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Generalized iterated-sums signatures
Joscha Diehl, Kurusch Ebrahimi-Fard, Nikolas Tapia

ABSTRACT. We explore the algebraic properties of a generalized version of the iterated-sums signa-
ture, inspired by previous work of F. Király and H. Oberhauser. In particular, we show how to recover
the character property of the associated linear map over the tensor algebra by considering a deformed
quasi-shuffle product of words on the latter. We introduce three non-linear transformations on iterated-
sums signatures, close in spirit to Machine Learning applications, and show some of their properties.

1. INTRODUCTION

Recently, a series of papers [ 3 ,  4 ,  11 ,  13 ] have highlighted the importance of signature-like objects
(following T. Lyons’ nomenclature) for capturing features of sequentially ordered data. Part of the
reason for their success is that these transformations posses a universality property, meaning that
they are able to approximate arbitrary (bounded) nonlinear mappings on sequence space by linear
functionals on feature space. They can also be efficiently computed thanks to an inherent recursive
structure.

Both properties can be succinctly described by using Hopf-algebraic language, which has by now
become standard in the field. For the iterated-integrals signature, the underlying Hopf algebra is the
space of words together with the commutative shuffle product [ 16 ,  17 ] and the noncocommutative
deconcatenation coproduct, whereas for the iterated-sums signature it turns out to be the commuta-
tive quasi-shuffle algebra over words [ 1 ,  8 ,  9 ,  14 ] with the same coproduct. Shuffle and quasi-shuffle
products algebraically encode integration respectively summation by parts for iterated integrals re-
spectively sums. In both cases the properties mentioned in the preceding paragraph amount to saying
that the corresponding signature-like maps are characters, i.e., algebra morphisms, and that they sat-
isfy Chen’s relation.

Recently, F. Király and H. Oberhauser [ 11 ] introduced a higher order version of the iterated-sums
signature as a way of approximating the iterated-integrals signature. The main disadvantage of this
generalization is that the character quality is lost and consequently the universality property ceases
to hold. In the paper at hand we unfold the algebraic underpinning of Király’s and Oberhauser’s defi-
nition of the higher order iterated-sums signature, which permits us to further generalize it to arbitrary
nonlinearities, as opposed to the more restricted class of exponential-type nonlinearities underlying
previous approaches. We show that this generalization enjoys a character property but with respect to
a different Hopf algebra defined on words in terms of a modified quasi-shuffle product and the decon-
catenation coproduct; in fact, we show that the algebraic structure actually depends on the selected
nonlinear transformation.

Thanks to the more general approach, we are able to introduce three new transformations of the
iterated-sums signature. The first transformation is obtained by applying a tensorized nonlinear trans-
formation to each time slice, the second one is constructed by applying a polynomial map to incre-
ments, whereas the third is obtained by first transforming the data and then considering its incre-
ments. We show that these transformations can be expressed in terms of the un-transformed iterated-
sums signature. In the third case, this rewriting procedure generalizes earlier work by L. Colmenarejo
and R. Preiß on iterated-integrals signatures defined with respect to paths transformed by polynomial
maps [ 2 ].

The rest of the paper is organized as follows. In  Section 2 we review the algebraic underpinning of our
construction, i.e., the notion of quasi-shuffle Hopf algebra. In  Section 3 we introduce the generalized
iterated-sums signature map and provide a complete description of its most important properties using
the developments of the previous section.
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2. QUASI-SHUFFLE HOPF ALGEBRA

In this section we briefly recall the notion of commutative quasi-shuffle product, the algebraic frame-
work present in [ 3 ]. However, we shall emphasise the refined viewpoint based on the notion of half-
shuffle product. Readers interested in the details are directed to further references [ 5 – 7 ,  9 ,  10 ].

Following Foissy and Patras [ 6 ] we define the notion of commutative quasi-shuffle algebra over the
base field Ò.

Definition 2.1. A commutative quasi-shuffle algebra (A, �, •) consists of a nonunital commutative
Ò-algebra (A, •) equipped with a linear half-shuffle product � : A ⊗ A→ A satisfying

x � (y � z ) = (x ∗ y ) � z(1)

(x � y ) • z = x � (y • z ),(2)

where the quasi-shuffle product is defined as

(3) x ∗ y B x � y + y � x + x • y .

One sees that ( 1 ) and ( 2 ) imply that the quasi-shuffle product ( 3 ) is both commutative and associative.
Observe that one may characterise a commutative quasi-shuffle algebra as a space with two com-
mutative products related through a –symmetrized– half-shuffle product. In the following quasi-shuffle
algebra means commutative quasi-shuffle algebra.

Definition 2.2. A quasi-shuffle morphism between two quasi-shuffle algebras (A, �, •) and (Ã, �̃, •̃)
is a linear map Λ : A→ Ã such that

Λ(x � y ) = Λ(x ) �̃ Λ(y ), Λ(x • y ) = Λ(x ) •̃ Λ(y )

for all x , y ∈ A.

Any quasi-shuffle morphism is an algebra morphism between quasi-shuffle algebras, that is, Λ(x ∗
y ) = Λ(x ) ∗̃Λ(y ). A quasi-shuffle algebra (A, �, •) has a unital extension. Indeed, set Ā B Ò1⊕A
and define for a ∈ A: 1 • x = x • 1 := 0, 1 � x := 0 and x � 1 := x . Note that the product 1 � 1
as well as 1 • 1 are excluded and that 1 ∗ 1 := 1. This turns Ā into a unital algebra.

It is noted that if the commutative algebra (A, •) in  Definition 2.1 has a trivial product, then the notion
of commutative quasi-shuffle algebra reduces to that of commutative shuffle algebra, which is defined
solely in terms of relation ( 1 ). In this case the commutative and associative product ( 3 ) is called shuffle
product.

Remark 2.3. We note that different terminology is used in the literature. Commutative shuffle and
quasi-shuffle algebras are also known as Zinbiel and commutative tridendriform algebras, respectively.
The noncommutative generalisations of both shuffle and quasi-shuffle algebra, are also known as
dendriform and tridendriform algebras, respectively. In this work we follow [ 6 ], where the preference
for the terminology used here is explained.

Our main example provides also the paradigm of commutative quasi-shuffle algebra, i.e., the free
commutative quasi-shuffle algebra. Let A = {1, . . . ,d} be a finite alphabet and consider the reduced
symmetric algebra S (A) over the vector space spanned by it. In other words, S (A) is the space
spanned by words in commuting letters from A; here reduced means that we do not consider S (A)
to have a unit, i.e. we consider only the augmentation ideal of the standard symmetric algebra over
A. Keeping up with our previous convention, we denote the commutative product in S (A) by square
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brackets. We also do not endow S (A) with any additional algebraic structure other than its product.
Finally we recall that S (A) has a natural grading

S (A) =
∞⊕
n=1

SnA

where SnA is spanned by products of the form [i1 · · ·in] with i1, . . . ,in ∈ A. We denote this
basis by An . It is well known that dim SnA =

(d+n−1
n

)
. Furthermore, the set

A =
∞⋃
n=1

An

constitutes a basis for S (A).
Now, we let H B T (S (A)) be the tensor algebra over S (A). As a vector space, it is the direct sum

H =
∞⊕
n=0

S (A)⊗n =
∞⊕
n=0

Hn

where H0 = Òe and

Hn =
n⊕
k=1

( ⊕
i1+···+ik=n

S i1A ⊗ · · · ⊗ S ikA
)
.

In the following we will use the word notation for elements inH . Concatenation, written by juxtaposition
of symbols, is the standard product on H . In particular, H inherits a grading from S (A) in this way,
which we call the weight, and denote it by | · |. The length of a wordw = s1 · · · sk ∈ H is defined to
be ` (w ) = k . In [ 3 ] we show that

∞∑
n=0

t n dimHn =
(1 − t )d

2(1 − t )d − 1
= 1 + d t + d (3d + 1)

2
t 2 + d (13d

2 + 9d + 2)
6

t 3 + · · · .

The standard basis of H is the set of words over A, here denoted by A∗. We endow H with an
inductively defined product obtained from the bracket product of S (A): e? u B u C u ? e and

(4) ua ? vb = (u ? vb)a + (ua ? v )b + (u ? v ) [ab]
for u,v ∈ H and a, b ∈ S (A). Hoffman [ 9 ] called (  4 ) quasi-shuffle product and showed that it is
commutative and associative as well as compatible with the deconcatenation coproduct ∆ and the
counit ε determined by the grading, so that Hqsh B (H ,?,∆, e, ε, α) is a Hopf algebra. See also [ 14 ]
and [ 8 ].

The quasi-shuffle algebra Hqsh carries a commutative quasi-shuffle structure [ 12 ], defined recursively
by

(5) u � v a B (u ? v )a, ua • vb = (u ? v ) [ab] .
Observe that any wordw = s1 · · · sk ∈ H can be written as

w = (· · · ((s1 � s2) � s3) · · · ) � sk .

Remark 2.4. It is natural to consider the relation between the deconcatenation coproduct ∆ and half-
shuffle as well as the • products. It turns that they form together a quasi-shuffle bialgebra. See [ 6 ] for
more details.

Finally, we recall the following important result due to Loday [ 12 , Theorem 2.5].

Theorem 2.5. The free commutative unital quasi-shuffle algebra over Òd is isomorphic to Hqsh.
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The dual space H ∗ can be identified with formal word series of the form

S =
∑
w∈A∗
〈S,w 〉w

in the sense that there is an isomorphism between such formal series and elements of H ∗. The
convolution product of two maps R, S ∈ H ∗ is defined by

RS B
∑
w

〈R ⊗ S,∆w 〉w =
∑
w

( ∑
uv=w

〈R,u〉〈S,v 〉
)
w .

Observe that this product is associative but not commutative.

2.1. Deformed quasi-shuffle products. We recall the following set-up from [ 9 ,  10 ]. A composition of
an integer n ≥ 1 is a sequence I = (i1, . . . , ik ) of positive integers such that i1 + · · · + ik = n .
We write C(n) for the set of compositions of n . For any word w = s1 · · · sn ∈ H and composition
I = (i1, . . . , ik ) ∈ C(n) we define

I [w ] B [s1 · · · s i1] [s i1+1 · · · s i1+i2] · · · [s i1+···+ik−1+1 · · · sn] .

Formal diffeomorphisms f ∈ tÒ[[t ]] induce linear automorphisms of H in the following way: suppose
that

f (t ) =
∞∑
n=1

cn t
n ,

and define

Ψf (w ) B
∑

I ∈C(` (w ))
ci1 · · · cik I [w ] .

Formal diffeomorphisms are invertible with respect to composition of formal power series, and it can
be shown that Ψf −1 = Ψ

−1
f [ 10 ]. Finally, we observe that Ψf is always a coalgebra morphism [ 7 ]; this

means that the identity

∆ ◦ Ψf = (Ψf ⊗ Ψf ) ◦ ∆
holds. Moreover, by definition the map Ψf is graded, that is, Ψf (Hn) ⊂ Hn for all n ≥ 0. These maps
can be used to define a deformed quasi-shuffle algebra with deformed half-shuffle.

Proposition 2.6. H equipped with the deformed products

u �f v B Ψ−1f (Ψf (u) � Ψf (v )) u •f v B Ψ−1f (Ψf (u) • Ψf (v ))

is a commutative quasi-shuffle algebra. The deformed quasi-shuffle product

(6) u ?f v B Ψ−1f (Ψf (u) ?Ψf (v )).

is associative and commutative.

Proof. Commutativity and associativity of •f are evident, since the • is itself commutative and asso-
ciative. The half-shuffle identities ( 1 ) and ( 2 ) are verified directly.

u �f (v �f w ) = Ψ−1f
(
Ψf (u) � (Ψf (v ) � Ψf (w ))

)
= Ψ−1f

(
(Ψf (u) ?Ψf (v )) � Ψf (w )

)
= (u ?f v ) �f w
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The second half-shuffle identity follows analogously

(u �f v ) •f w = (Ψf (u) � Ψf (v )) • Ψf (w )
= Ψf (u) � (Ψf (v ) • Ψf (w ))
= u �f (v •f w ).

Commutativity and associativity of?f follow immediately. �

Even more, we have the following.

Theorem 2.7. The space Hf B (H ,?f ,∆, e, ε) is a connected graded Hopf algebra.

Proof. We have already seen that (H ,?f , e) is a commutative algebra. Since the coproduct is the
(unchanged) deconcatenation coproduct of Hqsh, (H ,∆, ε) is a coalgebra. Clearly, the relation ε ◦
Ψf = Ψf ◦ ε holds, and since Ψf (e) = Ψ−1f (e) = e we see that

ε (u ?f v ) = ε (Ψf (u))ε (Ψf (v )) = ε (u)ε (v ).

Therefore, ε is an algebra morphism with respect to the deformed quasi-shuffle product?f .

Finally, we check that ∆ is an algebra morphism as well. Using the notationmf (u ⊗ v ) := u ?f v , we
have

∆ ◦mf = ∆ ◦ Ψ−1f ◦m ◦ (Ψf ⊗ Ψf )
= (Ψ−1f ⊗ Ψ

−1
f ) ◦ ∆ ◦m ◦ (Ψf ⊗ Ψf )

= (Ψ−1f ⊗ Ψ
−1
f ) ◦ m̃ ◦ (∆ ⊗ ∆) ◦ (Ψf ⊗ Ψf )

= (Ψ−1f ⊗ Ψ
−1
f ) ◦ m̃ ◦ (Ψf ⊗ Ψf ⊗ Ψf ⊗ Ψf ) ◦ (∆ ⊗ ∆)

= m̃f ◦ (∆ ⊗ ∆).

Here, we have defined m̃ : H ⊗4 → H ⊗H bym B (m ⊗m) ◦ (id⊗τ ⊗ id) and τ : H ⊗H → H ⊗H ,
τ (x ⊗ y ) B y ⊗ x is the standard braiding isomorphism. �

Finally, we can show

Proposition 2.8. The map Ψf : Hf → Hqsh is a Hopf algebra isomorphism.

Proof. In general, Ψf : (H ,∆) → (H ,∆) is a coalgebra morphism [ 7 ,  10 ]. It is an algebra morphism
by definition. Indeed,

Ψf (u ?f v ) = Ψf
(
Ψ−1f (Ψf (u) ?Ψf (v ))

)
= Ψf (u) ?Ψf (v ).

Therefore, Ψf : Hf → Hqsh is an isomorphism of bialgebras. It is a general fact that this implies that
Ψf is already a Hopf algebra isomorphism. �

Remark 2.9. It is possible to show [ 7 , Theorem 2.2] that in fact, all possible coalgebra automorphisms
of (H ,∆) are of the form Ψf for some f ∈ tÒ[[t ]]. In particular, this means that any Hopf algebra
preserving the deconcatenation coproduct has to be of the form Hf .

3. ITERATED-SUMS SIGNATURES

We start this section by recalling the definition of the iterated-sums signature introduced in [ 3 ]. Fix
integers d ≥ 1 and N > 0. A d -dimensional time series of length N is a sequence of vectors

DOI 10.20347/WIAS.PREPRINT.2795 Berlin 2020
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x = (x0, . . . , xN−1) ∈ (Òd )N . The following notation for elements in the time series x is put in
place:

xj = (x (1)j , . . . , x
(d )
j
),

and it is extended to include brackets in A by defining

(7) x
[i1···in ]
j

B x
(i1)
j
· · · x (in )

j
.

Given a d -dimensional time series of length N , its increment series, denoted by δx , is also a d -
dimensional time series of length N − 1 with entries defined by δxk B xk+1 − xk .

Definition 3.1. Let x be a d -dimensional time series, and denote by δx its increment series. The
iterated-sums signature of x is the two-parameter family (ISS(x )n,m : 0 ≤ n ≤ m ≤ N ) of linear
maps in H ∗qsh such that ISS(x )n,n = ε, and defined recursively by 〈ISS(x )n,m, e〉 B 1, and

〈ISS(x )n,m, a1 · · · ap〉 B
m−1∑
j=n

〈ISS(x )n,j , a1 · · · ap−1〉δx
ap
j

for all words a1 · · · ap ∈ A∗.

We recall that as a formal word series, the map ISS(x )n,m can be expressed as the time-ordered
product

(8) ISS(x )n,m =
®∏

n≤j<m

(
ε +

∑
a∈A

δx aj a

)
.

In fact,  eq. (8)  can be seen to arise as the solution to a fixed-point equation in Hqsh. Indeed, from
 Definition 3.1 we see that for any word a1 · · · ap ∈ A∗,

δ 〈ISS(x )n,·, a1 · · · ap〉m = 〈ISS(x )n,m+1, a1 · · · ap〉 − 〈ISS(x )n,m, a1 · · · ap〉
= 〈ISS(x )n,m, a1 · · · ap−1〉δx

ap
m .

Therefore, the equality between word series

δ ISS(x )n,m = ISS(x )n,mΦ(δxm), ISS(x )n,n = ε

holds, where the “polynomial extension” map Φ : Òd → S ((A)) (c.f. [ 15 , eq. 60]) is defined by

Φ(z ) =
∞∑
n=1

(∑
i∈A

z (i ) [i]
)n
=

∑
a∈A

z aa .

More concisely, Φ amounts to a geometric series in the completed symmetric algebra S ((A)) – recall
from  Section 2 that [··] denotes the symmetric tensor product in S (A). This extension has also been
considered by Toth, Bonnier and Oberhauser [ 18 ] in a Machine Learning context.

We now record the two most relevant properties of the iterated-sums signature of a d -dimensional
time series, shown in [ 3 , Theorem 3.4].

Theorem 3.2.

1 For each 0 ≤ n ≤ m ≤ N , the map ISS(x )n,m is a quasi-shuffle character.
2 For any 0 ≤ n < n′ < n′′ ≤ N we have

ISS(x )n,n ′ ISS(x )n ′,n ′′ = ISS(x )n,n ′′ .

DOI 10.20347/WIAS.PREPRINT.2795 Berlin 2020
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In fact, in light of the commutative quasi-shuffle structure of Hqsh, one can be more precise about the
nature of point (1) in  Theorem 3.2 . Let XN denote the space of real-valued time series with fixed time
horizon N ∈ Î. It carries a commutative quasi-shuffle structure, given by

(x � y )k B
k−1∑
j=0

(xj − x0)δyj , (x � y )k B
k−1∑
j=0

δxj δyj .

The corresponding associative product is (x , y ) ↦→ (x · − x0) (y· − y0) in XN . For a given d -
dimensional time series, we define a map σ (x ) : A→ XN by

〈σ (x ), [i]〉k B x
(i )
k
− x (i )0 , 0 ≤ k ≤ N .

By  Theorem 2.5 , it admits a unique extension to Hqsh as a commutative quasi-shuffle morphism.

Proposition 3.3. The unique extension σ : Hqsh → XN is such that for all 0 ≤ k ≤ N and words
w ∈ A∗ we have

〈σ (x ),w 〉k = 〈ISS(x )0,k ,w 〉.

Proof. We first observe that since [i1] • · · · • [in] = [i1 · · ·in] for all i1, . . . ,in ∈ A, we have

〈σ (x ), [i1 · · ·in]〉k = (〈σ (x ),i1〉 � · · · � 〈σ (x ),in〉)k

=
k−1∑
j=0

δx
(i1)
j
· · · δx (in )

j

= 〈ISS(x )0,k , [i1 · · ·in]〉
by  eq. (7) . This shows the identity for all words of length 1. Now, suppose the equality is proven for all
words up to length p . Any word w of length p + 1 can be decomposed as w = ua for some u ∈ A∗
with ` (u) = p and a ∈ A. Since, from  eq. (5) (set v = e), u � a = ua for any u ∈ A∗ and a ∈ A, we
see that

〈σ (x ),ua〉k = 〈σ (x ),u � a〉k
= (〈σ (x ),u〉 � 〈σ (x ), a〉)k

=
k−1∑
j=0

〈ISS(x )0,j ,u〉δx aj

= 〈ISS(x )0,k ,ua〉
by  Definition 3.1 . �

To construct the maps k ↦→ ISS(x )n,k for 0 ≤ n ≤ N , one can follow a similar route, by first
considering the map x ↦→ x̃ = (x̃k : n ≤ k ≤ N ) with x̃k = xk − xn . The image of XN under this
map will be denoted by X̃n,N . The quasi-shuffle structure defined above can be transported to X̃n,N
via this map, i.e., x̃ � ỹ B �x � y , x̃ � ỹ B �x � y . It is not difficult to see that then the same
procedure applied now to X̃n,N gives rise to ISS(x )n,k for 0 ≤ n ≤ k < N . In particular we obtain
the following

Proposition 3.4. Let x be d -dimensional time series and fix 0 ≤ n ≤ m ≤ N . The identities

〈ISS(x )n,m,u � v 〉 =
m−1∑
k=n

〈ISS(x )n,k ,u〉δ 〈ISS(x )n,·,v 〉k

〈ISS(x )n,m,u • v 〉 =
∑

n≤k<m
δ 〈ISS(x )n,·,u〉k δ 〈ISS(x )n,·,v 〉k

hold for all u,v ∈ Hqsh.

DOI 10.20347/WIAS.PREPRINT.2795 Berlin 2020
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3.1. Generalized iterated-sums signatures. Let f ∈ tÒ[[t ]] be a formal diffeomorphism. Apart
from the map Ψf described in the previous section, it induces a transformation on formal word series
by

f (S) =
∞∑
n=1

cnSn .

Definition 3.5. Let x be a d -dimensional time series and f ∈ tÒ[[t ]] a formal diffeomorphism. The
generalized iterated-sums signature is the family of linear maps (ISSf (x )n,m : 0 ≤ n ≤ m ≤ N )
defined by

ISSf (x )n,m B
®∏

n≤j<m

(
ε + f

(∑
a∈A

δx aj a

))
.

We immediately have

Proposition 3.6. The generalized iterated-sums signature satisfies Chen’s property, that is, for any
0 ≤ n ≤ n′ ≤ n′′ ≤ N

ISSf (x )n,n ′ ISSf (x )n ′,n ′′ = ISSf (x )n,n ′′ .

We observe that due to the nonlinear nature of the transformation f applied inside the product, expan-
sion of this expression as a proper word series is, in principle, not straightforward. However we have
the following result.

Proposition 3.7. For everyw ∈ H ,

〈ISS(x )fn,m,w 〉 = 〈ISS(x )n,m,Ψf (w )〉.

Proof. First we observe that, by Chen’s property and the fact that Ψf is a coalgebra morphism, it
suffices to show that the equality holds when m = n + 1, i.e., we only need to show that〈

f

(∑
a∈A

δx an a

)
,w

〉
=

∑
a∈A

δx an 〈a,Ψf (w )〉.

Moreover, since the identity is linear inw , we can further restrict ourselves to the casew ∈ A∗.
Now, by definition,

f

(∑
a∈A

δx an a

)
=
∞∑
m=1

cm

(∑
a∈A

δx an a

)m
=
∞∑
m=1

cm
∑

a1,...,am∈A
δx a1n · · · δx amn a1 · · · am .

Since δx a1n · · · δx amn = δx [a1···am ]n we obtain that, ifw = a1 · · · am ∈ A∗,〈
f

(∑
a∈A

δx an a

)
,w

〉
= cmδx

[a1···am ]
n .

On the other hand, we have〈∑
a∈A

δx an a,Ψf (w )
〉
=

∑
a∈A

δx an 〈a,Ψf (w )〉

=
∑
a∈A

δx an

∑
J∈C(m)

ci1 · · · cik 〈a, I [w ]〉.
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However, in the last sum the only word of length 1 of the form I [w ] is (m) [w ] = [a1 · · · am].
Therefore 〈∑

a∈A
δx an a,Ψf (w )

〉
= cmδx

[a1...am ]
n

and the equality is proven in this case. �

An application of  Proposition 2.8 yields

Corollary 3.8. The generalized iterated-sums signature is a character over the Hopf algebra Hf with
deformed quasi-shuffle product.

Remark 3.9. We observe that as a consequence of  Remark 2.9 , an even stronger statement is true.
Suppose that Ψ : H → H is a transformation, and define ISS(x ) = ISS(x ) ◦ Ψ. This map satisfies
Chen’s relation if (and only if) Ψ is a coalgebra morphism, thus it must be of the form Ψ = Ψf for
some f ∈ tÒ[[t ]]. Moreover, f = π ◦ Ψ where π : H → S (A) is the canonical projection on words
of length one.

Before concluding this part, we relate our results to the higher-order discrete signatures introduced by
F. Király and H. Oberhauser [  11 , Definition B.4]. Given an integer p ≥ 1, these authors define for a
d -dimensional time series x the map S+(p) (x ) ∈ T ((Ò

d )) by

(9) S+(p) (x ) =
®∏

0≤i<N−1

p∑
j=0

(δxi )⊗j

j !
.

Here δxi =
∑
j∈A δx

(j )
i
[j] and (δxi )⊗n =

∑
j1,...,jn∈A δx

(j1)
i
· · · δx (jn )

i
[j1] · · · [jn]. We note that

this map, considered as a linear map onT (Òd ), is not an algebra morphism over any product defined
onT (Òd ) that is compatible with the grading. Indeed, suppose there is such a product and denote it
by ~. Consider the map S+(p) (x ) over a single time step with a non-zero increment. Fix moreover a
single symbol, say 1 ∈ A. Then

(δx (1)0 )
p+1 = 〈1~(p+1), S+(p) (x )〉 = 0

which is a contradiction. This is resolved by considering the infinite-dimensional polynomial exten-
sion of the time series, including all powers of increments [ 18 , Example B.2]. In essence, this is
what the quasi-shuffle approach does – the extension is obtained by considering the bracket terms
[i1 · · ·in] ∈ A and the corresponding extended increments δx [i1···in ] .

However, even when considering the proper extension, the map so obtained does not yield a character
over the quasi-shuffle Hopf algebra when p > 1 (the case p = 1 corresponds to ISS(x ), see  eq. (8) ).
Taking p = 2, a single time step and considering the product 1? 1 constitutes a simple example. 

1
 In

this case, S+(p) (x ) equals ISSfp (x ), with fp = t + 12 t
2+· · ·+ 1

p ! t
p ;  Corollary 3.8 restores the character

property of this map, with respect to a different product.

Finally, we mention that in the limit p → ∞, S+(∞) (x ) coincides with the iterated-integrals signature
of the path X interpolating the values of x piecewise linearly with unit speed. In the same way, the
extended version ISSf∞ (x ) coincides with the iterated-integrals signature of an infinite-dimensional
extension of X [ 3 , Theorem 5.3]. Both statements are consistent with the fact that f∞(x ) = exp(t ) −
1, so that Ψf∞ is the Hoffman exponential and ?f∞ becomes the shuffle product (over A and A,
respectively).

1The reader is invited to work out the details.
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3.2. Vectorized transformation. In some applications, one might have only access to observables
of a time series and not to the time series itself. In others, such as in Machine Learning, applying non-
linearities to the data might be of use. We introduce now an analogue of the iterated-sums signature,
acting on transformed data.

Let f ∈ tÒ[t ] be a polynomial with f (0) = 0, and fix a d -dimensional time series x . We are
interested in describing the algebraic properties of the iterated-sums signature of the transformed
series (f (δx0), . . . , f (δxN−1)) where f acts in a vectorized fashion. That is, we wish to study the
map

〈ISS(f ) (x )n,m, a1 · · · ap〉 =
∑

n≤i1<···<ip<m
f (δxi1)a1 · · · f (δxip )ap .

It is immediate from the definition that, as a word series, ISS(f )n,m (x ) admits the factorization

ISS(f )n,m (x ) =
®∏

n≤j<m

(
ε +

∑
a∈A

f (δxj )aa
)
.

In particular we have

Proposition 3.10. The identity

ISS(f ) (x )n,n ′ ISS(f ) (x )n ′,n ′′ = ISS(f ) (x )n,n ′′
holds.

Since f vanishes at 0, the entries of ISS(f ) (x ) are invariant to time-warping. Therefore, since the
iterated-sums signature contains all such invariants, we are guaranteed to be able to express all said
entries in terms of those in ISS(x ). In order to describe this relation, we consider the map f� : H → H
induced by f in the following way: first we declare that

f�(i) =
deg f∑
n=1

cn [in]

for all i ∈ A. This map extends uniquely to S (A) as an algebra morphism f� : S (A) → S (A). It
further has a unique extension to all of H as a concatenation morphism, i.e. if w = a1 · · · am ∈ A∗
then f�(w ) = f�(a1) · · · f�(am).

Lemma 3.11. The map f� : Hqsh → Hqsh is an algebra morphism of the Hopf algebra Hqsh with
quasi-shuffle product.

Proof. We first show that f� preserves the quasi-shuffle product, and we do so by induction. The base
case holds by definition. The inductive definition of the quasi-shuffle product (  4 ) then yields

f�(ua ? vb) = f�
(
(u ? vb)a + (ua ? v )b + (u ? v ) [ab]

)
= f�(u ? vb)f�(a) + f�(ua ? v )f�(b) + f�(u ? v ) [f�(a)f�(b)]
= (f�(u) ? f�(vb))f�(a) + (f�(ua) ? f�(v ))f�(b) + (f�(u) ? f�(v )) [f�(a)f�(b)]
= f�(u)f�(a) ? f�(v )f�(b)
= f�(ua) ? f�(vb). �

Remark 3.12. The map f� is not invertible. This is due to the fact that f −1 will in general be a formal
power series and not just a polynomial. We can say that there is a loss of information, in terms of
time-warping invariance, if we are only allowed to observe some polynomial transformation of the data
instead of the data itself.
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Theorem 3.13. Let f ∈ tÒ[t ]. For allw ∈ H , the relation

〈ISS(f ) (x )n,m,w 〉 = 〈ISS(x )n,m, f�(w )〉

holds. In particular, ISS(f ) (x ) is a quasi-shuffle character.

Proof. We first prove the identity on S (A). For this, we first show it for i ∈ A. Observe that

〈ISS(x )n,m, f�(i)〉 =
m−1∑
j=n

deg f∑
p=1

cp (δx (i )j )
p =

m−1∑
j=n

f (δx (i )
j
) = 〈ISS(f ) (x )n,m,i〉.

If now a = [i1 · · ·ip ] ∈ A we see that

〈ISS(x )n,m, f�(a)〉 = 〈ISS(x )n,m, [f�(i1) · · · f�(ip )]〉

=
m−1∑
j=n

f (δx (i1)
j
) · · · f (δx (ip )

j
)

= 〈ISS(f ) (x )n,m, a〉.
By linearity, the identity holds for all a ∈ S (A).
Finally, by definition, ifw = a1 · · · ap ∈ A∗ then

〈ISS(x )n,m, f�(w )〉 = 〈ISS(x )n,m, f�(a1 · · · ap−1)f�(ap )〉

=
m−1∑
j=n

〈ISS(x )n,m, f�(a1 · · · ap−1)〉f (δxj )ap

=
m−1∑
j=n

〈ISS(f ) (x )n,m, a1 · · · ap−1〉f (δxj )ap

= 〈ISS(f ) (x )n,m, a1 · · · ap〉.

The quasi-shuffle property follows immediately from  Lemma 3.11 . �

3.3. Polynomial transformations. We now consider polynomial transformations of the data. Let
P : Òd → Òe be a polynomial map, for some e ≥ 1. We write P = (p1, . . . , pe ) where pk ∈
Ò[x (1), . . . , x (d )] is a multivariate polynomial.

Recall from  Section 2 that the quasi-shuffle algebraHqsh carries a commutative quasi-shuffle structure.
Moreover, by  Theorem 2.5 it realizes the free commutative quasi-shuffle over Òd ; in other words, if
H ′ is any other commutative quasi-shuffle algebra and Λ : A → H ′ is a map, there exists a unique
extension Λ : Hqsh → H ′ respecting the corresponding quasi-shuffle structures. In the following, we
will work with different base alphabets, so we explicitly include the size of it in the notation. Hence from
now on we write e.g. Hqsh(Òd ) to indicate this.

Given a time series x , we consider its transform X = P (x ) B (P (x0), . . . , P (xN )), which is an
Òe -valued time series. Interestingly enough, the iterated-sums signature of X can be computed just
by knowing that of the untransformed data x . More precisely we have

Theorem 3.14. Let P : Òd → Òe , be a polynomial map without constant term, i.e., with P (0) = 0.
Given a d -dimensional time series x with x0 = 0, define the e-dimensional time series X B P (x ).
Then, for all 0 ≤ k ≤ N ,

(10) 〈ISS0,k (X ),w 〉 = 〈ISS0,k (x ), ΛP (w )〉,
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where ΛP : Hqsh(Òe ) → Hqsh(Òd ) is the unique quasi-shuffle morphism (in the sense of  Definition 2.2 ),
determined by its action on [1], . . . , [e] as

ΛP ( [i]) B ι(pi ) ∈ Hqsh(Òd ),
where ι : Ò[x (1), . . . , x (d )] → Hqsh(Òd ) is the unique morphism of commutative algebras satisfying
ι(x (i )) = [i].
Example 3.15. Let P : Ò2 → Ò3, P = (p1, p2, p3) = ((x (1))2, (x (2))3, x (1) (x (2))2). Then

ΛP ( [1]) = [1] ? [1]
= 2[1] [1] + [12]

ΛP ( [2]) = [2] ? [2] ? [2]
= 6[2] [2] [2] + 3[22] [2] + 3[2] [22] + [23]

ΛP ( [3]) = [1] ? [2] ? [2]
= 2[2] [2] [1] + 2[1] [2] [2] + 2[2] [1] [2] + 2[2] [12] + 2[12] [2] + [1] [22] + [22] [1] + [122] .

Proof. Since by  Proposition 3.4 both sides of  eq. (10) are quasi-shuffle morphisms, it is enough to
show that it holds for letters [1], . . . , [e]. Now, on one hand, by definition

〈ISS0,k (X ), [i]〉 =
k−1∑
j=0

δX
(i )
j
= X (i )

k
= pi (xk )

On the other hand, by definition

〈ISS0,k (x ), ΛP ( [i])〉 = 〈ISS0,k (x ), ι(pi )〉
= pi (〈ISS(x )0,k , 1〉, . . . , 〈ISS(x )0,k ,d〉)
= pi (xk )

and the proof is finished.

�

Corollary 3.16. Let P : Òd → Òe be a polynomial map, and x a d -dimensional time series. Define
the e-dimensional time seriesX B P (x ), and set P̃x0 B P (·+x0)−P (x0). Then, for all 0 ≤ k ≤ N ,

ISS(X )0,k = ISS(x ) ◦ ΛP̃x0 .

Proof. The result follows from  Theorem 3.14 and the fact that, if x̃ = x · − x0 then x̃0 = 0 and
ISS(x̃ )0,k = ISS(x )0,k for all 0 ≤ k ≤ N . �
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