
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Oracle complexity separation in convex optimization

Anastasiya Ivanova1,2, Alexander Gasnikov1,2,3, Pavel Dvurechensky4, Darina

Dvinskikh4, Alexander Tyurin2, Evgeniya Vorontsova1,5, Dmitry Pasechnyuk6

submitted: April 2, 2020

1 Moscow Institute of Physics and Technology
Dolgoprudny, Russia
E-Mail: anastasiya.s.ivanova@phystech.edu

gasnikov@yandex.ru
vorontsovaea@gmail.com

2 Higher School of Economics
Moscow, Russia
E-Mail: anastasiya.s.ivanova@phystech.edu

alexandertiurin@gmail.com
gasnikov@yandex.ru

3 Institute for Information Transmission Problems
Moscow, Russia
E-Mail: gasnikov@yandex.ru

4 Weierstrass Institute
Mohrenstr. 39
10117 Berlin, Germany
E-Mail: darina.dvinskikh@wias-berlin.de

pavel.dvurechensky@wias-berlin.de

5 Université Grenoble Alpes
Grenoble, France
E-Mail: vorontsovaea@gmail.com

6 Presidential Physics and Mathematics Lyceum No.239
St. Petersburg, Russia
E-Mail: pasechnyuk2004@gmail.com

No. 2711

Berlin 2020

2010 Mathematics Subject Classification. 90C30, 90C25, 68Q25, 65K15.

Key words and phrases. Convex optimization, composite optimization, proximal method, acceleration, random coordinate
descent, variance reduction.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

Oracle complexity separation in convex optimization
Anastasiya Ivanova, Alexander Gasnikov, Pavel Dvurechensky, Darina Dvinskikh, Alexander Tyurin,

Evgeniya Vorontsova, Dmitry Pasechnyuk

Abstract

Ubiquitous in machine learning regularized empirical risk minimization problems are often
composed of several blocks which can be treated using different types of oracles, e.g., full gradi-
ent, stochastic gradient or coordinate derivative. Optimal oracle complexity is known and achiev-
able separately for the full gradient case, the stochastic gradient case, etc. We propose a generic
framework to combine optimal algorithms for different types of oracles in order to achieve sepa-
rate optimal oracle complexity for each block, i.e. for each block the corresponding oracle is called
the optimal number of times for a given accuracy. As a particular example, we demonstrate that
for a combination of a full gradient oracle and either a stochastic gradient oracle or a coordinate
descent oracle our approach leads to the optimal number of oracle calls separately for the full
gradient part and the stochastic/coordinate descent part.

1 Introduction

The complexity of an optimization problem usually depends on the parameters of the objective, such
as the Lipschitz constant of the gradient and the strong convexity parameter. In Machine Learning
applications the objective is constructed from many building blocks, a typical example of a block be-
ing the individual loss for an example or the different regularizers in supervised machine learning.
Standard theoretical results for optimization algorithms for such problems provide iteration complexity,
namely the number of iterations to achieve a given accuracy. Unlike these results, in this paper, we
address the question of oracle complexity, focusing on the number of oracle calls. Moreover, the goal
is to study what number of oracle calls for each building block of the objective is sufficient to obtain the
required accuracy. Indeed, typically the finite-sum part of the objective is much more computationally
expensive than the regularizer, which motivates the usage of a randomized oracle for the finite-sum
part and a proximal oracle for the regularizer. Further on, some components in the finite-sum part
may be more expensive than others and it is desirable to call the gradient oracle of the former less
frequently than the gradient oracle of the latter. Moreover, some of the building blocks of the objective
may be available with their gradient, while for the other block only the value of the objective may be
available. In this case, one would prefer to call the gradient oracle for the former less frequently than
the zero-order oracle of the latter. To the best of our knowledge, the current optimization theory does
not provide a convincing answer to the question of how to do this.

To be more precise, we consider minimization problem in the form

min
x∈Rn

h(x) + g(x), (1)

where the full objective is µ-strongly convex, h(x) has Lh-Lipschitz continuous gradient and is avail-
able via its full gradients. The part g is available through different types of oracle, e.g. full gradient,

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 2

stochastic gradient, coordinate derivative, objective value, etc. The goal is to separate oracle complex-
ity for h and g and call the oracle of h less frequently than that of g. To motivate this goal we consider
two particular examples.

Kernel SVM [17]. The learning problem in Kernel SVM is to solve optimization problem

min
x

m∑
i=1

(α− biaTi Kx)+ +
λ

2
xTKx,

where K is the Kernel matrix, (bi, a
T
i) is the data. The standard approach is to make a transition

to a basis in which the Kernel K is diagonal, which can be prohibitive in high dimensions. At the
same time, composite versions of standard variance reduction methods [21, 19, 1] need to evaluate
proximal operator of the quadratic term on each iteration, which is equivalent to inversion of the Kernel
matrix and can be expensive in high dimensions. I our approach we use cheap first-order oracle for
the quadratic term and cheap stochastic gradient oracle for the loss term. Moreover, the full gradient
oracle for the quadratic term is called much more rarely than the stochastic gradient for the loss. This
opens the way of using non-proximal friendly regularizers for ERM problem.

Log-density estimation with Gaussian Prior [20]. This problem has the form

max
x

{
〈c, x〉 −m log

(
p∑

k=1

exp (〈Ak, x〉)

)
− 1

2
‖Gx‖2

}
.

This problem is not in the standard form of a ERM problem and the standard method of choice is
the full gradient method. At the same time, coordinate descent is an efficient method for quadratic
functions and, in some cases, for problems related to smoothing [16]. Our approach allows to combine
coordinate descent method for the quadratic part and full gradient for the log-sum-exp function.

The literature on combining different types of oracles to propose more efficient methods is quite sparse
to the best of our knowledge. The most popular combination is known as composite optimization [14],
in which first-order, second-order or stochastic gradient oracle for h is combined with proximal oracle
for g, which allows complexity not to depend on g. Yet, proximal oracle is needed on each iteration of
the method, so the complexity is not separated. An example of combination of first-order oracles for h
and g is the paper [9], where the complexity is separated in this case. Recently a separation of oracle
complexities was also introduced in the context of higher-order methods [7].

Let us briefly describe the main idea of the proposed approach. Assume that we have to solve a
smooth µ-strongly convex problem

min
x∈Rn

h(x) + g(x), (2)

where h(x) hasLh-Lipschitz continuous gradient and we have an algorithm that can solve the problem

min
x∈Rn

g(x) +
L̃

2
‖x− x̃k‖22 (3)

with (Og-oracle) complexity Õ

(√
L̃g/L̃

)
, where L̃g ≥ Lh. We also assume that ∇g(x) may be

computed in κg Og-oracle calls. Then we can apply an accelerated proximal method [6] with parameter
L satisfying µ ≤ L ≤ Lh to (2). This method requires solving the auxiliary problem

min
x∈Rn

h(x) + g(x) +
L

2
‖x− xk‖22 (4)

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 3

Õ(
√
L/µ) times. To solve (4) we may then use a non-accelerated composite gradient method with

g(x) + L
2
‖x− xk‖22 as the composite [14]. During each of the Õ(Lh/L) iterations of this method we

need to solve auxiliary problem (3) with L̃ = L + Lh. So the total number of ∇h(x)-oracle calls will
be Õ(

√
L/µ) and the total number of Og-oracle calls will be

Õ(
√
L/µ) ·

[
Õ(Lh/L) · Õ

(√
L̃g/(L+ Lh)

)
+ Cn

]
.

Minimizing this expression over L ∈ [µ, Lh] and assuming that κg = Õ

(√
L̃g/Lh

)
, we obtain

L ' Lh.

Thus, we can solve problem (2) via

Õ
(√

Lh/µ
)
∇h(x)-oracle calls

and

Õ

(√
L̃g/µ

)
Og-oracle calls.

In case when the Og-oracle is the standard ∇g(x)-oracle, this result corresponds to the accelerated
sliding [9]. But our approach significantly differs from [9]. We use an accelerated proximal envelope
with the non-accelerated composite gradient as an outer envelope instead of a special bulky acceler-
ated outer method that was used in [9]. First of all, this simplifies the approach. Second, our approach
allows to deal with different types of Og-oracles, not only ∇g(x). For example, when the Og-oracle
comes from block-coordinate descent, directional search, derivative-free methods [3] or incremental
methods [1, 10, 8].

Below in the paper we describe the scheme above (and its non-strongly convex variant) in detail, by
controlling with what accuracy we have to solve the auxiliary problems.

2 Main result

Consider the problem

min
x∈Rn

f(x) := h(x) + g(x).

We introduce the following assumptions about this problem:

Assumption 1. We assume that f(·) has Lipschitz continuous gradient with the Lipschitz constant
Lf and is µ-strongly convex w.r.t. || · ||2.

Assumption 2. We assume that h(·) has Lipschitz continuous gradient with the Lipschitz constant
Lh w.r.t. || · ||2 and there is an oracle Oh which in one call produces the gradient∇h(·).

Assumption 3. We assume that g(·) has Lipschitz continuous gradient with Lipschitz constant Lg
w.r.t. || · ||2 and there is a basic oracle Og which in κg calls produces the gradient∇g(·).

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 4

Algorithm 1 Monteiro–Svaiter algorithm MS(x0, L,N)

Parameters: Starting point x0 = y0 = z0; parameter L ∈ (0, Lh]; number of iterations N .
for k = 0, 1, . . . , N − 1 do

Compute

ak+1 =
1/L+
√

1/L2+4Ak/L

2
,

Ak+1 = Ak + ak+1,

xk+1 = Ak
Ak+1

yk + ak+1

Ak+1
zk.

Compute
yk+1 = GMCO(xk+1, FL,xk+1(·)). (6)

Compute
zk+1 = zk − ak+1∇f

(
yk+1

)
. (7)

end for
Output: yN

Algorithm 2 Restarting Strategy for MS

Parameters: Starting point η0; strong convexity parameter µ > 0; parameter L > 0; accuracy
ε > 0.
Compute T =

⌈
log
(
||η0−η?||22·µ

ε

)⌉
, N0 =

√
8L
µ

.

for t = 1, . . . , T do
ηt = MS(ηt−1, L,N0).

end for
Output: ηT

Moreover, we need the following assumption to state the main result.

Assumption 4. We assume what there is a method Minn(ϕ(·), N(ε̃)), which takes as input an
objective function with the structure ϕ(v) = 〈β, v〉+ α

2
||v||22 + g(v) and returns a point v̂ such that

E (ϕ(v̂)− ϕ(v∗)) ≤ ε̃,

in N(ε̃) = O
(
τg√
α

ln
C||v0−v∗||22

ε̃

)
basic oracle calls, where τg is a parameter dependent on the

function g(·) and the methodMinn and independent of α, such that τg >
√
α, and C is a constant

satisfying C > 0.

To solve the problem (5) we introduce the Monteiro–Svaiter Accelerated Proximal Method [11], which
in non-adaptive case is presented as Algorithm 1, where

FL,y(x) := f(x) + L
2
||x− y||22.

Note that the parameter L must be chosen so that 0 < L ≤ Lh. If µ > 0, to recover the acceleration
through strong-convexity we apply a restarting strategy (Algorithm 2) to Algorithm 1.

Note that on each iteration of the MS algorithm in step (6) we solve the minimization problem:
min
y
FL, xk+1(y). We consider this problem as a composite optimization problem with the composite

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 5

Algorithm 3 Gradient method for Composite Optimization GMCO(ζ0, Fζ0,L(·))
1: Parameters: starting point ζ0 ∈ Rn, objective function FL,ζ0(ζ) = f(ζ) + L

2
||ζ − ζ0||22 =

h(ζ) + g(ζ) + L
2
||ζ − ζ0||22.

2: Set k := 0
3: repeat
4: Set k := k + 1.
5: Set

ϕk(ζ) := 〈∇h(ζk−1), ζ − ζk−1〉+ g(ζ)

+ L
2
‖ζ − ζ0‖22 + Lh

2
‖ζ − ζk−1‖22,

6: Compute
ζk :=Minn(ϕk(ζ), NMinn

), (9)

where NMinn
is defined as in (8).

7: until ‖∇FL,ζ0(ζk)‖2 ≤ L
2
‖ζk − ζ0‖2.

8: Output: ζk.

g(y)+ L
2
||y−xk+1||22. To solve this problem we use the Gradient method for Composite Optimization

(Algorithm 3) [14].

So, on each iteration k of the Algorithm 1 we use GMCO(xk+1, Fxk+1,L(·)). Note that we don’t as-
sume the proximal-friendliness of the function g(x). Hence, it is necessary to take into account the
complexity of the problem min

v∈Rn
ϕk(v) which arises at each iteration of the Algorithm 3. To solve this

problem we consider L
2
‖ζ− ζ̂0‖22+ Lh

2
‖ζ− ζ̂k−1‖22 as the composite and use the inner methodMinn

from the Assumption 4, where α = L+ Lh and

NMinn
=

O
(

τg√
L+Lh

ln C1Lh
δ
√
µL

)
if µ ≥ 0,

O
(

τg√
L+Lh

ln C1LhR

δ
√
εL

)
if µ = 0,

(8)

where R ≥ ||x0 − x∗||2, C1 > 0 and δ ∈ (0, 1).

So, for this scheme we can state the following main result:

Theorem 1. Under the Assumptions 1-4 with probability at least 1 − δ we can obtain x̂ such that
f(x̂)− f(x∗) ≤ ε in

a) O

(√
LR2

ε
·
(
1 + Lh

L

))
Oracle calls for h(·) and

O

(√
LR2

ε
·
(
κg + Lh

L
·
(

τg√
L+Lh

ln R
δ
√
ε

)))
Oracle calls for g(·), if µ = 0, and

b) O
(√

L
µ

log
(
µR2

ε

)
·
(
1 + Lh

L

))
Oracle calls for h(·) and

O
(√

L
µ

log
(
µR2

ε

)
·
(
κg + Lh

L
·
(

τg√
L+Lh

ln 1
δ

)))
Oracle calls for g(·), if µ > 0.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 6

3 Proof of the main result

The proof of the main result consists of four steps:

1 Estimating the number of iterations of the inner methodMinn.

2 Estimating the number of iterations of Algorithm 3.

3 Estimating the number of iterations of Algorithm 1 with the restarting strategy as in Algorithm 2.

4 Obtaining a final estimate of the number of iterations of oracles Of and Og based on estimates
from steps 1− 3.

3.1 Step 1.

On each iteration of Algorithm 3 we need to solve the problem

min
v∈Rn

ϕ(v) := 〈∇h(vk), v − vk〉+ g(v)

+ L
2
‖v − v0‖22 + Lh

2
‖v − vk‖22.

Applying the methodMinn to (10) withα = L+Lh we obtain that inNM(ε̃) = O
(

τg√
L+Lh

ln
C||v0−v∗||22

ε̃

)
Oracle calls we can find vNM(ε̃) such that

E(ϕ(vNM(ε̃))− ϕ(v∗)) ≤ ε̃.

Since ϕ(vNM(ε̃))− ϕ(v∗) ≥ 0, with an arbitrary δ̃ ∈ (0, 1) we can apply the Markov inequality:

P
(
ϕ(vNM(δ̃ε̃))− ϕ(v∗) ≥ ε̃

)
≤ E(ϕ(vNM(δ̃ε̃))−ϕ(v∗))

ε̃
≤ δ̃.

We have shown that with probability at least 1 − δ̃ in NM(δ̃ε̃) = O
(

τg√
L+Lh

ln
C||v0−v∗||22

δ̃ε̃

)
Oracle

calls we can find v̂ such that ϕ(v̂)− ϕ(v∗) ≤ ε̃. Since ϕ(·) is L+ Lh strongly convex, we have

L+Lh
2
||v̂ − v∗||22 ≤ ϕ(v̂)− ϕ(v∗) ≤ ε̃.

Moreover, since ϕ(·) is Lg-smooth and∇ϕ(v∗) = 0

||∇ϕ(v̂)||2 ≤ Lg||v̂ − v∗||2.

Using these two inequalities, we obtain

〈∇ϕ(v̂), v̂ − v∗〉 ≤ ||∇ϕ(v̂)||2 · ||v̂ − v∗||2
≤ Lg||v̂ − v∗||22 ≤ Lg

2ε̃
L+Lh

.

This leads to the following lemma

Lemma 1. Applying the methodMinn to (10) we have that with probability at least 1− δ̃ inNM(ε̃) =

O
(

τg√
L+Lh

ln
2CLg ||v0−v∗||22
δ̃ε̃(L+Lh)

)
Oracle calls we can find v̂ such that

〈∇ϕ(v̂), v̂ − v∗〉 ≤ ε̃,

||v̂ − v∗||22 ≤ 1
Lg
ε̃.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 7

3.2 Step 2.

To estimate the number of iterations of Algorithm 3 note that the MS condition

‖∇FL,ζ0(ζ̂k)‖2 ≤ L
2
‖ζ̂k − ζ0‖2

instead of the exact solution ζ∗ of the auxiliary problem in the Algorithm 1, for which

‖∇FL,ζ0(ζ∗)‖2 = 0,

allows to search inexact solution ζ̂k.

Since the function FL,ζ0(·) is (L+ Lf)-smooth, we have

||∇FL,ζ0(ζ̂k)||2 ≤ (L+ Lf)||ζ̂k − ζ∗||2. (13)

Using the triangle inequality we have

||ζ0 − ζ∗||2 − ||ζ̂k − ζ∗||2 ≤ ||ζ̂k − ζ0||2. (14)

Since r.h.s. of the inequality (13) coincide with the r.h.s. of the M-S condition and l.h.s. of the inequal-
ity (14) coincide with the l.h.s. of the M-S condition up to a multiplicative factor L/2, one can conclude
that if the inequality

||ζ̂k − ζ∗||2 ≤ L
3L+2Lf

||ζ0 − ζ∗||2

holds, the M-S condition holds too, where ζ0 is a starting point.

We assume that on each iteration of the Algorithm 3 we solve an auxiliary problem (9) in the sense
of (11). Then, we provide the following convergence rate theorem for the Algorithm 3:

Theorem 2. Assume that µ+L
2Lh
≤ 1. After N iterations of Algorithm 3 we have

FL,ζ0(ζ
N) − FL,ζ0(ζ

∗) ≤ exp
(
−N(µ+L)

4Lh

)
(FL,ζ0(ζ0) − FL,ζ0(ζ

∗)) + 4Lh
µ+L

ε̃,

1
2
||ζ∗ − ζN ||22 ≤ Lh

2(µ+L)
||ζ∗ − ζ0||22 + 4Lh

(µ+L)2
ε̃.

The proof of this Theorem is given in the appendix.

Now we consider the function FL,ζ0(·) as an L-strongly convex function, not taking µ into account.
From Theorem 2 we obtain that

FL,ζ0(ζ
N)− FL,ζ0(ζ∗) ≤

Lh||ζ0−ζ∗||22
2

exp
(
−NL
4Lh

)
+ 4Lh

L
ε̃.

From strong convexity of FL,ζ0(·), the following inequality holds. [15]

L
2
||ζ̂N − ζ∗||22 ≤ FL,ζ0(ζ̂

N)− FL,ζ0(ζ∗).

Thus, for condition (15) to be satisfied, it is necessary that

Lh||ζ0−ζ∗||22
2

exp
(
−NL
Lh

)
+ 4Lh

L
ε̃ ≤ L3

2(3L+2Lf)2
||ζ0 − ζ∗||22.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 8

Equating each term of l.h.s. to half of the r.h.s. we obtain that the number of iterations of Algorithm 3
is

NGMCO
def
= O

(
Lh
L

ln
(

(3L+2Lf)
2Lh

L3

))
and ε̃ = εM

def
= L4

8Lh(3L+2Lf)2
||ζ0 − ζ∗||22.

Assuming that on each iteration of Algorithm 3 we solve the auxiliary problem (10) with probability
at least 1 − δMS/NGMCO in the sense of (11) with ε̃ = εM, using the union bound over all NGMCO

iterations we obtain

Lemma 2. In NGMCO iterations of Algorithm 3 with probability at least 1− δMS we find ζ̂ such that

‖∇FL,ζ0(ζ̂)‖2 ≤ L
2
‖ζ̂ − ζ0‖2.

3.3 Step 3.

To estimate the number of iterations of Algorithm 1 note that in (6) we apply Algorithm 3 and, according
to the stopping criterion of GMCO(xk+1, FL,xk+1) obtain yk+1 such that

‖∇FL,xk+1(yk+1)‖2 ≤ L
2
‖yk+1 − xk+1‖2. (16)

So we can apply the Theorem 3.6 from [11] for Algorithm 1 and obtain that for all N ≥ 0

f
(
yN
)
− f (x∗) ≤ R2

2AN
,
∥∥zN − x∗∥∥

2
≤ R, (17)

where R ≥ ‖y0 − x∗‖2. Moreover, from Lemma 3.7 a) of [11] for all N ≥ 0

AN ≥ N2

4L
. (18)

Substituting the inequality (18) into the estimate (17) we obtain that after N iterations of Algorithm 1
the following inequality holds.

f(yN)− f(x?) ≤ 2L||x0−x∗||22
N2 .

Thus, if µ = 0, then the total number of iterations of MS is T c
MS(ε)

def
=

√
L||x0−x∗||22

ε
.

If µ > 0, to recover the acceleration through strong-convexity we need to apply the restarting strategy.

In light of the definition of strong convexity of f(·) and the estimate (19), we have

µ
2
||yN − x∗||2 ≤ f(yN)− f(x∗) ≤ 2L

N2 ||x0 − x∗||22.

In particular, in every N = N0 =
√

8L
µ

iterations, we can halve the distance ||yN − x∗||2 ≤
1
2
||x0 − x∗||22. And if we repeatedly invoke MS(·, L,N0) t times, each time choosing the initial point
x0 as the previous output yN0 , then in the last run of N0 iterations, we have

f(yN0)− f(x∗) ≤ 4L
2tN2

0
||x0 − x∗||22 = 1

2t+1 ||x0 − x∗||22.

By choosing t = log
(
||x0−x∗||22·µ

ε

)
, we conclude that

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 9

Lemma 3. If f(·) is µ-strongly convex w.r.t. || · ||2, then after T (ε)
def
= log

(
||η0−η∗||22·µ

ε

)
iterations of

the Algorithm 2 we obtain some ηT such that f(ηT)− f(η?) ≤ ε.

From this lemma we obtain that the total number of iterations of MS is T sc
MS(ε)

def
= O

(√
L
µ

log
(
||η0−η∗||22·µ

ε

))
.

Assume that on each iteration of the Algorithm 1 we find yk+1 satisfying (16) with probability at least
1− δMS with δMS = δ/TMS(ε), where δ ∈ (0, 1) and

TMS(ε) =

{
T SC

MS (ε) if µ ≥ 0,

T C
MS(ε) if µ = 0.

Using the union bound over all iterations of MS and Lemma 3 for the strongly convex case, we obtain
the following lemma.

Lemma 4. If on each iteration of Algorithm 1 we find yk+1 satisfying (16) with probability at least
1− δMS with δMS = δ/TMS(ε), then

a) after T iterations of Algorithm 2 for the case µ > 0

b) after T c
MS iterations of Algorithm 1 for the case µ = 0

we obtain that with probability as least 1− δ we find η̂ such that f(η̂)− f(η?) ≤ ε.

3.4 Step 4.

Before we give the estimates of the number of oracle calls for h(·) and g(·), we will explain how we
plan on obtaining them.

For h(·) we heed to compute the gradient at each step of Algorithm 3, which we run TMS(ε) times.
Moreover, at each iteration of Algorithm 1 in step (7) we compute the gradient of f(·), so we also need
to compute the gradient of h(·).

For g(·) we heed to compute the gradient at each step of the inner algorithmMinn, which we run at
each iteration of Algorithm 3, and at each iteration of Algorithm 1 in step (7) we also need to compute
the gradient of g(·).

Note that using the triangle inequality we have

||v0 − v∗||2 ≤ ||v0 − v̂||2 + ||v̂ − v∗||2. (20)

And at each iteration of Algorithm 3 we use the methodMinn with starting point ζk to compute the
point ζk+1. So for the k-th iteration of Algorithm 3 we have v0 ≡ ζk and v̂ ≡ ζk+1. Using the triangle
inequality and Theorem 2, we have

||ζk − ζk+1||2 ≤ ||ζk − ζ∗||2 + ||ζk+1 − ζ∗||2

≤ 2
√

Lh
L
||ζ0 − ζ∗||2 + 2

√
2Lh
L2 ε̃.

Then, using (12), from (20) we have

||v0 − v∗||2 ≤ ||v0 − v̂||2 +
√
ε̃/Lg

≤
√

4Lh
L
||ζ0 − ζ∗||2 +

√
ε̃

(√
8Lh
L2 +

√
1
Lg

)
.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 10

Choosing the ε̃ = εM and using Lemma 1 we obtain that we needNM(εM) = O
(

τg√
L+Lh

ln
2CLg ||v0−v∗||22
δ̃εM(L+Lh)

)
Oracle calls ofMinn. And using (21) we obtain that in ÑM = O

(
τg√
L+Lh

ln C1

δ̃

)
≥ NM(εM) Oracle

calls the Lemma 1 holds with ε̃ = εM and C1 =
2C(32L2

hLg(3L+2Lf)
2+(8LhLg+L

2)L3

L4(L+Lh)
.

Each time choosing δ̃ ≈ δMS/NGMCO = δ/(NGMCO·TMS) we obtain that we needNSC
M = O

(
τg√
L+Lh

ln C1Lh
δ
√
µL

)
Oracle calls ofMinn for the strongly convex case and NC

M(ε) = O
(

τg√
L+Lh

ln C1LhR

δ
√
εL

)
Oracle calls

for the convex case, where R ≥ ||x0 − x∗||2.

Using the union bound over all launches ofMinn, we obtain that with probability at least 1−δ we can

find such x̂ that f(x̂)− f(x∗) ≤ ε, and to do this we need O
(√

L
µ

log
(
µR2

ε

)
·
(
1 + Lh

L

))
Oracle

calls for h(·) and

O
(√

L
µ

log
(
µR2

ε

)
·
(
κg + Lh

L
·
(

τg√
L+Lh

ln 1
δ

)))
Oracle calls for g(·), if µ > 0,

and O

(√
LR2

ε
·
(
1 + Lh

L

))
Oracle calls for h(·) and

O

(√
LR2

ε
·
(
κg + Lh

L
·
(

τg√
L+Lh

ln R
δ
√
ε

)))
Oracle calls for g(·), if µ = 0.

4 Applications

In this section, we present a few examples of algorithms that we consider asMinn.

4.1 Accelerated Gradient Method for Composite Optimization

Consider the following unconstrained problem

min
x∈Rn

f(x) := h(x) + g(x).

We assume that the function g(·) is Lg-smooth w.r.t. || · ||2. To solve this problem we consider the
Accelerated Gradient Method for Composite Optimization from [14]. For this method the Assumption 4
holds with τg =

√
Lg if Lg ≥ Lh.

As the basic oracle Og we have a first order oracle which computes the full gradient ∇g(·) in one
oracle call, so, for this case κg = 1.

Minimizing the number of Oracle calls for g(·), we obtain that the optimal value of L is Lh. We can
then state the following corollary of Theorem 1:

Corollary 1. Using the Accelerated Gradient Method for Composite Optimization asMinn we can
obtain x̂ such that f(x̂)− f(x∗) ≤ ε in

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 11

a) O

(√
LhR

2

ε

)
Oracle calls for h(·), O

(√
LgR2

ε

)
Oracle calls for g(·), if µ = 0, and

b) Õ
(√

Lh
µ

)
Oracle calls for h(·) and Õ

(√
Lg
µ

)
Oracle calls for g(·), if µ > 0.

4.2 Accelerated Proximal Coordinate Descent Method

Consider the following unconstrained problem

min
x∈Rn

f(x) := h(x) + g(x).

Now we assume the directional smoothness for g(·), that is that there existβ1, . . . , βn such that for
any x ∈ Rn, u ∈ R

|∇ig (x+ uei)−∇ig(x)| ≤ βi|u|, i = 1, . . . , n,

where∇ig(x) = ∂g(x)/∂xi. For twice differentiable g(·) it is equivalent to the condition (∇2g(x))i,i ≤
βi. In this case we consider the Accelerated Proximal Coordinate Gradient Method from [13, 16, 4, 5]

as the inner methodMinn. For this method Assumption 4 holds with τg = n
√
Lg, where

√
Lg =

1
n

∑n
i=1

√
βi, if Lg ≥ Lh.

As the basic oracle Og we have an oracle which computes a partial derivative∇ig(·) in one iteration.
For this case we need κg = n calls to Og to compute the full gradient∇g(·).
Minimizing the number of Oracle calls for g(·), we obtain that the optimal L = Lh, so we can state
the following corollary from Theorem 1:

Corollary 2. Using the Accelerated Gradient Method for Composite Optimization asMinn we can
obtain x̂ such that f(x̂)− f(x∗) ≤ ε in

a) O

(√
LhR

2

ε

)
Oracle calls for h(·), O

(
n ·
√

LgR2

ε

)
Oracle calls for g(·), if µ = 0, and

b) Õ
(√

Lh
µ

)
Oracle calls for h(·) and Õ

(
n ·
√

Lg
µ

)
Oracle calls for g(·), if µ > 0.

Note, that if Minn is a directional search or a derivative-free method such as in [3], then the main
conclusions of corollary 2 remain valid after replacing Lg on Lg.

4.3 Accelerated Stochastic Variance Reduced Algorithm

Consider the following minimization problem

min
x∈Rn

f(x) := h(x) + 1
m

m∑
k=1

gk(x).

We assume that each component gk(·) is smooth with the constant Lgk . To solve this problem we can
use the Katyusha [1] and other Accelerated Stochastic Variance Reduced Algorithms [10, 8] in place
of the inner method Minn. Note that for the Accelerated Stochastic Variance Reduced Algorithms

the estimate of the number of oracle calls for problem (4) is Õ

(
m+

√
mL̂g
L

)
if L̂g ≥ L, where

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 12

L̂g = max
k
Lgk . If we additionally assume that Lhm ≤ L̂g, then for this method Assumption 4 holds

with τg =
√
mL̂g.

As the basic oracleOg we have an oracle which computes∇gk(·) in one iteration. Hence, in this case
we need κg = m basic oracle Og calls to compute the full gradient∇g(·).

Corollary 3. Using the Accelerated Gradient Method for Composite Optimization asMinn we can
obtain x̂ such that f(x̂)− f(x∗) ≤ ε in

a) O

(√
LhR

2

ε

)
Oracle calls for h(·), O

(√
mL̂gR2

ε

)
Oracle calls for g(·), if µ = 0, and

b) Õ
(√

Lh
µ

)
Oracle calls for h(·) and Õ

(√
mL̂g
µ

)
Oracle calls for g(·), if µ > 0.

Condition Lhm ≤ L̂g might seem very restrictive, but there exists a class of problems with non-
smooth gk that is well suited to this condition. Assume that the convex conjugates g∗k are proximal-
friendly. In particular, this is the case for generalized linear model [18] gk (x) := gk (〈ak, x〉). In this
case we can apply the Nesterov’s smoothing technique [12, 2] and regularize the convex conjugate
functions g∗k with coefficient ∼ ε. Since all g∗k are proximal-friendly, we can efficiently compute the
conjugate function to the resulting regularized function. This allows us to build an ε-approximation of
initial problem with L̂g ∼ 1/ε. In Section ?? we demonstrate how this approach works on the Kernel
SVM example.

5 Experiments

In this section, we present experimental results of applying Algorithm 1 to the real-world machine
learning problems, and demonstrate its effectiveness. More detailed theoretical explanation of de-
scribed below results see in Appendix B.

5.1 Log-density estimation with Gaussian Prior

To estimate the log-density of some measure P [20] we suppose that we observe only m random
observations z̃1, . . . , z̃m ∈ Z generated from this measure. Without loss of generality, we assume
that Z has finite support {zk}pk=1 of size p, then

p∑
k=1

f(zk) = 1. (22)

We parameterize the log-density by the linear model

log f(z) = l(z, x∗) =
n∑
i=1

x∗i ai(z)− c(x∗),

where a1(z), a2(z), . . . , an(z) are given basis functions and x∗ ∈ Rn is an unknown vector, corre-
sponding to the actual density. The normalization constant c(x∗) is determined using (22):

c(x) = log

(
p∑

k=1

exp (〈Ak, x〉)

)
,

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 13

where Ak = a(zk) = (a1(zk), . . . , an(zk))
T is the k-th column of A = [aj(zk)]

n,p
j,k=1. From [20] it’s

known that x∗ can be alternatively defined as

x∗ = arg max
x∈Q
{〈Ez[a(z)], x〉 −mc(x)}.

It’s also known (Fisher theorem) that Maximum Likelihood Estimation (MLE)

x̃ = arg max
x∈Rn
{
m∑
k=1

〈a(z̃k), x〉 −mc(x)}.

will be a good estimation of x∗. Moreover, if we introduce Gaussian prior N (0, G2) for x∗, MLE
changes as follows

x̃G = arg max
x∈Rn
{
m∑
k=1

〈a(z̃k), x〉 −mc(x)− 1

2
‖Gx‖2}. (23)

Bernstein–von Mises theorem claims [20], that x̃G is a good estimation of x∗ in Bayesian set up.

Particular case when matrix A is sparse and all elements of G2 are from the interval [1,2], is consid-
ered in the paper. Modern Accelerated Coordinate Descent algorithms don’t allow to take into account
sparsity of matrix A [4], so for the first two terms in argmax of RHS of (23) it’d be better to use com-
mon accelerated method [15]. The third (last) term in (23) is vice versa very friendly for Accelerated
Coordinate Descent [16]. So this problem formulation for relatively small m (or relatively large G2) is
well suited for splitting scheme withMinn to be Accelerated Coordinate Descent.

Based on the problem statement, let us consider the optimization problem with the following objective
function:

f(x) = log

(
p∑

k=1

exp (〈Ak, x〉)

)
+

1

2
‖Gx‖22 → min

x∈Rn
.

In our case, n = 500, p = 6000, A is a sparse p × n matrix with sparsity coefficient 0.001, whose
non-zero elements are drawn randomly from U(−1, 1), and matrix G2 generated as follows:

G2 =
n∑
i=1

λiẽ
>
i ẽi,

where
∑n

i=1 λi = 1 and [ẽi]j ∼ U(1, 2) for every i, j.

The Lipschitz constant for the first term of f calculated according to the following formula:

Lh = max
i=1,...,n

‖A〈k〉‖22,

where A〈k〉 denotes the k-th column of A, L = 25Lh and directional Lipschitz constants for the ϕ
from (10) are Li = G2

ii + L+ Lh.

Below there are given the result of experiments1 for Fast Coordinate Descent [16] with β = 1/2 being
restarted every 300 iterations asMinn. The vertical axis of the both 1 and 2 figures measures function
value f(xi) in logarithmic scale, the horizontal axis of figures 1 and 2 measures physical working time.

However, although for some problems, as above, it is possible to achieve convergence acceleration
using a Monteiro-Svaiter envelope, many additional experiments have shown that, in the general case,

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time, T (s)

101

102

103

104

105

Fu
nc

tio
n

va
lu

e
(lo

g-
sc

al
e)

MS accelerated FCD
FCD
FGM

Figure 1: M-S accelerated Fast Coordinate Descent, function value f(xi) vs working time

it does not give a significant improvement in the performance of the Fast Gradient Method. Neverthe-
less, experiments show that the convergence of the proposed method, in practice, corresponds to the
estimates obtained in the article.

We also compare the methods by the number of ∇hi(·) and ∇gi(·) oracles calls. Figure 3 shows a
three-dimensional plot of the function value f(xi) in logarithmic scale vs the number of ∇hi(·) and
∇gi(·) oracles calls and two-dimensional projections of this plot for the ∇hi(·) and ∇gi(·) oracles
respectively. Since some of the methods involve calculating the full gradient (∇h(·) or ∇g(·)), the
oracles calls, in this case, accounted for with a weight of t1/t2 ≈ 2, where t1 — is the average full
gradient computing time, t2 — is the average time to calculate only the component of the gradient.

As can be noted from the plots, M-S accelerated version of FCD requires a significantly smaller number
of∇hi(·) oracle calls than FCD and FGM.

1Source code of these experiments are on GitHub: https://github.com/
ICML2020-OracleComplexitySeparation/Oracle-Complexity-Separation

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

https://github.com/ICML2020-OracleComplexitySeparation/Oracle-Complexity-Separation
https://github.com/ICML2020-OracleComplexitySeparation/Oracle-Complexity-Separation

Oracle complexity separation in convex optimization 15

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Time, T (s)

101

9.5 × 100

1.05 × 101

1.1 × 101

1.15 × 101

1.2 × 101

1.25 × 101

Fu
nc

tio
n

va
lu

e
(lo

g-
sc

al
e)

MS accelerated FCD
FCD
FGM

Figure 2: M-S accelerated Fast Coordinate Descent, function value f(xi) vs working time (from 0.5 s)

hi calculations

0
200

400
600

800
1000 g i calculations

0 2004006008001000

lo
g 1

0 f
un

ct
io

n
va

lu
e

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

MS accelerated FCD
FCD
FGM

0 5 10 15 20
hi calculations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g 1

0 f
un

ct
io

n
va

lu
e

MS accelerated FCD
FCD
FGM

0 100 200 300 400
gi calculations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g 1

0 f
un

ct
io

n
va

lu
e

MS accelerated FCD
FCD
FGM

Figure 3: M-S accelerated Fast Coordinate Descent, function value f(xi) vs number of ∇hi(·) and
∇gi(·) oracles calls

References

[1] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The Journal
of Machine Learning Research, 18(1):8194–8244, 2017.

[2] Z. Allen-Zhu and E. Hazan. Optimal black-box reductions between optimization objectives. In
Advances in Neural Information Processing Systems, pages 1614–1622, 2016.

[3] P. Dvurechensky, A. Gasnikov, and A. Tiurin. Randomized similar triangles method: A unify-
ing framework for accelerated randomized optimization methods (coordinate descent, directional
search, derivative-free method). arXiv:1707.08486, 2017.

[4] O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM Journal
on Optimization, 25(4):1997–2023, 2015.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 16

[5] A. Gasnikov, P. Dvurechensky, and I. Usmanova. About accelerated randomized methods. Pro-
ceedings of the Moscow Institute of Physics and Technology, 8(2 (30)), 2016.

[6] A. Ivanova, D. Grishchenko, A. Gasnikov, and E. Shulgin. Adaptive catalyst for smooth convex
optimization. arXiv preprint arXiv:1911.11271, 2019.

[7] D. Kamzolov, A. Gasnikov, and P. Dvurechensky. On the optimal combination of tensor optimiza-
tion methods. arXiv:2002.01004, 2020.

[8] G. Lan, Z. Li, and Y. Zhou. A unified variance-reduced accelerated gradient method for convex
optimization. In Advances in Neural Information Processing Systems, pages 10462–10472, 2019.

[9] G. Lan and Y. Ouyang. Accelerated gradient sliding for structured convex optimization. arXiv
preprint arXiv:1609.04905, 2016.

[10] G. Lan and Y. Zhou. An optimal randomized incremental gradient method. Mathematical pro-
gramming, 171(1-2):167–215, 2018.

[11] R. D. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method for con-
vex optimization and its implications to second-order methods. SIAM Journal on Optimization,
23(2):1092–1125, 2013.

[12] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[13] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[14] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
140(1):125–161, 2013. First appeared in 2007 as CORE discussion paper 2007/76.

[15] Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[16] Y. Nesterov and S. U. Stich. Efficiency of the accelerated coordinate descent method on struc-
tured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

[17] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond (Adaptive Computation and Machine Learning). MIT Press, 2001.

[18] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In
COLT, 2009.

[19] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st Inter-
national Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Re-
search, pages 64–72, Bejing, China, 22–24 Jun 2014. PMLR. First appeared in arXiv:1309.2375.

[20] V. Spokoiny and M. Panov. Accuracy of gaussian approximation in nonparametric bernstein–von
mises theorem. arXiv preprint arXiv:1910.06028, 2019.

[21] Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk
minimization. In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 353–361,
Lille, France, 07–09 Jul 2015. PMLR.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 17

A Proof of Theorem

Definition 1. For a convex optimization problem minx∈Q Ψ(x), we denote by Arg minδ̃x∈Q Ψ(x) a
set of such x̃ that

∃h ∈ ∂Ψ(x̃) : ∀x ∈ Q → 〈h, x− x̃〉 ≥ −δ̃.

We denote by argminδ̃x∈Q Ψ(x) some element of Arg minδ̃x∈Q Ψ(x).

Algorithm 4 Gradient method for Composite Optimization GMCO(x0, F (·))
1: Parameters: starting point x0 ∈ Rn, objective functionF (x) = f(x)+p(x), constantL (function

f with L Lipschitz gradient w.r.t. the || · ||2), error δ̃.
2: for k = 0, . . . , N − 1 do
3: Set

φk+1(x) := 〈∇f(xk), x− xk〉+ p(x) + L
2
‖x− xk‖22,

4: Compute

xk+1 := argmin
x∈Q

δ̃(φk+1(x)) (24)

5: end for
6: Output: xN

Lemma 5. Let ψ(x) be a convex function and

y = argmin
x∈Q

δ̃{ψ(x) + β
2
||z − x||22},

where β ≥ 0. Then

ψ(x) + β
2
||z − x||22 ≥ ψ(y) + β

2
||z − y||22 + β

2
||x− y||22 − δ̃, ∀x ∈ Q.

Proof. By Definition 1:

∃g ∈ ∂ψ(y), 〈g + β
2
∇y||y − x||22, x− y〉 = 〈g + β(y − z), x− y〉 ≥ −δ̃, ∀x ∈ Q.

From β–strong convexity of ψ(x) + β
2
||z − x||22 we have

ψ(x) + β
2
||z − x||22 ≥ ψ(y) + β

2
||z − y||22 + 〈g + β

2
∇y||y − x||22, x− y〉+ β

2
||x− y||22

The last two inequalities complete the proof.

The next theorem proves convergence rate of Algorithm 4 for optimization problem

min
x∈Rn

F (x) := f(x) + p(x),

where function f is convex function with L Lipschitz gradient w.r.t. the || · ||2 norm, function p is convex
function and function F is µ–strongly convex.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 18

Theorem 3. Let us assume that µ
2L
≤ 1. After N iterations of Algorithm 4 we have

F (xN)− F (x∗) ≤ exp

(
−Nµ

4L

)
(F (x0)− F (x∗)) +

4L

µ
δ̃,

1

2
||x∗ − xN ||22 ≤

L

2µ
||x∗ − x0||22 +

4L

µ2
δ̃.

Proof of Theorem 3. Since gradient of function F is L Lipschitz w.r.t. the || · ||2 norm, we have

F (xN) ≤ f(xN−1) + 〈∇f(xN−1), xN − xN−1〉+ p(xN) +
L

2
||xN−1 − xN ||22.

From Lemma 5 and auxiliary problem (24) we get

F (xN) ≤ f(xN−1) + 〈∇f(xN−1), x− xN−1〉

+ p(x) +
L

2
||x− xN−1||22 + δ̃.

In view of convexity of function f , we obtain

F (xN) ≤ F (x) +
L

2
||x− xN−1||22 + δ̃.

We rewrite the last inequality for x = αx∗ + (1− α)xN−1 (α ∈ [0, 1]) as

F (xN) ≤ F (αx∗ + (1− α)xN−1) +
Lα2

2
||x∗ − xN−1||22 + δ̃.

In view of convexity of function f , we have

F (xN) ≤ F (xN−1)− α(F (xN−1)− F (x∗)) +
Lα2

2
||x∗ − xN−1||22 + δ̃.

From µ–strong convexity of function F we have F (xN−1) ≥ F (x∗) + µ
2
||x∗ − xN−1||22, this yields

inequality:

F (xN) ≤ F (xN−1)− α
(

1− αL
µ

)
(F (xN−1)− F (x∗)) + δ̃.

The minimum of the right part of the last inequality is achieved with α = min(1, µ
2L

). Due to µ
2L
≤ 1

with α = µ
2L

we have

F (xN)− F (x∗) ≤
(

1− µ

4L

)
(F (xN−1)− F (x∗)) + δ̃.

and

F (xN)− F (x∗) ≤
(

1− µ

4L

)N
(F (x0)− F (x∗)) +

4L

µ
δ̃

≤ exp

(
−Nµ

4L

)
(F (x0)− F (x∗)) +

4L

µ
δ̃.

From µ–strong convexity of function F and the fact that gradient of function F is L Lipschitz we obtain

1

2
||x∗ − xN ||22 ≤

L

2µ
exp

(
−Nµ

4L

)
||x∗ − x0||22 +

4L

µ2
δ̃

≤ L

2µ
||x∗ − x0||22 +

4L

µ2
δ̃.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 19

B Motivation for examples

B.1 Kernel SVM

Let’s consider the following function

f(x) =
1

m

m∑
k=1

fk(〈Ak, x〉) +
1

2
〈x,Cx〉.

We assume that |f ′′k (y)| = O(1/ε), matrixA = [A1, ..., Am]T hasms nonzero elements, maxk=1,...,m ‖Ak‖22 =
O(s), where 1� s ≤ n and C is positive semidefinite matrix,2 with λmax(C) ≤ 1/(εm). Fast Gra-
dient Method [15] requires

O

(√
(s/ε+ λmax(C))R2

ε

)
iterations with the complexity of each iteration3

O
(
ms+ n2

)
.

For proposed in this paper approach we have

Õ

(√
λmax(C)R2

ε

)
iterations of FGM for the second term in target function with the complexity of each iteration

O(n2)

and

Õ

(√
(ms/ε)R2

ε

)
iterations of variance reduction algorithm [1] with the complexity of each

O(s).

We combine all these results in the table below. From the table one can conclude that since s � 1,
λmax(C) ≤ 1/(εm)� s/ε, then our approach has better theoretical complexity.

Algorithm Complexity Reference
FGM O

(
R
ε

√
s (ms+ n2)

)
[15]

Our approach Õ
(
R
ε

√
ms · s

)
+ Õ

(√
λmax(C)R2

ε
· n2

)
this paper

2Here an below we also assume after ‘semidefinite’ that valuable part of the spectrum of dens matrix C lies in a small
(right) vicinity of zero point on real line.

3To obtain the part of the complexity O(ms) one should use special representation of matrix A in the memory –
adjacency list. The same requirements take place for other algorithms.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

A. Ivanova et al. 20

B.2 Soft-max plus quadratic form

Let’s consider the following function

f(x) = log

(
p∑

k=1

exp (〈Ak, x〉)

)
+

1

2
‖Gx‖22 → min

x∈Rn
.

We introduce matrix A = [A1, ..., Ap]
T , is such that maxij |Aij| = O(1), maxj=1,...,n ‖A<j>‖22 =

O(n) andA hasO(ps) nonzero elements;G2 is positive semidefinite matrix with λmax(G
2) = O(n)

and 1
n

∑n
i=1

√
G2
ii = O(1).

Fast Gradient Method [15] requires

O

(√
(maxj=1,...,n ‖A<j>‖22 + λmax(G2))R2

ε

)
iterations with the complexity of each iteration

O
(
ps+ n2

)
.

Coordinate Fast Gradient Method [16] requires

O

n
√√√√√
(

maxij |Aij|2 +
(

1
n

∑n
i=1

√
G2
ii

)2)
R2

ε

iterations with the complexity of each iteration4

O (p+ n) .

For proposed in this paper approach we have

Õ

(√
(maxj=1,...,n ‖A<j>‖22 + λmax(G2))R2

ε

)
iterations of FGM for the first term in target function with complexity of each iteration

O(ps)

and

Õ

n
√√√√(1

n

∑n
i=1

√
G2
ii

)2
R2

ε

iterations of coordinate FGM for the second term in target function with complexity of each iteration

O(n).

We combine all these results in the table below. From the table one can conclude that if n � p,
s� min{n2/p,

√
n}, then our approach has better theoretical complexity.

4Here one should use a following trick in recalculation of log (
∑p

k=1 exp (〈Ak, x〉)) and its gradient (partial deriva-
tive). From the structure of the method we know that xnew = αxold + βei, where ei is i-th orth. So if we’ve already
calculate 〈Ak, x

old〉 then to recalculate 〈Ak, x
new〉 = α〈Ak, x

old〉 + β[Ak]i requires only O(1) additional operations
independently of n and s.

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

Oracle complexity separation in convex optimization 21

Algorithm Complexity Reference

FGM O

(√
nR2

ε
(ps+ n2)

)
[15]

coordinate FGM O

(
n
√

R2

ε
(p+ n)

)
[16]

Our approach Õ

(√
nR2

ε
· ps
)

+ Õ

(
n
√

R2

ε
· n
)

this paper

DOI 10.20347/WIAS.PREPRINT.2711 Berlin 2020

	Introduction
	Main result
	Proof of the main result
	Step 1.
	Step 2.
	Step 3.
	Step 4.

	Applications
	Accelerated Gradient Method for Composite Optimization
	Accelerated Proximal Coordinate Descent Method
	Accelerated Stochastic Variance Reduced Algorithm

	Experiments
	Log-density estimation with Gaussian Prior

	Proof of Theorem
	Motivation for examples
	Kernel SVM
	Soft-max plus quadratic form

