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Optimization with learning-informed differential equation
constraints and its applications

Guozhi Dong, Michael Hintermüller, Kostas Papafitsoros

Abstract

Inspired by applications in optimal control of semilinear elliptic partial differential equations
and physics-integrated imaging, differential equation constrained optimization problems with con-
stituents that are only accessible through data-driven techniques are studied. A particular focus is
on the analysis and on numerical methods for problems with machine-learned components. For a
rather general context, an error analysis is provided, and particular properties resulting from arti-
ficial neural network based approximations are addressed. Moreover, for each of the two inspiring
applications analytical details are presented and numerical results are provided.

1 Introduction

Consider the optimization problem

minimize J(y, u) :=
1

2
‖Ay − g‖2

H +
α

2
‖u‖2

U , over (y, u) ∈ Y × U,

subject to (s.t.) e(y, u) = 0, and u ∈ Cad,
(1.1)

where y ∈ Y , u ∈ U are the state and control variables, respectively, with Y a suitable Banach space
and U a Hilbert space. Moreover, g ∈ H denotes given data with H the pertinent Hilbert space,
α > 0 is the control cost, and A : Y → H is a bounded linear (observation) operator, i.e., A ∈
L(Y,H). While in (1.1) feasible controls u are confined to a nonempty, closed, and convex set Cad,
the relationship between admissible controls and states is through the equality constraint associated
with a possibly nonlinear operator e : Y × U → Z , with Z a Banach space. Often, e(y, u) = 0
is given by (a system of) ordinary or partial differential equations (ODEs or PDEs) describing, e.g.,
underlying physics. For the ease of discussion we assume that, for given u ∈ U , there is a unique
y ∈ Y such that e(y, u) = 0. This allows us to write

y = Π(u),

where Π denotes the (implicitly defined) control-to-state map with e(Π(u), u) = 0. Given Π, a popular
approach in the study of (1.1) is based on the reduced problem

minimize J (u) :=
1

2
‖Q(u)− g‖2

H +
α

2
‖u‖2

U , over u ∈ U,

s.t. u ∈ Cad,
(1.2)

where Q := AΠ(·) : U → H . Note that J (u) = J(Π(u), u).

In general, (1.1) or its reduced form (1.2) represent a class of optimal control problems, for which a
plethora of studies exist in the literature; see, e.g., [44] for an introduction and [19, 29, 35] as well as
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the references therein for more details. In contrast, in many applications one is confronted with control
problems where e or, alternatively, Π are only partly known along with measurement data which can
be exploited to obtain (approximations) of missing information. Such minimization tasks have barely
been treated in the literature and motive the present work. In order to inspire such a setting, we briefly
highlight here two classes of applications which will be further studied from Section 4 onwards.

Our first motivating example is related to the fact that many phenomena in engineering, physics or life
sciences, for instance, can be modeled by elliptic partial differential equations of the form

Ly + f(x, y) = Ru in Ω,

b(x)∂νy + d(x)y = 0 on ∂Ω.

}
(1.3)

Here L denotes a second-order linear elliptic partial differential operator with measurable, bounded
and symmetric coefficients, f(x, y) is a nonlinearity, and R models the impact of the control ac-
tion u. Moreover, b and d are given coefficient functions. The set Ω ⊂ Rd represents the un-
derlying domain with boundary ∂Ω, and ∂ν denotes the derivative along the outward (unit) nor-
mal ν to Ω. Often the precise form of f is unknown, but rather only accessible through a data set
D := {(yi, ui) : e(yi, ui) ≈ 0, i = 1, . . . , nD}, nD ∈ N, i.e., given pre-specified control ac-
tions, one collects associated state responses (through measurements or computations). Utilizing
data-driven approximation techniques such as artificial neural networks (ANNs), one may then get ac-
cess to a data-driven model of f which can be used even outside the range of the data set D to yield
a valid model of the underlying real-world process. In such a setting, associated optimal control prob-
lems depend on approximationsN of f , and theoretical investigations as well as numerical solutions
of the control problem need to take the construction ofN into account.

The second example comes from quantitative magnetic resonance imaging - qMRI. In this context, one
integrates a mathematical model of the acquisition physics (the Bloch equations [16]) into the associ-
ated image reconstruction task in order to relate qualitative information (such as the net magnetization
y = ρm) with objective, tissue dependent quantitative information (such as T1 and T2, the longitu-
dinal and the transverse relaxation times, respectively, or the proton spin density ρ). This model is
then used to obtain quantitative reconstructions from subsampled measurement data g in k-space by
a variational approach. The provision of such quantitative reconstructions is highly important, e.g., for
subsequent automated image classification procedures to identify tissue anomalies. Moreover, in [16]
it is demonstrated that such an integrated physics-based approach is superior to the state-of-the-art
technique of magnetic resonance fingerprinting (MRF) [32] and its improved variants [14, 34]. Specifi-
cally in MRI, acquisition data are obtained at different pre-specified times (read-out times) t1, . . . , tL,
during which the magnetization of the matter is excited through the control of a time dependent ex-
ternal magnetic field B. Given u = (T1, T2, ρ), the magnetization time vector at t1, . . . tL is then
given by y = Π(u), where Π denotes the solution map associated with a discrete version of the
Bloch equations. Crucial to this approach is the fact that, at least for specific variations of the external
magnetic field B, explicit formulas for the solution map of the Bloch equations are available. For in-
stance, in [14] and [16] Inversion Recovery balanced Steady-State Free Precession (IR-bSSFP) [41]
is used which involves certain flip angle sequence patterns that characterize the external magnetic
field B. These flip angle patterns allow for a simple approximation of the solutions of the Bloch equa-
tions at the read-out times through a recurrence formula. However, in general, it is quite typical that for
more complicated external magnetic fields one does not have at hand explicit representations for the
Bloch solution map. More generally, for most nonlinear differential equations (including those relevant
in image reconstruction tasks) explicit solution maps might be too complicated to obtain. However,
one may employ numerical methods to approximate their solutions (yi)

nD
i=1 given a specific (coarse)

selection of parameters (ui)
nD
i=1 within a certain range. This generates a data set D which is then
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employed in a learning procedure to generate an ANN based approximation ΠN of Π. This gives rise
to QN := AΠN in (1.2) and requires an associated analytical as well as numerical treatment of the
(reduced) minimization problem.

In general, learning-informed models are getting nowadays increasingly more popular in different sci-
entific fields. Some works focus on the design of ANNs, e.g., by constructing novel network architec-
tures [7], or on developing fast and reliable algorithms in order to train ANNs more efficiently [10].
More relevant for our present work, ANNs have been applied to the simulation of differential dynamical
systems [39] and high dimensional partial differential equations [22, 42], as well as to the coefficient
estimation in nonlinear partial differential equations [30], also in connection with optimal control [17, 21]
and inverse problems [5]. Note, however, that in our approach neural networks do not aim to approxi-
mate the solution of (1.1), but rather they are part of the physical process encoded in Π. We emphasize
that this is a different strategy to some of the recent works [3, 8] in the literature that focus on learning
the entire model or reconstruction process. More precisely, in the present work we suggest to use an
operator ΠN that is induced by trained neural networks modelling the equality constraint (with, e.g.,
f replaced by an ANN-based model N in our example (1.3)) or its (implicitly defined) solution map
Π. In such a setting, existence, convergence, stability and error bounds of the corresponding approx-
imations need to be analyzed. Particularly, we are interested in the error propagation from the neural
network based approximation to the solution of the optimal control problem. Moreover, in the case of
partial differential equations, when replacing f by N , the regularity of solutions has to be checked
carefully before approaching the optimal control problem. Further, from a numerical viewpoint, in or-
der to use derivative-based numerical methods, it is important for these approximating solution maps
to have certain smoothness. This aspect is typically tied to the regularity of the activation functions
employed in ANN approximations.

The remaining part of the paper is organized as follows: Section 2 provides a general error analysis
for solutions of the proposed learning-informed framework. Some basic definitions and approximation
properties of artificial neural networks are recalled in Section 3, and Section 4 presents a concrete
case study on optimal control of semilinear elliptic equations with general nonlinearities, including both
error analysis and numerical results. Section 5 contains another case study on quantitative magnetic
resonance imaging, again including computational results.

2 Mathematical analysis of the general framework problem

We start our analysis by studying (1.2) or its variant where Q, the original physics-based operator,
is replaced by a (data-driven) approximation. Existence of a solution to (1.2) follows from standard
arguments which are provided here for the sake of completeness.

Proposition 2.1. Suppose thatQ is weakly-weakly sequentially closed, i.e., if un
U
⇀ u andQ(un)

H
⇀

ḡ, then ḡ = Q(u). Then (1.2) admits a solution ū ∈ U . In the special case where Cad is a bounded set
of a subspace Û which is compactly embedded intoU , it suffices thatQ is strongly-weakly sequentially
closed to guarantee existence of a solution to (1.2).

Proof. Suppose that Q is weakly-weakly sequentially closed and let (un)n∈N ⊂ Cad be an infimizing
sequence for (1.2). Since α > 0, (un)n∈N is bounded in U , and thus we can extract an (unrelabelled)

weakly convergent subsequence, i.e., un
U
⇀ ū for some ū ∈ U . Since Cad is strongly closed and

convex, it is weakly closed and therefore ū ∈ Cad. Moreover, since the sequence (Q(un))n∈N is also
bounded in Y , passing to a subsequence if necessary, we get that there exists a ḡ ∈ H such that
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Q(un)
H
⇀ ḡ. Due to the weak sequential closedness we have ḡ = Q(ū). Finally, from the weak lower

semicontinuity of ‖·‖H and ‖·‖U we have J (ū) ≤ lim infn→∞ J (un) = infu∈Cad J (u) and hence
ū is a solution of (1.2).

For the special case let (un)n∈N again be an infimizing sequence for (1.2). Due to the compact em-
bedding, we have that (un)n∈N has an (unrelabelled) subsequence such that un → ū strongly in U
as n→∞. Then the proof follows the same steps as above.

Remark 2.2. We note here that in many examples in optimal control of (semilinear) PDEs, the control-
to-state map actually maps U to a solution space Y which is of higher regularity than H and even
compactly embeds into it; e.g., Y := H1(Ω) ↪→ L2(Ω) =: H . Provided that the control-to-state map
is bounded, in that case weak convergence in U results, up to subsequences, in strong convergence
in H with the latter used to show closedness of the control-to-state operator.

Assuming that Q is Fréchet differentiable with derivative Q′(·) ∈ L(U,H), the first-order optimality
condition of (1.2) is

〈J ′(ū), u− ū〉U∗,U ≥ 0 for all u ∈ Cad, (2.1)

where J ′(ū) ∈ L(U,R) =: U∗ is the Fréchet derivative of J at ū, and 〈·, ·〉U∗,U denotes the duality
pairing between U and its dual U∗. Utilizing the structure of J we get〈

(Q′(ū))∗ι−1
H (Q(ū)− g) + αι−1

U ū, u− ū
〉
U∗,U
≥ 0 for all u ∈ Cad,

or alternatively

ū = PCad
(
−ιU(Q′(ū))∗ι−1

H (Q(ū)− g)

α

)
,

where PCad is the projection in U onto Cad, and ιH : H∗ → H as well as ιU : U∗ → U are Riesz
isomorphisms, respectively. For ease of notation, however, we will leave off the Riesz maps in what
follows whenever there is no confusion.

We now proceed to the error analysis of (1.2), where we assume that (Qn)n∈N is a family of operators
approximating Q, and clarify the convergence of the associated minimizers un ∈ Cad.

Theorem 2.3. Let Q and Qn, n ∈ N, be weakly sequentially closed operators with

‖Q(u)−Qn(u)‖H ≤ εn, for all u ∈ Cad, (2.2)

and εn ↓ 0. Furthermore let (un)n∈N be a sequence of minimizers of (1.2) with Q replaced by Qn for
all n ∈ N. Then, we have the strong convergences

un → ū in U, and Qn(un)→ Q(ū) in H, as n→∞, (2.3)

where ū is a minimizer of (1.2).

Proof. As (un)n∈N is a sequence of minimizers, we have forC := maxn εn <∞ and every u ∈ Cad:

1

2
‖Qn(un)− g‖2

H +
α

2
‖un‖2

U ≤ ‖Q(u)− g‖2
H + C2 +

α

2
‖u‖2

U .

Note also that ‖Q(un)‖H ≤ ‖Qn(un)‖H + εn. Hence (un)n∈N, (Q(un))n∈N and (Qn(un))n∈N
are bounded sequences and therefore there exist (unrelabelled) subsequences and ū ∈ U such that

un
U
⇀ ū with ū ∈ Cad by weak closedness, Q(un)

H
⇀ Q(ū), and Qn(un)

H
⇀ Q(ū), where we have
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also used that Q is weakly sequentially closed for the second limit. For the third limit, note that for an
arbitrary g̃ ∈ H , by using (2.2), we get

|(Qn(un)−Q(ū), g̃)H | ≤ |(Qn(un)−Q(un), g̃)H |+ |(Q(un)−Q(ū), g̃)H |
≤ εn‖g‖H + |(Q(un)−Q(ū), g̃)H | → 0,

where (·, ·)H denotes the inner product in H .

Using the lower semicontinuity of the norms, we have for every u ∈ Cad that

1

2
‖Q(ū)− g‖2

H +
α

2
‖ū‖2

U ≤ lim inf
n

1

2
‖Qn(un)− g‖2

H +
α

2
‖un‖2

U

≤ lim
n

1

2
‖Qn(u)− g‖2

H +
α

2
‖u‖2

U =
1

2
‖Q(u)− g‖2

H +
α

2
‖u‖2

U .

Thus, we conclude that ū is a minimizer of (1.2). We still need to show that un → ū strongly in
U . Suppose there exists a µ > 0 such that µ = lim supn ‖un‖U > ‖ū‖U . Let (unk)k∈N be a
subsequence with ‖unk‖U → µ as k →∞. Then we have

lim sup
k

1

2
‖Qnk(unk)− g‖

2
H = lim sup

k

(
1

2
‖Qnk(unk)− g‖

2
H +

α

2
(‖unk‖

2
U − µ

2)

)
≤ lim

k

1

2
‖Qnk(ū)− g‖2

H +
α

2
(‖ū‖2

U − µ
2)

=
1

2
‖Q(ū)− g‖2

H +
α

2
(‖ū‖2

U − µ
2) <

1

2
‖Q(ū)− g‖2

H .

(2.4)

This contradicts the lower semicontinuity of the norm and Qn(un) ⇀ Q(ū).Thus, ‖un‖U → ‖ū‖U
as n→∞. Together with the weak convergence un ⇀ ū we get un → ū strongly in U and further

lim sup
n
‖Qn(un)− g‖H ≤ ‖Q(ū)− g‖H ≤ lim inf

n
‖Qn(un)− g‖H .

Hence, limn ‖Qn(un)‖H = ‖Q(ū)‖H , which implies the second limit in (2.3).

For a quantitative convergence result, we invoke the following assumptions which are motivated by the
analysis of nonlinear inverse problems [23, 31].

Assumption 2.4. Assume that Q is Fréchet differentiable and that there exists L0 > 0 such that

‖Q′(u)‖L(U,H) ≤ L0 for all u ∈ Cad. (2.5)

Assume further that the Fréchet derivative is locally Lipschitz with modulus L1 > 0, i.e.,

‖Q′(ua)−Q′(ub)‖L(U,H) ≤ L1 ‖ua − ub‖U , for all ua, ub ∈ Cad. (2.6)

Moreover, let the Fréchet derivatives of Q and Qn satisfy the following error bounds

‖Q′(u)−Q′n(u)‖L(U,H) ≤ ηn, for all u ∈ Cad, (2.7)

where ηn ∈ (0, 1) for all n ∈ N and ηn ↓ 0. Finally, let the two constants L0 and L1 satisfy

L0(L0 + 1) + L1 ‖Q(ū)− g‖H < α, (2.8)

with ū being the minimizer of (1.2).
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The condition in (2.5) indicates that

‖Q(ua)−Q(ub)‖H ≤ L0 ‖ua − ub‖U , for all ua, ub ∈ Cad. (2.9)

Theorem 2.5. Let the assumptions of Theorem 2.3 as well as Assumption 2.4 hold. Then, we have

‖un − ū‖U ≤
1

α− L0(L0 + ηn)− L1 ‖Q(ū)− g‖H
(L0εn + εnηn + ‖Q(ū)− g‖H ηn) .

(2.10)

Proof. First-order optimality yields

ū = PCad (−(Q′(ū))∗w) and un = PCad (−(Q′n(un))∗wn) , (2.11)

where w = Q(ū)−g
α

and wn = Qn(un)−g
α

. The inequalities in (2.5), (2.6), (2.7), and (2.9) and the fact
that ‖Q′(u)‖L(U,H) = ‖(Q′(u))∗‖L(H∗,U∗) imply

‖un − ū‖U ≤‖(Q
′
n(un))∗wn − (Q′(ū))∗w‖U∗

≤‖(Q′n(un))∗ (wn − w)‖U∗ + ‖((Q′n(un))∗ − (Q′(ū))∗)w‖U∗
≤(L0 + ηn) ‖wn − w‖H + ‖w‖H ηn + L1 ‖w‖H ‖un − ū‖U

≤L0 + ηn
α

‖Q(ū)−Qn(un)‖H + ‖w‖H ηn + L1 ‖w‖H ‖un − ū‖U

≤L0 + ηn
α

(εn + L0 ‖un − ū‖U) + ‖w‖H ηn + L1 ‖w‖H ‖un − ū‖U .

Moving all terms that involve ‖un − ū‖U to the left-hand side we get

(1− L0(L0 + ηn)

α
− L1 ‖w‖H) ‖un − ū‖U ≤

L0

α
εn +

εnηn
α

+ ‖w‖H ηn.

Finally, using w = Q(ū)−g
α

we find (2.10).

Observe that for Q(ū) = g (perfect matching) the a priori bound is essentially controlled by εn only:

‖un − ū‖U ≤
L0 + ηn

α− L0(L0 + ηn)
εn.

Note further that the error bound depends on a sufficiently large α such that (2.8) is satisfied.

In the special case where Cad is redundant, i.e., when J ′(ū) = 0, improved error bounds can be
derived. This is in particular true for perfect matching which also allows to relax the conditions on α.

Theorem 2.6. Let the assumptions of Theorem 2.3 hold and suppose that the Lipschitz condition (2.6)
is satisfied with the constant L1 such that

L1 ‖Q(ū)− g‖H < α. (2.12)

If J ′(ū) = 0, then for sufficiently large n ∈ N we have the following error bound

‖un − ū‖U ≤

√
3

α− L1 ‖g −Q(ū)‖H

√
ε2n + 2 ‖Q(ū)− g‖2

H . (2.13)
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Proof. Since un is a minimizer for every n ∈ N, we have that Jn(un) ≤ Jn(ū) with Jn(u) :=
J(Qn(u), u). Adding α

2
(‖un − ū‖2

U − ‖un‖
2
U) to both sides of the inequality gives

1

2
‖Qn(un)− g‖2

H +
α

2
‖un − ū‖2

U ≤
1

2
‖Qn(ū)− g‖2

H + α〈ι−1
U ū, ū− un〉U∗,U . (2.14)

Using Theorem 2.3, Taylor’s expansion and (2.6), we get for sufficiently large n ∈ N

Q(un)−Q(ū) = Q′(ū)(un − ū) + q(un, ū), where ‖q(un, ū)‖H ≤
L1

2
‖un − ū‖2

U .

By our assumptions and first-order optimality we have ū = −ιU(Q′(ū))∗w where w = α−1(Q(ū)−
g) with L1 ‖w‖H < 1 because of (2.12). This leads to

〈ι−1
U ū, ū− un〉U∗,U = (−w,Q′(ū)(ū− un))H ≤ ‖w‖H ‖Q

′(ū)(ū− un)‖H

≤‖w‖H
(
L1

2
‖un − ū‖2

U + ‖Q(un)−Qn(un)‖H + ‖Qn(un)− g‖H + ‖g −Q(ū)‖H
)

≤‖w‖H L1

2
‖un − ū‖2

U +
1

2

(
α ‖w‖2 +

1

α
‖Qn(un)− g‖2

)
+

(
α ‖w‖2

H +
1

2α
‖Q(un)−Qn(un)‖2

H +
1

2α
‖g −Q(ū)‖2

H

)
,

(2.15)
where we have used the identity ab ≤ 1

2α
a2 + α

2
b2. Returning to (2.14) and using (2.15), we derive

‖un − ū‖2
U ≤

1

α
‖Qn(ū)− g‖2

H + ‖w‖H L1 ‖un − ū‖2
U + 3α ‖w‖2

H

+
1

α
(‖Q(un)−Qn(un)‖2

H + ‖g −Q(ū)‖2
H)

≤ 2

α
‖Qn(ū)−Q(ū)‖2

H + ‖w‖H L1 ‖un − ū‖2
U + 3α ‖w‖2

H

+
1

α
‖Q(un)−Qn(un)‖2

H +
3

α
‖g −Q(ū)‖2

H .

(2.16)

Taking into account (2.12), we get

‖un − ū‖2
U ≤

1

(1− ‖w‖H L1)

3

α

(
ε2n + α2 ‖w‖2

H + ‖g −Q(ū)‖2
H

)
,

for sufficiently large n ∈ N. Replacing now ‖w‖H by ‖g−Q(ū)‖H
α

yields (2.13).

Note that in the case of perfect matching Q(ū) = g, (2.13) becomes

‖un − ū‖U ≤ εn

√
3

α
for sufficiently large n ∈ N. (2.17)

As stated earlier, our aim is to use approximationsQn = QNn = AΠNn resulting from artificial neural
networks to replace the partially unknown exact control-to-state map Π and Q = AΠ. Therefore, we
next collect some fundamental properties of such neural network based approximations.
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3 A brief primer on artificial neural networks (ANNs)

Here, we briefly review some (well-known) results for ANNs as they will be useful in what follows. For
more introduction on ANNs, one may refer to many textbooks of this topic, e.g., [20]. We recall that a
standard feedforward ANN with one hidden layer is a functionN : Rr → Rs of the following structure:

N (x) = W0σ(W1x+ b1) + b0, x ∈ Rr, (3.1)

where W1 ∈ Rl×r, b1 ∈ Rl, W0 ∈ Rs×l and b0 ∈ Rs. In that case we say that the hidden layer has
l neurons. Here, σ : R → R is an infinitely differentiable activation function which acts component-
wise on a vector in Rl. In the output layer, the activation function is usually the identity map, therefore
ignored in (3.1), while in the other hidden layers, it involves nonlinear transformations. Some standard
smooth activation functions are the following ones:

• Sigmoid: a term denoting a family of functions, e.g., tansig (σ(z) = ez−e−z
ez+e−z

), logsig (σ(z) =
1

1+e−z
)), arctan (σ(z) = arctan(z)), etc.

• Probability functions, e.g., softmax (σi(z) = e−zi∑
j e
−zj ). Here the index i denotes the i-th neuron

in a given layer, with the summation indexed by j being taken over all the neurons of the same
layer.

We see that for the softmax function, neurons of the same layer may have different activition functions.
Notice that the smoothness of the activation function is the one that determines the smoothness ofN .

Next we state a classical result, see, for instance, [37, Theorem 3.1]. Below “·” denotes the standard
inner product in the underlying Euclidean space.

Theorem 3.1. Let σ ∈ C(R) and consider the set

Rσ :=
{
N : Rr → R | N (x) = w0 · σ(W1x+ b1), with w0 ∈ Rl, W1 ∈ Rl×r, b1 ∈ Rl

}
.

Then Rσ is dense in C(Rr) in the topology of uniform convergence on compact sets if and only if σ
is not a polynomial function.

Hence, for any ε > 0, and for any given function f ∈ C(K),K ⊂ Rr compact, there exists a function
N = N ε ∈ Rσ such that

max
x∈K
|f(x)−N ε(x)| < ε.

This approximation property can be also carried over to the derivatives of a given smooth function;
see, e.g., [37, Theorem 4.1].

Theorem 3.2. Let m = max {|mi| : i = 1, 2, . . . , s}, where each mi is a standard differentiation
multi-index, and define Cm1,...,ms(Rr) :=

⋂s
i=1C

mi(Rr). Then Rσ is dense in Cm1,...,ms(Rr) if
σ ∈ Cm(R) is not a polynomial function.

As a consequence, for any f ∈ Cm1,...,ms(K), for every compact K ⊂ Rr and every ε > 0, there
exists a functionN = N ε ∈ Rσ such that

max
x∈K

∣∣Dkf(x)−DkN ε(x)
∣∣ < ε,

for all multi-indices k such that 0 ≤ k ≤ mi for some i.

Note that these results imply analogous error bounds for (3.1), i.e., for the vector-valued case. They
can be also generalized to mutiple-hidden-layer networks as the next theorem shows, see [28].
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Theorem 3.3. A standard multi-layer feedforward network with a continuous activation function can
uniformly approximate any continuous function to any degree of accuracy if and only if its activation
function is not a polynomial.

One of the main tasks of deep learning, a specific branch of machine learning, is to identify suitable
choices for W0 ∈ Rs×l` , W1 ∈ Rl1×r, Wi ∈ Rli×li−1 for i = 2, . . . , `, and b0 ∈ Rs, bi ∈ Rli ,
where i = 1, . . . , ` represents the i-th hidden layer of the underlying ANN, from a given data set
D = {(xj, fj) ∈ Rr × Rs : j = 1, . . . , nD}, with nD ∈ N sufficiently large. A typical approach in
this context seeks to find a (global) solution to the nonconvex minimization problem

minimize
nD∑
j=1

d(N (xj), fj) + r(W, b) over (W, b) ∈ Fad, (3.2)

whereN results from a multi-layer ANN that depends on Θ := (W, b), withW := (W0,W1, . . . ,W`)
and b := (b0, b1, . . . , b`). Further, d denotes a suitable distance measure, r is an optional regular-
ization term inducing some a priori properties of Θ, and Fad encodes possible additional constraints.
While the study of (3.2) is an interesting and challenging subject in its own right, here we rather as-
sume that the learning process, i.e., the computation of a suitable Θ, has been completed. We then
study analytical properties of the resulting N , or the solution map ΠN or QN in view of (1.2), in the
context of our target applications and report on associated numerical results.

4 Application: Distributed control of semilinear elliptic PDEs

In our first application we consider the following model problem associated with the distributed optimal
control of a semilinear elliptic PDE:

minimize J(y, u) :=
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1(Ω)× L2(Ω) (4.1)

s.t. −∆y + f(x, y) = u in Ω, ∂νy = 0 on ∂Ω, (4.2)

u ∈ Cad := {v ∈ L2(Ω) : u(x) ≤ v(x) ≤ u(x), for a.e. x ∈ Ω}, (4.3)

where u, u with u ≤ u belong to L∞(Ω), and ’a.e.’ stands for ’almost every’ in the sense of the
Lebesgue measure. Moreover, we have g ∈ L2(Ω), and Ω ⊂ Rd, d ≥ 2, is a bounded domain with
Lipschitz boundary. In view of our general model problem class (1.1) we have H = U = L2(Ω),
Y = H1(Ω), Z = H−1(Ω), A = id, and e is given by the PDE in (4.2). For more details on
the involved Lebesgue and Sobolev spaces we refer to [2]. Concerning f we invoke the following
assumption throughout this section:

Assumption 4.1. The nonlinear function f = f(x, z) : Ω×R→ R is measurable with respect to x
for every z ∈ R and continuously differentiable with respect to z for almost every x ∈ Ω. There exists
a function F : Ω× R→ R so that ∂zF (·, z) = f(·, z). F and f satisfying the following conditions,
for all z ∈ R

|f(·, z)| ≤ b1 + c1 |z|p−1 and − f(·, z)z + F (·, z) ≤ b2, (4.4)

which combined also result to
F (·, z) ≤ b0 + c0 |z|p , (4.5)
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G. Dong, M. Hintermüller, K. Papafitsoros 10

for some constants b0, b1, b2 ∈ R and c0, c1 > 0 and for p with 1 < p ≤ 2d
d−2

for d ≥ 3, 1 < p <
+∞ for d = 2, or 1 < p ≤ +∞ for d = 1.The interpretation of p = ∞ for d = 1 is that the
growth conditions in (4.4) are not required to hold. Finally, we assume that F is coercive in the sense

that lim‖y‖Lp(Ω)→∞

∫
Ω F (x,y)dx

‖y‖Lp(Ω)
→ ∞, and F is bounded from below, i.e., F (x, z) ≥ F0 for some

F0 ∈ R, for all z ∈ R and for almost every x ∈ Ω.

The above assumption particular indicates that both f and F satisfy the Carathéodory condition, and
thus induce some operators of Nemytskii type.

Moreover, observe also that the conditions on p enable the embedding H1(Ω) ⊂ Lp(Ω). Also note
that the Assumption 4.1 is satisfied for F (x, z) = α(x)πp(z) with α ∈ L∞(Ω) and α(x) > 0 for
almost every x ∈ Ω and πp being a polynomial of degree p and positive coefficient on the term of
degree p; the latter being equal to |z|p if p is odd such that the coercivity assumption is not violated.

Given the above assumption, the PDE (4.2) is related to the variational problem

minimize G(y) :=
1

2
‖∇y‖2

L2(Ω) +

∫
Ω

F (x, y) dx−
∫

Ω

uy dx over y ∈ H1(Ω). (4.6)

A particular example is given by a Ginzburg-Landau model for superconductivity where f(z) =
η−1(z3 − z) with a parameter η > 0. It gives rise to the double-well type variational model

minimize
1

2
‖∇y‖2

L2(Ω) +
1

4η

∫
Ω

(y2 − 1)2dx−
∫

Ω

uy dx over y ∈ H1(Ω), (4.7)

for given u ∈ L2(Ω) or in fact, to a more a general space. The next proposition shows existence of
solutions for (4.6).

Proposition 4.2. Let Assumption 4.1 hold, and suppose that u ∈ Lr(Ω) for some r ≥ p
p−1

. Then

the optimization problem (4.6) admits a solution in H1(Ω).

Proof. Notice that due to the coercivity assumption we can find a C > 0 such that ‖u‖Lr(Ω) < CC1

with C1 being the constant involved in the embedding Lp(Ω) ⊂ L
r
r−1 (Ω) such that∫

Ω

F (x, y) dx−
∫

Ω

uy dx ≥ C‖y‖Lp(Ω) − ‖u‖Lr(Ω)‖y‖L r
r−1 (Ω)

≥ (CC1 − ‖u‖Lr(Ω))‖y‖L r
r−1 (Ω)

≥ 0,
(4.8)

provided ‖y‖Lp(Ω) is large enough. This together with the lower bound F ≥ F0 implies that the energy
G is bounded from below and thus there is an infimizing sequence (yn)n∈N ∈ H1(Ω) ⊂ Lp(Ω).
Using the above inequality one easily deduces that ‖yn‖L r

r−1 (Ω)
is bounded, and with the help of

the Poincaré inequality a uniform H1(Ω) bound is also obtained for that sequence. Therefore, we
only need to show that G(·) is weakly lower semicontinuous in H1(Ω). For this, it suffices to check
the term involving F , since the arguments for the other two terms are straightforward. Assuming
yn ⇀ y in H1(Ω), by the compact embedding of H1(Ω)↪→L1(Ω), we have that yn → y almost
everywhere, up to a subsequence. Due to the continuity of F with respect to the second variable,
we have F (·, y) = limn→∞ F (·, yn) almost everywhere. Since F (·, yn), F (·, y) ≥ F0, by Fatou’s
lemma we have ∫

Ω

F (x, y) dx ≤ lim inf
n→∞

∫
Ω

F (x, yn) dx,

and thus G(·) is weakly lower semicontinuous.
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Before we proceed, it is useful to recall the following standard result on linear elliptic PDEs [18, 44].

Theorem 4.3. Let v ∈ Lr(Ω), a ∈ L∞(Ω) with a > 0. Then the following equation admits a unique
solution

−∆s+ as = v in Ω, ∂νs = 0 on ∂Ω.

Furthermore there exist constants Ch > 0 and Cl > 0 independent of a and v such that

‖s‖H1(Ω) ≤ Ch ‖v‖Lr(Ω) and ‖s‖C(Ω) ≤ Cl ‖v‖Lr(Ω) . (4.9)

Using the polynomial growth of F together with the continuous embedding H1(Ω) ⊂ L
r
r−1 (Ω), one

verifies the Fréchet differentiability ofG : H1(Ω)→ R. The Euler-Lagrange equation associated with
(4.6) is given by

−∆y + f(x, y) = u in Ω, ∂νy = 0 on ∂Ω, (4.10)

and it is satisfied for every solution y of (4.6). Under Assumption 4.1, the solutions of (4.10) can be
uniformly bounded with respect to ‖ · ‖C(Ω), as shown next.

Proposition 4.4. Let the Assumption 4.1 be satisfied, and let Cad ⊂ L∞(Ω) be bounded. Then there
exists a constant K > 0 such that for all solutions of (4.10), it holds

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ K, for all u ∈ Cad. (4.11)

Proof. From the fact that y ∈ Lp(Ω), the growth condition (4.4) and the measurability of f , we have

f(·, y) ∈ L
p
p−1 (Ω). We can rewrite (4.10) in the following form

−∆y + εy = u+ εy − f(x, y) in Ω, ∂νy = 0 on ∂Ω, (4.12)

for some ε > 0. Let us define r̃ := min
{

r
r−1

, p
p−1

}
. Then u + εy + f(·, y) ∈ Lr̃(Ω) since

u ∈ Cad ⊂ L∞(Ω). Applying (4.9) to (4.12) yields

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ (Ch + Cl)
(
‖u‖Lr̃(Ω) + ε ‖y‖Lr̃(Ω) + ‖f(·, y)‖Lr̃(Ω)

)
. (4.13)

As all solutions of (4.12) are stationary points of G, in view of (4.4), every weak solution y satisfies

G(y) =
1

2
‖∇y‖2

L2(Ω) +

∫
Ω

F (x, y) dx−
∫

Ω

uy =

∫
Ω

−f(x, y)y + F (x, y) dx ≤ b2|Ω|, (4.14)

where we use the weak formulation of (4.12) tested with y.

Using the coercivity of G, we can find some constant M > 0 independent of y such that ‖y‖Lp(Ω) ≤
M . Since (p− 1)r̃ ≤ p, by (4.4), we have

‖f(·, y)‖Lr̃(Ω) ≤ d0 + d
∥∥yp−1

∥∥
Lr̃(Ω)

≤ d0 + d̃ ‖y‖p−1
Lp(Ω) ≤ M̃. (4.15)

Returning to (4.13), we choose a sufficiently small ε > 0 such that the second term on the right-hand
side of (4.13) is absorbed by ‖y‖H1(Ω). Since Lr̃(Ω) ⊂ L∞(Ω) and Cad is bounded, ‖u‖Lr̃(Ω) is
uniformly bounded for all u ∈ Cad. Finally, taking into account (4.13) and (4.15) we have

‖y‖H1(Ω) + ‖y‖C(Ω) ≤ (C̃h + C̃l)(‖u‖Lr̃(Ω) + M̃) ≤ K, (4.16)

which is the conclusion.

Notice that for monotone f , one can directly refer to standard results in the literature, e.g., [44], where
uniform bounds on the solution of (4.10) are shown for that case.
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4.1 Continuity and sensitivity of the control-to-state map

Since f(·, ·) might be nonmonotone with respect to the second variable, this may give rise to a lack
of uniqueness of a solution to the semilinear PDE (4.2). In the monotone case, the continuity result is
more direct to show, thus we focus on the nonmonotone case here.

Under our standing assumptions, (4.2) has a nonempty set of solutions y satisfying ‖y‖H1(Ω) +
‖y‖C(Ω) ≤ K for some constant K independent of u since Cad is bounded. The associated con-
tinuity result stated next, relies on a Γ–convergence technique. We note that for this section we take
r = 2.

Proposition 4.5. Let un → u in L2(Ω) and Gn, G : H1(Ω)→ R be the corresponding energies in
(4.6). Then Gn Γ–converges to G with respect to the H1 topology. Furthermore, Gn is equi-coercive.

Proof. Observe first that one easily checks that Gn Γ–converges to G. This is because the function
1
2
‖∇(·)‖2

L2(Ω) +
∫

Ω
F (x, ·) dx is weakly lower semicontinuous with respect to the H1(Ω) conver-

gence (and hence it Γ–converges to itself), while the function y 7→
∫

Ω
uny dx continuously converges

to the function y 7→
∫

Ω
uy dx (see [13, Def. 4.7] for the notion of continuous convergence). The

assertion follows from the stability of Γ-convergence under continuous perturbations [13, Prop. 6.20].

In order to see that Gn is equi-coercive, it suffices to find a lower semicontinuous coercive function
Ψ : H1(Ω) → R such that Gn ≥ Ψ on H1(Ω), cf. [13, Prop. 7.7]. This follows from the fact that
(‖un‖L2(Ω))n∈N is a bounded sequence and from the coercivity condition in Assumption (4.1), see
also (4.8).

With the help of Γ–convergence and equi-coercivity one can get the classical results on Γ–convergence
with respect to global and local minimizers. It is of particular interest whether y0 is an isolated local
minimizer ofG (and in particular satisfies (4.2)). In this case there exists a sequence ỹn with ỹn → y0

in H1(Ω) such that for all sufficiently large n, ỹn is a local minimizer of Gn (hence it also satisfies
(4.2)); see [11]. This implies that if un → u0 in L2(Ω) and y0 ∈ Π(u0) is an isolated local minimizer
ofG, then there exists a sequence (yn)n∈N inH1(Ω) such that yn ∈ Π(un) and yn → y0 inH1(Ω).

Remark 4.6. We note that solutions of the PDE (4.2) are not necessarily local minimizers of the varia-
tional problem (4.6). In order to make sure that y0 is an isolated local minimizer, one can check second-
order conditions on (4.6). In this context, second-order sufficiency relates to (s,−∆s+∂yf(·, y0)s) >
ε ‖s‖2

H1(Ω) for all s ∈ H1(Ω) with some ε > 0. Therefore, if f(·, ·) is a strictly monotone function with
respect to its second variable, then the positive definiteness condition is automatically guaranteed. For
the more general case, it turns out that a similar, but yet milder condition (see (4.19) below) helps to
establish the sensitivity result for the control-to-state map.

Given this approximating sequence (yn)n∈N for y0 ∈ Π(u0), convergence rates and differentiability
of the control-to-state map in a certain sense are shown next. For this, we also assume that

∀M > 0 ∃LM > 0 : |∂yf(x, y1)− ∂yf(x, y2)| ≤ LM |y1 − y2|, (4.17)

for almost every x ∈ Ω and for all y1, y2 ∈ [−M,M ]. This also implies

∀M > 0 ∃C > 0 : |∂yf(x, y)| < C for a.e. x ∈ Ω and ∀ y ∈ [−M,M ]. (4.18)
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Theorem 4.7. Assume that (4.17) holds for f , let Π : L2(Ω) ⇒ H1(Ω) be the possibly multi-
valued control-to-state map of (4.2) and fix some u0, h ∈ L2(Ω) as well as y0 ∈ Π(u0). Define
(∂yf(·, y0))− := min {∂yf(·, y0), 0}, and assume that∥∥(∂yf(·, y0))−

∥∥
L2(Ω)

<
1

Cl
and

∥∥(∂yf(·, y0))−
∥∥
L∞(Ω)

<
1

Ch
, (4.19)

where Cl and Ch are the positive constants defined in (4.9). Suppose un = u0 + tnh for a sequence
tn → 0, and suppose there exists yn ∈ Π(un) with yn → y0 in H1(Ω). Then we have

‖yn − y0‖H1(Ω) ≤ Ctn, (4.20)

for some constant C and large enough n ∈ N. Moreover, one has that every weak cluster point of
yn−y0

tn
, denoted by p, solves the following linear PDE

−∆p+ ∂yf(·, y0)p = h in Ω, ∂νp = 0 on ∂Ω.

In particular, for every h ∈ L2(Ω), p satisfies the energy bounds:

‖p‖H1(Ω) ≤ CH ‖h‖L2(Ω) and ‖p‖C(Ω) ≤ Cc ‖h‖L2(Ω) , (4.21)

with constants CH and Cc depending on Ch and Cl.

Proof. Subtracting the equations that correspond to the pairs (un, yn) and (u0, y0) and using the
mean value theorem, we get

−∆(yn − y0) = tnh+ f(·, y0)− f(·, yn) = tnh− ∂yf(·, y0 + γh(yn − y0))(yn − y0), (4.22)

where γh ∈ L∞(Ω) with ‖γh‖L∞(Ω) ≤ 1, see Remark 4.10 regarding measurability of such γh. Note

that yn, y0 ∈ C(Ω) with a uniform bound K > 0, therefore from (4.18) we have ∂yf(·, y0 + γh(yn−
y0)) ∈ L∞(Ω). Then, given ε > 0, we rewrite (4.22) as

−∆(yn− y0) + (ε+ (∂yf(·, ξhn))+)(yn− y0) = tnh+ (ε+ (∂yf(·, ξhn))+− ∂yf(·, ξhn))(yn− y0),
(4.23)

where ξhn := y0 + γh(yn − y0), and (∂yf(·, ξhn))+ = max
{
∂yf(·, ξhn), 0

}
. Now, using (4.9), we

have

ε

Ch
‖yn − y0‖H1(Ω) + ‖yn − y0‖L∞(Ω)

≤(ε+ Cl)
(
tn ‖h‖L2(Ω) +

∥∥(ε+ (∂yf(·, ξhn))+ − ∂yf(·, ξhn))(yn − y0)
∥∥
L2(Ω)

)
≤(ε+ Cl)

(
tn ‖h‖L2(Ω) +

∥∥ε+ (∂yf(·, ξhn))−
∥∥
L2(Ω)

‖yn − y0‖L∞(Ω)

)
.

(4.24)

The last inequality holds since both yn and y0 are C(Ω) functions. Because yn → y0 in H1(Ω), we
also have that ξhn → y0 in L2(Ω). From the continuity of ∂yf(x, ·), the fact that yn, y0 are uniformly
bounded inC(Ω) and from dominated convergence, we have that ∂yf(·, ξhn)→ ∂yf(·, y0) in L2(Ω).
Thus, because of (4.19), there exists ε = ε0 small enough, such that for sufficiently large n, we have
(ε0 + Cl)

∥∥ε0 + (∂yf(·, ξhn))−
∥∥
L2(Ω)

≤ 1. Then (4.24) leads to

‖yn − y0‖H1(Ω) ≤
Ch(ε0 + Cl)

ε0
‖h‖L2(Ω) tn. (4.25)
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From the above inequalities we have that (yn−y
tn

)n∈N is uniformly bounded in H1(Ω) and therefore
admits a weakly convergent subsequence (unrelabelled) with weak limit p. Then, dividing by tn and
letting tn → 0 in (4.22), we have that p satisfies the following equation

−∆p+ ∂yf(·, y0)p = h in Ω, ∂νp = 0 on ∂Ω. (4.26)

Note that (4.25) readily implies the first energy bound in (4.21). For the second bound in (4.21), the
procedure is similar. For this we consider

‖yn − y0‖H1(Ω) +
ε

Cl
‖yn − y0‖C(Ω)

≤(ε+ Ch)
(
tn ‖h‖L2(Ω) +

∥∥ε+ (∂yf(·, ξhn))−
∥∥
L∞(Ω)

‖yn − y0‖L2(Ω)

)
.

(4.27)

Invoking now the second condition in (4.19), and using exactly the same steps as for the first bound of
(4.21), we find some ε′0 > 0 to conclude the second bound in (4.21) when n is sufficiently large.

Remark 4.8. The proof of Theorem 4.7 provides an alternative strategy for proving existence and
energy estimates of solutions for certain type of linear elliptic PDEs, e.g. as in (4.26) when the elliptic
coercivity is mildly violated. Also note that in the monotone case, (∂yf(·, y0))− ≡ 0, and thus the
conditions in (4.19) are always fulfilled.

4.2 Existence results for learning-informed semilinear PDEs

As motivated in the introduction, in many applications the precise form of f is not known explicitly, but
rather it can be inferred from given data only. Here we are particularly interested in neural networks
to learn the hidden physical law or nonlinear mapping from such data. The corresponding existence
result for PDEs that include such neural network approximations is stated next.

Proposition 4.9. Let f : Ω × R → R and F : Ω × R → R be given as in Assumption 4.1 with
the extra assumption that f ∈ C(Ω × R). Then, for every ε > 0 there exists a neural network
N ∈ C∞(Rd × R) such that

sup
‖y‖L∞(Ω)<K

‖f(·, y)−N (·, y)‖U < ε, (4.28)

with K cf. (4.11). Moreover, the learning-informed PDE

−∆y +N (·, y) = u in Ω, ∂νy = 0 on ∂Ω, (4.29)

admits a weak solution which also satisfies (4.11) for sufficiently small ε > 0.

Proof. From Theorem 3.1 we have that for every ε̃ > 0 there exists a neural networkN ∈ C∞(Rd×
R) such that |f(x, y)−N (x, y)| < ε̃ for every (x, y) ∈ Ω× [−K − 1, K + 1].

Thus, the existence of N such that (4.28) holds can be directly shown; note that U = L∞(Ω) is
feasible in (4.28).

Consider next the function N : Ω× R→ R given by

N(x, t) :=


∫ t

0
N (x, s) ds+ F (x, 0), −(K + 1) ≤ t ≤ K + 1,

r0(x) + F (x, t), t > K + 1,

r1(x) + F (x, t), t < −(K + 1),
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with r0(x) :=
∫ K+1

0
N (x, s) ds+F (x, 0)−F (x,K+1), r1(x) :=

∫ −K−1

0
N (x, s) ds+F (x, 0)−

F (x,−K−1). Notice thatN(x, t) is continuous with |N(x, t)−F (x, t)| < ε(K+1) for every t ∈ R
and x ∈ Ω. Next we apply some smoothing of N(x, ·) in a small neighbourhood of Ω× {−K − 1}
and Ω× {K + 1} such that the previous approximation estimate still holds true, and continue to use
the symbolN for the result. ThenN(x, ·) is differentiable with respect to the second variable for every
x ∈ Ω. Consider now the minimization problem

inf
y∈H1(Ω)

1

2
‖∇y‖2

L2(Ω) +

∫
Ω

N(x, y) dx−
∫

Ω

uy dx. (4.30)

One can now prove existence of a solution to (4.30) analogously to the proof of Proposition 4.2 for
(4.6). We can show that the functional in y 7→

∫
Ω
N(x, y) dx is Frechét differentiable in H1(Ω) with

Frechét derivative h 7→
∫

Ω
∂yN(x, y)h dx, see discussion after this proof. Thus any solution to (4.30)

satisfies the PDE
−∆y + ∂yN(·, y) = u, in Ω, ∂νy = 0 on ∂Ω. (4.31)

By following estimates analogous to the ones leading to (4.11), we have in view of (4.15)–(4.16) and
(4.28), that any solution y0 also satisfies ‖y0‖C(Ω) < K when ε is sufficiently small. Since ∂yN = N
on Ω× [−K,K] we conclude that y0 is a solution of (4.29).

Concerning the announced differentiability of ΦN(y) :=
∫

Ω
N(x, y) dx, define

Φ′N(y)h :=

∫
Ω

∂yN(x, y)h dx.

Since
|ΦN (y+h)−ΦN (y)−Φ′N (y)h|

‖h‖H1(Ω)
=
|Φ′N (y+τhh)h−Φ′N (y)h|

‖h‖H1(Ω)
for some τh ∈ L∞(Ω) with ‖τh‖L∞(Ω) ≤ 1,

using the mean value theorem along with H1(Ω) ⊂ L
r
r−1 (Ω), we have for a C > 0

|ΦN(y + h)− ΦN(y)− Φ′N(y)h|
‖h‖H1(Ω)

≤ C ‖∂y(N(·, y + τhh)−N(·, y))‖Lr(Ω) . (4.32)

Note that by definition, the growth rate of N(x, ·) outside of [−K − 1, K + 1] is exactly the same as
the one of F (x, ·). Therefore ∂yN(·, y) is indeed an element of Lr(Ω). Finally, we need to verify that

lim
h→0
‖∂yN(y + τhh)− ∂yN(y)‖Lr(Ω) = 0 for h ∈ H1(Ω).

This is true due to the continuity of the Nemytskii operator ∂yN : L
r
r−1 (Ω)→ Lr(Ω).

Remark 4.10. Notice that in (4.32) the mean value theorem is applied for every x ∈ Ω and τh is
defined as a selector function of the multi-valued map τ : Ω ⇒ [0, 1] with

τ(x) = {λ ∈ [0, 1] : N(x, y(x) + h(x))−N(x, y(x))− ∂yN(x, y(x) + λh(x))h(x) = 0}.

Even though by definition τh is a bounded function, one still needs to show its measurability such that
τh ∈ L∞(Ω). Such a measurable selector function is indeed guaranteed by the Kuratowski–Ryll–
Nardzewski selection theorem [4, Theorem 18.13] whose conditions can be verified in our case. In
fact, we may choose τh(x) := max τ(x); see [4, Theorem 18.19].

Note that the above set up covers a wide range of problems, including the class of problems where
the nonlinear function f(·, ·) is strictly monotone with respect to the second variable. In that case, the
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nonlinear PDE (4.2) admits a unique solution [44]. We also point out that in the monotone case direct
methods allow to prove the existence of solutions and energy bounds for a wider array of monotone
nonlinearities (such as, e.g., exponential functions). Moreover in that case, the regularity and growth
conditions on the nonlinear function f can be relaxed. However, as pursuing such a generality is not
the focus of the current paper, we skip detailed discussions here. We note however that structural
aspects of the control problem such as first-order optimality, adjoints etc. remain intact even under
relaxed conditions.

In order to give an example on this, we show in the next proposition how strict monotonicity for the
learning-based model can indeed be preserved.

Proposition 4.11. Let f : Ω × R → R satisfy Assumption 4.1 and ∂yf(x, y) ≥ Cf for almost
every x ∈ Ω and y ∈ R for some Cf > 0. We additionally assume that f ∈ C(Ω × R). Then for
every ε > 0, for every compact set Ωc ⊂ Ω, and for every M > 0, there exists a neural network
N := N ε

Ωc,M
∈ C∞(Rd × R) such that

|f(x, z)−N (x, z)| < ε, for every x ∈ Ωc and every z ∈ [−M,M ], (4.33)

∂zN (x, z) ≥ CN , for all x ∈ Ω and z ∈ [−M,M ] for some CN > 0. (4.34)

If f ∈ C1(Ω× R), then we have in addition that

|∂zf(x, z)− ∂zN (x, z)| < ε, for all x ∈ Ωc and z ∈ [−M,M ]. (4.35)

Proof. Let ε > 0, Ωc ⊂ Ω compact, and M > 0. Further, let f̃ : Rd × R → R be the extension by
zero of f outside Ω×R, ρδ a standard mollifier [6, Sec.2.2.2], and f̃δ := f̃ ∗ρδ : Rd×R→ R. Next
we choose δ > 0 such that the following hold true: (i) B̄(x, δ) := {x̂ ∈ Rd : ‖x̂ − x‖2 ≤ δ} ⊂ Ω
for every x ∈ Ωc, (ii) f̃δ(x, y) = fδ(x, y) for (x, y) ∈ Ωc × R, and (iii) |f(x, y) − f̃δ(x, y)| < ε/2
for every x ∈ Ωc, y ∈ [−M,M ]. Moreover, one finds that for sufficiently small δ > 0 it holds that
∂yf̃δ(x, y) ≥ Cf̃ for some Cf̃ > 0 for all x ∈ Ω, y ∈ R. Indeed, note that Assumption 4.1 and the
mean value theorem yield for almost every x′ ∈ Ω, y1 < y2

f(x′, y2)− f(x′, y1) ≥ Cf (y2 − y1). (4.36)

Hence, using ρδ(·) = δ−(d+1)ρ(·/δ) [6, Sec.2.2.2], we have

f̃δ(x, y1) =

∫
Bδ(x,y1)∩(Ω×R)

f̃(x′, y′)δ−d−1ρ

(
(x, y1)− (x′, y′)

δ

)
d(x′, y′)

≤
∫
Bδ(x,y2)∩(Ω×R)

(
f̃(x′, y′)− Cf (y2 − y1)

)
δ−d−1ρ

(
(x, y2)− (x′, y′)

δ

)
d(x′, y′)

= f̃δ(x, y2)− Cf
(∫

Bδ(x,y2)∩(Ω×R)

δ−d−1ρ

(
(x, y2)− (x′, y′)

δ

)
︸ ︷︷ ︸

=:C̃

d(x′, y′)
)

(y2 − y1)

= f̃δ(x, y2)− Cf C̃(y2 − y1).

We now use the fact that the boundary of Ω is Lipschitz to deduce that for some small enough δ > 0
we have C̃ := C̃x,y > c for some c > 0, for every x ∈ Ω, y ∈ R, and set Cf̃ := Cfc. Hence

from the last inequality above we deduce ∂yf̃δ(x, y) ≥ Cf̃ . Utilizing now Theorems 3.1 and 3.2 for

the compact set Ω × [−M,M ] ⊂ Rd × R, we find a neural network N ∈ C∞(Rd × R) such that
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|f̃δ(x, y) − N (x, y)| < ε/2 as well as |∂yf̃δ(x, y) − ∂yN (x, y)| < Cf̃/4 for every x ∈ Ω and
y ∈ [−M,M ]. Then with the use of the triangle inequality we get (4.33) and (4.34) for CN = 3

4
Cf̃ .

Finally, when f is also continuously differentiable in Ω × R, we can proceed as before with the extra
care to choose δ > 0 such that |∂yf(x, y)−∂yf̃δ(x, y)| < ε/2 for every x ∈ Ωc, y ∈ [−M,M ].

Note that if f is bounded on Ω× [−K,K], for instance if f ∈ C(Ω×R) as in Proposition 4.9, then
the estimate (4.28) holds here as well and if analogous conditions hold for the derivative of f then with
the help of (4.35) we also have

sup
‖y‖L∞(Ω)<K

‖∂yf(·, y)− ∂yN (·, y)‖U ≤ ε. (4.37)

4.3 Error analysis for the control-to-state map

Our next target is to show the error bounds (2.2) and (2.7) for the solution maps (control-to-state maps)
of the learning-informed versus the original PDE. Before we proceed, we first show the local Lipschitz
conditions (2.9) and (2.6). For the ease of presentation we confine ourselves to a monotone f(x, ·)
here. For the nonmonotone f(x, ·), we would require (4.19) to be satisfied for solutions uniformly
bounded by K . Consider the following pairs of equations for i ∈ {1, 2}{
−∆yi + f(·, yi) = ui in Ω,

∂νyi = 0 on ∂Ω,
and

{
−∆pi + ∂yf(x, ȳi)pi = v in Ω,

∂νpi = 0 on ∂Ω,
(4.38)

where v ∈ U is unitary, yi = Π(ui), and pi = Π′(ui)v for i = 1, 2. Taking the difference of the first
equations in (4.38) for i = 1, 2, testing with y1 − y2, and using the mean value theorem we get for
some Cf > 0 that

Cf ‖y1 − y2‖2
H ≤ ‖∇y1 −∇y2‖2

L2(Ω) +

∫
Ω

(f(x, y1)− f(x, y2))(y1 − y2) dx

=

∫
Ω

(u1 − u2)(y1 − y2) dx ≤ ‖u1 − u2‖U ‖y1 − y2‖H ,

which yields the Lipschitz property ‖y1 − y2‖H ≤
1
Cf
‖u1 − u1‖U .

In order to show the local Lipschitz continuity of Π′, we need to further assume condition (4.17).
Consider now the difference of the right-hand side equations for i = 1, 2 in (4.38). Using standard
PDE arguments (see, e.g., [44, Theorem 4.7]) we find

‖p1 − p2‖H1(Ω) + ‖p1 − p2‖C(Ω̄) ≤ C ‖(∂yf(·, ȳ1)− ∂yf(·, ȳ2))p1‖L2(Ω)

≤ CL ‖p1‖C(Ω) ‖ȳ1 − ȳ2‖L2(Ω) ≤ C
L

Cf
c ‖v‖L2(Ω) ‖u1 − u2‖L2(Ω) .

Here, we also used the estimate ‖p1‖C(Ω) ≤ c‖v‖L2(Ω) from Theorem 4.7.

For the desired error bounds we focus now on the state equations{
−∆y +N (x, y) = u in Ω,

∂νy = 0 on ∂Ω,
and

{
−∆y + f(x, y) = u in Ω,

∂νy = 0 on ∂Ω,
(4.39)
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and the associated adjoints{
−∆p+ ∂yN (x, ȳ)p = v in Ω,

∂νp = 0 on ∂Ω,
and

{
−∆p+ ∂yf(x, ȳ)p = v in Ω,

∂νp = 0 on ∂Ω.
(4.40)

The main approximation result is stated below. It guarantees that the uniform approximation properties
of the control-to-state operator Π and its derivative (compare (2.2) and (2.7) of Theorem 2.3 and
Assumption 2.4, respectively) are met by the corresponding learning-informed operators.

Proposition 4.12. Let ε > 0 and M > K > 0, with K being the constant from (4.11). Suppose
the first inequality in (4.19) holds for f for every y such that ‖y‖L∞(Ω) ≤ K . Assume that N ∈
C∞(Rd × R) satisfies the approximation property

sup
‖y‖L∞(Ω)<M

‖f(·, y)−N (·, y)‖U ≤ ε, (4.41)

for ε > 0 sufficiently small. Then, the following error estimate holds :

‖y0 − yε‖H ≤ Cε, for all u ∈ Cad, (4.42)

where the constant C > 0 depends only on f , and yε, y0 are solutions of the left and right equations
of (4.39) respectively. Moreover, assuming (4.17) and also that the condition

sup
‖y‖L∞(Ω)<M

‖∂yf(·, y)− ∂yN (·, y)‖U ≤ ε1, (4.43)

holds for sufficiently small ε1 > 0, then, there exist some constants C0 > 0 and C1 > 0 so that

‖p0 − pε‖H1(Ω)∩C(Ω) ≤ C1ε1 + C0ε, for all u ∈ Cad, (4.44)

where pε, p0 are solutions of the left and right equations of (4.40) respectively.

Proof. Let yε and y0 be solutions of the learning-informed PDE and the original PDE, respectively.
Recall that the H1 norms of both yε and y0 are bounded by K > 0. Subtracting the two PDEs we get

−∆(y0 − yε) = N (·, yε)− f(·, y0) in Ω and ∂ν(y0 − yε) = 0 on ∂Ω. (4.45)

Using the same technique as in the proof of Theorem 4.7, the equation in (4.45) can be rewritten as(
−∆ + κ0 + (∂yf(·, ζε))+

)
(y0−yε) = N (·, yε)−f(·, yε)+(κ0−(∂yf(·, ζε))−)(y0−yε), (4.46)

where ζε is a pointwise convex combination of y0 and yε that results from a pointwise application of
the mean value theorem, and κ0 > 0 is a fixed small constant. We have then the estimate

κ0

Ch
‖y0 − yε‖H1(Ω) + ‖y0 − yε‖C(Ω)

≤(κ0 + Cl)(‖N (·, yε)− f(·, yε)‖L2(Ω) +
∥∥(κ0 − (∂yf(·, ζε))−)(y0 − yε)

∥∥
L2(Ω)

),

Rearranging the above inequality, and taking into account the Lipschitz continuity of ∂yf and the
condition (4.19) for ζε for which it holds ‖ζε‖L∞(Ω) ≤ K , for sufficiently small ε we derive finally

‖y0 − yε‖H ≤ Cε.
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For deriving (4.44) we use a similar approach. Let pε and p0 be the solutions of the left and right
equations in (4.40), respectively. Subtracting these two equations gives

−∆(pε − p0) + ∂yf(x, y0)(pε − p0) = (∂yf(x, y0)− ∂yN (x, yε))pε in Ω,

∂ν(pε − p0) = 0 on ∂Ω.
(4.47)

Using again the same trick as above, we rewrite (4.47) as

−∆(pε − p0) + (κ1 + (∂yf(x, y0))+(pε − p0)

=(∂yf(x, y0)− ∂yN (x, yε))pε + (κ1 − (∂yf(x, y0))−)(pε − p0),
(4.48)

and then similarly we get

‖pε − p0‖H1(Ω) ≤ C ‖pε‖C(Ω̄) ‖∂yf(·, y0)− ∂yN (·, yε)‖L2(Ω) , (4.49)

for some constant C independent of both p0 and pε, but depending on the constants Ch and Cl. The
estimate in (4.49) holds also for ‖pε − p0‖C(Ω) but with a different constant, say C̃ > 0. Focusing on
the right-hand side of the inequality above and using the triangle inequality we have

‖∂yf(·, y0)− ∂yN (·, yε)‖L2(Ω) ≤ ‖∂yf(·, y0)− ∂yf(·, yε)‖L2(Ω)

+ ‖∂yf(·, yε)− ∂yN (·, yε)‖L2(Ω) ≤ L ‖y0 − yε‖L2(Ω) + ε1,

whereL is the local Lipschitz constant of ∂yf(·, ·) for those y ∈ H1(Ω)∩C(Ω) with ‖y‖L∞(Ω) ≤ K .

Finally we need to estimate ‖pε‖C(Ω) in (4.49). For this we note that for sufficiently small ε1, the second
bound in (4.21) also holds for the solution of PDEs withN . This yields the estimate

‖pε‖C(Ω) ≤ Cc‖v‖L2(Ω), (4.50)

with the constant Cc independent of v and ε. Finally we conclude

‖p0 − pε‖H1(Ω)∩C(Ω) = sup
‖v‖L2(Ω)≤1

‖p0 − pε‖H1(Ω)∩C(Ω)

= sup
‖v‖L2(Ω)≤1

‖p0 − pε‖H1(Ω) + ‖p0 − pε‖C(Ω)

≤ Cc(C + C̃)(Lε+ ε1) ≤ C1ε1 + C0ε,

which ends the proof.

Remark 4.13. Notice that the condition (4.19) imposed to all y with ‖y‖L∞(Ω) ≤ K in fact enforces
a unique solution to the semilinear PDE (4.2), which also satisfies the same constraint. It is possible
to treat the multi-solution case using a similar strategy as Theorem 4.7, by using Γ–convergence
arguments to show the convergence of yε → y in a certain sense, and then apply the condition (4.19)
to y0.

Remark 4.14. The results above also hold for more general types of boundary conditions, including
homogeneous Dirichlet boundary conditions.
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4.4 Existence of solutions of the learning-informed optimal control

After having replaced the unknown f by the neural network based approximation N we are now
interested in the following optimal control problem with a partially learning-informed state equation:

minimize J(y, u) :=
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω), over (y, u) ∈ H1(Ω)× L2(Ω), (4.51)

s.t. −∆y +N (x, y) = u in Ω, ∂νy = 0 on ∂Ω, (4.52)

u ∈ Cad. (4.53)

In what follows we prove the existence of an optimal control for the problem (4.51)–(4.53). Here we
consider that the control-to-state operator is single-valued, that is, the learning-informed PDE (4.52)
has a unique solution for every u ∈ Cad. According to Proposition 2.1, we only need to check that the
operator QN : U → H is weakly sequentially closed. In fact, an even stronger property holds true as
we show next.

Proposition 4.15. LetN ∈ C∞(Rd×R) be a neural network such that any solution of the learning-
informed PDE (4.52) satisfies a bound as in (4.11). Then the reduced operator QN : U = L2(Ω) ⊃
Cad → H = L2(Ω) induced from the control-to-state map of (4.52) is weakly-strongly continuous, in
the sense that if un ⇀ u in U and yn ∈ ΠN (un) then, yn → y in H for some y ∈ Π(u).

Proof. Let un ⇀ u in U and yn ∈ ΠN (un). Then (yn)n∈N is a bounded sequence in Y = H1(Ω)∩
C(Ω̄) as (un)n∈N ⊂ U is a bounded set in L∞(Ω). Thus, up to a subsequence, still denoted by (yn),
there is ȳ ∈ H1(Ω) such that yn ⇀ ȳ in H1(Ω). Since H1(Ω) embeds compactly into H , we can
consider that yn → ȳ strongly in H . We show that ȳ = ΠN (ū), i.e., ȳ is a weak solution of the PDE
in (4.52). Since yn is the weak solution of (4.52) with right hand-side un, we have∫

Ω

∇yn · ∇v dx+

∫
Ω

N (x, yn)v dx =

∫
Ω

unv dx for all v ∈ H1(Ω). (4.54)

We only need to show that ∫
Ω

(N (x, yn)−N (x, ȳ)) v dx = 0, (4.55)

since the convergence of the other two terms readily follows from weak convergence. Taking into
account thatN ∈ C1(Rd ×R) we have that for every M > 0, there exists an LM > 0 such that for
every x ∈ Ω and y1, y2 ∈ [−M,M ], we have

|N (x, y1)−N (x, y2)| ≤ LM |y1 − y2|. (4.56)

Using the estimate (4.11), we have that (yn)n∈N and, hence, ȳ are uniformly bounded in L∞(Ω), say
by a constant M > 0. Thus we have

‖N (·, yn)−N (·, ȳ)‖U ≤ LM‖yn − ȳ‖H .

Due to the inequality above and the strong convergence of yn → ȳ in H , (4.55) is verified. Passing
to the limit n → ∞ in (4.54) we get that ȳ is a weak solution of (4.52) corresponding to ū. Since
any other subsequence of (yn)n∈N will have a further subsequence that converges to ΠN (ū) the
assertion follows.

DOI 10.20347/WIAS.PREPRINT.2754 Berlin 2020



Optimization with learning-informed differential equation constraints 21

For the error analysis on the optimal controls of (4.51) with (4.52) to solutions from (4.1) with (4.2),
we can readily apply Theorems 2.3, 2.6 and 2.5 for the monotone function f , in view of the error
bounds shown in Proposition 4.12. For the nonmonotone case, these results are still applicable up to
a selection of subsequences of the solutions.

Finally, we would like to make a remark regarding the approximation of f : Ω × R → R in a semi-
linear PDE, given a set of input-output data. The input data is a family of sampled points from Ω ×
[ymin, ymax], denoted by (xi, y(xi))i∈I , and the outputs are the corresponding values (f(xi, y(xi)))i∈I ,
which are computed from (4.2) via

f(xi, y(xi)) = u(xi) + ∆y(xi).

In real world applications, we assume that we have access to the data points y(xi) and thus also to
∆y(xi), while u is a control which is at our disposal to be tuned. In order to be consistent with the
functional analytic setting, one needs to give pointwise meaning to ∆y, which in general is an object
in H−1(Ω), only. This can be achieved by choosing controls u ∈ Cad of sufficient regularity. Indeed,
since both f and y are continuous functions when choosing continuous u, equation (4.2) implies that
∆y is continuous, too, and hence admits a pointwise evaluation.

4.5 Numerical algorithm for the optimal control problems

In this section we briefly describe an algorithm for solving the optimal control problem (4.1). Even
though it is suitable for rather general problems, we outline it here for the version with the learning-
informed state equation.

In order to compute a numerical solution, we first state the Karush-Kuhn-Tucker (KKT) conditions,
which are justified by constraint regularity (see [45] for a general setting):

−∆y +N (·, y)− u = 0 in Ω, ∂νy = 0 on ∂Ω,

−∆p+ ∂yN (·, y)p+ y = g in Ω, ∂νp = 0 on ∂Ω,

−p+ λ+ αu = 0 in Ω,

λ−max(0, λ+ c(u− u))−min(0, λ+ c(u− u)) = 0 in Ω,

(4.57)

where c > 0 is some constant, which in practice, is useful to be chosen c = α. The first equation
with its boundary condition is just the learning-informed PDE constraint, while the next one is the
associated adjoint equation. The third equation represents optimality w.r.t. u and, together with the
last one, it incorporates the control constraint u ≤ u ≤ u. Indeed, notice that the last equation is
equivalent to the usual complementarity system as it secures a.e. that

λ = 0 : u < u < u, λ ≥ 0 : u = u, λ ≤ 0 : u = u.

Letting φ := (y, u, p, λ)>, (4.57) can be compactly rewritten as the nonsmooth equation

MN (φ)− (0, g, 0, 0)> = 0. (4.58)

For solving (4.58), we employ a semi-smooth Newton method (SSN); see, e.g., [25]. It operates as
follows: Given an initial guess φ0 of a solution to (4.58), compute for all k = 0, 1, 2, . . .

φk+1 = φk − (GN (φk))
−1(MN (φk)− (0, g, 0, 0)>).
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Here, GN (φk) is a Newton derivative of the operator MN at φk given by

GN (φk) =


−∆ + ∂yN (·, yk) 0 − Id 0
∂yyN (·, yk)pk + Id −∆ + ∂yN (·, yk) 0 0

0 − Id α Id Id
0 0 −cGk Id−Gk

 ,

where for x ∈ Ω,

Gk(x) :=

{
1, if c(u(x)− uk(x)) ≤ λk(x) ≤ c(u(x)− uk(x)),

0, else,

is a Newton derivative that corresponds to the nonsmooth functions max(0, ·) and min(0, ·) in (4.57).
SSN can be shown to converge locally at a superlinear rate, provided φ0 is sufficiently close to a solu-
tion and the selection of Newton derivatives forMN is uniformly bounded and invertible along the iter-
ation sequence; see [25] and [27]. Moreover, under a nondegeneracy assumption the method exhibits
a mesh independent convergence upon proper discretization of (4.58); see [24, 27]. Globalization of
the SSN iteration can be achieved, e.g., by employing a path search [15, 40], which we did not pursue
here, however. Rather we intertwined SSN with a sequential quadratic programming (SQP) iteration,
with the latter specified below. This combination helped the globally convergent SQP solver to escape
from unfavorable local minimizers or stationary points. Obviously, one cannot expect a general theo-
retical result supporting such a behavior. It, hence, merely reflects a useful numerical observation, in
particular in connection with our example with a nonmonotone f .

SQP algorithm Here we consider the reduced SQP approach which operates on the reduced opti-
mal control problem. Given an estimate uk of an optimal control, in every iteration it seeks to solve the
following quadratic problem:

minimize 〈J ′N (uk) +
1

2
Hk(uk)δu, δu〉U∗,U , over δu ∈ U,

subject to u ≤ uk + δu ≤ u a.e. in Ω,
(4.59)

whereJ ′N (uk) is the Fréchet derivative of the reduced functionalJN , andHk(uk) is a positive definite
approximation of the second-order derivative of JN at uk. First-order optimality for (4.59) yields

J ′N (uk) +Hk(uk)δu + λ = 0,

λ−max(0, λ+ c(uk + δu − u))−min(0, λ+ c(uk + δu − u)) = 0,
(4.60)

for some fixed c > 0. This nonsmooth system can be again solved using a semi-smooth Newton
method which yields δu,k and λk. Concerning the Hessian approximation, in our implementation we
choose Hk(uk) := (J ′N (uk))

∗J ′N (uk), where ’∗’ denotes the adjoint operator.

For globalization we use a classical line search with the merit function

Φk(µ) = JN (uk + µδu,k) + βkΨk(µ) for some βk > 0, (4.61)

where
Ψk(µ) :=

∥∥(uk + µδu,k − u)+
∥∥
L2(Ω)

+
∥∥(uk + µδu,k − u)−

∥∥
L2(Ω)

,

with a+ := max {a, 0} , and a− := min {0, a}. We employ a backtracking line search method
starting with µ := 1 to decide on the step length. Note that the reduced problem requires to enforce
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the PDE constraint for every uk. For this purpose a (smooth) Newton iteration was embedded into
every SQP update step. This Newton iteration is terminated when ‖−∆hyk+N (·, yk)−uk‖H−1(Ω) ≤
tol = 10−16 or a maximum of 15 iterations was reached.

To summarize, we utilize the following overall algorithm:

Algorithm 1. A semi-smooth Newton SQP algorithm for PDE control problems

• Initialization: Choose φ0 := (y0, u0 , p0, λ0), and compute Φ0(0). Fix a lower bound ε > 0
for the step length, choose ρ ∈ (0, 1), and β0 > 0. Set k := 0.

• Unless the stopping criteria are satisfied, iterate:

(1) Compute an update direction δu,k by solving (4.60) using SSN. Let µ0
k := 1, y−1

k := yk
and set l := 0. Iterate:

(a1) Compute ylk := ΠN (uk + µlkδu,k), where ΠN is realized by performing Newton
iterations as a nonlinear PDE solver initialized by yl−1

k .
Setting y := ylk and u := uk + µlkδu,k compute the remaining quantities in φlk
according to (4.57) with p =: plk and λ =: λlk. This yields φlk.

(a2) Increase βk, if necessary, to get βlk.

(a3) Check the Armijo condition (4.63).
If it is satisfied, then set lk := l and continue with step (2); otherwise update µl+1

k :=
rµlk, l := l + 1.
If µl+1

k < ε, then terminate the algorithm; otherwise return to Step (a1).

(2) Set φk+1 := φlkk , and βk+1 := βlkk , and k := k + 1.

• Output: The value of φk which contains both the control and state variables.

In our examples, we choose µ0 = 1, ε = 10−5, r = 2/3, and β0 = ‖λ0‖L2(Ω) + 1. In order to
solve the nonsmooth system in (4.60), we employ a primal-dual active set strategy (pdAS), which was
shown to be equivalent to an efficient SSN solver for classes of constrained optimization problems
[25]. For the precise set-up of pdAS and the associated active/inactive set estimation we also refer to
[25]. For minimizing quadratic objectives subject to box constraints and utilizing highly accurate linear
system solvers, pdAS is typically terminated when two consecutive active and inactive set estimates
coincide. We recall here that the active set for (4.59) at the solution δu,k is a subset Ak of Ω with
(uk + δu,k)(x) ∈ [u(x), u(x)] for x ∈ Ak; Ik := Ω \ Ak denotes the associated inactive set.
Alternatively one may stop the iteration once the residual norm of the nonsmooth system at an iterate
drops below a user specified tolerance. In view of (4.60) and constraint satisfaction, the function Ψk(µ)
in (4.61) appears irrelevant as a penalty for violations of the box constraints. However, it becomes
relevant when early stopping is employed in SSN (respectively pdAS). In this case we still need to
guarantee that δu,k is a descent direction for our merit function to obtain sufficient decrease of Φk

in our line search (4.63). This is needed for getting convergence of (uk) (along a subsequence) to
a stationary point. For deriving a proper stopping rule for SSN to guarantee sufficient decrease, we
multiply the first equation in (4.60) by the solution δu, use λ(uk + δu−u)(uk + δu−u) = 0 a.e. in Ω
and the feasibility of uk + δu, both according to the second line in (4.60). We further set βk > ‖λ‖U
(upon identifying U∗=̂U ) to find

〈J ′N (uk), δu〉U∗,U + βk(Ψk(1)︸ ︷︷ ︸
=0

−Ψk(0)) ≤ −〈Hk(uk)δu, δu〉U∗,U < 0,
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unless δu = 0, i.e., uk is stationary for the original reduced problem. Here, δu replaces δu,k in Ψk(1).
This motivates our termination rule for SSN when solving (4.60). In fact, let superscript l denote the
iteration index of SSN for the outer iteration k, i.e., for given uk. For some initial guess (δ0

u, λ
0) (typi-

cally chosen to be (δu,k−1, λk−1)) SSN computes iterates (δlu, λ
l), l ∈ N, and terminates at iteration

lk, which is the smallest index with

〈J ′N (uk), δ
lk
u 〉U∗,U + βk(Ψk(1)−Ψk(0)) ≤ −ξ〈Hk(uk)δ

lk
u , δ

lk
u 〉U∗,U and Ψk(1) ≤ (1− ξ)Ψk(0)

(4.62)
for some ξ ∈ (0, 1), with βk > ‖λlk‖U , and where δlku is used in Ψk(1). In our tests, we choose
ξ = 0.9, and terminate SSN iterations whenever (4.62) is satisfied or two consecutive active set
estimates are identical. Then we set δu,k := δlku , λk := λlk , and determine a suitable step size µk.

For the latter we use a backtracking line search based on the Armijo condition [38]. Indeed, given
uk, δu,k, and λk, let l now denote the running index of the line search iteration. Then lk ∈ N is the
smallest index such that

Φk(µ
lk
k )− Φk(0) ≤ κµlkk (〈J ′N (uk), δu,k〉U∗,U + βk(Ψk(1)−Ψk(0))) , (4.63)

for some parameter 0 < κ < 1, and βk = max{βk−1, ζ‖λk‖U} > ‖λk‖U , for some ζ > 1 in (a2).
In our implementation we use κ = 10−3 and ζ = 2.

Regarding the stopping criteria for the SQP iterations, we set a tolerance for the norm of the residual
of (4.57) along with a maximal number of iterations. We note here that (4.57) matches (4.60) upon
introducing the adjoint state for efficiently computing J ′N (uk) to the latter.

In our implementation we simplified the Newton derivative of the first-order system (4.57) by dropping
the second-order derivatives ∂yyN (·, yk)pk from GN (φk). The corresponding approximation reads

−∆ + ∂yN (·, yk) 0 −Id 0
Id −∆ + ∂yN (·, yk) 0 0
0 −Id αId Id
0 0 −cGk Id−Gk

 ' GN (φk).

This helped to stabilize the SSN iterations, while maintaining almost the same convergence rates as
for the exact Newton derivative in our tests.

4.6 Numerical results on distributed optimal control of semilinear elliptic PDEs

Our first test problem is given by

minimize
1

2
‖y − g‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) , over (y, u) ∈ H1(Ω)× L2(Ω),

subject to −∆y + f(x, y) = u in Ω := (0, 2)× (0, 2), ∂νy = 0 on ∂Ω,

− 20 ≤ u ≤ 20.

 (4.64)

with exact underlying nonlinearity f(x, z) = z + 5 cos2(πx1x2)z3 and x = (x1, x2) ∈ R2, z ∈ R.

4.6.1 Training of artificial neural networks

For learning the function f we use neural networks that are built from standard (multi-layer) feed-
forward networks. Their respective architecture together with the loss function as well as the training
data and method are specified next.
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Loss function and training method Let Θ = (W, b) denote the parameters associated with an
ANN N =: NΘ that needs to be trained by solving an associated minimization problem; compare
(3.2). We use here the mean squared error

d(x, f) =
1

nD

nD∑
j=1

|NΘ(xj)− fj|2 ,

as a loss function, no regularization, i.e, r ≡ 0, and Fad is the full space. In this context, (xj, fj)
nD
j=1

are the input-output training pairs. For simplicity of presentation we assume that nD is larger than the
number of unknowns in Θ.

For solving (3.2), we adopt a Bayesian regularization method [33] which is based on a Levenberg-
Marquardt (LM) algorithm, and is available in MATLAB packages. We initialized the LM algorithm by
unitary random vectors using the Nguyen-Widrow method [36], and terminated it as soon as the Eu-
clidean norm of the gradient of the loss function dropped below 10−7 or a maximum of 1000 iterations
was reached. For other methods that are suitable for this task we refer to the overview in [10].

Architecture of the network In order to have a representative study of the influence of ANN archi-
tectures on our computational results, we used networks with a total number of hidden layers (HL)
equal to 1, 3 or 5. In each choice, we further varied the number of neurons per layer such that the
final number of unknowns in Θ (degree(s) of freedom; DoF) remained in essence the same. Such
tests were performed for three different DoF (small, medium, large) resulting in a total of nine different
architectures; cf. Table 4.1. All underlying networks operate with input layer size of three neurons and
one neuron in the output layer. In all tests for this example, the log-sigmoid transfer function (logsig
in MATLAB) was chosen as the activation function at all the hidden layers.

HL 1 HL 2 HL 3 HL 4 HL 5 Total DoF
Small DoF

No. of neurons 30 - - - - 151
No. of neurons 6 10 5 - - 155
No. of neurons 3 5 10 5 1 155

Medium DoF
No. of neurons 60 - - - - 301
No. of neurons 10 12 10 - - 313
No. of neurons 5 8 10 8 6 307

Large DoF
No. of neurons 120 - - - - 601
No. of neurons 15 18 13 - - 609
No. of neurons 10 10 15 10 10 596

Table 4.1: Architecture of networks. HL i: i hidden layers; DoF: degrees of freedom in Θ.

Training and validation data The training data rest on chosen control actions (uj)
nD
j=1 ⊂ Cad with

uj =− 2djπ
2 cos(πx1) cos(πx2)

− dj cos(πx1) cos(πx2)− 5d3
j cos2(πx1x2) cos3(πx1) cos3(πx2),
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and (dj) = {[0.01 : 0.4 : 2.01]} (in MATLAB notation). The procedure for generating the training

data is as follows: First, numerical solutions are computed on a uniform discrete mesh Ωh = {xk}N̄hk=1

(represented here by the associated mesh nodes including those on ∂Ω) with mesh width h = 1
50

,
and N̄h = (nh + 1)2, nh = 1/h. The Laplace operator is discretized by the standard five-point
finite difference stencil respecting the homogeneous Neumann boundary conditions. This yields the
Nh × Nh-matrix ∆h related to nodes xk in Ω with Nh = (nh − 1)2. The nonlinearity as well as
the controls are evaluated at such mesh points xk, and the resulting discrete nonlinear PDE (4.64) is
solved by Newton’s method. The Newton iteration is terminated once the PDE residual in the discrete
H−1(Ω)-norm drops below 10−16, or a maximum of 30 iterations is reached. Thus for each uj , j =
1, . . . , nD, we obtain numerical values yjh = (yjh,1, . . . , y

j
h,Nh

)> associated with the (interior) mesh

nodes xk and approximating yj(xk) = −dj cos(πxk1) cos(πxk2), the analytical PDE solution. Using
these data we compute the output values of f denoted by f jh ∈ RNh according to the PDE by

f(xk, yj(xk)) ≈ uj(xk) + (∆hy
j
h)k =: f jh,k, k = 1, . . . , Nh, j = 1, . . . , nD.

These input-output pairs both are prepossessed using mapminmax function in MATLAB without
change of notation here. The training data are then obtained through subsampling f jh,k by restriction
to a coarse mesh ΩH , with H > h. For this purpose we use H ∈ {0.2, 0.1, 0.08} giving rise to a
small, medium and large training set, respectively. The corresponding reduction rates are 1/10, 1/5,
and 1/4 with respect to the data for h = 1/50.

This subsampled data set is then split into a training data set, a validation data set and a testing data
set at the ratio of 8 : 1 : 1. In our tests, such a data partitioning is done randomly by using MATLAB’s
randperm function.

4.6.2 Numerical results

We start by comparing the exact, numerical and learning-based solutions, respectively. The exact
reference solution is chosen to be y∗ = 1.5 cos(πx1) cos(πx2), and the numerical approximation yh
resulted from a mesh with h = 2−7 and the use of the exact nonlinearity f . The same grid is used
for obtaining the numerical approximation of yN . Note, however, that the grid for data generation is
different from the grid for numerical computation.

Our report on the experiments involves several discrete norms. In fact, for zh ∈ RNh we have

|zh|21 := h2(∆hzh)
>zh, ‖zh‖2

0 := h2z>h zh,

where |·|1 and ‖·‖0 correspond to the H1-seminorm and L2-norm, respectively.

Table 4.2 depicts the approximation results for different ANN architectures with small DoF as described
in 4.1 and in all cases the small training data set.

We find that the 1-layer network is robust in terms of the statistical quantities shown, and the 3-layer
network has the smallest errors on average, but exhibits a larger deviation than the 1-layer network.
The 5-layer network yields the smallest error, but also the largest ones with a very big deviation. This
behavior may be attributed to the fact that deeper networks give rise to increasingly more nonlinear
compositions entering the loss function. This may be stabilized by tuned initializations, additional reg-
ularization, or sufficient training data. A study along these lines, however, is not within the scope of the
present work as noted earlier.

In Table 4.3, we provide statistics on the influence of the number of neurons for fixed layers. We use
3-layer networks and medium sized training data for this set of experiments. All three levels of DoF for
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|yN − y∗h|1 |yN − y∗h|1 |yN − y∗|1 |yN − y∗|1 ‖yN − y∗h‖0 ‖yN − y∗h‖0 ‖yN − y∗‖0 ‖yN − y∗‖0

min max min max min max min max
1-L 0.2506 0.6532 0.2868 0.6713 0.0752 0.2422 0.0808 0.2435
3-L 0.2575 0.7537 0.2391 0.7777 0.0817 0.2524 0.0791 0.2565
5-L 0.2157 36.2640 0.2235 36.2731 0.0539 29.4926 0.0544 29.4936

mean deviation mean deviation mean deviation mean deviation
1-L 0.4276 0.1099 0.4496 0.1075 0.1472 0.0484 0.1506 0.0485
3-L 0.3853 0.1350 0.4003 0.1687 0.1425 0.0462 0.1268 0.0482
5-L 3.0242 8.9087 3.0287 8.9103 2.1309 7.3143 2.1299 7.3149

Table 4.2: Statistics on learning-informed PDEs with different layers in neural networks using small
size training data, small DoF in Θ, and 15 samples in total.

|yN − y∗h|1 |yN − y∗h|1 |yN − y∗|1 |yN − y∗|1 ‖yN − y∗h‖0 ‖yN − y∗h‖0 ‖yN − y∗‖0 ‖yN − y∗‖0

min max min max min max min max
3-L S 0.0546 0.1658 0.0889 0.2211 0.0086 0.0546 0.0207 0.0515
3-L M 0.0090 0.1508 0.0876 0.2039 0.0026 0.0492 0.0168 0.0591
3-L L 0.0155 0.2815 0.0833 0.3306 0.0036 0.0901 0.0161 0.0996

mean deviation mean deviation mean deviation mean deviation
3-L S 0.1103 0.0357 0.1464 0.0329 0.0266 0.0125 0.0339 0.0095
3-L M 0.0631 0.0407 0.1113 0.0367 0.0170 0.0120 0.0250 0.0117
3-L L 0.0559 0.0626 0.1115 0.0609 0.0149 0.0205 0.0250 0.0204

Table 4.3: Statistics on learning-informed PDEs with different numbers of neurons in networks using
medium size training data of 15 samples in total.

the networks as given in Table 4.1 are studied. The results in terms of ’mean’ and ’deviation’ indicate
that a large number of neurons gives typically better approximations when compared to the smaller
size of DoFs. However, we also observe that the deviation and the maximum error increases with the
number of DoF. This can be attributed to an increase in training error for increasing DoFs.

Next we present some computational results where we use the learning-informed PDE as constraint
when numerically solving the optimal control problem (4.51). Here we consider a target function
g = y∗ + δ where δ is a variable denoting zero-mean Gaussian noise of standard deviation σ̂,
for different values of σ̂. For convenience of comparison, we take y∗ to be the solution from the last
set of experiments. We denote by uN and ū the optimal controls with respect to the learning-informed
PDE constraint and the original PDE constraint, respectively, both computed by the semi-smooth New-
ton algorithm as described in Section 4.5 with a fixed number of 30 iterations which turns out to be
sufficient for this example, as the sum of all residual norms of the first-order system (4.57) is less than
10−10. As before, yN and ȳ are the states corresponding to uN and ū, respectively.

In general, we observe in Table 4.4 that most combinations give similar results. This shows the ro-
bustness of our proposed method with respect to a wide range of network architectures. Here, the
presented errors are just computed from one specific initialization.

Note that when using 3-hidden-layer networks with large DoF, we observe a clear increase in the
levels of accuracy for both the control and state variables as the training data increase from small to
large size. These are highlighted with bold font numbers in Table 4.4. A similar behavior occurs for
1-hidden-layer and 5-hidden-layer networks. By fixing the 3-hidden-layer networks, and for each case
of DoFs provided in Table 4.4, we are next interested in exploring how the noise level σ and the cost
parameter α further influence the optimal control approximation.
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Small DoF Medium DoF Large DoF
‖uN − ū‖0 ‖yN − ȳ‖0 |yN − ȳ|1 ‖uN − ū‖0 ‖yN − ȳ‖0 |yN − ȳ|1 ‖uN − ū‖0 ‖yN − ȳ‖0 |yN − ȳ|1

Small size of training data
1-L 0.5578 0.0330 0.1609 0.3055 0.0283 0.1423 0.2548 0.0194 0.1143
3-L 0.3426 0.0274 0.1246 0.3597 0.0343 0.1777 0.3932 0.0354 0.1722
5-L 0.3888 0.0183 0.1041 0.1771 0.0117 0.0666 0.3986 0.0359 0.1698

Medium size of training data
1-L 0.2145 0.0071 0.0413 0.1153 0.0072 0.0587 0.0655 0.0029 0.0244
3-L 0.1647 0.0069 0.0419 0.0985 0.0082 0.0423 0.0623 0.0046 0.0287
5-L 0.2971 0.0271 0.1223 0.0325 0.0014 0.0081 0.0736 0.0064 0.0414

Large size of training data
1-L 0.1417 0.0089 0.0481 0.0920 0.0040 0.0266 0.0447 0.0009 0.0055
3-L 0.0566 0.0020 0.0126 0.0467 0.0024 0.0122 0.0076 0.0004 0.0020
5-L 0.1239 0.0070 0.0435 0.2135 0.0098 0.0645 0.0192 0.0018 0.0115

Using the same noisy data g (Gaussian noise of mean zero and deviation 0.1) with α = 0.001 in all the tests

Table 4.4: Optimal control with learning-informed PDEs using different layers, different size of net-
works, and a variety of training data.

Noise free Mild noise σ̂ = 0.05 Larger noise σ̂ = 0.5
‖uN − ū‖0 ‖yN − ȳ‖0 |yN − ȳ|1 ‖uN − ū‖0 ‖yN − ȳ‖0 |yN − ȳ|1 ‖uN − ū‖0 ‖yN − ȳ‖0 |yN − ȳ|1

α = 0.00001
3-L-S NN 1.9523 0.0210 0.2041 1.9518 0.0210 0.2043 2.1480 0.0213 0.2085
3-L-M NN 0.1187 0.0018 0.0253 0.1190 0.0018 0.0253 0.1264 0.0018 0.0254
3-L-L NN 0.0213 0.0004 0.0046 0.0215 0.0004 0.0046 0.0258 0.0004 0.0047

α = 0.0001
3-L-S NN 1.3489 0.0395 0.2695 1.3560 0.0397 0.2705 1.4181 0.0410 0.2796
3-L-M NN 0.1361 0.0032 0.0314 0.1357 0.0032 0.0314 0.1384 0.0032 0.0315
3-L-L NN 0.0137 0.0005 0.0039 0.0136 0.0005 0.0039 0.0136 0.0005 0.0039

α = 0.001
3-L-S NN 0.3903 0.0350 0.1706 0.3917 0.0352 0.1714 0.4067 0.0371 0.1792
3-L-M NN 0.0628 0.0046 0.0286 0.0630 0.0046 0.0286 0.0671 0.0046 0.0293
3-L-L NN 0.0076 0.0004 0.0020 0.0076 0.0004 0.0020 0.0080 0.0004 0.0021

α = 0.01
3-L-S NN 0.0570 0.0066 0.0209 0.0572 0.0066 0.0210 0.0592 0.0069 0.0217
3-L-M NN 0.0271 0.0020 0.0080 0.0271 0.0021 0.0081 0.0277 0.0022 0.0083
3-L-L NN 0.0035 0.0003 0.0008 0.0035 0.0003 0.0008 0.0035 0.0003 0.0008

Variant level of noise in g with respect to different α and coarser to finer neural networks

Table 4.5: Optimal control on learning-informed PDEs with networks by 3 layers networks, but different
sizes on the neurons (DoF), and a variant amount of training data.

From Table 4.5 we draw several interesting conclusions. In both, the noisy and noise free case, we
have that the error ‖uN − ū‖ is proportional to the accuracy of the neural network approximation, and
inverse proportional to

√
α. This verifies the results of Theorem 2.6 and Theorem 2.5, respectively.

The dependence on α could only be proved for the noise-free case in Theorem 2.6. Therefore the
convergence rates provided by our tests here seem to indicate that better convergence rates or more
relaxed assumptions appear plausible.

4.7 Numerical results on optimal control of stationary Allen-Cahn equation

Next we study the optimal control of the Allen-Cahn equation, which involves a nonmonotone f and
reads

−∆y +
1

η
(y3 − y) = u in Ω, ∂νy = 0 on ∂Ω, (4.65)
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with η > 0. In our numerical tests, we set η = 0.004, use Ω = (0, 2)2, and h := 2−7.

We focus on 3-hidden-layer neural networks with 10, 12 and 10 neurons per layer yielding DoF= 293.
In each hidden layer we use log-sigmoid transfer functions. Note also that since the input data here
does not depend explicitly on the spatial variable x, i.e., f = f(y), both the input and output layers
have only one neuron, respectively. This is different to the previous test examples.

In our tests, we obtained the training data by solving the PDE in (4.65) with

u = ud :=

{
1000, x ∈ Ωl := (0, 2)× (0, 1),

−1000, x ∈ Ω/Ωl.

In order to train the neural networks described above, the solution of the PDE is subsampled uniformly
at a rate of 0.25, that isH = 0.08. As f has an one dimensional image space, it suffices that the data
ud correspond to a PDE solution that has a relatively wide range of values. Indeed, using our choice
of ud, the value of the corresponding solution y varies between −2.5 and 2.5 which turns out to be
sufficient for learning f .
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Figure 1: Functions F , f and its first order derivative f ′ along with the corresponding approximations
learned from a neural network. We note that the range of the learning-informed function is influenced
by the training data. The second row of images shows that the functions are well-approximated by their
neural network counterparts in the ranges where the training data cover well, which here is around the
interval [−2, 2].

In Figure 1, we provide the plots of F (z) =
∫ z
−1
f(t) dt, the function f and its derivative f ′ on

[−K,K] ⊂ R, (K = 10 and K = 2, respectively) as well as their learned counterparts.

We observe that all the learning-informed versions preserve the key features of their exact counter-
parts very well. This is due to the fact that the training data cover exactly those ranges where important
features are located.
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Figure 2: Merit function (left) and residual norm (right).

Figure 3: Optimal control of the stationary Allen-Cahn equation. First row: states (right: target data g;
left and the middle: optimal states of learning-informed and original PDE, respectively); second row:
difference images of states (left and the middle: differences (in absolute values) of optimal states to
target state g; right: actual difference between the two optimal states |yN − ȳ| in the first row; third
row: left and middle the optimal controls corresponding to the learning-informed and original PDE
respectively, as well as their difference |uN − ū| on the right.

As a next step, we consider the corresponding optimal control problem when the function f is replaced
by its learned version. Notice that both the original and the learning-informed PDE admit no unique
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solution. Therefore the initial guess for the Newton iteration is crucial for the convergence to the final
solutions. The algorithm for solving the optimal control problem for both PDEs is a combination of
the semi-smooth Newton algorithm for (4.57) (with 0 as the initial guess) and the SQP algorithm.
The switch between the solvers operates as follows: Consider the summed up residual of the four
equations in (4.57) with respect to their norms in the spaces H−1(Ω), H−1(Ω), L2(Ω) and L2(Ω),
respectively. Then we start our algorithm by calling the semi-smooth Newton iterations, and when the
residual drops below a threshold value (e.g., 5 in our tests), then we switch to the SQP algorithm. The
iteration is stopped if the residual is smaller than 10−10, or a maximum of 30 iterations is reached. We
fix α = 10−5 and Cad := {u : −50 ≤ u ≤ 50}. Next consider g to be some polarized data preferring
the values −1 and 1 and representing two distinct material states, e.g., a binary alloy; see Figure 3.

In Figure 2 we show the plots of the merit function values and also the overall residual of the first-order
system in (4.57). The increasing part in the first few steps in the left plot (merit function) is due to the
initilization of SSN while full step length is accepted. We notice that the threshold is reached by 10
overall iterations including also the SSN initialization steps.

Since neither the optimal control problem nor the PDE admit unique solutions, many local minima
make the semi-smooth Newton algorithm rather sensitive to the initial guess. Concerning SQP we
note here that enforcing the PDE and the box constraints too strongly in the early iterations, might
result to the SQP algorithm getting trapped at some unfavorable stationary point. This has been nu-
merically observed, e.g., when initializing the SQP algorithm by zero. In our tests, the combination of
the semi-smooth Newton algorithm with the SQP algorithm, however, turns out to be robust against the
aforementioned adverse effects. From Figure 3 (right plot) we observe a high accuracy approximation
of the solutions of the learning-informed control to the solutions of the original control problem. Both,
the PDE constraint and also the box constraint are satisfied with high accuracy.

5 Application: Quantitative magnetic resonance imaging (qMRI)

According to [16], we consider the following optimization task in qMRI:

minimize
1

2

∥∥PF(y)− gδ
∥∥2

H
+
α

2
‖u‖2

U , over (y, u := (T1, T2, ρ)>) ∈ Y × U,

s.t.
∂y

∂t
(t) = y(t)× γB(t)−

(
y1(t)

T2

,
y2(t)

T2

,
y3(t)− ρme

T1

)
, t = t1, . . . , tL,

y(0) = ρm0,

u ∈ Cad.

(5.1)

where 0 < t1 < . . . < tL, L ∈ N, u ∈ U := [H1(Ω)]3 and Y := [L2(Ω)3]L with Ω ⊂ R2 the

image domain,H = [L2(K)2]
L

with K the Fourier space. ByF : Y → H we denote the component-
wise Fourier transform acting on (y1, y2), i.e., the first two coordinates of y, and P : H → H is a
subsampling operator.

Further, gδ = (gδl )
L
l=1 ∈ H are (noisy) data, and Cad is an nonempty, closed, convex, and bounded

subset of [L∞ε (Ω)+]3 with L∞ε (Ω)+ := {f ∈ L∞(Ω) : ess inff > ε}, for some ε > 0, which takes
care of practical properties of physical quantities. The system of ordinary differential equations in (5.1)
with initial value ρm0 represents the renowned Bloch equations (BE), which model the evolution of
nuclear magnetization in MRI [9] with the parameters γ and me being fixed constants. In our context,
the external magnetic fieldB is assumed to be a uniformly bounded function in time. To accommodate
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different scaling, we consider α
2
‖u‖2

U := α0

2
‖u‖2

[L2(Ω)]3 + 1
2
|u|2[H1(Ω)]3 , and

|u|2[H1(Ω)]3 :=

∫
Ω

(
α1,1 |∇T1|2 + α1,2 |∇T2|2 + α1,3 |∇ρ|2

)
dx,

with α0 > 0 and α1,j > 0 for j = 1, 2, 3. For the ease of presentation, below we omit these scaling
parameters.

Remark 5.1. One readily checks that the solutions to the BE are bounded uniformly as long as T1, T2

are positive values and the magnetic field B(t) is bounded. This property persists if either of the two
terms on the right hand side of the equation is missing.

Fixing the external magnetic field B according to an excitation protocol with a specific sequence of
frequency pulses (cf., e.g., [16]) and associated echo times {ti}Li=1 we have u 7→ {y(ti)}Li=1 yielding
the solution map Π : Cad → [(L∞(Ω))3]L. Using this notation we have Q(·) = PF(Π(·)). Noting
that Π(T1, T2, ρ) = ρΠ(T1, T2, 1) we show first continuity and differentiability results for Π̃(θ) :=
Π(T1, T2, 1) where θ := (T1, T2)>. Even though for simplicity we do that for θ ∈ [L∞ε (Ω)+]2, with
ε > 0, we note that the map Π̃ can be continuously extended also for T1 = 0 and/or T2 = 0.

Proposition 5.2. The operator Π̃ : [L∞ε (Ω)+]2 → [(L∞(Ω))3]L is locally Lipschitz continuous, and
Fréchet differentiable with locally Lipschitz derivative.

Proof. Let θ, θa ∈ [L∞ε (Ω)+]2 be given with associated solutions y, ya of the BE, respectively. Sup-
pressing x ∈ Ω in our notation, subtracting the BE for both θ values, and letting ra := y − ya as well
as R(θ) := diag( 1

T2
, 1
T2
, 1
T1

), we get

∂ra

∂t
(t)− ra(t)× γB(t) +R(θ)ra = (R(θa)−R(θ)) (ya(t)− (0, 0, ye))

>, ra(0) = 0. (5.2)

This equation and its homogeneous counterpart (i.e., with zero right hand side) admit unique solutions,
respectively, cf. [43], for instance. According to [43, Theorem 3.12] the solution to (5.2) is

ra(t) =

∫ t

0

Φ(t, s) (R(θa)−R(θ)) (ya(s)− (0, 0, ye)
>)ds, (5.3)

where Φ(t, s) is the principal matrix consisting of the three independent solutions of the homogeneous
counterpart of (5.2) resulting from the initial data h(s) = ei, i = 1, 2, 3, with {e1, e2, e3} the canonical
orthonormal basis in R3. Note that it is easy to check that any such solution is uniformly bounded both
in t ≥ 0 and θ ≥ 0 almost everywhere. Since R(·) restricted to [ε,∞) is Lipschitz (modulus L > 0),
(5.3) can be further estimated as follows

|ra(t)| ≤ L

∫ t

0

|Φ(t, s)(ya(s)− (0, 0, ye)
>)|ds |θa − θ| ≤ L̃(t) |θa − θ| ,

for all θa, θ ∈ [L∞ε (Ω)+]2. Note that the above estimate and in particular L̃(t) can be considered
independent of the spatial variable x due to the uniform bound on the solution of BE for every element
of Cad (cf. Remark 5.1). Therefore we have for some LΠ > 0 that

‖ya(·, t)− y(·, t)‖[Lq(Ω)]3 ≤ LΠ‖θa − θ‖[Lq(Ω)]2 for all 1 ≤ q ≤ ∞.

By considering the above estimate at {ti}Li=1 we get the asserted local Lipschitz continuity of Π̃.
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We now proceed to Fréchet differentiability. Let θ ∈ [L∞ε (Ω)+]2, v ∈ [L∞(Ω)]2 be an arbitrary
vector, and let θa = θ+av where a > 0 is such that θa ∈ [L∞ε (Ω)+]2. Dividing (5.2) by a and letting
paθ := ra

a
, we get:

∂paθ
∂t

(t)− paθ(t)× γB(t) +R(θ)paθ =
(R(θa)−R(θ))

a
(ya(t)− (0, 0, ye))

>, paθ(0) = 0. (5.4)

Existence, uniqueness and representation of a solution again follows from [43, Theorem 3.12]:

paθ(t) =

∫ t

0

Φ(t, s)
(R(θ + av)−R(θ))

a
(ya(s)− (0, 0, ye)

>)ds.

Recall that R(·) is continuously differentiable for θ > 0 and time independent. For a ↓ 0 and pθ :=
lima→0 p

a
θ , we have

pθ(t) =

∫ t

0

Φ(t, s)R′(θ; v)(y(s)− (0, 0, ye)
>)ds,

where R′(θ; v) denotes the directional derivative of R at θ in direction v. By considering again the
uniform boundedness with respect to the spatial variable and pointwise evaluation at {ti}Li=1, we get
that pθ = Π̃′(θ; v) is bounded, and also linear with respect to the direction v ∈ [L∞(Ω)]2. Thus, Π̃
is Gateaux differentiable. Notice further that, due to R′(·; v) being locally Lipschitz, we have also the
local Lipschitz continuity (modulus Lpθ > 0) of the directional derivative:

|pθa − pθ|q ≤ Lqpθ |θ
a − θ|q ‖v‖[L∞(Ω)]2 for all θa, θ ∈ [L∞ε (Ω)+]2, and 1 ≤ q ≤ ∞, (5.5)

with the above estimate again independent of the spatial variable. This together with the linearity of
the Gateaux derivative implies the Fréchet differentiability of Π̃. Finally we also conclude the Lipschitz
continuity of the Fréchet derivative:∥∥∥(Π̃′(θa)− Π̃′(θ))v

∥∥∥
[L∞(Ω)]3L

≤ Lpθ ‖θa − θ‖[L∞(Ω)]2 ‖v‖[L∞(Ω)]2 . (5.6)

This ends the proof.

Note that the continuity and differentiability of Π = ρΠ̃ for u ∈ Cad follows readily as ρ ∈ L∞(Ω). As
a consequence, existence of a solution to (5.1) can be shown similarly to Proposition 2.1.

Remark 5.3. The estimate (5.5) indicates that for every u = (θ>, ρ)> ∈ Cad, and h ∈ [L∞(Ω)]2

sufficiently small, we even have∥∥∥Π̃(θ + h)− Π̃(θ)− Π̃′(θ)h
∥∥∥

[Lq(Ω)]3L
= O(‖h‖2

[Lq(Ω)]2) for all 1 ≤ q ≤ ∞.

We also note that due to properties of the Bloch operator, we have that both Π̃′(θ) : [L2(Ω)]2 →
[L2(Ω)]3L andQ′(u) : [L2(Ω)]3 → [(L2(K))2]L are bounded linear operators, respectively, as soon
as u = (θ>, ρ)> ∈ Cad. In this sense, we consider in the following Π̃′(θ) and Q′(u) to be elements
in L([L2(Ω)]2, Y ) and L(U,H), respectively.

We are now interested in finding a data-driven approximation ΠN (u) := ρN (T1, T2) of Π and in
solving the reduced problem

minimize
1

2

∥∥QN (u)− gδ
∥∥2

H
+
α

2
‖u‖2

U , over u ∈ U,

s.t. u = (T1, T2, ρ)> ∈ Cad,
(5.7)
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with QN (u) = PF(ΠN (T1, T2, ρ)). Existence of a solution to (5.7) can again be argued similarly to
Proposition 2.1.

We finish this section with the corresponding approximation result.

Proposition 5.4. Let θ = (T1, T2)>, u = (θ>, ρ)> ∈ Cad. Assume the following error bounds in the
neural network approximations∥∥∥N (θ)− Π̃(θ)

∥∥∥
[L∞(Ω)3]L

≤ ε and
∥∥∥N ′(θ)− Π̃′(θ)

∥∥∥
L([L2(Ω)]2,[L∞(Ω)3]L)

≤ ε1,

Then we have

‖Q(u)−QN (u)‖H ≤ Cε, (5.8)

‖Q′(u)−Q′N (u)‖L(U,H) ≤ C1ε+ C2ε1, (5.9)

for some positive constants C , C1 and C2 which are all independent of ε and ε1.

Before we commence with the proof, note that the above assumptions are plausible in view of u ∈
Cad ⊂ [(L∞ε (Ω))+]3 and Theorems 3.1 and 3.2.

Proof. The first estimate is straightforward from the definition of Q

‖Q(u)−QN (u)‖H =
∥∥∥PF(ρ(N (θ)− Π̃(θ)))

∥∥∥
H
≤
∥∥∥ρ(N (θ)− Π̃(θ))

∥∥∥
[L2(Ω)3]L

≤ Cε,

(5.10)
since Cad ⊂ [L∞(Ω)]3 is a bounded set.

To see the second estimate, notice that for every v := (v1, v2, v3)> ∈ [L2(Ω)]3,

Q′(u)v = PF(v1Π̃(θ)) + PF(ρΠ̃′(θ)(v2, v3)>), (5.11)

and similarly for Q′N . Thus,

‖(Q′(u)−Q′N (u))v‖H ≤C1

∥∥∥N (θ)− Π̃(θ)
∥∥∥

[L∞(Ω)3]L
‖v1‖L2(Ω)

+ C2

∥∥∥N ′(θ)− Π̃′(θ)
∥∥∥
L([L2(Ω)]2,[L∞(Ω)3]L)

‖(v2, v3)‖[L2(Ω)]2 ,

which ends the proof.

Finally, we show the Lipschitz continuity of Q and Q′. For the learning-informed versions this is done
similarly. Using the isometric property of the Fourier transform and the triangle inequality, we get for
every ua, ub ∈ Cad and some C ≥ 1:

‖Q(ua)−Q(ub)‖H ≤ C
(
‖ρa − ρb‖L2(Ω) + ‖θa − θb‖[L2(Ω)]2

)
.

Similarly, we estimate ‖(Q′(ua)−Q′(ub))v‖H assuming that v is unitary:

‖(Q′(ua)−Q′(ub))v‖H
≤
∥∥∥PF(v1(Π̃(θ1)− Π̃(θ2)))

∥∥∥
H

+
∥∥∥PF ((ρ1Π̃′(θ1)− ρ2Π̃′(θ2))[v2, v3]

)∥∥∥
H

≤LΠ̃ ‖θ1 − θ2‖[L2(Ω)]2 + ‖ρ1 − ρ2‖L∞(Ω) + Lpθ ‖ρ2‖L∞(Ω) ‖θ1 − θ2‖[L2(Ω)]2 .

Here, we use the fact thatF is a unitary operator, ‖Π̃(θ)‖[L∞(Ω)3]L is uniformly bounded, and LΠ̃ and

Lpθ are the Lipschitz constants of Π̃(θ) and Π̃′(θ), respectively.
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5.1 Numerical algorithm

For the numerical solution of the reduced optimization problem associated with the present qMRI
problem, we adopt the SQP method, i.e., Algorithm 1, from the previous application to the qMRI setting.
The only difference is that we do not need the Newton iterations in Step (a1) there. Recall that now we
have u = (T1, T2, ρ)>. In comparison to the previous PDE examples, the sensitivity of the reduced
objective functional in (5.7) is directly available as

J ′N (u) = (ρ(N ′(T1, T2))∗,N (T1, T2))>F∗(F(ρN (T1, T2))− g) + α(Id−∆)(T1, T2, ρ)>.
(5.12)

Further, in every QP-step one is confronted with solving

minimize 〈J ′N (uk), h〉U∗,U +
1

2
〈Hk(uk)h, h〉U∗,U over h ∈ U

s.t. uk + h ∈ Cad,
(5.13)

where now Hk(uk) is the following symmetrized version of the Hessian of JN at uk ∈ Cad:

(ρ(N ′(T1, T2))∗,N (T1, T2))>F∗F(ρ(N ′(T1, T2)),N (T1, T2)) + α(Id−∆).

In the following tests, we choose µ0 = 1, ε = 10−5, r = 0.618, κ = 10−3, and ξ = 0.5. We stop
the SQP iteration when the norm of the residuals of the first-order optimality system drops below a
user-specified threshold value of 10−3 or a maximum of 40 iterations is reached. The regularization
parameter is α0 = [1, 1, 1] × 10−10 for the L2 part in the regularization functional in (5.7), and
α1 = [1, 20, 2]×10−9 for theH1 seminorm part in (5.7), with respect to T1, T2, ρ, respectively. The
parameter c in the complementary constraint is chosen to be 109α1 in the numerical tests, which is
different to the previous examples. The values of all remaining parameters in Algorithm 1 not explicitly
mentioned here, are kept the same as in the previous tests. We notice here that due to the analytical
structure of the problem, the primal-dual active set algorithm for this example is equivalent to a SSN
approach only in the discretized setting. We refer to [26] for a path-following SSN solver which works
in function space upon Moreau-Yosida regularization of the indicator function of the constraint set.

5.2 Numerical results on qMRI

For the generation of the training data, we use the explicit Bloch dynamics of [14] where a specific
pulse sequence with acronym IR-bSSFP (short for Inversion Recovery balanced Steady State Free
Precession) is considered. Let (Ml)

L
l=1 denote the pertinent explicit solution. This yields Π(u) =

ρ(Ml(T1, T2))Ll=1, with u = (T1, T2, ρ)>. The MRI tests are implemented based on an anatomical
brain phantom, publicly available from the Brain Web Simulated Brain Database [1, 12]. We use a
slice with 217× 181 pixels from this database and cut some of the zero fill-in pixels so that we finally
arrive at a 181× 181-pixel image. The selected range for u reflects natural values encountered in the
human body. This gives rise to the box constraint Cad := {u = (T1, T2, ρ)> : T1 ∈ (0, 5000), T2 ∈
(0, 1800), ρ ∈ (0, 6000)}. In Figure 4, we show the images from the brain phantom for ideal param-
eter maps T1, T2 and ρ.

Loss function and training method For each residual of two neighbored images in the time series,
we use the mean squared error as the loss function and the Bayesian regularization algorithm based
on the Levenberg-Marquardt method for the training of the residual neural networks DRNN described
below. The learning algorithm and the setting are the same as the previous examples.
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Figure 4: Simulated ideal tissue parameters of a brain phantom.

Architecture of the network In order to approximate the Bloch solution map, we use Direct Residual
Neural Networks (DRNNs). Here the solution map at a given time is approximated by a neural network
depending only on the initial conditionM0. To explain this in detail, let M̂ be the learned approximation
of M , i.e. M̂l(T1, T2) 'Ml(T1, T2), l = 1, . . . , L. The DRNN framework then reads:

M̂l(T1, T2) = M̂0(T1, T2) +NΘl(T1, T2), l = 1, . . . , L, M̂0(T1, T2) = M0, (5.14)

with sub-networks {NΘl}Ll=1. The map (Ml)
L
l=1 is then simply approximated by the map (M0 +

NΘl)
L
l=1.

We use sub-networks with a total number of hidden layers equal to 1, 2, or 3. In each case, we design
the architecture at every layer so that the total degrees of freedom in Θ are essentially the same.
The detailed description is summarized in Table 5.1. In total, we test 9 different architectures. For
every network, we use the ’softmax’ activation function in the layer next to the output layer, and the
’logsigmoid’ function in all other hidden layers. The difference to the previous optimal control examples
is that the architecture applies to every sub-network which is of residual type, as described above.

HL 1 HL 2 HL 3 DoF HL 1 HL 2 HL 3 DoF HL 1 HL 2 HL 3 DoF
Small DoF Medium DoF Large DoF

1-L-NN 24 - - 122 75 - - 377 130 - - 652
2-L-NN 7 10 - 123 17 16 - 373 23 22 - 643
3-L-NN 5 8 5 120 10 15 10 377 15 18 15 650

Table 5.1: The architecture of every sub-network. Both input and output layers have two neurons.

Training and validation data The training including also the validation data are generated from the
dictionary which has been used in methods for magnetic resonance fingerprinting (MRF), e.g., [14, 32].
These are time series resulting from the dynamics, such as e.g. IR-bSSFP, which was introduced in
[41], given the initial value M0 = (0, 0,−1). We fix the length of the pulse sequence to be L = 20.
Of course, other numerical simulations of the Bloch equations can also be proper options as input-
output training data. We test each of the networks with architectures according to Table 5.1 using three
levels of training data, which we term ’small’, ’medium’ and ’large’. For the small size training data, we
generate parameter values for (T1, T2) from D1 := (0 : 400 : 5000) and D2 := (0 : 100 : 1800)
(in MATLAB notation) which contribute 247 entries of time series; for the medium size training data
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from D1 := (0 : 200 : 5000) and D2 := (0 : 50 : 1800) with a total of 962 entries; and for the large
size data D1 := (0 : 50 : 5000) and D2 := (0 : 20 : 1800) resulting in total in 9191 entries. The
input data of the neural networks consist of elements of the set D1×D2. Note here that we include 0
for both T1 and T2, respectively, to take care of the marginal area in the imaging domain. The output
data will be the Bloch dynamics corresponding to each pair of elements in D1 ×D2. Both input and
output data are normalized to pairs whose elements take values in the range [−1, 1]. This is done by
mapminmax function in MATLAB.

For the SQP we consider the image domain to be [0, 1] × [0, 1], thus the spatial discretization size
is h = 1/180. We compare the results of the learning-based method with results from the algorithm
proposed in our previous work [16]. The initialization to the SQP algorithm and also the algorithm in
[16] is done by using the so-called BLIP algorithm of [14] with a dictionary resulting from the small
size D1 × D2. The parameters are tuned as in [16]. Concerning the degradation of our image data
we consider here Gaussian noise of mean 0 and standard deviation 30.

Small DoF Medium DoF Large DoF
T1 T2 ρ M(θ) T1 T2 ρ M(θ) T1 T2 ρ M(θ)

Small training data
1 Layer NN 0.084 0.056 0.004 0.016 − − − − − − − −
2 Layer NN 0.093 0.054 0.005 0.013 − − − − − − − −
3 Layer NN 0.087 0.052 0.009 0.012 − − − − − − − −

Medium training data
1 Layer NN 0.084 0.058 0.003 0.004 0.089 0.052 0.002 0.005 − − − −
2 Layer NN 0.143 0.060 0.006 0.004 0.090 0.052 0.005 0.003 − − − −
3 Layer NN 0.086 0.051 0.003 0.004 0.087 0.051 0.004 0.002 − − − −

Large training data
1 Layer NN 0.120 0.078 0.005 0.002 0.120 0.081 0.004 0.0014 0.090 0.050 0.004 0.0009
2 Layer NN 0.094 0.057 0.006 0.001 0.094 0.043 0.002 0.002 0.089 0.056 0.004 0.0012
3 Layer NN 0.096 0.059 0.005 0.0007 0.087 0.051 0.004 0.0004 0.087 0.051 0.004 0.0006
Method [16] 0.102 0.094 0.004 − proposed Algorithm using exact Bloch 0.084 0.051 0.003 −

For 25% Cartesian subsampled k-space data with Gaussian noise of mean 0 and standard deviation 30.

Relative error computed from ‖x−x∗‖
‖x∗‖ for x = T1, T2, ρ, M where ‖·‖ is the discrete 2-norm.

Table 5.2: Error comparison for qMRI: Using Bloch maps by networks with different layers, different
size of neurons, and a variant of training data

Concerning the results reported in Table 5.2, the columns ofM(θ) reflect the approximation accuracy
to the discrete dynamical Bloch sequences using various neural networks. A smaller value refers to
a smaller error, or in other words to higher accuracy in the approximation. However, higher accuracy
in the Bloch solution operator approximation does not necessarily result in a better estimation of the
T1, T2 parameters. For this purpose, note that differently to the previous example, here the error is
evaluated against the ideal solutions. The dashes in Table 5.2 belong to cases where the training
data are not sufficient to guarantee well enough learning under the current setting our paper. We
observe that the results are varying slightly under different network architectures and also when using
different volumes of training data. In particular, we have the observations: (i) When the training data
is sufficiently rich, with the same number of hidden layers, then the larger the number of neurons the
better becomes the approximation to the Bloch mapping. However, this does not mean necessarily
better to the estimated parameters in terms of the error rates provided. (ii) We find that the small DoF
networks with small volume training data achieve already almost the same accuracy as the ones using
medium and large DoF networks. The results are almost as good as using SQP with the exact Bloch
solution formula. We have also observed that the SQP method with learning-based operators can be
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computationally more efficient than the one with the exact Bloch operators. This is due to the fact that
evaluating the learning-based operator can be much cheaper than solving the exact physical model,
although a learning process has to be performed before-hand.

In Figures 5 and 6, we provide visual comparison of results from different methods for quantitative
MRI. Particularly, we compare to the method proposed by the authors in [16] assuming knowledge of
the exact Bloch solution map and also the BLIP algorithm in [14] in which the fine dictionary (i.e., a
large size data set) is used.

The images produced by the proposed algorithm with a learning-informed model are based on the
1-hidden-layer network with a small size of DoF which is trained with medium volume data. We can
see that the proposed approach clearly gives better results for the recovering of the quantitative pa-
rameters when compared with the methods in [16] and BLIP [14]. In particular, we observe the T1, T2

parameters estimated by the proposed method are significantly better than the results from the other
two methods in terms of spatial regularity. In particular, some artifacts are avoided by the proposed
method. This is due to using an H1 term for u in the objective while the method in [16], for instance,
uses an L2 term only.

We notice that the method in [16] is superior only if the noise in the data is small. The learning-informed
operator could also be applied yielding results similar to those of the original method [16]. Since for
real MRI experiments, the k-space data may be contaminated by different sources of noise, certain
spatial regularization could help to stabilize solutions. The proposed method in this paper seems to be
new to qMRI in this respect, since previous methods typically use pixel-wise estimation so that spatial
regularity is harder to enforce. Along this line, one may consider more sophisticated regularization
methods such as, e.g., total variation or total generalized variation regularization, to take care of spatial
discontinuities. Such a study, however, is clearly beyond the scope of the present paper.

6 Conclusion

In this paper, we have proposed and analyzed a general optimization scheme for solving optimal
control problems subject to constraints which are governed by learning-informed differential equations.
The applications and numerical tests have verified the feasibility of the proposed scheme for two key
applications. We envisage that our work will provide a fundamental framework for dealing with physical
models whose underlying differential equation is partially unknown and thus needed to be learned
by data, with the latter typically obtained from experiments or measurements. Our approach avoids
learning the full model, i.e., learning directly the solution of the overall minimization problem as this
could be on the one hand too complicated and on the other, it could render the method more towards
being a black box solver. By learning only a component, i.e., a nonlinearity, or the solution map of the
underlying differential equation, the method is kept more faithful to the true physics-based model.

An important factor for the applicability of the proposed framework is the learnability of the operator
resulting from differential equations. We observed that the uniform boundedness of the range of the
input and output data (state variable) played a crucial role, stemming from the fact that the density of
neural networks holds in the topology of uniform convergence on compact sets. As we observed in the
double-well potential example, learning the nonlinearity in its whole range is not necessarily needed,
but only in a range in which the state variables lie, with this range being known due to a priori esti-
mates. Indeed, in the stationary Allen-Cahn control problem, the learning is only performed over a very
local part of the nonlinearity (the double-well part), giving an almost perfect result. This shows some
potential for reducing the training load by properly analyzing the properties of the nonlinearities. From
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Figure 5: Estimated tissue parameters from subsampled and noisy measurements. First row: Solution
using the BLIP method in [14] using a fine dictionary; Second row: Solution using method in [16]; Third
row: Our SQP solution with learning-informed model small size DoF, 1-hidden-layer residual networks
and trained with medium size data. Forth row: Our SQP solution using the analytical formula for the
Bloch solution map.
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Figure 6: Relative errors of the estimated tissue parameters from subsampled and noisy measure-
ments. First row: Error map from BLIP [14] using a fine dictionary; Second row: Error map from [16];
Third row: Error map for our SQP solution with learning-informed model. Forth row: Error map for our
SQP solution with exact formula for the Bloch map as [16]. All errors are normalized.

the quantitative MRI example we furthermore observed that the embedding of the learned operator
in the reconstruction process led to a reduction in the computational load, since it avoids a repetitive
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solution of the exact physical model.

A series of future studies arise from the present work. The analysis implemented here asks for smooth
neural networks approximating (part of) the control-to-state map. A theory incorporating nonsmooth
neural networks is an important extension as this will include networks with ReLU activation functions.
Further studies can also incorporate the network structure (in the spirit of optimal experimental design)
as well as aspects of the training process into the overall minimization process to further optimize and
robustify the new technique. Finally, the errors due to the early stopping of the numerical algorithm
as well as due to the ones from the numerical discretization, can be incorporated in the a priori error
analysis. This could be of benefit for designing more suitable network architectures.
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