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ABSTRACT. Using Lyapunov functionals the global behaviour of the solutions of a 
reaction-diffusion system modelling chemotaxis is studied for bounded piecewise smooth 
domains in the plane. Geometric criteria can be given that this dynamical system tends 
to a (not necessarily trivial) stationary state. 
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1. Introduction 

Chemotaxis is the oriented migration of organisms under the influence of chemical sub-
stances (see [Ha], [Mu] for the biological background). Mathematical n ... odels of such 
processes are given by partial differential equations of reaction-diffusion type ([KS]) . As 
a prototype we take from [JL] the system for U = U(t, x), V = V(t, x) 

qJ{- = llU - x\7 · (U\7V) } 

9Jf- = all V - (3V + 8U 
on lR+ x n, (1.1) 

where lR+ are the positive reals and n is a bounded domain in 1R N, N ~ 2, with piecewise 
smooth boundary r = an. For the system are given initial values and no-flux boundary 
conditions ( homogeneous Neumann conditions ) 

U(O, ·) - Uo, V(O, ·)=Vo on n, Uo ~ 0, Vo ~ 0, 
v · \7U v · \7V = 0 on lR+ x r. 

Here a, (3, 8, x are positive constants, v is the outer unit normal on r . System (1.1) 
models the dynamics of a population (concentration U) moving inn driven by the gra-
dient of a chemotactic agens (concentration V ) produced by the population. There is 
some similarity between the model (1.1) and the drift-diffusion models of microelectron-
ics ([GG]). But whereas equally charged particles in microelectronics repulse each other, 
chemotaxis has an attractive effect which leads to agglomeration of particles. This causes 
mathematical difficulties, and one cannot expect that (1.1) has global solutions for arbi-
trary parameters a, (3, 8, x and arbitrary initial values. 
For a reduced variant of (1.1) where the second equation is the stationary equation 

all V - (3V + 8U = 0 

the problem has been considered recently by [DN]. They show local (in time) existence 
of a solution under homogeneous Dirichlet boundary conditions for the component U for 
bounded domains in JRN with smooth boundaries. If a certain (smallness) condition on 
the initial values U0 is satisfied, they prove global (in time) existence and decay to the 
trivial stationary solution (0, 0) for t -+ oo . 
For the same reduced variant of (1.1) on a disk in 1R2 it has been proved by [JL] that 
under homogeneous Neumann boundary conditions there are initial values U0 , Vo for 
which U explodes in finite time in the center of the disc. A refined study of the blow-up 
mechanism has been given by [HVl] for the disk starting from radially symmetric initial 
values. The same authors also considered the blow-up for the full chemotactic system 
(1.1) in the case of radial symmetry ([HV2], [HV3]). 
This paper is devoted mainly to the study of the global behaviour of solutions to the 
dynamical system ( 1.1) in generally nonsmooth domains n c 1R2

• Our interest in this 
topic originates in numerical experiments ([GJK]) showing the strong influence of the 
geometry of n . As an example we mention that initial values concentrated around the 
centre of a square may cause blow-up in a corner. Our main point is the observation 
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that the system (1.1) possesses Lyapunov functionals, i.e., functionals decreasing along 
solutions as time increases. Using this tool we formulate in the case N = 2 a condition 
involving the data of the system and the geometry of the domain ensuring decay to a 
homogeneous state (Theorem 4.2) and a weaker condition excluding blow-up in finite 
time (Theorem 4.3). This condition, which .numerical evidence suggests to be sharp, 
allows non-trivial stationary states. In fact, we prove (Theorem 5.2) that the solutions to 
(a transformed version (1.4), Jl.5) of) (1.1) asymptotically approximate the (generally) 
non-trivial solutions ( u*, v*) of the problem 

8v* 1n1 v* 
-aAv* + fJv* = 'Y(u* -1) on 11, av = 0 on 811, u* = 

1 
e , 

n ev* dO 
(1.2) 

where "Y = x8U0 with U0 the spatial mean of the initial value U0 . 

Stationary problems of this type were studied in [Sch] and appear also in other fields 
(e.g. [Mol]). As can be seen from (1.2) there is a hidden exponential nonlinearity in 
the system (1.1). This is the reason why our considerations are restricted essentially to 
the two-dimensional case N = 2 where the Orlicz norm associated to the exponential 
function is controlled by the Dirichlet integral. 
As to the case N = 3 , it should be possible to prove some of our results for somewhat 
relaxed chemotaxis models (comp. [Sch]) where \7V \n (i.4) is replaced by \7(~(V)) 
with a "sensitivity function" ~ like 

log(V + c), V/(l + cV), or V2 /(1·+ cV2} 

which leads to exp(~( v*)) instead of exp( v*) in (1.2). 

It is convenient to transform the system (1.1) in the following manner. Introducing 
the spatial mean of a function h on 1R+ x n by 

- 1 [ h(t) = lnj Jn h(t, x)dx, IOI = meas (0), 

we obtain by integration in (1.1) 

U(t) = Uo, dV - -- -dt + (3V = 8Uo, V(O) = VQ. 

We introduce new unknown functions u, v by 

(t ) _ U(t, x) 
u ,x - ' Uo 

v(t, x) = x(V(t, x) - V(t)) 

and a new constant "Y by 
"Y = x8Uo 

and arrive at the transformed system of (1.1) to be studied in the following: 

Ut = D..u - \7 · (u\7v) } 
on 1R+ x n, 

Vt = ab..v - (3v + 1(u - 1) 
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completed by the initial and boundary conditions 

where 

with 

u(O, ·) = Uo, v(O, ·)=Vo on n, } 
l/ • '\l u = l/ • '\l v = 0 on lR+ x r' . 

Uo 
Uo = =, Vo = X(VQ - VQ) 

Uo 

uo = 1, v0 = 0. 

(1.5) 

(1.6) 

Obviously, u(t) = 1, v(t) = 0 for t 2:: 0. The first component u of the solution (u, v), 
should be positive (being a normed concentration) whereas the second component v as 
the deviation from a spatial mean may change sign. 

2. Preliminaries 

We consider the two-dimensional case N = 2 and assume that n c JR2 is a bounded, 
finitely connected domain with closure n and boundary r = an which we assume as 
piecewise smooth, more exactly as piecewise C2 with a finite number of vertices with 
non-vanishing interior angles. We denote by Ck= Ck(n) ( k 2:: 0 an integer , c0 = C) 
the usual spaces of continuously differentiable functions. By LP = Lp(O), H! = H!(O) 
for p 2:: 1 we denote the Lebesgue spaces and Sobolev spaces of functions on n with the 
usual norms 11 · llP, 11·llk,p,II·112 = II· II and we write H 1(0) = Hi(n) ([A],[KJF],[GT]). 
For the space L00 (0) we denote by L~(n) the cone of non-negative elements. For a 
Banach space X we denote its dual by X* , the dual pairing between f E X*, g E X 
will be denoted by (!, g) . If X is a Banach space with norm II · llx , we denote 
for T > 0 by Lp(O, T; X) (1 ~ p ~ oo) the Banach space of all (equivalence classes 
of) Bochn·er measurable functions u : (0, T) ---->- X such that llu(·)llx E Lp(O, T) . 
Correspondingly, if S is an interval of the reals, we denote by C(S; X) the space of 
continuous functions on S with values in X , especially, C([O, T]; X) is a Banach space. 
Occasionally we (ab)use the notation Lp(O, T; x+) to denote the set of Lp-Bochner-
integrable functions on (0, T) with values in the positive cone x+ of a Banach space 
X . We have the continuous and dense imbeddings 

X = H1 c L2 c (H1)* = X* 

and identify L2(0, T; L2) = L2(QT), QT= (0, T) x 0. For functions u E L2(0, T; X) 
with time derivative u' E L2(0, T; X*) (understood in the sense of distributions from 
(0, T) with values in (H1 )* ) we have the imbedding 

WJ"(O, T; X) = {u: u E L2(0, T; X), u' E L2(0, T; X*)} c C([O, T]; L2) 

and the rule of partial integration ([LM],[GGZ]) 

~ (11u(t)[[2 - [[u(s)ll 2) = [ (u'(T), u(7)} dT, t, s E [O, T]. 

3 



Lemma 2.1. Let h E H 1 , h = 0 . Then there is a constant .A> 0 such that 

(2.1) 

Let h E Hi , h = 0 . Then there is a constant µ > 0 such that 

(2.2) 

Proof. This is a simple consequence of the Sobolev imbedding theorem. D 

Remark 2.1. In (2.2) we take 

llhlli,1 = llhxlli + llhylli · 
We put W = {h E Hi : h = O} , 1l = {h E H 1 : h = O} . Obviously 1l c W and for 
the best imbedding constants X, p, , defined by 

X = inf llVhll2 . _ . f llhllt1 
hEtl,hi:O llhll2 ' µ,= hEW,hi:O w ' -

holds p, ~ IOIX by the Schwarz inequality. 

Remark 2.2. In the special case of a rectangular domain n = (0, a)x(O, b) the following 
estimate can be proved for h E Hi (see Appendix): -

llhll2 ~ 2{IOl(h)2 + A(llhxlli + llhylli)}, 
where 

1 -Lemma 2.2. Let h E H1 , h = 1 , h 2::: 0 a.e. . Then 

Proof. From (2.2) we get 

µllh - hll2 ~ llhxlli + llhylli = 4(llh112(h112)xlli + llh112 (h112)ylli) 
~ 4llhll1llVh112 ll2 

and with h = 1 the assertion follows. D 

' (2.3) 

(2.4) 

(2.5) 

We need some elementary facts about Orlicz spaces (see e.g. [A],[KJF]). For the 
couple of complementary Young functions (or N-functions) 

~ ( s) = ( s + 1) log ( s + 1) - s , '11 ( s) = exp ( s) - s - 1, s 2::: 0, 
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holds Young's inequality 

st ~ <P ( s) + '11 ( t), s ;::: 0, t ;::: 0. (2.6) 

We define the corresponding Orlicz spaces by 

where 

llall<i; s~p { 1 fn gh d!1I : .l W(lhl) d!1 < 1}, 

llhll~ = inf { c> 0: .l \[f (1~1) d!1<1}. 

L<I! and Lw are Banach spaces. Since <P satisfies the so-called ..6..2-condition, i.e., there 
exists a positive constant k > 0 (in our case k = 4) such that for every s;::: O 

<P(2s) ~ k<P(s), (2.7) 

we have the following 

Lemma 2.3. A sequence hn C L<I! converges to h E L<I! if and only if 

lim r <P(lhn - hi) dn = 0. 
n~ooJn 

Proof. See [A], Section 8.13 , or [KJF], Section 3.10. D 

Lemma 2.4. There exists the imbedding H 1 C Lw. 

Proof. This is a special case of a more general result of Trudinger [T] on t~e limiting 
case of the Sobolev imbedding theorem. See also [Mo2], [A], Section 8.25 , or [KJF], 
Section 7.2. D 

Lemma 2.5. Suppose that n c 1R2 is a piecewise C2 , bounded, finitely connected 
domain with finite number of vertices. Let e be the minimum interior angle at the 
vertices of n . Then there exists a constant en such that for all h E H 1 with 

.l IV'hl2 d!1::; 1, h = o, 

we have 
(2.8) 
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Proof. We quote here Proposition 2.3. of [Ch Y], formulated there for h E 0 1 (n) . By 
the usual density arguments the assertion can be extended to h E H1 . For a similar 
result in the case of Dirichlet boundary conditions see [Mol]. D 

Corollary 2.6. For arbitrary h E H 1 one has 

(2.9) 

Proof. From 

the assertion follows by (2.8). Another proof is given in [KW], formula (3.5). D 

3. Local existence in time, uniqueness 

In this paper we are interested mainly in the global behaviour of solutions to (1.4), (1.5) in 
nonsmooth domains. To this end we need adequate local existence results. Unfortunately, 
we could not find in the literature the results on parabolic systems we need. Hence, for 
the sake of completeness, we sketch in the following a proof of the existence of (weak) 
solutions. 

Definition 3.1. A pair of functions (u, v) with 

u E Loo(O, T; L~) n L2(0, T; H 1), Ut E L2(0, T; (H1)*), 
v E Loo(O, T; L00 ) n C(O, T; H1), Vt E L2(0, T; L2) 

is called a weak solution of (1.4), (1.5) if Vh E L2(0, T; H1) the following identities hold: 

foT (ut, h) dt + foT //'ilu - u\Tv) · \Th dfl dt - O, 

f (vt, h) dt + f k {a\Tv ·\Th+ ({Jv - 'Y(u - 1)) h} dfl dt - 0. 

Remark 3.1. This definition is equivalent with 

(ut, g) + k (Vu~ u\7v) · \7 g dO O, 

(vt,g)+ fn{a\7v,·\7g+(r3v-"((u-l))g}d0 - O 

for almost all t E (0, T) and Vg E H1 . 
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Theorem 3.2. For uo EL~ and Vo EH:, p > 2 and appropriate T > 0 there is a 
unique weak solution of (1.4), (1.5) with u(O) = uo, v(O) = vo . Moreover, for 0::; t < T 
holds t ---7 u(t) E L~ and the function t -t 11Vv(t)ll 2 is absolutely continuous on 
[O, T]. 

Proof. 1. Existence. Function arguments are sometimes omitted. 
( i) We introduce a new unknown function w by 

and transform (1.4), (1.5) into 

Vt - a~v + f3v = 1(evw - 1) } 
on (O,T) x n, 

(evw)t - \7 · (ev\7w) = 0 

with the initial and boundary conditions 

v(O) = Vo, w(O) = Wo = e-vouo on n, av aw av = av = 0 on ( 0, T) x r. 

(3.1) 

(3.2) 

(ii) We want to apply Schauder's fixed point theorem. To this end we define for 
appropriate K > 0, T > 0 the map 

where w is the solution of 

Vt - a~v + f3v = 1(evK f - 1), 
(evKw)t - \7 · (evK\7w) = 0, 

v(O) =Vo, VK = sgn(v) min(lvl, K), } 
w(O) = e-vouo. (3.3) 

In the spirit of [LSU], Chap.III, Chap.V there exists for given f E X a solution v of 
the first equation with 

v E L2(0, T; H1
), Vt E L2(0, T; L2), i.e. Vt E L2(QT)· 

and a solution w of the second equation with 

evKw E L2(0, T; H 1 n Lt), (evKw)t E L2(QT)· 

So the map AK is well defined. Moreover (see e.g. [B]), the function t-+ 11Vv(t)ll2 is 
absolutely continuous on [O, T] . 
We have only to add the proof of the non-negativity of w . Testing the second equation 
of (3.3) with w- = max(-w, 0) we find by the rules of calculus in Sobolev spaces 

fn(e"Kw),w-dn+ fne"K\Jw·'Vw-drl.= fn(e"Kw),w-dn+ fne"Kl\Jw-l2drl.=0. 

With the identity 

! fn (e•Kw-) 2 e-•Kdrl, = 2 fn(e"Kw),w-drl.- fn (e"Kw-)2 e-•K(vK),dn 
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we find 

:t /n ( e"Kw-)
2 

e-"Kdfl + /n (e"Kw-)2 e-•K(vK)tdn + 2 /n e"Kl\7w-l2d!1=0. 

Integration on [O, t], taking into account that w-(o) = 0, gives 

/n e"K ( w-)
2 

dO + 2 l /n e"Kl\7w-l2d!1ds ::S l /n e"K ( w-)
2 l(vK)tl d!lds. (3.4) 

By Gagliardo-Nirenberg's inequality (for a proof see e.g. [He]) 

and with ll(vK)tll ~ llvtll we estimate on the right hand ,side of (3.4), 

k evK ( w-) 2 
l(vK)tl dfl < ceKll(vK)tll llw-11~ ~ ceKllvtll(llVw-11 + llw-ll)llw-11 

< C(K, c5) (llvtll 2 +1) llw-11 2 + c5llVw~ll 2 

and get 

e-K (/n ( w-(t) )
2d!l+2l11vw-ll2ds) < C(K, 0) l (llvtll2+1) llw-ll2ds 

+ol 11vw-ll2ds . . 

With the choice c5 < 2e,-K we obtain the Gronwall-type estimate 

from which follows llw-(t)ll = 0 Vt E [O, T) , i.e. w(t) E Lt. 
(iii) Next we show that the map AK sends the ball B = {!: 11/llx ~ R} into itself 

for appropriate R > 0 and sufficiently small T > 0 . We test the first equation of (3.3) 
with Vt on Qt = (0, t) X fl and obtain 

llvtll~. +; (11Vv(t)ll2 -11Vv(O)ll2) + ~ (llv(t)112 
- llv(O)ll2) 

- 'Y l /n (e"K f-1) Vtdflds. 

We estimate the right hand side by 

l'Y l he"K f - l)vtdfldsl::; 'Y (eKll!llq, + 1n11/2t1/2) llvtllq, 

and get with an appropriate constant C(K, R) 

llvtl]~T +sup 11Vv(t)ll2 ~ C(K, R). 
[O,T] 
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Testing the second equation of (3.3) with w gives 

or, after some calculation, 

By arguments similar to those used in (ii) we obtain 

We take 8 = e-K and get 

from which we find (by integrating and multiplying with eK ) the Gronwall-type estimate 

and, with Gronwall's lemma and (3.5) 

This implies (by the Gagliardo-Nirenberg and Holder inequality) 

llwll~ = f llw(s)ll!ds:::; c f 1lw(s)ll;:;
21 

llw(s)ll 4/Pds 

~ a 
< c (f llw(s)llk1ds) ' (f llw(s)ll2ds )' :::; C2 (K, R)T21P. 

Now, choosing T > 0 sufficiently small, we can assure that llwllx ~ R. 
(iv) In order to show compactness of the map AK it will be sufficient to have a 

bound for llwtllY, where Y = L2(0, T; (H1)*) . 
For h E L2 (0, T; H~) we have with the second equation (3.3) 

(wt,h) - (eVKWt,e-VKh) = ((eVKw)t,e-VKh)-((vK)tw,h) 

- (evK\7w, \7(e-vKh)) - ((vK)tw, h) = -(\7w, \7h- h\7vK) - ((vK)tw, h) 

which we estimate as 

l(wt, h)I ~ llVwll(llVhll + llhllooll\7vll) + llvtll llwll llhlloo· 
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By Schwarz's inequality 

and, similarly, 

we get 

t II V' w( s) 1111 h( s) II ooll V' v ( s) II ds ~ II V' vii L=(D,T;L2} llw llL2(D,T;H1 ) llhllL2(D,T;L=) 

t llvt(s) 11 llh( s) lloollw( s) lids ~ llwllL=(O,T;L2) llvtllL2(QT) llhllL,(O,T;L=) 

foT I( Wt, h)lds ~ llwllL,(D,T;H') (llhllL,(D,T;H')+ llhllL2(D,T;L=) llY'vllL=(o,T;L2)) 
+ llvtllL2(QT) llwllLoo(O,T;L2) llhllL2(0,T;Loo) · 

For p > 2 and n c 1R 2 we have the imbeddings 

L2(0, T; H;) c L2(0, T; H 1
); L2(0, T; H;) c L2(0, T; Loo) 

and get with the estimates proved in (iii) 

f l(wt, h)lds ~ CllhllL,(D,T;Hi) or llwtllY ~C. 
( v) For 1 < p < oo we have the imbedding H; C Lp C (H;)* with compact 

imbedding H; c Lp . Then (as a consequence of Theorem 5.1 in [L]) the imbedding 
of W = { w : w E L2(0, T; H 1 ), Wt E L2(0, T; (H1)*)} in L2(0, T; Lp) is compact. This 
implies that AK(B) is a precompact set of L2 (0, T; Lp) . By similar arguments as 
before one can show that AK : L2 (0, T; Lp) ---+ L2 (0, T; Lp) is continuous. Therefore 
Schauder's fixed point theorem guarantees the existence of a fixed point w E L2 (0, T; Lp) 
such that AKw = w. 
To get ride of the cutoff introduced in (3}) we denote by v the solution of the first 
equation (3.3) with f = w and by z the solution of 

Zt - aD..z + /3z = 'Y(eKw - 1), z(O) =Vo. 

Standard regularity results on linear parabolic equations ([LSU], Chap. III, Theorem 7.1) 
show that v, z E L00 (QT). The difference g = z - v satisfies a.e. on (0, T) 

(gt, h) + a(V' g, V'h) + f3(g, h) = 'Y ( (eK - evK)w, h) Vh E H1, g(O) = 0. 

Testing with h = -g- = min(O, g) and taking into account that w ~ 0, we obtain 

~ ! llhll2 + all'Vhll2 + .Bllhll2 ~ 0, h(O) = 0. 

The usual argumentation yields g- = 0 , i.e., g ~ 0 . Choosing now K > llvoll 00 , we 
have for sufficiently small t 0 > 0 

llv(t) lloo :::; llz(t) lloo :::; K, 0 :::; t :::; to. 
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This implies VK = v on [O, to] . This means that v, w is a solution of (3.1) for 
sufficiently small T = t 0 > 0 . 

( vi) From u E L2(0, T; L2) and Vt E L2(0, T; L2) it follows that the function 
t--+ ll\7v(t)ll 2 is absolutely continuous on [O, T] . (SJe [B], Lemme 3.3, p. 73.) 

(vii) It remains to show that 

U = evw E L00 (QT)· 

By the arguments of [LSU], Chap.III, §7 this holds if 

2p IVvl E Lq(O, T; Lp), p > 2, q > -- . 
p-2 (3.6) 

In order to prove (3.6) we test the second equation of (3.1) by wP-l for p E [2, oo) and 
obtain after some calculation 

We estimate the right hand side similarly to (iii) using llvllLoo(QT) ::; K and the 
Gagliardo-Nirenberg inequality llJll~::; CllJllH111!11 as follows 

k Vte"wPdQ ::=; [[vtll (In e2•w2PdQ) 1/2 ::=; eK l[vtll llwP/211: ::=; CeK [[vt1i llwv/2llH' llwP/211 

and get 

! lle•/2w1'/f + 4(p; 1) k e" IV(wv/2)12 dO :S: C(p, K)[[vt[[ 11w1'1211H' llwv/211 

< C(p, K)llvtll (ll\7(wPl2)ll + llwP/211) llwP/211 

This shows that 

< C1(p) (l[vt[[2+1) llwP/2112 + 4(p-1) e-K llV(wP/2)112. 
p 

and by Gronwall's lemma we obtain 

sup f wP(t, ·)dO::; C, i.e., w E £ 00 (0, T; Lp)· 
tE[O,T] Jn 

Now, by a result of [Gr], for some ·p > 2 the mapping f--+ z defined by 

Zt - a~z + {3z = f, z(O) =Vo 

is continuous from Lp(O, T; Lp) to Lp(O, T; H:) and hence, by a result of [D] on Lp-
regularity of evolution equations, continuous also from Lq(O, T; Lp) to Lq(O, T; H:) for 
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qE [p,oo). Applyingthisresultwith f =r(u-l)=r(evw-l) yields vELq(O,T;H~) 
which implies (3.6) for suitably chosen q . · 
2. Uniqueness. Let (ui, vi), (i = 1, 2) be solutions to (1.4), (1.5) with the same initial 
values ( ui(O), vi(O)) = ( u0 , vo) . From 

! { u1(logu1 -1) + u2(1ogu2 -1) - (u1 + u2 ) (1og (u1; u2
) - 1)} 

2u1 2u2 = Uit log + U2t log ---
u1 + U2 U1 + U2 

we obtain with the help of the equations for ui 

it 1 [ 2u1 2u2 ] = u 1t log + U2t log dflds 
0 n U1 + U2 U1 + U2 

= - r { l [(\7u1 - U1 \7v1) · (U2 \7u1 - \7u2) _+ lo Jn U1 + U2 U1 

(\7u2 - u2 \7v2) · (~~ \7u2 - \7u1)] dflds 

We estimate the left hand side by Lemma 6.5 (Appendix). and the right hand side by the 
Schwarz inequality and the arithmetic-geometric mean inequality: 

< ~[[u1 + u21iL=(Q,) l i1Y'(v1 - v2)[12ds. 

On the other hand we have (using the absolute continuity of t--+ llV'v(t)ll2 ) 

t ' 
- 1' fo l ( u1 - u2)( V1 - v2)tdflds 

< l ( ~ [[u1 - u2[12 + [l(v1 - v2)tJ[2) ds 

< l ( ~ JJVUl + v'u211~11VU1 -v'u2112 + [[(v1 - v2)tJJ2) ds 

< ~
2 

llu1 + u2llL=(Q,) {11.Jiil-v'u21i2ds + {IJ(v1 - v2)1JJ2ds. 
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Combining this with the estimate above we get 

11 (JU]_ - ylu2) ( t) 11
2 + 11 \7 ( V1 - V2) ( t) 11

2 

Uniqueness follows now by Gronwall's lemma. D 

4. Estimates of Lyapunov functionals 

Let ( u, v) be a solution of (1.4) with u 2:: 0 . We introduce the two Lyapunov functionals: 

G(u, v) =lo [ ~2 

{u{logu - 1) + 1) + H aJV'vJ2 + f3 ( 1 + ;}2
)] dO, (4.1) 

F(u, v) =lo [ 2~ ( aJV'vJ2 + f3v2
) + u{logu-1) + 1- (u - l)v] dO. (4.2) 

Lemma 4.1. Let ~ < 1, k = ~ and denote by A the,smallest positive eigenvalue of 
the operator h--+ -allh + {3h under homogeneous Neumann conditions. Define 

Then the following estimate holds: 

02 = Co.Akr + 01.{3. 
a+kr 

d 
dt G(u, v) :::; -aG(u, v), where a= min(C1 , C2). (4.3) 

Proof. Because of u(log u - 1) + 1 2:: 0 for u 2:: 0 we have G ( u, v) 2:: 0 . Differentiation 
gives 

Using the first equation of the system (1.4) (in its weak form) we have 

lo Ut log u dO = - lo ('Vu - (u\i'v)) · \7 log u dO. 

With \7 ( y'u) = \7 ~ and \7 (log u) = "u u we get 
2vu 

lo Ut log u dO = -4 lo JY'( v'u) J2 dO +lo 'Vu· \i'v dO. 
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Using the second equation of the system (1.4) analogously we have 

a d 2 r 2 dt llVvll = - Jn Vt(Vt + {3v - -y(u - 1)) dO, 

hence, putting w = u - 1, 

~ ! 11Vvll2 + k {3(1 + ~)v Vt dfl 

- k [-v/ + 1' w Vt - ~~ ( al'\7vl2 + ,Bv2
• - 'YVW)] dfl. 

Testing appropriately ( h = 1, h = u) we get 

k ( Vt + {3v - -yw) d0 = 0 

and 

a k '\7u · '\7v dfl = - k u(vt + ,Bv - 'YW) dfl = k w('Yw - Vt - ,Bv) dfl. 

So we obtain 

:t G(u, v) = k [~ ( 'YW2 - 4aJ%1U)l2) + ( 'Y- ~) VtW - v/ - ~~ ( aJ'\7vJ2 + ,Bv2)] dfl. 

With the estimate 

I ( 'Y - ~) Vt wl ~ ~ v/ + ~ ( 'Y - ~) 
2 
w2 and (2.5): llwll2 ~ 4kll'\7(v'U)ll2 

we find 

d 
dt G(u, v) < -k [ ~ ( ( k~ r -1) 'Y

2
W
2 + ~ Vt

2 + ~~ ( aJ '\7 V J2 + ,8v2)] dfl 

< - k [ ~ ( (k~ r -1) 'Y
2

W
2 + Covt2 +~~ ( aJ'\7vl2 + f3v

2
)] dfl 

for 0 <Co ~ 1/2. The already used identity al1Vvll 2 + f311vll 2 = ('Yw - Vt, v) yields the 
estimate 

all'\7vll2 + .Bllvll2 ~ ~ llvll2 + ~ ( 'Y2llwll2 + llvtll2) 
for any A. > 0 . We take for A. the smallest positive eigenvalue of the elliptic opera-
tor h ----+ -aflh + {3h under homogeneous Neumann conditions. By the well-known 
variational characterization of this value we have 
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and from the foregoing estimate 

all'Vvll2 + .Bllvll2 
:::; ~ (r211wll 2 + llvtll2

) . 

This gives for the Lyapunov functional 

! G(u, v):::; Jn { ( C0 - ~ [ (;J -1])72w2 
- ( ~~ + C~A) ( al'Vvl2 + ,Bv2

)} dn. 

With the choice 

02 = CoAk! + 2a{3 
a+k1 

and using the elementary inequality u(logu - 1) + 1 ::; (u - 1)2 = w2 for u ~ o (see 
Appendix, Lemma 6.3) we obtain 

! G( u, v) :::; - Jn [ C1 ~
2 

(u(logu - 1) + 1) + ~2 
( al'Vvl2 + ,B(l + k~)v2)] dn. 

Taking a= min(C1 , C2) ends the proof.D 

· Theorem 4.2. Under the conditions of Lemma 4.1 holds 

G(u(t), v(t)) ::; e-at G(uo, vo). ( 4.4) 

Moreover, exponentially 

u(t) ---7 u* = 1 in Lif!, v(t) ---7 v* = 0 in H 1 n Lw as t-+ oo. (4.5) 

Proof. The decay result follows directly from ( 4.3). A simple calculation shows that 

Jn ~(lu - ll)dn + llvll~1 ::; cG(u, v). 

Indeed, 

llvll~1 =Jn (l'Vvl2 + v2)dn:::; . ( o:G~, v) a ) 
mm 2' 2(1 + k1) 

and, because of ~(lu - 11) :::; u(logu - 1) + 1 (see Appendix, Lemma 6.4), 

{ ~(lu - ll)dn::; k
2 

G(u, v). 
Jn a 

Hence ( 4.5) follows from Lemma 4.1 and Lemma 2.4.D 

The following result states a sufficient condition for global boundedness of the trajecto-
ries t -+ ( u( t), v( t)) defined by the solutions of (1.4), (1.5) and excludes blow-up in 
appropriate norms. 
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Theorem 4.3. Suppose 

Then 

1101 < L 
4ae 

llY'v(t)ll + llu(t)ll<i> ~ C < +oo for all t ~ 0. 

Moreover, for 1 ~ p < oo there are constants c1 = c1 (p), c2 = c2 (p) such that 

and a nondecreasing finite function t ~ c( t) such that 

llu(t)lloo + llv(t)lloo ~ c(t). 

(4.6) 

Proof. This theorem is is a simple compilation of assertion (4.10) of Lemma 4.4 and 
Lemma 4.5 - Lemma 4.8 proved below. D 

Before proving these lemmas we give some comments on the role of the conditions men-
tioned in Lemma 4.1 and ·Theorem 4.3. 

Remark 4.1. The condition 
(4.7) 

of Lemma 4.1 and the condition 
(4.8) 

of Theorem 4.3 are two smallness conditions to control the large time behaviour of the 
dynamical system (1.4), (1.5). Both conditions can be satisfied if the initial value U0 

has a sufficiently small L1-norm (see (1.3)). For domains we consider one can show that 
(see Appendix, Lemma 6.2) 

hence the first condition ( 4. 7) is more restrictive. 

Remark 4.2. Numerical experiments give some hints that the second condition (4.8) 
may be sharp, i.e., violating this condition gives blow-up of the solution in finite time. In 
the e;xperiments we used the following construction. Let be n the rhombic domain with 
an acute opening angle e ~ 7r /2 defined by 

!1 = { (x, y) : 1:1 + l~I < l, a = tan(0/2) b = 1 } . 
2 ' J2tan(e/2) 

We have IOI = 1 and with R2 = a2 + b2 we find R ~ 1 for the side length of the 
rhombus. With a= 8=x=·1 we get from (1.3) 'Y = Uo ' hence C2 = Uo/(48) for 
the left hand side of (4.8). We take the tip (0, b) as the origin for polar coordinates 
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(r, r.p) with the ray {(x, y): x = 0, y:::; b} as polar axis r.p = 0. For the initial element 
uo = Uo/U o of u in (1.4) we choose the radially symmetric function 

8(1 ± u) ( r2) Uo = Uo(r) = u exp ---;; (4.9) 

where 0 < u < 1 . The corresponding initial v0 of v is chosen as the solution of 

.6.vo + 1(uo - 1) = 0 in n, avo = 0 on an . an 
Simple estimates show that 

0/2 00 

8(1 ± ) 
00 

( 2) Uo = 1n Uo dO.::::; J J Uo(r)rdrdcp = IT IT 8 J exp - : rdr = 48(1 ±er) 
-0/2 0 0 

and 
0/2 R 

Uo ~ j j Uo(r)rdrd\Q= 48(1± er) [1- exp (-~
2

)]. 
-0/2 0 

With the obvious inequalities 

1- exp (-R
2

) ~ 1- exp(-~) ~ _l_ 
u u l+u 

we obtain for the positive sign in ( 4.9) a violation of condition ( 4.8): 

Uo 
K,2 = 48 > 1, 

whereas for the negative sign we have 

Uo 
K,2 = 48 < 1. 

The numerical experiments show that even for quite small values of u the switching 
between the signs in ( 4.9) leads to a dramatic change in the behaviour of the solutions. 
For the positive sign we make the observation that 

F( u(t), v(t)) ---+ -oo as well as 1n u(t) logu(t) dD.---+ oo in finite time, 

whereas for the negative sign the same quantities remain bounded. 
Compared with rigorous results condition ( 4.8) is sharp at least up to a factor 2 . In fact, 
it has been proved recently ([HV2]) that radially symmetric solutions to (1.4), (1.5) in a 
disk blow up in finite time if K,2 > 2 . 

As the following Lemma 4.4 shows, the functional F decreases with increasing 
time for any positive constants a, (3, I and remains bounded from below for constants 
satisfying the conditions of Lemma 4.1. 
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Lemma 4.4. We have 

where 

d 
dt F(u, v) = -D(u, v) ~ 0, 

D(u, v) = llvtll
2 
+ f ujV'(log u - v)l 2d0. 

"! ln 
For ~ < 1 there is a constant C > 0 such that 

F( u(t), v(t)) > -C for all t 2:: 0. 

Proof. Differentiation gives 

!F(u, v) = 2~ ! llVvlJ 2 + /n [ ~ VVt - (u -1) Vt +(log u - v) Ut] dO. 

Since (see the proof of Lemma 4.1) 

; :t 11Vvll2 = - /n Vt (vt + (3v - 7(u- l)) dO, 

we obtain 

!F(u,v) = /n [- ~v? +(log u-v) Ut] dO .. 

Using the first equation of the system (1.4) (in weak form) 

(4.10) 

(4.11) 

/n (log u - v) Utdfl = - /n V'(log u - v). ·('Vu----; u'Vv)dO = - /n ulV(!og u - v)l2dn 

proves the first part of the lemma. 

To prove the second part, we use Young's inequality (2.6) and an estimate from the 
Appendix (Lemma 6.4) to get· 

ju - ll lvl ~ 'll(lvl) + q>(ju - 11) ~ w(jvl) + u(Iogu - 1) + 1. 

Inserted into ( 4.2) this gives 

F(u, v) ~ /n [ 2~ (aJVvl2 + (3v2
) - W(JvJ)] dO ~ /n (- exp(JvJ))dfJ. 

From Corollary 2. 6 follows 

/n exp(Jv(t, ·)J)dn ~en exp ( 8~ /n J'Vv(t, ·)J2d0). 

By Lemma 4.1 we have 

G(u(t), v(t)) :::; G(u0 , v0 ) =A for t 2:: 0, 

hence 

/n IVv(t, ·)J2dn ~ 2: and consequently /n exp(Jv(t, ·)J)dfJ ~en exp ( 4: 8 ) =C. 

It follows the assertion F(u(t), v(t)) 2:: - C for all t 2:: 0. D 
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Lemma 4.5. For t 2:: 0 we have 

f(v(t)) ~ F(u(t),v(t)), (4.12) 

where 1 evdn 
f(v) = 2~ fn (afVvJ2 + {3v2

) dn - JnJ log n JnJ . (4.13) 

Proof. For w E H 1 (n), v E H 1(0) with w 2:: 0, w = 1, v = 0 we consider the 
functional 

g(w, v) =In[ w (logw -1) + 1- (w - l)v] dO. 

We take w* = exp( v - c) and with w* = 1 we obtain 

1 evdn 
c =log n IOI and g(w*, v) = -c IOI.· · -··· 

For this element w* we can show the minimum property g( u, v) 2:: g( w*, v). Indeed, we 
have 

g(u, v) - g(w*, v) - k[ u logu - w* logw* - (u - w*)v] dO 

fn [f logsds - (u -w*)(logw* + >.)] dn 

r (!.u log .!.__ ds) dn 2:: 0 Jn w* w* 

which proves the Lemma. D 

Remark.4.3. Assertion (4.10), (4.11) of Lemma 4.4 and Lemma 4.5 hold independently 
of the dimension N . 

,1n1 
Lemma 4.6. If 4ae < 1 , then 

JJVv(t)JJ + [[u(t)i1<1> + t D(u(s), v(s)) ds :::; C < +oo for all t :'.': 0. 

Proof. From (4.10), (4.12) follows 

f(v(t)) < F(u(t), v(t)) = F(u0 , v0 ) + t :
8 

F(u(s), v(s)) ds 

- F(uo, vo) - t D(u(s), v(s)) ds:::; F(uo, vo) = C1. 
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By estimate (2.9) we have 

log (fo ev(tl dO.) ::; log en + 8~ llY'v(t)ll2 

and with ( 4.13) 

C1 2:: f(v(t)) > 
2
a ll\7v(t)ll 2 

- IOl{logcn + 
1
8 

ll\7v(t)ll 2 +log IOI} ? 8-
and, collecting constants 

C1 > f(v(t)) 2:: (~ - I0
9
1) ll\7v(t)ll2 - C2. 

2? 8-

With ( 4.6) we find 
ll\7v(t)ll 2 :s; C. 

Moreover, from ( 4.10) - ( 4.12) we have 

l D(u(s), v(s)) ds = F(uo, vo) - F(u(t), v(t)) ::; F(uo, vo) - f(v(t)) ::; 2Ca. 

From the definition ( 4.2) we conclude 

fo[u(t)( logu(t) - 1) + l] dO < F(u(t), v(t)) + k (u'(t) - l)v(t) dO 

< F(uo, Vo)+ r ~lu(t) - lll2v(t)I dO. Jn 2 
Using Lemma 6.4, Young's inequality (2.6), (2.9), and (4.14) ·we can estimate 

k if!(lu(t) - 11) dO. < C1 + k [ if!(~lu(t) - 11) + W(l2v(t)I)] dO. 
1 . 

< - { <P(lu(t) - 11) dO + C4 , hence 
2 Jn k <P(lu(t) - 11) dO < 204 . 

The monotonicity and convexity of <P and the ~2-condition (2.7) give 

( 4.14) 

k if!(lu(t) I) dO. < kif! G(2lu(t) - ll + 2)) dO. ::; ~ foli!!(2lu(t) - 11) + if!(2)] dO. 

< ~ k if!(lu(t) - 11) dO. +Cs ::; kC4 +Cs. 

With the estimate (see [KJF], Section 3.6) 

llu(t)ll<t> ::; k ~(lu(t)I) dfl + 1 

we finish the proof. D 

In the following we use the properties of the Lyapunov functional to find growth estimates 
(with respect to time) of integral norms of the solution ( u, v) with u 2:: 0 . We assume 
/3 = 0 - to simplify the calculations. 
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Lemma 4.7. Let 

[[u(t)[[., + l [[vt(s)[[2 ds::; Co < +oo for all t?: 0. 

Then there is a constant C1 such that 

l [[(u(s)[[ 2 ds ::; C1(l + t) for all t?: 0. 

Proof. We multiply the equation for u by log u and integrate over n . A calculation 
as in the proof of Lemma 4.1 and integration by parts gives 

k Ut logudf! = ! k u (logu - 1) d!1 = - k (4 ['V(..fii,)12 +\Tu· \lv) d!1. 

Using the equation for v we get the identity (written as scalar product) 

d . 1 
-d (u, logu - 1) + 4 llV(vu)ll 2 = - (T (u - 1) - vt, u) t a 

and, since u 2:'.: 0 , the estimate 

! ( u, log u - 1) +4 [[\!( ..fii,) [[ 2 
::; ~ ('y u - Vt, u) ::; C (lluf [2 + [[vtf [2) ( 4.15) 

with an appropriate constant C (which, like c , may change during the proof). 

Put w = u + 1, Zv = w (logwy. Then 

For the indices v = 0, 1 we obviously have (see the proof of Lemma 4.6) 

1lwll1 :::; c, llw logwll1 :::; k ~(u) dO + c:::; C and consequently 

To estimate the L4-norm we use again the Gagliardo-Nirenberg inequality, i.e., for 
f E H 1 (n) and 4 > q 2:'.: 1 there is a constant c = c ( q, n) such that 

llf 11! :::; c II! ll~~q II! 11:. 
So we can continue by estimating 

( 4.16) 

21 



We use Poincare's inequality 

and remark that, by definition, 

( 
(1 )11-4) 1/4 

z11 1l4 = w logw og; d "( 1/4) - \lw ((log w y-4) 1/4 ( l· ) an v z11 - 4 w3 v + og w . 

For k > 0, f3 > 0 obviously holds 

(logw)k < (· k )k sup -
w~l wf3 - (3e (4.17) 

and so we can estimate 

[( 4) 11-4] 1/4 ( ) 11/4 ( ) 11/4 ' 
llz11114 ll1 ~ v ~ llw logwll1 ~ C ; (ll<I>(u)ll1 + c) ~ C ; · 

To estimate the gradient part in Poincare's inequality we remark that 

and obtain 

IV'(zv114)1:::; 2 IV'Vill (v (log;/~/4-1 

+ (lo!~t) · 
Generous use of estimate ( 4.17) gives 

IV'(zv114)1:::; C (;t4 
IV'Vul, hence llzv1/4 llH•:::; C (;t4

(llV'Villl+1). 
In the same way we get 

(logwyq/4- 1 (logwyq/4- 1 
llz}/411~ = llw log w wl-q/4 111 < sup 1- /4 llw log wll1 

w~l W q 

and by ( 4.17) 

11q/4-1 ( ) 11q/4-1 
llz11114 llq ~ C (~) _q_ . 

q e 4-q 

We use these estimates in ( 4.16) and find 

oo 1 ll-1 ( ) 11q/4-1 
llull 2 ~ c +I: c(q, n) I cs-q (~) ~- (ll"Vv'u II+ 1)4-q 

11=2 v. e 4 q 

and, with the help of Stirling's formula 

1 (v) 11 1 1 (v) 11
-1 e - - < -- or < for v 2:: 1 v! e - .J2iW v! ; - .J'iiv3/2 
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by absorbing the constant factor e/ v'2!ff · into the coefficients c( q, 0) 

llull2 :::; c + f c(q, n) cs-q_!_ (-q-) vq/4-1 (llV\/U II+ 1)4-q. (4.18) 
v=2 Vv 4 - q V 

By Young's inequality with a= 2/(4- q), {3 = 2/(q- 2) (A> 0 will be chosen later) 
we have 

we get 

(llV' fa II + 1)4-q :::; 4 - q (~) 2/(4-qJ (llV\/U II+ 1)2 + (q - 2) 1 . 
ll 2 v . 2 ,X2/(q-2) 

We put q = 2 ( 1 + ~) , then 2 < q :S 3 for v ~ 2 and from the foregoing estimate we 
obtain 

__!__ (-q-) 7--l (llV' fall+ 1)4-q 
v0 4-q ll . 

v-1 [ ( ) _!!._ ] 
1 v + 1 -2 1 .X v- 1 1 

:::; - (-) (1- -) - (llV'vfull + 1)2 + -y0 v-1 v v v.Xv 

C .X ~ 1 
[ 

v ] :S ylv (;:;) (llV\/U II + 1)2 + v>.• 

with an appropriate constant C. We can choose a common bound for c(q, 0) c5-q and 
eventually get from ( 4.18) (taking A:::; 1 and again modifying the constant C) 

Let 1 2:: c > 0 be given. Split the right hand side according to llull2 :::; C + T1 + T2 

where 

In the term T1 take ).. = ( C e ) ; an appropriate choice for v0 will be made + 1 Vo 
immediately. We obtain 
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which can be majorized by 

In the term T2 take ,\ = 1 and estimate 

00 1 00 1 
T2~CllVvull 2 L 3/2+CL 3/2 

llQ v 1 v 

Now we choose v0 so that 
~ 1 1/4 

C L....J 5/4 ~ cVo . 
llQ v 

This is possible because 

00 
1 

00 

dx 4 ( 2 ) 1
/ 

4 
-< -= <4 -~ v5/4 - j x5/4 (vo - 1)1/4 - Vo ' 

0 110-l 

and ( 4.20) is satisfied for v0 ~ 32~ . Using this- in (4.1~) we find 
c 

2 00 1 Cllv\/u 112 00 1 2 
T2 ~ CllVv'Ull L 5/4+1/4 +c ~ 1/4 L 5/4 +c ~ cllVv'Ull +c 

vo V Vo vo V 

and, finally, 
llull 2 ~ 2cllVv'Ull2 + C(c). 

(4.19) 

(4.20) 

( 4.21) 

We use this estimate with an appropriate 1 ~ c > 0 in (4.15) and by the assumption of 
the Lemma we get 

l 11\7/:;;r;)112 

ds :S C(l + t) and with ( 4.21) l flu(s)ll 2ds ::; C(l + t) 

which finishes the proof. D 

Lemma 4.8. Suppose 

l tir(u(s) - 1) - Vt(s)ll 2ds::; C(l + t) for all t ~ 0. 

Then there are constants c1 = c1 (p), c2 = c2 (p) and a nondecreasing finite function 
t--+ c(t) such that 

llu(t)llP ~ C1 exp(c2t) for 1 ~ p < oo, llu(t)lloo + jjv(t)lloo ~ c(t). 

Proof. We multiply the equation for u by p up-l and integrate over n : 
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Put w = uPl2 and remark that 

and 

p(\luP-1, u\lv) = p(p - l)(V'v, uP-1\lu) = (p - l)(V'v, \luP). 

With the equation for v we get 

! llwll2 + 4(p; 1) ll'Vwll2 = (p: 1) ('y(u - 1) - Vt, uP). 

We put z = -y(u -1) - Vt, w = l~I In wdQ and estimate 

- (p - 1) (z, w2) = (p - 1) (z, w2 - w 2) 
a a 

- (p- l) (z, (w - w)2 + 2w(w - w)) 
a 

< (p:l) {llzllllw-wll~+2lwlllzllllw-wll}· 
We use again Gagliardo's and Poincare's inequality 

llw - wll~::; CjjV'wllllwll, llw - wll ::; CllY'wll and lwl::; Cllwll 
and obtain with Young's inequality 

< c(p- l) llY'wll llwll llzll 
a 

< 2(p - l) llY'wll2 + C(p, a)llwll2llzll2-
p 

This leads to the typical constellation of Gronwall's Lemma: 

:tllwll2::; Cllwll211zll2 or llw(t)112::; llw(O)ll2+Cl11w(s)ll2llz(s)ll2ds 
which gives 

llw(t)ll2 ::; llw(O)ll2 exp (Cl 11z(s)ll2ds) 
·and, with the assumption 

{ llz(s)ll2ds::; eo(l + t) 
the estimate 

llu(t)ll~ = llw(t)ll2::; llw(O)ll2 exp (coC(l + t)) = c1 exp (c2t). 
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From this the L00-boundedness of v follows from standard results on linear parabolic 
equations (see [LSU], Chap. III, Theorem 7.1). Moreover, by the same arguments as used 
in the last part of the proof of the local existence theorem it follows the L00-boundedness 
of u. D 

The foregoing estimates give some hints concerning the blow-up behaviour for the 
case that the Lyapunov functional F has no lower bound. 

Proposition 4.9. If there is a solution (u, v) such that 

F(u(tn), v(tn))-+ -oo as tn-+ to, then llu(tn)ll ~ oo. 

Proof. Because of v(t) = 0 we have by Poincare's inequality llv(t)ll :::; CllVv(t)ll and 
consequently 

r u( t)v( t)dn 2:: --'..!._II Vv( t) 11 2 
...:.. C( 'Y) llu( t) 11 2

. Jn 2"( 

Using this and 

r u(t) logu(t)dn 2:: -~ Jn e 

we get in ( 4.2) 

F(u(tn), v(tn)) ?: -C(1)1iu(tn)ll\ i.e. llu(tn)ll2 ?: - C~'Y) F(u(tn), v(tn)) -+ oo. 

So we have blow-up of llu(tn)ll as tn-+ to. 0 

5. Stationary states 

The condition K 1 < 1 by Theorem 4.2 ensures the convergence of trajectories (u(t), v(t)) 
to the trivial (homogeneous) stationary state ( u* = 1, v* = 0) as t -+ oo . In this 
section we show that the condition K2 < 1 implies convergence of (at least) subsequences 
(u(tk), v(tk)) to in general non-trivial stationary states (u*,v*) as tk-+ oo. To this 
we need the following result. 

Lemma 5.1. Suppose 

llv(t)ll :::; c for all t 2:: 0. 

Then 

II exp(-v(t))lloo :::; C for all t 2:: 0. 
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Proof. We use the De Giorgi-technique. For k 2:: ko 2:: 0 with k0 > llvolloo we put 

wk = (v+kt =max(-(v+k),O) 

and denote by nk the set : 

Ok= Ok(t) = {x E 0: -(v(t,x) + k) > 0 a.e.} = {x E 0: v(t,x) < -k a.e.} 

Obviously, Oz(t) c nk(t) for l > k and all t 2:: 0 , hence IOzl ~ !Oki ~ IOI , i.e. !Oki 
is a non-increasing function of k, Vt 2:: 0. Testing the equation 

Vt - afl. v + {3v - 1( u - 1) = 0 

with h = -wk = min ( v + k, 0) we obtain 

(vt, h) + a(\i'v, \i'h) + {3(v, h) = 1(u - 1, h) 

or, using well-known rules for calculus in Sobolev spaces (see e.g. [KSt],[LSU]), 

~dd llwkll 2 + al1V'wkll 2 + f3 [ v(v + k) dO = 'Y [ (l - u)wk dn. 
2 t lnk lnk 

Taking into account that by u 2:: 0, wk 2:: 0 we have 

[ v ( v + k) dO 2:: 0' [ ( 1 - u) Wk dn ~ [ Wk dn, lnk lnk lnk 
we estimate 

By HOlder's inequality 

in. Wk dn :S (in. w: dn) 
114

1nk13
/

4 :S ellwkll! + C(e)lnk13t2 

combined with Gagliardo-Nirenberg's inequality 

we find (after the usual modification of constants) 

1 d 2 dtllwkll 2 + allY'wkll 2 ~ c(llwkll 2 + llY'wkll 2
) + C(c,/)IOkl312

. 

Again by Holder's and Gagliardo-Nirenberg's inequality we have 

1lwkll 2 ~ llwkll~ IOkl 315 and llwkll~ ~ Cllwkll~~llwkll 415 , i.e. 

llwkll 2 ~ Cllwkll~~llwkll 415 IOkl 315 , 

and with Young's inequality 

1 5 5 6/5 
ab ~ 2 aP + C(p, q) bq for p = 3' q = 2' a= 1lwkllH1 
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we obtain 

llwkll 2
::; ll\7wkll 2 + Cllwkll 2 10kl312

. 

On the set nk obviously holds lwkl ::; lvl and consequently llwkll ::; llvll ::; C by 
assumption. So we have 

llwkll 2 
::; ll\7wkll 2 + cinkj 3

/
2 (5.2) 

We use this estimate in (5.1) and choose e > 0 appropriately to get 

!ffwkff2 + a[f Vwklf 2 :S:: Cfnkf3f2 

or, again with (5.2), 

:tlfwkll2 + alfwkll2 :s:: c1nkl 312
. 

From this differential inequality we obtain 

· ffwk(t)ll 2 :S:: ffwk(O)ff 2 exp(-at) + l exp(-a(t - s))[Ok(s)[ 312ds. 

As assumed at the beginning of the proof we have llwk(O) II = 0 for k ;::: ko , so it follows 
that 1 . . 

llwk(t)ll 2
::; -(1- e-at) sup !Ok(t)l3/ 2 ::; (1/a) sup IOk(t)l 3

/
2

• (5.3) 
a O::::;t<oo O::::;t<oo 

On the other hand, for l > k ;::: k0 holds 

(5.4) 

This can be seen as follow: We have 0 1 c nk and consequently 

Now on 0 1(t) = {x E 0: v(t,x) < -l a.e.} we have v + k < k - l < 0 from which 
(5.4) follows. From the estimates (5.3), (5.4) we obtain 

(l - k) 2 sup IOz(t)I ::; (1/a) sup IOk(t)l312 

09<oo O::::;t<oo 

or, putting 

<I>(k) = sup 1nk(t)l1l2 , 
09<oo 

the key estimate of the DeGiorgi-technique 

(l - k) il>(l) :S:: Ja i[>312 (k) for l > k 2: k0 

follows. Since the function k -+ <I>(k), k ;::: k0 is obviously non-increasing, we conclude 
(see e.g. Lemma B.l. in [KSt]) that there is a sufficiently large k1 such that <I>(k1 ) = 0. 
This means that for all t ;::: 0 we have v(t, ·) ;::: - k1 a.e. in n and the Lemma is 
proved. D 
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Theorem 5.2. Let 

'Yin! < i. 
4aE> 

Then there exist a sequence tk ----+ oo and functions u*, v* such that 

Moreover, it holds 

* IOlev* u = ---,----l ev* dO 

and v* is the solution of the boundary value problem 

-a~v* + {3v* = 'Y(u* - 1) on n, v. "\Jv = 0 on an. 

Proof. Function arguments are sometimes omitted. 
( i) We define w = exp(-v) u . Note that by L~mma 5.1 

u!"V(logu - v)l 2 = 4evl"Vvfwl 2 ~ C!Vvfwl 2• 

(ii) For e > 'O we set 

Ie(t) = t(llvtll 2 +!IV vfw~l 2 ) + l (evl"V vfwl 2 + gu2)d0. 

By Lemma 4.6, Lemma 4.7 and (5.6) we have 

l Ie(s) ds ~ C2 (1 + t). 

Hence there exists a sequence tk ----+ oo such that 

Indeed, the assumption Ie(t) > 2 Ge Vi~ t 0 implies the contradiction 

(iii) Now we find 

fne"1Vv'wl 2dfl - ~fn {41Vv'ul2 -2\1u·\1v+ul\1vl2}dn 
> !IV vull 2 

- (1/2) fn vu· "\JvdO 

- 11Vv'ull2 + (1/2a) fn {vt + f3v - -y(u - l)}ud!1 

(5.5) 

(5.6) 

(5.7) 

> llVvull 2 
- ~(c:llvtll 2 + C(c:)llull 2

) - 2
13 (llull 2 + llvll 2

) - 21' llull 2
-2a a a 
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We choose e = 2a and remark that by Lemma 4.6 llVv(t)ll ~ C and, using v(t) = 0 
and Poincare's inequality, also llv(t)ll ~ C Vt 2:: 0. We conclude 

and, taking g = C(a, {3, 1) , 

(t - 1) llvtll 2 + t llVv'wll 2 + llVv'ull2 ~ Ie(t) +c. 
By (5·.7) we have along the sequence {tk} 

and consequently 

llvt(tk)ll + llvr y'w(tk)ll --+ O as k---+ oo 

and, again with Lemma 4.6 

(5.8) 

(iv) By the compactness of the imbedding of H 1 (0) into Lp(n) for 1 ~ p < oo we 
can assume without loss of generality that 

which has the consequence that 

w(tk) = exp(-v(tk)) u(tk) -+ exp(-v*) u* = w* in L2 (0) as k-+ oo. 

Indeed, we can estimate 

llw(tk) - w*ll ~ II exp(-v(tk)) (u(tk) - u*)ll + ll(exp(-v(tk)) - exp(-v*)) u*ll· 

By Lemma 5.1 and (5.9) the first term on the right hand side goes to zero as k-+ oo. 
To show the same for the second term, we use an idea from [KW]. Put vk = v(tk) and 
estimate 

With let - ll ~ ltl eltl we get from Holder's inequality 

lle-vk - e-v* 11: In le-vk - e-v* 14 dO = In e-4v* le-(vk-v*) - 114 dO 

< In e-4v* e4lvk-v*l Iv~·_ v*l4 dO 

< (/n e-1av* dO.) 1/4 (/n el&l••-•*ldn) 1/4 (/n lvk - v*lsdn) 1/2. 
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The first two factors on the right hand side are bounded by Corollary 2.6 and the last 
one tends to zero by (5.9) and the compactness of the imbedding of H 1(0) into L8(0) . 
Another consequence of (5.8) is 

'V v1Vf* == 0, i.e. w* == exp(-v*) u* == C 

where the constant follows from u* == 1 and gives 

(5.10) 

The Theorem follows now from (5.8), (5.10) by taking the limit k --+ oo in the (weak 
form of the) v - equation. D 

Proposition 5.3. Consider the rectangle n == {(x,y): 0 < x < a,0 < y < b} with 

b 
27ra a<-

'Y 
and 

7r2 a 
a2 > > 0. 

27 (log4 - 1) - f3 

Let be ( u(t), v(t)) the solution of (1.4} satisfying the initial condition 

1rX u(O, x) == u0 (x) == 1 +cos - , 
a 

1rX v(O, x) = v0 (x) =cos-. 
a 

(5.11) 

Then there exists a sequence tk--+ oo such that (u(tk), v(tk)) converges to a non-trivial 
steady state ( u*, v*) . 

Proof. With the identity 

la" (1 +cos x) log(l +cos x) dx = 7r(l - log 2) 

and the conditions (5.11) (the first one comes from K,2 < 1 (see (4.8)) for the rectangle 
1n1 = ab, e = 7r/2) we find 

F(uo, vo) < 0. 

By Lemma 4.4 and Theorem 5.2 we have 

F(u*, v*) ~ F(u(tk), v(tk)) ~ F(uo, vo) < 0 = F(l, 0). 

Consequently, the steady state ( u*, v*) cannot be the trivialstate (1, 0) . D 

Remark 5.1. This situation is quite different from the case of homogeneous Dirichlet 
boundary conditions considered in [DN]. 
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Remark 5.2. The nonlinear operator on the right hand side of (5.5) 

'

Olev 
v ---t R( v) = - 1 In e"d!1 

has at v = 0 the formal derivative 

R'(v) h = ~ R (v + sh)ls=O = h, 

so we obtain by formal linearization of (5.5) at v = 0 the linear boundary value problem 

-ab.h + {3h = 'Y h on n, 8h av = 0 _on r. 

For the rectangle n the smallest non-trivial eigenvalue of the operator· h ---t -a!:ih+f3h 
under homogeneous Neumann boundary conditions is 

;\1 = (max7a,b)r +f3. 

From the second condition (5.11) follows .. 

At . 
'Y > 2 log 4 - 1 > Ai., 

i.e., we are in a constellation where (5.5) may show bifurcation. 

6. Appendix 

Here we sketch the proofs of several estimates used above. 

Lemma 6.1. Suppose n = (0, a) x (0, b) . Then for h E Hi holds 

llhll2 < 2{IOl(h)2 + A(llhxlli + llhylli)h where 

A _ ~ (~+~+ (~-~r +16). 
Proof. Since C1(0) is dense in Hi ' we assume h E C1(n) . There are mean values 
0:::; Xm(Y) :::; a, 0:::; Ym(x) :::; b such that 

. 1 Ina h(xm(Y), y) = - h(x, y) dx, 
a o 

i rb 
h(x, Ym(x)) = b lo h(x, y)dy. 
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Now we get 

h(x, y) I La 1x - h(s, y) ds + hx(s, y) ds 
a 0 Xm(Y) 
l 1b 1.y -b h(x,s)ds+ hy(x,s)ds 

0 Ym(x) 
and consequently 

In h2dn =In h(x, y)h(x, y) dO = -Jt Un hd0)2 + 

+ { [ ~ fa h ds [Y hy ds + _bl {b h ds r hx ds + {x hx ds fY hy ds] d0. Jn a Jo }Ym(x) Jo lxm(Y) lxm(Y) }Ym(x) 

We estimate 

In h2dn::; IOlh2 + 

+ k [~ f lhl dx f lhyl dy+ ~ f lhl dy f lhzl dx + f lhzl dx f lhyl dy] d(l 

-2 r [i 1 ] - IOlh +Jn lhl dO ~ llhyll1 + b llhxll1 + llhxll1llhyll1 

< IOlh2 + ~ [11hll 2 + ~llhyll~ + ~llhzll~ + 4llhzll1llhyll1] 

< IOlh2 + ~llhll 2 +A (llhzll~+ llhyllD, 
where A is an appropriate constant, and obtain 

which proves the Lemma. To show that A can be chosen "optimal" as indicated, we put 
X = llhxlli, Y = llhyll1, k = a/b and take 

kX2 + k Y2 + 4XY 
x2+y2 A= sup 

X2:0,Y2:0,x2+y2,eo 

By homogeneity we have with X = cos a, Y = sin a : 

A = sup {kX2 + _kl Y2 + 4XY} = sup {k cos2 a+ -k
1 

sin2 a+ 4 cos a sin a} . 
x2+y2=1 05.o.5.7r/2 

A simple exercise in calculus gives the indicated value for A . D 

Lemma 6.2. For the constants K 1, K 2 of Remark 4.1 holds 
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Proof. For the rectangle and the disk the Lemma can be proved by elementary construc-
tions. For the general case we use ideas from [ChY], [Gi]. We have (see Remark 2.1) with 
the best imbedding constant P, · , 

K2 = P, < llhlli,1 
K1 48 - 48llhll2 (6.1) 

for h E W, h =I= 0 . We show that for any e > 0 we can construct a function h such 
that 

llhlli,1 
48llhll2 ~- 1 +e. (6.2) 

Let P E 80. be a corner point where the interior angle 8 is minimal. For c5 > 0 denote 

Ba= {x En: Ix - PI :::; c5}, Aa =Bann, La= l8Aa n n1. 
If c5 > 0 is sufficiently small, La is the length. of the circular arc belonging to n 
centered in P . We define 

where 

-{o xEO.\Aa 
cp As ( x) · - · . 1 x E Aa · 

is the characteristic function of Aa . This function has bounded variation (see [Gi], 
Example 1.4), i.e., ha E BV(O.) and 

fn hodn = o, Jlholl 2 = :~~~ (i -1~11),. fn IDhol =I~~· 
where Jn ID f I is the total variation of D f for the function f . For sufficiently small 
c5 > 0 we have 

Consequently, for e > O' there is a c5 > 0 such that 

On the other hand, we can for ha E BV(O.) find a sequence {hai} of smooth functions 
in 0 00 (0.) such that (see [Gi], Theorem 1.17) . 

Jim r lhaj - hal dO. = 0, 
J-+OO Jn Jim r IDhajl dO. = Jim r jgradha;I dO. = r IDhal· 

J-+oo Jn J-+oo Jn Jn 
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We can assume In h6jdn = 0 and choose as the appropriate function h in (6.2) an 
approximating function h6i for which 

(/n lgrad hi dQ) 2 

llhll2 ~ 28(1 + c-). 

With the estimate llhll1,1 ~ J2 In lgrad hi dO the Lemma is proved. D 

Lemma 6.3. For u ~ 0 holds u(logu - 1) + 1 ~ (u - 1)2 . 

Proof. Consider the function 

f(u) = (u - 1)2 - u(logu - 1) - 1 

for u ~ 0 . 0 bviously, 

f(l) = 0, f(O) = lim f(u) = 0, f'(u) = 2(u - 1) - logu. 
u-tO 

For u ~ 1 we have 

ru dt ru 
log u = Ji t ~ Ji dt = u - 1 ~ 2( u - 1), 

hence f'(u) ~ 0 for u ~ 1, i.e. f(u) ~ /(1) = 0. 
For 0 < u ~ 1 put u = 1/w and consider 

Because of 

1 
f(l/w) = 2 (w logw - w + 1) on w ~ 1. 

w 

w log w - w + 1 = 1w logs ds ?:: 0 for w > 0 

the Lemma is proved. D 

Lemma 6.4. The Young function <I> : s --+ (s + 1) log(s + 1) - s is monotone and 
convex for s ~ 0 and satisfies 

<I>(ls - 11) ~ s(log s - 1) + 1 , <I>(.Xs) ~ .X<I>(s) for s ~ 0, 0 ~ A ~ 1. 

Proof. Monotonicity and convexity are obvious. Consider the function 

h(s) . s(logs-1)+1-<I>(ls-11). 
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For s ~ 1 we have h( s) = 0 and the assertion is trivially correct. 
For 0 :::; s < 1 we have Is - 1 I = 1 - s and 

h(s) =slogs+ 2 - 2s - (2 - s) log(2 - s), h'(s) = log(s(2 - s)), 

hence h'(s) < 0 for 0 < s < 1 because of s(2 - s) = 1 - (1 ~ s)? < 1 . Consequently, 
by the mean value theorem · 

h( s) - h( 1) = h' ( 'f/) ( s - 1) >. 0' 0 < s < 'f/ < 1. 

So we get h( s) > h(l) = 0 which proves the first estimate. 
Consider 

g(s) = A<P(s) - <P(As) = A(s + 1) log(s + 1) - (As+ 1) log(As + 1). 

We have . ., ' 

g(O) = 0 and g'(s) =A [log(s + 1) - log(As + 1)] ~ 0 

by the monotonicity of log which proves the second estimate. D 

Lemma 6.5. The function f(x) = x(logx -1),,x ~ 0, satisfies 

(
x + y) 1 f(x) - 2/ - 2- + f(y) ~ .4 (v'x- JY) 2

,_ x, Y.~ 0. 

Proof. We can assume x ~ y > 0, put x/y = t. We have t ~ 1 and, obviously, 

(Vt-1)2=(~-+\r ~ (tt~~2 < (t~1)2 =~l(ldr)ds 

< 2l(lr~s)ds 
which gives the estimate 

( vt - 1)2 :::; 4 {t logt - (t + 1) log(t + 1) + (t + 1) log2} 

equivalent to the assertion. D 

Remark 6.1. A more subtle estimation shows that the factor 1/4 in Lemma 6.5 can 
be improved to the best possible factor log 2 . 
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