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Stochastic homogenization on randomly perforated domains
Martin Heida

Abstract

We study the existence of uniformly bounded extension and trace operators forW 1,p-functions
on randomly perforated domains, where the geometry is assumed to be stationary ergodic. Such
extension and trace operators are important for compactness in stochastic homogenization. In
contrast to former approaches and results, we use very weak assumptions on the geometry which
we call local (δ,M)-regularity, isotropic cone mixing and bounded average connectivity. The first
concept measures local Lipschitz regularity of the domain while the second measures the meso-
scopic distribution of void space. The third is the most tricky part and measures the "mesoscopic"
connectivity of the geometry.

In contrast to former approaches we do not require a minimal distance between the inclusions
and we allow for globally unbounded Lipschitz constants and percolating holes. We will illustrate
our method by applying it to the Boolean model based on a Poisson point process and to a
Delaunay pipe process.

We finally introduce suitable Sobolev spaces on Rd and Ω in order to construct a stochastic
two-scale convergence method and apply the resulting theory to the homogenization of a p-
Laplace problem on a randomly perforated domain.
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1 Introduction

In 1979 Papanicolaou and Varadhan [31] and Kozlov [24] for the first time independently introduced
concepts for the averaging of random elliptic operators. At that time, the periodic homogenization
theory had already advanced to some extend (as can be seen in the book [32] that had appeared one
year before) dealing also with non-uniformly elliptic operators [26] and domains with periodic holes [7].

Even though the works [24, 31] clearly guide the way to a stochastic homogenization theory, this
theory advanced quite slowly over the past 4 decades. Compared to the stochastic case, periodic ho-
mogenization developed very strong with methods that are now well developed and broadly used. The
most popular methods today seem to be the two-scale convergence method by Allaire and Nguetseng
[2, 30] in 1989/1992 and the periodic unfolding method [6] by Cioranescu, Damlamian and Griso in
2002. Both methods are conceptually related to asymptotic expansion and very intuitive to handle. It
is interesting to observe that the stochastic counterpart, the stochastic two-scale convergence, was
developed only in 2006 by Zhikov and Piatnitsky [39], with the stochastic unfolding developed only
recently in [29, 18].

A further work by Bourgeat, Mikelic and Wright [5] introduced two-scale convergence in the mean. This
sense of two-scale convergence is indeed a special case of the stochastic unfolding, which can only
be applied in an averaged sense, too. This leads us to a fundamental difference between the periodic
and the stochastic homogenization. In stochastic homogenization we distinguish between quenched
convergence, i.e. for almost every realization one can prove homogenization, and homogenization in
the mean, which means that homogenization takes place in expectation.

In particular in nonlinear non-convex problems (that is: we cannot rely on weak convergence methods)
the quenched convergence is of uttermost importance, as this sense of convergence allows to use -
for each fixed ω - compactness in the spaces H1(Q). On the other hand, convergence in the mean
deals with convergence in L2(Ω;H1(Q)), which goes in hand with a loss of compactness.

The results presented below are meant for application in quenched convergence. The estimates for the
extension and trace operators which are derived strongly depends on the realization of the geometry
- thus on ω. Nevertheless, if the geometry is stationary, a corresponding estimate can be achieved for
almost every ω.

The Problem

The discrepancy in the speed of progress between periodic and stochastic homogenization is due to
technical problems that arise from the randomness of parameters. In this work we will consider uniform
extension operators for randomly perforated stationary domains. We use stationarity (see Def. 2.16)
as this is the standard way to cope with the lack of periodicity. Let us first have a look at a typical
application to illustrate the need of the extension operators that we construct below.

Let P(ω) ⊂ Rd be a stationary random open set and let ε > 0 be the smallness parameter and
let P̃(ω) be a connected component of P(ω). For a bounded open domain, we consider Qε

P̃
(ω) :=

Q ∩ εP̃(ω) and Γε(ω) := Q ∩ ε∂P̃(ω) with outer normal νΓε(ω). We study the following problem in
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Section 10.6:

−div
(
a |∇uε|p−2∇uε

)
= g on Qε

P̃
(ω) ,

u = 0 on ∂Q , (1.1)

|∇uε|p−2∇uε · νΓε(ω) = f(uε) on Γε(ω) .

Note that for simplicity of illustration, the only randomness that we consider in this problem is due to
P(ω), i.e. we assume a ≡ const.

Problem (1.1) can be recast into a variational problem, i.e. solutions of (1.1) are local minimizers of
the energy functional

Eε,ω(u) =

ˆ
Qε

P̃
(ω)

(
1

p
|∇u|p − gu

)
+

ˆ
Γε(ω)

ˆ u

0

F (s)ds ,

where F is convex with ∂F = f . This problem will be treated in Theorem 10.20 and the final Remark
10.22.

One way to prove homogenization of (1.1) is to prove Γ-convergence of Eε,ω. Conceptually, this implies
convergence of the minimizers uε to a minimizer of the limit functional. However, the minimizers are
elements of W 1,p(Qε

P̃
) and since this space changes with ε, we lack compactness in order to pass

to the limit in the nonlinearity. The canonical path to circumvent this issue in periodic homogenization
is via uniformly bounded extension operators Uε : W 1,p(Qε

P̃
) → W 1,p(Q), see [20, 22], combined

with uniformly bounded trace operators, see [12, 13].

The first proof for the existence of periodic extension operators was due to Cioranescu and Paulin
[7] in 1979, while the proof in its full generality was provided only recently by Höpker and Böhm [22]
and Hp̈ker [21]. In this work we will generalize parts of the results of [21] to a stochastic setting. A
modified version of the original proof of [21] is provided in Section 3. It relies on three ingredients:
the local Lipschitz regularity of the surface, the periodicity of the geometry and the connectedness.
Local Lipschitz regularity together with periodicity imply global Lipschitz regularity of the surface. In
particular, one can construct a local extension operator on every cell z + (−δ, 1 + δ)d, z ∈ Zd
which might then be glued together using a periodic partition of unity of Rd. The connectedness of the
geometry assures that the difference of the average of a function u on two different cells z1 and z2

can be computed from the gradient along a path connecting the two cells and being fully comprised in
z1 + (−1, 2)d.

In the stochastic case the proof of existence of suitable extension operators is much more involved
and not every geometry will eventually allow us to be successful. In fact, we will not be able - in
general - to even provide extension operators Uε : W 1,p

(
Qε

P̃
(ω)
)
→ W 1,p(Q) but rather obtain

Uε : W 1,p
(
Qε

P̃
(ω)
)
→ W 1,r(Q), where r < p depends (among others) on the dimension and on

the distribution of the Lipschitz constant of ∂P̃(ω). This is due to the presence of arbitrarily “bad” local
behavior of the geometry.

The theory developed below also allows to provide estimates on the trace operator

Tω : C1
(
P(ω)

)
→ C(∂P(ω))

when seen as an operator Tω : W 1,p
loc (P(ω))→ Lrloc(∂P(ω)), where again 1 ≤ r < p in general.

We summarize the above discussion in the following.
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Stochastic homogenization on perforated domains 5

Problem 1.1. Find (computationally or rigorously) verifiable conditions on stationary random geome-
tries that allow to prove existence of extension operators

Uε : W 1,p
0,∂Q

(
Qε

P̃
(ω)
)
→ W 1,r(Q) s.t. ‖∇Uεu‖Lr(Q) ≤ C ‖∇u‖Lp(Qε

P̃
(ω)) ,

where r ≥ 1 and C > 0 are independent of ε and where

W 1,p
0,∂Q

(
Qε

P̃
(ω)
)

=
{
u ∈ W 1,p

(
Qε

P̃
(ω)
)

: u|∂Q ≡ 0
}
.

Problem 1.2. Find (computationally or rigorously) verifiable conditions on stationary random geome-
tries that allow to prove an estimate

ε ‖Tεu‖rLr(Q∩ε∂P) ≤ C
(
‖u‖rLp(Q∩εP(ω)) + εr ‖∇u‖rLp(Q∩εP(ω))

)
,

where r ≥ 1 and C > 0 are independent of ε.

Let us mention at this place existing results in literature. In recent years, Guillen and Kim [13] have
proved existence of uniformly bounded extension operators Uε : W 1,p

(
Qε

P̃
(ω)
)
→ W 1,p(Q) in

the context of minimally smooth surfaces, i.e. uniformly Lipschitz and uniformly bounded inclusions
with uniform minimal distance. A homogenization result of integral functionals on randomly perforated
domains with uniformly bounded inclusions was provided by Piat and Piatnitsky [33]. Concerning un-
bounded inclusions and non-uniformly Lipschitz geometries, the present work seems to be the first
approach. Since Problem 1.2 is easier to handle, we first explain our concept of microscopic regularity
in view of Tω and then go on to extension operators.

(δ,M)-Regularity and the Trace Operator

We introduce two concepts which are suited for the current and potentially also for further studies.
The first of these two concepts is inspired by the concept of minimal smoothness [35] and accounts
for the local regularity of ∂P. Deviating from [35] we will call it local (δ,M)-regularity (see Definition
4.2). Although this assumption is very weak, its consequences concerning local coverings of ∂P are
powerful. Based on this concept, we introduce the functions δ, ρ̂ and ρ on ∂P as well as M[η] and
M[η],Rd for η ∈ {δ, ρ̂, ρ} in Lemmas 4.4, 4.6, 4.8 and 4.12 and make the following assumptions:

Assumption 1.3. Let P(ω) be a random open set such that for 1 ≤ r < p0 < p and η ∈ {ρ, ρ̂, δ}
it holds either ˆ

Ω

η
− 1
p0−rdµΓ,P + E

(
M

(
1
p0

+1
)

p
p−p0

[ 1
8
η],Rd

)
<∞ ,

or

ˆ
Ω

(
ηM[ 1

16
η],Rd

)− 1
p−r

dµΓ,P <∞ .

Having studied the properties of (δ,M)-regular sets in detail in Sections 4.1 and 2.5 it is very easy to
prove the following trace theorem (for notations we refer to Section 2 and Section 4.1). Note that via a
simple rescaling, this provides a solution to Problem 1.1.

Theorem 1.4 (Solution of Problem 1.1). Let P(ω) be a stationary and ergodic random open set which
is almost surely locally (δ,M) regular and let Assumption 1.3 hold. For givenω let Tω : C1

(
P(ω)

)
→

C(∂P(ω)) be the trace operator. Then for almost every ω the extension Tω : W 1,p
loc (P(ω)) →

Lrloc(∂P(ω)) is continuous and there exists a constant Cω > 0 s.t. it holds for every bounded Lips-
chitz domain Q ⊃ B1(0) and every n ∈ N

‖Tωu‖Lr(∂P∩nQ) ≤ Cω ‖u‖W 1,p(Br(nQ)∩P) .

Proof. This is a consequence of Theorem 5.9, stationarity and ergodicity and the ergodic theorem.

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 6

Construction of Extension Operators

The main results of this work is on extension operators on randomly perforated domains. In order to
construct a suitable extension operator, we use

Step 1: (δ,M)-regularity Concerning extension results, the concept of (δ,M)-regularity suggests
the naive approach to use a local open covering of ∂P and to add the local extension operators via
a partition of unity in order to construct a global extension operator. We call this ansatz naive since
one would not chose this approach even in the periodic setting, as it is known to lead to unbounded
gradients. Nevertheless, this ansatz is followed in Section 5.2 for two reasons. The first reason is
illustration of an important principle: The extension operator U = Ũ + Û can be split up into a local
part Ũ , whose norm can be estimated by local properties of ∂P, and a global part Û whose norm is
determined by connectivity, an issue which has to be resolved afterwards, and corresponds to Step
2 in the proof of Theorem 3.2 below (periodic case), where one glues together the local extension
operators on the periodic cells. The second reason is that this first estimate, although it cannot be
applied globally, is very well suited for constructing a local extension operator. Lemma 5.6 hence
provides estimates of a certain extension operator which has the property that the constant in the
estimate tends to +∞ as the domain grows.

However, this first ansatz grants some insight into the structure of the extension problem. In particular,
we find the following result which will provide a better understanding of the Sobolev spaces W 1,p(Ω)
and W 1,r,p(Ω,P) on the probability space Ω.

Assumption 1.5. Let P(ω) be a random open set such that Assumption 5.5 hold and let d̂ be the
constant from (5.8).

1 Assume for r < p that

E

(
M̃

p(d̂+1)
p−r

[ 1
8
ρ̂]

)
+ E

(
M̃

p(d̂+α)
p−r

[ 1
8
ρ̂]

)
<∞ (1.2)

2 Assume for r < p0 < p1 < p that (1.2) and either

E
(
M̃

p1(d−2)(p0−r)
r(p1−p0)

[ 1
8
ρ̂]

)
+ E

(
M̃

αp1p
p−p1

[ 1
8
ρ̂]

)
+ E

(
ρ

1− rp0
p0−r

)
<∞

or

E
(
M̃αp0p

[ 1
8
ρ̂]

)
+ E

(
ρ
− rp0
p0−r

bulk

)
<∞ ,

where
ρbulk(x) := inf

{
ρ(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
ρ(x̃)(x̃)

}
,

Theorem 1.6. Let Assumption 1.5 hold and let τ be ergodic. Then for almost every ω the extension
operator U : W 1,p

loc (P(ω)) → W 1,r
loc

(
Rd
)

provided in (5.14) is well defined and for Q ⊂ Rd a
bounded domain with Lipschitz boundary there exists a constant C(ω) such that for every positive
n ≥ 1 and every u ∈ W 1,p(P(ω) ∩ Br(nQ))

1

nd |Q|

ˆ
nQ

(|Uu|r + |∇Uu|r) ≤ C(ω)

(
1

nd |Q|

ˆ
P(ω)∩Br(nQ)

|u|p + |∇u|p
) r

p

.

Proof. This follows from Lemmas 5.6, 5.8 and 4.13 on noting that∇φ0 ≤ Cρ−1
bulk.

Theorem 1.6, though useful, is not satisfactory for homogenization, as∇Uu is bounded by u and not
solely∇u. Therefore, some more work is needed.
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Step 2: isotropic cone mixing In order to account for the issue of connectedness in a proper
way on the macroscopic level, we propose our second fundamental concept of isotropic cone mixing
geometries (see Definition 4.17), which allow to construct a global Voronoi tessellation of Rd with good
local covering properties. This definition, though being rather technical, can be verified rather easily
using Criterion 4.18.

In short, isotropic cone mixing allows to distribute balls Bi = B r
2
(xi) of a uniform minimal radius 1

2
r

within P such that the centers xi of the balls Bi generate a Voronoi mesh of cells Gi with diameter
di, distributed according to a function f(d) (see Lemma 4.20). These Voronoi cells in general might
be of arbitrary large diameter di, although they are bounded in the statistical average. Due to this lack
of a uniform bound, we call the distribution of Voronoi cells the mesoscopic regularity of the geometry.

Step 3: gluing The Voronoi cells resulting from an isotropic cone mixing geometry are well suited
for the gluing of local extension operators. We will construct the macroscopic extension operator in
an analogue way to [21], replacing the periodic cells by the Voronoi cells (see Figure 5). In Theorem
6.3 we provide a first abstract result how the norm of the glued operator can be estimated from the
distribution of M , the geometry of the Voronoi mesh and the connectivity, even though the last two
properties enter rather indirectly. To make this more clear, we note at this points that the extension
operator depends on two types of local averages: To each Voronoi cell Gi we take the averageMiu
over Bi. Furthermore, to every local microscopic extension operator chosen in Section 5 there corre-
sponds a local average τju close to the boundary. We will see that the norm of the extension operator
strongly depends on the differences |Miu−Mju| and |Mju− τku|.
In Theorem 6.7 we will see that the dependence on |Miu−Mju| can be eliminated with the price
to increase the cost of “unfortunate distributions” of Gi and of the local (δ,M) regularity. The remain-
ing dependence which we leave unresolved is the dependence on |Mju− τku|. This dependence is
linked to quantitative connectedness properties of the geometry. By this we mean more than the topo-
logical question of connectedness. In particular, we need an estimate of the type |Mju− τku|r ≤´
Gi
C(x) |∇u(x)|r dx which will finally allow us an estimate of

∑
j,k |Mju− τku|r in terms of∇u.

Unfortunately, the classical percolation theory, which deals with connectedness of random geometries,
is not developed to answer this question. In this paper, we will use two workarounds which we call “sta-
tistically harmonic” and “statistically connected”. However, further research has to be conducted. We
state our first main theorem.

Theorem 1.7. Let P(ω) be a stationary ergodic random open set which is almost surely (δ,M)-
regular (Def. 4.2) and isotropic cone mixing for r > 0 and f(R) (Def. 4.17) and statistically harmonic
(Def. 6.9) and let 1 ≤ r < p ≤ ∞. Let Q ⊂ Rd be bounded open with Lipschitz boundary as well as
s ∈ (r, p) such that

E
(
M̃

2pd
p−r

)
< +∞ ,

∞∑
k=1

(k + 1)d(
2p−s
p−s )+(d+1)(2r+2) p

p−s+r( p
p−s−1) f(k) < +∞ ,

E

sup
R

1

Rd

ˆ
BR(0)

(∑
k

P (dk)χA4,k
Ck

) p
p−s
 < +∞ .

Then for almost every ω the extension operator U : W 1,p
loc (P(ω)) → W 1,r

loc

(
Rd
)

provided in (6.6) is
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well defined with a constant C(ω) such that for every positive n ≥ 1

1

nd |Q|

ˆ
nQ

|Uu|r ≤ C(ω)

(
1

nd |Q|

ˆ
P(ω)∩nQ

|u|p
) r

p

1

nd |Q|

ˆ
nQ

|∇Uu|r ≤ C(ω)

(
1

nd |Q|

ˆ
P(ω)∩nQ

|∇u|p
) r

p

.

Proof. This follows from Theorems 6.3, 6.7 and 6.10 on noting that in the general case we have to
assume α = d̂ = d. Furthermore, we need Lemma 4.21.

In practical applications, one would need to verify whether P is statistically harmonic via numerical
simulations. The problem particularly results in the numerical evaluation of a Laplace operator.

Based on this insight, we develop an alternative approach: The connectedness of P is quantified
by introducing directly a discrete graph on P and a discrete Poisson equation on this graph. The
construction of the graph and the evaluation of the Poisson equation can be done numerically, but
with the advantage that the discrete quantities are now directly connected to the analytical theory.
Additionally to the (δ,M)-regularity we have to deal with the average diameter dj of the cells of a the
global Voronoi tessellation and the local stretch factor Sj . We impose the following assumptions:

Assumption 1.8. Let P(ω) be a random open set such that Assumption 5.5 hold and let d̂ be the
constant from (5.8). Let (1.2) and for r < s̃ < s < p let either

E
(
M̃

p1(d−2)(s̃−r)
r(s−s̃)

[ 1
8
ρ̂]

)
+ E

(
ρ1− s̃r

s̃−r

)
<∞

or
E
(
ρ
− sr
s−r

bulk

)
<∞ .

Furthermore, let P(ω) be almost surely isotropic cone mixing for r > 0 and f(R) (Def. 4.17) as well
as locally connected and let the local stretch factor (see Definition Theorem 7.7 and Definition 7.8)
satisfy P(S > S0) ≤ fs(S0) such that

∞∑
k=1

(k + 1)2d+
r(d−1)+drs

s−r f(k) < +∞ ,

∞∑
k,N=1

[(N + 1) (k + 1)]d
2p−s
p−s + s−1

s
p
p−s+r s

p−s (k + 1)d
p
p−s f(k)fS(N) < +∞ .

The second main theorem can be formulated as follows:

Theorem 1.9. Let P(ω) be a stationary ergodic random open set which is almost surely (δ,M)-
regular (Def. 4.2) and isotropic cone mixing for r > 0 and f(R) (Def. 4.17) as well as locally connected
and satisfy P(S > S0) ≤ fs(S0) such that Assumption 1.8 holds. For 1 ≤ r < s̃ < s < p ≤ ∞ and
Q ⊂ Rd a bounded domain with Lipschitz boundary. Then for almost every ω the extension operator
U : W 1,p

loc (P(ω)) → W 1,r
loc

(
Rd
)

provided in (6.6) is well defined with a constant C(ω) such that for

every positive n ≥ 1 and every u ∈ W 1,p
0,∂Q(P(ω) ∩ nQ)

1

nd |Q|

ˆ
nQ

|Uu|r ≤ C(ω)

(
1

nd |Q|

ˆ
P(ω)∩nQ

|u|p
) r

p

, (1.3)

1

nd |Q|

ˆ
nQ

|∇Uu|r ≤ C(ω)

(
1

nd |Q|

ˆ
P(ω)∩nQ

|∇u|p
) r

p

. (1.4)
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Stochastic homogenization on perforated domains 9

Proof. We combine Theorem 6.3 with Lemmas 6.4 and 6.5 as well as Lemmas 4.13 and 4.21 to obtain
the first and second condition. The remaining condition is inferred from Theorem 7.7 and Lemma
4.21.

Sobolev Spaces on Ω

Besides the evident benefit of the above extension and trace theorems, let us note that these theorems
are also needed for the construction of the suitable Sobolev spaces on Ω. In Section 9 we recall some
standard construction of Sobolev spaces on the probability space Ω and provide some links between
two major approaches which seem to be hard to find in one place. We will need this summing up in
order to better illustrate the generalization to perforated domains.

To understand our ansatz, we recall a result from [14] that there exist P ⊂ Ω and Γ ⊂ Ω such that for
almost every ω ∈ Ω χP(ω)(x) = χP(τxω) and χΓ(ω)(x) = χΓ(τxω), where Γ(ω) := ∂P(ω).
The random set P(ω) leads to Sobolev spaces W 1,p(P(ω)), e.g. by defining W 1,p(P(ω)) :={
χP(ω)u : u ∈ W 1,p(Rd)

}
. We will see that we can introduce spacesW 1,p(P), but this construction

is more involved than in Rd and heavily relies on the almost sure extension property guarantied by
Theorem 1.6. Once we have introduced the spaces W 1,p(P) we can also introduce “trace”-operators
TΩ : W 1,p(P) → Lr(Γ), where Γ ⊂ Ω with χΓ(ω)(x) = χΓ(τxω), and Lr(Γ) is to be understood
w.r.t. the Palm measure on Γ. This construction will rely on Theorems 1.6 and 1.4. In all our results, we
only provide sufficient conditions for the existence of the respective spaces and operators. Necessary
conditions are left for future studies.

Discussion: Random Geometries and Applicability of the Method

In Section 10 we will discuss how the present results can be applied in the framework of the stochastic
two-scale convergence method. However, this concerns only the analytic aspect of applicability.

The more important question is the applicability of the presented theory from the point of view of
random geometries. Of course our result can be applied to periodic geometries and hence also to
stochastic geometries which originate from random perturbations of periodic geometries as long as
these perturbations are - in the statistical average - “not to large”. However, it is a well justified question
if the estimates presented here are applicable also for other models.

In Section 8 we discuss three standard models from the theory of stochastic geometries. The first
one is the Boolean model based on a Poisson point process. Here we can show that the micro- and
mesoscopic assumptions are fulfilled, at least in case P is given as the union of balls. If we choose
P as the complement of the balls, we currently seem to run into difficulties. However, this problem
might be overcome using a Matern modification of the Poisson process. We deal with such Matern
modifications in Section 8.2. What remains challenging in both settings are the proofs of statistical
harmony or statistical connectivity. However, if the Matern process strongly excludes points that are to
close to each other, the connectivity issue can be resolved.

A further class which will be discussed are a system of Delaunay pipes based on a Matern process. In
this case, even though the geometry might locally become very irregular, all properties can be verified.
Hence, we identified at least one non-trivial, non-quasi-periodic geometry to which our approach can
be applied for sure.

The above mentioned construction of Sobolev spaces and the application in the homogenization result
of Theorem 10.20 clearly demonstrate the benefits of the new methodology.
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Notes

Structure of the article

We close the introduction by providing an overview over the article and its main contributions. In
Section 2 we collect some basic concepts and inequalities from the theory of Sobolev spaces, ran-
dom geometries and discrete and continuous ergodic theory. We furthermore establish local regularity
properties for what we call η-regular sets, as well as a related covering theorem in Section 2.5. In Sec-
tion 2.11 we will demonstrate that stationary ergodic random open sets induce stationary processes
on Zd, a fact which is used later in the construction of the mesoscopic Voronoi tessellation in Section
4.2.

In Section 3 we provide a proof of the periodic extension result in a simplified setting. This is for
completeness and self-containedness of the paper, in order to make a comparison between stochastic
and periodic approach easily accessible to the reader.

In Section 4 we introduce the regularity concepts of this work. More precisely, in Section 4.1 we
introduce the concept of local (δ,M)-regularity and use the theory of Section 2.5 in order to establish
a local covering result for ∂P, which will allow us to infer most of our extension and trace results. In
Section 4.2 we show how isotropic cone mixing geometries allow us to construct a stationary Voronoi
tessellation of Rd such that all related quantities like “diameter” of the cells are stationary variables
whose expectation can be expressed in terms of the isotropic cone mixing function f . Moreover we
prove the important integration Lemma 4.21.

In Sections 5–7 we finally provide the aforementioned extension operators and prove estimates for
these extension operators and for the trace operator.

In Section 8 we study some sample geometries and in Section 10 we discuss the homogenization
problem.

A Remark on Notation

This article uses concepts from partial differential equations, measure theory, probability theory and
random geometry. Additionally, we introduce concepts which we believe have not been introduced
before. This makes it difficult to introduce readable self contained notation (the most important aspect
being symbols used with different meaning) and enforces the use of various different mathematical
fonts. Therefore, we provide an index of notation at the end of this work. As a rough orientation, the
reader may keep the following in mind:

We use the standard notation N, Q, R, Z for natural (> 0), rational, real and integer numbers. P
denotes a probability measure, E the expectation. Furthermore, we use special notation for some
geometrical objects, i.e. Td = [0, 1)d for the torus (T equipped with the topology of the torus), Id =
(0, 1)d the open interval as a subset of Rd (we often omit the index d), B a ball, C a cone and X a set
of points. In the context of finite sets A, we write #A for the number of elements.

Bold large symbols (U, Q, P,. . . ) refer to open subsets of Rd or to closed subsets with ∂P = ∂P̊.
The Greek letter Γ refers to a d− 1 dimensional manifold (aside from the notion of Γ-convergence).

Calligraphic symbols (A, U , . . . ) usually refer to operators and large Gothic symbols (B,C, . . . )
indicate topological spaces, except for A.
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Stochastic homogenization on perforated domains 11

2 Preliminaries

We first collect some notation and mathematical concepts which will be frequently used throughout
this paper. We first start with the standard geometric objects, which will be labeled by bold letters.

2.1 Fundamental Geometric Objects

Unit cube The torus T = [0, 1)d has the topology of the metric d(x, y) = minz∈Zd |x− y + z|. In
contrast, the open interval Id := (0, 1)d is considered as a subset of Rd. We often omit the index d if
this does not provoke confusion.

Balls Given a metric space (M,d) we denote Br(x) the open ball around x ∈ M with radius
r > 0. The surface of the unit ball in Rd is Sd−1.

Points A sequence of points will be labeled by X := (xi)i∈N.

A cone in Rd is usually labeled by C. In particular, we define for a vector ν of unit length, 0 < α < π
2

and R > 0 the cone

Cν,α,R(x) := {z ∈ BR(x) : z · ν > |z| cosα} and Cν,α(x) := Cν,α,∞(x) .

Inner and outer hull We use balls of radius r > 0 to define for a closed set P ⊂ Rd the sets

Pr := Br(P) :=
{
x ∈ Rd : dist (x,P) ≤ r

}
,

P−r := Rd\
[
Br
(
Rd \P

)]
:=
{
x ∈ Rd : dist

(
x,Rd \P

)
≥ r
}
.

(2.1)

One can consider these sets as inner and outer hulls of P. The last definition resembles a concept of
“negative distance” of x ∈ P to ∂P and “positive distance” of x 6∈ P to ∂P. For A ⊂ Rd we denote
conv(A) the closed convex hull of A.

The natural geometric measures we use in this work are the Lebesgue measure on Rd, written |A| for
A ⊂ Rd, and the k-dimensional Hausdorff measure, denoted byHk on k-dimensional submanifolds
of Rd (for k ≤ d).

2.2 Local Extensions and Traces

Let P ⊂ Rd be an open set and let p ∈ ∂P and δ > 0 be a constant such that Bδ(p) ∩ ∂P is graph
of a Lipschitz function. We denote

M(p, δ) := inf
{
M : ∃φ : U ⊂ Rd−1 → R

φ Lipschitz, with constant M s.t. Bδ(p) ∩ ∂P is graph of φ} . (2.2)

Remark 2.1. For every p, the function M(p, ·) is monotone increasing in δ.

In the following, we formulate some extension and trace results. Although it is well known how such
results are proved and the proofs are standard, we include them for completeness.

Lemma 2.2 (Uniform Extension for Balls). Let P ⊂ Rd be an open set, 0 ∈ ∂P and assume there
exists δ > 0, M > 0 and an open domain U ⊂ Bδ(0) ⊂ Rd−1 such that ∂P ∩ Bδ(0) is graph of
a Lipschitz function ϕ : U ⊂ Rd−1 → Rd of the form ϕ(x̃) = (x̃, φ(x̃)) in Bδ(0) with Lipschitz
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constant M and ϕ(0) = 0. Writing x = (x̃, xd) and defining ρ = δ
√

4M2 + 2
−1

there exist an
extension operator

(Uu) (x) =

{
u(x) if xd < φ(x̃)

4u
(
x̃,−xd

2
+ 3

2
φ(x̃)

)
− 3u (x̃,−xd + 2φ(x̃)) if xd > φ(x̃)

, (2.3)

such that for
A (0,P, ρ) := {(x̃,−xd + 2φ(x̃)) : (x̃, xd) ∈ Bρ(0)\P} , (2.4)

and for every p ∈ [1,∞] the operator

U : W 1,p(A (0,P, ρ))→ W 1,p(Bρ(0)) ,

is continuous with

‖Uu‖Lp(Bρ(0)\P) ≤ 7 ‖u‖Lp(A(0,P,ρ)) , ‖∇Uu‖Lp(Bρ(0)\P) ≤ 14M ‖∇u‖Lp(A(0,P,ρ)) . (2.5)

Remark 2.3. It is well known ([10, chapter 5]) that for every bounded domain U ⊂ Rd with C0,1-
boundary there exists a continuous extension operator U : W 1,p(U)→ W 1,p(Rd).

Proof of Lemma 2.2. The extended function ϕ : U × R → U × R, ϕ(x) = (x̃, φ(x̃) + xd) is
bijective with ϕ−1(x) = (x̃, xd − φ(x̃)). In particular, both ϕ and ϕ−1 are Lipschitz continuous with
Lipschitz constant M + 1.

W.l.o.g. we assume that

ϕ (U × (−∞, 0)) ∩ Bδ(0) = P ∩ Bδ(0) ∩ (U × R)

implying ϕ (U × (0,∞)) ∩P = ∅.
Step 1: We consider the extension operator U+ : W 1,p(Rd−1 × (−∞, 0))→ W 1,p(Rd) having the
form [10, chapter 5], [1]

(U+u) (x) =

{
u(x) if xd < 0

4u
(
x̃,−xd

2

)
− 3u (x̃,−xd) if xd > 0

.

We make use of this operator and define

Uu(x) := (U+ (u ◦ ϕ)) ◦ ϕ−1(x) .

Note that all three operators u 7→ u ◦ ϕ, U+ and v 7→ v ◦ ϕ−1 map W 1,p-functions to W 1,p-
functions. By the definition of U+ we may explicitly calculate (2.3). In particular, Uu(x) is well defined
for x ∈ Bδ(0)\P whenever

(x̃,−xd + 2φ(x̃)) ∈ Bδ(0) . (2.6)

Step 2: We seek for ρ > 0 such that (2.6) is satisfied for every x ∈ Bρ(0)\P and such that
A (0,P, ρ) ⊂ Bδ(0). For ρ < δ and x = (x̃, xd) ∈ Bρ(0), we find with ϕ(0) = 0 and |xd| ≤√
ρ2 − |x̃|2 that

−xd + 2φ(x̃) ∈ (xd − 2M |x̃| , xd + 2M |x̃|)

⊂
(
−
√
ρ2 − |x̃|2 − 2M |x̃| ,

√
ρ2 − |x̃|2 + 2M |x̃|

)
.
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Stochastic homogenization on perforated domains 13

In particular,
max

(x̃,xd)∈Bρ(0)\P
|−xd + 2φ(x̃)| ≤ ρ

√
4M2 + 1

and (2.6) holds if
|−xd + 2φ(x̃)|2 + |x̃|2 ≤ ρ2

(
4M2 + 1

)
+ ρ2 ≤ δ2 .

Hence we require ρ = δ
√

4M2 + 2
−1

. It is now easy to verify (2.5) from the definition of U and the
chain rule.

Lemma 2.4. Let P ⊂ Rd be an open set, 0 ∈ ∂P and assume there exists δ > 0, M > 0 and an
open domain U ⊂ Bδ(0) ⊂ Rd−1 such that ∂P ∩ Bδ(0) is graph of a Lipschitz function ϕ : U ⊂
Rd−1 → Rd of the form ϕ(x̃) = (x̃, φ(x̃)) in Bδ(0) with Lipschitz constantM and ϕ(0) = 0. Writing
x = (x̃, xd) we consider the trace operator T : C1 (P ∩ B2δ(0)) → C (∂P ∩ Bδ(0)). For every
p ∈ [1,∞] and every r < p(1−d)

(p−d)
the operator T can be continuously extended to

T : W 1,p (P ∩ B2δ(0))→ Lr(∂P ∩ Bδ(0)) ,

such that

‖T u‖Lr(∂P∩Bδ(0)) ≤ Cr,pδ
d(p−r)
rp
− 1
r

√
4M2 + 2

1
r

+1
‖u‖W 1,p(P∩B2δ(0)) . (2.7)

Proof. We proceed similar to the proof of Lemma 2.2.

Step 1: WritingBδ = Bδ(0) together withB−δ = {x ∈ Bδ : xd < 0} and Σδ := {x ∈ Bδ : xd = 0}
we recall the standard estimate(ˆ

Σ1

|u|r
) 1

r

≤ Cr,p

(ˆ
B−1

|∇u|p
) 1

p

+

(ˆ
B−1

|u|p
) 1

p

 ,

which leads to(ˆ
Σδ

|u|r
) 1

r

≤ Cr,pδ
d(p−r)
rp
− 1
r

(ˆ
B−δ

|∇u|p
) 1

p

+

(ˆ
B−δ

|u|p
) 1

p

 .

Step 2: Using the transformation rule and the fact that 1 ≤ |detDϕ| ≤
√

4M2 + 2 we infer (2.7)
similar to Step 2 in the proof of Lemma 2.2.(ˆ

∂P∩Bδ(0)

|u|r
) 1

r

≤
√

4M2 + 2
1
r

(ˆ
Σδ

|u ◦ ϕ|r
) 1

r

≤ Cr,pδ
d(p−r)
rp
− 1
r

√
4M2 + 2

1
r

(ˆ
B−δ

|∇ (u ◦ ϕ)|p
) 1

p

+

(ˆ
B−δ

|u ◦ ϕ|p
) 1

p


≤ Cr,pδ

d(p−r)
rp
− 1
r

√
4M2 + 2

1
r

+1
·

·

(ˆ
B−δ

|(∇u) ◦ ϕ|p detDϕ

) 1
p

+

(ˆ
B−δ

|u ◦ ϕ|p detDϕ

) 1
p


and from this we conclude the Lemma.
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2.3 Poincaré Inequalities

We denote

W 1,p
(0),r(Br(0)) :=

{
u ∈ W 1,p(Br(0)) : ∃x : Br(x) ⊂ Br(0) ∨

 
Br(x)

u = 0

}
.

Note that this is not a linear vector space.

Lemma 2.5. For every p ∈ (1,∞) there exists Cp > 0 such that the following holds: Let r < 1 and
x ∈ B1(0) such that Br(x) ⊂ B1(0) then for every u ∈ W 1,p(B1(0))

‖u‖pLp(B1(0)) ≤ Cp

(
‖∇u‖pLp(B1(0)) +

1

rd
‖u‖pLp(Br(x))

)
, (2.8)

and for every u ∈ W 1,p
(0),r(B1(0)) it holds

‖u‖pLp(B1(0)) ≤ Cp
(
1 + rp−d

)
‖∇u‖pLp(B1(0)) . (2.9)

Remark. In case p ≥ d we find that (2.9) holds iff u(x) = 0 for some x ∈ B1(0).

Proof. In a first step, we assume x = 0. The underlying idea of the proof is to compare every u(y),
y ∈ B1(0)\Br(0) with u(rx). In particular, we obtain for y ∈ B1(0)\Br(0) that

u(y) = u(ry) +

ˆ 1

0

∇u(ry + t(1− r)y) · (1− r)y dt

and hence by Jensen’s inequality

|u(y)|p ≤ C

(ˆ 1

0

|∇u(ry + t(1− r)y)|p (1− r)p |y|p dt+ |u(ry)|p
)
.

We integrate the last expression over B1(0)\Br(0) and find
ˆ
B1(0)\Br(0)

|u(y)|p dy ≤
ˆ
Sd−1

ˆ 1

r

C

(ˆ 1

0

|∇u(rsν + t(1− r)sν)|p (1− r)psp dt

)
sd−1dsdν

+

ˆ
B1(0)\Br(0)

|u(ry)|p dy

≤
ˆ
Sd−1

ˆ 1

r

C

(ˆ s

rs

|∇u(tν)|p (1− r)p−1sp−1 dt

)
sd−1ds

+

ˆ
B1(0)\Br(0)

|u(ry)|p dy

≤ C ‖∇u‖pLp(B1(0)) +
1

rd
‖u‖pLp(Br(0)) .

For general x ∈ B1(0), use the extension operator U : W 1,p(B1(0))→ W 1,p(B4(0)) (see Remark
2.3) such that ‖Uu‖W 1,p(B4(0)) ≤ C ‖u‖W 1,p(B1(0)) and ‖∇Uu‖W 1,p(B4(0)) ≤ C ‖∇u‖W 1,p(B1(0)).
Since B1(0) ⊂ B2(x) ⊂ B4(0) we infer

‖u‖pLp(B1(0)) ≤ ‖Uu‖
p
Lp(B2(x)) ≤ C

(
‖∇Uu‖pLp(B2(x)) +

1

rd
‖Uu‖pLp(Br(x))

)
.

and hence (2.8). Furthermore, since there holds ‖u‖pLp(B1(0)) ≤ C ‖∇u‖pLp(B1(0)) for every u ∈
W 1,p

(0) (B1(0)), a scaling argument shows ‖u‖pLp(Br(0)) ≤ Crp ‖∇u‖pLp(Br(0)) for every

u ∈ W 1,p
(0),r(B1(0)) and hence (2.9).
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Lemma 2.6. Let 0 < r < R < ∞ and p ∈ (1,∞) and q ≤ pd/(d − p) (if p < d) or q = ∞
(if p ≥ d). Then there exists Cp,q such that for every convex set P with polytope boundary ∂P ⊂
BR(0)\Br(0)

‖u‖pLq(P) ≤ Cp,qR
−d(1− p

q )

(ˆ
P

(
Rp

(
R

r

)p+1

|∇u|p +
Rd+1

rd+1
|u|p
))

, (2.10)

and for every u ∈ W 1,p
(0),r (BR(0))

‖u‖pLq(BR(0)) ≤ Cp,q(R, r) ‖∇u‖pLp(BR(0)) , (2.11)

where

Cp,q(R, r) := Cp,qR
−d(1− p

q )+p

((
R

r

)p+1

+

(
R

r

)d+1
)

(2.12)

Remark 2.7. For the critical Sobolev index q = pd
d−p we infer d

(
1− p

q

)
= p.

Proof. First note that by a simple scaling argument based on the integral transformation rule the
equations (2.8) yields for every u ∈ W 1,p(Br(0))

‖u‖pLq(BR(0)) ≤ Cp,qR
−d(1− p

q )
(
Rp ‖∇u‖pLp(BR(0)) +

Rd

rd
‖u‖pLp(Br(0))

)
(2.13)

and (2.9) yields for every u ∈ W 1,p
(0),r(Br(0))

‖u‖pLq(BR(0)) ≤ Cp,qR
pR−d(1− p

q )
(

1 +
( r
R

)p−d)
‖∇u‖pLp(BR(0)) . (2.14)

Now, for ν ∈ Sd−1 we denote P (ν) as the unique p ∈ ∂P ∩ (0,∞)ν and for x ∈ Rd\{0} we
denote νx := x

‖x‖ and consider the bijective Lipschitz map

ϕP : P→ Br(0) , x 7→ R
x

‖P (νx)‖
.

Then we infer from (2.13)∥∥u ◦ ϕ̃−1
P

∥∥p
Lq(BR(0))

≤ CR−d(1− p
q )
(
Rp
∥∥∇ (u ◦ ϕ̃−1

P

)∥∥p
Lp(BR(0))

+
Rd

rd
∥∥u ◦ ϕ̃−1

P

∥∥p
Lp(Br(0))

)
or, after transformation of integrals,(ˆ

P

|u|q |det Dϕ̃P |
) p

q

≤ CR−d(1− p
q )
(ˆ

P

(
Rp
∣∣(∇u) (Dϕ̃P )−1

∣∣p +
Rd

rd
χϕ̃−1

P Br(0) |u|
p

)
|det Dϕ̃P |

)
.

It remains to estimate the derivatives of ϕP . In polar coordinates, the radial derivative is ∂rϕP (x) =
R

‖P (νx)‖ , while the tangential derivative is more complicated to calculate. However, in case ν⊥TP (ν)

we obtain ∂Sd−1ϕP (x) = IRd−1 , which is by the same time the minimal absolute value for each
tangential derivative, and ∂Sd−1ϕP (x) becomes maximal in edges where 2 tanα = r−1

√
R2 − r2

and ‖∂ϕP‖ (x0) =
∥∥∥ R
‖x0‖ id−

Rx0

‖x0‖3
⊗ x
∥∥∥ ≤ 2R

r
(see Figure ...... ).Now we make use of the fact

that ϕ̃P increases the volume locally with a rate smaller than ‖∂ϕP‖and hence |det Dϕ̃P | ≥ 1. On
the other hand, we have

∣∣(Dϕ̃P )−1
∣∣ < R

r
and hence (2.10). In a similar way we infer (2.11) from

(2.14).
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Figure 1: An illustration of η-regularity. In The-
orem 2.13 we will rely on a “gray” region like
in this picture.

2.4 Voronoi Tessellations and Delaunay Triangulation

Definition 2.8 (Voronoi Tessellation). Let X = (xi)i∈N be a sequence of points in Rd with xi 6= xk if
i 6= k. For each x ∈ X let

G(x) :=
{
y ∈ Rd : ∀x̃ ∈ X\ {x} : |x− y| < |x̃− y|

}
.

Then (G(xi))i∈N is called the Voronoi tessellation of Rd w.r.t. X. For each x ∈ X we define d(x) :=
diamG(x).

We will need the following result on Voronoi tessellation of a minimal diameter.

Lemma 2.9. Let r > 0 and let X = (xi)i∈N be a sequence of points in Rd with |xi − xk| > 2r if
i 6= k. For x ∈ X let I(x) := {y ∈ X : G(y) ∩ Br(G(x)) 6= ∅}. Then

#I(x) ≤
(

4d(x)

r

)d
. (2.15)

Proof. Let Xk =
{
xj ∈ X : Hd−1(∂Gk ∩ ∂Gj) ≥ 0

}
the neighbors of xk and dk := d(xk). Then

all xj ∈ X satisfy |xk − xj| ≤ 2dk. Moreover, every x̃ ∈ X with |x̃− xk| > 4dk has the property
that dist( ∂G (x̃) , xk ) > 2dk > dk + r and x̃ 6∈ Ik. Since every Voronoi cell contains a ball of

radius r, this implies that #Ik ≤ |B4dk(xk)| / |Br(0)| =
(

4dk
r

)d
.

Definition 2.10 (Delaunay Triangulation). Let X = (xi)i∈N be a sequence of points in Rd with xi 6=
xk if i 6= k. The Delaunay triangulation is the dual graph of the Voronoi tessellation, i.e. we say
D(X) :=

{
(x, y) : Hd−1(∂G(x) ∩ ∂G(y)) 6= 0

}
.

2.5 Local η-Regularity

We say that a function F : A→ {0, 1} holds “true” in a ∈ A if F (a) = 1 and “false” if F (a) = 0.

Definition 2.11 (η-regularity). A set P ⊂ Rd is called locally η-regular with f : P× (0, r]→ {0, 1}
and r > 0 if f(p, ·) is decreasing and

f(p, η) = 1 ⇒ ∀ ε ∈
(

0,
1

2

)
, p̃ ∈ Bεη(p) ∩P , η̃ ∈ (0, (1− ε)η) : f(p̃, η̃) = 1 . (2.16)

For p ∈ P we write η(p) := sup {η ∈ (0, r) : f(p, η) = 1}.
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Lemma 2.12. Let P be a locally η-regular set with f and r and η(p). Then η : P → R is locally
Lipschitz continuous with Lipschitz constant 4 and for every ε ∈

(
0, 1

2

)
and p̃ ∈ Bεη(p) ∩P it holds

1− ε
1− 2ε

η(p) > η(p̃) > η(p)− |p− p̃| > (1− ε) η(p) . (2.17)

Furthermore,

|p− p̃| ≤ εmax {η(p), η(p̃)} ⇒ |p− p̃| ≤ ε

1− ε
min {η(p), η(p̃)} (2.18)

Proof. We infer from (2.16) for every ε ∈
(
0, 1

2

)
and p̃ such that |p̃− p| < εη(p) let η̃ < η(p) such

that also |p̃− p| < εη̃. It then holds f(p̃, (1− ε) η̃) = 1 and hence η(p̃) ≥ (1− ε) η̃. Taking the
supremum over sup {η̃ : η̃ < η(p)} we find η(p̃) ≥ (1− ε) η(p) i.e.

η(p̃) ≥ sup
p̂
{(1− ε) η(p̂) : |p̃− p̂| < εη(p̂)}

≥ η(p)− |p− p̃| > (1− ε) η(p)

which implies |p̃− p| < ε
1−εη(p̃). This in turn leads to η(p) >

(
1− ε

1−ε

)
η(p̃) or

η(p) =
1− ε
1− ε

η(p) <
1

1− ε
(η(p)− |p− p̃|) < 1

1− ε
η(p̃) ≤ 1

1− 2ε
η(p) ,

implying (2.17) and continuity of η.

Let |p− p̃| = εη(p) ≤ 2εη(p̃), the last inequality particularly implies also η(p) ≥ (1− 2ε) η(p̃).
Together with |p− p̃| ≤ 2εη(p̃) ≤ 4εη(p) = 4 |p− p̃| we have

4 |p− p̃| ≥ 2εη(p̃) ≥ η(p̃)− η(p) ≥ −εη(p) = − |p− p̃| .

Finally, in order to prove (2.18), w.l.o.g. let η(p̃) ≤ η(p). Then

|p− p̃| ≤ εη(p) ≤ ε

1− ε
η(p̃) .

We make use of the latter Lemmas in order to prove the following covering-regularity of ∂P.

Theorem 2.13. Let Γ ⊂ Rd be a closed set and let η(·) ∈ C(Γ) be bounded and satisfy for every
ε ∈

(
0, 1

2

)
and for |p− p̃| < εη(p)

1− ε
1− 2ε

η(p) > η(p̃) > η(p)− |p− p̃| > (1− ε) η(p) . (2.19)

and define η̃(p) = 2−Kη(p), K ≥ 2. Then for every C ∈ (0, 1) there exists a locally finite covering
of Γ with balls Bη̃(pk)(pk) for a countable number of points (pk)k∈N ⊂ Γ such that for every i 6= k
with Bη̃(pi)(pi) ∩ Bη̃(pk)(pk) 6= ∅ it holds

2K−1 − 1

2K−1
η̃(pi) ≤ η̃(pk) ≤

2K−1

2K−1 − 1
η̃(pi)

and
2K − 1

2K−1 − 1
min {η̃(pi), η̃(pk)} ≥ |pi − pk| ≥ C max {η̃(pi), η̃(pk)}

(2.20)
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Proof. W.o.l.g. assume η̃ < (1 − δ). Consider Q̃ :=
[
0, 1

n

]d
, let q1,...,nd denote the nd elements of

[0, 1)d ∩ Qd
n

and let Q̃z,i = Q̃ + z + qi. We set B(0) := ∅, Γ1 = Γ, ηk := (1− δ)k and for k ≥ 1
we construct the covering using inductively defined open sets B(k) and closed set Γk as follows:

1 Define Γk,1 = Γk. For i = 1, . . . , nd do the following:

1.1 For every z ∈ Zd do

if ∃p ∈
(
ηkQ̃z,i

)
∩ Γk,i, η̃(p) ∈ (ηk, ηk−1] then set bz,i = Bη̃(p)(p) , Xz,i = {p}

otherwise set bz,i = ∅ , Xz,i = ∅ .

1.2 Define B(k),i :=
⋃
z∈Zd bz,i and Γk,i+1 = Γk\B(k),i and X(k),i :=

⋃
z∈Zd Xz,i.

Observe: p1, p2 ∈ X(k),i implies |p1 − p2| >
(
1− 1

n

)
ηk and p3 ∈ X(k),j , j < i

implies p1 6∈ Bηk(p3) and hence |p1 − p3| > ηk. Similar, p3 ∈ Xl, l < k, implies
|p1 − p3| > ηl > ηk.

2 Define Γk+1 := Γk,2d+1, Xk :=
⋃
iX(k),i.

The above covering of Γ is complete in the sense that every x ∈ Γ lies into one of the balls (by
contradiction). We denote X :=

⋃
k Xk = (pi)i∈N the family of centers of the above constructed

covering of Γ and find the following properties: Let p1, p2 ∈ X be such that Bη̃(p1)(p1)∩Bη̃(p2)(p2) 6=
∅. W.l.o.g. let η̃(p1) ≥ η̃(p2). Then the following two properties are satisfied due to (2.19)

1 It holds |p1 − p2| ≤ 2η̃(p1) ≤ 1
2K−1η(p1) and hence Bη̃(p2)(p2) ⊂ B22−Kη(p1)(p1) and

η(p2) ≥ 2K−1−1
2K−1 η(p1). Furthermore η̃(p1) ≥ η̃(p2) ≥ 2K−1−1

2K−1 η̃(p1).

2 Let k such that η̃(p1) ∈ (ηk, ηk+1]. If also η̃(p2) ∈ (ηk, ηk+1] then observation 1.(b) implies
|p1 − p2| ≥

(
1− 1

n

)
ηk ≥

(
1− 1

n

)
(1− δ) η̃(p1). If η̃(p2) 6∈ [ηk, ηk+1) then η̃(p2) < ηk

and hence p2 6∈ Bη̃(p1)(p1), implying |p1 − p2| > η̃(p1).

Choosing n and δ appropriately, this concludes the proof.

2.6 Dynamical Systems

Assumption 2.14. Throughout this work we assume that (Ω,F ,P) is a probability space with count-
ably generated σ-algebra F .

Due to the insight in [14], shortly sketched in the next two subsections, after a measurable transfor-
mation the probability space Ω can be assumed to be metric and separable, which always ensures
Assumption 2.14.

Definition 2.15 (Dynamical system). A dynamical system on Ω is a family (τx)x∈Rd of measurable
bijective mappings τx : Ω 7→ Ω satisfying (i)-(iii):

(i) τx ◦ τy = τx+y , τ0 = id (Group property)

(ii) P(τ−xB) = P(B) ∀x ∈ Rd, B ∈ F (Measure preserving)

(iii) A : Rd × Ω→ Ω (x, ω) 7→ τxω is measurable (Measurability of evaluation)
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A set A ⊂ Ω is almost invariant if P ((A ∪ τxA) \ (A ∩ τxA)) = 0. The family

I =
{
A ∈ F : ∀x ∈ Rd P ((A ∪ τxA) \ (A ∩ τxA)) = 0

}
(2.21)

of almost invariant sets is σ-algebra and

E (f |I ) denotes the expectation of f : Ω→ R w.r.t. I . (2.22)

A concept linked to dynamical systems is the concept of stationarity.

Definition 2.16 (Stationary). Let X be a measurable space and let f : Ω × Rd → X . Then f is
called (weakly) stationary if f(ω, x) = f(τxω, 0) for (almost) every x.

Definition 2.17. A family (An)n∈N ⊂ Rd is called convex averaging sequence if

(i) each An is convex

(ii) for every n ∈ N holds An ⊂ An+1

(iii) there exists a sequence rn with rn →∞ as n→∞ such that Brn(0) ⊆ An.

We sometimes may take the following stronger assumption.

Definition 2.18. A convex averaging sequence An is called regular if

|An|−1 #
{
z ∈ Zd : (z + T) ∩ ∂An 6= ∅

}
→ 0 .

The latter condition is evidently fulfilled for sequences of cones or balls. Convex averaging sequences
are important in the context of ergodic theorems.

Theorem 2.19 (Ergodic Theorem [8] Theorems 10.2.II and also [36]). Let (An)n∈N ⊂ Rd be a convex
averaging sequence, let (τx)x∈Rd be a dynamical system on Ω with invariant σ-algebra I and let
f : Ω→ R be measurable with |E(f)| <∞. Then for almost all ω ∈ Ω

|An|−1

ˆ
An

f(τxω) dx→ E(f |I ) . (2.23)

We observe that E (f |I ) is of particular importance. For the calculations in this work, we will partic-
ularly focus on the case of trivial I . This is called ergodicity, as we will explain in the following.

Definition 2.20 (Ergodicity and Mixing). A dynamical system (τx)x∈Rd which is given on a probability
space (Ω,F ,P) is called mixing if for every measurable A,B ⊂ Ω it holds

lim
‖x‖→∞

P(A ∩ τxB) = P(A)P(B) . (2.24)

A dynamical system is called ergodic if

lim
n→∞

1

(2n)d

ˆ
[−n,n]d

P(A ∩ τxB)dx = P(A)P(B) . (2.25)
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Remark 2.21. a) Let Ω = {ω0 = 0} with the trivial σ-algebra and τxω0 = ω0. Then τ is evidently
mixing. However, the realizations are constant functions fω(x) = c on Rd for some constant c.

b) A typical ergodic system is given by Ω = T with the Lebesgue σ-algebra and P = L the Lebesgue
measure. The dynamical system is given by τxy := (x+ y) mod T.

c) It is known that (τx)x∈Rd is ergodic if and only if every almost invariant set A ∈ I has probability
P(A) ∈ {0, 1} (see [8] Proposition 10.3.III) i.e.

[ ∀xP((τxA ∪ A) \ (τxA ∩ A)) = 0 ] ⇒ P(A) ∈ {0, 1} . (2.26)

d) It is sufficient to show (2.24) or (2.25) for A and B in a ring that generates the σ-algebra F . We
refer to [8], Section 10.2, for the later results.

A further useful property of ergodic dynamical systems, which we will use below, is the following:

Lemma 2.22 (Ergodic times mixing is ergodic). Let (Ω̃, F̃ , P̃) and (Ω̂, F̂ , P̂) be probability spaces
with dynamical systems (τ̃x)x∈Rd and (τ̂x)x∈Rd respectively. Let Ω := Ω̃ × Ω̂ be the usual product
measure space with the notation ω = (ω̃, ω̂) ∈ Ω for ω̃ ∈ Ω̃ and ω̂ ∈ Ω̂. If τ̃ is ergodic and τ̂ is
mixing, then τx(ω̃, ω̂) := (τ̃xω̃, τ̂xω̂) is ergodic.

Proof. Relying on Remark 2.21.c) we verify (2.25) by proving it for sets A = Ã× Â and B = B̃× B̂
which generate F := F̃ ⊗ F̂ . We make use of A ∩B =

(
Ã ∩ B̃

)
×
(
Â ∩ B̂

)
and observe that

P(A ∩ τxB) = P
((
Ã ∩ τ̃xB̃

)
×
(
Â ∩ τ̂xB̂

))
= P̂

(
Â ∩ τ̂xB̂

)
P̃
(
Ã ∩ τ̃xB̃

)
= P̂

(
Â ∩ B̂

)
P̃
(
Ã ∩ τ̃xB̃

)
+
[
P̂
(
Â ∩ τ̂xB̂

)
− P̂

(
Â ∩ B̂

)]
P̃
(
Ã ∩ τ̃xB̃

)
.

Using ergodicity, we find that

lim
n→∞

1

(2n)d

ˆ
[−n,n]d

P̂
(
Â ∩ B̂

)
P̃
(
Ã ∩ τ̃xB̃

)
dx = P̂

((
Â ∩ B̂

))
P̃
(
Ã ∩ B̃

)
= P(A ∩B) . (2.27)

Since τ̂ is mixing, we find for every ε > 0 some R > 0 such that ‖x‖ > R implies∣∣∣P̂(Â ∩ τ̂xB̂)− P̂
(
Â ∩ B̂

)∣∣∣ < ε .

For n > R we find

1

(2n)d

ˆ
[−n,n]d

∣∣∣P̂(Â ∩ τ̂xB̂)− P̂
(
Â ∩ B̂

)∣∣∣ P̃(Ã ∩ τ̃xB̃)
≤ 1

(2n)d

ˆ
[−n,n]d

ε+
1

(2n)d

ˆ
[−R,R]d

2→ ε as n→∞ . (2.28)

The last two limits (2.27) and (2.28) imply (2.25).

Remark 2.23. The above proof heavily relies on the mixing property of τ̂ . Note that for τ̂ being only
ergodic, the statement is wrong, as can be seen from the product of two periodic processes in T× T
(see Remark 2.21). Here, the invariant sets are given by IA := {((y + x) mod T , x) : y ∈ A}
for arbitrary measurable A ⊂ T.
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2.7 Random Measures and Palm Theory

We recall some facts from random measure theory (see [8]) which will be needed for homogeniza-
tion. Let M(Rd) denote the space of locally bounded Borel measures on Rd (i.e. bounded on every
bounded Borel-measurable set) equipped with the Vague topology, which is generated by the sets{

µ :

ˆ
f dµ ∈ A

}
for every open A ⊂ Rd and f ∈ Cc

(
Rd
)
.

This topology is metrizable, complete and countably generated. However, note that it is not locally
compact, which implies that the Alexandroff compactification cannot be applied. A random measure is
a measurable mapping

µ• : Ω→M(Rd) , ω 7→ µω

which is equivalent to both of the following conditions

1 For every bounded Borel set A ⊂ Rd the map ω 7→ µω(A) is measurable

2 For every ω 7→
´
fdµω the map ω 7→

´
f dµω is measurable.

A random measure is stationary if the distribution of µω(A) is invariant under translations of A
that is µω(A) and µω(A + x) share the same distribution. From stationarity of µω one concludes
the existence ([14, 31] and references therein) of a dynamical system (τx)x∈Rd on Ω such that
µω (A+ x) = µτxω (A). By a deep theorem due to Mecke (see [28, 8]) the measure

µP(A) =

ˆ
Ω

ˆ
Rd
g(s)χA(τsω) dµω(s) dP(ω)

can be defined on Ω for every positive g ∈ L1(Rd) with compact support. µP is independent from
g and in case µω = L we find µP = P. Furthermore, for every B(Rd) × B(Ω)-measurable non
negative or µP × L- integrable functions f the Campbell formula

ˆ
Ω

ˆ
Rd
f(x, τxω) dµω(x) dP(ω) =

ˆ
Rd

ˆ
Ω

f(x, ω) dµP(ω) dx

holds. The measure µω has finite intensity if µP(Ω) < +∞.

We denote by

EµP (f |I ) :=

ˆ
Ω

f the expectation of f w.r.t. the σ-algebra I and µP . (2.29)

For random measures we find a more general version of Theorem 2.19.

Theorem 2.24 (Ergodic Theorem [8] 12.2.VIII). Let (Ω,F ,P) be a probability space, (An)n∈N ⊂ Rd

be a convex averaging sequence, let (τx)x∈Rd be a dynamical system on Ω with invariant σ-algebra
I and let f : Ω→ R be measurable with

´
Ω
|f | dµP <∞. Then for P-almost all ω ∈ Ω

|An|−1

ˆ
An

f(τxω) dµω(x)→ EµP (f |I ) . (2.30)

Given a bounded open (and convex) set Q ⊂ Ω, it is not hard to see that the following generalization
holds:
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Theorem 2.25 (General Ergodic Theorem). Let (Ω,F ,P) be a probability space, Q ⊂ Rd be a
convex bounded open set with 0 ∈ Q, let (τx)x∈Rd be a dynamical system on Ω with invariant σ-
algebra I and let f : Ω→ R be measurable with

´
Ω
|f | dµP <∞. Then for P-almost all ω ∈ Ω it

holds

∀ϕ ∈ C(Q) : n−d
ˆ
nQ

ϕ(
x

n
)f(τxω) dµω(x)→ EµP (f |I )

ˆ
Q

ϕ . (2.31)

Sketch of proof. Chose a countable family of characteristic functions that spans L1(Q). Use a Cantor
argument and Theorem 2.24 to prove the statement for a countable dense family ofC(Q). From here,
we conclude by density.

The last result can be used to prove the most general ergodic theorem which we will use in this
work:

Theorem 2.26 (General Ergodic Theorem for the Lebesgue measure). Let (Ω,F ,P) be a probability
space, Q ⊂ Rd be a convex bounded open set with 0 ∈ Q, let (τx)x∈Rd be a dynamical system
on Ω with invariant σ-algebra I and let f ∈ Lp(Ω;µP) and ϕ ∈ Lq(Q), where 1 < p, q < ∞,
1
p

+ 1
q

= 1. Then for P-almost all ω ∈ Ω it holds

n−d
ˆ
nQ

ϕ(
x

n
)f(τxω) dx→ E(f)

ˆ
Q

ϕ .

Proof. Let ϕδ ∈ C(Q) with ‖ϕ− ϕδ‖Lq(Q) < δ. Then∣∣∣∣n−d ˆ
nQ

ϕ(
x

n
)f(τxω) dx− E(f)

ˆ
Q

ϕ

∣∣∣∣
≤ ‖ϕ− ϕδ‖Lq(Q)

(
n−d

ˆ
nQ

|f(τxω)|p dx

) 1
p

+

∣∣∣∣n−d ˆ
nQ

ϕδ(x)f(τxω) dx− E(f)

ˆ
Q

ϕδ

∣∣∣∣+ EµP (f |I )

ˆ
Q

|ϕ− ϕδ| ,

which implies the claim.

2.8 Random Sets

The theory of random measures and the theory of random geometry are closely related. In what
follows, we recapitulate those results that are important in the context of the theory developed below
and shed some light on the correlations between random sets and random measures.

Let F(Rd) denote the set of all closed sets in Rd. We write

FV :=
{
F ∈ F(Rd) : F ∩ V 6= ∅

}
if V ⊂ Rd is an open set , (2.32)

FK :=
{
F ∈ F(Rd) : F ∩K = ∅

}
if K ⊂ Rd is a compact set . (2.33)

The Fell-topology TF is created by all sets FV and FK and the topological space (F(Rd),TF ) is
compact, Hausdorff and separable[27].

Remark 2.27. We find for closed sets Fn, F in Rd that Fn → F if and only if [27]

1 for every x ∈ F there exists xn ∈ Fn such that x = limn→∞ xn and
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2 if Fnk is a subsequence, then every convergent sequence xnk with xnk ∈ Fnk satisfies
limk→∞ xnk ∈ F .

If we restrict the Fell-topology to the compact sets K(Rd) it is equivalent with the Hausdorff topology
given by the Hausdorff distance

d(A,B) = max

{
sup
y∈B

inf
x∈A
|x− y| , sup

x∈A
inf
y∈B
|x− y|

}
.

Remark 2.28. For A ⊂ Rd closed, the set

F(A) :=
{
F ∈ F(Rd) : F ⊂ A

}
is a closed subspace of F

(
Rd
)
. This holds since

F
(
Rd
)
\F(A) =

{
B ∈ F

(
Rd
)

: B ∩
(
Rd\A

)
6= ∅
}

= FRd\A is open.

.

Lemma 2.29 (Continuity of geometric operations). The maps τx : A 7→ A+x and bδ : A 7→ Bδ(A)
are continuous in F

(
Rd
)
.

Proof. We show that preimages of open sets are open. For open sets V we find

τ−1
x (FV ) =

{
F ∈ F(Rd) : τxF ∩ V 6= ∅

}
=
{
F ∈ F(Rd) : F ∩ τ−xV 6= ∅

}
= Fτ−xV ,

b−1
δ (FV ) =

{
F ∈ F(Rd) : Bδ(F ) ∩ V 6= ∅

}
=
{
F ∈ F(Rd) : F ∩ Bδ(V ) 6= ∅

}
= F(bδV )◦ .

The calculations for τ−1
x

(
FK
)

= Fτ−xK and b−1
δ

(
FK
)

= FbδK are analogue.

Remark 2.30. The Matheron-σ-field σF is the Borel-σ-algebra of the Fell-topology and is fully charac-
terized either by the class FV of FK .

Definition 2.31 (Random closed / open set according to Choquet (see [27] for more details)).

a) Let (Ω, σ,P) be a probability space. Then a Random Closed Set (RACS) is a measurable
mapping

A : (Ω, σ,P) −→ (F, σF)

b) Let τx be a dynamical system on Ω. A random closed set is called stationary if its characteristic
functions χA(ω) are stationary, i.e. they satisfy χA(ω)(x) = χA(τxω)(0) for almost every ω ∈ Ω
for almost all x ∈ Rd. Two random sets are jointly stationary if they can be parameterized by
the same probability space such that they are both stationary.

c) A random closed set Γ : (Ω, σ, P ) −→ (F, σF) ω 7→ Γ(ω) is called a Random closed
Ck-Manifold if Γ(ω) is a piece-wise Ck-manifold for P almost every ω.

d) A measurable mapping
A : (Ω, σ,P) −→ (F, σF)

is called Random Open Set (RAOS) if ω 7→ Rd\A(ω) is a RACS.
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The importance of the concept of random geometries for stochastic homogenization stems from the
following Lemma by Zähle. It states that every random closed set induces a random measure. Thus,
every stationary RACS induces a stationary random measure.

Lemma 2.32 ([38] Theorem 2.1.3 resp. Corollary 2.1.5). Let Fm ⊂ F be the space of closed m-
dimensional sub manifolds of Rd such that the corresponding Hausdorff measure is locally finite.
Then, the σ-algebra σF ∩ Fm is the smallest such that

MB : Fm → R M 7→ Hm(M ∩B)

is measurable for every measurable and bounded B ⊂ Rd.

This means that
MRd : Fm →M(Rd) M 7→ Hm(M ∩ ·)

is measurable with respect to the σ-algebra created by the Vague topology on M(Rd). Hence a
random closed set always induces a random measure. Based on Lemma 2.32 and on Palm-theory,
the following useful result was obtained in [14] (See Lemma 2.14 and Section 3.1 therein).

Theorem 2.33. Let (Ω, σ, P ) be a probability space with an ergodic dynamical system τ . Let A :
(Ω, σ, P ) −→ (F, σF) be a stationary random closed m-dimensional Ck-Manifold.

a) There exists a separable metric space Ω̃ ⊂ M
(
Rd
)

with an ergodic dynamical system τ̃ and a

mapping Ã : (Ω̃,BΩ̃,P) → (F, σF) such that A and Ã have the same law and such that Ã still is
stationary. Furthermore, (x, ω) 7→ τxω is continuous. We identify Ω̃ = Ω, Ã = A and τ̃ = τ .

b) The mapping
µ• : Ω→M(Rd) , ω 7→ µω(·) := Hm(M ∩ ·)

is a stationary random measure on Rd and there exists a corresponding Palm-measure µP if and only
if µ• has finite intensity.

c) There exists a measurable set Â ⊂ Ω, called the prototype of A, such that χA(ω)(x) = χÂ(τxω)

for L+ µω-almost every x and P-almost surely. The Palm-measure µP of µω concentrates on Â, i.e.
µP(Ω\Â) = 0.

d) If A is a random closed m-dimensional Ck-manifold, then P(Â) = 0.

Also the following result will be useful below.

Lemma 2.34. Let µ be a Radon measure on Rd and let Q ⊂ Rd be a bounded open set. Let
F0 ⊂ F

(
Q
)

be such that F0 → R, A 7→ µ(A) is continuous. Then

m : F× F0 →M
(
Rd
)
, (P,B) 7→

{
A 7→ µ(A ∩B) B ⊂ P

0 else

is measurable.

Proof. For f ∈ Cc(Rd) we introduce mf through

mf : (P,B) 7→

{´
B
f dµ B ⊂ P

0 else
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and observe that m is measurable if and only if for every f ∈ Cc
(
Rd
)

the map mf is measurable
(see Section 2.7). Hence, if we prove the latter property, the lemma is proved.

We assume f ≥ 0 and we show that the mapping mf is even upper continuous. In particular, let
(Pn, Bn) → (P,B) in F × F0 and assume that Bn ⊂ Pn for all n > N0. Since Q is compact,
Remark 2.27. 2. implies that B ⊂ P ∩ Q. Furthermore, since f has compact support, we find∣∣∣´Bn f dµ−

´
B
f dµ

∣∣∣ ≤ ‖f‖∞ |µ(Bn)− µ(B)| → 0. On the other hand, if there exists a subse-

quence such that Bn 6⊂ Pn for all n, then either B 6⊂ P and mf (Pn, Bn) = 0 → mf (P,B) = 0
or B ⊂ P and 0 = limn→∞mf (Pn, Bn) ≤

´
B
fdµ = mf (P,B). For f ≤ 0 we obtain lower

semicontinuity and for general f the map mf is the sum of an upper and a lower semicontinuous
map, hence measurable.

2.9 Point Processes

Definition 2.35 ((Simple) point processes). A Z-valued random measure µω is called point process.
In what follows, we consider the particular case that for almost every ω there exist points (xk(ω))k∈N
and values (ak (ω))k∈N in Z such that

µω =
∑
k∈N

akδxk(ω) .

The point process µω is called simple if almost surely for all k ∈ N it holds ak ∈ {0, 1}.

Example 2.36 (Poisson process). A particular example for a stationary point process is the Poisson
point process µω = Xω with intensity λ. Here, the probability P(X(A) = n) to find n points in a
Borel-set A with finite measure is given by a Poisson distribution

P(X(A) = n) = e−λ|A|
λn |A|n

n!
(2.34)

with expectation E(X(A)) = λ |A|. The last formula implies that the Poisson point process is station-
ary.

We can use a given random point process to construct further processes.

Example 2.37 (Hard core Matern process). The hard core Matern process is constructed from a given
point process Xω by mutually erasing all points with the distance to the nearest neighbor smaller than
a given constant r. If the original process Xω is stationary (ergodic), the resulting hard core process
is stationary (ergodic) respectively.

Example 2.38 (Hard core Poisson–Matern process). If a Matern process is constructed from a Pois-
son point process, we call it a Poisson–Matern point process.

Lemma 2.39. Let µω be a simple point process with ak = 1 almost surely for all k ∈ N. Then
Xω = (xk(ω))k∈N is a random closed set. On the other hand, if Xω = (xk(ω))k∈N is a random
closed set that almost surely has no limit points then µω is a point process.

Proof. Let µω be a point process. For open V ⊂ Rd and compact K ⊂ Rd let

fV,R(x) = dist
(
x, Rd\ (V ∩ BR(0))

)
, fKδ (x) = max

{
1− 1

δ
dist(x,K) , 0

}
.
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Then fV,R is Lipschitz with constant 1 and fKδ is Lipschitz with constant 1
δ

and support in Bδ(K).
Moreover, since µω is locally bounded, the number of points xk that lie within B1(K) is bounded. In
particular, we obtain

X−1(FV ) =
⋃
R>0

{
ω :

ˆ
Rd
fV,R dµω > 0

}
,

X−1
(
FK
)

=
⋂
δ>0

{
ω :

ˆ
Rd
fKδ dµω > 0

}
,

are measurable. Since FV and FK generate the σ-algebra on F
(
Rd
)
, it follows that ω → Xω is

measurable.

In order to prove the opposite direction, let Xω = (xk(ω))k∈N be a random closed set of points. Since
Xω has almost surely no limit points the measure µω is locally bounded almost surely. We prove that
µω is a random measure by showing that

∀f ∈ Cc
(
Rd
)

: F : ω 7→
ˆ
Rd
f dµω is measurable.

For δ > 0 let µδω(A) :=
(∣∣Sd−1

∣∣ δd)−1 L(A ∩ Bδ(Xω)). By Lemmas 2.29 and 2.34 we obtain that
Fδ : ω 7→

´
Rd f dµδω are measurable. Moreover, for almost every ω we find Fδ (ω) → F (ω)

uniformly and hence F is measurable.

Corollary 2.40. A random simple point process µω is stationary iff Xω is stationary.

Hence we can provide the following definition based on Definition 2.31.

Definition 2.41. A point process µω and a random set P are jointly stationary if P and X are jointly
stationary.

Lemma 2.42. Let Xω = (xi)i∈N be a Matern point process from Example 2.37 with distance r and
let for δ < r

2
be B(ω) :=

⋃
i Bδxi. Then B(ω) is a random closed set.

Proof. This follows from Lemma 2.29: Xω is measurable and X 7→ Bδ(X) is continuous. Hence
B (ω) is measurable.

2.10 Unoriented Graphs on Point Processes

Definition 2.43 ((Unoriented) Graph). Let X = (xi)i∈N ⊂ Rd be a countable set of points. A graph
(G,X) on X (or simply G on X) is a subset G ⊂ X2. The graph G is unoriented if (x, y) ∈ G implies
(y, x) ∈ G. For (x, y) ∈ G we write x ∼ y.

Elements of G are usually referred to as edges. Classically, a graph consists of vertices X and edges
G, so the graph is given through (G,X). However, in this work the set of points X will usually be given
and we will mostly discuss the properties of G. This is why we adopt standard notations.

Definition 2.44 (Paths and connected graphs). Let X = (xi)i∈N ⊂ Rd be a countable set of points
with a graph G ⊂ X2. A path in X is a sorted family of points (y1, . . . , yN) ∈ XN , N ∈ N, such that
for every k ∈ {1, . . . , N − 1} it holds yk ∼ yk+1. The family of all paths in X is hence a subset of⋃
N∈NXN . The graph G is said to be connected if for every x, y ∈ G, x 6= y, there exists N > 2

and a path (y1, . . . , yN) ∈ XN such that y1 = x and yN = y.
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Remark 2.45. Let (y1, . . . , yk) with be a path from y1 to yk . A path from yk to y1 is given by reversing
the order, i.e. by (yk, . . . , y1).

Definition 2.46 (Local extrema on graphs). Let X ⊂ Rd be a countable set of points with a graph G.
A function u : A ⊂ X→ R has a local maximum resp. minimum in y ∈ A if for all ỹ ∈ A with ỹ ∼ y
it holds u(y) ≥ u(ỹ) resp. u(y) ≤ u(ỹ)

2.11 Dynamical Systems on Zd

Definition 2.47. Let
(

Ω̂, F̂ , P̂
)

be a probability space. A discrete dynamical system on Ω̂ is a family

(τ̂z)z∈rZd of measurable bijective mappings τ̂z : Ω̂ 7→ Ω̂ satisfying (i)-(iii) of Definition 2.15. A set
A ⊂ Ω̂ is almost invariant if for every z ∈ rZd it holds P ((A ∪ τ̂zA) \ (A ∩ τ̂zA)) = 0 and τ̂ is
called ergodic w.r.t. rZd if every almost invariant set has measure 0 or 1.

Similar to the continuous dynamical systems, also in this discrete setting an ergodic theorem can be
proved.

Theorem 2.48 (See Krengel and Tempel’man [25, 36]). Let (An)n∈N ⊂ Rd be a convex averaging

sequence, let (τ̂z)z∈rZd be a dynamical system on Ω̂ with invariant σ-algebra I and let f : Ω̂→ R
be measurable with |E(f)| <∞. Then for almost all ω̂ ∈ Ω̂

|An|−1
∑

z∈An∩rZd
f(τ̂zω̂)→ r−dE(f |I ) . (2.35)

In the following, we restrict to r = 1 for simplicity of notation.

Let Ω0 ⊂ Rd. We consider an enumeration (ξi)i∈N of Zd such that Ω̂ := ΩZd
0 = ΩN

0 and write

ω̂ = (ω̂ξ1 , ω̂ξ2 , . . . ) = (ω̂1, ω̂2, . . . ) for all ω̂ ∈ Ω̂. We define a metric on Ω̂ through

d(ω̂1, ω̂2) =
∞∑
k=1

1

2k
|ω̂1,ξk − ω̂2,ξk |

1 + |ω̂1,ξk − ω̂2,ξk |
.

We write Ωn := Ωn
0 and Nn := {k ∈ N : k ≥ n+ 1}. The topology of Ω̂ is generated by the open

sets A × ΩNn
0 , where for some n > 0, A ⊂ Ωn is an open set. In case Ω0 is compact, the space Ω̂

is compact. Further, Ω̂ is separable in any case since Ω0 is separable (see [23]).

We consider the ring

R =
⋃
n∈N

{
A× ΩNn

0 : A ⊂ Ωn is measurable
}

and suppose for every n ∈ N that there exists a probability measure Pn on Ωn such that for every
measurable An ⊂ Ωn it holds Pn+k

(
An × Ωk

)
= Pn(An). Then we define

P
(
An × ΩNn

0

)
:= Pn(An) .

We make the observation that P is additive and positive onR and P(∅) = 0. Next, let (Aj)j∈N be an

increasing sequence of sets inR such that A :=
⋃
j Aj ∈ R. Then, there exists Ã1 ⊂ Ωn

0 such that

A1 = Ã1 × ΩNn
0 and since A1 ⊂ A2 ⊂ · · · ⊂ A, for every j > 1, we conclude Aj = Ãj × ΩNn

0 for
some Ãj ⊂ Ωn. Therefore, P(Aj) = Pn(Ãj) → Pn(Ã) = P(A) where A = Ã × ΩNn

0 . We have
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thus proved that P : R → [0, 1] can be extended to a measure on the Borel-σ-Algebra on Ω (See [3,
Theorem 6-2]).

We define for z ∈ Zd the mapping

τ̂z : Ω̂→ Ω̂ , ω̂ 7→ τ̂zω̂ , where (τ̂zω̂)ξi = ω̂ξi+z component wise .

Remark 2.49. In this paper, we consider particularly Ω0 = {0, 1}. Then Ω̂ := ΩZd
0 is equivalent to

the power set of Zd and every ω̂ ∈ Ω̂ is a sequence of 0 and 1 corresponding to a subset of Zd.
Shifting the set ω̂ ⊂ Zd by z ∈ Zd corresponds to an application of τ̂z to ω̂ ∈ Ω̂.

Now, let P(ω) be a stationary ergodic random open set and let r > 0. Recalling (2.1) the map
ω 7→ P−r(ω) is measurable due to Lemma 2.29 and we can define Xr(P(ω)) := 2rZd ∩P− r

2
(ω).

Lemma 2.50. If P is a stationary ergodic random open set then the set

X = Xr(ω) := Xr(P(ω)) := 2rZd ∩P−r(ω) (2.36)

is a stationary random point process w.r.t. 2rZd.

Proof. By a simple scaling we can w.l.o.g. assume 2r = 1 and write X = Xr. Evidently, X corre-
sponds to a process on Zd with values in Ω0 = {0, 1} writing X(z) = 1 if z ∈ X and X(z) = 0
if z 6∈ X. In particular, we write (ω, z) 7→ X(ω, z). This process is stationary as the shift invariance
of P induces a shift-invariance of P̂ with respect to τ̂z. It remains to observe that the probabilities
P(X(z) = 1) and P(X(z) = 0) induce a random measure on Ω̂ in the way described in Remark
2.49.

Remark 2.51. If P is mixing one can follow the lines of the proof of Lemma 2.22 to find that Xr(P(ω))
is ergodic. However, in the general case Xr(P(ω)) is not ergodic. This is due to the fact that by nature
(τz)z∈Zd on Ω has more invariant sets than(τx)x∈Rd . For sufficiently complex geometries the map

Ω→ Ω̂ is onto.

Definition 2.52 (Jointly stationary). We call a point process X with values in 2rZd to be strongly
jointly stationary with a random set P if the functions χP(ω), χX(ω) are strongly jointly stationary w.r.t.
the dynamical system (τ2rx)x∈Zd on Ω.

3 Periodic Extension Theorem

We study extension theorems on periodic geometries. In what follows, we assume that the torus is split
into T = T1 ∪ T2 and we denote T1 and T2 the periodic extensions of T1 and T2 respectively. In
order to get familiar with our approach, we first prove the following standard result, which was already
obtained in [7] and generalized to Rd and W 1,p(T1) in [20] (see also [22]).

Theorem 3.1 (Extension Theorem). Let T = T1 ∪ T2 with T2 ⊂⊂ (0, 1)d compactly and such that
∂T2 is Lipschitz. Then, for every p ∈ [1,∞) there exists C depending only on T2, p and d such that
for every u ∈ W 1,p(Y1):

ˆ
Rd

∣∣∣Ũu∣∣∣p ≤ C

ˆ
Y1

|u|p , (3.1)

ˆ
Rd

∣∣∣∇(Ũu)∣∣∣p ≤ C

ˆ
Y1

|∇u|p . (3.2)
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Figure 2: Left: The periodic geometry T1 and T2. Middle: The boarder ∂T1 is covered by balls of
a uniform size such that on each center xi there exists an extension operator from T1 ∩ Bδ(xi) to
T2 ∩ Bρ(xi). Right: The microscopically glued extension operator maps functions with support T1

onto functions with support in the black and gray domain.

Proof. Since T2 ⊂⊂ (0, 1)d one proves by contradiction the existence of C > 0 such that

∀ϕ ∈ W 1,p((0, 1)d\T2) :

ˆ
T1

|ϕ|p ≤ C

(ˆ
T1

|∇ϕ|p +

∣∣∣∣ 
T1

ϕ

∣∣∣∣) . (3.3)

In what follows we write ϕ =
ffl
T1
ϕ. Since ∂T2 is Lipschitz, there exists a continuous operator Ũ :

W 1,p((0, 1)d\T2)→ W 1,p((0, 1)d). Due to (3.3) it holds

ˆ
T
|U (u− u) + u|p ≤ C

ˆ
T1

|u|p ,
ˆ
T2

|∇ (U (u− u) + u)|p =

ˆ
T2

|∇U (u− u)|p

≤ C

(ˆ
T1

|u− u|p +

ˆ
T1

|∇ (u− u)|p
)

≤ C

ˆ
T1

|∇u|p .

For u ∈ W 1,p(T1) and k ∈ Zd, we define U on Rd by applying it locally on every cell Ik :=
k + [0, 1)d. Hence U satisfies (3.1)–(3.2).

The last proof heavily relied on the disconnectedness of T2. In case T2 is connected, the “gluing” of
the local extensions is more delicate.

Theorem 3.2. Let T = T1 ∪ T2 such that ,∂T1 is locally Lipschitz. Then there exist an extension
operator

U : W 1,p(T1)→ W 1,p(Rd)

such that for some C > 0 depending only on δ and p it holds
ˆ
Rd
|Uu|p ≤ C

ˆ
T1

|u|p , (3.4)

ˆ
Rd
|∇ (Uu)|p ≤ C

ˆ
T1

|∇u|p . (3.5)

Idea of Proof: In order to highlight the structure of the following proof, let us explain how the extension
operator is constructed. In Figure 2 we see on the left a Lipschitz surface ∂T1 with maximal Lipschitz
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constant M , which can be locally covered by balls of radius ρ = δ
√

4M2 + 2
−1

(middle). Using the
extension operators given by Lemma 2.2, we can extend u to the red balls that intersect T2. The
extension operators on the various red balls are then glued together using a suitable partition of unity.
However, this leads to steep gradients in the black region on the right hand side, while Uu ≡ 0 in
the white region. In particular, if u(x) ≡ c is locally constant, these gradients are of order c

ρ
. Hence,

proceeding globally in this way, the gradient∇
(
Ũu
)

cannot be bounded by∇u.

To avoid this problem, in Step 2 we use a mesoscopic correction: Writing Kα := (−α, 1 + α)d, and
Kα(z) = z + Kα for z ∈ Zd with a partition of unity η̃z and the local extension operator Uz on
Kα(z), we define the global extension operator through:

Uu :=
∑
z∈Zd

η̃z

(
Ũz(u− τzu) + τzu

)
(3.6)

where τzu =
ffl
B(z)

u for some suitable ball B(z). By this, we assign to the void space an averaged
value of the surrounding matrix. In Step 2 we heavily rely on the periodicity, which allows to apply a
T-periodic partitioning to Rd.

Proof. Step 1 (Local extension operator on (0, 1)d): W.l.o.g. we can assume that δ � 1. Writing
Kα := (−α, 1 +α)d the set ∂T1∩Kδ is precompact and can be covered by a finite number of balls

Bρ/2(xk), where ρ = δ
√

4M2 + 2
−1

and (xk)k=1,...,K ⊂ ∂T1 ∩Kδ.

In what follows, let η ∈ C∞0 (−1, 1) be a positive symmetric smooth function with 0 < η(x) ≤ 1
on (−1, 1), η(0) = 1 and monotone on (0, 1). We denote η0 := η ◦ dist( · , ∂T1 ) and ηk(x) :=
η(ρ−1 |x− xk|) for k ≥ 1. In what follows we identify ηk with their periodized versions. For every

k ≥ 0 let η̃k =
(∑∞

j=0 ηj

)−1

ηk and note that η̃k defines a partition of unity on ∂T1 ∩Kδ. Writing

Ui for the corresponding extension operator from Lemma 2.2 on Bρ(xi), we extend u by 0 to Rd\T1

and consider

Ũ : W 1,p(K2δ ∩T1)→ W 1,p(Kδ)

Ũu :=
∑
i∈N

η̃iUiu+ η0u . (3.7)

For the following calculation, we further note that

∇η̃k =

(
∞∑
j=0

ηj

)−1

∇ηk −

(
∞∑
j=0

ηj

)−2

ηk

∞∑
j=0

∇ηj

and 1 ≤
∞∑
j=0

ηj ≤ N̂ as well as

∣∣∣∣∣
∞∑
j=0

∇ηj

∣∣∣∣∣ ≤ N̂ ‖∇η‖∞ ,

for some N̂ depending only on the dimension d. Let B̃ := {Bρ(xk)}. For every i ∈ {1, . . . , k}, the

number #
{
B̃j ∈ B̃ | B̃j ∩ B̃i 6= ∅

}
of balls in B̃ intersecting with B̃i is bounded by N̂ . On each

ball we infer from Lemma 2.2ˆ
Bi

|η̃iUiu|p ≤ 7

ˆ
Bδ(xi)∩T1

|u|p ,
ˆ
Bi

|∇ (η̃iUiu)|p ≤ 7 ‖∇η̃‖p∞
ˆ
Bδ(xi)∩P

|u|p + 14M

ˆ
Bδ(xi)∩T1

|∇u|p .
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Similar estimates also hold for η0u and summing over i, we obtain
ˆ
Kδ

∣∣∣Ũu∣∣∣p ≤ 7N̂

ˆ
K2δ∩T1

|u|p , (3.8)

ˆ
Kδ

∣∣∣∇(Ũu)∣∣∣p ≤ 7N̂
1

ρp

ˆ
K2δ∩T1

|u|p + 14MN̂

ˆ
K2δ∩T1

|∇u|p . (3.9)

Now let B ⊂ (2δ, 1− 2δ)d∩T1 be a ball with positive radius. By a contradiction argument, we obtain

ˆ
K2δ∩T1

|u|p ≤ C

(ˆ
K2∩T1

|∇u|p +

∣∣∣∣ 
B

u

∣∣∣∣p) (3.10)

and hence defining τu :=
ffl
B
u we find

ˆ
Kδ

∣∣∣∇(Ũ (u− τu)
)∣∣∣p ≤ 28MN̂

ˆ
K2∩T1

|∇u|p . (3.11)

Step 2 (gluing together the local extension operators): In what follows, for every z ∈ Zd let(
Ũzu
)

(·) := Ũ(u(·+ z))(· − z) the operator Ũ shifted onto the cell z +K2δ. Given some positive

η ∈ Cc(Kδ) with η|(0,1)d ≡ 1 and symmetric w.r.t. the center of (0, 1)d we write ηz := η(· − z) such

that ηz|z+(0,1)d ≡ 1 and introduce η̃z = ηz/
(∑

x∈Zd ηx
)

which provide a (0, 1)d-periodic partition
of unity. Note that at each x ∈ Rd at most 2d functions η̃z are different from 0. We now define the
operator U according to (3.6) with τzu :=

ffl
B+z

u and Uz from Step 1 to find

ˆ
Rd\T1

|∇Uu|p =

ˆ
Rd\T1

∣∣∣∣∣∇∑
z∈Zd

η̃z

(
Ũz(u− τzu) + τzu

)∣∣∣∣∣
p

=

ˆ
Rd\T1

∣∣∣∣∣∑
z∈Zd

[
∇η̃z

(
Ũz(u− τzu) + τzu

)
+ η̃z∇

(
Ũz(u− τzu)

)]∣∣∣∣∣
p

≤ C ‖∇η̃‖p∞
∑
z∈Zd

∥∥∥Ũz(u− τzu)
∥∥∥p
Lp(z+Kδ\T1)

+ C

ˆ
Rd

∣∣∣∣∣∑
z∈Zd

τzu∇η̃z

∣∣∣∣∣
p

+ C
∑
z∈Zd

ˆ
z+Kδ

∣∣∣∇(Ũz(u− τzu)
)∣∣∣p , (3.12)

In order to derive an estimate on
´
Rd
∣∣∑

z∈Zd τzu∇η̃z
∣∣p, note that for z1, z2 ∈ Zd and x ∈ Rd for all

i = 1, . . . , d it holds ∂iη̃z1 = −∂iη̃z2 by symmetry and hence (writing Kδ(z) = z +Kδ

ˆ
Rd

∣∣∣∣∣∑
z∈Zd

τzu∇η̃z

∣∣∣∣∣
p

≤
∑
z1∈Zd

∑
z2∈Zd

ˆ
Kδ(z1)∩Kδ(z2)

|∇η̃z|p |τz1u− τz2u|
p .

Thus, let z1, z2 ∈ Zd such that (z1 +K2δ)∩ (z2 +K2δ) 6= ∅. Since T1 is open and connected, one
can prove

|τz1u− τz2u|
p ≤ C

ˆ
T1∩[(z1+K2)∪(z2+K2)]

|∇u|p , (3.13)

where C depends on d, p and T1. Together with (3.9)–(3.11) we infer (3.5). Estimate (3.4) can be
proved in an analogue way.
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4 Quantifying Nonlocal Regularity Properties of the Geometry

We have to account for three types of randomness. One is local, namely the local Lipschitz regularity.
The other is of global nature: We have to find a partition of Rd such that on each partition cell the
extension can be explicitly constructed in a well defined way. In the case of periodicity this is evidently
trivial. However, since we lack periodicity, we have to replace the periodic construction of the extension
operator in Section 3 by something similar, but of stochastic nature. The key to this will be the local
(δ,M)-regularity

The second problem will be overcome using a random distribution of balls within P(ω) and a Voronoi
tessellation which is such that every Ball is contained in exactly one Voronoi cell. This construction is
based on the following observation.

Lemma 4.1. Let P(ω) be a stationary and ergodic random open set such that

P(P ∩ I = ∅) < 1 .

Then there exists r > 0 such that with positive probability pr > 0 the set (0, 1)d ∩ P contains a ball
with radius 4

√
dr.

Proof. Assume that the lemma was wrong. Then for every r > 0 the set (0, 1)d ∩ P almost surely
does not contain an open ball with radius r. In particular with probability 1 the set (0, 1)d ∩ P does
not contain any ball. Hence (0, 1)d ∩P = ∅ almost surely, contradicting the assumptions.

The numbers r and pr from Lemma 4.1 will finally lead to the concept of mesoscopic regularity of
the geometry P(ω), see Definition 4.19. Particularly the number r is important, as it affects also the
construction of the extension operator on the very microscopic level.

The third problem is the hardest: It is the necessity to quantify connectedness of a domain geometri-
cally and analytically.

4.1 Microscopic Regularity

Definition 4.2 ((δ,M)-Regularity). Let P ⊂ Rd be an open set.

1 P is called (δ,M)-regular in p0 ∈ ∂P ifM(p, δ) <∞ andM > M(p, δ), i.e. there exists an
open set U ⊂ Rd−1 and a Lipschitz continuous function φ : U → R with Lipschitz constant
M such that ∂P ∩ Bδ(p0) is graph of the function ϕ : U → Rd , x̃ 7→ (x̃, φ(x̃)) in some
suitable coordinate system.

2 P is called locally (δ,M)-regular if for every p0 ∈ ∂P there exists δ(p0) > 0 and M(p0) > 0
such that P is (δ(p0),M(p0))-regular in p0.

3 P is called (globally) (δ,M)-regular or minimally smooth if there exist constants δ,M > 0 s.t.
P is (δ,M)-regular in every p0 ∈ ∂P.

The concept of (global) (δ,M)-regularity or minimally smoothness can be found in the book [35]. The
theory of [35] was recently used in [13] to derive extension theorems for minimally smooth stochastic
geometries. A first application of the concept of (δ,M)-regularity is the following Lemma, which is
important for the application of the PoincarÃ c© inequalities proved in Section 2 during the construction
of the local extension operators in Section 5.
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�

�

Figure 3: How to fit a ball into a cone.

Lemma 4.3. Let P be locally (δ,M)-regular. Then for every p0 ∈ ∂P with δ(p0) > 0 the following
holds: For every δ < δ (p0) let M := M(p0, δ) > 0 such that ∂P ∩ Bδ(p0) is a M(p0, δ) Lipschitz
manifold. Then there exists y ∈ P with |p0 − y| = δ

4
such that with r (p0) := δ

4(1+M)
it holds

Br(p0)(y) ⊂ Bδ/2(p0).

Proof. We can assume that ∂P is locally a cone as in Figure 3. With regard to Figure 3, for p0 ∈ ∂P
with δ and M as in the statement we can place a right circular cone with vertex (apex) p0 and axis
ν and an aperture θ = π − 2 arctanM inside Bδ(p0), where α = arctanM (p0). In other words,
it holds tan (α) = tan

(
π−θ

2

)
= M . Along the axis we may select y with |p0 − y| = δ

4
. Then the

distance R of y to the cone is given through

|y − p0|2 = R2 +R2 tan2

(
π − θ

2

)
⇒ R =

|y − p0|√
1 +M2

.

In particular r (p0) as defined above satisfies the claim.

Continuity properties of δ, M and %

Our main extension and trace theorems will be proved for locally (δ,M)-regular sets P and is based
on some simple properties of such sets which we summarize in this section. Additionally we introduce
the quantity ρ.

Lemma 4.4. Let r > 0, P be a locally (δ,M)-regular open set and let M0 ∈ (0,+∞] such that for
every p ∈ ∂P there exists δ > 0, M < M0 such that ∂P is (δ,M)-regular in p. Define for every
p ∈ ∂P

∆(p) := sup
δ<r
{∃M ∈ (0,M0) : P is (δ,M) -regular in p} , δ∆(p) :=

∆(p)

2

Then ∂P is δ∆-regular in the sense of Definition 2.11 with

f(p, δ) := (∃M ∈ (0,M0) : P is (δ,M) -regular in p) .

In particular, δ∆ : ∂P → R is locally Lipschitz continuous with Lipschitz constant 4 and for every
ε ∈

(
0, 1

2

)
and p̃ ∈ Bεδ(p) ∩ ∂P it holds

1− ε
1− 2ε

δ∆(p) > δ∆(p̃) > δ∆(p)− |p− p̃| > (1− ε) δ∆(p) . (4.1)

Remark 4.5. The latter lemma does not imply global Lipschitz regularity of δ∆. It could be that
2δ∆(p) < |p− p̃| < 3δ∆(p) and p and p̃ are connected by a path inside ∂P with the shortest path
of length 10δ∆(p). Then Lemma 4.4 would have to be applied successively along this path yielding
an estimate of |δ∆(p)− δ∆(p̃)| ≤ 40 |p− p̃|.
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Proof of Lemma 4.4. It is straight forward to verify that f and δ∆ satisfy the conditions of Lemma
2.12.

With regard to Lemma 2.2, the relevant quantity for local extension operators is related to the variable

δ(p)/
√

4M(p)2 + 2, where M(p) is the related Lipschitz constant. While we can quantify δ(p) in

terms of δ(p̃) and |p− p̃|, this does not work forM(p). Hence we cannot quantify δ(p)/
√

4M(p)2 + 2
in terms of its neighbors. This drawback is compensated by a variational trick in the following state-
ment.

Lemma 4.6. Let P be locally (δ,M)-regular and let δ ≤ δ∆ satisfy (4.1) such that ∂P is δ-regular.
For p ∈ ∂P and r < δ(p) let Mr(p) be the Lipschitz constant of ∂P in Br(p) and define

ρ(p) := sup
r<δ(p)

r

√
4Mr(p)

2 + 2
−1

, (4.2)

ρ̂(p) := inf

{
δ ≤ δ(p) : sup

r<δ
r

√
4Mr(p)

2 + 2
−1

= ρ(p)

}
. (4.3)

Then, ρ and ρ̂ are positive and locally Lipschitz continuous on ∂P with Lipschitz constant 4 and ∂P is
ρ and ρ̂-regular in the sense of Definition 2.11. In particular, for |p− p̃| < ερ(p) or |p− p̃| < ερ̂(p)
it holds respectively

1− ε
1− 2ε

ρ(p) > ρ(p̃) > ρ(p)− |p− p̃| > (1− ε) ρ(p) ,

1− ε
1− 2ε

ρ̂(p) > ρ̂(p̃) > ρ̂(p)− |p− p̃| > (1− ε) ρ̂(p) .

Remark 4.7. For the same reason as in Remark 4.5. The latter lemma does not imply global Lipschitz
regularity of ρ or ρ̂.

Proof. Positivity is given by ρ(p) ≥ δ(p)
√

4M(p)2 + 2
−1

. Let ε > 0 and |p− p̃| < ερ̂(p). For

r < ρ̂(p) sufficiently large it holds |p− p̃| < εr implying p̃ is ((1− ε)r,Mr(p))-regular. From here
we conclude that ∂P is ρ̂-regular and the above chain of inequalities follows from Lemma 2.12.

Now let |p− p̃| < ερ(p) < εδ(p) implying δ(p̃) ≥ (1− ε) δ(p) by Lemma 4.4. For every η > 0 let

rη < δ(p) such that ρ(p) ≤ (1 + η) rη

√
4Mrη(p)

2 + 2
−1

. Since rη > ρ(p) and |p− p̃| < ερ(p)

we find Brη(p) ⊃ B(1−ε)rη(p̃) and hence M(1−ε)rη(p̃) ≤Mrη(p). This implies at the same time that
∂P is ρ-regular and that

ρ(p̃) ≥ (1− ε) rη√
4M(1−ε)rη(p̃)

2 + 2
≥ (1− ε) rη√

4Mrη(p)
2 + 2

≥ (1− ε)
(1 + η)

ρ(p) .

Since η was arbitrary, we conclude ρ(p̃) ≥ (1− ε) ρ(p). Moreover, we find |p− p̃| < ε
1−ερ(p̃). From

here, we conclude with Lemma 2.12.

Lemma 4.8. Let r > 0, P ⊂ Rd be a locally (δ,M)-regular open set and let M0 ∈ (0,+∞]
such that for every p ∈ ∂P there exists δ > 0, M < M0 such that ∂P is (δ,M)-regular in p. For
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α ∈ (0, 1] let η(p) = αδ(p) from Lemma 4.4 or η(p) = αρ(p) or η(p) = αρ̂(p) from Lemma 4.6
and define

M[η](p) := inf
δ>η(p)

inf
M
{P is (δ,M) -regular in p} . (4.4)

m[η](p, ξ) := inf
δ>min{δ(p),ξ}

inf
M
{P is (δ,M) -regular in p} , (4.5)

Then, for fixed ξ, M[η](·),m[η](p, ξ) : ∂P → R are upper semicontinuous and on each bounded
measurable set A ⊂ Rd the quantity

M[η],A := sup
p∈A∩∂P

M[η](p) (4.6)

with M[η],A = 0 if A ∩ ∂P = ∅ is well defined. The functions

M[η],A : Rd → R , M[η],A(x) := M[η],A+x with M[η],A(0) = M[η],A

are upper semicontinuous.

Remark 4.9. In order to prevent confusion, let us note at this point that Mη defined in (4.9) is different
from M[η]. In particular, Mη is a quantity on Rd, while M[η] is a quantity on ∂P. Furthermore, as the
last lemma shows, M[η] is upper semi continuous, while Mη is only measurable.

Notation 4.10. The infimum in (4.4) is a lim inf for δ ↘ η(p). We sometimes use the special notation

M[η],r(x) := M[η],Br(0)(x) .

Proof of Lemma 4.8. Let p, p̃ ∈ ∂P with |p− p̃| < εη(p). Writing ε̃ := ε
1−ε and r (p, ε) :=(

1
1−2ε

+ ε
)
η(p) and

M(p, ε) := inf
M

{
Br(p,ε)(p) ∩ ∂P is M -Lipschitz graph

}
as well as we observe from η-regularity that Bη(p̃)(p̃) ⊂ Br(p,ε)(p) and Bη(p)(p) ⊂ Br(p̃,ε̃)(p̃). Hence
we find

M[η](p̃) ≤M(p, ε) .

Observing that M(p, ε) ↘ M[η](p) as ε → 0 we find lim supp̃→p M[η](p̃) ≤ M[η](p) and M is
u.s.c.

Let x→ 0. First observe that M[η],A = maxy∈A M[η](y). The set A is compact and hence A+x→
A in the Hausdorff metric as x → 0. Let yx ∈ A + x such that M[η](yx) = M[η],A (x). Since
A+ x→ A w.l.o.g. we find yx → y converges and y ∈ A. Hence

M[η](y) ≥ lim sup
x→0

M[η](yx) = lim sup
x→0

M[η],A(x) .

In particular, M[η],A(·) is u.s.c. The u.s.c of m[η](p, ξ) can be proved similarly.

Corollary 4.11. Let r > 0 and let P ⊂ Rd be a locally (δ,M)-regular open set, where we restrict
δ by δ (·) ≤ r

4
. Then there exists a countable number of points (pk)k∈N ⊂ ∂P such that ∂P is

completely covered by balls Bρ̃(pk)(pk) where ρ̃ (p) := 2−5ρ (p). Writing

ρ̃k := ρ̃(pk) , δk := δ(pk) .
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For two such balls with Bρ̃k(pk) ∩ Bρ̃i(pi) 6= ∅ it holds

15

16
ρ̃i ≤ ρ̃k ≤

16

15
ρ̃i

and
31

15
min {ρ̃i, ρ̃k} ≥ |pi − pk| ≥

1

2
max {ρ̃i, ρ̃k} .

(4.7)

Furthermore, there exists rk ≥ ρ̃k
32(1+m[ρ̃](pk,ρ̃k/4))

and yk such that Brk(yk) ⊂ Bρ̃k/8(pk) ∩ P and

B2rk(yk) ∩ B2rj(yj) = ∅ for k 6= j.

Proof. The existence of the points and Balls satisfying (4.7) follows from Theorem 2.13, in particular
(2.20). It holds for Bρ̃k(pk) ∩ Bρ̃i(pi) 6= ∅

|pi − pk| ≤ ρ̃i + ρ̃k ≤
(

16

15
+ 1

)
ρ̃i .

Lemma 4.3 yields existence of yk such that Brk(yk) ⊂ Bρ̃k/8(pk) ∩ P. The latter implies Brk(yk) ∩
Brj(yj) = ∅ for k 6= j.

Measurability and Integrability of Extended Variables

Lemma 4.12. Let r > 0, P ⊂ Rd be a locally (δ,M)-regular open set and let M0 ∈ (0,+∞]
such that for every p ∈ ∂P there exists δ > 0, M < M0 such that ∂P is (δ,M)-regular in p. For
α ∈ (0, 1] let η(p) = αδ(p) from Lemma 4.4 or η(p) = αρ(p) or η(p) = αρ̂(p) from Lemma 4.6
and define

η̃(x) := inf
{
η(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
η(x̃)(x̃)

}
, (4.8)

M[η],Rd(x) := sup
{
M[η](x̃) : x̃ ∈ ∂P s.t. x ∈ Bη(x̃)(x̃)

}
, (4.9)

where inf ∅ = sup ∅ := 0 for notational convenience. Furthermore, write A := F−1
(
(0, 3

2
r)
)

for

F := inf
p∈∂P

fp , fp(x) :=

{
η(p) if x ∈ B η(p)

4

(p)

2r else
.

then η̃ is measurable and M[η] is upper semicontinuous.

Proof. Step 1: Let (pi)i∈N ⊂ ∂P be a dense subset. If x ∈ B 1
8
η(p)(p) for some p ∈ ∂P then

also x ∈ B 1
8
η(p̃)(p̃) for |p− p̃| sufficiently small, by continuity of η. For every p ∈ ∂P consider the

function fp(x) as introduced above. Then every fp is upper semicontinuous and F := infi∈N fpi is
measurable. In particular, the set A is measurable and thus η̃ = χAF is measurable.

Step 2: We show that for every a ∈ R the preimage M−1
[η],Rd([a,+∞)) is closed. Let (xk)k∈N be a

sequence with M[η],Rd(xk) ∈ [a,+∞). Let (pk) ⊂ ∂P be a sequence with |xk − pk| ≤ η(pk).
W.l.o.g. assume pk → p ∈ ∂P and xk → x ∈ Rd. Since η is continuous, it follows |x− p| ≤ η(p).
On the other hand M[η](p) ≥ lim supk→∞M[η](pk) and thus M[η],Rd(x) ≥M[η](p) ≥ a.
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Lemma 4.13. Under the assumptions of Lemma 4.12 there exists a constant C > 0 only depending
on the dimension d such that for every bounded open domain Q it holdsˆ

A∩Q
χη̃>0η̃

−α ≤ C

ˆ
A∩B r

4
(Q)∩∂P

η1−αMd−2
[ η
4

],Rd , (4.10)

ˆ
A∩Q

η̃−αM r
[ η
8

] ≤ C

ˆ
A∩B r

4
(Q)∩∂P

η1−αM r+d−2
[ η
4

],,Rd . (4.11)

Finally, it holds

x ∈ B 1
8
η(p)(p) ⇒ η(p) > η̃(x) >

3

4
η(p) . (4.12)

Remark 4.14. Estimates (4.10)–(4.11) are only rough estimates and better results could be obtained
via more sophisticated calculations that make use of particular features of given geometries.

Proof. Step 1: Given x ∈ Rd with η̃(x) > 0 let

px ∈ argmin
{
η(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
η(x̃)(x̃)

}
. (4.13)

Such px exists because ∂P is locally compact. We observe with help of the definition of px, the triangle
inequality and (2.19)

x ∈ B 1
8
η(p)(p) ⇒ η(px) ≤ η(p) ⇒ |p− px| <

η(p)

4
⇒ η(px) >

3

4
η(p) .

The last line particularly implies (4.12) and

∀p ∈ ∂P ∀x ∈ B η(p)
8

(p) : η̃(x) >
3η(p)

4
.

Step 2: By Theorem 2.13 we can chose a countable number of points (pk)k∈N ⊂ ∂P such that
Γ = ∂P is completely covered by balls Bk := Bξ(pk)(pk) where ξ(p) := 2−4η(p). For simplicity of
notation we write ηk := η(pk) and ξk := ξ(pk). Assume x ∈ A with px ∈ Γ given by (4.13). Since
the balls Bk cover Γ, there exists pk with |px − pk| < ξk = 2−4ηk, implying η(px) <

24

24−1
ηk and

hence |x− pk| ≤
(

2−4 + 2−324

24−1

)
ηk <

3
16
ηk. Hence we find

∀x ∈ A ∃pk : x ∈ B 3
16
ηk

(pk) .

Step 3: For p ∈ Γ with x ∈ B 1
4
η(p)(p) ∩ B 1

8
η(px)(px) we can distinguish two cases:

1 η(p) ≥ η(px): Then px ∈ B 3
8
η(p)(p) and hence η(px) ≥ 5

8
η(p) by (2.19).

2 η(p) < η(px): Then p ∈ B 3
8
η(px)(px) and henceη(px) >

1− 3
8

1− 6
8

η(p) = 5
2
η(p) by (2.19).

and hence

x ∈ B 1
4
η(p)(p) ⇒ η̃(x) = η(px) >

5

8
η(p) .

Step 4: Let k ∈ N be fixed and define Bk = B 1
4
ηk

(pk), Mk := M(pk,
1
4
ηk). By construction, every

Bj with Bj ∩ Bk 6= ∅ satisfies ηj ≥ 1
2
ηk and hence if Bj ∩ Bk 6= ∅ and Bi ∩ Bj 6= ∅ we find

|pj − pi| ≥ 1
4
ηk and |pj − pk| ≤ 3ηk. This implies that

∃C > 0 : ∀k # {j : Bj ∩Bk 6= ∅} ≤ C .
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We further observe that the minimal surface of Bk ∩ ∂P is given in case when Bk ∩ ∂P is a cone
with opening angle π

2
− arctanM(pk). The surface area of Bk ∩ ∂P in this case is bounded by

1
d−1

∣∣Sd−2
∣∣ ηd−1

k (Mk + 1)2−d. This particularly implies up to a constant independent from k:

ˆ
A∩Q∩P

η̃−α .
∑

k:Bk∩Q 6=∅

ˆ
A∩Bk∩P

η−αk

.
∑

k:Bk∩Q 6=∅

ˆ
A∩Bk∩∂P

η1−αMd−2
[ η
4

]

.
ˆ
A∩B r

4
(Q)∩∂P

η1−αMd−2
[ η
4

]
.

The second integral formula follows in a similar way.

4.2 Mesoscopic Regularity and Isotropic Cone Mixing

In what follows, we built upon Lemma 4.1 to motivate our definition of mesoscopic regularity (Definition
4.17 by the following two Lemmas.

Lemma 4.15. Recall Xr(P(ω)) := 2rZd ∩ P−r(ω) =
{
x ∈ 2rZd : B r

2
(x) ⊂ P

}
from Lemma

2.50 and assume r < 1
8
. Let

µω,r( · ) := L
(
· ∩ B r

2
(Xr(P(ω)))

)
,

then there exists a constant λ0 > 0 such that for almost every ω ∈ Ω it holds for all regular convex
averaging sequences An

lim inf
n→∞

|An|−1 µω,r(An) ≥ λ0 . (4.14)

Remark. Note that µω,r is stationary with respect to shifts in 2rZd but not ergodic in general. It cor-

responds to the function
∣∣Sd−1

∣∣ ( r
2

)dXr(P(ω)) on 2rZd and by stationarity, Theorem 2.48 yields
convergence

|An|−1
∑

z∈An∩Xr(P(ω))

∣∣Sd−1
∣∣ ( r

2

)d
Xr(P(ω))→ E (µω,r|I ) .

Inequality (4.14) implies E(µω,r|I ) ≥ λ0 a.s.

Proof of Lemma 4.15. Due to Lemma 4.1, with probability pr > 0 the set I ∩ P contains a ball
B4
√
dr(x) and thus the set (I ∩P)−3

√
dr contains a ball B√dr(x). In particular, the stationary ergodic

random measure µ̃ω( · ) := L
(
· ∩P−3

√
dr (ω)

)
has positive intensity λ̃0 > pr

∣∣∣∣Sd−1
(√

dr
)d∣∣∣∣. Let

µ̃ω
(
I−3
√
dr

)
> 0. Then there exists x ∈ (I ∩P)−3

√
dr and thus there exists x ∈ Xr(P(ω)) ∩ I with

B r
2
(x) ⊂ I. It follows

µ̃ω
(
I−3
√
dr

)
≤ µ̃ω (I) ≤ 1 =

2d

rd |Sd−1|

∣∣∣B r
2
(x)
∣∣∣ ≤ 2d

rd |Sd−1|
µω,r(I) .
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Since µ̃ω is stationary ergodic and An is regular we find

pr

∣∣∣∣Sd−1
(√

dr
)d∣∣∣∣ < µ̃ω

(
I−3
√
dr

)
< λ̃0 ≤ E(µ̃ω (I)) = lim inf

n→∞
|An|−1 µ̃ω(An)

≤ 2d

rd |Sd−1|
lim inf
n→∞

|An|−1 µω,r(An) .

Lemma 4.1 suggests that starting at the origin and walking into an arbitrary direction, it is almost
impossible to not meet a ball of radius r that fully lies within P(ω). However, this is in general wrong,
as for a given fixed direction one may already find periodic counter examples. In what follows, we
will therefore use the weaker concept of isotropic cone mixing (Definition 4.17) which is based on the
following observation:

Lemma 4.16. Let ((νj, αj))j∈N ⊂ Sd−1 ×
(
0, π

2

)
be countable. Then for every x ∈ Rd and each

j ∈ N there holds
lim
R→∞

P
(
Xr (P) ∩ Cνj ,αj ,R(x) 6= ∅

)
= 1 .

Proof. By stationarity, we can assume x = 0 and by Lemma 4.15 the random measure µω,r has
strictly positive intensity.

We write CR := Cνj ,αj ,eR(0) and denote by C̃R the cone with the same base as CR but with apex

−νjR. Then C̃R is a regular convex averaging sequence. Furthermore, it holdsL
(
C̃R

)
/L((CR)) =

eR+R
eR
→ 1 implying L

(
C̃R\CR

)
L
(
C̃R

)−1

→ 0 as R→∞. Thus

µ0 ≤ lim inf
R→∞

L
(
C̃R

)−1

µω,r

(
C̃R

)
= lim inf

R→∞
L
(
C̃R

)−1 (
µω,r(CR) + µω,r

(
C̃R\CR

))
= lim inf

R→∞
L
(
C̃R

)−1

µω,r(CR) .

where we use 0 ≤ µω,r

(
C̃R\CR

)
≤ L

(
C̃R\CR

)
→ 0 as R → ∞. We infer that µω,r((CR)) =

O
(
Rd
)

and hence the statement (CR has to contain infinitely many balls B r
2
(xl)).

The following definition is a quantification of Lemma 4.16.

Definition 4.17 (Isotropic cone mixing). A random set P(ω) is isotropic cone mixing if there ex-
ists a jointly stationary point process X in Rd or 2rZd, r > 0, such that almost surely two points
x, y ∈ X have mutual minimal distance 2r and such that B r

2
(X(ω)) ⊂ P(ω). Further there exists

a function f(R) with f(R) → 0 as R → ∞ and α ∈
(
0, π

2

)
such that with E := {e1, . . . ed} ∪

{−e1, · · · − ed} ({e1, . . . ed} being the canonical basis of Rd)

P(∀e ∈ E : X ∩ Ce,α,R(0) 6= ∅) ≥ 1− f(R) . (4.15)

Criterion 4.18 (A simple sufficient criterion for (4.15)). Let P be a stationary ergodic random open
set, let f̃ be a positive, monotonically decreasing function with f̃(R) → 0 as R → ∞ and let r > 0
s.t.

P
(
∃x ∈ BR(0) : B4

√
dr(x) ⊂ BR(0) ∩P

)
≥ 1− f̃(R) . (4.16)

Then P is isotropic cone mixing with f(R) = 2df̃
(
(a+ 1)−1R

)
and with X = Xr(P). Vice versa,

if P is isotropic cone mixing for f then P satisfies (4.16) with f̃ = f .
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Definition 4.19 (Mesoscopic regularity). A random set P satisfying Criterion 4.18 is also called meso-
scopically regular and f̃ is the regularity. P is called polynomially (exponentially) regular if 1/f̃ grows
polynomially (exponentially).

Proof of Criterion 4.18. Because of P(A ∪B) ≤ P(A) + P(B) it holds for a > 1

P
(
∃e ∈ E : @x ∈ BR(aRe) : B4

√
dr(x) ⊂ BR(aRe) ∩P

)
≤ 2df̃(R) .

The existence of B4
√
dr(x) ⊂ BR(aRe)∩P(ω) implies that there exists at least one x ∈ Xr (P (ω))

such that B r
2
(x) ⊂ BR(aRe) ∩P(ω) and we find

P
(
∃e ∈ E : @x ∈ Xr(P) : B r

2
(x) ⊂ BR(aRe) ∩P

)
≤ 2df̃(R) .

In particular, for α = arccos a and R large enough we discover

P
(
∃e ∈ E : Xr(P) ∩ Ce,α,(a+1)R (0) = ∅

)
≤ 2df̃(R) .

The relation (4.15) holds with f(R) = 2df̃
(
(a+ 1)−1R

)
.

The other direction is evident.

Note that Criterion 4.18 is much easier to verify than Definition 4.17. However, Definition 4.17 is for-
mulated more generally and is easier to handle in the proofs below, that are all built on properties of
Voronoi meshes.

The formulation of Definition 4.17 is particularly useful for the following statement.

Lemma 4.20 (Size distribution of cells). Let P(ω) be a stationary and ergodic random open set that
is isotropic cone mixing for X(ω), r > 0, f : (0,∞) → R and α ∈

(
0, π

2

)
. Then X and its Voronoi

tessellation have the following properties:

1 IfG(x) is the open Voronoi cell of x ∈ X(ω) with diameter d(x) then d is jointly stationary with
X and for some constant Cα > 0 depending only on α

P(d(x) > D) < f

(
C−1
α

D

2

)
. (4.17)

2 For x ∈ X(ω) let I(x) := {y ∈ X : G(y) ∩ Br(G(x)) 6= ∅}. Then

#I(x) ≤
(

4d(x)

r

)d
. (4.18)

Proof. 1. W.l.o.g. let xk = 0. The first part follows from the definition of isotropic cone mixing: We
take arbitrary points x±j ∈ C±ej ,α,R(0) ∩ X. Then the planes given by the respective equations(
x− 1

2
x±j
)
· x±j = 0 define a bounded cell around 0, with a maximal diameter D(α,R) = 2CαR

which is proportional to R. The constant Cα depends nonlinearly on α with Cα → ∞ as α → π
2

.
Estimate (4.17) can now be concluded from the relation between R and D(α,R) and from (4.15).

2. This follows from Lemma 2.15.
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Lemma 4.21. Let Xr be a stationary and ergodic random random points process with minimal mutual
distance 2r for r > 0 and let f : (0,∞) → R be such that the Voronoi tessellation of X has the
property

∀x ∈ rZd : P(d(x) > D) = f(D) .

Furthermore, let n, s : Xr → [1,∞) be measurable and i.i.d. among Xr and let n, s, d be indepen-
dent from each other. Let

Gn(x)(x) = n(x) (G(x)− x) + x

be the cell G(x) enlarged by the factor n(x), let d(x) = diamG(x) and let

bn(y) :=
∑
x∈Xr

χGn(x)d(x)ηs(x)ξn(x)ζ ,

where η, ξ, ζ > 0 is a constant. Then bn is jointly stationary with Xr and for every r > 1 there exists
C ∈ (0,+∞) such that

E(bpn)

≤ C

(
∞∑

k,N=1

(k + 1)d(p+1)+ηp+r(p−1) (S + 1)ξp+r(p−1) (N + 1)d(p+1)+ζp+r(p−1) Pd,kPn,NPs,S

)
.

(4.19)

where

Pd,k := P(d(x) ∈ [k, k + 1)) = f(k)− f(k + 1) ,

Pn,N := P(n(x) ∈ [N,N + 1)) ,

Ps,S := P(s(x) ∈ [S, S + 1)) .

Proof. We write Xr = (xi)i∈N, di = d(xi), ni = n(xi), si := s(xi). Let

Xk,N,S(ω) := {xi ∈ Xr : di ∈ [k, k + 1), ni ∈ [N,N + 1), si ∈ [S, S + 1)}

with Ak,N,S :=
⋃
x∈Xk,N,S Gn(x)(x). We observe that

∀x ∈ Rd : #
{
xi ∈ Xk,N,S : x ∈ Gn(xi)(xi)

}
≤ Sd−1 (N + 1)d (k + 1)d r−d , (4.20)

which follows from the uniform boundedness of cellsGn(x)(x), x ∈ Xk,N and the minimal distance of
|xi − xj| > 2r. Then, writing BR := BR(0) for every y ∈ Rd it holds by stationarity and the ergodic
theorem

P(y ∈ Gni(xi) : xi ∈ Xk,N) = lim
R→∞

|BR|−1 |Ak,N ∩BR|

≤ lim
R→∞

|BR|−1

∣∣∣∣∣∣BR ∩
⋃

xi∈Xk,N

Gni(xi)

∣∣∣∣∣∣
≤ lim

R→∞
|BR|−1

∑
xi∈Xk,N∩BR

∣∣Sd−1
∣∣ (N + 1)d (k + 1)d r−d

→ Pd,kPn,N (N + 1)d
∣∣Sd−1

∣∣ (k + 1)d r−d .
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In the last inequality we made use of the fact that every cell Gn(x)(x), x ∈ Xk,N , has volume smaller

than Sd−1 (N + 1)d (k + 1)d. We note that for 1
p

+ 1
q

= 1

ˆ
Q

(∑
x∈Xr

χGn(x)d(x)ηs(x)ξn(x)ζ

)p

≤
ˆ
Q

 ∞∑
k=1

∞∑
N=1

∞∑
S=1

 ∑
x∈Xk,N,S

χGn(x)(x) (k + 1)η (N + 1)ξ(S + 1)ζ

p

≤
ˆ
Q

(
∞∑

k,N,S=1

αqk,N,S

) p
q

 ∞∑
k,N,S=1

α−pk,N,S

 ∑
x∈Xk,N,S

χGn(x)(x) (k + 1)η (N + 1)ξ(S + 1)ζ

p .

Due to (4.20) we find ∑
x∈Xk,N

χGn(x)(x) ≤ χAk,N (N + 1)d (k + 1)d
∣∣Sd−1

∣∣
and obtain for q = p

p−1
and Cq :=

(∑∞
k,N,S=1 α

q
k,N,S

) p
q ∣∣Sd−1

∣∣p:
1

|BR|

ˆ
BR

(∑
x∈Xr

χGn(x)d(x)ηs(x)ξn(x)ζ

)p

≤ Cq
1

|BR|

ˆ
BR

(
∞∑

k,N,S=1

α−pk,N,SχAk,N,S (N + 1)dp+ζp (k + 1)dp+ηp (S + 1)ξp

)

→ Cq

(
∞∑

k,N,S=1

α−pk,N,S (k + 1)d(p+1)+ηp (N + 1)d(p+1)+ζp (S + 1)ξpPs,SPd,kPn,N

)

For the sum
∑∞

k,N,S=1 α
q
k,N,S to converge, it is sufficient thatαqk,N,S = (k + 1)−r (N + 1)−r (S + 1)−r

for some r > 1. Hence, for such r it holds αk,N,S = (k + 1)−r/q (N + 1)−r/q (S + 1)−r/q and thus
(4.19).

4.3 Discretizing the Connectedness of (δ,M)-Regular Sets

Let P(ω) be a stationary ergodic random open set which is isotropic cone mixing for r > 0, f :
(0,∞) → R and α ∈

(
0, π

2

)
. Then Xr(P(ω)) = (xk)k∈N generates a Voronoi tessellation ac-

cording to Lemma 4.20 with cells Gk and balls Bk,r = Br/2(xk). While the (δ,M)-regularity of P
is a strictly local property with a radius of influence of δ, the isotropic cone mixing is a mesoscopic
property, with the influence ranging from r to∞.

In this part, we close the gap by introducing graphs on P that connect the small local balls covering
∂P with Xr in P. The resulting family of graphs and paths on these graphs will be essential for the
last step in Section 7.

Definition 4.22 (Admissible and simple graphs). Let ∂X := (pk)k∈N ⊂ ∂P with corresponding
Y∂X := (yk)k∈N like in Corollary 4.11 and let Y ⊂ P be a countable set of points with ∂X ∪ Y∂X ∪
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Figure 4: In order to treat the differences
|τiu−Mju|s appearing in Theorem 6.3 be-
low, it is necessary to construct a graph that
connects the boundary with the centers of the
Voronoi tessellation.

Xr ⊂ Y and let (Y,G∗(P)) be a graph. Then the graph G∗(P) on Y is admissible if it is connected
and every pk ∈ ∂X has exactly one neighbor y = yk ∈ Y∂X. An admissible graph is called simple if
every yk ∈ Y∂X has - besides pk - only neighbors in Y\Y∂X.

The following concept will become important later in Section . For reasons of self-containedness, we
introduce it already at this point.

Definition 4.23 (Locally connected P and Gflat). Assume that (Y,G(P)) is an admissible graph
on P with the property that for y1, y2 ∈ Y∂X with corresponding p1, p2 ∈ ∂X it holds y1 ∼ y2

iff Bρ̃1(p1) ∩ Bρ̃2(p2) 6= ∅. The graph Gflat(P) consists of all elements of G(P), except those
(y1, y2) ∈ Y2

∂X for which there is no path in B2ρ̃1(p1) ∩P or in B2ρ̃2(p2) ∩P connecting y1 with y2.
If Gflat(P) is connected, the set P is called locally connected.

Locally flat geometries will turn out to be particularly useful as they allow to construct tubes around
paths that fully lie within P and connect the local with the mesoscopic balls.

Definition 4.24 (Admissible paths). Let (Y,G(P)) be an admissible graph on P and let AX(y, x)
be a family of paths from y ∈ Y∂X to x ∈ Xr which are constructed from a deterministic algorithm
that terminates after finitely many steps. Assume that for every Y = (y1, . . . , yk) ∈ AX(y, x). If
r1 = r(y) is the radius of y from Corollary 4.11 assume there exists

Y0 ∈ C([0, 1]× Br1(y);P) with Y0(t,Br1(y)) = B r
16

(x) ,

such that Y0(t,Br1(y)) is invertible for every t and Y0(0, x) = x. Then the family AX(y, x) is called
admissible.

A general approach to construct admissible graphs and paths on locally connected P

For a particular family of random geometries, there might be sophisticated ways to construct Y and
the families AX(·, ·). However, it is interesting to know that such a graph can be constructed very
generally for every locally connected geometry. In this section, we will thus introduce a concept how
to transform the domain P into such a graph, thereby bridging the gap between the local regularity of
∂P and the mesoscopic regularity. The basic Idea is sketched in Figure 4.

The grid Let P ⊂ Rd be open and r > 0. For x 6∈ ∂P let

η(x) := min {dist(x, ∂P) , 2r} (4.21)

and η̃ = 1
4
η. Then we find the following:
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Lemma 4.25. Let P be a connected open set which is locally (δ,M)-regular. For r > 0 let Xr =
(xk)k∈N be a family of points with a mutual distance of at least 2r satisfying dist(xk, ∂P) > 2r and
let ∂X := (pk)k∈N ⊂ ∂P with corresponding (ρ̃k)k∈N , (rk)k∈N ⊂ R and Y∂X := (yk)k∈N like in

Corollary 4.11. Then there exists a family of points X̊ = (p̂j)j∈N ⊂ P with Xr ⊂ X̊ such that with

η̃k := η̃(p̂k), B̂k := Bη̃k(p̂k) and Bk := Bρ̃k(pk) the family (Bk)k∈N ∪
(
B̂k

)
k∈N

covers P and

B̂k ∩ B̂i 6= ∅ ⇒


1

2
η̃i ≤ η̃k ≤ 2η̃i

and 3 min {η̃i, η̃k} ≥ |p̂i − p̂k| ≥
1

2
max {η̃i, η̃k} .

(4.22)

Furthermore, Bk ∩ B̂j 6= ∅ implies

3

14
ρ̃k ≤ η̃j ≤

1

3
ρ̃k , 4η̃j ≤ |p̂j − pk| ≤

4

3
ρ̃k , (4.23)

i.e. Brk(yk) ∩ B 1
8
η̃j

(p̂j) = ∅. Finally, there exists C > 0 such that for every x ∈ P

#
{
j ∈ N : x ∈ B 1

8
η̃j

(p̂j)
}

+ # {k ∈ N : x ∈ Brk(yk)} ≤ C . (4.24)

Notation 4.26. Summing up and extending the notation of Lemma 4.25 we write

∂Y := ∂X := (pk)k∈N ⊂ ∂P , Xr ⊂ X̊ := (p̂j)j∈N ⊂ P , X := ∂X ∪ X̊ ,

Y∂X := (yk)k∈N , Y̊ := (yk)k∈N ∪ X̊ Y := Y̊ ∪ ∂Y .
(4.25)

The meaning of introducing the symbol Y will be clarified below.

For p ∈ ∂X we write η̃(p) := ρ̃(p) and for p ∈ X̊ we use the above notation (4.21) and further define

r(y) := rj for y = yj ∈ Y∂X , r(y) :=
1

8
η̃(y) for y ∈ (p̂k)k . (4.26)

We finally introduce the following bijective mappings

x(y) =

{
pk if y = yk ∈ Y∂X

p̂j if y = p̂j ∈ X̊
, y(x) =

{
yk if x = pk ∈ ∂X
p̂j if x = p̂j ∈ X̊

. (4.27)

Proof of Lemma 4.25. We recall ρ̃k := ρ̃ (pk) := 2−5ρ (pk) and rk = ρ̃k
32(1+Mk)

and that (4.7) holds.

Furthermore, Brk(yk) ⊂ Bρ̃k/8(pk) ∩P and hence Brk(yk) ∩ Brj(yj) = ∅ for k 6= j.

If we define PB := P\
⋃
k Bk and observe that PB is η-regular (for η defined in (4.21)). Then Lemma

2.12 and Theorem 2.13 yield a cover of PB by a locally finite family of balls B̂k = Bη̃k(p̂k), where
(p̂k)k∈N ⊂ PB , and where (4.22) holds. Looking into the proof of Theorem 2.13 we can assume
w.l.o.g. that (xk)k∈N ⊂ (p̂k)k∈N by suitably bounding η.

Furthermore, we find for Bk ∩ B̂j 6= ∅ that

η̃j + ρ̃k ≥ |p̂j − pk| > 4η̃j ⇒ η̃j ≤
1

3
ρ̃k and |p̂j − pk| ≤

4

3
ρ̃k .

Next, for such pk we consider all Bi such that pi ∈ B4ρ̃k(pk) and since p̂j 6∈ Bi for all such i, we
infer dist(p̂j, ∂P) ≥ ρ̃(pi) and hence by Lemma 4.6

η̃j ≥
1

4
ρ̃i = 2−7ρi ≥ 2−7 1− 21

8

1− 1
8

ρk >
3

14
ρ̃k .
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Finally, Brk(yk) ∩ B 1
8
η̃j

(p̂j) = ∅ follows from 12
14
ρ̃k ≤ 4η̃j ≤ |p̂j − pk|.

To see (4.24) let x ∈ P and let p̂j such that η̃j is maximal among all B̂j with x ∈ B̂j . Let p̂i with
x ∈ B̂i∩ B̂j and observe that both |p̂i − p̂j| and η̃i are bounded from below and above by a multiple
of η̃j . If x ∈ B̂i ∩ B̂k ∩ B̂j , |p̂i − p̂k| is bounded from above and below by η̃i, hence by η̃j . This
provides a uniform bound on #

{
j ∈ N : x ∈ Bη̃j(p̂j)

}
. The second part of (4.24) follows in an

analogue way.

Definition 4.27 (Neighbors). Under the assumptions and notations of Lemma 4.25, for two points
y1, y2 ∈ X̊ ∪Y∂X let x1 = x(y1), x2 = x(y2). We say that y1 and y2 are neighbors, written y ∼ y2,
if Bη̃(x1)(x1) ∩ Bη̃(x2)(x2) 6= ∅. This implies a definition of “neighbor” for x1, x2 ∈ X̊ . For x ∈ ∂X
and y ∈ Y∂X we write x ∼ y if x = x(y). We denote by G0(P,X), G0(P) or simply G(P) the
graph on X̊ ∪ Y∂X ∪ ∂X generated by ∼.

Remark 4.28. a) Every y ∈ Y∂X has a neighbor x ∈ ∂X.

b) Besides y(x), points x ∈ ∂X have no other neighbors.

The admissible paths We will see below that G0(P) is admissible if P is connected. Besides
G0(P) we introduce further (reduced) graphs on X, which are based on continuous paths. For two
points x, y ∈ P we denote

P0(x, y) := {f ∈ C([0, 1];P) : f(0) = x, f(1) = y} .

Definition 4.29. Using the notation of Lemma 4.25, the graph

Gsimple(P) :=
{

(y1, y2) ∈ Gflat(P) : (y1, y2) 6∈ Y2
∂X
}

is the subset of G(P) where all elements (y1, y2) and (x(y1), x(y2)) are removed for which y1, y2 ∈
Y∂X. Furthermore, if yk ∈ Y∂X with pk = x(yk) ∈ ∂X has a neighbor p̂j ∈ X̊ such that yk and
p̂j are not connected through a path which lies in B3ρ̃(pk)(pk) ∩P, then (y(pk), p̂j), (p̂j, y(pk)) are
removed.

We write G∗(P) for either G0(P), Gflat(P), Gsimple(P) or any other subset of G0(P) which is
connected.

Lemma 4.30. Assume (X,Gflat(P)) is connected, assume y ∈ Y∂X and y1 ∼ y. Then there exists

γ ∈ C
(

[0, 1]× B r
16

(0); P ∩ B3ρ̃(x(y))(x(y))
)

such that γ(·, x) is a path from y + 16
r
r(y)x to

y1 + 16
r
r(y1)x, for two points x1, x2 ∈ B r

16
(0) it holds either γ(·, x1) ∩ γ(·, x2) = ∅ or γ(·, x1) ⊂

γ(·, x2) or γ(·, x1) ⊃ γ(·, x2) and there exist constants c1, c2, c3 depending only on the dimension
but not on y or y1 such that

∀t ∈ [0, 1] Bc1 min{r(y),r(y1)}(γ(t, 0)) ⊂ γ
(

[0, 1]× B r
16

(0)
)

∀x ∈ B r
16

(0) Lengthγ(t, x) ≤ c2 |y − y1| .

We denote γ as γ[y, y1].

Proof. Let γ̃ ∈ P0(y, y1). If ỹ ∈ Y∂X we infer from Lemma 5.2 below thatB 1
2
ρ̃(ỹ)(ỹ) ⊂ B3ρ̃(x(y))(x(y)).

We recall that ∂P∩B3ρ̃(x(y))(x(y)) is a graph (·, φ(·)) of a Lipschitz continuous function φ : Rd−1 →
R and that both Br(y)(y) and Br(y1)(y1) as well as γ̃([0, 1]) lie below that graph. We project Br(y)(y)
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and Br(y1)(y1) as well as γ̃([0, 1]) onto the sphere x(y) + 2ρ̃(x(y))Sd−1, which still do not intersect
with the graph of φ. From here we may construct γ satisfying the claimed estimates. Since Br(y)(y) ⊂
B 1

2
ρ̃(x(y))(x(y)) and Br(y1)(y1) ⊂ B 1

2
ρ̃(x(y1))(x(y1)) and |y − y1| > 15

16
min {ρ̃(x(y1)), ρ̃(x(y))},

we conclude that the constants can be chosen independently from y.

If y ∈ Y̊ we can proceed analogously.

Lemma 4.31 (G0(P) is admissible). Under the assumptions and notations of Lemma 4.25 for every
y0, y1 ∈ Y there exists a discrete path from y0 to y1 in (X,G0(P)).

Proof. Since P is connected, there exists a continuous path γ : [0, 1] → P with γ(0) = y0,
γ(1) = y1. Since γ([0, 1]) is compact, it is covered by a finite family of balls Bη̃(y)(y), y ∈ Y. If
γ([0, 1]) ⊂ Bη̃(y0)(y0) the statement is obvious. Otherwise there exists a maximal interval [0, a),
a < 1, such that γ([0, a)) ⊂ Bη̃(y0)(y0), γ(a) 6∈ Bη̃(y0)(y0)and there exists y 6= y0 such that for
some ε > 0 γ((a− ε, a+ ε)) ⊂ Bη̃(y0)(y0) ∩ Bη̃(y)(y). One may hence iteratively continue with
y′0 := y on the interval [a, 1].

Hence, every two points in Y can be connected by a discrete path. However, the choice of the path is
not unique, there might be even infinitely many with arbitrary large deviation from the “shortest” path.
Luckily, it turns out that it suffices to provide a deterministically constructed finite family of paths.

Definition 4.32 (Admissible paths on G∗(P)). Let P ⊂ Rd be open, connected and locally connected
with G∗(P) such that the assumptions of Lemma 4.25 are satisfied. Let x ∈ Xr. We call any family
of paths which connect y ∈ Y\{x} to x admissible, if it is generated by a deterministic algorithm
that terminates after a finite number of steps. Hence, an admissible path from y to x in G∗(P) is a
path (x1, . . . , xk) with x1 = y, xk = x generated according to this algorithm. We denote the set of
admissible paths from y to x by AX∗(y, x).

Notation 4.33. Let xj ∈ Xr, pi ∈ Y∂X and Y = (y1, . . . , yN) ∈ AX(pi, xj). Recalling (4.26), for

x ∈ Br1(0) we define Y0(x) the set of paths connecting y1 + x, y2 + r(y2)
r1
x, ... yN + r(yN )

r1
x chosen

as straight line if yi, yi+1 ∈ Y0 and γ(·, x) from Lemma 4.30 else and

Y0(Br1(0)) :=
⋃

x∈Br1 (0)

Y (x) .

In what follows, we are usually working with the latter expression and hence introduce for simplicity
of notation the identification Y ≡ Y0(Bri(0)). In this way, Y is an open set and the characteristic
function χY ∈ L1(Rd) is integrable as Lemma the next Lemma 4.38 will reveal. Finally, by Lemma
4.25 there exists C > 1 such that independent from xj , pi and x ∈ Bri(0) it holds

1

C
Length(Y (x)) ≤ Length(Y ) := Length(Y (0)) ≤ CLength(Y (x)) . (4.28)

Remark 4.34. 1. Every path admissible in the sense of 4.32 is admissible in the sense of 4.24. This
follows from Lemma 4.30 and the fact that for y, ỹ ∈ Y0 with y ∼ ỹ it holds B 1

4
η̃(y)(y) ⊂ B4η̃(ỹ)(ỹ) ⊂

P.

2. A particular family of admissible paths is given by the shortest distance. In particular, if x ∈ Xr and
y ∈ Y\{x} we define the shortest paths as

AXshort(y, x) := arg min

{
k∑
i=1

|xi+1 − xi| : (x1, . . . , xk) path in G∗(P) ,

k ∈ N, x1 = y, xk = x}
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Construct a finite family In what follows, we will construct a class of admissible paths on G∗(P)
which does not rely on the metric graph distance. We study the discrete Laplacian L∗ : L2(Y) →
L2(Y) on an admissible graph G∗(P) given by

(L∗u) (x) := −
∑

(y,x)∈G∗(P)

1

|x− y|2
(u(y)− u(x)) .

It is well known that L is a discrete version of an elliptic second order operator, see [4, 11, 16] and
references therein. This may be quickly verified for the “classical” choice Y = hZd with x ∼ y iff
|x− y| = h (using Taylor expansion and the limit h→ 0).

The discrete Laplacian is connected to the following discrete Poincaré inequality.

Lemma 4.35. Let P ⊂ Rd be open, connected and satisfy the assumptions of Lemma 4.25, let
(X,G∗(P)) be admissible and let 0 ∈ Y̊. Writing

H0(Y) := {u : Y→ R : ∀y ∈ ∂Y : u(y) = 0} ,
H0(Y ∩ BR(0)) := {u ∈ H0(Y) : ∀y 6∈ BR(0) : u(y) = 0} .

There exists R0 > 0 and CR0 > 0 such that for every R > R0 the following discrete PoincarÃ c©
estimate holds:

∀u ∈ H0(Y) : u(0)2 ≤ CR0

∑
y1,y2∈Y∩BR(0)

y1∼y2

(u(y1)− u(y2))2

|y1 − y2|2
. (4.29)

Proof. This is straight forward from a contradiction argument (using connectedness of (X,G∗(P))).

For the following result we introduce the notation:

For x ∈ Y̊ define δx(y) :=

{
0 if x 6= y

1 if x = y
.

Lemma 4.36 (A discrete maximum principle). Let P ⊂ Rd be open, connected and satisfy the as-
sumptions of Lemma 4.25, let (X,G∗(P)) be admissible and let x ∈ Y̊. Then the equation

(L∗u)(y) + |y − x|u(y) = δx(y) for y ∈ Y̊
u(y) = 0 for y ∈ ∂Y

(4.30)

has a unique solution which satisfies u(y) > 0 for all y ∈ Y̊ and attains its unique local (and thus
global) maximum in x. Furthermore, u(y) → 0 as |y| → ∞ and for CR0 > 0 from Lemma 4.35 it
holds

u(x) +
∑

(y1,y2)∈G∗(P)

1

|y1 − y2|2
(u(y1)− u(y2))2 +

∑
y∈Y

|x− y|u(y)2 ≤ 5CR0 . (4.31)

Proof. W.l.o.g. let x = 0 and write y1 ∼ y2 iff (y1, y2) ∈ G∗(P). Using the notation of Lemma 4.35
and BR := BR(0) and B{

R := Rd \ BR(0) we divide the proof in three parts.

Approximation: We consider the problem

L∗uR + |·|u = δ0 , uR(y) = 0 for y ∈ ∂Y, and y ∈ Y ∩B{
R . (4.32)
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Putting v(x) = 0 for v ∈ H0(Y ∩BR) and all x 6∈ BR, we find

∑
y∈Y̊∩BR

v(y)L∗u(y) =
∑
z∼y

1

|y − z|2
(u(y)− u(z)) (v(y)− v(z)) , (4.33)

which is a strictly positive definite bilinear symmetric form on RY̊∩BR . Hence, there exists a unique
solution uR to (4.32).

Since Y ∩ BR is finite, uR attains a maximum and a minimum. If uR attains a local maximum in y,
it holds L∗uR(y) ≥ 0 and if uR attains a local miminum in y it holds L∗uR(y) ≤ 0. If uR attains
negative values, it has a negative minimum in y0 ∈ Y̊ and hence (L∗u)(y0) + |y0 − x|u(y0) < 0, a
contradiction. Thus, uR > 0 in every y 6∈ ∂Y. Furthermore, because of (4.32) uR can attain a local
maximum only in 0.

PassageR→∞: Using Lemma 4.35, for some large enoughR0 ∈ R we find the following estimate,
which holds for every R > R0 due to (4.32) and (4.29) applied to R0

∑
y∈X̊∩BR

(
uR(y)LuR(y) + |y|u(y)2

)
=
∑
z∼y

(uR(y)− uR(z))2

|y − z|2
+

∑
y∈X̊∩BR

|y|u(y)2

=
∑

y∈X̊∩BR

uR(y) δ0(y) ≤ u(0) ≤ 2CR0 +
1

2CR0

uR(0)2

≤ 2CR0 +
1

2

∑
y1,y2∈Y∩BR0

y1∼y2

(uR(y1)− uR(y2))2

|y1 − y2|2
(4.34)

Together with (4.33), the latter yields a uniform estimate for all R > R0. In particular (due to a Cantor
argument), there exists a subsequence uR′ such that uR′(y) → u(y) converges for every y ∈ Y
as R′ → ∞. Evidently, u solves (4.30), is non-negative, attains its maximum in 0 and satisfies the
estimate (4.31). The limit u(y) → 0 as y → ∞ follows from (4.31) and (4.34). u has a unique local
maximum in 0 for the same reason as for uR.

Uniqueness of u: Finally, let u and ũ be two solutions such that v = u− ũ satisfies

(L∗v)(y) + |y − x| v(y) = 0 for y ∈ Y \ Y∂

v(y) = 0 for y ∈ Y∂

.

Multiplying the above equation with v and summing over all y, we find∑
y∈X̊

(
v(y)L∗v(y) + |y| v(y)2

)
= 0 ,

which implies v = 0.

Definition 4.37. Let x ∈ Xr, let ux be the solution of (4.30) and y ∈ Y\{x}. An admissible harmonic
path from y to x in G∗(P) is a path (x1, . . . , xk) with x1 = y, xk = x such that ux(xi+1) ≥ ux(xi).
We denote the set of admissible harmonic paths from y to x by AX∗(y, x). If G∗(P) = G0(P) =
G(P) we simply write AX(y, x). Note that

AX(y, x) ⊇ AX∗(y, x) .
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Lemma 4.38. Let P ⊂ Rd be open, connected and satisfy the assumptions of Lemma 4.25. Let
(Y,G∗(P)) be admissible and let x ∈ Y̊ and y ∈ Y. There exists R > 0, depending on P, x and
y such that every admissible harmonic path (x1, . . . , xk) ∈ AX∗(y, x) from y to x lies in BR(x). If
C0, C > 0 are the natural numbers such that for every y ∈ Y it holds C0 ≤ # {z ∼ y : z ∈ Y} ≤
C (which exist due to Lemma 4.25) then we can choose

∀y ∈ Y : R ≤ R0(x, y) := C
u(x)

u(y)
(4.35)

Proof. Let us recall that u(z) > 0 for every z 6∈ ∂Y by Lemma 4.36. Again we write x ∼ y if
(x, y) ∈ G∗(P).

For an admissible path (x1, . . . , xk) from y = x1 to x = xk it follows u(xj) ≥ u(y) > 0 for every
j > 1. On the other hand

(L∗u)(xj) + |xj − x|u(xj) = 0

Let us further recall, that with C0 and C independent from y. Given u(y) we can therefore conclude
the necessary condition

(C0 + |xj − x|)u(xj)−
∑
z∼xj

u(z) ≤ 0 .

On the other hand, it holds u(z) ≤ u(x). This implies that the left hand side of the last inequality is
bounded from below by

(C0 + |xj − x|)u(xj)− Cu(x).

Hence we conclude (4.35) from

|xj − x| ≤ C
u(x)

u(y)
− C0 .

The most important and concluding result in this context is the following, which states that the set of
admissible paths is not empty and the G(P) is connected:

Theorem 4.39 (Admissible G∗(P) are connected through admissible harmonic paths). Let P ⊂ Rd

be open, connected and let P as well as (Y,G∗(P)) satisfy the assumptions of Lemma 4.36. Then for
x ∈ Y̊ let ux be the solution of (4.30) and for y ∈ Y let x1 := y. As long as xi 6= x select iteratively
xi+1 ∈ {z ∈ Y : z ∼ xi, ux(z) > ux(xi)}. Then this algorithm terminates after finite steps, i.e.
there exists i ∈ N such that xi = x. In particular G∗(P) is connected via admissible paths.

Proof. According to Lemma 4.38, the number of points that can be reached by the iterative process
is finite, i.e. the algorithm will stop when xi is a local maximum of ux. But this is given by xi = x
according to Lemma 4.36.

5 Extension and Trace Properties from (δ,M)-Regularity

5.1 Preliminaries

For this whole section, let P be a locally (δ,M)-regular open set and let δ be bounded by r > 0 and
satisfy (4.1). In view of Corollary 4.11, there exists a complete covering of ∂P by balls Bρ̃(pk)(pk),
(pk)k∈N, where ρ̃(p) := 2−5ρ(p). We define with ρ̃k := ρ̃(pk), ρ̂k := ρ̂(pk) given in Lemma 4.6

A1,k := Bρ̃k(pk) , A2,k := B3ρ̃k(pk) , A3,k := B ρ̂k
8

(pk) (5.1)
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and recall (4.8), which we apply to δ in order to obtain the measurable function

δ̃(x) := ˜̂ρ(x) = min
{
ρ̂(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
ρ̂(x̃)(x̃)

}
. (5.2)

Similarly, in view of (4.9), we define the measurable function

M̃(x) := M[ 1
8
ρ̂],Rd(x) + 1 = max

{
M[ 1

8
ρ̂](x̃) + 1 : x̃ ∈ ∂P s.t. x ∈ B 1

8
ρ̂(x̃)(x̃)

}
, (5.3)

Here we have used the convention max ∅ = min ∅ = 0.

Remark 5.1. a) In view of Lemma 4.8 we recall Remark 4.9 on the difference between M[η] and Mη

and additionally remark that M[ ρ̂
8

](x) + 1 ≤ M̃ρ̂(x) for every x ∈ ∂P.

b) We could equally work with δ replacing ρ̂. However, Lemma 4.6 suggests that the natural choice is
ρ̂.

Additionally introduce (recalling (4.6))

mk := m[ 1
8
ρ̂](pk,

1

4
ρ̃) , M̃k := M̃(pk) , Mk := M

(
pk,

1

8
ρ̂(pk)

)
(5.4)

We further recall that there exists rk = ρ̃k
32(1+mk)

, and yk such that

Bk := Brk(yk) ⊂ P ∩ B 1
8
ρ̃k

(pk)

Lemma 5.2. For two balls A1,k ∩ A1,j 6= ∅ either A1,k ⊂ A2,j or A1,j ⊂ A2,k and

A1,k ∩ A1,j 6= ∅ ⇒ B 1
2
ρ̃k

(pk) ⊂ A2,j and B 1
2
ρ̃j

(pj) ⊂ A2,k . (5.5)

Furthermore, there exists a constant C depending only on the dimension d and some d̂ ∈ [0, d] such
that

∀k # {j : A1,j ∩ A1,k 6= ∅}+ # {j : A2,j ∩ A2,k 6= ∅} ≤ C , (5.6)

∀x # {j : x ∈ A1,j}+ # {j : x ∈ A2,j} ≤ C + 1 , (5.7)

∀x #
{
j : x ∈ B 1

8
ρ̂j

(pj)
}
< CM̃(x)d̂ . (5.8)

Finally, there exist non-negative functions φ0 and (φk)k∈N such that for k ≥ 1: suppφk ⊂ A1,k,
φk|Bj ≡ 0 for k 6= j. Further, φ0 ≡ 0 on all Bk and on ∂P and

∑∞
k=0 φk ≡ 1 and there exists C

depending only on d such that for all j ∈ N ∪ {0}, k ∈ N it holds and

x ∈ A1,k ⇒ |∇φj(x)| ≤ Cρ̃−1
k . (5.9)

Remark 5.3. We usually can improve d̂ to at least d̂ = d − 1. To see this assume ∂P is locally
connected. Then all points pi lie on a d− 1-dimensional plane and we can thus improve the argument
in the following proof to d̂ = d− 1.

Proof. (5.5) follows from (4.7)2.

Let k ∈ N be fixed. By construction in Corollary 4.11, every A1,j with A1,j ∩ A1,k 6= ∅ satisfies
ρ̃j ≥ 1

2
ρ̃k and hence if A1,j ∩ A1,k 6= ∅ and A1,i ∩ A1,k 6= ∅ we find |pj − pi| ≥ 1

4
ρ̃k and

|pj − pk| ≤ 3ρ̃k. This implies (5.6)–(5.7) for A1,j and the statement for A2,j follows analogously.
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For two points pi, pj such that x ∈ A3,i ∩ A3,j it holds due to the triangle inequality |pi − pj| ≤
max

{
1
4
ρ̂i,

1
4
ρ̂j
}

. Let X(x) :=
{
pi ∈ X : x ∈ B 1

8
ρ̂i

(pi)
}

and choose p̃(x) = p̃ ∈ X(x) such that

ρ̂m := ρ̂(p̃) is maximal. Then X(x) ⊂ B 1
4
ρ̂m

(p̃) and every pi ∈ X(x) satisfies ρ̂m > ρ̂i >
1
3
ρ̂m.

Correspondingly, ρ̃i >
1
3
ρ̂m2−5M̃−1

i for all such pi. In view of (4.7) this lower local bound of ρ̃i implies

a lower local bound on the mutual distance of the pi. Since this distance is proportional to ρ̂mM̃
−1
i ,

and since ρ̂m > ρ̂i >
1
3
ρ̂m, this implies (5.8) with d̂ = d. This is by the same time the upper estimate

on d̂.

Let φ : R → R be symmetric, smooth, monotone on (0,∞) with φ′ ≤ 2 and φ = 0 on (1,∞).

For each k we consider a radially symmetric smooth function φ̃k(x) := φ
(
|x−pk|2
ρ̃k

)
and an additional

function φ̃0 (x) = dist( x, ∂P ∪
⋃
k Brk(yk) ). In a similar way we may modify φ̃k such that φ̃k|Bj ≡

0 for j 6= k. Then we define φk := φ̃/
(
φ̃0 +

∑
j φ̃j

)
. Note that by construction of rk and yk we find

φk|Bk ≡ 1 and
∑

k≥1 φk ≡ 1 on ∂P.

Estimate (5.9) follows from (5.6).

5.2 Extension Estimate Through (δ,M)-Regularity of ∂P

By Lemmas 4.6 and 2.2 the local extension operator

Uk : W 1,p(P ∩ A3,k) → W 1,p
(
B 1

8
ρk

(pk)\P
)
↪→ W 1,p(A2,k\P) (5.10)

is linear continuous with bounds

‖∇Uku‖Lp(A2,k\P) ≤ 14Mk ‖∇u‖Lp(A3,k∩P) , (5.11)

‖Uku‖Lp(A2,k\P) ≤ 7 ‖u‖Lp(A3,k∩P) , (5.12)

and for constants c we find

‖c− Ukc‖Lp(A2,k\P) = 0 . (5.13)

Definition 5.4. For every Q ⊂ Rd let τiu := 1

|Bri (yi)|
´
Bri (yi)

u and

UQ : C1
(
P ∩ B r

2
(Q)

)
→ C1

(
Q\P

)
,

u 7→ χQ\P
∑
k

φk (Uk(u− τku) + τku)

where Uk are the extension operators on A3,k given by Lemma 2.2, respectively (5.10)–(5.13). Fur-
thermore, we observe

UQ = ŨQ + ÛQ , with ŨQu := χQ\P
∑
k

φk Uk(u− τku) , ÛQu := χQ\P
∑
k

φk τku

(5.14)
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For two points pi and pj such that A1,i ∩ A1,j 6= ∅ we find

|τiu− τju|r =

∣∣∣B rj
2

(0)
∣∣∣−1

∣∣∣∣∣∣
ˆ
B rj

2

(xj)

(u(·)− τiu)

∣∣∣∣∣∣
r

≤
∣∣∣B rj

2
(0)
∣∣∣−1

ˆ
B rj

2

(xj)

|u(·)− τiu|r ≤
∣∣∣B rj

2
(0)
∣∣∣−1

ˆ
A1,i

|u(·)− τiu|r

≤
∣∣∣B rj

2
(0)
∣∣∣−1

ρri

ˆ
conv(A1,i∪A1,j)

|∇Uiu|r ≤
∣∣∣B rj

2
(0)
∣∣∣−1

ρri

ˆ
A2,i

|∇Uiu|r . (5.15)

The latter expression is not symmetric in i, j. Hence we can play a bit with the indices in order to
optimize our estimates below. We have seen that rj ' ρjM

−1
j , and hence we expect in view of (5.11)

|τiu− τju|r ≤ CMd
j ρ̃
−d
j ρ̃ri

ˆ
A3,i∩P

|∇u|r . (5.16)

However, this needs not to be the optimal estimate. Instead of the general and restrictive estimate
(5.16), we make the following Assumption:

Assumption 5.5. There exists α ∈ [0, d] and C > 0 such that for every k it holds rk ≥ Cρ̂kM
−α
d

k .
In particular, for two points pi, pj ∈ ∂Y with pi ∼ pj it holds

|τiu− τju|r ≤ Cρ̃j
−dMα

j ρ̃
r
i

ˆ
A3,i∩P

|∇u|r . (5.17)

In order to formulate our main results we define the general sets

Rd
1 :=

⋃
k

A1,k , Rd
3 :=

⋃
k

A3,k (5.18)

and for every bounded set Q ⊂ Rd we define

Q1 := Q ∩ Rd
1 , Q3 := Q ∩ Rd

3 . (5.19)

Lemma 5.6. Let P ⊂ Rd be a locally (δ,M)-regular open set with delta bounded by r > 0 and let
Assumption 5.5 hold and let d̂ be the constant from (5.8). Then for every bounded open Q ⊂ Rd,
1 ≤ r < p the operators

ŨQ, ÛQ : W 1,p
(
P ∩ B r

2
(Q)

)
→ W 1,r (Q\P)

are linear, well defined and satisfy∥∥∥∇ŨQu∥∥∥r
Lr(Q\P)

≤ C0

(
1

|Q|

ˆ
B r

2
(Q)∩P

M̃
p(d̂+1)
p−r

) p−r
p

‖∇u‖
r
p

Lp
(
P∩B r

2
(Q)

) (5.20)

∥∥∥∇ÛQu∥∥∥r
Lr(Q\P)

≤ C0

(
1

|Q|

ˆ
B r

2
(Q)∩P

M̃
p(d̂+α)
p−r

) p−r
p

‖∇u‖
r
p

Lp
(
P∩B r

2
(Q)

) (5.21)

+ C0
1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|r
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|r , (5.22)

‖UQu‖rLr(Q\P) ≤ C0

(
1

|Q|

ˆ
B r

2
(Q)∩P

M̃
pd̂
p−r

) p−r
p

‖u‖
r
p

Lp
(
B r

2
(Q)

) (5.23)
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where Dl+ :=
∑

j 6=0: ∂lφj∂lφ0<0 |∂lφj|. Furthermore, for constant functions x 7→ c ∈ R it holds

‖c− UQc‖Lr(Q\P) ≤ |c| |Q\P|
1
r . (5.24)

The second term in (5.21) imposes severe problems, as we will see in Sections 7, 6.2 or even in
Lemma 5.8 below.

Lemma 5.7. Let αi, ui, i = 1 . . . n, be a family of real numbers such that
∑

i αi = 0 and let
α+ :=

∑
i:αi>0 αi. Then ∑

i

αiui =
∑
i:αi>0

∑
j:αj<0

αi |αj|
α+

(ui − uj) .

Proof. ∑
i

αiui =
∑
i:αi>0

αiui +
∑
j:αj<0

αjuj

=
∑
i:αi>0

αi
∑
j:αj<0

−αj
α+

ui +
∑
j:αj<0

αj
∑
i:αi>0

αi
α+

uj

=
∑
i:αi>0

∑
j:αj<0

αi |αj|
α+

(ui − uj) .

Proof of Lemma 5.6. For shortness of notation (and by abuse of notation) we write
 
P∩Q

g :=
1

|Q|

ˆ
P∩Q

g ,

 
Q\P

g :=
1

|Q|

ˆ
Q\P

g

and similar for integrals over B r
2
(Q) ∩P and B r

2
(Q)\P.

Step 1: We note that ρ̃k ≤ 1
8
δk as well as

√
4M2

k + 2 ≤ 2M̃k. The integral over∇
(
ŨQu

)
can be

estimated via

 
Q\P

∣∣∣∣∣∇∑
i 6=0

φiUi (u− τiu)

∣∣∣∣∣
r

≤ Cr (I1 + I2) (5.25)

I1 =

 
Q\P

∣∣∣∣∣∑
i 6=0

Ui (u− τiu)∇φi

∣∣∣∣∣
r

, I2 :=

 
Q\P

∣∣∣∣∣∑
i 6=0

φi∇Ui (u− τiu)

∣∣∣∣∣
r

.

(5.9) together with Jensen’s yields

 
Q\P

∣∣∣∣∣∑
i 6=0

Ui (u− τiu)∇φi

∣∣∣∣∣
r

≤ C
∑
i 6=0

 
Q\P
|Ui (u− τiu)|r δ−ri χA1,i

≤ C
∑
i 6=0

 
Q

χA2,i
|∇Ui (u− τiu)|r

≤ C
∑
i 6=0

M̃i

 
Q∩P

χA3,i
|∇u|r
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where we used Lemma 2.6 with R
r

= 3 and inequality (5.11). In a similar way, we conclude

 
Q\P

∣∣∣∣∣∑
i 6=0

φi∇Ui (u− τiu)

∣∣∣∣∣
r

≤
 
Q\P

∑
i 6=0

φi |∇Ui (u− τiu)|r ≤
 
Q\P

∑
i 6=0

χA1,i
|∇Ui (u− τiu)|r

≤ C
∑
i 6=0

 
Q

χA2,i
|∇Ui (u− τiu)|r ≤ C

∑
i 6=0

M̃i

 
B r

2
(Q)∩P

χA3,i
|∇u|r .

It only remains to estimate
∑

i χA3,i
(x). Inequality (5.8) yields∑

i 6=0

M̃i

 
Q∩P

χA3,i
|∇u|r ≤

 
B r

2
(Q)∩P

∑
i 6=0

χA3,i
M̃ |∇u|r

≤

 
B r

2
(Q)∩P

(∑
i 6=0

χA3,i

) p
p−r

M̃
p
p−r


p−r
p ( 

B r
2

(Q)∩P
|∇u|p

) r
p

≤

( 
B r

2
(Q)∩P

M̃
p(d̂+1)
p−r

) p−r
p
( 

B r
2

(Q)∩P
|∇u|p

) r
p

. (5.26)

Step2: We now study ÛQ and use Lemma 5.7 which yields∑
j

∂lφj = 0 ⇒ Dl+ :=
∑

j: ∂lφj>0

∂lφj = −
∑

j: ∂lφj<0

∂lφj (5.27)

that

 
Q\P

∣∣∣∣∣∇∑
j

φjτju

∣∣∣∣∣
r

≤ C
d∑
l=1

 
Q\P

∣∣∣∣∣∑
j

∂lφjτju

∣∣∣∣∣
r

≤ C
d∑
l=1

 
Q\P

∣∣∣∣∣∣
∑

i 6=0: ∂lφi>0

∑
j 6=0: ∂lφj<0

∂lφi |∂lφj|
Dl+

|τiu− τju|

∣∣∣∣∣∣
r

+ I3 , (5.28)

where

I3 = C
d∑
l=1

 
Q\P

∣∣∣∣∣∣
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφ0| |∂lφj|
Dl+

|τju|

∣∣∣∣∣∣
r

. (5.29)

Since in (5.29)
∑

j 6=0: ∂lφj∂lφ0<0 |∂lφj| = Dl+ we obtain

I3 = C

d∑
l=1

 
Q\P
|∂lφ0|r

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|r .

We will now derive an estimate on |τiu− τju|. For this reason, denote lij the line from xi to xj and
by B r

2
(lij) the set of all points with distance less than r

2
to lij . We exploit the fact that every term in

the sum on the right hand side of (5.28) appears only once and introduce

El(x) = {(i, j) : ∂lφi∂lφj < 0 and ri < rj or (ri = rj and i < j)} .
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We make use of (5.17) and successively apply Jensen’s inequality, |∇φi| ≤ Cρ̃−1
i , 1

C
ρi ≤ ρj ≤ Cρi

and
∣∣∣B rj

2
(0)
∣∣∣−1

≤ M̃d
i |A1,i|−1 to obtain

S :=

∣∣∣∣∣∣
∑

i: ∂lφi>0

∑
j: ∂lφj<0

∂lφi |∂lφj|
Dl+

|τiu− τju|

∣∣∣∣∣∣
r

=

∣∣∣∣∣∣
∑

(i,j)∈El

|∂lφi| |∂lφj|
Dl+

|τiu− τju|

∣∣∣∣∣∣
r

≤
∑

(i,j)∈El

ρ̃−ri |∂lφj|
Dl+

Cρ̃j
−dMα

j ρ̃
r
i

ˆ
A3,i∩P

|∇u|r .

Hence we find
 
Q\P

∣∣∣∣∣∇∑
j

φjτju

∣∣∣∣∣
r

> C

d∑
l=1

∑
(i,j)∈El

ρ̃−ri |∂lφj|
Dl+

Cρ̃j
−dMα

j ρ̃
r
i

ˆ
A3,i∩P

|∇u|r .

> C
1

|Q|
∑
i

M̃α
i

ˆ
A3,i∩P

|∇u|r (5.30)

Similar to (5.26) we may conclude (5.21).

Step 3: We observe with Jensen’s inequality and the fact that Ui are linear with Uic = c for constants
c that  

Q\P

∣∣∣∣∣∑
i

φi Ui (u− τiu) + φiτiu

∣∣∣∣∣
r

≤
 
Q\P

∑
i

φi (Uiu)r ≤
 
Q\P

∑
i

φi (Uiu)r

≤
 
Q\P

∑
i

χA1,i
(Uiu)r

≤ 7

 
B r

2
(Q)∩P

∑
i

χA3,i
ur

From here we may proceed as in (5.26) to conclude .

Lemma 5.8. Let P ⊂ Rd be a locally (δ,M)-regular open set with delta bounded by r > 0 and let
Assumption 5.5 hold and let d̂ be the constant from (5.8). Then for every bounded open Q ⊂ Rd,
1 ≤ r < p0 < p1 < p

1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|r
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|r

≤ C

(
1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|
rp0
p0−r M̃2−d

) p0−r
p0

(
1

|Q|

ˆ
B r

2
(Q)\P

M̃
p1(d−2)(p0−r)
r(p1−p0)

)r
p1−p0
p1p0

(
1

|Q|

ˆ
B r

2
(Q)

M̃
αp1p
p−p1

)r
p−p1
pp1

(
1

|Q|

ˆ
B r

2
(Q)

|u|p
) r

p

and

1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|r
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|r

≤ C

(
1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|
rp0
p0−r

) p0−r
p0

(
1

|Q|

ˆ
B r

2
(Q)

M̃
αp0p
p−p0

)r
p−p0
pp0

(
1

|Q|

ˆ
B r

2
(Q)

|u|p
) r

p
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Proof. We observe with Hölder and Jensens inequality onRd and in the sum
∑

j 6=0: ∂lφj∂lφ0<0
|∂lφj |
Dl+

=
1 respectively that

1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|r
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|r ≤

(
1

|Q|

ˆ
B r

2
(Q)\P

|∇φ0|
rp0
p0−r M̃2−d

) p0−r
p0

 1

|Q|

ˆ
B r

2
(Q)\P

M̃
1
r

(d−2)(s−r)
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|p0

 r
p0

.

Applying the same trick again we find

1

|Q|

ˆ
B r

2
(Q)\P

M̃
1
r

(d−2)(p0−r)
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|p0

≤

(
1

|Q|

ˆ
B r

2
(Q)\P

M̃
p1(d−2)(p0−r)
r(p1−p0)

) p1−p0
p1

 1

|Q|

ˆ
B r

2
(Q)\P

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|p1


p0
p1

From the definition of τj and (5.7) we find

1

|Q|

ˆ
B r

2
(Q)\P

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju|p1

≤ 1

|Q|
∑

pj∈B r
4

(Q)

ρ̃dj
Mαp1

j

ρ̃dj

ˆ
Bρ̃j (pj)

|u|p1

≤ 1

|Q|

ˆ
B r

2
(Q)

M̃αp1 |u|p1

≤

(
1

|Q|

ˆ
B r

2
(Q)

M̃
αp1p
p−p1

) p−p1
p
(

1

|Q|

ˆ
B r

2
(Q)

|u|p
) p1

p

.

5.3 Traces on (δ,M)-Regular Sets

Theorem 5.9. Let P ⊂ Rd be a locally (δ,M)-regular open set, 1
8
> r > 0 and let Q ⊂ Rd

be a bounded open set and let 1 ≤ r < p0 < p. Then the trace operator T satisfies for every
u ∈ W 1,p

loc (P)

1

|Q|

ˆ
Q∩∂P

|T u|r ≤ C

 1

|Q|

ˆ
B 1

4
(Q)∩P

|u|p + |∇u|p
 r

p
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where for some constant C0 depending only on p0, p and r and d and for η ∈ {ρ, ρ̂, δ} one may
chose between

C = C0

 1

|Q|

ˆ
B 1

4 r
(Q)∩∂P

η
− 1
p0−r


p0−r
p0

 1

|Q|

ˆ
B 1

4 r
(Q)∩P

M̃

(
1
p0

+1
)

p
p−p0

[ 1
8
η],Rd


p−p0
p0p

, (5.31)

C = C0

 1

|Q|

ˆ
B 1

4 r
(Q)∩∂P

(
ηM[ 1

16
η],Rd

)− 1
p−r


p−r
p

. (5.32)

Proof. Using Theorem 2.13, we cover ∂P by balls Bk = B 1
16
η(pk)(pk) with (pk)k∈N ⊂ ∂P and

define B̂k = B 1
8
η(pk)(pk) and Mk = M[ 1

16
η](pk). Like for (5.7) we can show that the covering with

both Bk and B̂k is locally uniformly bounded by a constant C . Due to Lemma 2.4 we find locally

‖T u‖Lp0 (∂P∩Bk) ≤ Cp0,p0η
− 1
p0

√
4M2

k + 2

1
p0

+1

‖u‖W 1,p0(B̂k) . (5.33)

If φk is a partition of 1 on ∂P with respective support Bk we obtain

1

|Q|

ˆ
Q∩∂P

∣∣∣∣∣∑
k

φkTku

∣∣∣∣∣
r

≤

 1

|Q|

ˆ
B 1

4
(Q)∩∂P

∑
k

χBkη
− 1
p0−r

k


p0−r
p0

 1

|Q|
∑
k

ˆ
B 1

4
(Q)∩∂P

χBkηk |Tku|
p0

 r
p0

which yields by the uniform local bound of the covering, η̃ defined in Lemma 4.13, twice the application
of (4.12) and (5.33)

1

|Q|

ˆ
Q∩∂P

∣∣∣∣∣∑
k

φkTku

∣∣∣∣∣
r

≤
(

1

|Q|

ˆ
Q∩∂P

η
− 1
p0−r

) p0−r
p0

·

·

(
1

|Q|

ˆ
Q∩P

∑
k

χB̂k

√
4M2

k + 2

1
p0

+1

(|∇u|p0 + |u|p0)

) r
p0

.

With Hölders inequality, the last estimate leads to (5.31). The second estimate goes analogue since
the local covering by A2,k is finite.

6 Construction of Macroscopic Extension Operators I: General
Considerations

In this section, we provide the extension results which answer the question of the existence of such
uniformly bounded families of operators up to the issue of quantifying connectedness. We will discuss
what we mean by that in Section 6.2. In Section 6.4 we provide a first attempt to from the point of
view of continuous PDE, which is - in some sense - a tautology. However, verifying the conditions
of Theorem 6.10 in a computer based approach (for real life geometries) leads to a discretization of
an elliptic second order operator. Therefore, in Section 7 we use the construction of Section 4.3 to
introduce a quantity which can be directly calculated from a numerical algorithm.
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Figure 5: Gray: a Poisson ball process. Black
balls: balls of radius r > 0. Red Balls: radius
r
2
. The Voronoi tessellation is generated from

the centers of the red balls. The existence
of such tessellations is discussed in Section
4.2. Blue region: A1,k according to Assump-
tion 6.6. Red region: A2,k. Green region: an
alternative choice of A3,k.

6.1 Extension for Voronoi Tessellations

Assumption 6.1. Let P be an open set and let Xr = (xi)i=∈N have mutual distance |xi − xk| > 2r
if i 6= k and with B r

2
(xi) ⊂ P for every i ∈ N (e.g. Xr(P), see (2.36)). We construct from Xr a

Voronoi tessellation and denote by Gi := G(xi) the Voronoi cell corresponding to xi with diameter
di. We denote A1,i := B r

2
(Gi) and

Miu :=
∣∣∣B r

16
(0)
∣∣∣−1

ˆ
B r

16
(xi)

u . (6.1)

Let Φ̃0 ∈ C∞(R; [0, 1]) be monotone decreasing with Φ̃′0 > −4
r
, Φ̃0(x) = 1 if x ≤ 0 and Φ̃0(x) =

0 for x ≥ r
2
. We define on Rd the functions

Φ̃i(x) := Φ̃0 (dist (x,Gi)) and Φi(x) := Φ̃i(x)

(∑
j

Φ̃j(x)

)−1

. (6.2)

Lemma 4.20.2) implies

∀x ∈ B r
2
(Gi) : # {k : x ∈ A1,k} ≤

(
4di
r

)d
(6.3)

and thus (6.2) yields for some C depending only on Φ̃0 that

|∇Φi| ≤ Cddi and ∀k : |∇Φk|χA1,i
≤ Cddi . (6.4)

Definition 6.2 (Weak Neighbors). Under the Assumption 6.1, two points xi and xj are called to be
weakly connected (or weak neighbors), written i ∼∼ j or xi ∼∼ xj if B r

2
(Gi) ∩ B r

2
(Gj) 6= ∅. For

Q ⊂ Rd open we say A1,j ∼∼ Q if B r
2
(A1,j) ∩Q 6= ∅. We then define

Xr(Q) := {xj ∈ Xr : A1,j ∼∼ Q 6= ∅} , Q∼∼ :=
⋃

A1,j∼∼Q

A1,j . (6.5)

Let P be locally (δ,M)-regular and satisfy Assumption 6.1. Then we can construct continuous local

extension operators UGj : W 1,p(Br(Gi))→ W 1,r
(
B r

2
(Gi)

)
from Lemma 5.6. These can be glued

together via

UQu :=
∑
j

Φj

(
UGj (u−Mju) +Mju

)
.
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However, using the partition of unity from Lemma 5.2 and the definition of UGi from (5.14) we obtain

UQu =
∑
j

Φj

(∑
i

φi [Ui (u−Mju− τi (u−Mju)) + τi (u−Mju)] +Mju

)
.

Using τiMju =Mju the latter yields

UQu =
∑
j

Φj

(∑
i

φi [Ui (u− τiu) + τiu−Mju] +Mju

)
=
∑
i

∑
j

Φj (φi (Ui(u− τiu) + τiu−Mju) +Mju) ,

where we used that Ui maps constants onto constants via the identity. Note that

UQu 6=
∑
i

φi [Ui (u− τiu) + τiu] ,

as
∑

i 6=0 φi 6= 1 in most points.

Theorem 6.3 (Extensions for locally regular, isotropic cone mixing geometries). Let the open set P be
locally (δ,M)-regular, δ bounded by r

2
> 0, and satisfy Assumptions 5.5, 6.1 and d̂ be the constant

from (5.8),. Let 1 < r < s < t < p < +∞ and s < p0 ≤ p with 1− d̂
r
≥ d̂

s
.

Recalling (5.4) and defining Qr := Br(Q) as well as

Uu :=
∑
i

∑
j

Φj (φi (Ui(u− τiu) + τiu−Mju) +Mju) (6.6)

the following estimates hold:

1

|Q|

ˆ
Q\P
|∇Uu|r ≤ C0

(
1

|Q|

ˆ
Qr∩P

M̃
p(d̂+α)
p−r

) p−r
p

‖∇u‖
r
p

Lp
(
P∩B r

2
(Qr)

)
+

1

|Q|

ˆ
Q∼∼
|f(u)|r (6.7)

1

|Q|

ˆ
Q\P
|Uu|r ≤ C0

(
1

|Q|

ˆ
Qr∩P

M̃
pd̂
p−r

) p−r
p

·
(

1

|Q|

ˆ
P∩Qr

|u|p
) r

p

+ C0

 1

|Q|

ˆ
Q∩P

 ∑
xj∈Xr(Q)

χGj |A1,j|


p
p−r


p−r
p

·
(

1

|Q|

ˆ
P∩Qr

|u|p
) r

p

,

(6.8)

where

f(u) =
d∑
l=1

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) (Mku−Mju)

−
d∑
l=1

∑
i 6=0: ∂lφi∂lφ0<0

∑
j

∂lφ0 |∂lφi|
Dl+

Φj (τiu−Mju) .

with functions
Dl+ :=

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj| , DΦ
l+ :=

∑
j 6=0: ∂lΦj<0

|∂lΦj| .
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Proof. Let us note that on Q it holds

Uu : =
∑
i

φi Ui(u− τiu) +
∑

xj∈Xr(Q)

∑
i

Φjφi (τiu−Mju) +
∑

xj∈Xr(Q)

ΦjMju (6.9)

=
∑
i

φi (Ui(u− τiu) + τiu) +
∑

xj∈Xr(Q)

Φjφ0Mju . (6.10)

We first observe in (6.10) that

1

|Q|

ˆ
Q

∣∣∣∣∣∣
∑

xj∈Xr(Q)

Φjφ0Mju

∣∣∣∣∣∣
r

≤ 1

|Q|

ˆ
Q

∑
xj∈Xr(Q)

Φjφ0 |Mju|r ≤
1

|Q|

ˆ
Q

∑
xj∈Xr(Q)

χA1,j
|Mju|r

≤ 1

|Q|
∑

xj∈Xr(Q)

|A1,j|
∣∣Sd−1

∣∣ ( r
2

)d ˆ
B r

2
(xi)

|u|r

≤ 1

|Q|

ˆ
Q

|u|r
∑

xj∈Xr(Q)

χGj∩P |A1,j|
∣∣Sd−1

∣∣ ( r
2

)d

From the last inequality and Lemma 5.6 we obtain (6.8). Furthermore, the first term on the right hand
side of (6.9) with Lemma 5.6 provides the first line of (6.7).

In what follows, we write for simplicity
∑

xj∈Xr(Q) =
∑

j but have in mind the respective meaning.

The same holds for
∑

k: ∂lΦk>0.

Concerning the second term in (6.9), we observe

∇
∑

xj∈Xr(Q)

∑
i∈N

Φjφi (τiu−Mju)

=
∑
j

∑
i∈N

φi (τiu−Mju)∇Φj +
∑
j

∑
i∈N

Φj (τiu−Mju)∇φi ,

and obtain with help of Lemma 5.7 and
∑

j∇Φj(x) = 0 for x ∈ Q

∑
j

∑
i∈N

φi (τiu−Mju)∇Φj

=
d∑
l=1

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(∑
i∈N

φi (τiu−Mku)−
∑
i∈N

φi (τiu−Mju)

)

=
d∑
l=1

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(1− φ0) (Mku−Mju) .
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Similarly, we use Lemma 5.7 together with
∑

i∇φi = −∇φ0 and find

∑
j

∑
i∈N

Φj (τiu−Mju)∇φi ,

=
d∑
l=1

∑
k: ∂lφk>0

∑
i: ∂lφi<0

∂lφk |∂lφi|
Dl+

(∑
j

Φj (τku−Mju)−
∑
j

Φj (τiu−Mju)

)

−
d∑
l=1

∑
i 6=0: ∂lφj∂lφ0<0

∂lφ0 |∂lφi|
Dl+

Φj (τiu−Mju)

=
d∑
l=1

∑
k: ∂lφk>0

∑
j: ∂lφi<0

∂lφk |∂lφi|
Dl+

(τku− τiu)

−
d∑
l=1

∑
i 6=0: ∂lφj∂lφ0<0

∂lφ0 |∂lφi|
Dl+

Φj (τiu−Mju) ,

where the first term on the right hand side can be estimated like in Lemma 5.6. Finally, from a similar
calculation using Lemma 5.7 it is now obvious for the third term in (6.9) that

∑
j

Mju∇Φj ≤
d∑
l=1

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(Mku−Mju) .

6.2 The Issue of Connectedness

In Theorem 6.3 we discovered the integral
´
Q
|f(u)|r as part of the estimate for 1

|Q|

´
Q\P |∇Uu|

r,
where we recall that f was given through

f(u) =
d∑
l=1

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) (Mku−Mju)

−
d∑
l=1

∑
i 6=0: ∂lφi∂lφ0<0

∑
j

∂lφ0 |∂lφi|
Dl+

Φj (τiu−Mju) .

We seek for an interpretation of the two sums appearing on the right hand side. The first one is related
to the difference of mean values around xk and xj in case they are weak neighbors, i.e. xk ∼∼ xj .
In Theorem 6.7 below we provide a rough estimate on this part in terms of τiu − Mju but on a
larger area. In the present section, we first want to “isolate” |τiu−Mju| and |Mku−Mju| from
the other geometric properties of P. In Section 7 we will see how these quantities are related to the
connectivity of P.

Lemma 6.4. Under Assumptions 5.5, 6.1 and using the notation of Theorem 6.3 let (fj)j∈N be non-
negative and have support suppfj ⊃ B r

2
(xj) and let

∑
j∈N fj ≡ 1.
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Writing X(Q) := {xj : suppfj ∩Q 6= ∅}, for every l = 1, . . . d and r < s̃ < s < p it holds∣∣∣∣∣ 1

|Q|

ˆ
Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
j

∂lφ0 |∂lφi|
Dl+

fj (τiu−Mju)

∣∣∣∣∣
≤

(
1

|Q|

ˆ
P∩Qr∩Rd3

|∂lφ0|
sr
s−r

) s−r
s

 1

|Q|

ˆ
P∩Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
xj∈X(Q)

fj
|∂lφi|
Dl+

|τiu−Mju|s
 r

s

and∣∣∣∣∣ 1

|Q|

ˆ
Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
j

∂lφ0 |∂lφi|
Dl+

fj (τiu−Mju)

∣∣∣∣∣
≤

(
1

|Q|

ˆ
P∩Qr∩Rd3

|∂lφ0|
s̃r
s̃−r M̃2−d

) s̃−r
s̃
(

1

|Q|

ˆ
B r

2
(Q)\P

M̃
p1(d−2)(s̃−r)

r(s−s̃)

)r s−s̃
s̃s

 1

|Q|

ˆ
P∩Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
xj∈X(Q)

fj
|∂lφi|
Dl+

|τiu−Mju|s
 r

s

.

Proof. We find from Hölder’s and Jensen’s inequality

1

|Q|

ˆ
P∩Q

∣∣∣∣∣ ∑
i 6=0: ∂lφi∂lφ0<0

∑
j

∂lφ0 |∂lφi|
Dl+

fj (τiu−Mju)

∣∣∣∣∣
r

≤ 1

|Q|

ˆ
P∩Q
|∂lφ0|r

∑
i 6=0: ∂lφi∂lφ0<0

∑
j

|∂lφi|
Dl+

fj |τiu−Mju|r

≤

(
1

|Q|

ˆ
P∩Q∩Rd3

|∂lφ0|
sr
s−r

) s−r
s
(

1

|Q|

ˆ
P∩Q

∑
i 6=0: ∂lφi∂lφ0<0

∑
j

fj
|∂lφi|
Dl+

|τiu−Mju|s
) r

s

.

The other inequality can be derived similarly, see also the proof of Lemma 5.8.

Lemma 6.5. Under Assumptions 5.5, 6.1 for every l = 1, . . . d it holds

1

|Q|

ˆ
P∩Q

∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) (Mku−Mju)

∣∣∣∣∣∣
r

≤

 1

|Q|

ˆ
P∩Q

 ∑
j: ∂lΦj<0

d
r(d−1)+drs

s−r
j χ∇Φj 6=0

 s
s−r


s−r
s

1

|Q|
∑

xk∼∼xj
xk,xj∈Xr(Q)

|Mku−Mju|s

Proof. For this we observe with help of (6.4) and with Lemma 4.20.2)

∀x : sup
k
|∂lΦk| (x) ≤ sup

{
|∇Φk(x)| : x ∈ B r

2
(Gk)

}
≤ C sup

{
ddk : x ∈ Gk

}
, (6.11)

sup
x∈B r

2
(Gj)

|∂lΦj| (x) ≤ Cddj . (6.12)
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We write

I :=
1

|Q|

ˆ
P∩Q

∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) (Mku−Mju)

∣∣∣∣∣∣
r

and find

I ≤ C
1

|Q|

ˆ
P∩Q

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

|∂lΦk|r |∂lΦj|
DΦ
l+

|Mku−Mju|r

≤ CC
1

|Q|

ˆ
P∩Q

 ∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
α s
s−r

j |∂lΦk|
sr
s−r |∂lΦj|

DΦ
l+

 s−r
s

· . . .

· · · ·

 ∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
−α s

r
j |∂lΦj|
DΦ
l+

|Mku−Mju|s
 r

s

.

Now we make use of (6.11) and once more of Lemma 4.20.2) to obtain for the first bracket on the right
hand side an estimate of the form

|∂lΦk|
sr
s−r |∂lΦj| ≤ |∂lΦk| |∂lΦk|

sr
s−r−1 |∂lΦj| ≤ C |∂lΦk| d

d sr−s+r
s−r

j ddj ≤ C |∂lΦk| d
d sr
s−r

j ,

which implies

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d
α s
s−r

j |∂lΦk|
sr
s−r |∂lΦj|

DΦ
l+

≤ C
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

d
α s
s−r

j d
dsr
s−r
j |∂lΦk|
DΦ
l+

≤ C
∑

j: ∂lΦj<0

d
α s
s−r

j d
dsr
s−r
j χ∇Φj 6=0 ,

where we used
∑
|∂lΦk| = DΦ

l+. We make use of α = rs−1(d − 1) in the above estimates and
Hölder’s inequality to find

1

|Q|

ˆ
P∩Q

∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) (Mku−Mju)

∣∣∣∣∣∣
r

≤ C

 1

|Q|

ˆ
P∩Q

 ∑
j: ∂lΦj<0

d
r(d−1)+drs

s−r
j χ∇Φj 6=0

 s
s−r


s−r
s

· . . .

· · · ·

 1

|Q|

ˆ
P∩Q

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d1−d
j |∂lΦj|
DΦ
l+

|Mku−Mju|s
 r

s

.

Since
´
P∩Q

d1−d
j |∂lΦj |
DΦ
l+

≤ C for some C > 0 independent from j, we obtain

1

|Q|

ˆ
P∩Q

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

d1−d
j |∂lΦj|
DΦ
l+

|Mku−Mju|s

≤ 1

|Q|
∑

xk∼∼xj

|Mku−Mju|s .
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6.3 Estimates Related to Mesoscopic Regularity of the Geometry

Assumption 6.6 (Mesoscopic Regularity). Under the Assumption 6.1 and introducing the notation
Ii :=

{
xj ∈ Xr : Hd−1 (∂Gi ∩ ∂Gj) ≥ 0

}
we construct A2,i and A3,i from A1,i by

A2,i := B2di(A1,i) , A3,i := B2di+r(A2,i) . (6.13)

We infer from Lemma 5.6 that U : W 1,p(A3,i) → W 1,r(A2,i) is continuous with the estimate and
constants given by Lemma 5.6.

Theorem 6.7 (Extensions for mesoscopic regular, isotropic cone mixing geometries). Let P(ω) be
an open connected set and let Assumption 6.6 hold. Let P be locally (δ,M)-regular and satisfy
Assumptions 5.5, 6.1 and d̂ be the constant from (5.8). Then for almost every ω it holds: for every
l = 1, . . . , d and 1 ≤ r < s, s̃ < p:

1

|Q|

ˆ
Q

∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) |Mju−Mku|

∣∣∣∣∣∣
r

≤ C(P(ω))

(
1

|Q|

ˆ
Q∩P
|∇u|p

) r
p

(6.14)

+ CP (P(ω))
∑
l

 1

|Q|

ˆ
Q\P

∑
k

χA3,k

a
|∇φ0|s̃

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|s̃
 r

s̃

where with P (x) = xd(2r−1)+r(xr+1 + xd+1), a :=
∑

k χA3,k
and it holds

C(P(ω)) =

 C

|Q|

ˆ
P∩Q

(∑
k

P (dk)χA3,k

) p
p−s


p−s
p (

C

|Q|

ˆ
P∩Q

M̃
2pd̂
s−r

) s−r
p

CP (P(ω)) =

(
1

|Q|

ˆ
Q\P

∑
k

P (dk)
s̃
s̃−r a

s̃
s̃−r

χA3,k

a

) s̃−r
s̃

Remark 6.8. A combination with Lemma 6.4 is possible.

Proof. We make use of (6.3) as well as the following observation: for each k = 1, . . . K let αk ≥ K .
Then (

K∑
k=1

fk

)r

≤ Kr−1

K∑
k=1

f rk ≤
K∑
k=1

αr−1
k f rk .

Hence ∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) |Mju−Mku|

∣∣∣∣∣∣
r

≤
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

(
4dk
r

)d(r−1) |∂lΦk|r |∂lΦj|
DΦ
l+

2 |Mju−Mku|r
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Given |∇Φk| ≤ χA1,k

(
4dk
r

)d
we hence find an estimate by

∑
k: ∂lΦk>0

∑
j: ∂lΦj<0

(
4dk
r

)d(2r−1)

χA1,k

|∂lΦj|
DΦ
l+

2 |Mju−Mku|r .

Next, we obtain

|Mju−Mku|r ≤
∣∣rdSd−1

∣∣−1
ˆ
B r

2
(xj)

|u−Mku|r

and thus∣∣∣∣∣∣
∑

k: ∂lΦk>0

∑
j: ∂lΦj<0

∂lΦk |∂lΦj|
DΦ
l+

(2− φ0) |Mju−Mku|

∣∣∣∣∣∣
r

≤ 2
∣∣rdSd−1

∣∣−1
∑
k

∑
j: ∂lΦj<0

(
4dk
r

)d(2r−1)

χA1,k

|∂lΦj|
DΦ
l+

ˆ
B r

2
(xj)

|u−Mku|r

≤ 2
∣∣rdSd−1

∣∣−1
∑
k

(
4dk
r

)d(2r−1)

χA1,k

ˆ
A2,k

|u−Mku|r

≤ 2
∣∣rdSd−1

∣∣−1
∑
k

(
4dk
r

)d(2r−1)

χA1,k
Ck

ˆ
A2,k

|∇Uu|r

≤ C
∑
k

(
4dk
r

)d(2r−1)

χA1,k
CkĈk,r,s

(
1

|A3,k|

ˆ
A3,k∩P

|∇u|s
) r

s

+ C
∑
k

(
4dk
r

)d(2r−1)

χA1,k
Ck

C0

|A3,k|

ˆ
A3,k\P

|∇φ0|r
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|r

where according to Lemmas 2.6 and 5.6 for some C depending only on r and r:

Ck = Cdrk
(
dr+1
k + dd+1

k

)
,

Ĉk,r,s =

( 
A3,k∩P

M̃
2sd̂
s−r

) s−r
s

.

We integrate with respect to Q and obtain with P (x) = xd(2r−1)+r(xr+1 + xd+1)

1

|Q|

ˆ
Q

∑
k

(
4dk
r

)d(2r−1)

χA1,k
CkĈk,r,s

(
1

|A3,k|

ˆ
A3,k∩P

|∇u|s
) r

s

≤
∑
k

(
4dk
r

)d(2r−1)

|A1,k|CkĈk,r,s

(
1

|A3,k|

ˆ
A3,k∩P

|∇u|s
) r

s

(6.15)

≤ C

(
1

|Q|
∑
k

P (dk)
|A1,k|
|A3,k|

ˆ
A3,k∩P

|∇u|s
) r

s
(

1

|Q|
∑
k

P (dk)
|A1,k|
|A3,k|

ˆ
A3,k∩P

M̃
2sd̂
s−r

) s−r
s

.
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For the measurable function g = M̃
2sd̂
s−r on Rd we find for every 1

p̃
+ 1

q̃
= 1

C

|Q|
∑
k

P (dk)
|A1,k|
|A3,k|

ˆ
A3,k∩P

g(x) dx

≤ C

|Q|

ˆ
P∩Q

g(x)
∑
k

P (dk)χA3,k
(x) dx

≤
(
C

|Q|

ˆ
P∩Q

gp̃
) 1

p̃

 C

|Q|

ˆ
P∩Q

(∑
k

P (dk)χA3,k

)q̃
 1

q̃

. (6.16)

For the remaining expression note that

1

|Q|

ˆ
Q

∑
k

(
4dk
r

)d(2r−1)

χA1,k
Ck

C0

|A3,k|

ˆ
A3,k\P

|∇φ0|r
∑

j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|r

≤ 1

|Q|

ˆ
Q\P

∑
k

P (dk)χA3,k
|∇φ0|r

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|r (6.17)

We denote the right hand side of (6.17) by I1. Using a we obtain from Hölder’s inequality together with
Jensen’s inequality

Il ≤ CP

 1

|Q|

ˆ
Q\P

∑
k

χA3,k

a
|∇φ0|s̃

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|s̃
 r

s̃

, (6.18)

where CP and a are defined in the statement and where we used
∑

k

χA3,k

a
≡ 1 and

∑ |∂lφj |
Dl+
≡ 1.

Taking together (6.15)–(6.18) we conclude for p̃ = p
s

and with boundedness 0 < c <
|A1,k|
|A3,k| < C <

∞.

6.4 Extension for Statistically Harmonic Domains

Definition 6.9. A random geometry P(ω) is statistically s-harmonic if there exist constants Ck > 0,
k ∈ N and sets A4,k ⊃ A3,k such that for every xk ∈ Xω

ˆ
A3,k∩Rd3∩P

|u−Mku|s ≤
ˆ
A4,k∩P

Ck |∇u|s .

Theorem 6.10. Let P(ω) be a stationary ergodic random open set which is (δ,M)-regular, isotropic
cone mixing for r > 0 and f(R), statistically s-harmonic and let Assumption 6.6 hold. Then for every
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l = 1, . . . , d and 1 ≤ r < s < p and every 1 < α, p̃ <∞ it holds

1

|Q|

ˆ
Q\P

∑
k

P (dk)χA3,k
|∇φ0|r

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|r

≤

 C

|Q|

ˆ
P∩Q∩Rd3

(∑
k

P (dk)χA3,k

) p̃
p̃−1


(s−1)(p̃−1)

p̃s (
C

|Q|

ˆ
∂P∩Q

δ̃1−αrp̃ s
s−r

) 1
αp̃

·

(
C

|Q|

ˆ
P∩Q∩Rd3

((
M̃d+r

)p̃ s
s−r

M̃
(d−2)
α

) α
α−1

)α−1
αp̃

·
(

1

|Q|

ˆ
Q

|∇u|p
) s

p

·

 1

|Q|

ˆ
Q

(∑
k

P (dk)χA4,k
Ck

) p
p−s


p−s
ps

r

Proof. We make use of |∇φ0| ≤ Cρj on A1,j as well as the definition of τju to obtain that the latter
expression is bounded by (compare also with the calculation leading to (5.16))

1

|Q|

ˆ
Q\P

∑
k

P (dk)χA3,k
|∇φ0|r

∑
j 6=0: ∂lφj∂lφ0<0

|∂lφj|
Dl+

|τju−Mku|r

≤ 1

|Q|

ˆ
Q\P

∑
k

P (dk)χA3,k

∑
j 6=0

ρ−rj ρ−dj Md
j χA1,j

ˆ
Brj (yj)∩A3,k

|u−Mku|r

≤ 1

|Q|
∑
k

P (dk)
∑
j 6=0

ρ−rj Md
j

ˆ
Brj (yj)∩A3,k

|u−Mku|r

≤ 1

|Q|

ˆ
Q

∑
k

P (dk)
∑
j 6=0

ρ−rj Md
j χBrj (yj)∩A3,k

|u−Mku|r

≤

(
1

|Q|

ˆ
Q

∑
k

P (dk)
∑
j 6=0

(
ρ−rj Md

j

) s
s−r χBrj (yj)∩A3,k

) s−r
s

(
1

|Q|

ˆ
Q

∑
k

P (dk)
∑
j 6=0

χBrj (yj)∩A3,k
|u−Mku|s

) r
s

.

We use that Brj(yj) are mutually disjoint and Brj(yj) ⊂ Rd
3 to find

1

|Q|

ˆ
Q

∑
k

P (dk)
∑
j 6=0

χBrj (yj)∩A3,k
|u−Mku|s

≤ 1

|Q|

ˆ
Q

∑
k

P (dk)χA3,k∩Rd3 |u−Mku|s

≤ 1

|Q|

ˆ
Q

∑
k

P (dk)χA4,k
Ck |∇u|s

where we have used the statistical s-connectedness. Similar to the proof of Theorem 6.7 we observe
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that(
1

|Q|

ˆ
Q

∑
k

P (dk)
∑
j 6=0

(
ρ−rj Md

j

) s
s−r χBrj (yj)∩A3,k

dx

)

≤

(
C

|Q|

ˆ
P∩Q∩Rd3

(
ρ̃−rMd

j

)p̃ s
s−r

) 1
p̃

 C

|Q|

ˆ
P∩Q∩Rd3

(∑
k

P (dk)χA3,k

)q̃
 1

q̃

and

1

|Q|

ˆ
Q

∑
k

P (dk)χA4,k
Ck |∇u|s

≤

 1

|Q|

ˆ
Q

(∑
k

P (dk)χA4,k
Ck

) p
p−s


p−s
p (

1

|Q|

ˆ
Q

|∇u|p
) s

p

.

Finally, Lemma 4.13 yields with ρ̃ ≥ Cδ̃/M̃

C

|Q|

ˆ
P∩Q∩Rd3

(
ρ̃−rM̃d

)p̃ s
s−r

≤
(
C

|Q|

ˆ
∂P∩Q

δ̃1−αrp̃ s
s−r

) 1
α

(
C

|Q|

ˆ
P∩Q∩Rd3

((
M̃d+r

)p̃ s
s−r

M̃
(d−2)
α

) α
α−1

)α−1
α

7 Construction of Macroscopic Extension Operators II: Admissi-
ble Paths

In this section, we will use admissible paths on connected sets in order to estimate the (so far uncon-
trolled) terms |τiu−Mju| in Theorems 6.3 and 6.7 in terms of∇u.

Knowing there exists an admissible path (by Theorem 4.39), it remains to deal with the non-uniqueness
of the path. Note there is no clear distinction which puts one path in favor of others. While this could
be seen as a drawback, it can also be considered as an opportunity, since it allows to distribute the
“weight” of integration along the paths more uniformly among the total volume. This is the basic idea
of this section.

7.1 Preliminaries

Given an open connected set P and a countable family of points Xr satisfying Assumption 6.1 we
extend the covering A1,j resp. A2,j of ∂P from Section 5.1 (e.g. (5.1)) to the inner of P using Lemma
4.25. In this context, we remind the reader of (4.25) and Definition 4.27 and introduce the notation

A1(y) =

{
A1,k if y = pk ∈ X∂

Bη̃(y)(y) if y ∈ Y̊
, A2(y) =

{
A2,k if y = pk ∈ X∂

B3 1
2
η̃(y)(y) if y ∈ Y̊

.

We find the following
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Lemma 7.1. There exists C > 0 independent from P such that for every x ∈ P

#
{
y ∈ Y̊ : x ∈ A2(y)

}
≤ C .

Proof. For two points pi, pj ∈ ∂X such that x ∈ A2,i ∩ A2,j it holds due to the triangle inequality

|pi − pj| ≤ |x− pj|+ |pi − x| ≤ 3 (ρ̃i + ρ̃j) ≤ max {6ρ̃i, 6ρ̃j} . (7.1)

Let X∂(x) :=
{
pi ∈ ∂X : x ∈ B3ρ̃i(pi)

}
and choose p̃ ∈ X∂(x) such that ρ̃m := ρ̃(p̃) is maximal.

Then X∂(x) ⊂ B6ρ̃m(p̃) by (7.1) and every pi ∈ X∂(x) satisfies ρ̃m > ρ̃i >
1
3
ρ̃m (Lemma 2.12). In

view of (4.7) this lower local bound of ρ̃i implies a lower local bound on the mutual distance of the pi.
Since this distance is proportional to ρ̃m, and since ρ̃m > ρ̃i >

1
3
ρ̃m, this implies for some constant

C > 0 independent of x or P that

# {y ∈ ∂X : x ∈ A2(y)} ≤ C .

Now let y ∈ Y̊\∂X and x ∈ A2(y) = B 7
8
η(y). We show

η(y) < 8η(x) < 16η(y) .

For the first inequality, observe that η(x) ≤ 1
8
η(y) is equivalent with dist(x, ∂P) ≤ 1

8
dist(y, ∂P)

and hence

dist(y, ∂P) ≤ dist(x, ∂P) + |x− y|

≤ 1

8
dist(y, ∂P) + |x− y|

⇒ |x− y| ≥ 7

8
dist(y, ∂P) .

For the second inequality, assume η̃(y) < η̃(x). Then y lies closer to the boundary than x and
x ∈ A2(y) implies

η(x) = dist (x, ∂P) ≤ dist(y, ∂P) + |x− y| ≤ η(y) +
7

2
η̃(y) ≤ 2η(y) .

The mutual minimal distance of neighboring points in terms of η̃ now implies for some C independent
from x and P

#
{
y ∈ Y̊\∂X : x ∈ A2(y)

}
≤ C .

Definition 7.2. Let G∗(P) be a connected sub-graph of G0(P). Let xi ∈ Xr and ui := uxi be
the solution of the discrete Laplace equation (4.30) for x = xi on the graph G∗(P). For every z ∈
Y̊\{xi} let

O∗,i(z) :=
{
ỹ ∈ Y̊ : ui(ỹ) > ui(z)

}
the neighbors corresponding the outgoing branches of admissible paths through y, and we assign to
each ỹ ∈ O∗,i(z) the weight w∗(z, ỹ) = w∗,1,2(z, ỹ) of the branch (z, ỹ) where either

w∗,1(z, ỹ) = (ui(ỹ)− ui(z)) /

 ∑
y∈O∗,i(z)

(ui(y)− ui(z))

 ,

w∗,2(z, ỹ) = #O∗,i(z)−1 .
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For Y = (y1, . . . yN) ∈ AX∗(pj, xi) we define the weight of the path Y by

W∗(Y ) := W∗(y1, . . . yN) :=
N−1∏
i=1

w∗(yi, yi+1) .

Remark 7.3. We observe ∑
Y ∈AX∗(pj ,xi)

W∗(Y ) = 1 .

This holds by induction along the path and different branches since in every z ∈ Y̊\{xi} it holds∑
y∈O∗,i(z) w∗(z, y) = 1.

7.2 Extension for Connected Domains

In this section, we discuss how the graphs built in Section 4.3 can be used to derive estimates on
f(u) given in Theorem 6.3. The remaining constant on the right hand side is given in terms of the
balls Bri(pi) and length of the paths between pi and xj or xj and xk respectively. Although one
could go even more into details and try to generally decouple these effects, this is not helpful for our
examples in Section 8 below. Hence we leave the results of this section as they are but encourage
further investigation in the future.

The idea

We first consider the case of a general graph (Y,G(P)) on P and do not claim that paths in the
classes AX are fully embedded into P. In particular, we drop for a moment the concept of local con-
nectivity and we allow paths to intersect with Rd\P. Let xj ∈ Xr, pi ∈ YX∂ and Y = (y1, . . . , yN) ∈
AX(pi, xj). In the following short calculation, one may think of ∇̃u as a function related to ∇ (Uu),
though the following calculations will reveal that it is not exactly what we mean. Nevertheless, recalling
Notation 4.33 for Y (x) and Y =

⋃
x Y (x) it holds

|τiu−Mju|s =

∣∣∣∣∣∣ 1

|Bri(0)|

ˆ
Bri (0)

u(x+ pi)−
1∣∣∣B r

16
(xj)

∣∣∣
ˆ
B r

16
(0)

u(x+ xj)

∣∣∣∣∣∣
s

=

∣∣∣∣∣∣ 1∣∣∣B r
16

(0)
∣∣∣
ˆ
B r

16
(0)

(
u

(
16

r
ri(x+ pi)

)
− u(x+ xj)

)∣∣∣∣∣∣
s

≤
∑

Y ∈AX(pi,xj)

W (Y )
∣∣∣B r

16
(0)
∣∣∣−1

ˆ
Bri (0)

∣∣∣∣ˆ
Y (x)

∣∣∣∇̃u∣∣∣∣∣∣∣s dx

≤ C
∑

Y ∈AX(pi,xj)

W (Y )
∣∣∣B r

16
(0)
∣∣∣−1

ˆ
Y

∣∣∣∇̃u∣∣∣s Length(Y )
s−1
s . (7.2)

Since ∇̃u is related to ∇Uu, the latter formula reveals that the terms |τiu−Mju|s may lead to an
“entanglement” of M̃ρ̂ and the properties of the paths AX. In what follows, we will resolve the latter
calculation in more details to prepare this discussion.
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In what follows, we will make use of Y = (y1 = pi, . . . yN = xj) and

u

(
16

r
ri(x+ pi)

)
− u(x+ xj) =

N−1∑
k=1

u

(
16

r
r(yk)x+ yk

)
− u
(

16

r
r(yk+1)x+ yk+1

)
,

and we write Y (yk, yk+1, x) for the straight line segment connecting 16
r
r(yk)x+yk with 16

r
r(yk+1)x+

yk+1. We distinguish 4 cases:

Case yk, yk+1 ∈ Y∂X: According to Lemma 5.2 it holds Br(yk+1)(yk+1) ⊂ A2(yk) and if Uk :
W 1,p(A3,k)→ W 1,r(A2,k) is the corresponding local extension operator it holds

u

(
16

r
r(yk)x+ yk

)
− u
(

16

r
r(yk+1)x+ yk+1

)
≤
ˆ
Y (yk,yk+1,x)

∇Uku .

Case yk ∈ Y∂X, yk+1 ∈ Y̊: According to Lemma 4.25 it holds Br(yk+1)(yk+1) ⊂ A2(yk) and if
Uk : W 1,p(A3,k)→ W 1,r(A2,k) is the corresponding local extension operator it holds

u

(
16

r
r(yk)x+ yk

)
− u
(

16

r
r(yk+1)x+ yk+1

)
≤
ˆ
Y (yk,yk+1,x)

∇Uku .

Case yk+1 ∈ Y∂X, yk ∈ Y̊: According to Lemma 4.25 it holds Br(yk)(yk) ⊂ A2(yk+1) and if
Uk+1 : W 1,p(A3,k+1)→ W 1,r(A2,k+1) is the corresponding local extension operator it holds

u

(
16

r
r(yk)x+ yk

)
− u
(

16

r
r(yk+1)x+ yk+1

)
≤
ˆ
Y (yk,yk+1,x)

∇Uk+1u .

Case yk, yk+1 ∈ Y̊: According to Lemma 4.25 it holds Br(yk)(yk) ⊂ A2(yk+1) ⊂ P and

u

(
16

r
r(yk)x+ yk

)
− u
(

16

r
r(yk+1)x+ yk+1

)
≤
ˆ
Y (yk,yk+1,x)

∇u .

However, in case of local connectivity, we face a simpler situation. In case yk, yk+1 ∈ Y̊ we can use
the above estimates while in the other cases, we can use the Lemma 4.30.

Locally connected P

In what follows, we consider G∗(P) = Gflat(P) (see Definition 4.29) with a suitable family of admis-
sible paths AXflat, and we also recall Y (x) from Notation 4.33. We repeat the calculations of (7.2)
in view of Lemma 4.30. In particular, if ỹ ∼ y are connected via a path γ in B3ρ̃(x(y))(x(y)), which
additionally has the property that the corresponding tube exists, then the length of γ is bounded by
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C |y − ỹ|, where C is determined by the dimension. Hence we have

|τiu−Mju|s =

∣∣∣∣∣∣ 1

|Bri(0)|

ˆ
Bri (0)

u(x+ pi)−
1∣∣∣B r

16
(xj)

∣∣∣
ˆ
B r

16
(0)

u(x+ xj)

∣∣∣∣∣∣
s

=

∣∣∣∣∣∣ 1∣∣∣B r
16

(0)
∣∣∣
ˆ
B r

16
(0)

(
u

(
16

r
ri(x+ pi)

)
− u(x+ xj)

)∣∣∣∣∣∣
s

≤
∑

Y ∈AXflat(pi,xj)

W (Y )
1∣∣∣B r

16
(0)
∣∣∣
ˆ
Bri (0)

∣∣∣∣ˆ
Y (x)

|∇u|
∣∣∣∣s dx

≤ C
∑

Y ∈AXflat(pi,xj)

W (Y )
1∣∣∣B r

16
(0)
∣∣∣
ˆ
Y

|∇u|s Length(Y )
s−1
s . (7.3)

The last calculation is at the heart of the results in this section. In what follows, we adopt the situation
of Lemma 6.4:

Lemma 7.4. Let P be locally connected. Under Assumptions 5.5, 6.1 and using the notation of The-
orem 6.3 let (fj)j∈N be non-negative and have support suppfj ⊃ B r

2
(xj) and let

∑
j∈N fj ≡ 1.

Let G∗(P) = Gflat(P) (see Definition 4.29) with a suitable family of admissible paths AXflat. Writing
X(Q) := {xj : suppfj ∩Q 6= ∅}

Y local
all paths(Q) :=

⋃
xj∈X(Q)

⋃
pi∈suppfj∩Y∂X

⋃
Y ∈AXflat(pi,xj)

χY

χfj(x) := (x ∈ suppfj) and for every l = 1, . . . d it holds

1

|Q|

ˆ
P

∑
i 6=0: ∂lφi∂lφ0<0

∑
xj∈X(Q)

fj
|∂lφi|
Dl+

|τiu−Mju|s

≤ C

(
1

|Q|

ˆ
Y local

all paths(Q)

|∇u|p
) s

p

 1

|Q|

ˆ
Rd

 ∑
xj∈X(Q)

∑
i

χfj(pi)ρ̃
d
i

∑
Y ∈AXflat(pi,xj)

χYW (Y ) Length(Y )
s−1
s


p
p−s


p−s
p

Proof. We find

1

|Q|

ˆ
P∩Qr

∑
i 6=0: ∂lφi∂lφ0<0

∑
xj∈X(Q)

fj
|∂lφi|
Dl+

|τiu−Mju|s

≤ C

|Q|
∑

i 6=0: ∂lφi∂lφ0<0

∑
xj∈X(Q)

χfj(pi)ρ̃
d
i

∑
Y ∈AXflat(pi,xj)

W (Y )

ˆ
Y

|∇u|s Length(Y )
s−1
s

which leads to the result.

And finally, we provide an estimate for the remaining term in Lemma 6.5. The proof is similar to the
last Lemma.
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Lemma 7.5. Let P be locally connected. Under Assumptions 5.5, 6.1 it holds for

Y global
all paths(Q) :=

⋃
xk∼∼xj

xk,xj∈Xr(Q)

⋃
Y ∈AXflat(xk,xj)

χY

that

1

|Q|
∑

xk∼∼xj
xk,xj∈Xr(Q)

|Mku−Mju|s ≤ C

(
1

|Q|

ˆ
Y global

all paths(Q)

|∇u|p
) s

p

 1

|Q|

ˆ
Rd

 ∑
xk∼∼xj

xk,xj∈Xr(Q)

∑
Y ∈AXflat(xk,xj)

W (Y )Length(Y )
s−1
s


p
p−s


p−s
p

.

7.3 Statistical Stretch Factor for Locally Connected Geometries

Definition 7.6. Let P ⊂ Rd be an open set with Xr satisfying Assumption 6.1. Generalizing the
notation of Lemma 4.38 and recalling the Notation 4.33 let for x ∈ Xr and y ∈ Y and a family of
admissible paths AX(y, x)

R0(x, y) := inf

R > 0 :
⋃

Y ∈AX(y,x)

Y ⊂ BR(x)

 .

For an open set A with x ∈ A we denote

R0(x,A) := sup
y∈Y∩A

R0(x, y) .

Theorem 7.7. Let the Assumptions of Theorem 6.3 hold and let P be locally connected. . For every
xj ∈ Xr let

Sj := S(xj) := d−1
j sup

pi∈Y∩A2,j

sup
Y ∈AXflat(pi,xj)

Length(Y ) .

Defining R0(xj) := R0(xj,A2,j) and

AX(Q) :=
⋃

xj∈Q∼∼
BR0(xj)(xj) (7.4)

it holds

1

|Q|

ˆ
Q∼∼
|f(u)|r ≤ C1(C2 + C3)

(ˆ
AX(Q)

|∇u|p
) r

p

,
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where for some s ∈ (r, p)

C1 =

 1

|Q|

ˆ
AX(Q)

 ∑
xj∈Xr(Q)

χBR0(xj,A2,j)(xj)d
d+ s−1

s
j S

s−1
s

j


p
p−s


p−s
p

≤

 1

|Q|

ˆ
AX(Q)

 ∑
xj∈Xr(Q)

χBSjdj
(xj)d

d+ s−1
s

j S
s−1
s

j


p
p−s


p−s
p

C2 =

(
1

|Q|

ˆ
P∩Qr∩Rd3

|∂lφ0|
sr
s−r

) s−r
s

,

C3 =

 1

|Q|

ˆ
P∩Q

 ∑
j: ∂lΦj<0

d
r(d−1)+drs

s−r
j χ∇Φj 6=0

 s
s−r


s−r
s

.

Definition 7.8. We call Sj the statistical stretch factor.

Corollary 7.9. It holds R0(xj) ≤ djSj .

Corollary 7.10. If u ∈ W 1,p(P) satisfies u ≡ 0 on Rd\Q then U has support on AX(Q).

Proof. This follows since
AX(Q) ⊃

⋃
j∼∼Q

A1,j .

Proof of Theorem 7.7. With regard to Lemma 7.4, we observe that fj = Φj with X(Q) = Xr(Q)
and χfj(pi) = 1 only if pi ∈ A1,j . Furthermore, W (Y ) ≤ 1 and we define

Lj := sup
pi∈Y∩A2,j

sup
Y ∈AXflat(pi,xj)

Length(Yflat) .

Hence we find for given xj using Corollary 7.9:∑
i

χfj(pi)ρ̃
d
i

∑
Y ∈AXflat(pi,xj)

χYflat
W (Y ) Length(Yflat)

s−1
s ≤ χBR0(xj,A1,j)(xj) |A1,j|L

s−1
s

j

≤ χBSjdj
(xj) |A1,j|L

s−1
s

j .

Also with regard to Lemma 7.4 we find for given xj∑
xk∼∼xj
xk∈Xr(Q)

∑
Y ∈AXflat(xk,xj)

W (Y )Length(Yflat)
s−1
s ≤ χBR0(xj,A2,j)(xj) |A2,j|L

s−1
s

j

≤ χBSjdj
(xj) |A2,j|L

s−1
s

j .

The statement now follows from the definition of Sj , Lemmas 6.4 and 6.5.

Finally, the following result allows us to estimate the difference of Q and AX(Q).
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Theorem 7.11. Let the Assumptions of Theorem 6.3 hold, let Q have a C1-boundary and let AX(Q)
be given by (7.4). Furthermore, let R0 be ergodic such that for every ε > 0

lim
n→∞

∞∑
k=1

(1 + ε)k E
(
R0(xj) ≥ (1 + ε)kn

)
= 0 . (7.5)

Then

lim
n→∞

|nQ|
|AX (nQ)|

→ 1 .

Remark 7.12. Condition (7.5) is satisfied if e.g. E(R0(xj) ≥ r0) ≤ r−a0 for some a > 1 as then

∞∑
k=1

(1 + ε)k E
(
R0(xj) ≥ (1 + ε)kn

)
≤ 1

nα

∞∑
k=1

(
1

(1 + ε)a−1

)k
.

Proof. Since nQ ⊂ AX(nQ) we have to estimate the excess mass of AX(nQ) over |nQ|. If we
define

XnQ :=
{
xj ∈ Xr ∩Q : BR0(xj)(xj)\ (nQ) 6= ∅

}
,

XnQ{ := {xj ∈ Xr\Q : Br(A1,j) ∩ (nQ) 6= ∅} ,

we find
|AX(nQ)\ (nQ)| ≤

∑
xj∈XnQ∪XnQ{

∣∣BR0(xj)(xj)
∣∣ ,

and we thus derive an estimate on the contribution from XnQ and XnQ{ respectively.

Let ε > 0. Then for Qε
n,k :=

(
(1 + ε)knQ

)
\
(
(1 + ε)k−1nQ

)
∑

xj∈XnQ{

∣∣BR0(xj ,A2,j)(xj)
∣∣ ≤ ∑

xj∈Xr∩Qε
n,1

∣∣BR0(xj)(xj)
∣∣+

∞∑
k=2

∑
xj∈Xr∩Qε

n,k

d(xj)≥(1+ε)k−1n

∣∣BR0(xj)(xj)
∣∣

≤
∑

xj∈Xr∩Qε
n,1

∣∣BR0(xj)(xj)
∣∣+

∞∑
k=2

∑
xj∈Xr∩Qε

n,k

R0(xj)≥(1+ε)k−1n

∣∣BR0(xj)(xj)
∣∣

≤
∑

xj∈Xr∩Qε
n,1

∣∣BR0(xj)(xj)
∣∣+

∞∑
k=2

∑
xj∈Xr∩Qε

n,k

R0(xj)≥(1+ε)n

∣∣BR0(xj)(xj)
∣∣

Due to the ergodic theorem, we obtain for every n0 ∈ N

1

|nQ|
∑

xj∈Xr∩Qε
n,k

R0(xj)≥(1+ε)k−1n

∣∣BR0(xj)(xj)
∣∣ ≤ 1

|nQ|
∑

xj∈Xr∩Qε
n,k

R0(xj)≥(1+ε)k−1n0

∣∣BR0(xj)(xj)
∣∣

→
(

(1 + ε)k − (1 + ε)k−1
)
E
(
R0(xj) ≥ (1 + ε)k−1n0

)
≤ ε (1 + ε)k−1 E

(
R0(xj) ≥ (1 + ε)k−1n0

)
and similarly

lim
n→∞

1

|nQ|
∑

xj∈Xr∩Qε
n,1

∣∣BR0(xj)(xj)
∣∣ = εE(R0) .
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Since the above estimates hold for every ε and every n0, we find

1

|nQ|
∑

xj∈XnQ{

∣∣BR0(xj ,A2,j)(xj)
∣∣→ 0 .

In a similar way, we prove
1

|nQ|
∑

xj∈XnQ

∣∣BR0(xj ,A2,j)(xj)
∣∣→ 0 .

8 Sample Geometries

8.1 Boolean Model for the Poisson Ball Process

Recalling Example 2.36 we consider a Poisson point process Xpois(ω) = (xi(ω))i∈N with intensity
λ (recall Example 2.36). To each point xi a random ball Bi = B1(xi) is assigned and the family
B := (Bi)i∈N is called the Poisson ball process. We then denote P (ω) := Rd\

⋃
iBi and seek for a

corresponding uniform extension operator. The following argumentation will be strongly based on the
so called void probability. This is the probability P0(A) to not find any point of the point process in a
given open set A and is given by (2.34) i.e. P0(A) := e−λ|A|.

The void probability for the ball process is given accordingly by

P0(A) := e−λ|B1(A)| , B1(A) :=
{
x ∈ Rd : dist(x,A) ≤ 1

}
,

which is the probability that no ball intersects with A ⊂ Rd.

Theorem 8.1. Let P (ω) :=
⋃
iBi(ω) and define

δ̃(x) := min
{
δ(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
δ(x̃)(x̃)

}
,

˜̂ρ(x) := min
{
ρ̂(x̃) : x̃ ∈ ∂P s.t. x ∈ B 1

8
ρ̂(x̃)(x̃)

}
,

where min ∅ := 0 for convenience. Then ∂P is almost surely locally (δ,M) regular and for every
γ < 1, β < d+ 2 and 1 ≤ r < 2 and 2 sr

2(s−1)−sr ≤ d+ 2 it holds

E
(
δ−γ
)

+ E
(
δ̃−γ−1

)
+ E

(
M̃β
)

+ E
(

˜̂ρ−
rs
s−1

)
<∞ .

Furthermore, it holds d̂ ≤ d − 1 and α = 0 in inequalities (5.8) and (5.17). The same holds if
P (ω) := Rd\

⋃
iBi(ω) with α replaced by d.

Remark 8.2. We observe that the union of balls has better properties than the complement.

Proof. We study only P (ω) :=
⋃
iBi(ω) since Rd\

⋃
iBi(ω) is the complement sharing the same

boundary. Hence, in case P(ω) = Rd\
⋃
iBi(ω), all calculations remain basically the same. How-

ever, in the first case, we assume that r(yk) = 1
4
ρ̃(yk) , which we cannot assume in the other case,

where r(yk) is proportional to ρ̃kM̃
−1
k . This is the reason for the different α in the two cases.
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In what follows, we use that the distribution of balls is mutually independent. That means, given a ball
around xi ∈ Xpois, the set Xpois\ {xi} is also a Poisson process. W.l.o.g. , we assume xi = x0 = 0
with B0 := B1(0). First we note that p ∈ ∂B0 ∩ ∂P if and only if p ∈ ∂B0\P, which holds with
probability P0(B1(p)) = P0(B0). This is a fixed quantity, independent from p.

Now assuming p ∈ ∂B0\P, the distance to the closest ball besides B0 is denoted

r(p) = dist(p, ∂P\∂B0)

with a probability distribution

Pdist(r) := P0(B1+r(p))/P0(B1(p)) .

It is important to observe that ∂B0 is r-regular in the sense of Lemma 2.12. Another important feature
in view of Lemma 4.4 is r(p) < ∆(p). In particular, δ(p) > 1

2
r(p) and ∂B0 is (δ, 1)-regular in case

δ <
√

1
2
. Hence, in what follows, we will derive estimates on r−γ , which immediately imply estimates

on δ−γ .

Estimate on γ: A lower estimate for the distribution of r(p) is given by

Pdist(r) := P0(B1+r(p))/P0(B1(p)) ≈ 1− λ
∣∣Sd−1

∣∣ r . (8.1)

This implies that almost surely for γ < 1

lim sup
n→∞

1

(2n)d

ˆ
(−n,n)d∩∂P

r(p)−γ dHd−1(p) <∞ ,

i.e. E(δ−γ) <∞.

Intersecting balls: Now assume there exists xi, i 6= 0 such that p ∈ ∂Bi ∩ ∂B0. W.l.o.g. assume
xi = x1 := (2x, 0, . . . , 0) and p =

(√
1− x2, 0, . . . , 0

)
. Then

δ(p) ≤ δ0(p) := 2
√

1− x2

and p is at least M(p) = x√
1−x2 -regular. Again, a lower estimate for the probability of r is given by

(8.1) on the interval (0, δ0). Above this value, the probability is approximately given by λ
∣∣Sd−1

∣∣ δ0 (for
small δ0i.e. x ≈ 1). We introduce as a new variable ξ = 1 − x and obtain from 1 − x2 = ξ(1 + x)
that

δ0 ≤ Cξ
1
2 and M(p) ≤ Cξ−

1
2 . (8.2)

No touching: At this point, we observe that M is almost surely locally finite. Otherwise, we would
have x = 1 and for every ε > 0 we had x1 ∈ B2+ε(x0)\B2−ε(x0). But

P0(B2+ε(x0)\B2−ε(x0)) ≈ 1− λ2
∣∣Sd−1

∣∣ ε → 1 as ε→ 0 .

Therefore, the probability that two balls “touch” (i.e. that x = 1) is zero. The almost sure local bound-
edness of M now follows from the countable number of balls.

Extension to δ̃: We again study each ball separately. Let p ∈ ∂B0\P with tangent space Tp and
normal space Np. Let x ∈ Np and p̃ ∈ ∂B0 such that x ∈ B 1

8
δ(p̃)(p̃), then also p ∈ B 1

8
δ(p̃)(p̃) and

δ(p) ∈ (7
8
, 7

6
)δ(p̃) and δ(p̃) ∈ (7

8
, 7

6
)δ(p) by Lemma 2.12. Defining

δ̃i(x) := min
{
δ(x̃) : x̃ ∈ ∂Bi\P s.t. x ∈ B 1

8
δ(x̃)(x̃)

}
,
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we find
δ̃−γ ≤

∑
i

χδ̃i>0δ̃
−γ
i .

Studying δ0 on ∂B0 we can assume M ≤M0 in (4.10) and we find

ˆ
P

χδ̃0>0δ̃
−γ−1
0 ≤ C

ˆ
∂B0\P

δ−γ .

Hence we find ˆ
P

δ̃−γ−1 ≤
∑
i

ˆ
P

χδ̃i>0δ̃
−γ−1
i ≤

∑
i

C

ˆ
∂Bi\P

δ−γ .

Estimate on β: For two points xi, xj ∈ Xpois let Circij := ∂Bi ∩ ∂Bj and B 1
8
δ̃(Circij) :=⋃

p∈Circij
B 1

8
δ̃(p)(p). For the fixed ball Bi = B0 we write Circ0j and obtain |Circ0j| ≤ Cδd0 with

δ0 from (8.2). Therefore, we find
ˆ

Circ0j

(1 +M(p))β ≤ δd0(1 +M(p))β ≤ Cξ−
1
2

(β−d) .

We now derive an estimate for E
(´

B1+r(0)
M̃β
)
.

To this aim, let q ∈ (0, 1). Then x ∈ B2−qk+1(0)\B2−qk(0) implies ξ ≥ qk+1 and

ˆ
B1+r(0)

M̃β ≤ C +
∞∑
k=1

∑
xj∈B2−qk+1 (0)\B

2−qk (0)

ˆ
Circ0j

(1 +M(p))β

≤ C +
∞∑
k=1

∑
xj∈B2−qk+1 (0)\B

2−qk (0)

C
(
qk+1

)− 1
2

(β−d)

The only random quantity in the latter expression is #
{
xj ∈ B2−qk+1(0)\B2−qk(0)

}
. Therefore, we

obtain with E(X(A)) = λ |A| that

E
(ˆ

B1+r(0)

M̃β

)
≤ C

(
1 +

∞∑
k=1

(
qk − qk+1

) (
qk+1

)− 1
2

(β−d)

)

≤ C

(
1 +

∞∑
k=1

(
qk
)− 1

2
(β−d−2)

)
.

Since the point process has finite intensity, this property carries over to the whole ball process and we
obtain the condition β < d+ 2 in order for the right hand side to remain bounded.

Estimate on γ̃: We realize that ˜̂ρ ≥ δ̃
M̃
≥ r̃

M̃
. Hence we obtain from Hölder’s inequality

E
(

˜̂ρ−
rs
s−1

)
≤ E

(
δ̃−s̃
) 1
qE
(
M̃

sr
(s−1)

p
) 1
p
,

where s̃ = rs
s−1

q and 1
p

+ 1
q

= 1. From the right hand side of the last inequality, we infer boundedness

of the first expectation value for s̃ < 2 implying q < 2(s−1)
sr

. Since we have to require q > 1, this
implies r < 2 and s > 2

2−r . On the other hand, we know that the second expectation is finite if
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sr
(s−1)

p < d + 2. For q = 2(s−1)
sr

, we obtain the lower bound for p = q
q−1

and hence we conclude the
sufficient condition

2
1

2(s−1)
sr
− 1
≤ d+ 2 ,

which implies our claim.

Estimate on d̂: We have to estimate the local maximum number ofA3,k overlapping in a single point in
terms of M̃ . We first recall that ρ̂(p) ≈ 8M̃(p)ρ̃(p). Thus large discrepancy between ρ̂ and ρ̃ occurs
in points where M̃ is large. This is at the intersection of at least two balls. Despite these “cusps”, the
set ∂P consists locally on the order of ρ̂ of almost flat parts. Arguing like in Lemma 5.2 resp. Remark
5.3 this yields d̂ ≤ d− 1.

Estimate on α: Given two points y1, y2 with radii r(y1), r(y2), Byi := Br(yi)(yi) and Myiu :=

|By1|
−1 ´

By1
u we find

|My1u−My2u| ≤
|y1 − y2|+

∣∣∣( r(y2)
r(y1)
− 1
)
r(y1)

∣∣∣
|By1|

ˆ
conv(By1∪By2)

|∇u| .

By our initial assumptions on r(yi) we prove our claim on α.

It remains to verify bounded average connectivity of the Boolean set P (ω) :=
⋃
iBi(ω) or its com-

plement. In what follows we restrict to the Boolean set and use the following result.

Theorem 8.3. [37]Let P have a connected component and let G(Xpois) be the graph on Xpois

constructed from x ∼ y iff B1(x) ∩ B1(y) 6= ∅. Let P̃ be the connected component of P and
X̃pois := Xpois ∩ P̃. For x, y ∈ X̃pois let d(x, y) be the graph distance. Then for every ε > 0 there
exists µ > 1, ν > 0 such that

P
(
d(x, y)

µ |x− y|
6∈ (1− ε, 1 + ε)

)
≤ e−ν|x−y| .

The latter result enables us to prove the following.

Lemma 8.4. Using the notation of Theorem 8.3, let x, y ∈ X̃pois and a > 2. Then

P(d(x, y) ≥ 4µa |x− y| (1 + ε)) ≤ 2e−
ν
2
a|x−y| .

In other words, the probability that the distance between x and y on the grid is stretched by more than
5µa is decreasing exponentially in a.

Proof. Let x, y ∈ X̃pois. Let a > 2 and let n ∈ N such that a ∈ [2n, 2n+1). With probability

1− exp
(
−λ
∣∣Sd−1

∣∣ (2dn+d − 2d
)
|x− y|d

)
> 1

2
there exists z ∈ B2n+1|x−y|(x)\B2n|x−y|(x). For

such z it holds

2n |x− y| ≤ |z − x| < 2n+1 |x− y|
2n |x− y| ≤ |z − y| <

(
2n+1 + 1

)
|x− y|

In particular, we obtain for an+1 := 2n+1 + 1

d(x, y)

4µa |x− y|
≤ d(x, y)

2µan+1 |x− y|
≤ d(x, z)

2µan+1 |x− y|
+

d(z, y)

2µan+1 |x− y|

≤ d(x, z)

2µ |x− z|
+

d(z, y)

2µ |z − y|
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Hence, assuming 1 + ε ≤ d(x,y)
4µa|x−y| we find that at least one of the conditions d(x,z)

µ|x−z| ≥ 1 + ε or
d(z,y)
µ|z−y| ≥ 1 + ε has to hold, which implies

P
(

1 + ε ≤ d(x, y)

4µa |x− y|

)
≤ P

(
d(x, z)

µ |x− z|
≥ 1 + ε or

d(z, y)

µ |z − y|
≥ 1 + ε

)
.

Now it holds under the condition that z exists

P
(
d(x, z)

µ |x− z|
≥ 1 + ε or

d(z, y)

µ |z − y|
≥ 1 + ε

)
< e−ν|x−z|+e−ν|y−z| < 2e−ν2n|x−y| < 2e−

ν
2
a|x−y| ,

which implies the statement.

We construct a suitable graph (Y,G(P)). For this we choose Xr := Xr(P) according to Lemma
2.50 and define

Ypois = Y∂X ∪ ∂X ∪ Xr ∪ Xpois .

For Y∂X and ∂X we choose the standard neighborhood relation. Furthermore, we say for y ∈ Y∂X
and x ∈ Xr that y ∼ x iff there exists x̃ ∈ Xpois with x, y ∈ B1(x̃) and for x ∈ Xr, x̃ ∈ Xpois we
say x ∼ x̃ iff x ∈ B1(x̃). This graph is called Gpois.

Theorem 8.5. Let P be the connected component of
⋃
iBi(ω). Then P is locally connected and for

(Ypois,Gpois) we find for every γ > 0 that E
(
Sγj
)
≤ ∞.

Proof. We write a = r−1. Let x1 ∈ Xr with diameter d1 of the Voronoi cell and let Xr,1 := Xr ∩
B3d1(x). We can chose Xpois,1 ⊂ Xpois ∩ B3d1+ar(x) with #Xpois,1 = #Xr,1 such that Xr,1 ⊂
B1(Xpois,1). Note in particular, that #Xpois,1 ≤ Cdd1. Now let y ∈ Y∂X ∩ B3d(x) and let Y =
(y1, . . . , yk) ∈ AX(x, y). If y1 = y, then y2 ∈ Xr,1 and, w.l.o.g., y3, yk−1 ∈ Xpois,1. For the graph
distances it holds

d(x, y) ≤ d(x, yk−1) + d(yk−1, y3) + d(y2, y3) + d(y1, y2)

≤ ar + d(yk−1, y3) + ar + 4
√
d r .

In case d(yk−1, y3) ≤ 1 we conclude with d(x, y) ≤
(

3a+ 4
√
d
)
r ≤

(
3a+ 4

√
d
)
d1. If

d(yk−1, y3) ≥ 4
√
d we obtain d(x, y) ≤ 4d(yk−1, y3).

Hence, because #Xpois,1 ≤ Cdd1, it only remains to observe that Lemma 8.4 yields an exponential
decrease for the probability of large stretch factors for d(yk−1, y3).

8.2 Delaunay Pipes for a Matern Process

For two points x, y ∈ Rd, we denote

Pr(x, y) :=

{
y + z ∈ Rd : 0 ≤ z · (x− y) ≤ |x− y|2 ,

∣∣∣∣z − z · (x− y)
x− y
|x− y|

∣∣∣∣ < r

}
,

the cylinder (or pipe) around the straight line segment connecting x and y with radius r > 0.

Recalling Example 2.36 we consider a Poisson point process Xpois(ω) = (xi(ω))i∈N with intensity
λ (recall Example 2.36) and construct a hard core Matern process Xmat by deleting all points with a
mutual distance smaller than dr for some r > 0 (refer to Example 2.37). From the remaining point
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process Xmat we construct the Delaunay triangulation D(ω) := D(Xmat(ω)) and assign to each
(x, y) ∈ D a random number δ(x, y) in (0, r) in an i.i.d. manner from some probability distribution
δ(ω). We finally define

P(ω) :=
⋃

(x,y)∈D(ω)

Pδ(x,y)(x, y)
⋃

x∈Xmat

Br(x)

the family of all pipes generated by the Delaunay grid “smoothed” by balls with the fix radius r around
each point of the generating Matern process.

Since the Matern process is mixing and δ is mixing, Lemma 2.22 yields that the whole process is still
ergodic.

Remark 8.6. The family of balls Br(x) can also be dropped from the model. However, this would imply
we had to remove some of the points from Xmat for the generation of the Voronoi cells. This would
cause technical difficulties which would not change much in the result, as the probability for the size
of Voronoi cells would still decrease subexponentially.

Lemma 8.7. Xmat is a point process for P(ω) that satisfies Assumption 6.1 and P is isotropic cone
mixing for Xmat with exponentially decreasing f(R) ≤ Ce−R

d
. Furthermore, assume there exists

Cδ, aδ > 0 such that P(δ(x, y) < δ0) ≤ Cδe
−aδ 1

δ0 , then P(M̃ > M0) ≤ Ce−aM0 for some
C, a > 0.

Proof. Isotropic cone mixing: For x, y ∈ 2drZd the events
(
x+ [0, 1]d

)
∩Xmat and

(
y + [0, 1]d

)
∩

Xmat are mutually independent. Hence

P
((
k2dr [−1, 1]d

)
∩ Xmat = ∅

)
≤ P

(
[−1, 1]d ∩ Xmat = ∅

)kd
.

Hence the open set P is isotropic cone mixing for X = Xmat with exponentially decaying f(R) ≤
Ce−R

d
.

Estimate on δ: There exists C > 0 such that P is (δ(x, y), Cδ(x, y)−1)-regular in every x ∈
∂Pδ(x,y)(x, y). Since the distribution of δ(x, y) is independent from x and y, this implies that P(δ <

δ0) ≤ Cδe
−aδ 1

δ0 .

Estimate on the distribution of M : By definition of the Delaunay triangulation, two pipes intersect only
if they share one common point x ∈ Xmat.

Given three points x, y, z ∈ Xmat with x ∼ y and x ∼ z, the highest local Lipschitz constant on
∂
(
Pδ(x,y)(x, y) ∪ Pδ(x,z)(x, z)

)
is attained in

x̃ = arg max
{
|x− x̃| : x̃ ∈ ∂Pδ(x,y)(x, y) ∩ ∂Pδ(x,z)(x, z)

}
.

It is bounded by

max

{
arctan

(
1

2
^ ((x, y), (x, z))

)
,

1

δ(x, y)
,

1

δ(x, z)

}
,

where α := ^ ((x, y), (x, z)) in the following denotes the angle between (x, y) and (x, z), see
Figure 6. If dx is the diameter of the Voronoi cell of x, we show that a necessary (but not sufficient)
condition that the angle α can be smaller than some α0 is given by

dx ≥ C
1

sinα0

, (8.3)
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�
�

Figure 6: Sketch of the proof of
Lemma 8.7 and estimate (8.3).

where C > 0 is a constant depending only on the dimension d. Since for small α we find M ≈
1

sinα
, and since the distribution for dx decays subexponentially, also the distribution for M decays

subexponentially.

Proof of (8.3): Given an angle α > 0 and x ∈ Xmat we derive a lower bound for the diameter ofG(x)
such that for two neighbors y, z of x it can hold ^ ((x, y), (x, z)) ≤ α. With regard to Figure 6, we
assume |x− y| ≥ |x− z|.
Writing dx := d(x) the diameter of G(x) and α̃ = ^ ((x, z), (z, y)), w.l.o.g let y = (d1 +
d2, 0, . . . , 0), where d1 + d2 < dx and d1 = |y − z| cos α̃. Hence we can assume that z takes
the form z = (d2,− |y − z| sin α̃, 0 . . . 0) and in what follows, we focus on the first two coordinates
only. The boundaries between the cells x and z and x and y lie on the planes

hxz(t) =
1

2
z + t

(
|y − z| sin α̃

d2

)
, hxy(s) =

1

2
y + s

(
0
1

)
respectively. The intersection of these planes has the first two coordinates

ixyz :=

(
d1 + d2

2
,−1

2
|y − z| sin α̃ +

1

2

d1d2

|y − z| sin α̃

)
. Using the explicit form of d2, the latter point has the distance

|ixyz|2 =
1

4
|y − z|2 +

1

4
d2

2 +
1

4

d2
2 cos2 α̃

sin2 α̃

to the origin x = 0. Using |y − z| sin α̃ = |z| sinα and d2 = |y| − |z| cosα we obtain

|ixyz|2 =
1

4

(
|y − z|2

(
1 +

(|y| − |z| cosα)2 cos2 α̃

|z|2 sin2 α

)
+ (|y| − |z| cosα)2

)
.

Given y, the latter expression becomes small for |y − z| small, with the smallest value being |y − z| =
dr. But then

cos2 α̃ = 1− sin2 α̃ = 1− (|z| sinα)2

|y − z|2

and hence the distance becomes

|ixyz|2 =
1

4

(
(dr)2

(
1 +

(|y| − |z| cosα)2 ((dr)2 + |z|2 sin2 α
)

(dr)2 |z|2 sin2 α

)
+ (|y| − |z| cosα)2

)
.

We finally use |y| = |z| cosα−
√

(dr)2 − |z|2 sin2 α and obtain

|ixyz|2 =
1

4

(
(dr)2

(
1 +

(
(dr)4 − |z|4 sin4 α

)
(dr)2 |z|2 sin2 α

)
+
(
(dr)2 − |z|2 sin2 α

))
.
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The latter expression now needs to be smaller than dx. We observe that the expression on the right
hand side decreases for fixed α if |z| increases.

On the other hand, we can resolve |z| (y) = |y| cosα −
√
|y|2 sin2 α + (dr)2. From the conditions

|y| ≤ dx and |ixyz| ≤ dx, we then infer (8.3).

Lemma 8.8. Let Y be constructed from Lemma 4.25 for Xr = Xmat with the corresponding standard
graph Gsimple(P) (see Definition 4.29). Let the admissible paths AX(y, x), x ∈ Xr, y ∈ Y, be the
set of shortest paths on the graph between x and y. Then there exists C > 0 such that for every
xj ∈ Xr it holds R0(xj,A2,j)/dj + Sj ≤ C . In particular, for every 1 < s < p it holds

lim
n→∞

1

|nQ|

ˆ
AX(nQ)

 ∑
xj∈Xr(Q)

χBR0(xj,A2,j)(xj)d
d+ s−1

s
j S

s−1
s

j


p
p−s

<∞ .

Proof. Since the admissible paths are the shortest paths, there exists C > 0 such that for every
Y ∈ AX(y, xj), xj ∈ Xr, y ∈ Y ∩ B r2 (A1,j) it holds LengthY ≤ C |xj − y|. Furthermore, for

xk ∈ Xr with xk ∼∼ xj we find |xk − xj| ≤ 2dj and since xk and xj are connected through a path
lying inside B2dj(xj) possibly crossing other xi ∈ A2,j ∩ B2dj(xj) we can assume for the same C
that for every Y ∈ AX(xk, xj), xk ∼∼ xj it holds LengthY ≤ C |xk − xj|. This provides a uniform
bound on R0(xj,A2,j) + Sjdj ≤ Cdj . The lemma now follows from Lemma 4.21 and Theorem
7.11.

9 Sobolev Spaces on the Probability Space (Ω,P)

Based on Assumption 2.14, we want to achieve a better understanding of the mapping f 7→ fω. For
this we make the following basic assumption throughout this section.

Assumption 9.1. Let (Ω, σ,P) be a probability space satisfying Assumption 2.14 and let τ be a
dynamical system on Ω in the sense of Definition 2.15.

For the introduction of traces of W 1,p(Ω)-functions below we will need the following (uncommon)
stronger assumption. It is motivated by Theorem 2.33, which states that we can assume Ω to be a
separable metric space.

Assumption 9.2. Let (Ω, σ,P) be a probability space satisfying Assumption 2.14 and let τ be a
dynamical system on Ω in the sense of Definition 2.15. Furthermore, let Ω be a separable metric
space such that σ is the completion of the Borel algebra B(Ω) under the construction of the Lebesgue
space L1(Ω;P).

Assumption 9.2 will pay of due to the second part of the following lemma, which is a fundamental
property of separable σ-algebras.

Lemma 9.3. Let (A,Σ, µ) be a measure space with a countably generated σ-algebra Σ. Then for
every 1 ≤ p < ∞ the space Lp(A;µ) is separable. If A is a separable metric space and Σ the
completion of the Borel algebra with respect to µ then Cb(A) ↪→ Lp(Ω;µ) densely and continuously,
where Cb(Ω) are the bounded continuous functions on Ω.
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The following lemma is a fundamental observation which will be frequently used throughout the rest of
this work. It relies on the following notation. For f : Ω→ X , X a metric space, and ω ∈ Ω we define
the realization fω of f as

fω : Rd → X , x 7→ f(τxω) .

Then we find the following behavior.

Lemma 9.4. Let Assumption 9.1 hold and let f ∈ Lp(Ω) for 1 ≤ p ≤ ∞. Then for almost every
ω ∈ Ω and for every bounded domain Q it holds fω ∈ Lp(Q).

Proof. For 1 ≤ p <∞ observe that

L(Q)

ˆ
Ω

|f(ω)|p dP(ω) =

ˆ
Q

ˆ
Ω

|f(ω)|p dP(ω)dx =

ˆ
Q

ˆ
Ω

|f(τxω)|p dP(ω)dx

=

ˆ
Ω

ˆ
Q

|f(τxω)|p dx dP(ω) .

From Fubini’s theorem it follows that
´
Q
|f(τxω)|p dx exists for a.e. ω ∈ Ω. For p =∞ the statement

follows since
´
Q
|f(τxω)|p dx exists for every p <∞.

9.1 The Semigroup T on Lp(Ω) and its Generators

For every x ∈ Rd we define the mapping

T(x) : f 7→ T(x)f ,

through T(x)f(ω) := f(τxω). This mapping is well defined for every measurable function f : Ω→
R. Moreover, we have the following properties.

Lemma 9.5. Let Assumption 9.1 hold. For every 1 ≤ p < ∞, the family (T(x))x∈Rd is a strongly
continuous unitary group on Lp(Ω).

Proof. Every T(x) is linear on Lp(Ω) and the group property follows from (T(x)T(y)f) (ω) =
f(τxτyω) = T(x + y)f(ω). Since τx is measure preserving, we find ‖f‖Lp(Ω) = ‖T(x)f‖Lp(Ω)

and hence T(x) is unitary.

In order to prove the strong continuity, observe

‖T(x)f − f‖pLp(Ω) =

ˆ
Ω

|f(τxω)− f(ω)|p dP(ω)

=

ˆ
Ω

ˆ
Y
|f(τx+yω)− f(τyω)|p dy dP(ω)

=

ˆ
Ω

ˆ
Y
|fω(x+ y)− fω(y)|p dy dP(ω) ,

where we used that τy preserves measure and Fubini’s theorem. By Lemma 9.4 fω ∈ Lploc(Rd) for
almost every ω ∈ Ω and for such ω it holds lim|h|→0 ‖fω − fω(·+ h)‖Lp(4Y) = 0. Furthermore, for

|x| < 1
2

we have ˆ
Y
|fω(x+ y)− fω(y)|p dy < 2p

ˆ
2Y
|fω(y)|p dy .
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Thus, the Lebesgue dominated convergence theorem yields

sup
|x|<t
‖T(x)f − f‖pLp(Ω) → 0 as t→ 0 .

For i = 1, . . . , d, let ei be the i-th canonical basis vector in Rd. Since T(x) define a strongly contin-
uous group we can draw the conclusion that the operators Ti(t)f := T(tei)f , define d independent
one-parameter strongly continuous semigroups on Lp(Ω) that commute with each other and jointly
generate (T(x))x∈Rd on Lp(Ω). Each of these one-parameter groups has a generator Di defined by

Dif(ω) = lim
t→0

Ti(t)f(ω)− f(ω)

t
= lim

t→0

f(τteiω)− f(ω)

t
.

The expression Dif is called i-th derivative of f and is skew adjoint:

ˆ
Ω

gDifdP = −
ˆ

Ω

fDigdP .

The joint domain of all Di in Lp(Ω) is denote

W 1,p(Ω) := {f ∈ Lp(Ω) | ∀i = 1, . . . , d : Dif ∈ Lp(Ω)} ,

with the natural norm

‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) +
d∑
i=1

‖Dif‖Lp(Ω) .

In case p = 2, this is a Hilbert space with scalar product

〈f, g〉2W 1,2(Ω) :=

ˆ
Ω

fgdP +
d∑
i=1

ˆ
Ω

DifDig dP .

We finally denote Dωf := (D1f, . . . ,Ddf)T the gradient with respect to ω and by−divω the adjoint
of Dω. Sometimes we write ∇ωf := Dωf to underline the gradient aspect. Similar to distributional
derivatives in Rd, we may define Dk

ωf through iterated application of Dω and

W k,p(Ω) :=
{
f ∈ Lp(Ω) | ∀j = 1, . . . , k : Dj

ωf ∈ Lp(Ω)d
j
}
.

In case Assumption 9.2 holds, we denote

C1
b (Ω) :=

{
f ∈ Cb(Ω) : ∇f ∈ Cb(Ω;Rd)

}
.

Lemma 9.6. For every f ∈ W 1,p(Ω) for almost every ω ∈ Ω it holds fω ∈ W 1,p
loc (Rd). In particular,

for every bounded domain Q ⊂ Rd it holds

∀ψ ∈ C1
c (Q) :

ˆ
Q

fω∂iψ = −
ˆ
Q

ψ (Dif)ω . (9.1)
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Proof. Let ψ ∈ C∞c (Rd) and let g ∈ Lq(Ω), 1
p

+ 1
q

= 1. Using Lebesgue’s dominated convergence
theorem it follows:
ˆ

Ω

g(ω)

ˆ
Rd
fω∂iψdLdP(ω) =

ˆ
Ω

g(ω)

ˆ
Rd
fω(x) lim

t→0

ψ(x+ tei)− ψ(x)

t
dxdP(ω)

= lim
t→0

ˆ
Ω

g(ω)

ˆ
Rd
fω(x)

ψ(x+ tei)− ψ(x)

t
dxdP(ω)

= lim
t→0

ˆ
Ω

g(ω)

ˆ
Rd
ψ(x+ tei)

fω(x)− fω(x+ tei)

t
dxdP(ω) .

Since τx preserves measure, we obtain

ˆ
Ω

ˆ
Rd
fω∂iψdLdP(ω) = lim

t→0

ˆ
Rd

ˆ
Ω

g(τ−xω)ψ(x+ tei)
f(ω)− Tif(ω)

t
dxdP(ω)

= lim
t→0

ˆ
Ω

f(ω)− Tif(ω)

t

ˆ
Rd
g(τ−xω)ψ(x+ tei)dxdP(ω)

= −
ˆ
Rd

ˆ
Ω

g(τ−xω)ψ(x)Dif(ω)dxdP(ω)

= −
ˆ

Ω

g(ω)

ˆ
Rd

(Dif)ω ψdLdP(ω) .

Using a countable dense subset (ψi)i∈N ⊂ Lq(Rd), ψi ∈ C∞c (Rd) and a suitable family of testfunc-
tions (gj)j∈N ⊂ Lq(Ω), we obtain that for almost every ω ∈ Ω equation (9.1) holds for every ψi.

Hence, by density, it holds for all ψ ∈ C1
c (Q).

Lemma 9.7. Let 1 ≤ p <∞ and let η ∈ C∞c (Rd). For every f ∈ Lp(Ω) let

(η ∗ f) (ω) :=

ˆ
Rd
η(x)f(τxω)dx .

Then for every k ∈ N it holds η ∗ f ∈ W k,p(Ω) with Di(η ∗ f) = (∂iη) ∗ f and almost every
realization of Iδf is an element of C∞(Rd). Furthermore, the estimates

‖η ∗ f‖pLp(Ω) ≤ ‖η‖L1(Rd) ‖f‖Lp(Ω) , ‖Di(η ∗ f)‖pLp(Ω) ≤ ‖∂iη‖L1(Rd) ‖f‖Lp(Ω) (9.2)

hold and we have Di (η ∗ f) = η ∗Dif .

Proof. Let k ∈ N and observe

‖η ∗ f‖pLp(Ω) =

ˆ
Ω

(2k)−d
ˆ

(−k,k)d
|(η ∗ f) (τyω)|p dy dP(ω)

≤
ˆ

Ω

(2k)−d
ˆ

(−k,k)d

ˆ
Rd
|η(x)f(τy+xω)|p dx dy dP(ω) .

Due to the convolution inequality we have

‖η ∗ f‖pLp(Ω) ≤ ‖η‖L1(Rd) (2k)−d
ˆ

Ω

‖fω‖pLp((−k−1,k+1)d)
dP(ω)

≤ ‖η‖L1(Rd)

(
k + 1

k

)−d ˆ
Ω

|f(ω)|p dP(ω)
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and since k is arbitrary, the we obtain ‖η ∗ f‖pLp(Ω) ≤ ‖η‖L1(Rd) ‖f‖Lp(Ω), the first part of (9.2).

In order to show Iδf ∈ W k,p(Ω) observe

1

t
(η ∗ f(τteiω)− η ∗ f(ω)) =

ˆ
Rd

1

t
(η(x+ tei)− η(x)) f(τxω) .

Taking the limit t → 0 in Lp(Ω) on both sides using Lebesgue’s dominated convergence theorem
implies

Di (η ∗ f) =

ˆ
Rd
∂iη(x)f(τxω) , (9.3)

and hence Di (Iδf) ∈ Lp(Ω) with Di(η ∗ f) = (∂iη) ∗ f and the second part of (9.2) follows.
Equation (9.3) also shows that

(η ∗ f) (τyω) =

ˆ
Rd
η(x)f (τx+yω) dx =

ˆ
Rd
η(x− y)f (τxω) dx

and hence almost every realization of η ∗ f has C∞-regularity. Furthermore, (9.3) implies

Di (Iδf) = lim
t→0

1

t
((η ∗ f) (τteiω)− (η ∗ f) (ω))

= η ∗ lim
t→0

1

t
(f(τteiω)− f(ω))

= η ∗Dif ,

where we used continuity of f 7→ η ∗f and strong convergence of 1
t

(f(τteiω)− f(ω))→ Dif .

Similar to Lp(Rd)- and Sobolev spaces on Rd, we can introduce a family of smoothing operators. Let
(ηδ)δ>0 be a standard sequence of mollifiers which are symmetric w.r.t. 0 and define

Iδ : Lp(Ω)→ Lp(Ω) , Iδf(ω) :=

ˆ
Rd
ηδ(x)f (τxω) dx . (9.4)

Lemma 9.8. For every δ > 0, 1 ≤ p < ∞, the operator Iδ is unitary and selfadjoint. For every
f ∈ Lp(Ω), k ∈ N it holds Iδf ∈ W k,p(Ω), Iδf → f strongly in Lp(Ω), and almost every
realization of Iδf is an element of C∞(Rd). Finally, for f ∈ W 1,p(Ω) it holds

lim
δ→0
‖Iδf − f‖W 1,p(Ω) = 0 (9.5)

and DiIδf = IδDif .

Proof. The selfadjointness follows from the definition of Iδ, symmetry of ηδ and invariance of P w.r.t.
τx. All other parts except for (9.5) follow from Lemma 9.7.

Finally, observe that the the convolution inequality and the strong continuity of T(x) yieldˆ
Ω

|Iδf − f |p =

ˆ
Ω

∣∣∣∣ˆ
Rd
ηδ(x) (f(τxω)− f(ω)) dx

∣∣∣∣p dP(ω)

≤
ˆ

Ω

‖ηδ‖pL1(Rd)

ˆ
[−δ,δ]d

|(f(τxω)− f(ω))|p dx dP(ω)

≤
ˆ

[−δ,δ]d

ˆ
Ω

|(f(τxω)− f(ω))|p dP(ω) dx

→ 0 .

Since DiIδf = IδDif , it also holds DiIδf → Dif strongly in Lp(Ω).
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9.2 Gradients and Solenoidals

We denote by Lploc(Rd;Rd) the set of measurable functions f : Rd → Rd such that f |U ∈
Lp(U;Rd) for every bounded domain U and we define

Lppot,loc(R
d) :=

{
u ∈ L2

loc(Rd;Rd) | ∀U bounded domain, ∃ϕ ∈ H1(U) : u = ∇ϕ
}
,

Lpsol,loc(R
d) :=

{
u ∈ L2

loc(Rd;Rd) |
ˆ
Rd
u · ∇ϕ = 0 ∀ϕ ∈ C1

c (Rd)

}
.

Remark 9.9. The space Lppot,loc(Rd) is invariant under convolution. This follows immediately from the
fact that if u = ∇ϕ locally, then ηδ ∗ u = ∇ (ηδ ∗ ϕ).

Recalling the notation for a realization uω(x) := u(τxω) for u ∈ Lp(Ω), we can then define corre-
sponding spaces on Ω through

Lppot(Ω) :=
{
u ∈ Lp(Ω;Rd) : uω ∈ Lppot,loc(R

d) for P− a.e. ω ∈ Ω
}
,

Lpsol(Ω) :=
{
u ∈ Lp(Ω;Rd) : uω ∈ Lpsol,loc(R

d) for P− a.e. ω ∈ Ω
}
, (9.6)

Vppot(Ω) :=

{
u ∈ Lppot(Ω) :

ˆ
Ω

u dP = 0

}
.

The spaces Lppot(Ω) and W 1,p(Ω) are connected as the following theorem shows.

Theorem 9.10. For 1 < p, q <∞ with 1
p

+ 1
q

= 1 the spaces Vppot(Ω) and Lpsol(Ω) are closed and
it holds (

Vppot(Ω)
)⊥

= Lqsol(Ω) , (Lpsol(Ω))⊥ = Vqpot(Ω) (9.7)

in the sense of duality. Furthermore, W 1,p(Ω) lies densely in Lp(Ω) and

Vppot(Ω) = closureLp
{

Du | u ∈ W 1,p(Ω)
}
. (9.8)

Proof. The density of W 1,p(Ω) in Lp(Ω) follows from Lemma 9.8. We furthermore observe that
Vppot(Ω) is invariant with respect to Iδ. In fact, let u ∈ Vppot(Ω) and consider ω ∈ Ω such that
uω ∈ Lppot,loc(Rd). Then

(Iδu)ω (x) =

ˆ
Rd
ηδ(y)u (τx+yω) dy

and hence (Iδu)ω ∈ L
p
pot,loc(Rd) due to Remark 9.9. Furthermore, the space Lpsol(Ω) is closed as

can be seen from the continuity of the expression

Lp(Ω;Rd)→ R , u 7→
ˆ

Ω

g(ω)

ˆ
(−1,1)d

u(τxω) · ∇ϕ(x) dx dP(ω) ,

where ϕ ∈ W 1,q(Rd) and g ∈ Lq(Ω) are arbitrary.

It remains to show (9.7), (9.8) and closedness of Vppot(Ω).

Step 1: We first show that Vppot(Ω) and Lqsol(Ω) are mutually orthogonal in the sense of duality. Let
υ ∈ Vppot(Ω) and p ∈ Lqsol(Ω) and chose ω ∈ Ω such that for υε(x) = υ(τx

ε
ω), pε(x) = p(τx

ε
ω)

and υε · pε the ergodic theorem ?? holds. Thus, we get υε · pε ⇀ E(v · p|I ) weakly in L1
loc(Rd). It

remains to show that υε · pε ⇀∗ 0. Since υ ∈ Lppot(Ω), we find for every ε > 0 some uε ∈ W 1,p(Q)
such that ∇uε = υε and

´
Q
uε = 0. By the ergodic theorem ∇uε = υε ⇀∗ E(υ|I ) = 0 and
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uε ⇀ u has average 0. Due to the PoincarÃ c© inequality and the compact embedding W 1,p(Q) ↪→
Lp(Q), we find uε → 0 strongly in Lp(Q). Therefore, for all ψ ∈ C∞c (Q), we find

ˆ
Q

ψvε · pε dx =

ˆ
Q

ψpε · ∇uε dx = −
ˆ
Q

uεpε · ∇ψ dx→ 0 for ε→ 0 .

Therefore, we obtain

Lqsol(Ω) ⊂
(
Vppot(Ω)

)⊥
and Vppot(Ω) ⊂ (Lqsol(Ω))⊥ . (9.9)

Step 2: We prove (9.7) and closedness of Vppot(Ω) in case p = 2. From Step 1 we know that

L2
sol(Ω) ⊂

(
V2

pot(Ω)
)⊥

and it remains to show that
(
V2

pot(Ω)
)⊥ ⊆ L2

sol(Ω). Let u ∈ L2(Ω;Rd)

and use the decomposition u = upot + ũ where upot ∈ V2
pot(Ω) and ũ ∈

(
V2

pot(Ω)
)⊥

. Since Iδ is
symmetric and V2

pot(Ω) is invariant with respect to Iδ, we observe that

∀v ∈ V2
pot(Ω) : 〈Iδũ, v〉 = 〈ũ, Iδv〉 = 0

and hence Iδũ ∈
(
V2

pot(Ω)
)⊥

. In particular, for every ε > 0 and every φ ∈ L2(Ω) it holds

0 = 〈Iδũ, DωIεφ〉 = −〈divωIδũ, Iεφ〉

and as ε→ 0 it holds
0 = −〈divωIδũ, φ〉 .

Since φ ∈ L2(Ω) was arbitrary, this implies
∑

i DiIδũ = 0 almost everywhere, i.e. Iδũ ∈ L2
sol(Ω).

Since Iδũ → ũ as δ → 0, the closedness of L2
sol(Ω) implies ũ ∈ L2

sol(Ω). Hence L2
sol(Ω) ⊃

V2
pot(Ω)⊥ and Step 1 implies L2

sol(Ω) = V2
pot(Ω)⊥ and closedness of V2

pot(Ω).

Step 3: For p ∈ [1, 2] we deduce from Step 2(
Vppot(Ω)

)⊥ ⊆ Lq(Ω;Rd) ∩
(
V2

pot(Ω)
)⊥

= Lq(Ω;Rd) ∩ L2
sol(Ω) ⊆ Lqsol(Ω) . (9.10)

Interchanging the role of Vpot and Lsol yields

(Lpsol(Ω))⊥ ⊆ Vqpot(Ω) . (9.11)

Inclusions (9.9), (9.10) and (9.11) imply (9.7).

Step 4: For 1 < p <∞ we denote

V :=
{

Dφ | φ ∈ W 1,p(Ω)
}
⊂ Lppot(Ω) .

Let u ∈ Lq(Ω;Rd) satisfy
∀φ ∈ W 1,p(Ω) : 〈u, Dωφ〉 = 0 .

According to Lemma 9.8, Di and Iδ commute for φ ∈ W 1,p(Ω). Furthermore, Iδφ ∈ W 1,p(Ω) and
hence

0 = 〈u, DωIδφ〉 = 〈u, IδDωφ〉 = −〈divωIδu, φ〉 .

Since φ ∈ W 1,p(Ω) was arbitrary andW 1,p(Ω) is dense inLp(Ω), it follows divωIδu = 0, which im-

plies u ∈ Lqsol(Ω) by closedness of Lqsol(Ω). To conclude, we have shown Lqsol(Ω) =
(
Vppot(Ω)

)⊥ ⊆
V ⊥ ⊆ Lqsol(Ω), and hence (9.8).
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9.3 Stampaccia’s Lemma

Lemma 9.11 (Stampaccia). Let G : R → R be Lipschitz continuous and let u ∈ W 1,p(Ω). Then
G ◦ u ∈ W 1,p(Ω).

Proof. Let u ∈ W 1,p(Ω). It holds

lim sup
h→0

∥∥∥∥TheiG(u)−G(u)

h

∥∥∥∥
Lp(Ω)

= lim sup
h→0

∥∥∥∥G (Theiu)−G(u)

h

∥∥∥∥
Lp(Ω)

≤ lim sup
h→0

∥∥∥∥G (Theiu)−G (u)

Theiu− u

∥∥∥∥
∞

∥∥∥∥Theiu− uh

∥∥∥∥
Lp(Ω)

≤ ‖G′‖∞ ‖Diu‖Lp(Ω) .

Hence, we find that there exists wi ∈ Lp(Ω) such that 1
h

(TheiG(u)−G(u)) ⇀ wi weakly along a
further subsequence. Testing this limit with a function ϕ ∈ W 1,q(Ω), we obtain that w = (wi)i=1...d

is the weak derivative of G(u) as

ˆ
Ω

wiϕdP = lim
h→0

ˆ
Ω

1

h
(TheiG(u)−G(u))ϕdP

= − lim
h→0

ˆ
Ω

1

h
(Theiϕ− ϕ)G(u)dP = −

ˆ
Ω

G(u)DiϕdP .

Remark 9.12. Lemma 9.11 is well known in Sobolev theory in Rd and is due to Stampaccia. It can be
found for example in the book by Evans [10]. Stampaccia [34] also showed for functions u ∈ W 1,p(Rd)
that ∇ (G ◦ u) = G′(u)∇u. However, to proof such a result in the case of general Ω goes beyond
the scope of this chapter.

Theorem 9.13. For every 1 ≤ p <∞ the embedding W 1,∞(Ω) ↪→ W 1,p(Ω) is dense. In particular,

Vppot(Ω) = closureLp
{

Du | u ∈ W 1,∞(Ω)
}
.

Proof. Let u ∈ W 1,p(Ω) and let k ∈ N. By Lemma 9.11 we obtain that the function uk :=
max {−k,min {k, u}} satisfies uk ∈ W 1,p(Ω) and ‖uk‖∞ ≤ k. Since uk → u as k → ∞, it
remains to show that uk can be approximated by functions in W 1,∞(Ω). To see this, note that for
uδk := Iδuk it holds

lim
t→0

1

t
(Iδuk(τteiω)−Iδuk(ω)) = lim

t→0

ˆ
Rd

1

t
(ηδ(x+ tei)− ηδ(x))uk(τxω)

=

ˆ
Rd
uk(τxω)∂iηδ(x) .

and since ηδ ∈ C∞c (Rd) we find uδk ∈ W 1,∞(Ω). Since uδk → uk in W 1,p(Ω) as δ → 0 by Lemma
9.8, the theorem is proved.

The last Theorem has an important implication for the existence of suitable countable and dense family
of functions.

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



Stochastic homogenization on perforated domains 91

Theorem 9.14. Let Assumption 9.1 hold. For every 1 ≤ p <∞ there exists a countable dense family
of functions (uk)k∈N ⊂ W 1,p(Ω) such that (uk)k∈N ⊂ W 1,∞(Ω) and (uk)k∈N is stable under addi-
tion and scalar multiplication with q ∈ Q. Furthermore, every uk has almost surely bounded and con-
tinuously differentiable realizations with ‖uk,ω‖W 1,∞(Rd) ≤ ‖uk‖W 1,∞(Ω). If additionally Assumption

9.2 holds, then (uk)k∈N can be chosen such that for every k it holds uk ∈ C1
b (Ω),∇ωuk ∈ Cb(Ω).

Proof. Let (vk)k∈N ⊂ W 1,p(Ω) be dense. Then for every k consider vk,n := max {−n,min {n, vk}}
and for m ∈ N define vk,n,m := I 1

m
vk,n = η 1

m
∗ vk,n. Then ‖Divk,n,m‖∞ ≤

∥∥∥∂iη 1
m

∥∥∥
∞
‖vk,n‖∞.

Moreover, for every ε > 0 and every φ ∈ W 1,p(Ω) there exists k with ‖vk − φ‖W 1,p(Ω) ≤
ε
3
, n with

‖vk − vk,n‖W 1,p(Ω) ≤
ε
3

and m with ‖vk,n − vk,n,m‖W 1,p(Ω) ≤
ε
3
. Based on the countable family

(vk,n,m)k,n,m∈N, we find that

(uk)k∈N :=

{
N∑

k,n,m=1

λk,n,mvk,n,m : λk,n,m ∈ Q, N ∈ N

}
satisfies all demanded properties.

If Assumption 9.2 holds we find (cl)l∈N ⊂ Cb(Ω) ∩ Lp(Ω) dense in Lp(Ω). For every vk like above
and every δ > 0 we observe by Lemma 9.7 that

‖ηδ ∗ (vk − cl)‖Lp(Ω) ≤ ‖vk − cl‖Lp(Ω) ,

‖Di(ηδ ∗ (vk − cl))‖Lp(Ω) ≤ ‖∂iηδ‖L1(Rd) ‖vk − cl‖Lp(Ω) .

Hence the family (cl,j)l,j∈N :=
(
η 1
j
∗ cl
)
l,j∈N

is countable and dense W 1,p(Ω). From here we can

proceed similarly with the modification that cl,j are already in W 1,∞(Ω). Based on the countable
family (cl,j)l,j∈N, we find that

(uk)k∈N :=

{
N∑

l,j=1

λl,jcl,j : λl,j ∈ Q, N ∈ N

}
satisfies all demanded properties.

The bound ‖uk,ω‖W 1,∞(Rd) ≤ ‖uk‖W 1,∞(Ω) and continuous differentiability of realizations are a direct
consequence of the construction of uk.

9.4 Traces and Extensions

For the remainder of this section, we make the following assumption.

Assumption 9.15. Under the Assumption 9.1 let P(ω) be a random open set with boundary Γ(ω) :=
∂P(ω) such that Γ(ω) is a random closed set. The corresponding prototypes P,Γ ⊂ Ω in the sense
of Theorem 2.33 have Palm measures χPP and µΓ,P respectively.

We then introduce the following function spaces.

Definition 9.16. Under the Assumption 9.15 we introduce for 1 ≤ p ≤ ∞ the space

W 1,p(P) :=
{
u ∈ Lp(P;P) : for a.e. ω holds uω ∈ W 1,p

loc (P(ω)) and

there exists Du ∈ Lp(P)d s.t. for a.e. ω : ∇uω = (Du)ω
}
,

‖u‖W 1,p(P) := ‖u‖Lp(P) + ‖Du‖Lp(P) .
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Based on Definition 9.16, we also introduce the following properties of P and Γ.

Definition 9.17. We say for the corresponding prototypes P,Γ ⊂ Ω in the sense of Theorem 2.33
that

1 P has the weak (r, p)-extension property for 1 ≤ r ≤ p if Assumption 9.1 holds and there
exists a continuous linear operator UΩ : W 1,p(P)→ W 1,r(Ω) such that (UΩu)|P = u. In this
context, we define

W 1,r,p(Ω,P) :=
{
u ∈ W 1,r(Ω) : u|P ∈ Lp(P), Dωu ∈ Lp(P;Rd)

}
,

Vppot(P) := closureLp
{

Du | u ∈ W 1,p(P)
}
,

Vr,ppot(P) :=
{

Du ∈ Vrpot(Ω) | Du ∈ Vppot(P)
}
.

2 P has the strong (r, p)-extension property for 1 ≤ r ≤ p if Assumption 9.1 holds and there
exists a continuous linear operator UΩ : W 1,p(P) → W 1,r(Ω) such that (UΩu)|P = u and
such that

‖DωUΩu‖Lr(Ω) ≤ C ‖Dωu‖Lp(Ω) .

3 Γ has the strong (r, p)-trace property for 1 ≤ r ≤ p if Assumption 9.2 holds and there exists
a continuous linear operator TΩ : W 1,1,p(Ω)→ Lr(Γ;µΓ,P) such that for every u ∈ Cb(Ω) it
holds TΩu = u|Γ in the sense of µΓ,P .

We already mention at this point a very important property which holds for P = Ω, but which we are
not able to reproduce for general P in this work. Hence we formulate it as a conjecture, and will avoid
to use it in the remainder of this work. Fortunately, it turns out to be non-essential up to uniqueness
properties of the homogenized problem in Section 10.6.

Conjecture 9.18. If P has the strong extension property it holds

Rd ∩ Vppot(P) = ∅ .

Theorem 9.19. Let Assumptions 9.2 and 1.3 hold for the random open set P(ω) with 1 ≤ r < p and
let τ be ergodic. Then Γ has the strong (r, p)-trace property.

In order to prove Theorem 9.19 we first need the following lemma.

Lemma 9.20. Let Assumption 9.1 hold and let 1 ≤ r < p, then there exists a family (uk)k∈N ⊂
W 1,∞(Ω) which is dense in W 1,r,p(Ω,P). If Assumption 9.2 holds then we can additionally assume
(uk)k∈N ⊂ W 1,∞(Ω) ∩ C1

b (Ω). In both cases (uk)k∈N is stable under addition and scalar multipli-
cation with q ∈ Q. Furthermore, every uk has almost surely bounded and continuously differentiable
realizations with ‖uk,ω‖W 1,∞(Rd) ≤ ‖uk‖W 1,∞(Ω)

Proof. By Theorem 9.14 there exists (uk)k∈N ⊂ W 1,∞(Ω) which is at the same time dense in
W 1,r(Ω) and W 1,p(Ω). The statement now follows from W 1,r(Ω) ⊃ W 1,r,p(Ω,P) ⊃ W 1,p(Ω). If
Assumption 9.2 holds Theorem 9.14 yields (uk)k∈N ⊂ W 1,∞(Ω) ∩ C1

b (Ω).

Proof of Theorem 9.19. Let (uk)k∈N ⊂ W 1,∞(Ω) ∩ C1
b (Ω) be dense in W 1,1,p(Ω,P) according to

Theorem 9.14. For each u ∈ (uk)k∈N the function u|Γ is well defined. Writing Qn := [−n, n]d and
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using Theorem 5.9 as well as the Ergodic Theorems we find

ˆ
Γ

|u|r dµΓ,P =
1

(2n)d

ˆ
Qn

ˆ
Γ

|u|r dµΓ,P =
1

|Qn|
E
ˆ
Qn∩∂P(ω)

|T uω|r

≤ E

Cω( 1

|Qn|

ˆ
Qn+1∩P(ω)

|uω|p + |∇uω|p
) r

p


≤ E

(
C

p
p−r
ω

) p−r
p

E

(
1

|Qn|

ˆ
Qn+1∩P(ω)

|uω|p + |∇uω|p
) r

p

→ E
(
C

p
p−r
ω

) p−r
p

(ˆ
Ω

|u|p + |∇ωu|p dP
) r

p

as n→∞. Using the definition of Cω in Theorem 5.9 we conclude.

A generalization of Theorem 9.19 to the general case of Assumption 9.1 is difficult, since the trace
property does not apply for general L∞-functions, even in Rd. However, for the sake of homogeniza-
tion, there exists a workaround.

Definition 9.21. We say for the corresponding prototypes P,Γ ⊂ Ω in the sense of Theorem 2.33
that Γ has the weak (r, p)-trace property for 1 ≤ r ≤ p if Assumption 9.1 holds and for every family
of functions (uk)k∈N ⊂ W 1,∞(Ω) according to Lemma 9.20 which is dense in W 1,1,p(Ω,P) there
exists a continuous linear operator TΩ : W 1,1,p(Ω,P) → Lr(Γ;µΓ,P) such that for almost every
ω ∈ Ω and every uk it holds (TΩuk)ω = T uk,ω on Γ(ω).

Theorem 9.22. Let Assumption 9.1 hold, let τ be ergodic and let Γ(ω) be almost surely locally (δ,M)-
regular satisfying Assumption 1.3. Then Γ has the weak (r, p)-trace property.

Proof. We define TΩuk pointwise in ω through (TΩuk)ω = T uk,ω and observe that TΩ is bounded by
the argument in the proof of Theorem 9.19. It thus remains to show that TΩuk is measurable, because
then, we can simply extend TΩ to W 1,1,p(Ω,P).

We use Lemma 2.29 and obtain that Γδ(ω) := Bδ(Γ(ω)) is a RACS with prototype Γδ due to Theo-
rem 2.33. We observe that Γ =

⋂
δ Γδ as well as (by definition) TΩuk = infδ χΓδuk, hence TΩuk is

measurable.

We will now turn our focus to the extension properties. We start with an important implication by the
strong extension property.

Theorem 9.23. Let Assumption 9.1 hold, let τ be ergodic and let P have the strong (r, p)-extension
property. Then the operatorUΩ can be extended to a continuous operatorUΩ : Vppot(P)→ Vr,ppot(Ω,P).
More precisely we can identify Vppot(P) with

Ṽppot(P) = closureLr,p(Ω,P)

{
UΩDωu : u ∈ W 1,p(Ω)

}
,

= closureLr,p(Ω,P)

{
UΩDωu : u ∈ W 1,r,p(Ω;P)

}
,

‖ξ‖Lr,p(Ω,P) = ‖ξ‖Lr(Ω) + ‖ξ‖Lp(P) .

This means that for φ ∈ Vppot(P) and φ̃ ∈ Ṽppot(P) it holds φ̃|P = φ iff φ̃ = UΩφ.
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Proof. The first part follows immediately from the definition of the spaces and of the strong extension
property.

For the second part, remark that UΩW
1,p(P) ⊂ W 1,r,p(Ω,P) and (UΩφ)|P = φ. Furthermore,

W 1,p(Ω) is dense in W 1,r,p(Ω,P) by Lemma 9.20. Finally, UΩUΩφ = UΩφ and for φ ∈ Vppot(P)

and φ̃ ∈ Ṽppot(P) it holds φ̃|P = φ iff φ̃ = UΩφ.

Theorem 9.24. Let Assumption 9.1 hold, let τ be ergodic and let Γ(ω) be almost surely locally (δ,M)-
regular satisfying Assumption 1.5 for 1 < r < p0 < p1 < p. Then Γ has the weak (r, p)-extension
property.

Theorem 9.25. Let Assumption 9.1 hold, let τ be ergodic and let Γ(ω) be almost surely locally (δ,M)-
regular satisfying Assumption 1.8 for 1 < r < p0 < p1 < p. Then Γ has the strong (r, p)-extension
property.

We will prove Theorems 9.24 and 9.25 in Section 10.5 using homogenization theory.

9.5 The Outer Normal Field of P

Theorem 9.26. Let Assumptions 9.2 and 9.15 hold and let Γ have the strong (r, p)-trace property for
1 < r < p. Let τ be ergodic, let Γ(ω) be almost surely locally (δ,M)-regular and let νΓ(ω) be the
outer normal of P(ω) on Γ(ω). Then there exists a measurable function νΓ : Γ → Sd−1 such that
almost surely νΓ(ω)(x) = νΓ(τxω). Furthermore, for f ∈ C1

b (Ω;Rd) and φ ∈ C1
b (Ω) it holds

ˆ
P

divω(fφ) dP =

ˆ
Γ

φf · νΓ dµΓ,P . (9.12)

If Γ satisfies the weak (1, p)-extension property, the equation (9.12) extends to φ ∈ W 1,1,p(Ω,P)
and f ∈ C1

b (Ω;Rd) or to f ∈ W 1,1,p(Ω,P)d and φ ∈ C1
b (Ω).

Proof. For δ > 0 define χδ(ω) := (ηδ ∗ χP) (ω). We observe that

|Dωχδ| (τxω) = |Dω(ηδ ∗ χP)| (τxω) = |ηδ ∗ (DωχP)(τ·ω)| (x) =
∣∣ηδ ∗ ∇χP(ω)

∣∣ (x) , (9.13)

and hence for almost every ω we have |Dωχδ| →
∣∣∇χP(ω)

∣∣ = Hd−1(Γ(ω) ∩ · ) weakly. Then for
ϕ ∈ C∞c (Rd) and f ∈ Cb(Ω) it holds by the Palm formula and (9.13)

ˆ
Rd
ϕ

ˆ
Ω

f |Dωχδ| =
ˆ

Ω

ˆ
Rd
f(τxω)ϕ(x) |Dωχδ| (τxω) dx dP(ω)

=

ˆ
Ω

ˆ
Rd
f(τxω)ϕ(x)

∣∣ηδ ∗ ∇χP(ω)

∣∣ (x) dx dP(ω)

≤
ˆ

Ω

ˆ
Rd
f(τxω)ϕ(x)

(∣∣∇χP(ω)

∣∣ (Bδ(suppϕ))
)

dx dP(ω) ,

where
∣∣∇χP(ω)

∣∣ = Hd−1( · ∩Γ(ω)) = µΓ(ω). From the ergodic theorem, theP-almost sure pointwise
weak convergence and the Lebesgue dominated convergence theorem, we conclude

ˆ
Rd
ϕ

ˆ
Ω

f |Dωχδ| →
ˆ

Ω

ˆ
Rd
f(τxω)ϕ(x) dµΓ(ω)(x) dP(ω)

=

ˆ
Rd
ϕ

ˆ
Ω

fdµΓ,P ,
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which implies
´

Ω
f |Dωχδ| →

´
Ω
fdµΓ,P . In a similar way, we show

´
Ω
fDωχδ →

´
Ω
fdµ̃Γ,P ,

where µ̃Γ,P is a Rd-valued measure on Γ. Furthermore, for every ei in the canonical basis of Rd,
ei · µ̃Γ,P � µΓ,P , which implies by the Radon-Nikodym theorem the existence of a measurable νΓ

with values in Sd−1 such that µ̃Γ,P = νΓµΓ,P . The property νΓ(ω)(x) = νΓ(τxω) follows from the fact
that µ̃Γ,P is the Palm measure of∇χP(ω).

For f ∈ C1
b (Ω;Rd) and φ ∈ C1

b (Ω,P) and ϕ ∈ C∞c (Rd) it holds

ˆ
Rd
ϕ

ˆ
P

divω(fφ) =

ˆ
Ω

ˆ
Rd
ϕ(x) div(fφ)ω

=

ˆ
Ω

ˆ
Γ(ω)

ϕ(x)φωfω · νΓ(ω)

=

ˆ
Rd

ˆ
Γ

ϕ(x)φf · νΓdµΓ,P ,

which implies (9.12) by a density argument.

Definition 9.27. Let Γ have the strong (r, p)-Trace property for 1 < r < p and the weak (1, p)-
extension property. We say that f ∈ Lp(P;Rd) has the weak normal trace fν ∈ Lr(Γ) and weak
divergence divωf ∈ L1(P) if for all φ ∈ C1

b (Ω)

ˆ
P

(φdivωf + f · ∇ωφ) dP =

ˆ
Γ

φfν dµΓ,P .

Theorem 9.28. Let Assumptions 9.2 and 9.15 hold and for some r ∈ (1, 2) let Γ have the strong
(r, 2)-Trace property and the weak (r, 2)-extension property and let Γε(ω) have the strong uniform
trace property (see Definition 10.10 below). Let τ be ergodic, let Γ(ω) be almost surely locally (δ,M)-
regular and let νΓ(ω) be the outer normal of P(ω) on Γ(ω). Then there exists uΩ ∈ W 1,r(Ω) ∩
W 1,2(P;Rd), such that∇ωuΩ has a weak normal trace fν ∈ L1(Γ) and weak divergence uΩ, i.e.

∀φ ∈ C1
b (ω) :

ˆ
P

(φuΩ +∇uΩ · ∇ωφ) dP =

ˆ
Γ

φfν dµΓ,P .

The last theorem is less trivial than one might think. In particular, we lack a PoincarÃ c©-type inequality
on Ω, which is typically used to prove corresponding results in Rd. We shift the proof to Section 10.5.

10 Two-Scale Convergence and Application

As we have already explained in the introduction, there have been several approaches to the introduc-
tion of two-scale convergence in stochastic homogenization. In this work, we chose a modification of
[15] because it does not rely on compactness of the underlying probability space.

10.1 General Setting

For the rest of this work, we consider a stationary random measure ω → µω with Palm measure µP
and we define

µεω(A) := εdµω
(
ε−1A

)
. (10.1)
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For the corresponding Lebesgue spaces we write Lp(Ω;µP) or Lp(Q;µεω), where Q ⊂ Rd is a
convex domain with C1-boundary. If µω = L, i.e. µP = P, or µω = χP(ω)L we omit the notion of µεω
and µP .

In our applications, dµω = χP(ω)dL for the characteristic function of the prototype P ⊂ Ω of the
random set P(ω) with Palm measure χPP or dµω = dµΓ(ω) := χΓ(ω)dHd−1, with Palm measure
located on Γ ⊂ Ω, the prototype of Γ(ω) := ∂P(ω). If we explicitly study the latter case, we write
µΓ,P for the Palm measure.

Moreover, in view of (10.1), we write µεΓ(ω)(A) := εdµΓ(ω)(ε
−1A) = εHd−1(A ∩ εΓ(ω)). In case of

µω = χP(ω)L, we drop the notation µεω.

Assumption 10.1. Let (Ω, σ,P) be a probability space with ergodic dynamical system (τx)∈Rd in the
sense of Definition 2.15. Let 1 < q, p <∞ with 1

p
+ 1

q
= 1 and

ΦP,q ⊂ Lq(Ω;µP)

be a countable dense subset, which is stable under scalar multiplication and linear combination. Fi-
nally, let ΩΦ be such that (2.31) holds for all ϕ ∈ C(Q), ω ∈ ΩΦ, f ∈ ΦP,q.

Remark. In some proofs below we will assume w.l.o.g. that some particular, essentially bounded
functions are elements of ΦP,q. These will always be countably many and hence ΩΦ has to be changed
only by a set of measure 0.

Definition 10.2. Let Assumption 10.1 hold. Let ω ∈ ΩΦ and let uε ∈ Lp(Q;µεω) for all ε > 0.

We say that (uε) converges (weakly) in two scales to u ∈ Lp(Q;Lp(Ω;µP)) and write uε
2s
⇀ u

if supε>0 ‖uε‖Lp(Q;µεω) < ∞ and if for every ψ ∈ ΦP,q, ϕ ∈ C(Q) there holds with φω,ε(x) :=
ϕ(x)ψ(τx

ε
ω)

lim
ε→0

ˆ
Q

uε(x)φω,ε(x)dµεω(x) =

ˆ
Q

ˆ
Ω

u(x, ω̃)ϕ(x)ψ(ω̃) dµP(ω̃) dx .

We note that the definition of two-scale convergence in [15] is formulated more generally, in particular
for a more general class of test-functions.

Lemma 10.3 ([15] Lemma 4.4-1.). Let Assumption 10.1 hold. Let ω ∈ Ω and uε ∈ Lp(Q;µεω) be a
sequence of functions such that ‖uε‖Lp(Q) ≤ C for some C > 0 independent of ε. Then there exists

a subsequence of (uε
′
)ε′→0 and u ∈ Lp(Q;Lp(Ω;µP)) such that uε

′ 2s
⇀ u and

‖u‖Lp(Q;Lp(Ω;µP )) ≤ lim inf
ε′→0

∥∥∥uε′∥∥∥
Lp(Q;µεω)

. (10.2)

Sketch of proof. The proof is standard and has been carried out in various publications under various
assumptions [2, 14, 15, 18, 39]. The important point is the separability of C(Q), which allows to pass
to the limit for a countable number of test functions (ϕk)k∈N ∈ C(Q) first, and then apply a density
argument.

Furthermore, we will need the following result on the lower estimate in homogenization of convex
functionals using two-scale convergence, which was obtained in [17].

Lemma 10.4. Let Assumption 10.1 hold and let µω be a random measure. Let f : Q×Ω×RN → R
be a convex functional in Rd. For almost all ω ∈ ΩΦp the following holds: Let uε ∈ Lq(Q;µεω)

be a sequence such that ‖uε‖Lq(Q;µεω) ≤ C for some 0 < C < ∞ and such that uε
2s
⇀ u ∈

Lq(Q× Ω;L ⊗ µP). Then, it holdsˆ
Q

ˆ
Ω

f(x, ω̃, u(x, ω̃)) dµP(ω̃) dx ≤ lim inf
ε→0

ˆ
Q

f(x, τx
ε
ω, uε(x)) dµεω(x) .
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10.2 The “Right” Choice of Oscillating Test Functions

In what follows, we will have to deal with two-scale limits of functions on Rd, but also on P(ω) or
Γ(ω). Hence we deal with two-scale convergence w.r.t. to P, χPP and µΓ,P . In order to keep notation
of the set(s) of testfunctions short and concise, we make the following choice:

Φq = ΦP,q = (uk)k∈N

is the set countable set of functions (uk)k∈N ⊂ W 1,p(Ω) ∩ W 1,∞(Ω) from Theorem 9.14. Hence
(uk)k∈N is dense in Lp(Ω) and (∇uk)k∈N is dense in Vppot(Ω) (see Theorem 9.10).

If Γ has the strong or weak (r, p)-trace property, using Theorem 9.19 and 9.22 we define

Φr,Γ = TΩΦp ∪ Φ̃r,Γ ,

where Φ̃r,Γ is dense in Lr(Γ, µΓ,P). In case of Assumption 9.2, we note that TΩΦp is dense in
Lr(Γ, µΓ,P) because Cb(ω) is dense in Lr(Γ, µΓ,P). However, in case of Assumption 9.1 it is not
clear that TΩΦp is dense in Lr(Γ, µΓ,P), which is why Φ̃r,Γ is needed.

10.3 Homogenization of Gradients

In what follows, we introduce two-scale convergence of gradients. This result has been proven in
various work under various assumptions, see e.g. [2] for the periodic case and [39, 29, 15] in the
stochastic case. We provide the proof here for self-containedness of this outline.

Theorem 10.5. Under Assumption 10.1 for almost every ω ∈ Ω the following holds:

If uε ∈ W 1,p(Q;Rd) for all ε and if there exists 0 < Cu <∞ with

sup
ε>0
‖uε‖Lp(Q) + εγ ‖∇uε‖Lp(Q) < Cu

Then there exists u ∈ Lp(QLp(Ω;P)) such that uε
2s
⇀ u. Depending on the choice of γ, the following

holds:

1 If γ = 0, then u ∈ W 1,p(Q) with uε ⇀ u weakly in W 1,p(Q) and there exists υ1 ∈
Lp(Q;Vppot(Ω)) such that∇uε 2s

⇀ ∇xu+ υ1weakly in two scales.

2 If γ ∈ (0, 1) then εγ∇uε 2s
⇀ υ1 for some υ1 ∈ Lp(Q;Vppot(Ω)).

3 If γ = 1 then u ∈ Lp(Q;W 1,p(Ω)) and ε∇uε 2s
⇀ Dωu.

4 If γ > 1 then εγ∇uε 2s
⇀ 0.

Lemma 10.6. Under Assumption 10.1 for almost all ω ∈ Ω the following holds: Let p > 1 and (uε)ε>0

be a sequence of functions satisfying

sup
ε>0
‖uε‖Lp(Q) < +∞ , lim

ε→0
ε ‖∇uε‖Lp(Q) = 0 . (10.3)

If uε
2s
⇀ u along a subsequence, then u ∈ Lp(Q) is independent of Ω.
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Proof. We obtain that uε
2s
⇀ u ∈ Lp(Q;Lp(Ω)) along a subsequence. We show that u does not

depend on the Ω-coordinate using ergodicity. We recall that τ• are all measure preserving for P.
Hence, for any ϕ ∈ C∞c (Q) and ψ ∈ Φq, we find for any a ∈ Qd it holds

ˆ
Q

ˆ
Ω

(u(x, τaω)− u(x, ω))ϕ(x)ψ(ω) dP(ω) dx

=

ˆ
Q

ˆ
Ω

u(x, ω)ϕ(x) (ψ(τ−aω)− ψ(ω)) dP(ω) dx

= lim
ε→0

ˆ
Q

uε(x)ϕ(x)
(
ψ(τ−εa+x

ε
ω)− ψ(τx

ε
ω)
)
dx

= lim
ε→0

ˆ
Q

(uε(x+ εa)ϕ(x+ εa)− uε(x)ϕ(x))ψ(τx
ε
ω) dx

= lim
ε→0

ˆ
Q

uε(x+ εa) (ϕ(x+ εa)− ϕ(x))ψ(τx
ε
ω) dx

+ lim
ε→0

ˆ
Q

(uε(x+ εa)− uε(x))ϕ(x)ψ(τx
ε
ω) dx .

The first integral on the right hand side can be easily estimated through

‖uε‖Lp(Q)

∥∥∥ψ(τ ·
ε
ω)
∥∥∥
Lq(Q)

ε|a| ‖∇ϕ‖∞ → 0 as ε→ 0 .

The second integral can be estimated through

‖ϕ‖∞
ˆ
Q

∣∣∣∣ˆ ε

0

∇uε(x+ ta) · a dt

∣∣∣∣ ∣∣ψ(τx
ε
ω)
∣∣ dx ≤ ‖ϕ‖∞ ε ‖∇uε‖Lp(Q) |a|

∥∥∥ψ(τ ·
ε
ω)
∥∥∥
Lq(Q)

.

Due to (10.3) the right hand side of the above inequality converges to 0. Since ϕ and ψ were arbitrary,
we obtain u(x, τaω) = u(x, ω) for every a ∈ Rd. Hence u is invariant under all translations τa, which
implies for almost every x ∈ Q that u(x, ·) = const by ergodicity of τ•.

Based on Lemma 10.6 we can now prove Theorem 10.5.

Proof of Theorem 10.5. We note that uε
2s
⇀ u ∈ Lp(Q;Lp(Ω)) and∇uε 2s

⇀ υ ∈ Lp(Q;Lp(Ω;Rd))
along a subsequence.

Proof of 1: We consider a countable set Φsol ⊂ Lqsol(Ω) which is dense in Lqsol(Ω). Then, by definition
of Lpsol(Ω) we find for all b ∈ Φsol and all ϕ ∈ C∞c (Q)

ˆ
Q

(ϕ∇uε + uε∇ϕ) · b(τ •
ε
ω) dL =

ˆ
Q

∇ (uεϕ) · b(τ •
ε
ω) dL = 0 .

We take the limit ε→ 0 on the left hand side and obtainˆ
Q

(ϕ(x)v(x, ω̃) + u∇ϕ(x)) · b(ω̃) dP(ω̃) dx = 0 .

After integration by parts, this implies
ˆ
Q

ϕ(x) (∇u(x)− v(x, ω̃)) · b(ω̃) dP(ω̃) dx = 0 .
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As ϕ ∈ C∞c (Q) and b ∈ Φsol were arbitrary and since Φsol ⊂ Lqsol(Ω) is dense, the last equation
and Lemma 9.10 imply that∇u(x)− υ(x, ·) ∈ Vppot(Ω) for almost every x ∈ Q.

Proof of 2: We apply Part 1 to ũε := εγuε. Evidently, ũε
2s
⇀ 0 and hence there exists υ1 ∈

Lp(Q;Vppot(Ω)) such that εγ∇uε = ∇ũε 2s
⇀ υ1.

Proof of 3: Let ψ ∈ Lqsol(Ω) and ϕ ∈ C1
0(Q). Then we have

ˆ
Q

ε∇uε · ϕψ
(
τ •
ε
ω
)

dL = −
ˆ
Q

uεψ
(
τ •
ε
ω
)
· ε∇xϕdL .

As ε→∞ we obtain ˆ
Q

ˆ
Ω

υ(x, ω̃) · ϕ(x)ψ(ω̃) dP(ω̃) dx = 0

and since this holds for everyψ ∈ Lqsol(Ω) andϕ ∈ C1
0(Q), we obtain thatυ(x, ω) ∈ Lp(Q;Vppot(Ω)).

Furthermore, for a countable dense family ψ ∈ W 1,p(Ω) and ϕ ∈ C1
0(Q) we obtain

ˆ
Q

ε∂iu
ε(x)ϕ(x)ψ

(
τx
ε
ω
)

dx = −
ˆ
Q

uε(x)ψ
(
τx
ε
ω
)
·ε∂iϕ(x)dx−

ˆ
Q

uε(x)Diψ
(
τx
ε
ω
)
ϕ(x) dx

and in the limitˆ
Q

ˆ
Y
υi(x, y) · ϕ(x)ψ(ω) dP(ω) dx = −

ˆ
Q

ˆ
Y
u(x, y)Diψ (ω)ϕ(x) dP(ω) dx .

This implies υi = Diu.

Proof of 4: Part 3 implies that ũε := εγ−1 satisfies ũε
2s
⇀ 0 and εγ∇uε = ε∇ũε 2s

⇀ Dω0 = 0.

Important in the context of convergence of gradients is also the following recovery lemma, obtained in
[19, Section 2.3] for the L2-case.

Lemma 10.7. Let Assumption 10.1 hold. Let υ ∈ Vppot(Ω), 1 < p < ∞ and let Q be a bounded
convex domain. For almost every ω there exists C > 0 such that the following holds: For every ε > 0
there exists a unique V ω

ε ∈ W 1,p(Q) with ∇V ω
ε (x) = υ(τx

ε
ω),

´
Q
V ω
ε = 0 and ‖Vε‖W 1,p(Q) ≤

C‖υ‖Lppot(Ω) for all ε > 0. Furthermore,

lim
ε→0
‖V ω

ε ‖Lp(Q) = 0 .

Sketch of Proof, see [19]. By definition of Lppot(Ω) there exists for almost every ω ∈ Ω a function
V ω
ε ∈ W 1,p(Q) with∇V ω

ε (x) = υ(τx
ε
ω),

´
Q
V ω
ε = 0. By a standard contradiction argument, there

exists a constant C > 0 such that

∀V ∈ W 1,p(Q) : ‖V ‖Lp(Q) ≤ C

(
‖∇V ‖Lp(Q) +

∣∣∣∣ˆ
Q

V

∣∣∣∣) .

The last inequality implies that V ω
ε ⇀ V weakly in W 1,p(Q) and V ω

ε → V strongly in Lp(Q).
Furthermore, the Ergodic Theorem 2.26 yields for every f ∈ C(Q)

ˆ
Q

f · ∇V ω
ε =

ˆ
Q

f · υ(τx
ε
ω)→

ˆ
Q

f ·
ˆ
υ dP =

ˆ
Q

f · 0 = 0 .

Hence∇V = 0 and since
´
Q
V = 0 it follows V = 0.
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10.4 Uniform Extension- and Trace-Properties

For the rest of this section, we make the following assumptions. Under the Assumptions 9.1 and
10.1 and using the notations introduced in Section 10.1 we introduce Pε(ω) := εP(ω), Qε

1(ω) :=
Q ∩Pε(ω) and Γε(Ω) := Q ∩ εΓ(ω).

Following (10.1) we recall the definition

µεΓ(ω)(A) := εnHd−1

(
A

ε
∩ Γ(ω)

)
= εHd−1(A ∩ Γε(ω))

Definition 10.8 (Uniform Dirichlet extension property). Let Q be a bounded open convex domain with
Lipschitz boundary. We say for 1 ≤ r ≤ p that Pε(ω) has the uniform (r, p)-Dirichlet extension
property on Q if for almost every ω there exists Cω > 0 and a linear extension operator

U : W 1,p
loc (P(ω))→ W 1,p

loc (Rd)

such that
Uε[u](x) := U [u(ε·)]

(x
ε

)
satisfies the following: For every u ∈ W 1,p

0,∂Q(Qε
1(ω))

‖∇Uεu‖Lr(Q) ≤ Cω ‖∇u‖Lp(Qε
1(ω)) , ‖Uεu‖Lr(Q) ≤ Cω ‖u‖Lp(Qε

1(ω))

and
‖Uεu‖W 1,r(Rd\Q) → 0 . (10.4)

Theorem 7.11 shows that virtually every random geometry to which the theory of Sections 5–7 applies
has the (r, p)- extension property on bounded convex C1-domains Q. In particular, we obtain the
following reformulation of Theorem 1.9.

Theorem 10.9. For 1 ≤ r < s̃ < s < p ≤ ∞ let P(ω) be almost surely (δ,M)-regular (Def. 4.2)
and isotropic cone mixing for r > 0 and f(R) (Def. 4.17) as well as locally connected and satisfy
P(S > S0) ≤ fs(S0) such that Assumption 1.8 holds. Then for almost every ω the set Pε has the
uniform (r, p)-Dirichlet extension property on Q.

Proof. This is almost the statement of Theorem 1.9 except for (10.4). However, for u ∈ W 1,p
0,∂Q(P(ω)∩

nQ) and mn := |AX(nQ)| we obtain note that estimates (1.3)–(1.4) can be extended to

1

mn

ˆ
AX(nQ)

|Uu|r ≤ C(ω)

(
1

mn

ˆ
P(ω)∩AX(nQ)

|u|p
) r

p

= C(ω)

(
|nQ|
mn

1

|nQ|

ˆ
P(ω)∩(nQ)

|u|p
) r

p

,

1

mn

ˆ
AX(nQ)

|Uu|r ≤ C(ω)

(
1

mn

ˆ
P(ω)∩AX(nQ)

|∇u|p
) r

p

= C(ω)

(
|nQ|
mn

1

|nQ|

ˆ
P(ω)∩(nQ)

|∇u|p
) r

p

,

and the statement follows from Theorem 7.11 and Corollary 7.10.

There exists a weaker notion of extension property, which is for some applications sufficient.

Definition 10.10 (Uniform weak extension property). Let Q be a bounded open convex domain with
Lipschitz boundary. We say for 1 ≤ r ≤ p that Pε(ω) has the uniform weak (r, p)-extension property
on Q if for almost every ω there exists Cω > 0 and a linear extension operator

U : W 1,p
loc (P(ω))→ W 1,p

loc (Rd)
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such that

Uε[u](x) := U [u(ε·)]
(x
ε

)
satisfies the following: For every u ∈ W 1,p

0,∂Q(Qε
1(ω))

ε ‖∇Uεu‖Lr(Q) + ‖Uεu‖Lr(Q) ≤ Cω

(
ε ‖∇u‖Lp(Bε(Q)∩Pε(ω)) + ‖u‖Lp(Bε(Q)∩Pε(ω))

)
.

Theorem 10.11. For 1 ≤ r < p0 < p1 < p < ∞ let P(ω) be almost surely (δ,M)-regular
(Def. 4.2) such that Assumption 1.5 holds. Then for almost every ω the set Pε has the weak uniform
(r, p)-extension property on Q.

Proof. After rescaling, this is the statement of Theorem 1.6.

Similarly to the extension property, we may introduce a uniform trace property.

Definition 10.12 (Uniform trace property). Let Q be a bounded open convex domain with Lipschitz
boundary. We say for 1 ≤ r ≤ p that Γε(ω) has the uniform (r, p)-trace property on Q if for almost
every ω there exists Cω > 0 such that the trace operators

Tε : W 1,p(Bε(Q) ∩Pε(ω))→ Lr(Q ∩ Γε)

satisfy the estimate

‖Tεu‖Lr(Γε∩Q) ≤ Cω

(
‖u‖Lp(Bε(Q)∩Pε(ω)) + ε ‖∇u‖Lp(Bε(Q)∩Pε(ω))

)
.

Theorem 10.13. Let P(ω) be a stationary ergodic random open set which is almost surely (δ,M)-
regular (Def. 4.2) such that Assumption 1.3 holds. For 1 ≤ r < p0 < p < ∞ and Q ⊂ Rd a
bounded domain with Lipschitz boundary. Then for almost every ω the set Pε has the uniform (r, p)-
trace property on Q.

Proof. After rescaling, this is the statement of Theorem 1.4.

10.5 Homogenization on Domains with Holes

In what follows, we will naturally deal with two-scale limits of functions defined solely on Qε
1. Hence

we introduce the following definition.

Definition 10.14. Let 1 < p ≤ ∞ and uε ∈ Lp(Qε
1(ω)) for all ε > 0. We say that (uε) converges

(weakly) in two scales to u ∈ Lp(Q;Lp(P)) and write uε
2s
⇀ u if supε>0 ‖uε‖L2(Qε

1(ω)) < ∞ and if

for every ψ ∈ Φq and ϕ ∈ C(Q) there holds with φω,ε(x) := ϕ(x)ψ(τx
ε
ω)

lim
ε→0

ˆ
Qε

1

uεφω,ε =

ˆ
Q

ˆ
Ω

χPuϕψ dP dL .

The latter definition coincides with Definition 10.2 for dµω = χP(ω)dL, which can be verified using
the ergodic theorem. Hence, we find the following lemma:
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Lemma 10.15. Let 1 < p ≤ ∞ and uε ∈ Lp(Qε
1(ω)) be a sequence such that supε>0 ‖uε‖Lp(Qε

1(ω)) <

∞. Then there exists u ∈ Lp(Q;Lp(P)) and a subsequence ε′ → 0 such that uε
′ 2s
⇀ u.

Furthermore, if uε ∈ Lp(Q) is a sequence such that supε>0 ‖uε‖Lp(Q) < ∞ and uε
′ 2s
⇀ u along a

subsequence ε′ → 0 for some u ∈ Lp(Q;Lp(Ω)), then uε
′
χQε′

1 (ω)

2s
⇀ χPu.

Proof. This follows immediately from Lemma 10.3 extending uε by 0 to Q and on noting that ψ ∈ Φq

implies w.l.o.g. χPψ ∈ Φq.

Lemma 10.16. Let P(ω) be a random open domain such that Pε(ω) has the weak uniform (r, p)-
extension property on Q for 1 < r < p < ∞. Then for almost every ω ∈ Ω the following holds: If
uε ∈ W 1,p(Bε(Q) ∩Pε(ω);Rd) for all ε with

sup
ε

(
‖uε‖Lp(Bε (Q)∩Pε(ω)) + ε‖∇uε‖Lp(Bε (Q)∩Pε(ω))

)
< C

for C independent from ε > 0 then there exists a subsequence denoted by uε
′

and a function u ∈
Lp(Q;W 1,r(Ω)) ∩ Lp(Q×P) such that

Uε′uε
′ 2s
⇀ u and ε∇Uε′uε

′ 2s
⇀ ∇ωu (10.5)

as well as
uε
′ 2s
⇀ u and ε∇uε′ 2s

⇀ χP∇ωu (10.6)

as ε→ 0.

Proof. We find

sup
ε

(
‖Uεuε‖Lr(Q∩Pε(ω)) + ε‖∇Uεuε‖Lr(Q∩Pε(ω))

)
≤ C sup

ε

(
‖uε‖Lp(Bε (Q)∩Pε(ω)) + ε‖∇uε‖Lp(Bε (Q)∩Pε(ω))

)
(10.7)

Theorem 10.5 and Definition 10.10 imply now for some limit function u ∈ Lr(Q;W 1,r(Ω)) that (10.5)
and (10.6) hold.

We are now able to provide the:

Proof of Theorem 9.24. Theorem 10.11 shows that Pε(ω) satisfies the uniform weak extension
property. Hence, if (uk)k∈N is a countable dense subset of W 1,p(Ω), we find a set of full measure

Ω̃ ⊂ Ω such that for every k ∈ N and every ω ∈ Ω̃ the realizations uk,ω are well defined elements of
W 1,p

loc (P(ω)), the extension operator defined in (5.14) is uniformly bounded and hence Uε defined in
Definition 10.10 is uniformly bounded, too. We can thus use the two-scale convergence method as a
tool.

Given such ω, we define uε(x) := uk
(
τx
ε
ω
)

and by Lemma 10.16 we find ũ ∈ Lp(Q;W 1,r(Ω)) ∩
Lp(Q×P) such that Uεuε → ũk and ε∇Uεuε → ∇ωũk. Furthermore, we find

‖ũk‖Lr(Q×Ω) + ‖∇ωũk‖Lr(Q×Ω) ≤ lim inf
ε→0

(
‖Uεuε‖Lr(Q) + ε ‖∇Uεuε‖Lr(Q)

)
≤ C lim inf

ε→0

(
‖uε‖Lp(Bε(Q)∩Pε(ω)) + ε ‖∇uε‖Lp(Bε(Q)∩Pε(ω))

)
= C

(
‖uk‖Lp(Q×Ω) + ‖∇ωuk‖Lp(Q×Ω)

)
.

Since the operator uk → ũk is linear and bounded, it can be extended to the whole of W 1,p(P).
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Proof of Theorem 9.28. For every ε > 0 there exists a unique uε that solves

−ε2∇uε + uε = 0 on Bε(Q) ∩Pε(Ω) ,

−ε∇uε · νΓε(ω) = 1 on Γε(ω) ∩Q ,

uε = 0 on ∂Q .

Deriving apriori estimates in the usual way, for some C > 0 independent from ε it holds

ε ‖∇uε‖L2(Bε(Q)∩Pε(Ω)) + ‖uε‖L2(Bε(Q)∩Pε(Ω)) ≤ C

and thus according to Lemma 10.16 we find u ∈ Lp(Q;W 1,r(Ω)) ∩ Lp(Q×P) such that

Uε′uε
′ 2s
⇀ u and ε∇Uε′uε

′ 2s
⇀ ∇ωu

along a subsequence uε
′

which we again denote uε in the following, for simplicity. But then for φ ∈
C1
b (Ω) and ψ ∈ C1

c (Q) it follows

ε

ˆ
Q∩Γε(ω)

φ(τx
ε
ω)ψ(x) dHd−1(x) = −ε2

ˆ
Q∩Γε(ω)

φ(τx
ε
ω)ψ(x)∇uε(x) · νΓ(ω)(τx

ε
ω) dHd−1(x)

=

ˆ
Qε

1(ω)

ε∇uε ·
(
∇ωφ(τx

ε
ω)ψ(x) + εφ(τx

ε
ω)∇ψ(x)

)
dx

+

ˆ
Qε

1(ω)

uεφ(τx
ε
ω)ψ(x) dx

→
ˆ
Q

ˆ
P

(∇ωu · ∇ωφψ + uφψ) .

Since the left hand side of the above calculation converges to
´
Q

´
Γ
φψ dµΓ,P and ψ was arbitrary,

we conclude.

Proof of Theorem 9.25. Let Q = B2(0) and let φ ∈ C∞c (Q) with φ|B1(0) = 1, φ ≥ 0. According to
Theorem 10.9, Pε has the uniform (r, p)-Dirichlet extension property. The theorem now follows from
part 2 of the following Lemma.

Lemma 10.17. Let P(ω) be a random open domain such that Pε(ω) has the uniform (r, p)-Dirichlet
extension property on Q for 1 < r < p <∞. Then for almost every ω ∈ Ω the following holds:

1 If uε ∈ W 1,p
0,∂Q(Q ∩ Pε(ω);Rd) for all ε with supε ‖uε‖Lp(Qε

1(ω)) + ‖∇uε‖Lp(Qε
1(ω)) < C

for C independent from ε > 0 then there exists a subsequence denoted by uε
′

and functions
u ∈ W 1,r

0 (Q;Rd) ∩ Lp(Q) and υ ∈ Lr(Q;Vrpot(Ω)) such that

uε
′ 2s
⇀ χPu and ∇uε′ 2s

⇀ χP∇u+ χPυ as ε→ 0 , (10.8)

Uε′uε
′ 2s
⇀ u and ∇Uε′uε

′ 2s
⇀ ∇u+ υ as ε→ 0 . (10.9)

Furthermore, Uε′uε
′
⇀ u weakly in W 1,r(Q)) ∩ Lp(Q).

2 P has the strong (r, p)-extension property withUΩφ = ts−limε→0Uεφ(τx
ε
ω) for φ ∈ W 1,p(P).
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3 If p ≥ 2 and the Assumptions of Theorem 9.28 are satisfied and Γε(ω) additionally has the
uniform (s, p)-trace property for some s > 1 then

Tε′uε
′ 2s
⇀ u in Ls(Γε ∩Q;µεΓ(ω)) .

If, even further, Γε(ω) has the uniform (s, r)-trace property with r from Part 1, then

lim
ε→0

∥∥∥Tε′uε′ − Tε′u∥∥∥
Ls(Γε′∩Q;µε

′
Γ(ω)

)
→ 0 . (10.10)

Proof. In what follows, convergences always hold along subsequently chosen subsequences of uε,
which we always relabel by uε.

Proof of 1: Let 1
r

+ 1
q

= 1. Then Theorem 10.5 and the assumption that (w.l.o.g.) χPΦq ⊂ Φq yields

that for some u ∈ W 1,r(Q;Rd) and v ∈ Lr(Q;Lrpot(Ω))

Uεuε
2s
⇀ u and ∇Uεuε

2s
⇀ ∇u+ v as ε→ 0 .

Due to (10.4) we find u ∈ W 1,r
0 (Q;Rd). This yields (10.8).

Proof of 2: For u ∈ W 1,p(P) with uε(x) := u
(
τx
ε
ω
)

we find for almost every ω that Uε from Definition
10.8 satisfies

ε ‖∇Uε(φuε)‖Lr(Q) ≤ C
(
ε ‖uε∇φ‖Lp(Q∩Pε(ω)) + ε ‖φ∇uε‖Lp(Q∩Pε(ω))

)
(10.11)

‖Uε(φuε)‖Lr(Q) ≤ C ‖uεφ‖Lp(Q∩Pε(ω))

As ε → 0, Lemma 10.16 yields uεφ
2s
⇀ ũ, ∇Uε(φuε)

2s
⇀ Dωũ, where ũ ∈ Lp(Q;W 1,r,p(Ω,P)).

Moreover, inequality (10.11) implies in the limit that

‖Dωũ‖Lr,ppot(Ω,P) ≤ C ‖Dωu‖Lppot(P) .

Hence we can set UΩDωu :=
´
Q

Dωũ. By density, this operator extends to Vppot(P).

Proof of 3: Now let p ≥ 2 and let the Assumptions of Theorem 9.28 be satisfied and let Γε(ω)
additionally have the uniform (s, p)-trace property for some s > 1. If uΩ is the function from Theorem
9.28 we observe for uεΩ(x) := uΩ

(
τx
ε
ω
)

for every ψ ∈ C∞c (Q) and φ ∈ C1
b (Ω) with φε(x) :=

φ
(
τx
ε
ω
)

that

ˆ
Q∩Γε(ω)

uεψφε dµεΓ(ω) = ε

ˆ
Q∩Γε(ω)

uεψφεε∇ωu
ε
Ω · νΓε(ω) dHd−1

=

ˆ
Q∩Pε(ω)

(uεψφεuεΩ + ε∇uεΩ · (uεφεε∇ψ + ψφεε∇uε + ψuεε∇φε))

→
ˆ
Q

ˆ
P

(uψφuΩ + ψu∇ωuΩ · ∇ωφ)

=

ˆ
Q

ˆ
Γ

uψ dµΓ,P .

Since ψ and φ were arbitrary and∇ω(uψ) = 0 we conclude

lim
ε→0

ˆ
Q∩Γε(ω)

uεψφε dµεΓ(ω) =

ˆ
Q

ˆ
Γ

uφψ .
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In order to show (10.10) note that

‖Tεuε − Tεuδ‖Ls(Γε∩Q;µε
Γ(ω)

) ≤ ‖u
ε − u‖Lr(Bε(Q)∩Pε(ω)) + ε ‖∇ (uε − u)‖Lr(Bε(Q)∩Pε(ω)) .

Since the first term on the right hand side converges to zero and ‖∇ (uε − u)‖Lr(Bε(Q)∩Pε(ω)) is
bounded, the claim follows.

10.6 Homogenization of p-Laplace Equations

Assumption 10.18. For the rest of this work, let Assumptions 1.3, 1.8 and 9.2 hold for some 1 <
r < p and p ≥ 2. This implies that P and Γ satisfy the strong (r, p)-extension and the strong (r, p)-
trace property, as well as the weak uniform (r, p)-extension and the uniform (r, p)-Dirichlet extension
property with the uniform (r, p)-trace property. In particular, we can apply all of the above developed
theory.

In what follows, we will consider the homogenization of the following functionals:

Eε,ω(u) =

ˆ
Qε(ω)

(
1

p
|∇u|p +

1

p
|u|p − g u

)
+

ˆ
Γε(ω)

F (u(x))dµεΓ(ω)(x) ,

where F is a convex function with ∂F = f , F (·) ≥ F0 > −∞ for some constant F0 ∈ R and we
assume that |∂F (A)| is bounded on bounded subsets A ⊂ R. Note that compared to (1.1) we add
the term |u|p in order to reduce technical difficulties. However, we will discuss how to treat the case of
missing |u|p in Remark 10.22. Minimizers of Eε,ω satisfy the partial differential equation system

−div
(
a |∇uε|p−2∇uε

)
+ |u|p−1 = g on Qε

P̃
(ω) ,

u = 0 on ∂Q , (10.12)

|∇uε|p−2∇uε · νΓε(ω) = f(uε) on Γε(ω) .

and we will see that homogenization of the latter system is equivalent with a two-scale Γ-convergence
of Eε,ω. In particular, we find the following

Theorem 10.19. Let Assumption 10.18 hold. Then, for almost every ω ∈ Ω and

E(u, υ) :=

ˆ
Q

ˆ
P

1

p
(|∇u+ υ|p + |u|p)−

ˆ
Q

ˆ
P

g u+

ˆ
Q

ˆ
Γ

F (u)dµΓ,P

we find Eε,ω
2sΓ−−→ E in the following sense

1 For uε ⇀ u weakly in Lp(Q), uε ∈ W 1,p
0,∂Q(Qε(ω)) with supε Eε,ω(uε) < ∞, there holds

u ∈ W 1,r
0 (Q) and there exists υ ∈ Lr(Q;Vrpot(Ω,P)) such that∇uε 2s

⇀ χP · (∇u+ υ) and

E(u, υ) ≤ lim inf
ε→0

Eε,ω(uε) .

2 For each pair (u, υ) ∈ W 1,r
0 (Q) × Lr(Q;Vrpot(Ω)) with E(u, υ) < +∞ there exists a

sequence uε ∈ W 1,p
0,∂Q(Qε(ω)) such that uε ⇀ |P|u weakly in Lp(Q), Uεuε ⇀ u weakly in

W 1,r(Q) and∇uε 2s
⇀ χP · (∇u+ υ) weakly in two scales and

E(u, υ) = lim
ε→0
Eε,ω(uε) .
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Proof. 1. Evidently, ˆ
Qε(ω)

(
1

p
|∇uε|p +

1

p
|uε|p

)
≤ CEε,ω(uε)

for C independent from ε. Hence the statement follows from Lemmas 10.17 and 10.4 on particularly

noting that uε
2s
⇀ u in Ls(Γε(ω);µεΓ(ω)).

2. Step a: Let (uk)k∈N ⊂ C1
b (Ω) be the countable dense family in W 1,p(Ω) according to Theorem

9.14. Furthermore, let (φj)j∈N ⊂ C∞c (Q) be dense in W 1,p
0 (Q). Then the span of the functions

φj∇ωuk is dense in Lr(Q;Vrpot(Ω)). Writing S = spanφj∇ωuk we show statement 2. for (u, υ) ∈
(φj)j∈N × S. However, for such (u, υ) we find V ∈ spanφjuk such that υ = ∇ωV and V ε(x) :=
V (x, τx

ε
ω) is well defined and measurable for every ω. For simplicity of notation, we assume V =

φjuk

In particular, we have for uε = u + εV ε that uε
2s
⇀ u and ∇uε = ∇u + ε∇φj uk

(
τx
ε
ω
)

+

φj∇ωuk
(
τx
ε
ω
)

and hence uε ⇀ u weakly in W 1,p(Q) and∇uε 2s
⇀ ∇u+φj∇ωuk. Using essential

boundedness of∇φj uk
(
τx
ε
ω
)
, the ergodic theorem now yields

lim
ε→0

ˆ
Qε(ω)

|∇uε|p = lim
ε→0

ˆ
Q

χP

(
τx
ε
ω
) ∣∣∇u+ φj∇ωuk

(
τx
ε
ω
)∣∣p

=

ˆ
Q

ˆ
P

|∇u+ υ|p .

Similarly, we show
´
Qε(ω)

|uε|p →
´
Q

´
P
|u|p and

´
Qε(ω)

guε →
´
Q

´
P
gu.

Step b: By Lemma 10.17 we find Tεuε
2s
⇀ u. Unfortunately, this is not enough to pass to the limit in

the integral
´

Γε(ω)
F (u(x))dµεΓ(ω)(x). However, we can make use of

F (u) + ∂F (u)εV ε ≤ F (u+ εV ε) ≤ F (u) + ∂F (u+ εV ε)εV ε .

Since supε ‖V ε‖∞ + ‖u‖∞ <∞ we find

‖∂F (u)‖∞ + sup
ε
‖∂F (u+ εV ε)‖∞ ≤ C <∞

and hence
F (u)− εC ≤ F (u+ εV ε) ≤ F (u) + εC .

This implies by the ergodic theorem
ˆ

Γε(ω)

F (u+ εV ε)dµεΓ(ω)(x)→
ˆ
Q

ˆ
Γ

F (u)dµΓ,P ,

and hence 2. for (u, υ) ∈ (φj)j∈N × S.

Step c: We pick up an idea of [9], Proposition 6.2. For general (u, υ) ∈ W 1,r
0 (Q)× Lr(Q;Vrpot(Ω))

with E(u, υ) < +∞ let (un, υn) ∈ (φj)j∈N × S with

‖(u, υ)− (un, υn)‖W 1,r
0 (Q)×Lr(Q;Vrpot(Ω)) ≤

1

n
(10.13)

and

|E(u, υ)− E(un, υn)| ≤ 1

n
. (10.14)
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We achieve this in the following way: First we introduce MF := supF−1(−∞,M) and cut uM :=
min {u,MF}. Furthermore, we set υM(x, ω) = χ(−∞,MF )(u(x)) υ(x, ω), i.e. uM = MF implies
υ = 0. Then uM and υM are still in the same respective spaces. Furthermore, as M → ∞ we find
E(uM , υM) → E(u, υ) by the Lebesgue dominated convergence theorem. Now, by the properties
of F , we can approach (uM , υM) by elements (uM,δ, υM,δ) ∈ (φj)j∈N × S. By the Lebesgue
dominated convergence theorem we get convergence in the |·|p-terms and using the convexity of F
and local boundedness of ∂F like in Step b we show that E(uM,δ, υM,δ)→ E(uM , υM). Successively
choosing M and δ, we find (un, υn) ∈ (φj)j∈N × S satisfying 10.13–10.14..

We set ε0(ω) = 1 and for each (un, υn) ∈ (φj)j∈N × S we find by Steps a and b for almost every ω

some εn(ω) ≤ 1
2
εn−1(ω) such that for ε < εn(ω) and uεn,ω = un(x) + εVn(x, τx

ε
ω) it holds

∣∣Eε,ω(uεn,ω)− E(un, υn)
∣∣ ≤ 1

n
.

The set Ω̃ ⊂ Ω such that all εn(ω) are well defined has measure 1. For such ω we choose uε = uεn,ω
if ε ∈ (εn+1, εn). Then

|Eε,ω(uε)− E(u, υ)| ≤ 2

n
for ε < εn .

which implies the claim.

Theorem 10.20. Let Assumption 10.18 hold. Then for almost every ω the following holds: For every
ε > 0 let uεmin ∈ W

1,p
0,∂Q(Qε(ω)) be the unique minimizer of Eε,ω. Then

sup
ε>0
‖uεmin‖W 1,p

0,∂Q(Qε(ω)) + Eε,ω(uεmin) ≤ ∞

and for every subsequence such that Uεuεmin ⇀ u weakly in Lp(Q) and weakly in W 1,r(Q) with

υ ∈ Lr(Q;Vrpot(Ω,P)) such that∇uεmin
2s
⇀ ∇u+ υ. It further holds u ∈ W 1,r

0 (Q) and (u, υ) is a

global minimizer of E in W 1,r
0 (Q)× Vrpot(Ω).

Remark 10.21. Unfortunately, we are not able to prove uniqueness of homogenized solution due to
a lack of coercivity in the respective case. However, note that in case Conjecture 9.18 holds, one can
immediately prove that both ∇u ∈ Lp(Q) and υ ∈ Lp(Q;Vr,ppot(Ω,P)), which allows to show the
uniqueness of the minimizer by a standard coercivity argument.

Proof. In what follows, we denote

Wr := W 1,r
0 (Q), Vr := Vrpot(Ω) ,

and note that every of the following countable steps works for almost every ω.

Step 1: Let (u, υ) ∈ W∞×Vp ⊂ Wr×Vr. Then E(u, υ) < +∞ and hence by standard arguments
E has a at least one local minimizer (uR, υR) on every closed ball of sufficiently large radius R in
Wr × Vr

BWr×Vr
R (0) :=

{
(u, υ) ∈ Wr × Vr : ‖u‖Wr

+ ‖υ‖Vr ≤ R
}
.

By Theorem 10.19.2 there exists a recovery sequence uε ∈ W 1,p
0,∂Q(Qε(ω)) such that uε ⇀ |P|uR

weakly in Lp(Q), Uεuε ⇀ uR weakly in W 1,r(Q) and ∇uε 2s
⇀ χP · (∇uR + υR) weakly in two

scales and
E(uR, υR) = lim

ε→0
Eε,ω(uε) .
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Step 2: We conclude for the minimizers

lim inf
ε→0

‖uεmin‖W 1,p
0,∂Q(Qε(ω)) ≤ lim inf

ε→0
Eε,ω(uεmin) ≤ lim inf

ε→0
Eε,ω(uε) ≤ E(uR, υR) ,

which at the same time implies by Theorem 10.19.1 that Uεuε ⇀ u weakly in Lp(Q) and W 1,r(Q)

and there exists υ ∈ Lr(Q;Vrpot(Ω,P)) such that∇uε 2s
⇀ χP · (∇u+ υ) and

‖u‖Wr
+ ‖υ‖Vr ≤ C E(uR, υR) ,

E(u, υ) ≤ E(uR, υR) ,

with C independent from (uR, υR). Since also ‖uε‖W 1,p
0,∂Q(Qε(ω)) ≤ E(uR, υR), we conclude

‖uR‖Wr
+ ‖υR‖Vr ≤ C E(uR, υR) ,

Step 3: Similarly, if (uR∗ , υR∗) is a further minimizer on any ball BWr×Vr
R∗ (0) with E(uR∗ , υR∗) ≤

E(uR, υR) we can conclude

‖uR∗‖Wr
+ ‖υR∗‖Vr ≤ C E(uR, υR)

from the argument of Step 2 and a suitable recovery sequence.

Step 4: Hence, repeating Step 1 among the local minimizers, there exists a global minimizer (ū, ῡ) ∈
BWr×Vr
C E(uR,υR)(0).

Step 5: Repeating the argument of Step 2 we hence find that every sequence of minimizers of Eε,ω
satisfies the claim.

Remark 10.22. If the term |u|p in the above arguments is dropped, we first need to embed Uεuε
uniformly into W 1,s(Q). From here, we need s large enough such that Pε still has the uniform (r, s)-
trace property. This will not affect the basic structure of the proofs, however it makes the presentation
more complicated and less readable.

Nomenclature

We use the following notations:

x ∼ y, x and y are neighbors, see Definition 2.43

A1,k, A2,k, A3,k, see Equation (5.1)

A (0,P, ρ) := {(x̃,−xd + 2φ(x̃)) : (x̃, xd) ∈ Bρ(0)\P} (Lemma 2.2)

AX(y, x), the Admissible paths from y ∈ Y \ {x} to x ∈ Xr, see Definition 4.24

Br(x) the Ball around x with radius r (Section 2)

Cν,α,R(x) the Cone with apix x, direction ν, opening angle α and hight R (Section 2)

convA the convex hull of A (Section 2)

Convex averaging sequence, see Definition 2.17

(δ,M)-regularity, see Definition 4.2

δ̃, see Equation (5.2)
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E(f |I ) the Expectation of f wrt. the invariant sets, (2.22)

EµP (f |I ), the Expectation of f wrt. µP and the invariant sets, (2.29)

Ergodic Theorem, see Theorems 2.19, 2.24

Ergodicity, see Definition 2.20

η-regular (local), see Definition 2.11

η(x), see Equation (4.21)

FV , FK , (F(Rd),TF ), see Equations (2.32), (2.33)

G(x) the Voronoi cell with center x (Definition 2.8)

G(P,X), G(P), the Graph constructed from P, see Definition 4.27

I = [0, 1)d the torus (Section 2)

I the Invariant sets, (2.21)

Isotropic cone mixing, see Definition 4.17

Length(Y ), the Length of an admissible path Y , see (4.28)

M(p, δ), see Lemma (2.2)

M[η], M[η],A (A a set), see Equation (4.6), a quantity on ∂P

M̃η(x), see Equation (4.9), a quantity on Rd

M̃ , see Equation (5.3)

Mk, Mr,k, see k ∈ N, r > 0 (5.4)

m[η](p, ξ), see Lemma 4.8

mk := m(pk, ρ̃k/4), see Section 5.1

M(Rd), the Measures on Rd (Section 2.7)

Matern process, see Example 2.37–2.38

Mesoscopic regularity, see Definition 4.19

Mixing, see Definition 2.20

Pr,P−r Inner and outer hull of P with hight r (Section 2)

Poisson process, see Example 2.36

Q1, Q3, see (5.19)

ρ(p) = supr<δ(p) r
√

4Mr(p)
2 + 2

−1

(4.2)

ρ̂(p) = inf

{
δ ≤ δ(p) : supr<δ r

√
4Mr(p)

2 + 2
−1

= ρ

}
(4.3)

R0(x, y), see Equation (4.35)

Rd
1, Rd

3, see (5.18)

Random closed sets, see Definition 2.31

T = [0, 1)d the torus (Section 2)

τx, Dynamical system (Definitions 2.15, 2.47) with respect to x ∈ Rd or x ∈ Zd

DOI 10.20347/WIAS.PREPRINT.2742 Berlin 2020



M. Heida 110

U for local and global extension operators (Lemma 2.2)

X, Y Families of points (Section 2)

Xr(ω) = Xr(P(ω)) = 2rZd ∩P−r(ω), (2.36)

∂X, X̂, see Notation 4.26

Yflat, see Notation 4.33

Y∂X, see Notation 4.26

Y̊, ∂Y, Y, see Notation 4.26
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