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Reinforced optimal control
Christian Bayer, Denis Belomestny, Paul Hager,

Paolo Pigato, John G. M. Schoenmakers, Vladimir Spokoiny

Abstract

Least squares Monte Carlo methods are a popular numerical approximation method for solving
stochastic control problems. Based on dynamic programming, their key feature is the approxima-
tion of the conditional expectation of future rewards by linear least squares regression. Hence,
the choice of basis functions is crucial for the accuracy of the method. Earlier work by some of us
[Belomestny, Schoenmakers, Spokoiny, Zharkynbay, Commun. Math. Sci., 18(1):109–121, 2020]
proposes to reinforce the basis functions in the case of optimal stopping problems by already
computed value functions for later times, thereby considerably improving the accuracy with lim-
ited additional computational cost. We extend the reinforced regression method to a general class
of stochastic control problems, while considerably improving the method’s efficiency, as demon-
strated by substantial numerical examples as well as theoretical analysis.

1 Introduction

Stochastic control problems form an important class of stochastic optimization problems that find appli-
cations in a wide variety of fields, see [Pha09] for an overview. The general problem can be formulated
as follows: How should a decision maker control a system with a stochastic component to maximize the
expected reward? In the theory of stochastic control one distinguishes between problems with contin-
uous and discrete sets of possible control values. While the first class of control problems contains, for
example, energy storage problems, the second one includes stopping and multiple stopping problems.
Furthermore one differentiates between discrete time and continuous time optimal control problems.
(Neither of these distinctions is fundamental: for instance, many numerical methods will replace opti-
mal control problems with a continuous set of control values in continuous time by a surrogate problem
with discrete control values in discrete time. Moreover, many discrete optimal control problem may well
be analyzed as continuous ones, if the number of possible control values or time-steps is finite, but
very high.)

The range of applications of stochastic control problems is very wide. Originally, optimal stochastic
continuous control problems were inspired by engineering problems in the continuous control of a
dynamic system in the presence of random noise. In the last decades, problems in mathematical
finance (portfolio optimization, options with variable exercise possibilities) and economics inspired
many new developments, see [BR11] for some recent developments.

As a canonical general approach for solving a discrete time optimal control problem one may consider
all possible future evolutions of the process at each time that a control choice is to be made. This
method is well developed and may be effective in some special cases, but for more general problems
such as optimal control of a diffusion in high dimensions, this approach is impractical. In [BKS09] a
generic Monte Carlo approach combined with linear regression was proposed and studied, see also
[BS18] for an overview. However, this approach has an important disadvantage – it may exhibit too
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little flexibility for modeling highly non-linear behavior of the optimal value functions. Higher-degree
polynomials or local polynomials (splines) can be used, but they may contain too many parameters
and, therefore, either over-fit the Monte Carlo sample or prohibit parameter estimation because the
number of parameters is too large. As an alternative to the polynomial bases, nonlinear approximation
structures (e.g., artificial neural networks) can be used instead (see, e.g. [BCJ18]).

In [BSSZ20] a Monte Carlo based reinforced regression approach is developed for building sparse
regression models at each backward step of the dynamic programming algorithm in the case of opti-
mal stopping problems. In a nutshell, the idea is to start with a generic set of basis functions, which
is systematically enlarged with highly problem dependent additional functions. The additional basis
functions are constructed for the optimal stopping problem at hand without using a fixed predefined
finite dictionary. Specifically, the new basis functions are learned during the backward induction via
incorporating information from the preceding backward induction step. Thereby, basis functions highly
specific to the problem at hand are constructed in a completely automatic way. [BSSZ20] report that
the reinforced basis lead to increased precision over the starting set of basis functions, comparable
to the standard regression algorithm based on a substantially increased set of basis functions. This
improvement is obtained with limited increase of the computational cost.

In this work we carry over the approach of [BSSZ20] to a general class of discrete time optimal control
problems including multiple stopping problems (allowing pricing of swing options) and a gas storage
problem. This generalization turns out to be rather challenging as the complexity of using the previ-
ously constructed value function in regression basis at each step of the backward procedure becomes
prohibitive when applying the original approach of [BSSZ20]. We overcome this computational bottle-
neck by introducing a novel version of the original reinforced regression algorithm where one uses a
hierarchy of fixed time depth approximation of the optimal value function instead of a full depth ap-
proximation employed in [BSSZ20]. As a result we regain efficiency and are able to improve upon the
standard linear regression algorithm in terms of achievable precision for a given computational budget.

More precisely, we construct a hierarchy v(i), i = 0, . . . , I , of (approximate) value functions with
depth I > 0. Here, v(0) denotes the value functions obtained from the classical Monte Carlo regres-
sion algorithm. The higher levels v(i) are computed by regression based on a set of basis functions
reinforced by the value function v(i−1) one level lower. This way, the added computational cost in-
curred from reinforcing the basis can be further decreased with minimal sacrifices of accuracy already
for small values of I . In fact, we propose two versions of the algorithm. In the first version, the levels of
the hierarchy of value functions are trained consecutively, allowing for an adaptive choice of the depth
I of the hierarchy. In the second version, all the levels are trained concurrently, thereby improving the
accuracy at each individual level. As a consequence, I needs to be fixed in advance and cannot be
chosen adaptively in the second variant.

Outline of the paper

In Section 2 we describe a rather general setting for discrete stochastic control problems which we
are going to use in this paper. The setting is based on [GHW11]. We recall the reinforced regression
algorithm for optimal stopping problems by [BSSZ20] in detail in Section 3. There we also motivate
the hierarchical construction of the new reinforced regression algorithm as restricted to the optimal
stopping problem. The full algorithm – including both variants – is introduced in Section 4. A de-
tailed analysis of computational costs is provided in Section 5. The next Section 6 provides a detailed
convergence analysis for the standard and reinforced regression algorithms in the current setting. Ex-
tensive numerical examples including optimal stopping problems, multiple stopping problems and a
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gas storage optimization problem are provided in Section 7.

2 Setting

First, we present a proper setting for the construction and analysis of reinforced regression algorithms.
The setting will be largely based on [GHW11]. We will consider stochastic control problems in discrete
time with a finite action sets. We note that extensions to continuous action sets are certainly possible,
but are left to future research.

We consider a filtration Fj , j = 0, . . . , J , which is extended by F−1 := { ∅,Ω }, FJ+1 := FJ for
convenience. While the setting below could be (easily) formulated in a non-Markovian setting, we right
away consider a Markov process X adapted to (Fj)j=0,...,J . Note that we assume that the dynamics
of the underlying process X does not depend on any control.

At time 0 ≤ j ≤ J we are given a control Yj , which isFj−1-measurable, and anFj-measurable cash-
flow Zj = Hj(a, Yj, Xj) for some deterministic, measurable function Hj , where a is an action that
we may choose at time j in some action space K. Note that cash-flows may be positive or negative.
We assume that the control Yj takes values in a finite set L, and that K is finite, as well. For a given
value of the control y ∈ L and a given value x of the underlying process Xj , we are given a set

Kj(y, x) ⊂ K, j = 0, . . . , J. (2.1)

Only actions a ∈ Kj(Yj, Xj) are admissible at time j. Finally, if we choose a ∈ Kj(Yj, Xj), then
the control is updated by

Yj+1 := ϕj+1(a, Yj), ϕj+1 : K × L → L. (2.2)

Suppose that we are at time 0 ≤ j ≤ J , the control and the underlying state process take values Yj
and Xj , respectively. For α = (aj, . . . , aJ) ∈ KJ−j+1 and j ≤ ` ≤ J − 1, we define

Y`+1(α; j, Yj) := ϕ`+1(a`, Y`(α; j, Yj)), Yj(α; j, Yj) := Yj, (2.3)

noting that Y`(α; j, Yj) only depends on aj, . . . , a`−1. Additionally, we define Fj,J(K) to be the set
of (F`)J`=j-adapted processes taking values in K indexed by j, . . . , J . Clearly, if α ∈ Fj,J(K) and
Yj ∈ Fj−1, then the process Y·(α; j, Yj) is previsible. The set of admissible strategies or admissible
policies Aj is defined as follows:

Aj(Yj, X≥j) :=
{
α = (aj, . . . , aJ) ∈ Fj,J(K)

∣∣∣ a` ∈ K`(Y`(α; j, Yj), X`), ` = j, . . . , J
}
.

(2.4)
Now the central issue is the optimal control problem

Vj := sup
α∈Aj(Yj ,X≥j)

Ej

[
J∑
`=j

H`(a`, Y`(α; j, Yj), X`)

]
, (2.5)

at a generic time 0 ≤ j ≤ J, where Ej denotes the conditional expectation w.r.t. Fj .
Taking advantage of the Markov property, we introduce the notationAj(y, x) := Aj(y,Xx

≥j), where
Xj,x denotes the Markov process X conditioned on Xj = x, and is defined for j ≤ ` ≤ J . We may
then define the value function as

v∗j (y, x) := sup
α∈Aj(y,x)

E

[
J∑
`=j

H`

(
a`, Y`(α; j, y), Xj,x

`

)]
, (2.6)
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which satisfies the dynamic programming principle:

v∗j (y, x) = sup
a∈Kj(y,x)

(
Hj(a, y, x) + E

[
v∗j+1(ϕj+1(a, y), Xj,x

j+1)
])
. (2.7)

for j = 0, . . . , J (with v∗J+1(y, x) := 0).

Remark 2.1. In light of portfolio optimization problems, we may also want to allow ϕj+1 to additionally
depend on Xj, Xj+1. Indeed, such a construction would allow Yj to contain the value of the portfolio
at time j. In such a case, the process Y would cease to be previsible. On the other hand, most of the
following observations would continue to hold.

Let us now give a few examples for classical stopping and control problems which fall into the above
setup.

Example 2.2. For a single optimal stopping problem with payoff gj ≥ 0 at time j, the set of possible
control values is L = { 0, 1 }, where a control state y denotes the number of remaining exercise
opportunities. The action a takes the value 1 if we stop at the current time and 0 otherwise. Hence, we
have

Kj(y, x) = K(y) :=

{
{ 0, 1 } , y = 1,

{ 0 } , y = 0,

implying that K = { 0, 1 }. The cash-flow is defined by

Hj(a, Yj, Xj) := a gj(Xj),

independent of the value of the control Yj . Finally, the update function of the control is defined by

ϕj+1(a, y) := max(y − a, 0).

Example 2.3. Let us now suppose that we have a multiple stopping problem with L ∈ N ex-
ercise rights. Again, the control state y signifies the remaining exercise opportunities, leading to
L = { 0, 1, . . . , L }. The admissible action set is now defined as

Kj(y, x) = K(y) :=

{
{ 0, 1 } , y ≥ 1,

{ 0 } , y = 0.

Once again, we have K = { 0, 1 }. The cash-flow Hj and the update function ϕj+1 are defined as in
Example 2.2.

Example 2.4. Next we consider a more complicated multiple stopping problem. Consider a multiple
stopping problem with refraction period J , i.e., after exercising a right, we may not exercise another
right for J periods. Moreover, the total set of possible exercise dates J := { 0, 1, . . . , J } is divided
into two subsets, J = J1 tJ2. When j ∈ J1, at most one optionality may be exercised, whereas at
most two options may be exercised when j ∈ J2. Again, we have L ∈ N total exercise rights.

In this case, the control y keeps track of the remaining time until the next optionality may be exercised.
Hence, we set

L := { 0, . . . , L } × { 0, . . . , J } ,
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where, for y = (y1, y2) ∈ L, y1 denotes the number of remaining exercise rights, whereas y2 denotes
the number of time periods, until we may exercise next. In other words, we may only exercise at time
j if Y 2

j = 0. Consequently, the set of admissible policies is given by

Kj(y) :=


{ 0 } , y1 = 0 or y2 > 0,

{ 0, 1 } , y1 > 0 and y2 = 0 and j ∈ J1,

{ 0, 1, 2 } , y1 ≥ 2 and y2 = 0 and j ∈ J2,

{ 0, 1 } , y1 = 1 and y2 = 0 and j ∈ J2,

and K := { 0, 1, 2 }. The cash-flow is defined by

Hj(a, Yj, Xj) := a gj(Xj),

and the update rule satisfies the following:

ϕj+1(a, y) :=

{
(y1,max(y2 − 1, 0)), a = 0,

(max(y1 − a, 0), J), a ≥ 1.

Example 2.5. Consider a simple gas storage problem: given N ∈ N and ∆ = 1/N , we assume that
the volume of gas in a storage can only be increased and decreased by a fraction ∆ over a given time
increment. Let the control y denote the status (fill level) of the storage at time j. Hence, we define

L := { 0,∆, 2∆, . . . , 1 } .

At time j, we may either sell ∆ (volume of gas; a = −1), buy ∆ (a = +1) – at the current market
price Xj – or do nothing (a = 0). Hence, the admissible policy set is

Kj(y) :=


{ 0, 1 } , y = 0,

{−1, 0, 1 } , ∆ ≤ y ≤ 1−∆,

{−1, 0 } , y = 1,

with K = {−1, 0, 1 }, while the cash-flow is given by

Hj(a, Yj, Xj) := −a∆Xj.

The update function in given by

ϕj+1(a, y) := ((y + a∆) ∧ 1) ∨ 0.

3 Reinforced regression for optimal stopping

In this section, we recall the standard regression algorithm as well as the reinforced regression algo-
rithm introduced in [BSSZ20] for optimal stopping problems. We will point out the drawbacks of the
latter algorithm for more general control problems, and propose and motivate several modifications.
However, for the purpose of a clear illustration, we will restrict ourselves in this section to the optimal
stopping case.
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Let us recall the optimal stopping setup from Example 2.2 and denote by v∗j (x) the value function at
j ∈ {0, ..., J} evaluated in x ∈ Rd and y = 1. Further recall that the dynamic programming principle
is given by

v∗j (x) = max(gj(x), c∗j(x)), 0 ≤ j ≤ J − 1, v∗J(x) = gJ(x), x ∈ Rd,

where the continuation function is given by c∗j(x) = Ej[v
∗
j+1(Xj,x

j+1)]. For a set of basis function

{ψ1, ..., ψK} with ψi : Rd → R and sample trajectories (X
(m)
j )0≤j≤J,1≤m≤M from the underlying

Markov chain, the regression method due to Tsitsiklis-van Roy [TVR01], which we will refer to as the
standard regression method, inductively constructs an approximation v = (vj)j=0,...,J to the value
function v∗ as follows: For j = J initialize vJ = gJ . For j ∈ {J − 1, ..., 0} set

vj(x) := max(gj(x), cj(x)), cj(x) =
K∑
k=1

γj,kψk(x), (3.1)

where the regression coefficients are given by the solution to the least squares problem

γj,1, ..., γj,K := arg min
γ1,...,γK

M∑
m=1

∣∣∣∣vj+1(X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

∣∣∣∣2. (3.2)

The procedure is illustrated in Figure 1. Note that the costs of this algorithm are of the orderM ·J ·K2

(see, e.g., [BSSZ20] or Section 5).

vj(x) gj(x) cj(x) ψ·(x) γj,·

j = J − 4 J − 3 J − 2 J − 1 J

1

Figure 1: Illustration of standard regression approach due to Tsitsiklis-van Roy [TVR01]. The straight
lines indicate the dependencies in the evaluation of cj and vj in (3.1). The dashed arrows start from
the regression data vj+1 and symbolize the regression procedure (3.2).

One problem of the standard regression algorithm is that its performance strongly depends on the
choice of basis functions. Indeed, while standard classes such as polynomials or splines usually form
the backbone of the construction of basis functions, practitioners usually add customized basis func-
tions, for instance the payoff function gj and some functionals applied to it.

As a more systematic approach, the authors of [BSSZ20] proposed a reinforced regression algorithm.
In this procedure the regression basis at each step of the backward induction is reinforced with the
approximate value function from the previous step of the induction. The approximate continuation
function at j ∈ {0, ..., J − 1} is then given by

cj(x) :=
K∑
k=1

γj,kψk(x) + γj,K+1vj+1(x),

where the regression coefficient are the solution to the least squares problem

γj,1, ..., γj,K+1 := arg min
γ1,...,γK+1

M∑
m=1

∣∣∣∣vj+1(X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )− γK+1vj+1(X

(m)
j )

∣∣∣∣2.
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Note that this procedure induces a recursion whenever an approximate value function is evaluated: in
order to evaluate vj(x) we need to evaluate cj(x), which in turn requires an evaluation of vj+1(x)
and so forth, until vJ(x) = gJ(x) terminates the recursion. Figure 2 illustrates this procedure. The
costs of the reinforced regression method are proportional toM ·J ·K2 +M ·J2 ·K (see [BSSZ20]).

vj(x) gj(x) cj(x) ψ·(x) γj,·

j = J − 4 J − 3 J − 2 J − 1 J

1

Figure 2: Illustration of the reinforced regression approach. Evaluation of vj in the reinforced regres-
sion algorithm leads to a recursion with J − j steps.

Despite the increased computational cost compared to the standard regression algorithm with the
same set of basis functions ψ1, . . . , ψK , the reinforced regression algorithm can improve the overall
computational cost for a fixed error tolerance drastically. As a rule of thumb, [BSSZ20] report that
the reinforced regression algorithm with a standard basis consisting of polynomials of a given degree
leads to similar accuracy as the standard regression algorithm based on polynomials of one degree
higher. In particular, the reinforced regression algorithm already outperforms the standard regression
algorithm for small dimensions d > 1, as long as the number J of time-steps is not too large.

A direct generalization of the reinforced regression algorithm to more general control problems is
certainly possible. The main difference to the optimal stopping problem is that for fixed time j we
have to choose from many potential candidates to reinforce with, namely any vj+1(y, ·), y ∈ L is
a candidate. Additionally, the dynamic programming principle (2.7) now entails a possibly non-trivial
optimization problem in terms of the policy a. Especially the second point makes the recursion at the
heart of the reinforced regression algorithm untenable for general control problems.

One solutions immediately comes to mind: If performing the recursion all the way to terminal time J
is too costly, why not truncate at a certain recursion depth? This idea is, in principle, sound, and is
the basis of the adaptations suggested below. However, some care is needed in the implementation
of this idea. Indeed, if “truncation” simply were to mean “replace the reinforcing basis functions by 0
after a certain truncation step”, this would introduce a structural error in the procedure, as regression
coefficients formerly computed in the presence of these basis functions would suddenly be incorrect.
Instead, we propose to compute a hierarchy of reinforced regression solutions, corresponding to dif-
ferent “cut-off depths” of the recursion. This way, we can make sure that the coefficients are always
consistent, that is, an error as mentioned above can be avoided. We introduce two versions, which
both adhere to the same general idea, but differ in an important implementation detail.

The hierarchical reinforced regression algorithm A iteratively constructs approximations (v(i))i=0,1,...

to the true value function as follows: For i = 0 we construct (v
(0)
j )0≤j≤J using the standard regression

method described above. Then for any i ≥ 1, given that v(l) is already constructed for 0 ≤ l ≤ i− 1,
define v(i) with the usual backwards induction, where the regression basis at step j ∈ {J − 1, ..., 0}
is reinforced with v(i−1)

j . The approximate continuation function of the ith iteration is given by

c
(i)
j (x) :=

K∑
k=1

γ
(i)
j,kψk(x) + γ

(i)
j,K+1v

(i−1)
j+1 (x), (3.3)

DOI 10.20347/WIAS.PREPRINT.2792 Berlin 2020



C. Bayer, D. Belomestny, P. Hager, P. Pigato, J. Schoenmakers, V. Spokoiny 8

where the regression coefficients are the solutions to the least squares problem

γ
(i)
j,1, ..., γ

(i)
j,K+1 := arg min

γ1,...,γK+1

M∑
m=1

∣∣∣∣v(i)
j+1(X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )− γK+1v

(i−1)
j+1 (X

(m)
j )

∣∣∣∣2.
The procedure may be stopped after a fixed number of iterations, or using an adaptive criterion. An
illustration of the method can be found in Figure 3. Note that the recursion that is started when evalu-
ating v(i)

j (x) always terminates after at most i steps in the evaluation of v(0)
j+i(x) for i ≤ J − j or in

v
(i−J−j)
J (x) = gJ(x) for J − j ≤ i.

v
(i)
j (x) gj(x) c

(i)
j (x) ψ·(x) γ

(i)
j,·

j = J − 5 J − 4 J − 3 J − 2 J − 1 J

i = 0

i = 1

i = 2

i = 3

1

Figure 3: Illustration of the hierarchical reinforced regression algorithm A, for three iterations. In the
lower right part of the diagram, the vertical lines indicate the equality v(i)

j ≡ v
(l)
j for J − j ≤ i.

For a fixed number of iterations i = {0, ..., I} we can modify the structure of the previous method so
that the primary iteration is the backwards induction over j = {J, J − 1, ..., 0} and the secondary

iteration is over i = {0, ..., I}. In this case we can further modify the algorithm by using v(I)
j+1 as

the regression target for the continuation functions c(i)
j for all i ∈ {0, ..., I}. We name the resulting

algorithm the hierarchical reinforced regression algorithm B. The approximate continuation function at
step j and iteration i is then still given by (3.3) and the least squares problem is given by

γ
(i)
j,1, ..., γ

(i)
j,K+1 := arg min

γ1,...,γK+1

M∑
m=1

∣∣∣∣v(I)
j+1(X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )− γK+1v

(i−1)
j+1 (X

(m)
j )

∣∣∣∣2.
Also in this algorithm, the recursion that is started when evaluating v(I)

j stops after at most I steps.
Figure 4 illustrates the procedure. The costs of the algorithm are discussed in Section 5.

4 Iterated reinforced regression for optimal control

Following the ideas and motivations of Section 3 we now present hierarchical reinforced regression
algorithms for optimal control based on the Bellman equation (2.7). The algorithms are based on M
sample trajectories (X

(m)
j )j=0,...,J,m=1,...,M from the underlying Markov chain X . and some initial set

DOI 10.20347/WIAS.PREPRINT.2792 Berlin 2020



Reinforced optimal control 9

v
(i)
j (x) gj(x) c

(i)
j (x) ψ·(x) γ

(i)
j,·

j = J − 5 J − 4 J − 3 J − 2 J − 1 J

i = 0

i = 1

i = 2

i = 3

1

Figure 4: Illustration of the hierarchical reinforced regression algorithm B with I = 3 iterations. In
contrast to algorithm A illustrated in Figure 3, the regression is always applied to the approximation
v

(I)
j+1, as indicated by the dashed arrows. The gray color of the elements in the upper left part of the

diagram indicates that these elements are not needed for the construction and evaluation of v(I).

{ψ1, ..., ψK} of basis functions ψi : Rd → R. For each y ∈ L we will define a subset Ly ⊂ L of
cardinalityRy := |Ly| and reinforce the basis {ψ1, . . . , ψK} by {vj+1(z, ·)|z ∈ Ly}. The respective
algorithms iteratively construct sequences of approximations to the value function

v(i) = (v
(i)
j )j=0,...,J with v

(i)
j : L × Rd → R,

for i = {0, 1, ...} until the iteration is terminated.

4.1 Hierarchical reinforced regression algorithm A

For i = 0 construct v(0) using the standard regression method inductively as follows: At the terminal
time J initialize v(0)

J := vJ where

vJ(y, x) = max
a∈KJ (y,x)

HJ(a, y, x), for all y ∈ L, x ∈ Rd. (4.1)

For a j ∈ {0, ..., J − 1}, assume that v(0)
l is already constructed for all l ∈ {j + 1, ..., J}. Then for

each y ∈ L define the regression coefficients by solving the following least squares problem

γ
(0),y
j,1 , ..., γ

(0),y
j,K := arg min

γ1,...,γK

M∑
m=1

∣∣∣∣∣v(0)
j+1(y,X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

∣∣∣∣∣
2

. (4.2)

Next define the continuation function by

c
(0)
j (y, x) :=

K∑
k=1

γ
(0),y
j,k ψk(x), for all y ∈ L, x ∈ Rd (4.3)

and the approximate value function v(0)
j through the dynamic programming principle

v
(0)
j (y, x) := max

a∈Kj(y,x)

(
Hj(a, y, x) + c

(0)
j (ϕj(a, y), x)

)
for all y ∈ L, x ∈ Rd. (4.4)
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Given the approximation v(i) for some i ≥ 0 we construct a new approximation v(i+1) using reinforced
regression inductively as follows: Initialize at the terminal time v(i+1)

J := vJ . For j ∈ {0, ..., J − 1}
assume that v(i+1)

l is already constructed for l ∈ {j + 1, ..., J}. Then for each y ∈ L define the
regression coefficients by solving the following least squares problem

γ
(i+1),y
j,1 , ..., γ

(i+1),y
j,K+Ry := arg min

γ1,...,γK+Ry

M∑
m=1

∣∣∣∣ v(i+1)
j+1 (y,X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j ) (4.5)

−
Ry∑
k=1

γK+kv
(i)
j+1(yk, X

(m)
j )

∣∣∣∣2,
where {yk}k=1,...,Ry = Ly, and define the continuation function c(i+1)

j by

c
(i+1)
j (y, x) :=

K∑
k=1

γ
(i+1),y
j,k ψk(x) +

Ry∑
k=1

γ
(i+1),y
j,K+k v

(i)
j+1(yk, x), (4.6)

for all y ∈ L and x ∈ Rd. Finally define the approximation v(i+1)
j through the dynamic programming

principle by

v
(i+1)
j (y, x) := max

a∈Kj(y,x)

(
Hj(a, y, x) + c

(i+1)
j (ϕj(a, y), x)

)
, (4.7)

for all y ∈ L and x ∈ Rd.

The iteration over i ∈ {0, 1, ...} can be terminated after I ∈ N steps, yielding v(I) as an approxi-
mation to the true value function. Alternatively one can introduce an adaptive termination criterion, for
example by comparing the relative change in the error of the least squares problem (4.5), terminating
after the change falls under a given threshold.

Remark 4.1. Recall that in the initialization we have v(i)
J = v

(0)
J for all i ∈ {1, ..., I}. It then follows

inductively that

v
(i)
j ≡ v

(l)
j , for all J − j ≤ i ≤ I, l ≥ i. (4.8)

This identity can be used to reduce the costs of the algorithm, since the regression problem only needs
to be solved for all (j, i) with 0 ≤ j ≤ J − 1 and 0 ≤ i ≤ (J − j) ∧ I .

Remark 4.2. More general or other forms of reinforced basis functions are certainly possible. The
essential point is that they are based on the regression result from the preceding step in the backwards
induction and the preceding iteration. Our specific choice may be seen as a natural primal choice. We
left flexibility in the choice of the sets Ly, for which depending on the cardinality of the set L, possible
choices are the trivial Ly = L and Ly = {y}, or Ly = L′ for some set L′ independent of y, or
more elaborately Lyj = {ϕ(a, y) | a ∈ Kj(y, xj)} for some xj ∈ Rd. Note that the use of a step
dependent set Lyj in the above method is straightforward.

4.2 Hierarchical reinforced regression algorithm B

Fix a number of iterations I ∈ N and initialize the approximate value functions at the terminal time by
v

(i)
J ≡ vJ for all i ∈ {0, ..., I}, where vJ is given by (4.1). The approximate value functions at times

previous to J are defined inductively as follows:
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Let j ∈ {0, ..., J − 1} and assume that v(i)
l is already defined for all l ∈ {j + 1, ..., J} and

i ∈ {0, ..., I}. For i = 0 and each y ∈ L determine the coefficients for the regression basis by
solving the least squares problem

γ
(0),y
j,1 , ..., γ

(0),y
j,K := arg min

γ1,...,γK

M∑
m=1

∣∣∣∣∣v(I)
j+1(y,X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

∣∣∣∣∣
2

(4.9)

and define the approximate continuation function c(0) by (4.3). For i ∈ {1, ..., D} and each y ∈ L
determine the regression coefficients by solving the least squares problem

γ
(i),y
j,1 , ..., γ

(i),y
j,K+Ry := arg min

γ1,...,γK+Ry

M∑
m=1

∣∣∣∣ v(I)
j+1(y,X

(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j ) (4.10)

−
Ry∑
k=1

γK+kv
(i−1)
j+1 (yk, X

(m)
j )

∣∣∣∣2,
where {yk}k=1,...,Ry = Ly, and define the continuation function c(i)

j by (4.6).

Finally, define the approximation to the value function v(i)
j for all i = {0, ..., I} by (4.7). After ending

the backwards induction use (v
(I)
j )j=0,...,J as an approximation to the true value function.

Remark 4.3. Note that the identity (4.8) also holds for the above algorithm. Moreover, since we are
only interested in v(I), we can discard the computation of c(i)

j and v(i)
j for all 0 ≤ j + i ≤ I − 1,

since they do not contribute to the construction of v(I). The least squares problem then only needs to
be solved for (j, i) ∈ {0, ..., J − 1} × {0, ..., I} with

0 ≤ j + i ≤ I − 1 and 0 ≤ i ≤ (J − j) ∧ I.

Remark 4.4. Choosing the number of iterations I = J we then have from the previous remark
that only the value functions on the diagonal j = i need to be constructed. In this case, denote
vj = v

(j)
j , cj = c

(j)
j etc., and observe that the least squares problem which is solved in each step

j ∈ {J − 1, ..., 0} of the backwards induction is given by

γyj,1, ..., γ
y
j,K+Ry := arg min

γ1,...,γK+1

M∑
m=1

∣∣∣∣ vj+1(y,X
(m)
j+1)−

K∑
k=1

γkψk(X
(m)
j )

−
Ry∑
k=1

γK+kvj+1(yk, X
(m)
j )

∣∣∣∣2.
where {yk}k=1,...,Ry = Ly. Hence, for I = J the above algorithm represents a direct extension of
the reinforced regression algorithm in [BSSZ20] from optimal stopping to optimal control problems.

5 Computational cost

We study the computational work of the modified reinforced regression algorithm of Section 4.2. In
what follows, the following operations are considered to be performed at constant cost:

� Multiplications, additions and other primitive operations at cost c∗;
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� Simulation from the distribution of the Markov process Xj at cost cX ;

� Evaluation of the standard basis functions ψi or of the payoff Hj at cost cf ;

� We set R := maxy∈LR
y.

� The cost of evaluating other non-trivial, but known functions ϕ (think of the value function when
all the required regression coefficients are already known) will be denoted by cost(ϕ).

If an expression involves several such operations, then only the most expensive constant is reported.
(E.g., evaluating a basis function and multiplying the value by a scalar constant is considered to incur
a cost cf .) We may also use constants c which do not depend on the specifics of the algorithm. We
now go through the individual stages of the algorithm.

1 Simulating trajectories at cost cost1 = cXM(J + 1).

2 Computing the terminal value function as in (4.1) at cost cost2 = cf |L| |K|.

3 For fixed 0 ≤ j ≤ J − 1 and y ∈ L set up the least squares problem (4.9) at cost

M
(
cfK + cost

(
v

(I)
j+1

))
.

4 For fixed 0 ≤ j ≤ J − 1 and y ∈ L, we solve the least squares problem (4.9) at cost c∗MK2.
The total cost is cost4 = c∗JMK2 |L|.

5 For fixed 0 ≤ j ≤ J − 1, y ∈ L, and 1 ≤ i ≤ I set up the least squares problem (4.10) at

cost M
(
cfK + cost

(
v

(I)
j+1

)
+R cost

(
v

(i−1)
j+1

))
.

6 For fixed 0 ≤ j ≤ J − 1, y ∈ L, and 1 ≤ i ≤ I solve the least squares problem (4.10) at cost
c∗M(K +R)2, leading to a total cost of cost6 = c∗M(K +R)2J |L|.

List 5.1: Stages of the algorithm

For simplicity of the presentation, we shall only consider the following scenario:

Assumption 5.1. The total set of reinforced basis functions contains all available value functions, i.e.,⋃
y∈L

Ly = L.

For fixed 0 ≤ i ≤ I and 0 ≤ j ≤ J let

v
(i)
j :=

(
v

(i)
j (y, ·)

)
y∈L

, c
(i)
j :=

(
c

(i)
j (y, ·)

)
y∈L

. (5.1)

The key step of the cost analysis is understanding the cost of evaluating the reinforced basis functions,
which are, in turn, given in terms of reinforced basis functions at later time steps. We note that it is
essential to analyze the cost of evaluating the full set of reinforced basis functions v

(i)
j rather than

individual ones v(i)
j (y, ·), as the latter method would show us an apparent explosion of basis functions
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as we increase time.1 By (4.7), evaluating v
(i)
j requires evaluating the payoff functions for all combi-

nations of controls y ∈ L and policies a ∈ K, then evaluating c
(i)
j , and taking the corresponding

maxima. In total, this means

cost
(
v

(i)
j

)
≤ |K| |L| (cf + c∗) + cost

(
c

(i)
j

)
.

On the other hand, by (4.6) evaluating c
(i)
j requires K evaluations of standard basis functions, K |L|

elementary operations for summing them, one evaluation of v(i−1)
j+1 , and |L|2 elementary operations

for their summation. In total, this means that

cost
(
c

(i)
j

)
≤ Kcf +K |L| c∗ + 1i>0

(
|L|2 c∗ + cost

(
v

(i−1)
j+1

))
.

This implies the cost estimate

cost
(
v

(i)
j

)
≤ |K| |L| (cf + c∗) +Kcf +K |L| c∗ + 1i>0

(
|L|2 c∗ + cost

(
v

(i−1)
j+1

))
. (5.2)

Lemma 5.2. The cost of evaluating v
(i)
j , i = 0, . . . , I , j = 0, . . . , J can be bounded by

cost
(
v

(i)
j

)
≤
{

(i+ 1) (|K| |L| (cf + c∗) +Kcf +K |L| c∗) + i |L|2 c∗, j + i ≤ J,

|L| |K| (cf + c∗) + (J − j) (|K| |L| (cf + c∗) +Kcf + (K + 1) |L| c∗) , j + i > J.

Proof. For a := |K| |L| (cf + c∗) +Kcf +K |L| c∗, consider the cost recursion

c(k + 1) ≤ a+ |L| c∗c(k), k ≥ 0.

Assuming that the recursion hits i = 0 before j = J , i.e., i+j ≤ J , the cost c(k) := cost
(
v

(k)
j+i−k

)
satisfies the recursion with c(0) ≤ a, and, hence, we obtain

c(k) ≤ (k + 1)a+ k |L|2 c∗.
This gives the first expression in the statement of the lemma with k = i.

On the other hand, if i+ j > J , we hit j = J before i = 0. In this case, c(k) := cost
(
v

(i+j−J+k)
J−k

)
satisfies the same recursion, but with initial value c(0) ≤ |L| |K| (cf + c∗).

In order to shorten notation, we introduce

a := |K| |L| (cf + c∗) +Kcf +K |L| c∗,
b := |L|2 c∗,
d := |L| |K| (cf + c∗),

e := |K| |L| (cf + c∗) +Kcf + (K + 1) |L| c∗,
so that the estimate of Lemma 5.2 shortens to

cost
(
v

(i)
j

)
≤
{

(i+ 1)a+ ib, j + i ≤ J,

d+ (J − j)e, j + i > J.

We next estimate the cost of setting up the regression problem (4.9).

1Suppose that each reinforced basis function v
(i)
j (y, ·) depends on two reinforced basis functions v

(i−1)
j+1 (y′, ·) and

v
(i−1)
j+1 (y′′, ·). If we follow this recursion for l ≤ i steps, we arrive at a total set of 2l basis functions. The catch is that

many, if not all, of these basis functions overlap with basis functions for other reinforced basis functions v(i)j (ỹ, ·).
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Lemma 5.3. The cost of setting up the regression problem for c(0)
j (y, ·), j = 0, . . . , J − 1, y ∈ L,

can be bounded by

cost3 ≤ JMKcf +M(J − I) ((I + 1)a+ Ib) +MId+
1

2
MI(I + 1)e.

Proof. We have

cost3 ≤
J−1∑
j=0

M
(
Kcf + cost

(
v

(I)
j+1

))
≤ JMKcf +M

J−I−1∑
j=0

[(I + 1)a+ Ib] +
I∑
`=1

[d+ `e]

= JMKcf +M(J − I) ((I + 1)a+ Ib) +MId+M
1

2
I(I + 1)e.

The cost for setting up the least squares problem (4.10) is computed in a similar way.

Lemma 5.4. The cost of setting up the regression problem for c(i)
j (y, ·), i = 1, . . . , I , j = 0, . . . , J−

1, y ∈ L, can be bounded by

cost5 ≤ JMKcf +
M

2
I [(I + 1)a+ (I − 1)b] (J − I + 2)+

+
M

6
I
[
11a+ 2b− 9d+ 5e+ I(I + 6)a+ 3I(I + b) + 3I2d+ I(I + 6)e

]
.

Proof. A closer look at (4.10) reveals that the total cost of setting up all these least squares problems
can be bounded by

cost5 ≤
J−1∑
j=0

M

(
Kcf +

I∑
i=1

cost
(
v

(i−1)
j+1

))
, (5.3)

taking into account that v(I)
j+1 was already evaluated during the set-up of the least squares prob-

lem (4.9) and, hence, does not need to be evaluated again. Using Lemma 5.2, we obtain

cost5 ≤ JMKcf +M

J−1∑
j=0

(J−j)∧(I−1)∑
i=0

((i+ 1)a+ ib) +
I−1∑

i=1+(J−j)∧(I−1)

(d+ (J − j − 1)e)


= JMKcf +M

J−I+1∑
j=0

[
I−1∑
i=0

((i+ 1)a+ ib)

]
+

+M
J−1∑
j=J−I

[
J−j∑
i=0

((i+ 1)a+ ib) +
I−1∑

i=J−j+1

(d+ (J − j − 1)e)

]
.

Evaluating the double sums gives the estimate from the statement of the lemma.

Theorem 5.5. The computational cost of the algorithm presented in Section 4.2 can be bounded by

cost ≤ constMJ
(
cX + I2(K + |K|+ |L|) |L|+ (K +R)2 |L|

)
,

where const is a positive number independent of |K|, |L|, K , J , and I .
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Proof. We abandon the difference between cf and c∗. Then,

a ≤ const (|K| |L|+K(|L|+ 1)) ≤ const(K + |K|) |L| ,
b ≤ const |L|2 ,
d ≤ const |K| |L| ,

e ≤ const a ≤ const(K + |K|) |L| ,
max(a, b, e, d) ≤ const(K + |K|+ |L|) |L| .

Similarly, we bound

cost3 ≤ const
[
JMK +M(J − I)I(a+ b) +MId+MI2e

]
≤ constMJ(I + 1)(K + |K|+ |L|) |L| .

For the second term in the cost estimate cost5 given in Lemma 5.4, we bound

M

2
I [(I + 1)a+ (I − 1)b] (J − I + 2) ≤ constMI2(J − I + 2)(K + |K|+ |L|) |L| .

The third term in the cost estimate cost5 is bounded by

M

6
I
[
11a+ 2b− 9d+ 5e+ I(I + 6)a+ 3I(I + b) + 3I2d+ I(I + 6)e

]
≤

≤ constMI3(K + |K|+ |L|) |L| .

Hence, we obtain

cost5 ≤ constM
[
JK + I2J(K + |K|+ |L|) |L|

]
.

Further, note that cost3 ≤ const cost5, and similarly for cost2. We also use that cost4 ≤ const cost6.
The total cost can now be expressed as follows

cost ≤ const [cost1 + cost5 + cost6]

≤ const
(
MJcX +M

[
JK + I2J(K + |K|+ |L|) |L|

]
+M(K +R)2J |L|

)
.

Remark 5.6. Recall that Remark 4.4 introduced a significantly cheaper variant of algorithm B for the
case I = J . It is easy to see that the computational cost of this variant is bounded by

cost ≤ constMJ
(
cX + J(K + |K|+ |L|) |L|+ (K +R)2 |L|

)
,

i.e., the total cost is proportional to J2 rather than J3. Indeed, the main difference in the cost analysis
as compared to the full modified algorithm is that (5.3) can be replaced by

cost5 ≤
J−1∑
j=0

M
(
Kcf + cost

(
v

(J−j−1)
j+1

))
.

Note that this essentially corresponds to the algorithm of [BSSZ20] directly generalized to optimal
control problems.

DOI 10.20347/WIAS.PREPRINT.2792 Berlin 2020



C. Bayer, D. Belomestny, P. Hager, P. Pigato, J. Schoenmakers, V. Spokoiny 16

6 Convergence analysis

In this section we analyze the convergence properties of the standard and reinforced regression al-
gorithms introduced in the previous sections. For related convergence analysis in the case of optimal
stopping problems we refer the interested reader to [Zan13] and [BS20], see also [BRS20]. Henceforth
we assume that

max
j=0,...,J

sup
y∈L,a∈A

sup
x∈X
|Hj(a, y, x)| ≤ CH , (6.1)

then all the value functions

v∗j (y, x) := sup
α∈Aj(y,x)

E

[
J∑
`=j

H`

(
a`, Y`(α; j, y), Xj,x

`

)]
are uniformly bounded by JCH . Fix a sequence of spaces Ψj, j = 0, . . . , J, of functions defined on
X .We stress that these spaces must not be linear at this point. Construct the corresponding sequence
of estimates (vj,M(y, x))Jj=0 via

vJ,M(y, x) = sup
a∈Kj(y,x)

HJ(a, y, x) and (6.2)

vj,M(y, x) = sup
a∈Kj(y,x)

(Hj(a, y, x) + TWPj,M [vj+1,M ](ϕj+1(a, y), x)) , j < J,

where Pj,M [g](z, x) stands for the empirical projection of the conditional expectation E[g(z,Xj,x
j+1)]

on Ψj, based on a sample

DM,j =
{

(X
(m)
j , X

(m)
j+1), m = 1, . . . ,M

}
(6.3)

from the joint distribution of (Xj, Xj+1), that is,

Pj,M [g](z, ·) ∈ arg inf
ψ∈Ψj

M∑
m=1

[∣∣∣g(z,X
(m)
j+1)− ψ(X

(m)
j )

∣∣∣2] .
In (6.2) TW is a truncation operator at level W = JCH defined by

TWf(x) =

{
f(x), |f(x)| ≤ W,

W sign(f(x)), otherwise.

Due to Theorem 11.5 in [GKKW02], one has for all g with ‖g‖∞ ≤ W, j = 0, . . . , J − 1, and all
z ∈ L, that

E
[∥∥TWPj,M [g](z, ·)− E

[
g(z,Xj,·

j+1)
]∥∥2

L2(µj)

]
≤ ε2

j,M + 2 inf
w∈Ψj

‖g(z, ·)− w‖2
L2(µj) with ε2

j,M := cW 4 1 + logM

M
VC(Ψj), (6.4)

where VC(Ψj) is the Vapnik-Chervonenkis dimension of Ψj (see Definition 9.6 in [GKKW02]), µj is
the distribution ofXj, and c is an absolute constant. In order to keep the analysis tractable, we assume
that the setsDM,j are independent for different j.More specifically, we consider an algorithmic frame-
work based on (6.2), where for every exercise date the samples (6.3) are simulated independently,
and consider the information sets

Gj,M := σ
{
Xj;M , . . . ,XJ ;M

}
with Xj;M :=

(
X

(m)
j , X

(m)
j+1, m = 1, . . . ,M

)
.
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Let us define for j < J, z ∈ L, x ∈ X ,

Ĉj(z, x) := TWPj,M [vj+1,M ](z, x), (6.5)

and for a generic (exact) dummy trajectory (Xl)l=0,...,J independent of Gj,M , let

C̃j(z, x) := EGj+1,M

[
vj+1,M(z,Xj,x

j+1)
]
. (6.6)

Note that C̃j (·, ·) is a Gj+1,M -measurable random function while the estimate Ĉj (·, ·) is a Gj-
measurable one. We further define

C∗j (z, x) = E
[
v∗j+1(z,Xj,x

j+1)
]
, j < J. (6.7)

The following lemma holds.

Lemma 6.1. We have that,

E

[∥∥∥sup
z∈L

∣∣∣C̃j(z, ·)− C∗j (z, ·)
∣∣∣∥∥∥2

L2(µj)

]
≤ E

[∥∥∥sup
z∈L

∣∣∣Ĉj+1(z, ·)− C∗j+1(z, ·)
∣∣∣∥∥∥2

L2(µj+1)

]
. (6.8)

Proof. Let X be a generic (exact) dummy trajectory independent of Gj+1,M . Then from (6.6), and
(6.7) we see that for j < J,∣∣∣C̃j(z,Xj)− C∗j (z,Xj)

∣∣∣ ≤ EGj+1,M

[∣∣vj+1,M(z,Xj+1)− v∗j+1(z,Xj+1)
∣∣∣∣Xj

]
(6.9)

Next, by (2.7), (6.2), (6.5), and (6.7) we have that∣∣vj+1,M(z, x)− v∗j+1(z, x)
∣∣ ≤ sup

a∈Kj+1(z,x)

∣∣∣Ĉj+1(ϕj+2(a, z), x)− C∗j+1(ϕj+2(a, z), x)
∣∣∣

≤ sup
z′∈L

∣∣∣Ĉj+1(z′, x)− C∗j+1(z′, x)
∣∣∣ . (6.10)

Hence, by (6.9) one has that

sup
z∈L

∣∣∣C̃j(z,Xj)− C∗j (z,Xj)
∣∣∣ ≤ EGj+1,M

[
sup
z∈L

∣∣∣Ĉj+1(z,Xj+1)− C∗j+1(z,Xj+1)
∣∣∣∣∣∣∣Xj

]
.

Finally, by taking the “all-in expectation” w.r.t. the law µj ⊗ PM , we observe that

E

[
sup
z∈L

∣∣∣C̃j(z,Xj)− C∗j (z,Xj)
∣∣∣2]

≤ E

{
EGj+1,M

[
sup
z∈L

∣∣∣Ĉj+1(z,Xj+1)− C∗j+1(z,Xj+1)
∣∣∣∣∣∣∣Xj

]}2

≤ E

[
sup
z∈L

∣∣∣Ĉj+1(z,Xj+1)− C∗j+1(z,Xj+1)
∣∣∣2]

by Jensen’s inequality and the tower property.

In fact, Lemma 6.1 is the key to the next proposition.
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Proposition 6.2. Set

Ej :=
∥∥∥sup
z∈L

∣∣∣Ĉj(z, ·)− C∗j (z, ·)
∣∣∣∥∥∥
L2(µj⊗PM )

, j = 0, . . . , J − 1,

with PM being the law of the sample X(m)
j , m = 1, . . . ,M, j = 1, . . . , J. Then it holds

Ej ≤ |L|
(
εj,M +

√
2 sup
z∈L

inf
w∈ Ψj

∥∥C̃j(z, ·)− w∥∥L2(µj⊗PM )

)
+ |L| Ej+1 (6.11)

for all j = 0, . . . , J − 1, with EJ = 0 by definition.

Proof. The case j = J − 1 follows from (6.4) and the fact that C̃J−1 = C∗J−1 and Due to (6.4) we
have with probability 1,

EGj+1,M

[∥∥∥Ĉj(z, ·)− C̃j(z, ·)∥∥∥2

L2(µj)

]
≤ ε2

j,M + 2 inf
w∈Ψj

∥∥∥C̃j(z, ·)− w∥∥∥2

L2(µj⊗PM )
. (6.12)

Hence ∥∥∥Ĉj(z, ·)− C̃j(z, ·)∥∥∥
L2(µj⊗PM )

≤ εj,M +
√

2 inf
w∈Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

. (6.13)

By applying (6.13) it follows that∥∥∥Ĉj(z, ·)− C∗j (z, ·)
∥∥∥
L2(µj⊗PM )

≤ εj,M +
√

2 inf
w∈ Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

+
∥∥∥C̃j(z, ·)− C∗j (z, ·)

∥∥∥
L2(µj⊗PM )

.

From this and Lemma 6.1 we imply

sup
z∈L

∥∥∥Ĉj(z, ·)− C∗j (z, ·)
∥∥∥
L2(µj⊗PM )

≤ εj,M +
√

2 sup
z∈L

inf
w∈ Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

+
∥∥∥sup
z∈L

∣∣∣Ĉj+1(z, ·)− C∗j+1(z, ·)
∣∣∣∥∥∥
L2(µj+1⊗PM )

and then (6.11) follows.

Corollary 6.3. Suppose that

sup
z∈L

inf
w∈ Ψj

∥∥C̃j(z, ·)− w∥∥L2(µj⊗PM )
≤ δ, VC(Ψj) ≤ D, 0 ≤ j ≤ J − 1,

for some δ > 0 and D > 0. Proposition 6.2 then yields for j = 0, . . . , J − 1, by using (6.10),∥∥∥sup
z∈L

∣∣vj,M(z, ·)− v∗j (z, ·)
∣∣∥∥∥
L2(µj⊗PM )

≤
(
cW 4 1 + logM

M
D +

√
2δ

) |L|J−j+1 − |L|
|L| − 1

. (6.14)

Corollary 6.4. By inserting the estimate

inf
w∈ Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

≤
∥∥∥C̃j(z, ·)− C∗j (z, ·)

∥∥∥
L2(µj⊗PM )

+ inf
w∈ Ψj

∥∥C∗j (z, ·)− w
∥∥
L2(µj)
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in Proposition 6.2, we get the alternative recursion

Ej ≤ |L|
(
εK,M +

√
2 sup
z∈L

inf
w∈ Ψj

∥∥C∗j (z, ·)− w
∥∥
L2(µj)

)
+ |L| (1 +

√
2)Ej+1,

and under the alternative assumption

sup
z∈L

inf
w∈ Ψj

∥∥C∗j (z, ·)− w
∥∥
L2(µj)

≤ δ, VC(Ψj) ≤ D, 0 ≤ j ≤ J − 1,

for some δ > 0 and D > 0, we obtain for j = 0, ..., J the bounds∥∥∥sup
z∈L

∣∣vj,M(z, ·)− v∗j (z, ·)
∣∣∥∥∥
L2(µj⊗PM )

≤
(
cW 4 1 + logM

M
D +

√
2δ

)
|L|
(
(1 +

√
2) |L|

)J−j − 1

(1 +
√

2) |L| − 1
.

Discussion The proposed reinforced regression algorithm with I = J uses linear approximation
spaces of the form

Ψj = span{ψ1(x), . . . , ψK(x), vj+1,M(y1, x), . . . , vj+1,M(yR, x)}, j = 0, . . . , J − 1,

for L = {y1, . . . , yR}, where ψ1(x), . . . , ψK(x) are some fixed basis functions (e.g. polynomials)
on X . In this case VC(Ψj) ≤ K + R, 0 ≤ j ≤ J − 1. In order to see the advantage of adding
additional basis functions more clearly, estimate

sup
z∈L

inf
w∈ Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

≤ sup
z∈L

∥∥EGj+1,M

[
vj+1,M(z,Xj,·

j+1)− vj+1,M(z, ·)
]∥∥

L2(µj⊗PM )
.

Assume additionally that

max
j=1,...,J

sup
y∈L,a∈A

sup
x∈X
|Hj(a, y, x1)−Hj(a, y, x2)| ≤ LH |x1 − x2|, (6.15)

for all x1, x2 ∈ X and

max
j=1,...,J

max
`=j,...,J

E[|Xj,x1
` −Xj,x2

` |] ≤ LX |x1 − x2|, ∀x1, x2 ∈ X (6.16)

for some constants LH > 0, LX > 0. Under assumptions (6.15) and (6.16) we then have

max
j=1,...,J

sup
y∈L
|v∗j (y, x1)− v∗j (y, x2)| ≤ JLXLH |x1 − x2|, ∀x1, x2 ∈ X .

By using an additional truncation, one can achieve that the Lipschitz constants of the estimates
vj,M(z, ·), j = 0, . . . , J − 1, are all uniformly bounded by a constant JLXLH with probability
1. Hence

sup
z∈L

inf
w∈ Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

≤ JLXLH

[
E

∫
|Xj,x

j+1 − x|2µj(dx)

]1/2

.

This implies that if JLH stays bounded for J → ∞, (for example if H scales as 1/J ), then the

approximation error inf
w∈ Ψj

∥∥∥C̃j(z, ·)− w∥∥∥
L2(µj⊗PM )

becomes small as J →∞. Note that the latter

property can not be guaranteed when using fixed (nonadaptive) linear spaces Ψj. Of course, the
exponential in J factor in (6.14) will lead to explosion of the overall error as J → ∞, but the above
observation still indicates that the inclusion of the functions vj+1,M(y1, x), . . . , vj+1,M(yR, x) into
Ψj can significantly improve the quality of the estimates vj,M(z, ·) especially in the case of large J .
Concerning the dependence of the bound (6.14) on J , we note that this estimation is likely to be too
pessimistic, see also a discussion in [Zan13].
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7 Numerical examples

We now present various numerical examples which demonstrate the accuracy of the reinforced re-
gression algorithm in practice. To allow for a direct comparison with the reinforced regression algo-
rithm of [BSSZ20], we first consider a (single) optimal stopping problem, i.e., a Bermudan option. Our
next example is a multiple stopping problem, for which the hyperparameters already become critical.
Finally, our last example is an optimal control of a gas storage.

Before, let us also mention how a lower estimate to the value of a control problem in a Markovian
setting is calculated using the result of a regression procedure. Let c be an approximation to the
function c∗ given by

c∗j(x, y) = E
[
v∗j+1(y,Xj,x

j+1)
]
, x ∈ Rd, y ∈ L, j ∈ {0, ..., J − 1},

with cJ ≡ c∗J ≡ 0 by convention. Using the hierarchical reinforced regression method, such an
approximation is given by c(I) defined in (4.6). Further let (X(m))1≤m≤Mtest be sample trajecto-
ries from the underlying Markov chain, generated independently from the samples used in the re-
gression procedure. Then we can iteratively define a sequence of polices (α(m))1≤m≤Mtest with

α(m) = (a
(m)
0 , ..., a

(m)
J ) by

a
(m)
j := arg max

a∈Kj(Y
(m)
j ,X

(m)
j )

(
Hj(a, Y

(m)
j , X

(m)
j ) + cj(ϕ(a, Y

(m)
j ), X

(m)
j )

)
,

or all m = 1, ...,Mtest and j = 0, ..., J , where Y (m)
0 := y0 ∈ L and Y (m)

j+1 := ϕj+1(amj , Y
(m)
j ).

It then follows from the definition, that each α(m) is an admissible sequence of policies, i.e. α(m) ∈
A0(y0, X

(m)). Therefore, a lower estimate to the value E(v(y0, X0)) is given by

1

Mtest

Mtest∑
m=1

J∑
j=0

Hj(a
(m)
j , Y

(m)
j , X

(m)
j ).

7.1 Bermudan max-call option

In this section we evaluate the performance of the hierarchical reinforced regression (HRR) method
from Section 4 on the valuation of a Bermudan max-call option. Let (Ω,F , (Ft)0≤t≤T , P ) be a filtered
probability space on which a d-dimensional Brownian motion W = (W (t))0≤t≤T is defined. Further
let X = (X(t))0≤t≤T be the geometric Brownian motion defined by

dXk(t) = (r − δ)Xk(t) dt+Xk(t)σ dW k(t), Xk(0) = x0, 0 ≤ t ≤ T, k ∈ {1, ..., d},

where x0, r, δ, σ > 0. Option rights can be exercised on a predefined set of possible exercise dates
{t0, t1, ..., tJ}, where at most one right can be exercised on any given date. Assume that the exercise
dates are equidistant tj := j ·∆t for all j = {0, ..., J} with ∆t := T/J and define the underlying
Markov chain (Xj)j=0,...,J by Xj = X(j∆t). Recall from Example 2.3 that in order to model a
multiple stopping problem in the optimal control framework we define the set of policies byK = {0, 1}
and the set of controls by L = {0, ..., ymax}, where ymax is the number of exercise rights. Further,
we define

ϕj(a, y) := (y − a)+, Kj(x, y) := {0, 1 ∧ y}, Hj(a, y, x) := a · gj(x) e−tjr,
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for all y ∈ L, a ∈ K and j ∈ {0, ..., J}, where g is the max-call pay-off function defined by

g(x) := (max{x1, ...., xd} − C)+, x ∈ Rd,

where C ∈ R+ is the option strike. Then the value function v∗0(ymax, x0) defined in (2.6) yields the
value of the Bermudan max-call option with underlying X and data (d, J, T, ymax, x0, C, r, δ, σ).

7.1.1 Single exercise right

We will first consider the case of a single exercise right ymax = 1. This is a standard example in
the literature and we refer to [AB04] for reference values. The performance of the reinforced regres-
sion method for this example was already analyzed in [BSSZ20]. We revisit this example in order to
demonstrate that even in the optimal stopping case our novel HRR method allows for improvements
in computational costs without sacrificing the quality of the estimations.

d Basis
Lower bounds

Upper boundsRegression HRR Reinf. Reg.
I = 0 I = 1 I = 9

2

Ψ1 13.002 (0.023) 13.762 (0.015) 13.793 (0.015)

14.006 (0.036)
Ψ1,g 13.670 (0.018) - -
Ψ2 13.761 (0.017) 13.863 (0.014) 13.875 (0.015)
Ψ3 13.859 (0.016) - -

4

Ψ1 21.881 (0.025) 22.550 (0.019) 22.548 (0.019)

22.789 (0.039)
Ψ1,g 22.385 (0.022) - -
Ψ2 22.531 (0.020) 22.654 (0.018) 22.666 (0.019)
Ψ3 22.666 (0.020) - -

6
Ψ1 28.592 (0.024) 29.013 (0.021) 29.002 (0.021)

29.240 (0.036)Ψ1,g 28.831 (0.016) - -
Ψ2 29.024 (0.022) 29.109 (0.019) 29.120 (0.020)
Ψ3 29.126 (0.022) - -

8
Ψ1 33.819 (0.026) 34.095 (0.022) 34.083 (0.022)

34.291 (0.036)Ψ1,g 33.907 (0.026) - -
Ψ2 34.137 (0.022) 34.182 (0.021) 34.193 (0.021)

Table 1: Bounds (with 99.7% confidence interval) for the value of the Bermudan max-call option with
data J = 9, T = 1, ymax = 1, x0 = C = 100, r = 0.05, δ = 0.1, σ = 0.2 and different numbers
of underlying assets d ∈ {2, 4, 6, 8}. For all methods we used M = 106 training sample paths and
Mtest = 107 paths for calculating the lower bound. The dual upper bounds are calculated using the
HRR method with I = 1, basis Ψ2 and 104 outer and 103 inner sample paths.

Define the functions fi : Rd → R, x 7→ sort(x1, . . . , xd)i, the ith largest entry of x, for i = 1, . . . , d
and consider the following three sets of regression basis functions:

Ψ1 := {1, f1, ..., fd}, Ψ1,g := Ψ1 ∪ {g}, Ψ2 := Ψ1 ∪ {fi · fj | 1 ≤ i ≤ j ≤ d},

Ψ3 := Ψ1 ∪Ψ2 ∪ {fi · fj · fk | 1 ≤ i ≤ j ≤ k ≤ d}.
Note that the cardinalities of these sets are given by |Ψ1| = d+1, |Ψ1,p| = d+2, |Ψ2| = 1

2
d2+3

2
d+1,

and |Ψ3| = 1
6
d3 + d2 + 11

6
d + 1, respectively. Regarding the HRR method, we use the algorithm of
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the second type described in Section 4.2. Further note that in the optimal stopping case there is only
one choice for the set of reinforced value function for the HRR method since L = {1} and therefore
we always set L1 = {1}.

1 1, g 2 3 1 12 2

12.9
13.0
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

d = 2

1 1, g 2 3 1 12 2

21.8
21.9
22.0
22.1
22.2
22.3
22.4
22.5
22.6
22.7

d = 4

1 1, g 2 3 1 12 2

28.50
28.55
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29.05
29.10
29.15

d = 6

1 1, g 2 1 12 2

33.70
33.75
33.80
33.85
33.90
33.95
34.00
34.05
34.10
34.15
34.20
34.25

d = 8

Regression
(I = 0)

HRR
(I = 1)

RR
(I = 9)

Regression
(I = 0)

HRR
(I = 1)

RR
(I = 9)

Figure 5: A visualization of the lower bounds from Table 1.

We considered two different set-ups for the comparison of the different methods:

� First we keep the number of exercises dates J fixed and vary the number of underlying assets
d;

� Second we keep d fixed and vary J (while also keeping T fixed).

In Table 1 we present lower and upper bounds to the value of a Bermudan max-call option with a
single exercise right for J = 9 and d = 2, 4, 6, 8. In the corresponding Figure 5 we have visualized the
lower bounds for the comparison between the different regression methods. For each of the considered
methods we usedM = 106 simulated training samples paths to determine the regression coefficients
and Mtest = 107 paths for calculating the lower bounds.

We first observe that across all numbers of assets d the HRR method with the set of basis functions
Ψ1 performs significantly better then the standard regression method with the basis Ψ1 and Ψ1,g.
The same holds true when comparing the methods using the regression basis Ψ2. More importantly
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however, we observe that for d ≤ 6 the HRR method with basis Ψ1 yields lower bounds of the same
quality as obtained with the standard method and the larger basis Ψ2. The same holds true when
comparing the HRR method with basis Ψ2 against the standard method with the basis Ψ3. In the case
d = 8 assets, the lower bounds obtained with the HRR method and basis Ψ1 lie just slightly below
the values of the lower bounds obtained with standard method and the basis Ψ2, however one has to
keep in mind that in this case |Ψ1| = 9 and |Ψ2| = 165. Moreover, we see that the HRR method
with a recursion depth I = 1 performs just as well as the (full depth) reinforced regression method
(I = J = 9).

2 4 6 8
d

0

50
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150

200

250

300

350

400

CP
U 

Ti
m

e (
s)

1, I = 0
1, g, I = 0
2, I = 0
3, I = 0
1, I = 1
2, I = 1
1, I = 9
2, I = 9

Figure 6: The elapsed CPU times during the backwards induction and calculation of the lower bounds
from Table 1, plotted with respect to the number of underlying assets d.

Furthermore, in Figure 6 we have visualized the corresponding elapsed CPU times during the back-
wards induction and the calculation of the lower bounds. As foreshadowed in Section 5, we see that
the computational costs of the HRR method are significantly reduced by choosing a small recursion
depth I . In particular, we are able to state that for sufficiently large d (d ≥ 6 respectively d ≥ 2) the
HRR method with recursions depth I = 1 and the basis Ψ1 respectively Ψ2 is more efficient then the
standard method with the basis Ψ2 respectively Ψ3.

The results of the second set-up are visualized in Figure 7. In this case, we have approximated the
value of Bermudan max-call options with a fixed number of assets d = 4 and different numbers of
exercise dates J = 9, 18, 36, 72, while also keeping T = 1 fixed. When keeping all other parameters
fixed, the value of the option clearly is non-decreasing in the number of exercise dates J . Our first
observation is that for all considered methods there exists a threshold for J at which the performance
worsens. Indeed, Corollary 6.3 shows that the approximation error depends exponentially on J .

However, in practice, some methods are less vulnerable to the error explosion in J than others. In
this example, we see that the standard regression method with the basis Ψ1,g and Ψ2, respectively,
starts to perform worse for J ≥ 36. The lower bounds calculated with the HRR method with the
basis Ψ1 and I = 1 stay approximately on the same level as the lower bounds calculated with the
standard method and the basis Ψ2, for all numbers of exercise dates. The lower bounds calculated
with the standard method and the basis Ψ3 first increase when moving from 9 to 18 exercise dates
and decrease at last when moving from 36 to 72 exercise dates.

DOI 10.20347/WIAS.PREPRINT.2792 Berlin 2020



C. Bayer, D. Belomestny, P. Hager, P. Pigato, J. Schoenmakers, V. Spokoiny 24

J = 9 J = 18 J = 36 J = 72
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Figure 7: Visualization of the lower bounds (with 99.7% confidence intervals) of the values of Bermu-
dan max-call options with J = 9, 18, 36, 72 exercise dates and d = 4, T = 1, ymax = 1,
x0 = C = 100, r = 0.05, δ = 0.1, σ = 0.2. The values are obtained with the standard re-
gression method I = 0 and the HRR method I = 1, 2, 9. For all methods we used M = 106 training
sample paths and Mtest = 106 sample paths for the calculation for the lower bounds.
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Figure 8: The elapsed CPU times during the backwards induction and calculation of the lower bounds
in Figure 7, plotted with respect to the number of exercise dates J .
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The main observation is that when we increase J , the HRR methods with I = 2 and I = 9 come
closer to the lower bounds calculated with the standard method and the basis Ψ3. This underlines the
theoretical discussion for J → ∞ from Section 6. Moreover, we see that the HRR method performs
at least as well with I = 2 as with I = 9. The corresponding CPU times that elapsed during the
regression procedure and the calculation of the lower bounds are presented in Figure 8. We see that
for large enough J the HRR method with I = 2 is more efficient than the standard regression method
with the basis Ψ3. Comparing the HRR methods with I = 2 and I = 9, we see that choosing the
parameter I small is necessary in order to obtain desirable efficiency. Since on the other hand, the
HRR method with I = 1 performed significantly worse than with I = 2, we also see that in this case
it was necessary to choose I > 1. These observations underline the relevance of the HRR in its full
complexity even in the case of optimal stopping problems.

7.1.2 Multiple exercise rights

Next we consider a Bermudan max-call option with ymax = 4 exercise rights. In this case the HRR
method allows for different possibilities of reinforced value functions depending on the choice of the
sets Ly (recall Remark 4.2). Since ymax is small, we choose Ly ≡ {1, 2, 3, 4} for simplicity.

Basis
Regression Hierarchical Reinforced Regression
I = 0 I = 1 I = 2 I = 3 I = 4 I = 5

Ψ1 90.863 (0.072) 92.038 92.287 92.311 92.337 92.357
Ψ1,g 91.837 (0.082) - - - - -
Ψ2 92.140 (0.070) 92.418 92.548 92.631 92.601 92.625
Ψ3 92.571 (0.069) - - - - -

Table 2: Lower bounds (with 99.7% confidence interval valid for each row) for the value of the Bermu-
dan max-call option with data J = 24, T = 2, ymax = 4, x0 = C = 100, d = 5, r = 0.05,
δ = 0.1, σ = 0.2. For all methods we used M = 106 training sample paths and Mtest = 107 paths
for calculating the lower bound. An upper bound to the value, calculated with the dual approach from
[Sch12] and [BSZ13], is given by 92.971 (0.043), with the HRR method with I = 3 and basis Ψ2

using 105 outer and 103 inner sample paths.

In Table 3 and the corresponding Figure 9 we present lower bounds to the value of a Bermuda max-call
option with ymax = 4 exercises rights, obtained with the standard regression method and HRR method
for different choices of regression basis functions and the parameter I , with the implementation of the
second type described in Section 4.2. We first observe that for a fixed set of basis functions Ψ1 or
Ψ2 increasing the parameter I yields increased, and thus improved, lower bounds. This improvement
is most significant when moving from I = 0 (standard regression) to I = 1 and from I = 1 to
I = 2 and becomes less significant when further increasing I . Moreover, we observe that the HRR
method with I = 1 and basis functions Ψ1 yields better lower bounds then the standard regression
method with the larger set of basis functions Ψ1,g and more importantly, for I ≥ 2 the HRR with basis
functions Ψ1 method yields better lower bounds than the standard regression method with the even
larger set of basis functions Ψ2. This observation prevails when comparing the standard regression
method with the basis Ψ3 against the HRR method with the basis Ψ2. We can therefore conclude that
the HRR method yields results of better quality than standard regression using fewer regression basis
functions. Moreover, we realize that up to changes that are insignificant with respect to the Monte
Carlo error, the HRR reaches its best performance already for I = 3, thus further increasing I is not
necessary.
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Figure 9: Visualization of the lower bounds with confidence intervals from Table 2. The black horizontal
line represents the dual upper bound.

7.2 A gas storage problem

In this subsection we consider a gas-storage problem of the kind introduced in Example 2.5. In contrast
to the example in the previous subsection, this optimal control problem is not of a multiple stopping
type, which is a consequence of the anti-symmetry in the policy set: injection of gas into the facility
(a = 1), no action (a = 0) and production of gas (a = −1).

For the gas price we use a similar but slightly more elaborate model to the one proposed in [TDR09]
(and also used in [GHW11]). More specifically, we use the following joint dynamics to model the price
of crude oil X1 and the price of natural gas X2

dX1(t) = α1(β −X1(t))dt+ σ1X
1(t)dW 1(t) +

(
J1
N(t−)+1 −X1(t)

)
dN(t)

dX2(t) = α2(X1(t)−X2(t))dt+ σ2X
2(t)dW 2(t) +

(
J2
N(t−)+1 −X2(t)

)
dN(t),

(7.1)

for 0 ≤ t ≤ T , where β, αi, σi > 0 for i = 1, 2, W 1 and W 2 are Brownian motions with correlation
ρW ∈ [0, 1], N is a Poisson process with intensity λ > 0 and (Jk)k=1,... are i.i.d. normal distributed
random vectors with J i1 ∼ N (µi, η

2
i ), µi, ηi > 0 and ρJ = Cor(J1

1 , J
2
1 ) ∈ [0, 1]. Moreover we

assume that (W 1,W 2), N and (J1, J2) are independent. Note that both X1 and X2 are mean
reverting processes with jump contributions. The oil price processX1 reverts to the long-term constant
mean β and the gas price process X2 reverts towards the oil price X1, which is aiming to model
the well known strong correlation between crude oil and natural gas prices. Note also that we have
assumed for simplicity that the jump signal, which has the purpose of modeling price peaks, is the
same Poisson process for both oil and gas prices, however the magnitude of the jumps is given by
different (but correlated) normal distributed random variables.

Denote by (X̃j)j=1,...,365 the 2-dimensional Markov chain that is obtained by discretizing the above
SDE (7.1) with an Euler-scheme on the time interval interval [0, 1]. We assume that the manager of
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the gas storage facility has the possibility to buy and sell gas on a predefined set of dates in the year
{tj}j=1,...,J ⊂ {1, ..., 365} with tj = j · δt and some δt, J ∈ N such that δt · J ≤ 365. The 2-
dimensional Markov chain underlying the optimal control problem is then given by X = (Xj)j=0,...,J

with Xj := X̃tj .

Recall from Example 2.5 that we assume that the volume of gas in the storage can only be increased
or decreased by a fraction ∆ = 1/N for some N ∈ N over the time interval of δt days. The state
space of the control variable is then given by L = {0,∆, 2∆, ..., 1}. Also recall the definition of the
space of policies K, the constraint sets Kj and the function ϕj from Example 2.5. We assume that
there is no trading at j = 0 henceK0 ≡ {0}. The cash-flow underlying to the optimal control problem
only depends on the second component of the Markov chain Xj and is given by

Hj(a, y,Xj) = −a ·∆ ·X2
j · e−rj(δt/365), a ∈ K, y ∈ L, j = 1, ..., J,

where r > 0 is the interest rate.

We do not pay attention to the physical units of the parameters quantifying the gas storage capacity
and the quotation of the gas price, since the linearity of the pay-off with respect to the parameter ∆
and the gas price X2

j allows to properly scale the resulting value of the optimal control problem. The
following specific choice of the price model parameters are oriented at the values in [TDR09]

β = 45, α1 = 0.25, α2 = 0.5, σ1 = σ2 = 0.2, ρW = 0.6,
λ = 2, µ1 = µ2 = 100, η1 = η2 = 30, ρJ = 0.6.

(7.2)

Figure 10 shows a sample trajectory of the Markov chain X with the above parameters.

0 10 20 30 40 50

80

100

120

140
X 1

X 2

Figure 10: A sample path of the Markov chain (Xj)j=0,...,J = (X̃tj)j=0,...,J where tj = j · 7 and

J = 52. The approximation X̃ = (X̃j)j=1,...,365 to the SDE (7.1) is simulated with the parameters

given in (7.2) and X̃0 = (100, 100). X1 and X2 serve as models for the prices of crude oil and
natural gas.

Further we define the following sets of polynomial regression basis functions

Pi(X
2) :=

{
(x1, x2) 7→ (x2)p

∣∣ p = 0, ..., i
}

Pi(X
1, X2) :=

{
(x1, x2) 7→ (x1)p(x2)q

∣∣ p, q = 0, ..., i, p+ q ≤ i
}
.

(7.3)

We have approximated the value of the gas storage problem with the following parameters

δt = 7, J = 52, ∆ = 1/8, X0 = (100, 100), Y0 = 4/8, r = 0.1. (7.4)
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I Basis v0(Y0, X0) Lower bounds

0

P1(X2) 78.381 70.489 (0.066)
P1(X1, X2) 78.575 70.635 (0.068)
P2(X2) 73.072 71.253 (0.068)

P2(X1, X2) 73.207 71.402 (0.068)
P3(X1, X2) 72.929 71.333 (0.081)
P4(X1, X2) 72.595 71.498 (0.068)

1 P1(X1, X2) 71.991 71.579 (0.070)

Table 3: Approximate values and lower bounds for the gas storage problem with parameters given
in (7.4) and price model parameters given in (7.2). The quantities were obtained with the standard
regression method (I = 0) and the HRR method (I = 1), the different sets of basis functions (7.3),
M = 105 training sample paths and Mtest = 106 paths for calculating the lower bounds.

In this configuration the gas storage facility is initially loaded with half its capacity and the gas storage
manager has the possibility to trade gas every seven days, and the amount by which the manager can
inject or produce gas is one eighth of the total capacity. In Table 3 and the corresponding Figure 11 we
present the numerical results that were obtained with the standard regression method and the HRR
method. We used M = 105 training sample paths and Mtest = 106 sample paths for the calculation
of the lower bounds. For the set of reinforced basis functions in the HRR method we have chosen
Ly ≡ {Y0}, i.e. in each step of the backwards induction, the regression basis was reinforced with
only one function.

P1(X
2 )

P1(X
1 , X2 )

P2(X
2 )

P2(X
1 , X2 )

P3(X
1 , X2 )

P4(X
1 , X2 )
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1 , X2 )
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70.4
70.5
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71.4
71.5
71.6
71.7

Regression (I = 0) HRR (I = 1)

Figure 11: Visualization of the lower bounds with confidence intervals from Table 3.

We observe at first, that the lower bounds obtained with the standard regression method are improved
when using polynomials in both variables (X1, X2) instead of just in the second variable X2 (gas
price) and are also improved when using polynomials of increasing order (with the only exception of
the third degree polynomials). Moreover, we observe that the lower bound obtained with the HRR
method, using the set of basis functions P1(X1, X2) and I = 1, lies above all lower bounds that
were obtained with the standard regression, in particular the bound obtained with the regression basis
P4(X1, X2).
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8 Conclusions

In this paper, we present a new reinforced regression algorithm (HRR) for stochastic control problem,
extending and improving the algorithm (RR) developed in [BSSZ20] for optimal stopping problems.
The new algorithm provides a flexible hierarchical construction of approximate value functions, based
on enlarging the set of basis functions used with approximate value functions at one level lower in the
hierarchy. As value functions at level 0 correspond to value functions obtained by standard regres-
sion, the new hierarchical construction significantly reduces the computational footprint of reinforced
regression compared with the algorithm of [BSSZ20], while keeping the improvement in accuracy.

In fact, for a hierarchy of value functions of depth I + 1, the computational cost of HRR is proportional
to JI2 compared to J2 for RR and J for standard regression (SR), see Theorem 5.5.

We provide a generic convergence analysis of regression type algorithms for the considered class of
stochastic optimal control problems. In particular, we show that mean-squared error of the correspond-
ing estimate for the value function v∗(z, ·) is proportional to logM

M
plus an approximation error. Our

analysis further indicates that the use of adaptive (data dependent) approximation spaces as, for ex-
ample, in HRR can significantly reduce the approximation error especially in the case of big J. These
theoretical findings are underlined by careful numerical examples. In particular, we observe that HRR
based on polynomial basis functions of a certain degree deg tend to produce results comparable to
SR based on polynomial basis functions of degree deg +1 or even higher, see Figures 5, 7, 9, and,
most impressively, Figure 11.

The numerical results also indicate that, indeed, HRR with low depth of the hierarchy I already per-
forms very well, even if I � J , see Figures 5, 7, 9. Hence, HRR performs with similar accuracy
to RR, but much improved cost. Additionally, when comparing HRR with SRR at fixed accuracy, the
computational cost of HRR is usually much smaller, especially for d large, see Figures 6, 8.

Finally, we note that the accuracy of the HRR method increases substantially when the time discretiza-
tion is refined, i.e., when J is increased for fixed time horizon T . This theoretically very plausible
observation (see Section 6) is backed up by numerical experiments, see Figure 7.

The present paper considers stochastic control problems in discrete time with finite action spaces. Of
course, continuous time problems can be easily covered by discretizing time, a standard approach
also considered in our theoretical analysis of Section 6. The same is, in principle, true for continuous
action spaces, even though such problems lead to interesting new questions for the proposed HRR
algorithms, in particular regarding to choice of (reinforced) basis functions in light of infinitely many
possible choices. We postpone this problem to future research.
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