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Mesh generation for periodic 3D microstructure models and
computation of effective properties
Manuel Landstorfer, Benedikt Prifling, Volker Schmidt

Abstract

Understanding and optimizing effective properties of porous functional materials, such as per-
meability or conductivity, is one of the main goals of materials science research with numerous
applications. For this purpose, understanding the underlying 3D microstructure is crucial since it is
well known that the materials’ morphology has an significant impact on their effective properties.
Because tomographic imaging is expensive in time and costs, stochastic microstructure modeling
is a valuable tool for virtual materials testing, where a large number of realistic 3D microstructures
can be generated and used as geometry input for spatially-resolved numerical simulations. Since
the vast majority of numerical simulations is based on solving differential equations, it is essential
to have fast and robust methods for generating high-quality volume meshes for the geometrically
complex microstructure domains. The present paper introduces a novel method for generating
volume-meshes with periodic boundary conditions based on an analytical representation of the
3D microstructure using spherical harmonics. Due to its generality, the present method is applica-
ble to many scientific areas. In particular, we present some numerical examples with applications
to battery research by making use of an already existing stochastic 3D microstructure model that
has been calibrated to eight differently compacted cathodes.

1 Introduction

Porous media can be found in many natural as well as artificial physical, biological and chemical
systems. From the composition of soils [1, 2], through which liquids seep into the ground water, to
the mechanical stiffness of cements [3, 4], from battery electrodes [5, 6, 7], in which lithium ions are
stored, to sponge-based filtration materials [8]: the porous microstructure of the respective system
has a crucial impact on the overall behavior [9]. For example, the morphology of electrodes in lithium-
ion batteries significantly influences the electrochemical properties [10, 11, 12, 13], which is the main
reason why tailored structuring and manufacturing of anodes and cathodes is one promising approach
to improve the performance of the cell [14, 15, 16]. Thus, it is a major issue in many research areas
to design the microstructure in such a way that the overall performance, e.g. permeability, electrical
conductivity, mechanical stiffness, energy density and further quantities, is optimized.

1.1 Mathematical background

From a mathematical point of view, the impact of the 3D morphology of porous media on their macro-
scopic behavior, e.g., the flow rate of water through soil or the flux of lithium ions through a battery
electrode, can be studied with homogenization techniques. A prominent and mathematically sound
tool is periodic homogenization theory [17], which assumes that the porous medium, given as a cer-
tain domain Ω, is a periodic repetition of some representative volume element ω, see Fig. 1. This
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M. Landstorfer, B. Prifling, V. Schmidt 2

method allows to derive a set of equations for which the porous microstructure is not spatially re-
solved anymore. This significantly reduces the numerical complexity of the problem. The method is
based on an asymptotic expansion of the balance equation in terms of ε, which is the ratio between a
macro-scale length L and the cell-scale length `, i.e., ε = `

L
. In the asymptotic limit, where ε→ 0, a

set of homogenized balance equations is then obtained, together with some porous media parameters.

Consider the decomposition Ω = ΩE ∪ ΩS, where the set ΩE is simply connected and corresponds
exemplarily to an electrolyte phase, and ΩS is multiply connected, denoting exemplarily a solid phase.
The interface between ΩE and ΩS is denoted by ΣE,S. As already mentioned above, Ω is a periodic
repetition of the unit cell ω = ωE ∪ ωS , and the common interface σE,S = ωE ∩ ωS .

For a scalar balance equation with surface reactions, we have
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Figure 1: Sketch of a periodic porous medium in which a balance equation has to be solved (left).
Homogenized porous medium subject to the homogenized balance equation (right).

PDE1 :
{
∂u
∂t

= divx (ju) for all x ∈ ΩE ,

ju · n = ε · r
s
u on ΣE,S ,

where periodic homogenization [18, 17, 19] leads to

ψE
∂u

∂t
= divx (ψEπE · ju) + aE,Sr

s
u for all x ∈ Ω (1)

and the porous media parameters are given by

1 the porosity (or phase fraction) of ΩE,

ψE = 1
vol(ω)

∫

ωE

1dV ,
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2 the interfacial area of ΣE,S,

aE,S = 1
vol(ω)

∫

σE,S

1dA ,

3 and the (flux) corrector,

πE =


1− 1

vol(ωE)

∫

ωE

∇



χ1

E
χ2

E
χ3

E


 dV


 . (2)

The corrector is determined from the solution (χkE), k = 1, 2, 3 of the cell problem

CP1 :





divy∇yχ
k
E = 0 for all y ∈ ωE,

∇χkE · n = nk on σE,S,

χkE periodic .

If ju is a diffusion or heat flux, e.g., ju = Du · ∇u, the corrector πE yields the effective diffusion
coefficient (or conductivity) Deff

E = πE ·Du. The corrector πE is thus also related to the tortuosity of
the porous medium.

For the Stokes problem, we have

PDE2 :





∇p− ε2µdiv∇v = f for all x ∈ ΩE,

div v = 0 for all x ∈ ΩE,

v = 0 on ΣE,S,

where periodic homogenization leads to the Darcy flow

v = 1
µ
κE(f −∇p) for all x ∈ ΩHom

E ,

div v = 0 for all x ∈ ΩE,

v · n
∣∣
∂ΩHom

E
= 0 .

The corrector κE is frequently called a permeability tensor, where

(κE)j,k = 1
vol(ωE)

∫

ωE

∇wj · ∇wk dV,

and determined from the cell problem [20]

CP2 :





∇yqk − divy∇ywk = ek for all y ∈ ωE,

div wk = 0,
wk = 0 on σE,S,

qk,wk periodic, k = 1, 2, 3.
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M. Landstorfer, B. Prifling, V. Schmidt 4

1.2 Basic idea of mesh generation

For every PDE problem, e.g., PDE1 or PDE2 described above, periodic homogenization leads to a dif-
ferent cell problem, i.e., CP1 or CP2, which has to be solved in order to determine the effective porous
media parameters. However, all of these cell problems do have in common that some stationary PDE
system has to be solved on the periodic representative volume element ω. Since this is analytically
possible only for a very tiny amount of geometries, the cell problems have in general to be solved
numerically. And, in order to so, adequate discretizations of ω are required. In this paper, we propose
a robust mesh generation for periodic representative volume elements of realistic microstructures, see
Fig. 2.

(a) Colors encode the number of intersections with
the periodicity box: 0 (blue), 1 (magenta), 2 (green),
3 (red).

(b) Intersection free surface mesh, with periodic rep-
etitions of the particle segments intersecting the pe-
riodicity box.

Figure 2: Cutout of a porous battery electrode, consisting of several active particles, and the periodicity
box.

The method is based on a description of the microstructure in terms of spherical harmonics, a sub-
sequent surface mesh generation of ∂ωE and ∂ωS, and finally a volume mesh generation based on
TetGen [21]. The proposed method can be applied to a broad spectrum of scenarios arising in different
fields of research since numerous scientific problems involve solving a system of differential equations
on periodic porous media. Another advantage of the presented approach is that periodic boundary
conditions can be easily applied in x-, y- and z-direction as well as to an arbitrary subset of directions.
This can be used for example in battery research, where the size of electrodes is typically several
orders of magnitudes larger in in-plane direction compared to the thickness of the electrode such that
it is reasonable to consider periodic boundary conditions in two directions.

1.3 Outline

The rest of this paper is organized as follows. In Section 2, we describe the generation of periodic
3D microstructures based on spherical harmonics and a stochastic microstructure model. Then, in
Section 3, the generation of a quality volume mesh on the basis of the representation of the particle
system via spherical harmonics is explained. In Section 4, some numerical examples are presented.
Finally, in Section 5, the paper is concluded by a summary of the main results and an outlook to
possible future research is given.
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2 Generation of periodic porous 3D microstructures

To generate a periodic representative volume element ω, we use the stochastic microstructure model-
ing approach described in [22], which basically consists of three steps. First, a non-overlapping sphere
packing is generated, where the volume fraction of the solid phase ψS = 1−ψE as well as the particle
size distribution R can be preset. More precisely, the radii of spheres are drawn from the predefined
particle size distribution R until the target volume fraction is achieved. Initially, the midpoints of the
spheres are chosen uniformly on the sampling window W ⊂ R3, which typically leads to a system
of overlapping spheres. In order to obtain a non-overlapping sphere packing, a rearrangement algo-
rithm is used, which will be described in detail in Section 2.1. Each sphere acts as a placeholder
and models the location as well as the size of a non-spherical particle, which will finally replace the
underlying sphere. The second step is the construction of a connectivity graph G = (V,E), where
V is the (random) set of sphere midpoints obtained in the first step. If there is an edge e = (v1, v2)
between two vertices v1, v2 ∈ V , then the corresponding particles are forced to touch each other.
Finally, in the third step, each sphere is replaced by a non-spherical particle generated via spherical
harmonics, which fulfils the requirements of the connectivity graph. The representation of particles
based on spherical harmonics will be discussed in detail in Section 2.2. Further information regarding
the application of spherical harmonics to stochastic microstructure modeling can be found, e.g., in
[23, 24].

2.1 Force-biased sphere packing algorithm

As already mentioned above, a rearrangement algorithm will be used in order to completely remove
the overlap between the spheres. For this purpose, the algorithm considered in [25] is used, which is
based on the force-biased algorithm for equally sized spheres [26]. For convenience, the basic idea of
this force-biased algorithm will be explained shortly at this point. Given a set of radii r1, ..., rN > 0 and
the initial midpoints x(0)

1 , ...,x(0)
N , we additionally consider an inner radius rin and an outer radius rout,

which are changing during the execution of the iterative algorithm. The inner radius at time t is defined

by r(t)
in = min

{
‖x(t)
i −x(t)

j ‖
ri+rj : i, j = 1, ..., N, i 6= j

}
, where ‖x‖ denotes the Euclidean norm

of x. The collective rearrangement algorithm will terminate if r(t)
in ≥ 1, which implies that the sphere

system is non-overlapping. The outer radius r(t)
out decreases over time, where a certain parameter τ

controls the speed of shrinking. The following equation describes the rule for updating the midpoints
of the spheres:

x(t+1)
i = x(t)

i + ρ

ri

N∑

j=1, j 6=i
ρijrirj

(
4 ·
‖x(t)

i − x(t)
j ‖2

(ri + rj)2 − (r(t)
out)2

) x(t)
i − x(t)

j

‖x(t)
i − x(t)

j ‖

Since ρij = 1(B(x(t)
i , r

(t)
outri) ∩ B(x(t)

j , r
(t)
outrj) 6= ∅), where 1(B) denotes the indicator of the set

B, the force acting on the i-th sphere only depends on spheres in a certain local neighborhood around
x(t)
i , which is essential for an efficient implementation of the algorithm. Furthermore, since it is crucial

to obtain a periodic microstructure, we take periodic boundary conditions into account when computing
the distance ‖x(t)

i − x(t)
j ‖. More precisely, for x(t)

i = (x(t)
i,1, x

(t)
i,2, x

(t)
i,3),x(t)

j = (x(t)
j,1, x

(t)
j,2, x

(t)
j,3) ∈ R3

it holds that

‖x(t)
i − x(t)

j ‖ =

√√√√
3∑

k=1
min

{
|x(t)
i,k − x

(t)
j,k|, sk − |x

(t)
i,k − x

(t)
j,k|
}2
, (3)
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where s1, s2, s3 > 0 denote the size of the observation window W in x-, y- and z-direction, re-
spectively. In addition, the periodic boundary conditions have to be applied when the updated position
x(t+1)
i is no longer contained in the sampling window W ⊂ R3. Since the non-overlapping sphere

system is periodic by definition, the final system of non-spherical particles fulfils periodic boundary
conditions, too. However, this step also allows to implement periodic boundary conditions only with
regard to certain directions. For this purpose, the summands of Eq. (3) are replaced by |x(t)

i,k − x
(t)
j,k|

for those directions k ∈ {1, 2, 3}, for which no periodic boundary conditions are applied. Finally, note
that the sphere packing algorithm described above is only capable of generating packing densities up
to approximately 65%, where for packing densities of more than 60%, a so-called core-shell ratio is
used, see [22] for further details.

2.2 Representation of particles via spherical harmonics

In order to generate non-spherical particles, we make use of spherical harmonics expansions [27].
Assuming star-shaped particles, which is reasonable in a wide range of applications, one can an-
alytically describe the shape of a single particle by its center b ∈ R3 and the radius function
R : (0, 2π]× (0, π]→ R. More precisely, for any (θ, ϕ) ∈ (0, 2π]× (0, π] it holds that

R(θ, ϕ) =
√

4π
∞∑

`=0

∑̀

m=−`
cm` Y

m
` (θ, ϕ) ≈

√
4π

L∑

`=0

∑̀

m=−`
cm` Y

m
` (θ, ϕ)

=
√

4π ·
( L∑

`=0
c0
`Y

0
` (θ, ϕ) + 2 ·

∑̀

m=1
Re(cm` )Re(Y m

` (θ, ϕ))

− Im(cm` )Im(Y m
` (θ, ϕ))

)
,

with coefficients cm` ∈ C, spherical harmonic functions Y m
` : (0, 2π] × (0, π] → C and the series

expansion parameter L ≥ 0. It is important to note that different definitions of spherical harmonics
are used within different fields of research, where the most common source of confusion is the multi-
plicative factor (−1)m, which is often called the Condon-Shortley phase, see [28]. Note that due to the
multiplication of the double sum with

√
4π, a spherical particle with radius r is solely represented by

the first coefficient c0
0 = r. A particle system consisting of N particles can thus be uniquely described

by a list of centroids and the corresponding coefficients cm` . Based on this analytical representation
of the microstructure, a quality volume mesh can be constructed, which will be discussed in the next
section.

3 Periodic mesh generation

We now discuss the mesh generation for the microstructures described in Section 2, yielding discrete
approximations for ω and ωE. Recall that the microstructure to be meshed has the representation
(x0

n, Rn)n, n = 1, . . . , N , where N is the number of particles. The surface of each particle Pn is
parametrized by

x
s
n = x0

n +Rn(θ, ϕ) · er , er =




sin θ · cosϕ
sin θ · sinϕ

cos θ


 , for θ ∈ (0, π], ϕ ∈ (0, 2π] , (4)
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with x0
n being the midpoint and Rn the radius function of Pn. As explained in the previous section, Rn

is expanded in terms of spherical harmonic functions, where the coefficients cm` are deduced from a
stochastic model described, e.g., in [22].

As a surface mesh M of a single particle, we consider a tupel (v, f) with v ∈ RMv×3 and f ∈ NMf×3,
where Mv is the number of vertices (or node points) and Mf the number of faces of the mesh M. A
face fj = (fj1, fj2, fj3) is the j-th row of f , defining a triangle tj = (xfj1 ,xfj2 ,xfj3). A volume
mesh MV is a tupel (v,g) with v ∈ RMv×3 and g ∈ NMg×4. One entry of g describes a tetrahedron
gj = (gj1, gj2, gj3, gj4). Note that the boundary of a volume mesh is a (closed) surface mesh. In
particular, a discrete approximation of particle Pn, or, more precisely, a discrete approximation of its
parametrized surface, is denoted by Mn = (vn, fn), with nodes vin = x

s
n(θi, ϕi), i = 1, . . . ,Mv

and faces fn, where the definition of the angles (θi, ϕi) ∈ (0, 2π] × (0, π] will be described later on
in Section 3.1.

The microstructure is supposed to be periodic with respect to the bounding box B = {Bk}k=1,...,6,
built by the (infinite) planes B1 = {(x, y, z) ∈ R3 : x = xmin}, B2 = {(x, y, z) ∈ R3 : y = ymin},
and so forth, following the numbering of a classical 6-sided dice. The corresponding rectangle B̄k is
the plane Bk bounded by the other planes, e.g., B̄1 = {(x, y, z) ∈ R3 : x = xmin, ymin ≤ y ≤
ymax, zmin ≤ z ≤ zmax}.

We seek a volume mesh MV
ω of the unit cell ω, and, in particular, MV

ωE of the connected domain ωE,
which is achieved in the following steps:

1 Initial meshing of each particle Pn,

2 Pairwise intersection of particles (Pn,Pk) and local deformation to ensure non-intersection,

3 Intersection of particles Pn with the box B = {Bk}k, yielding intersection curves γn,k,

4 Meshing of the particles Pn and planes Bk subject to the intersection curves γn,k,

5 Building of a closed surface mesh M accounting for the periodic repetitions of all particles,

6 Construction of a quality volume MV from the intersection free, closed surface mesh M.

The workflow of the mesh generation is shown in Fig. 3. A central feature of the algorithm is a con-
strained Delaunay surface triangulation, which is achieved via appropriate rotations and stereographic
projections. The algorithm has been implemented in Matlab and extensively tested at random mi-
crostructures, which were generated by the method explained in Section 2.
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Intersection of Pn with 
each plane (Bk)k=1,..6

Input: Microstructure
as Set of Particles  

Mesh each particle
Pn=(vn,fn)

Initial Mesh of all particles
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Input: Numer of
Facets Mf

Mesh bounding box -
particle intersections
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Input: Periodic
bounding box B Add particle Pn=(vn,fn) 
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mesh S=(vS,fS)

with bounding box
mesh B=(vBk,fBk)

Closed, intersection free
surface mesh M=(vM,fM) of

the microstructure 

Check for 
parwise intersection 

of two particles 
(Pk ,Pm )

Add periodic 
repetitions with respect to
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mesh (vBk,fBk)  of each
bounding box face Bk

Consistent mesh (vn,fn)  of each
particle Pn  with boundary box

intersection arcs 𝛄n,k

Mesh planes (Bk)k=1,..6 
with boundary arcs (𝛄n,k) 

Constrained Delaunay
Triangulation for
 each Plane Bk

yes

Local remeshing/deformation 
to ensure no pairwise

intersection

Intersection free surface
meshes of all particles Pn

1

3

2

Consistent mesh (vn,fn)  of each
particle Pn  with boundary box

intersection arcs 𝛄n,k

Generate volume mesh based
on M with TetGen

Figure 3: Workflow map of the mesh generation.

3.1 General methods

The following methods are frequently used in the mesh generation procedure proposed in this paper.
Some methods of the iso2mesh toolbox [29] are frequently used during the surface mesh genera-
tion.

3.1.1 Meshing a single particle

Meshing a single particle Pn is essentially obtained in three steps, see also Fig.4:

1 Determine angles (θi, ϕi) such that the points eir = er(θi, ϕi) are equidistributed on the unit
sphere.

2 Compute the convex hull f of the meshpoints (eir)i.

3 Compute the corresponding meshpoints on the particle surface given in Eq. (4) yielding the
surface mesh Mn = (vn, fn) with fn = f .

The equidistributed meshpoints on the unit sphere ensure that the triangles built by the convex hull op-
eration are of almost equal size, shape and not degenerated (no agglomeration of meshpoints around
the poles, no sharp or obtuse angles). Several methods exist to construct equidistributed meshpoints
on a sphere, e.g., via geodesic polyhedrons and their projections onto the unit sphere [30]. However,
for a prescribed number Mv of meshpoints the method proposed by Deserno is rather convenient.
It places points on the sphere such that that their distance in two orthogonal directions is locally al-
ways the same [31]. We use this method throughout the present paper to compute the angle vectors
(θ,ϕ) = {(θi, ϕi)}i=1,...,Mv for a prescribed number of meshpointsMv. Note that the 3D microstruc-
ture, which is analytically described by spherical harmonic functions, can be represented as precisely
as desired by increasing Mv, i.e., there is no limitation by a certain resolution.
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convex hull of the 
meshpoints 

equidistributed points on 
the sphere

projection onto the particle!
yielding the surface mesh 

Figure 4: Mesh generation for a single particle based on the convex hull of a geodesic unit sphere.

The convex hull f of the equidistributed points on the sphere is computed with the quickhull algorithm
proposed by Barber et. al [32], which is implemented in Matlab’s convhull function [33]. We call
the tupel (x, f) icosphere with Mv meshpoints and Mf ≈ 2 ·Mv facets.

Evaluating the spherical harmonics representation given in Eq. (4) for (θ,ϕ) of the icosphere is
straightforward by an explicit implementation of the first spherical harmonics functions Y`,m(θ, ϕ),m =
0, .., `, ` = 0, . . . , L, where we put L = 10. This yields the initial surface mesh Mn = (vn, fn) with
fn = f of each particle Pn, n = 1, . . . , N .

3.1.2 General surface-surface intersections

To determine the intersection of two surface meshes (M1,M2) we rely on an algorithm proposed by
Müller [34] for fast triangle-triangle intersections and its Matlab implementation Surface
Intersection provided by Tuszynski [35]. If not empty, i.e., there is an intersection, the method
yields the NI intersection points v1,2 ∈ RNI×3 of the intersecting facets as well as an edge graph
c1,2 ∈ NMI×2 for the intersection points. The tupel (v1,2, c1,2) forms a discrete, oriented family of
curves {γj1,2}j=1,...,Nj with γj1,2 = (v1,2, cj1,2), where Nj is the number of arcs arising from the inter-
section, obtained by splitting the edge graph c1,2 accordingly.

Note that the triangle-triangle intersections algorithm computes the intersection points on each arc
of all intersecting triangles, resulting in a very fine boundary arc γ, i.e., a discretization much finer
than the average arc length of original mesh. This would result in far too finely resolved meshes near
the intersection edge. To avoid this, we use a coarsening step on all arcs determined by Surface
Intersection. We parametrize γ according to its arc length s by interpolating the arc points vγ
accordingly, yielding a curve function γ = γ(s). Then we re-evaluate γ(s) at equidistant arc length
points si, yielding a proper discretization of the intersection curves.

3.1.3 Constrained Delaunay surface triangulations

A constrained Delaunay triangulation (CDT) is a special form of triangulation, where some conditions
on the triangulation have to be fulfilled. Consider, for example, a (non-convex) polygon γ = (vγ, cγ)
and points vin which lie inside the polygon. We seek a triangulation of v = (vγ,vin) which ensures
that the boundary of the triangulation is indeed γ. This can be achieved with constrained Delaunay
triangulations [36, 37], where γ is prescribed as edge constraint. For 2D problems, i.e., points in the
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plane bounded by a curve, this is rather straightforward and many implementations exist, where we
mention, e.g., the well-known Matlab implementation delaunayTriangulation.

However, for non-convex polygons on a 2D hyper-surface embedded in the 3D space the situation
is much more complex. Here we seek a surface triangulation M of points on a surface bounded by
a curve which lays on the surface. Note that this is very different from the “tetrahedralizations” of a
3D point cloud, forming tetrahedra, bounded by a (closed) hyper-surface and resulting in a volume
mesh MV . The problem arises when intersections between two particles or between a particle and the
bounding box are considered. Since the particles are parametrized in terms of spherical harmonics,
we can exploit this by conformal mappings from the sphere onto the plane.

A given arc γ = (vγ, cγ) on the sphere forms a non-convex spherical polygon. Note that for a
spherical triangle with the vertices a,b, c on the unit sphere, the area e and the centroid d can be
computed as follows, see e.g. [38]:

e = arccos (na,nb + arccos (nb,nc) + arccos (nc,na)− π ,

d = 1
2se
(
nc arccos (a,b) + na arccos (b, c) + nb arccos (c, a)

)
,

where

nc = a × b
‖a × b‖ , na = b× c

‖b× c‖ , nb = c× a
‖c× a‖ ,

and s = sign〈a,b × c〉 accounts for the orientation of the surface triangle, i.e., an inner or outer
triangle. Furthermore, consider a spherical polygon with vertices {vi}i=1,...,N . Then, for each i =
1, . . . , N−1, let di denote the centroid of the spherical triangle with vertex set {vi,v mod (i+1,N),vN},
ei its area and si its sign. The spherical centroid v̄ is then given by

v̄ = 1
2

∑N−1
i=1 sieidi∑N−1
i=1 siei

,

and its projection onto the sphere by n = v̄
‖v̄‖ .

a) b) c) d)

centroid

Figure 5: Spherical polygon and its centroid (a), stereographic projection (b), 2D constrained Delaunay
triangulation (c), constrained surface mesh (d).

For a given arc γ = (vγ, cγ) and interior points vin we consider the following sequence of steps to
generate a constrained surface mesh, see Fig. 5:
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1 Compute the centroid v̄ of the spherical polygon γ and project it onto the sphere, resulting in a
point n within the spherical polygon.

2 Rotate the sphere such that −n becomes the north pole (1, 0, 0).

3 Project the spherical polygon and its interior points onto the plane via the stereographic projec-
tion given by

u = x

1− z and v = y

1− z .

4 Perform a 2D constrained Delaunay triangulation in the (u, v)-plane resulting in a triangulation
f .

5 Consider (v, f) as constrained surface mesh M.

We call this method “constrained surface Delaunay triangulation via stereographic projections”. It will
be extensively used in the following.

3.2 Generating quality volume meshes from surface meshes

3.2.1 Particle-particle intersections

In order to generate a volume mesh MV from a surface mesh M, it is of ultimate importance that M is
intersection free. For two particles P1 and P2 this yields two possibilities: (i) an intersection and local
re-meshing to form a unified, intersected particle, or (ii) a local deformation of P1 and P2 to ensure
non-intersection. We decided for variant (ii) since it seems physically more meaningful, but switching
to (i) is technically possible as well.

Based on the method described in Section 3.1.2, the intersection of two surface meshes M1 and M2
yields the intersection arcs γj1,2 = (vj1,2, c

j
1,2). For each j we determine the normal plane approx-

imating the 3D point cloud vj1,2, yielding the corresponding normal vector nj . In the following, we
drop the superscript j and determine the rotation matrix R such that R · n = (1, 0, 0), where we
rotate the particles accordingly. Next, the exterior mesh fi,o, i = 1, 2 of each particle is determined,
which consists of all faces that do not intersect γ1,2. However, the boundary of fi,o is itself a closed,
oriented curve, denoted by γi. We then translate γ1,2 by some distances d1 and d2 into P1 and P2,
respectively, yielding the curves γ1

1,2 and γ2
1,2.
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Intersect initial meshes 
P1 and P2  of  two

particles

Determine intersection arcs
𝛄1,2 , the adjacent open

edges 𝛄1  and 𝛄2 and the
outer meshes f1,o and f2,o

Determine the
normal plane

of  𝛄1,2, rotate
particles and

shift  𝛄1,2

Sterographic
projections with

n and -n as north
pole

Compute 2D
constrained Delauney

triangulation
fi,𝛄  between 𝛄i
and 𝛄1,2 (i=1,2)

Combine fi,o and  fi,𝛄 to
form the new non

intersecting meshes
of P1 and P2

Generate intersection free
surface meshes of (Pk ,Pm )

𝛄2 
𝛄1 

𝛄1,2

projected
𝛄1,2

projected
𝛄2

Figure 6: Detailed workflow map of the particle-particle intersection.

Then we use the method described in Section 3.1.3 to compute the surface constrained Delaunay
triangulation of γi1,2 bounded by the curve γi. This yields a triangulation fi,γ of the former intersecting
part of Pi. Uniting fi,γ with the unmodified exterior fi,o yields a new surface triangulation Mi of particle
Pi, ensuring a non-intersection between P1 and P2. The workflow is shown in Fig. 6.

3.2.2 Intersections of particles with the bounding box

Next the particles are intersected with the bounding box B. Recall that Fig. 2a shows an initial mesh
of a microstructure and, color-coded, the number of intersections of each particle with the rectangles
B̄1, . . . , B̄6 forming the bounding box B. Let in ∈ {0, 1, 2, 3} denote the number of intersections of
particle Pn with the rectangles B̄1, . . . , B̄6. The number kn of periodic repetitions of Pn (including
the particle Pn itself) is then given by kn = 2in . Furthermore, for in ≥ 1, let S1, . . . , Skn denote the
sectors arising in this way.1

If a particle Pn intersects the box B, we proceed with the following strategy to determine the intersec-
tion arcs γn,k of each sector Sk, see also Fig. 7:

1 Intersect the surface mesh Mn of Pn with a coarse, local surface mesh Mk of the planesBi, i =
1, . . . , in, applying the method described in Section 3.1.2.

2 Get the intersection arcs βn,i on the planes Bi, i = 1, . . . , in.

3 Consider pairwise intersections of βn,i, βn,j, i = 1, . . . , in, j = 1, . . . , in, i 6= j and deter-
mine the common intersection points vij ∈ R3.

4 Determine the arcs γn,k of each sector Sk, k = 1, . . . , 2in from the plane intersection arcs
βn,i, i = 1, . . . , in.

1Consider the half-spaces

V +
x (x0) = {x = (x, y, z) ∈ R3 : x ≥ x0} and V −

x (x0) = {x = (x, y, z) ∈ R3 : x ≤ x0} ,

and V ±
y (y0), V ±

z (z0), accordingly. Now consider V ±
x (x0) ∩ V ±

y (y0) = V ±±
xy (x0, y0), and V ±±

yz , V ±±
zx , accordingly

as well as V ±
x (x0) ∩ V ±

y (y0) ∩ V ±
z (z0) = V ±±±

xyz (x0, y0, z0). These are the principal sectors of intersections for the
orthogonal planes crossing (x0, y0, z0). For an intersection number i = 2 with, for example, the planesB1 (i.e., x = xmin)
and B2 (i.e., y = ymin), the sectors are S1 = V ++

xy (xmin, ymin), S2 = V +−
xy (xmin, ymin), S3 = V +−

xy (xmin, ymin), S4 =
V −−
xy (xmin, ymin). For i = 1 and i = 3 the sectors are defined accordingly.
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5 Determine the centroid of γn,k.

6 Determine the points vin of the initial surface mesh M = (vn, fn) which are inside the surface
polygon.

7 Project vin and γn,k onto the unit sphere and perform a stereographic projection with respect to
the centroid.

8 Perform a 2D constrained Delaunay triangulation for the projection (using the method explained
in Section 3.1.3), which yields the triangulation fn,k.

9 Consider (vin, fn,k) as surface mesh Mn,k of the sector Sk.

10 Performing the above steps for all sectors k = 1, . . . , 2in yields the new closed surface mesh
Mn = ∪kMn,k for particle Pn, ensuring the intersection constraints.

Intersect initial mesh 
Pn=(vn,fn) of a particle
with the bounding box

planes

Determine the intersection
arcs n,k and interioir

points vn,k of a segment k

Project onto sphere
and determine
centroid cn,k 
of the surface

spherical polygon

Sterographic
projection

with
- cn,k as
north pole

Compute 2D
constrained
delauney

triangulation fn,s3D constrained surface
triangulation (vn,k,fn,k)k

 of box ntersecting particles

Surface mesh (vn,k,fn,k)
of the segment k with

open edge  n,k

cn,k 

Mesh bounding box -
particle intersections

‹n,1

‹n,2

“n,k

S1S2

S3 S4

intersecting

Delaunay

Figure 7: Detailed workflow map of the bounding box-particle intersection.

3.2.3 Meshing of the planes Bi

In order to get a closed surface mesh of ∂ωE, we need a triangulation of the planes Bi, i = 1, . . . , 6,
intersected with all particles. However, we already know the particle-plane intersections, i.e., the arcs
βn,i. However, these arcs have to be intersected with the bounding curve of the rectangle B̄i, yielding
the exterior arc αi of the plane Bi, see Fig. 8. A 2D CDT for the interior mesh-points (u`1, u`2) of the
plane Bi subject to the boundary arcs αi and βi = ∪nβn,i yields a surface triangulation Mi for the
intersected bounding box plane Bi, and by a repetition of the procedure for all sides i = 1, . . . , 6 a
surface mesh MB of the intersected box B.
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Figure 8: Detailed workflow map of the bounding box-particle intersection.

3.2.4 Building of a common surface mesh

Based on the surface mesh MB of the intersected box B and the surface meshes Mn = ∪kMn,k of all
particles Pn we can now build a closed surface mesh for ∂ωE.

Figure 9: Periodic arrangement of the intersected particle mesh Mn = ∪kMn,k with respect to the
periodicity box B (left). Closure of the open surface mesh MP by the open bounding box surface
mesh MB (right).

The sectorial parts Mn,k are distributed according to the periodicity condition of the bounding box B,
denoted by M̂n,k, see Fig. 9a. This yields the periodic open surface mesh MP = ∪Nn=1 ∪2in

k=1 M̂n,k of
all particles. This mesh is now closed by the surface mesh MB of the intersected box B, see Fig. 9b,
forming a closed surface mesh M = MP ∪ MB of the microstructure.

3.2.5 Construction of a quality volume mesh

We now have a periodic, closed surface mesh M = MP ∪ MB of the 3D microstructure. Essentially
this is a discrete representation of ∂ωE. In order to obtain a (discrete) parametrization of ωE, we rely
on a well-established method for 3D constrained Delaunay tetrahedralizations, implemented in Tet-
Gen [21, 39]. Note that TetGen is a software package that generates tetrahedral meshes of any 3D
polyhedral domain. It generates exact constrained Delaunay tetrahedralizations, boundary conform-
ing Delaunay meshes, and Voronoi partitions. For a closed, intersection free surface mesh M, TetGen

DOI 10.20347/WIAS.PREPRINT.2738 Berlin 2020



Mesh generation for periodic 3D microstructure models and computation of effective properties 15

generates a high quality volume mesh MV . Since our surface mesh is perfectly periodic, we force Tet-
Gen by flags (-pqYQA) to keep the initial surface mesh as boundary, whereby the resulting volume
mesh MV is also periodic, see the user manual [40] for technical details. In this way, we have a robust
method to generate a high quality volume mesh MV from a representation {(x0

n, Rn)}n=1,...,N of a
periodic microstructure, based on spherical harmonics.

Figure 10: Closed, periodic surface mesh M of a particulate microstructure represented by spherical
harmonics (left). High quality volume mesh MV generated with TetGen from the surface mesh M (right).

4 Numerical results

In this section we discuss three examples of microstructures to provide an impression of the proposed
method. The first example considers simple morphologies of equally sized spherical particles, where
the porosity is varied and the resulting porous media parameters are compared to the Bruggeman ap-
proximation, see Section 4.1. The second example, considered in Section 4.2, deals with a porous mi-
crostructure consisting of N particles, where the particle radii are polydisperse. Such microstructures
can be found, for example, in porous battery electrodes. The box-size is varied to show some kind of
convergence of the porous media parameters, frequently known from stochastic homogenization [41].
The third example ties on this kind of microstructures, where the porosity is varied, see Section 4.3.
This is achieved by considering virtually generated microstructures of differently compacted battery
electrodes using the stochastic model proposed in [42].

All numerical calculations for the 3D cell problem (CP1) considered in this paper are carried out with
COMSOL 5.2 [43] based on the meshes generated by the algorithm explained in Section 3.
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4.1 Equally sized spherical particles

Figure 11: Unit cells ω of simple cubic (sc), body centered cubic (bcc), and face centered cubic (fcc)
microstructures. The colors encode the number of unit cells shared by a sphere, i.e., blue = 0, magenta
= 2, red = 4.

We consider three different Braviais lattices of the cubic crystal system as microstructure. The unit cells
ωE are built by simple cubic (sc), body centered cubic (bcc), and face centered cubic (fcc) structures
of spheres with some fixed radius R > 0, see Fig. 11, where ω = [0, b]3. We seek to vary the
porosity ψE in this simple example and discuss the porous media parameters πE and aE,S in terms of
ψE. This can be achieved in two ways, (i) by varying the sphere radius R while keeping the box size
b constant, or (ii) by varying the box size b while keeping the radius R constant. Note that these two
approaches are, from a materials perspective, completely different. Increasing the box size basically
means dispersing the particles in a given volume, while decreasing the particle radius corresponds,
e.g., to different synthetization processes leading to smaller particles. For the sake of completeness,
we discuss both approaches in parallel, emphasizing, however, that second approach is more realistic.

4.1.1 Variation of the sphere radius, keeping the box size fixed

Consider particles of fixed radius r ∈ (0, R), where R is some prescribe maximum radius. For a
sequence of increasing values r̃ = r

R
∈ (0, 1) we seek to compute the effective porous media

parameters. The box volume V is given by

V = b3, where b =





2 ·R, for lattice sc,
4√
3 ·R, for lattice bcc,√
8 ·R, for lattice fcc,

which corresponds to the closest packing when r = R. The porosity ψE of the corresponding material
is calculated as

ψE = 1
V

∫

ωE

1dV =





1− π
6
(
r
R

)3
< 1− 0.5236, for lattice sc,

1−
√

3π
8
(
r
R

)3
< 1− 0.6802, for lattice bcc,

1− π
3
√

2

(
r
R

)3
< 1− 0.7405, for lattice fcc,
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and the interfacial area computes as

aE,S = 1
V

∫

σE,S

1dA =





1
2πr̃

2 1
R

< 1.57 1
R
, for lattice sc,

3
√

3
8 πr̃2 1

R
< 2.04 1

R
, for lattice bcc,

1√
2πr̃

2 1
R

< 2.22 1
R
, for lattice fcc.

Note that we can also express the dimensionless radius r̃ in terms of the porosity ψE which yields the
following expressions for the interfacial area:

aE,S =





1
2π
( 6
π
(1− ψE)

)2
3 1
R
, where 1− ψE ∈ (0.4764, 1), for lattice sc,

3
√

3
8 π
( 8√

3π (1− ψE)
)2

3 1
R
, where 1− ψE ∈ (0.3198, 1), for lattice bcc,

π√
2π
(3
√

2
π

(1− ψE)
)2

3 1
R
, where 1− ψE ∈ (0.2595, 1), for lattice fcc.

We can now define the interfacial area factor θE,S = aE,S ·R which depends solely on the microstruc-
ture, i.e., the type of sphere packing, and on the porosity ψE via the particle radius r. As expected, the
face centered cubic crystal structure (ffc) has a larger interfacial area factor θE,S than the less packed
simple cubic structures, see also Fig. 13c.

4.1.2 Variation of the box size, keeping the sphere radius fixed

Next, consider a variation of the box size while keeping the spherical particles at fixed radius R. Note
that this corresponds to a dispersion of the particles. The porosity ψE of the resulting microstructure is
calculated as

ψE = 1− N · 4πR2

b3 ,

and the interfacial area as

aE,S = N4πR3

b3 ,

where N = 1 (sc), N = 2 (bcc), and N = 3 (fcc). From the two equations given above we get that

aE,S = 3(1− ψE) 1
R
, (5)

which is independent of the actual microstructure. This seems to be quite surprising, but the different
packings are actually encoded in b3. In Section 4.2 below, where microstructures with polydisperse
particle radii Rn are considered, these examples serve as a kind of reference.
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Figure 12: Volume mesh generated by the algorithm presented in Section 3 (lower parts). Numerical
solution of χ1

E(y1, y2, y3)
∣∣
y3=0.9 (upper parts).

4.1.3 Diffusion corrector and tortuosity

For the sequence of increasing r̃-values considered in Section 4.1.2, we generate 3D meshes of the
periodic unit cells ω (meshdata available online) with the algorithm explained in Section 3 and solve
the cell problem CP1 numerically, i.e., we determine ~χE. The corresponding volume meshes as well
as a slice of a numerical solution of χ1

E(y1, y2, y3)
∣∣
y3=0.9 are shown in Fig. 12, where the diffusion

corrector πE is computed a posteriori from Eq. (2). Note that from the definition of πE, i.e.,

πE =
(

1− 1
vol(ωE)

∫

ωE

∇~χE dV
)

it follows that πE is actually independent of the particular choice of the approaches (i) or (ii). For all
three examples of microstructures consider in Section 4, the diffusion corrector πE essentially reduces
to a scalar, i.e., πE = πEI, where Id denotes the identity matrix. In Fig. 13a, results of the numerical
computation of πE with respect to the porosity ψE are visualized.

Note that, quite commonly, the (scalar) tortuosity corrector τE is introduced via the effective diffusion
coefficient Deff

u of the underlying porous medium. For this, the homogenized transport equation (1) for
a simple diffusion flux Ju = Du∇u is considered, i.e.,

ψE
∂u

∂t
= divx

(
ψEπE ·Du︸ ︷︷ ︸

=Deff
u

∇u
)

+ aE,Sr
s
u .

Newman, Wood and others introduce τE (implicitly) via Deff
u = ψE

τE
Du, which simply yields in our

notation τE = (πE)−1 [44, 45, 46, 47]. Estimation of τE in terms of the porosity ψE is performed via the
Bruggeman approach [48], claiming that τE = ψ−αE , where α is a microstructure-specific constant. It
has been computed as non-linear least squares fit for the lattices sc, bcc and fcc, yielding

α(sc) = 0.4111 , α(bcc) = 0.3500 , α(fcc) = 0.3410 .

Fig. 13b displays the results of the numerical computation of τE and, in dashed line, the Bruggeman
fit. For microstructures of cubic crystal structures the Bruggeman approximation is, apparently, qual-
itatively and quantitatively acceptable. However, a major drawback is the underlying assumption of
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equally sized particles, which is not the case for realistic microstructures. The particle radii within the
representative volume element are rather polydispersely distributed, allowing for more dense pack-
ing structures and thus smaller values of ψE. But the simple cubic crystal structures, as well as their
Bruggeman approximations, can be considered as a benchmark for the discussion of realistic mi-
crostructures.
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Figure 13: Porous media parameters based on the cell problem CP1: diffusion corrector πE (a), tortu-
osity τE = (πE)−1, together with Bruggeman fit πE = ψαE (b), and dimensionless interfacial area factor
θE,S (c).

4.2 Varying the number of particles

The examples considered in this section deal with the the influence of the size of the sampling window
and, thus, the number of particles on the porous media parameters. To begin with, in Section 4.2,
we consider a system of spheres with a given radius distribution. Afterwards, in Section 4.2.2, we
consider a system of non-spherical particles represented by spherical harmonics. In both cases, one
unit of length corresponds to 0.44µm.

4.2.1 Spherical particles with polydisperse radii

Obviously, the examples discussed in Section 4.1 are rather of theoretical interest than applicable to
realistic porous media since a microstructure described by a single fixed radius is not able to describe
complex particle systems. Thus, we now consider a system of N non-overlapping spheres, where the
radii R1, ..., RN follow a certain probability distribution. For this particular case, it obviously holds that

ψE = 1−
4
3π
∑N

n=1R
3
n

b3 and aE,S = 4π
∑N

n=1R
2
n

b3 .

Hence, we can rewrite aE,S as

aE,S = 3(1− ψE)
∑N

n=1R
2
n∑N

n=1R
3
n

= 3(1− ψE) R̄
∑N

n=1R
2
n∑N

n=1R
3
n︸ ︷︷ ︸

=η

1
R̄

= 6(1− ψE)
d3,2

, (6)

where d3,2 = 2 ·
∑N
n=1 R

3
n∑N

n=1 R
2
n

is known as Sauter diameter or surface area weighted mean diameter

[49, 50]. Thus, by comparing Eq. (6) with Eq. (5), one can observe that replacing the fixed radius R
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considered in Section 4.1 by the mean R̄ of a certain radius distribution requires us to introduce the
factor η, which depends on the radius distribution. If η < 1, then the interfacial area aE,S is smaller
compared to the microstructure consisting of a single sphere with R̄ as radius. From another point
of view, one has to exchange the radius R by the Sauter diameter divided by 2, when considering a
distribution of particle radii instead of a single fixed radius. To investigate the influence of the number of
spheres N and the standard deviation of the underlying radius distribution on the interfacial area, we
exemplarily consider particle radii that are distributed according to a shifted and truncated Birnbaum-
Saunders-distribution yielding a mean particle radius of R̄ = 7.2. This particular choice is motivated
by the stochastic 3D microstructure model presented in [42], which will be also used in Section 4.2.2
below. More precisely, we drawN = 10 andN = 10000, respectively, radii from Birnbaum-Saunders
distributions with a fixed mean value of µ = 7.2 and variance σ2, where σ has been varied from 10−2

to 10. As expected, if we increase the number of particles, the volatility of η decreases, see Fig. 14. In
particular, for N = 10000 particles, η decreases with increasing σ. However, for N = 10, one can
obtain values of η > 1 implying a larger interfacial area compared to a single spherical particle whose
radius is given by the empirical mean of these 10 radii.

N = 10000
N = 10

σ

η

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 14: Influence of standard deviation and number of particles on η.

The influence of the particle size distribution on effective tortuosity is beyond the scope of the present
paper and will be discussed in a separate (forthcoming) study.

4.2.2 Star-shaped particles represented by spherical harmonics

In this example, we focus on realistic 3D microstructures of a battery electrode consisting of non-
spherical particles. For this purpose, we make use of the parametric stochastic microstructure model
presented in [42]. For a prescribed cube of side length b, the model yields an analytical expression for
the position and radius function ofN particles, i.e., {(x0

n, Rn)}n=1,...,N , see Section 2.2. Note that the
number of particles N scales approximately with O(b3). In particular, the so-called compaction load
is fixed to 100 MPa within this subsection, whereas the influence of varying the compaction load (and
thus varying the porosity) is discussed in Section 4.3 below. The distribution of volume-equivalent radii
follows the same shifted Birnbaum-Saunders distribution as in the previous example. To investigate
the influence of the size of the bounding box on the resulting porous media parameters, ten model
realizations have been generated for each box size b ∈ {25, 50, 75, 100, 125, 150, 175, 200} and,
subsequently, a periodic volume mesh has been determined by using the methodology described in
Section 3. The corresponding surface and volume mesh files are available as supplementary material.
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Figure 15 shows the histogram as well as the periodic surface mesh generated by a single model
realization using the box sizes b ∈ {50, 100, 150, 200}.

Figure 15: Histogram of the particle radii for an increasing box size and periodic surfaces meshes for
box sizes b ∈ {50, 100, 150, 200}.

Based on the volume meshes of ten model realizations for each box size b, the porosity ψE, interfacial
area aE,S and (diffusion) corrector πE have been computed.

Fig. 16 shows the results for 10 realizations per box size, where each plus sign corresponds to one
realization and the patch is the convex hull of all realizations per box size. As the box size increases,
this variation declines and we obtain some kind of convergence of the parameters. This effect is also
known in stochastic homogenization, where the parameters of simulated microstructures converge
to some effective parameters as the representative volume element increases. Furthermore, one can
observe that a box size of at least 75 drastically reduces the variation within the parameters of different
model realizations compared to a box size of 25 and 50, respectively. In addition, the Bruggeman
relation seems to lead to a slight, systematic overestimation of the diffusion corrector, which in turn
leads to a slight underestimation of effective tortuosity.
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Figure 16: Porous media parameters for various box sizes: diffusion corrector π1,1
E (a), tortuosity τ 1,1

E =
(π1,1

E )−1 (b) and interfacial area θE,S (c). The patch displays the convex hull of the corresponding
values for the 10 realizations and each box size b.
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4.3 Star-shaped particles with different degrees of compaction

In this section we consider a series of electrode morphologies, where the degree of compaction and
thus the porosity ψE is varied. In [42], a stochastic model was fitted to tomographic image data of
eight differently compacted cathodes. This model has been adopted to the periodic case, see Sec-
tion 3, and again 10 realizations have been generated for each of the eight different compaction loads
m = 0 MPa, 100 MPa, . . . , 1000 MPa with a box size b = 100. Note that, as in Section 4.2 one unit
of length corresponds to 0.44µm. The mesh files are available online via the supplementary informa-
tion.

Once again, the porous media parameters have been computed based on the 3D solution of the cell
problem CP 1, see Fig. 17. As expected, the diffusion corrector decreases with decreasing porosity
ψE and stays below the Bruggeman (bcc) approximation. The interfacial area factor θE,S increases with
decreasing ψE and the reference interfacial area factor θRE,S of equally sized spheres remains an upper
bound for θE,S.

Bruggeman (fcc)
m=1000
m=750
m=500

m=400
m=300
m=200
m=100
m=0

Porosity ψE

D
iff

u
si
on

C
or

rc
to

r
π

1,
1

E

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1a)
Bruggeman (fcc)
m=1000
m=750
m=500

m=400
m=300
m=200
m=100
m=0

Porosity ψE

T
or

tu
os

it
y
τ

1,
1

E

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

θR
m=1000
m=750
m=500

m=400
m=300
m=200
m=100
m=0

Porosity ψE

In
te

rf
ac

ia
l
ar

ea
fa

ct
or
θ E

,S

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4b) c)

Figure 17: Porous media parameters for various compaction loads: diffusion corrector π1,1
E (a), tortu-

osity τ 1,1
E = (π1,1

E )−1 (b) and interfacial area factor θE,S (c). The patch displays the convex hull of the
corresponding values for the 10 realizations and each compaction load.

5 Conclusion and outlook

In this paper, we presented a novel, robust method for generating high-quality volume meshes based
on the spherical harmonics representation of particulate microstructures. For this purpose, a stochastic
3D microstructure model has been used in order to generate virtual, but realistic two-phase microstruc-
tures as structural input for the mesh generation procedure. In addition, the presented method is able
to handle periodic boundary conditions in a predefined set of directions as well. After the generation
of the volume mesh, partial differential equations can be solved numerically, where the mesh itself
can be generated as precise as desired by increasing the number of mesh points since the underlying
microstructure is described analytically. We applied the proposed method exemplarily to cathodes in
lithium-ion batteries which have been manufactured for eight different compaction loads. However, due
to its generality, our approach is applicable to a broad range of functional materials for which effective
properties are of interest. In general, the combination of numerically solving physically-motivated par-
tial differential equations using volume meshes and stochastic 3D microstructure modeling allows to
systematically investigate the impact of the materials’ morphology on the resulting performance. This
approach, called virtual materials testing, can be used to facilitate the design of functional materials
with optimized effective properties just at the cost of computer simulations. In particular, in a forthcom-
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ing study, we plan to systematically quantify the influence of microstructural characteristics such as
volume fraction, specific surface area and constrictivity on porous media parameters via an extensive
simulation study with several thousands virtually generated battery electrodes.
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[26] J. Mosćiński, M. Bargieł, Z. Rycerz, and P. Jakobs, “The force-biased algorithm for the irregular
close packing of equal hard spheres,” Molecular Simulation, vol. 3, p. 201–212, 1989.

[27] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists. Elsevier / Academic Press,
6 ed., 2005.

[28] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra. Cambridge University Press,
1935.

[29] Qianqian Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and
grayscale images,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, p. 1142–1145, 2009.

DOI 10.20347/WIAS.PREPRINT.2738 Berlin 2020



Mesh generation for periodic 3D microstructure models and computation of effective properties 25

[30] M. Wenninger, Spherical Models. Dover, 1999.

[31] M. Deserno, “How to generate equidistributed points on the surface of a sphere.” https://
www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf, 2004.

[32] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM
Transactions on Mathematical Software, vol. 22, no. 4, p. 469–483, 1996.

[33] MATLAB, Version 9.4.0.813654 (R2018a). Natick, Massachusetts: The MathWorks Inc., 2018.

[34] T. Müller, “A fast triangle-triangle intersection test,” Journal of Graphics Tools, vol. 2, no. 2, p. 25–
30, 1997.

[35] J. Tuszynski, “Surface intersection,” tech. rep., MATLAB Central File Exchange,
https://www.mathworks.com/matlabcentral/fileexchange/48613-surface-intersection, 2020.

[36] L. P. Chew, “Constrained Delaunay triangulations,” in Proceedings of the Third Annual Sympo-
sium on Computational Geometry, SCG ’87, p. 215–222, Association for Computing Machinery,
1987.

[37] J. R. Shewchuk, “General-dimensional constrained Delaunay and constrained regular triangula-
tions, I: Combinatorial properties,” Discrete & Computational Geometry, vol. 39, no. 1, p. 580–
637, 2008.

[38] J. E. Brock, “The inertia tensor for a spherical triangle,” Journal of Applied Mechanics, vol. 42,
no. 1, p. 239–239, 1975.

[39] H. Si, “WIAS software TetGen - TetGen a quality tetrahedral
mesh generator and a 3D Delaunay triangulator.” Available online:
http://wias-berlin.de/software/index.jsp?id=TetGen.

[40] H. Si, TetGen: A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator. User’s
Manual, Version 1.5, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2013.

[41] J. Fischer and S. Neukamm, “Optimal homogenization rates in stochastic homogenization of
nonlinear uniformly elliptic equations and systems,” arXiv, no. 1908.02273, 2019.

[42] B. Prifling, D. Westhoff, D. Schmidt, H. Markötter, I. Manke, V. Knoblauch, and V. Schmidt, “Para-
metric microstructure modeling of compressed cathode materials for Li-ion batteries,” Computa-
tional Materials Science, vol. 169, p. 109083, 2019.

[43] “COMSOL Multiphysics® Version 5.2.” www.comsol.com. COMSOL AB.

[44] D.-W. Chung, M. Ebner, D. R. Ely, V. Wood, and R. E. García, “Validity of the bruggeman relation
for porous electrodes,” Modelling and Simulation in Materials Science and Engineering, vol. 21,
no. 7, p. 074009, 2013.

[45] B. Tjaden, S. J. Cooper, D. J. Brett, D. Kramer, and P. R. Shearing, “On the origin and application
of the bruggeman correlation for analysing transport phenomena in electrochemical systems,”
Current Opinion in Chemical Engineering, vol. 12, p. 44 – 51, 2016. Nanotechnology / Separation
Engineering.

[46] J. Newman, K. Thomas, Electrochemical Systems. J. Wiley & Sons, 2014.

DOI 10.20347/WIAS.PREPRINT.2738 Berlin 2020

https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
www.comsol.com


M. Landstorfer, B. Prifling, V. Schmidt 26

[47] M. Ebner and V. Wood, “Tool for tortuosity estimation in lithium ion battery porous electrodes,”
Journal of The Electrochemical Society, vol. 162, no. 2, p. A3064–A3070, 2014.

[48] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen
Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Sub-
stanzen,” Annalen der Physik, vol. 416, no. 7, p. 636–664, 1935.

[49] H. Merkus, Particle Size Measurements: Fundamentals, Practice, Quality. Springer, 2009.

[50] T. Allen, Powder Sampling and Particle Size Determination. Elsevier, 2003.

DOI 10.20347/WIAS.PREPRINT.2738 Berlin 2020


	Introduction
	Mathematical background
	Basic idea of mesh generation
	Outline

	Generation of periodic porous 3D microstructures
	Force-biased sphere packing algorithm
	Representation of particles via spherical harmonics

	Periodic mesh generation
	General methods
	Meshing a single particle
	General surface-surface intersections
	Constrained Delaunay surface triangulations

	Generating quality volume meshes from surface meshes
	Particle-particle intersections
	Intersections of particles with the bounding box
	Meshing of the planes Bi
	Building of a common surface mesh
	Construction of a quality volume mesh


	Numerical results
	Equally sized spherical particles
	Variation of the sphere radius, keeping the box size fixed
	Variation of the box size, keeping the sphere radius fixed
	Diffusion corrector and tortuosity

	Varying the number of particles
	Spherical particles with polydisperse radii
	Star-shaped particles represented by spherical harmonics

	Star-shaped particles with different degrees of compaction

	Conclusion and outlook

