partitioning given above.

5 Implementation

The mathematical modeling of chemical processes in chemical plants leads usually
[AT1] to initial value problems for implicit DAE systems

F(t,y(2),4(t),u(t)) = 0, y(to) = vo, (5.1)
F:RxR"XxR"x R?— Rt € [to, e,

with F = (f1,...,fa)?, a given parameter vector function u(¢) and the unknown
vector function y(t) = (vi(t),... ,va(t))%.

In many cases during the process of modeling it can be made sure that the index of
the system (5.1) is 1. Usually the arising systems are stiff, and their discretization and
linearization yield systems of equations with sparse nonsymmetric Jacobian matrices.
The systems can comprise several 10 000 equations (e.g. distillation columns) and
are structured into subsystems

F'i(t,y,:l'/,u)=0, y(to)=yo, . (52)
Fi:RxR*xR*xR!—=R™ Y ny=n,i=1,..,m

in accordance with the functional units of the chemical plant.

To apply the block Jacobi waveform iteration there has to be done a one to one
assignment of variables to the equations and a partitioning of the system (5.1) in
such a way that the waveform iteration is convergent. Because (5.1) is a fully-implicit
problem the convergence condition for semiexplicit problems is not applicable. For
this we use some heuristic. Like observed before, in case of block Jacobi waveform
iteration for semiexplicit index 1 problems the convergence condition Giiz:) T 9(iy) <1
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implies the block diagonal dominance of the Jacobian of the discretized problem. So
our partitioning algorithm puts priority to getting the Jacobian of the partitioned
discretized problem (5.1) block diagonal dominant.

We assume that the hyperrows of the Jacobian %—i" = E + ¢ * % can be com-

puted separately. F; is a discretized subsystem from (5.2) and c; the corresponding
discretization constant dependent on the integration method and stepsize used.

Assigning variables to equations, system (5.2) can be rewritten to

Fi(t, mi(t),‘:Vi:,'(t),yi(t)‘,g),-(t),u(t)) =0, zi(to) = zip, t = 1(1)m, (53)

where z; is the vector of variables assigned to the subsystem F and y; is the vector
remaining if the components z; are removed from y.

The system is then partitioned by merging subsytems F; to blocksytems Fi =
(Fjl,...,ijj)T, > mj = m. With the notations X; = (zj,,... ,:Ejmj)T and the
corresponding Y;, the partitioning leads to

Filt, X;(2), X5(2), Y5(2), Y5(2), u(®)) = 0, X;(to) = X0, 7 = L(1) M.

The waveform iteration is done over time windows [tp, tpt1] C [to,te], P = 1,... , e,
Ultp, tor1] = [to, te] [GBl] to speed up the convergence. Here the blocksystems can be
- solved concurrently using general known methods We use BDF, Newton s method
and sparse matrix solver.

The algorlthm reads as

do for p=0,1,2,...
set Y on [tp, tpyq] for j = 1(1)M
dofor k=1,2,..
do for j =1(1)M
solve for t € [tp, tpta]

Fi(t, XE(t), XE(@), Y71 (2), YF' (2),u(t)) = 0
| Yit,) = Yitp)
enddo
until | Y* —Y*- 1||n1,[tp,tp+1] €
enddo

For assigning variables to equations as well as merging strongly connected subsystems
into blocks we define “weights® for the couplings between equations and subsystems
respectively using the J acoblan matrix

dF(y)

A= 3y | y=3, A= (‘\I'pq)(‘e R™™

of the ﬁoniinear system , )
| Fly) = 0, F:R" = R",
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Figure 1: DYNEVAP: Jacobian matrix before and after assignment

obtained by the discretization of the DAE system at the time point t = £, § ~
y(%). During the assignment process each variable v, is assigned to one and only one

equation fp, such that the resulting assignment z; —> F; is consistent with respect
oF;

5., are at least
T

to the state variables for each subsystem 2 and the n; x n; Jacobians
non singular.

To treat this problem we consider the linear weighted matching problem

n n

n n
E WigSng —F THAE, g &%= 1, S Skg =1,
1 k=1 k=1

p=1 g=

p _{ 1 : if variable v, is assigned to equation f,
P

0 : else
0 : fp depends neither on v, nor on 7,
wpe =¢ 1+ -zﬁ% : fp depends on v,, but not on 7,
|apq] 1 .
3+ f?:ﬁm : fp depends on v,

Starting from the original Jacobian we generate a parametrized directed graph and
solve the matching problem with graph algorithms from the package LEDA [Nal].
In Figure 1 the structure of the Jacobi matrix of the example DYNEVAP is given
before and after the assignment of the variables to the equations. To merge tightly
coupled subsystems to blocks we define "strong” connections between equations and
subsystems respectively. We call a row p of the matrix A with f, € F; dominant with
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respect to subsystem 1, if

D laggl/lapp| < 1, with index set K; = {r | f, € F}.
9¢K;

Then the subsystem ¢ is called strong input to subsystem 7, if there exists a
pj € {p | fp € Fj,row p is not dominant with respect to subsystem j},

so that

ap:k
legpj,0<ﬁpj51_

|a’Pij |

After determining strong inputs for the subsystems, we initialize blocks with one
subsystem each and merge blocks containing strong input subsystems successively.
In general the block partitioning is done only once before the iteration process starts,
but there is an option to repeat it for some ¢ > ¢, if convergence problems appear.

Codes of block waveform iteration methods have been tested on sequential machines.
Currently the block waveform algorithm uses a modified DASSL code [BC1] including
our linear sparse matrix package [Grl] for numerical integration of the block systems.
A program, automatically creating an interface for our code out of the data supplied
by SPEEDUP when simulating a process [Hol], is used. The interface contains the
DAE system in a structured representation, so it is possible to evaluate the function
and the Jacobian-matrix subsystem—wise. At present the parallel case is simulated
by these codes.

The numerical methods were run on two examples. The example DYNEVAP consist-
ing of 87 equations within 13 subsystems represents a double effect evaporator. The
second example BTX, a mathematical model of a Benzene-Toluene-Xylene distilla-
tion column, is made of 52 subsystems containing 1089 equations. For the example
DYNEVAP an appropriate partitioning has been found, so that block waveform it-
eration method converges rapidly.

For BTX an appropriate partitioning, fulfilling all conditions for assignment and block
generation, has not been found. Obviously the subsytems are strongly connected
due to strong feedbacks between the stages (trays) of the column. For this reason
possibilities to combine our iterative block methods with parallelizable direct block
methods are investigated. A paper concerning this topic is in preparation.
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