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Optimal control of a phase field system of
Caginalp type with fractional operators

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels

Abstract

In their recent work “Well-posedness, regularity and asymptotic analyses for a fractional phase
field system” (Asymptot. Anal. 114 (2019), 93–128), two of the present authors have studied
phase field systems of Caginalp type, which model nonconserved, nonisothermal phase tran-
sitions and in which the occurring diffusional operators are given by fractional versions in the
spectral sense of unbounded, monotone, selfadjoint, linear operators having compact resolvents.
In this paper, we complement this analysis by investigating distributed optimal control problems
for such systems. It is shown that the associated control-to-state operator is Fréchet differentiable
between suitable Banach spaces, and meaningful first-order necessary optimality conditions are
derived in terms of a variational inequality and the associated adjoint state variables.

1 Introduction

The Caginalp phase field model is a well-known system of partial differential equations modeling the
evolution of a temperature-dependent phase transition with nonconserved order parameter ϕ that
takes place in a container Ω ⊂ R3. A classical form that was introduced and analyzed in the seminal
paper [4] (see also, e.g., [5–7]) is given by the evolutionary system

ρCV ∂tϑ + ` ∂tϕ − κ∆ϑ = u,

α ξ2 ∂tϕ − ξ2 ∆ϕ + F ′(ϕ) = 2ϑ,

which is to be satisfied in the set Q := Ω × (0, T ), where T > 0 is a given final time. The first
equation in the above system is an approximation to the universal balance law of internal energy,
while the second one governs the evolution of the order parameter. The quantities ρ, CV , `, κ, α, ξ
are positive physical constants; in particular, ` is closely allied to the latent heat released or absorbed
during the phase transition process, and ξ is a measure for the thickness of the transition zone
between the different phases. The unknowns ϑ and ϕ stand for a temperature difference and the
order parameter (usually a normalized fraction of one of the phases involved in the phase transition),
while u represents a control (a heat source or sink) and F is a double-well potential whose derivative
F ′ is the thermodynamic force driving the phase transition. For a derivation of the model equations
from general thermodynamic principles, we refer the reader to [3, Chapter 4].

In their recent paper [11], two of the present authors have studied a variation of the Caginalp model,
namely the system

∂tϑ + `(ϕ)∂tϕ + A2ρϑ = u in Q, (1.1)

∂tϕ + B2σϕ + F ′(ϕ) = ϑ `(ϕ) in Q, (1.2)

ϑ(0) = ϑ0, ϕ(0) = ϕ0, in Ω. (1.3)
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P. Colli, G. Gilardi, J. Sprekels 2

The main difference to the Caginalp system (besides the fact that many physical constants are nor-
malized to unity and that the quantity ` representing the latent heat is allowed to depend on the order
parameter ϕ) is given by the fact that in (1.1)–(1.2) the expressions A2ρ and B2σ, with ρ > 0 and
σ > 0, denote fractional powers in the spectral sense of self-adjoint, monotone, and unbounded linear
operators A and B, respectively, which are supposed to be densely defined in H := L2(Ω) and to
have compact resolvents. The standard example occurs when A2ρ = B2σ = −∆, with zero Dirichlet
or Neumann boundary conditions.

The nonlinearity ` is assumed to be a smooth function, while F denotes a double-well potential.
Typical and physically significant examples are the so-called classical regular potential, the logarithmic
potential , and the double obstacle potential , which are given, in this order, by

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.4)

Flog(r) :=


(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 , r ∈ (−1, 1)
2 log(2)− c1 , r ∈ {−1, 1}
+∞ , r 6∈ [−1, 1]

, (1.5)

F2obs(r) := c2(1− r2) if |r| ≤ 1, and F2obs(r) := +∞ if |r| > 1. (1.6)

Here, the constants in (1.5) and (1.6) satisfy c1 > 1 and c2 > 0, so that the corresponding func-
tions are nonconvex. In cases like (1.6), one has to split F into a nondifferentiable convex part F1

(the indicator function of [−1, 1], in the present example) and a smooth perturbation F2. Accordingly,
in the term F ′(ϕ) appearing in (1.2), one has to replace the derivative F ′1 of the convex part F1 by the
subdifferential ∂F1 and interpret (1.2) as a differential inclusion or as a variational inequality involving
F1 rather than ∂F1.

In [11], general results on well-posedness, regularity and asymptotic behavior have been proved for
the state system (1.1)–(1.3). In this paper, we complement the analysis in [11] by studying the optimal
control of this system. More precisely, given nonnegative constants βi, 1 ≤ i ≤ 5, target functions
ϕΩ, ϑΩ ∈ L2(Ω) and ϕQ, ϑQ ∈ L2(Q), as well as threshold functions umin, umax ∈ L∞(Q) with
umin ≤ umax in Q, we consider the following optimal control problem:

(CP) Minimize the tracking-type cost functional

J((ϕ, ϑ), u) :=
β1

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
β2

2

∫ T

0

∫
Ω

|ϕ− ϕQ|2 +
β3

2

∫
Ω

|ϑ(T )− ϑΩ|2

+
β4

2

∫ T

0

∫
Ω

|ϑ− ϑQ|2 +
β5

2

∫
Q

|u|2 (1.7)

over the set of admissible controls

Uad := {u ∈ L∞(Q) : umin ≤ u ≤ umax a.e. in Q} , (1.8)

subject to the state system (1.1)–(1.3).

The optimal control problem (CP) constitutes a generalization of investigations for the original Caginalp
phase field system with regular potential Freg that were begun in the early nineties of the past century;
in this connection, we refer the reader to the pioneering works [8,29–32] (see also the related sections
in the monograph [42]). For more recent contributions, we mention the papers [1,12,13,22,35], where
in [35] a thermodynamically consistent version of the phase field system was considered. We also
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Optimal control of fractional Caginalp systems 3

mention the papers [23, 33, 41] that were devoted to optimal control problems for the Penrose–Fife
phase field model of phase transitions with nonconserving kinetics.

The problem (CP) can also be seen in comparison with a class of optimal control problems for Cahn–
Hilliard type systems of the form

α∂tµ+ ∂tϕ+ A2ρµ = 0, (1.9)

β∂tϕ+B2σϕ+ F ′(ϕ) = µ+ u, (1.10)

µ(0) = µ0, ϕ(0) = ϕ0, (1.11)

where µ represents the chemical potential and α ≥ 0 and β ≥ 0. Obviously, (1.1)–(1.3) is in the
special case `(ϕ) ≡ ` > 0 of the above type (put µ = ϑ, α = 1/` and β = 1), where, however, the
control u appears in the phase equation. For the case when α = 0 and β > 0, optimal control prob-
lems for (1.9)–(1.11) have been treated in the recent papers [18, 19] and reviewed in [17]. Moreover,
for the classical case when A = B = −∆, ρ = σ = 1/2, with various boundary conditions (i.e.,
Dirichlet, Neumann, and dynamic conditions), there exist many contributions in which optimal control
problems have been studied; for a number of recent references in this direction, we refer the reader
to [19].

Another closely related phase field system is given by a model for tumor growth for which control
problems have recently been studied. The fractional version of this model reads as follows (cf. [20,21]):

α∂tµ+ ∂tϕ+ A2ρµ = P (ϕ)(S − µ), (1.12)

β∂tϕ+B2σϕ+ F ′(ϕ) = µ, (1.13)

∂tS + C2τS = −P (ϕ)(S − µ), (1.14)

µ(0) = µ0, ϕ(0) = ϕ0, S(0) = S0. (1.15)

Indeed, if P (ϕ) ≡ 0, then (1.12), (1.13) decouple from (1.14) and attain the form (1.9), (1.10) for
u = 0. Also for the system (1.12)–(1.15) optimal control problems have been studied for the classical
case A = B = C = −∆, ρ = σ = τ = 1/2, with zero Neumann boundary conditions. In
this connection, we refer to the works [14, 36–39]. In [24], also terms modeling chemotaxis were
incorporated in the model. Even more involved models have been studied in [26–28].

In this paper, in which we study the state system (1.1)–(1.3), we have to focus on the interplay be-
tween the nonlinearity F and embedding properties of the domains of the involved operators. Quite
surprisingly, it turns out that in our case, where α = 1/` > 0 if we consider (1.9), the situation is
more delicate than in the abovementioned works where α = 0. The reason for this is that a proper
treatment of the nonlinear term F ′(ϕ) in the optimal control problem (in particular, the derivation of
results concerning Fréchet differentiability) makes it necessary that F ′(ϕ) ∈ L∞(Q). This means,
at least in the case of the irregular potentials Flog and F2obs, that the values attained by the solution
component ϕ must be uniformly separated from the critical values (in this case ±1). To show such
a separation condition, however, it is somehow needed that the right-hand side `(ϕ)ϑ of (1.2) (µ, in
the case of (1.10) or (1.13)) is bounded. In terms of the expected regularities, this condition is more
restrictive in our situation. Indeed, if V ρ

A = D(Aρ) denotes the domain of the fractional operator Aρ,
then it turns out that it maximally holds ϑ ∈ L∞(0, T ;V ρ

A) in the case of the system (1.1)–(1.3), which
corresponds to µ ∈ L∞(0, T ;V ρ

A) for the system (1.9)–(1.11) with α > 0, while one can recover the
better regularity µ ∈ L∞(0, T ;V 2ρ

A ) if α = 0.

It turns out that an appropriate separation property (the condition (GB) below) holds true in certain
cases for regular potentials and singular potentials of the logarithmic type. For such cases, the Fréchet
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differentiability can be shown (see Section 3), and first-order necessary optimality conditions can be
derived (see Section 4.2). The last Section 4.3 brings the derivation of first-order necessary conditions
also for the case of the double obstacle potential F2obs. In this case, where a separation condition like
(GB) cannot be expected to hold and where we do not have Fréchet differentiability, we apply the
so-called deep quench approximation, taking advantage of the results established in Section 4.2 for
logarithmic potentials.

Throughout this paper, we denote for a given Banach space (X, ‖ · ‖X) by X∗ the dual space of
X and by 〈 · , · 〉X the duality product between X∗ and X . We will also make frequent use of the
elementary Young inequality

a b ≤ δa2 +
1

4δ
b2 for all a, b ∈ R and δ > 0. (1.16)

Finally, we denote byW s,p(Ω) for s ≥ 0 and p ∈ [1,+∞] the fractional Sobolev–Slobodeckij spaces
defined in, e.g., [25]. We put Hs(Ω) := W s,2(Ω) for s ≥ 0 and notice that for s ≥ 0 and in three
dimensions of space we have the continuous embeddings (cf., e.g., [25, Thms. 6.7, 8.2])

Hs(Ω) ⊂ Lq(Ω) for 2s < 3 and 1 ≤ q ≤ 6/(3− 2s), (1.17)

Hs(Ω) ⊂ C0(Ω) for 2s > 3. (1.18)

Observe that the latter embedding is compact, while the former is compact only for 1 ≤ q < 6/(3−
2s). In particular, we have

H2s(Ω) ⊂ L4(Ω) if s ≥ 3/8 and H4s(Ω) ⊂ L6(Ω) if s ≥ 1/4 . (1.19)

2 Statement of the problem and and the state system

In this section, we state precise assumptions and notations and present some results for the state
system (1.1)–(1.3). Throughout this paper, Ω ⊂ R3 is a bounded and connected open set with smooth
boundary Γ := ∂Ω and volume |Ω|. We denote by n the outward unit normal vector field and by ∂n
the outward normal derivative. We set

H := L2(Ω) (2.1)

and denote by ‖ · ‖ and ( · , · ) the standard norm and inner product of H . We generally assume:

(A1) A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are unbounded, monotone,
self-adjoint, linear operators with compact resolvents.

Therefore, there are sequences {λj}, {λ′j} and {ej}, {e′j} of eigenvalues and of corresponding
eigenfunctions such that

Aej = λjej, Be′j = λ′je
′
j, with (ei, ej) = (e′i, e

′
j) = δij ∀ i, j ∈ N, (2.2)

0 ≤ λ1 ≤ λ2 ≤ . . . , 0 ≤ λ′1 ≤ λ′2 ≤ . . . , with lim
j→∞

λj = lim
j→∞

λ′j = +∞, (2.3)

{ej} and {e′j} are complete systems in H. (2.4)
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As a consequence, we can define the powers of A and B for arbitrary positive real exponents: we
have, for ρ > 0,

V ρ
A := D(Aρ) =

{
v ∈ H :

∞∑
j=1

|λρj (v, ej)|2 < +∞
}

and (2.5)

Aρv =
∞∑
j=1

λρj (v, ej)ej for v ∈ V ρ
A , (2.6)

the series being convergent in the strong topology of H . By endowing V ρ
A with the graph norm, i.e.,

setting

(v, w)V ρA := (v, w) + (Aρv,Aρw) and ‖v‖V ρA := (v, v)
1/2

V ρA
for v, w ∈ V ρ

A , (2.7)

we obtain a Hilbert space. In the same way, we define the power Bσ for every σ > 0, starting from
(2.2)–(2.4) for B. We therefore set V σ

B := D(Bσ), with the norm ‖ · ‖V σB associated with the inner
product

(v, w)V σB := (v, w) + (Bσv,Bσw) for v, w ∈ V σ
B . (2.8)

Since λj ≥ 0 and λ′j ≥ 0 for every j, one immediately deduces from the definitions that Aρ : V ρ
A ⊂

H → H and Bσ : V σ
B ⊂ H → H are maximal monotone operators. Moreover, it is clear that, for

every ρ1, ρ2 > 0, we have the Green type formula

(Aρ1+ρ2v, w) = (Aρ1v,Aρ2w) for every v ∈ V ρ1+ρ2
A and w ∈ V ρ2

A , (2.9)

and that a similar relation holds for B. Due to these properties, we can define proper extensions of
the operators that allow values in dual spaces. In particular, we can write variational formulations of
(1.1) and (1.2). It is convenient to use the notations

V −ρA := (V ρ
A)∗, V −σB := (V σ

B )∗, for ρ > 0 and σ > 0. (2.10)

Then, we have that
A2ρ ∈ L(V ρ

A , V
−ρ
A ), B2σ ∈ L(V σ

B , V
−σ
B ), (2.11)

as well as
Aρ ∈ L(H,V −ρA ), Bσ ∈ L(H, V −σB ). (2.12)

Here, we identify H with a subspace of V −ρA in the usual way, i.e., such that

〈v, w〉V ρA = (v, w) for every v ∈ H and w ∈ V ρ
A . (2.13)

Analogously, we have H ⊂ V −σB and use corresponding notations. Observe also that the following
embeddings are continuous and compact:

V ρ1+ρ2
A ⊂ V ρ1

A ⊂ H, V σ1+σ2
B ⊂ V σ1

B ⊂ H, for ρ1 > 0, ρ2 > 0 and σ1 > 0, σ2 > 0, (2.14)

V ρ
A ⊂ H ⊂ V −ρA , V σ

B ⊂ H ⊂ V −σB , for ρ > 0 and σ > 0. (2.15)

From now on, we generally assume for the nonlinear functions entering (1.1) and (1.2):

(F1) F = F1 + F2, where F1 : R → [0,+∞] is convex and lower semicontinuous with
F1(0) = 0. Moreover, there are constants c1 > 0, c2 > 0, such that

F (s) ≥ c1s
2 − c2 ∀ s ∈ R. (2.16)
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(F2) There are r−, r+ with −∞ ≤ r− < 0 < r+ ≤ +∞ such that F1 ∈ C3(r−, r+), and
it holds F ′1(0) = 0.

(F3) F2 ∈ C3(R), and F ′2 is Lipschitz continuous on R with Lipschitz constant L > 0.

(F4) ` ∈ C2(R), and `(i) ∈ L∞(R) for 0 ≤ i ≤ 2.

Remark 2.1. It is worth noting that all of the potentials (1.4)–(1.6) satisfy the general conditions (F1)–
(F3), where D(F1) = D(∂F1) = R for F = Freg, while D(F1) = [−1, 1] and D(∂F1) = (−1, 1)
for F = Flog, and D(F1) = D(∂F1) = [−1, 1] for F = F2obs. Here, and throughout this paper,
we denote by D(F1) and D(∂F1) the effective domains of F1 and of its subdifferential ∂F1,
respectively. We notice that ∂F1 is a maximal monotone graph in R × R and use the same symbol
∂F1 for the maximal monotone operators induced in L2 spaces. Moreover, for r ∈ D(∂F1), we use
the symbol ∂F o

1 (r) for the element of ∂F1(r) having minimal modulus. If, however, ∂F1 is single-
valued (which is the case if (r−, r+) = R), then we denote the sole element of the singleton ∂F1(r)
by F ′1(r). We also remark that (F3) implies that F ′2 grows at most linearly on R, while F2 grows at
most quadratically.

For the other data of the state system, we postulate:

(A2) ρ and σ are fixed positive real numbers.

(A3) ϑ0 ∈ V ρ
A , ϕ0 ∈ V 2σ

B , and there are constants r0−, r0+ such that

r− < r0− ≤ ϕ0 ≤ r0+ < r+ a.e. in Ω. (2.17)

(A4) The embeddings V ρ
A ⊂ L4(Ω) and V σ

B ⊂ L4(Ω) are continuous.

Remark 2.2. If, for instance, A = −∆ with domain H2(Ω) ∩ H1
0 (Ω) (thus, with homogeneous

Dirichlet conditions, but similarly for zero boundary conditions of Neumann or third kind), then V ρ
A ⊂

H2ρ(Ω); it then follows from (1.19) that (the first embedding in) (A4) holds true if ρ ≥ 3/8. Likewise,
we have in this case V ρ

A ⊂ L6(Ω) for ρ ≥ 1/2 as well as V ρ
A ⊂ C0(Ω) provided that ρ > 3/4.

For the data entering the cost functional (1.7) and the admissible set Uad defined in (1.8) we generally
assume:

(A5) ϑΩ, ϕΩ ∈ L2(Ω), ϑQ, ϕQ ∈ L2(Q), umin, umax ∈ L∞(Q) satisfy umin ≤ umax
a.e. in Q.

Finally, once and for all we fix some open and bounded ball in L∞(Q) that contains the admissible
set.

(A6) R > 0 is a constant such that Uad ⊂ UR :=
{
u ∈ L∞(Q) : ‖u‖L∞(Q) < R

}
.

At this point, we are in a position to make use of (2.9) and its analogue forB to give a weak formulation
of the state system (1.1)–(1.3) and to introduce our notion of solution. In particular, we present (1.2) in
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the form of a variational inequality. We look for a pair (ϑ, ϕ) satisfying

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ), (2.18)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ), (2.19)

F1(ϕ) ∈ L1(Q), (2.20)

and solving the system

∂tϑ+ `(ϕ)∂tϕ+ A2ρϑ = u a.e. in Q, (2.21)

(∂tϕ(t), ϕ(t)− v) + (Bσϕ(t), Bσ(ϕ(t)− v)) +

∫
Ω

F1(ϕ(t)) + (F ′2(ϕ(t)), ϕ(t)− v)

≤ (`(ϕ(t))ϑ(t), ϕ(t)− v) +

∫
Ω

F1(v) for a.e. t ∈ (0, T ) and every v ∈ V σ
B , (2.22)

ϑ(0) = ϑ0, ϕ(0) = ϕ0. (2.23)

Here, it is understood that
∫

Ω
F1(v) = +∞ whenever F1(v) 6∈ L1(Ω). We follow a similar rule for

expressions of the type
∫∫

Q
F1(v) whenever v ∈ L2(Q) but F1(v) 6∈ L1(Q).

We notice that (2.22) is equivalent to its time-integrated variant, that is,∫ T

0

(
∂tϕ(t), ϕ(t)− v(t)

)
dt+

∫ T

0

(
Bσϕ(t), Bσ(ϕ(t)− v(t))

)
dt

+

∫∫
Q

F1(ϕ) +

∫ T

0

(
F ′2(ϕ(t)), ϕ(t)− v(t)

)
dt

≤
∫ T

0

(
`(ϕ(t))ϑ(t), ϕ(t)− v(t)

)
dt+

∫∫
Q

F1(v) for all v ∈ L2(0, T ;V σ
B ). (2.24)

Similarly, (2.21) is equivalent to a corresponding time-integrated version with test functions v ∈
L2(0, T ;V ρ

A).

We have the following well-posedness result (cf. [11, Thm. 2.10]).

Theorem 2.3. Let the assumptions (F1)–(F4), (A1)–(A4), and (A6) be fulfilled. Then the problem
(2.21)–(2.23) has for every u ∈ UR a unique solution (ϑ, ϕ) satisfying (2.18)–(2.20). Moreover, there
is a constant K1 > 0, which depends only on R and the data of the state system, such that

‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V ρA)∩L2(0,T ;V 2ρ
A ) + ‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V σB ) +

∫∫
Q

F1(ϕ) ≤ K1, (2.25)

whenever (ϑ, ϕ) solves (2.21)–(2.23) for some u ∈ UR.

Proof. Owing to the assumptions (F2) and (2.17), we have that ∂F o
1 (ϕ0) = F ′1(ϕ0) ∈ H , and thus

all of the conditions for the application of [11, Thm. 2.10] are fulfilled.

By virtue of Theorem 2.3, the control-to-state operator

S : UR 3 u 7→ S(u) := (ϑ, ϕ) (2.26)

is well defined and bounded as a mapping from UR ⊂ L∞(Q) into the Banach space specified by
the regularity properties (2.18), (2.19). In the following, we look for conditions that guarantee that S
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is Fréchet differentiable between suitable Banach spaces. To this end, we make use of the following
global boundedness assumption which has proved to be very useful in the framework of Cahn–Hilliard
type systems with fractional operators (cf. the recent works [17–19,21]):

(GB) There are constants aR, bR such that

r− < aR ≤ ϕ ≤ bR < r+ a.e. in Q (2.27)

whenever (ϑ, ϕ) = S(u) for some u ∈ UR.

The condition (GB) is rather restrictive and has to be verified from case to case. As a rule, it cannot
be satisfied for potentials of indicator function type like F2obs. It can, however, be satisfied for regular
potentials like Freg (see the case (ii) below) and singular potentials like Flog (see the case (i) below).
Indeed, we have the following result, whose assumptions are commented in the next Remark 2.5.

Lemma 2.4. Assume that the conditions (A1)–(A4) and (F1)–(F4) are satisfied and, in addition, that

ψ(v) ∈ H and (B2σv, ψ(v)) ≥ 0 for every v ∈ V 2σ
B and every monotone

and Lipschitz continuous mapping ψ : R→ R vanishing at the origin. (2.28)

In addition, assume that

lim
r→r−

F ′1(r) = −∞, lim
r→r+

F ′1(r) = +∞. (2.29)

Then (GB) is satisfied in any of the following situations:

(i) A = −∆ with zero Neumann or Dirichlet boundary conditions, and ρ > 3
4

or ρ = 1
2
.

(ii) (r−, r+) = R, B2σ = B = −∆ with zero Dirichlet or Neumann boundary conditions
and ϕ0 ∈ D(B).

Proof. Suppose that (ϑ, ϕ) = S(u) for some u ∈ UR. Assume first that the assumptions of (i) are
satisfied. In the following, we denote byCi > 0, i ∈ N, constants that depend only onR and the data.
We have, owing to (1.18), that (cf. also Remark 2.2) V ρ

A ⊂ H2ρ(Ω) ⊂ L∞(Ω) if ρ > 3/4. Hence, by
(2.25) it turns out that

‖ϑ‖L∞(Q) ≤ C1 (2.30)

in this case. On the other hand, if ρ = 1/2, then ϑ solves a standard linear parabolic problem with
right-hand side u − `(ϕ)∂tϕ, which is bounded in L∞(0, T ;H) for u ∈ UR. Then the validity of
(2.30) follows from standard results on linear parabolic problems (see, e.g., [34, Chap. 7]). Hence, in
both cases, we have that ‖`(ϕ)ϑ‖L∞(Q) ≤ C2 since ` is bounded, and the validity of (GB) with
aR, bR satisfying r− < aR ≤ r0− ≤ r0+ ≤ bR < r+ follows from the assumptions (2.28)–(2.29) as
in the proof of [21, Thm. 2.4].

Now, let the assumptions of (ii) be fulfilled. Then, we remark that (r−, r+) = R excludes singular
potentials like Flog and we have to prove that ϕ is bounded in L∞(Q) uniformly with respect to
u ∈ UR. Let, for λ > 0, F ′1,λ denote the Moreau–Yosida approximation of F ′1 at the level λ. It is
well known (see, e.g., [2]) that in this special case, where the subdifferentials are single-valued and
F ′1(0) = 0, the following conditions are satisfied:

F ′1,λ is globally Lipschitz continuous on R, F ′1,λ(0) = 0, and it holds

|F ′1,λ(r)| ≤ |F ′1(r)| and lim
λ↘0

F ′1,λ(r) = F ′1(r) for all r ∈ R. (2.31)
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In the proofs of [11, Prop. 2.4 and Prop. 2.9] (for details, see [11, Sect. 5]) it has been shown, using
(2.29) and a special case of (2.28), that there is some Λ > 0 such that for every λ ∈ (0,Λ] the
general system

∂tϑλ + `(ϕλ)∂tϕλ + A2ρϑλ = u a.e. in Q, (2.32)

∂tϕλ +B2σϕλ + F ′1,λ(ϕλ) + F ′2(ϕλ) = `(ϕλ)ϑλ a.e. in Q, (2.33)

ϑλ(0) = ϑ0, ϕλ(0) = ϕ0 a.e. in Ω, (2.34)

has for every u ∈ UR a unique solution pair (ϑλ, ϕλ) such that

‖ϑλ‖H1(0,T ;H)∩L∞(0,T ;V ρA)∩L2(0,T ;V 2ρ
A ) + ‖ϕλ‖W 1,∞(0,T ;H)∩H1(0,T ;V σB )∩L2(0,T ;V 2σ

B ) ≤ M1, (2.35)

where, here and in the following, Mi > 0, i ∈ N, denote constants that may depend on R and on
the data of the system, but not on λ ∈ (0,Λ]. It was then shown in [11] that (ϑλ, ϕλ) converges to
(ϑ, ϕ) in a suitable topology. We repeat here a part of the argument and use (2.28) with v = ϕλ(t)
and ψ = F ′1,λ. We test (2.33) by F ′1,λ(ϕλ(t)) to obtain for almost every t ∈ (0, T ) the identity(

B2σϕλ(t), F
′
1,λ(ϕλ(t))

)
+

∫
Ω

|F ′1,λ(ϕλ(t))|2

=

∫
Ω

F ′1,λ(ϕλ(t))
(
`(ϕλ(t))ϑλ(t)− F ′2(ϕλ(t))− ∂tϕλ(t)

)
, (2.36)

where the first summand on the left-hand side is nonnegative and, by virtue of (2.35) and the general
assumptions for the nonlinearities, the right-hand side is bounded by an expression of the form

1

2

∫
Ω

∣∣F ′1,λ(ϕλ(t))∣∣2 + M2,

whence we obtain that ∥∥F ′1,λ(ϕλ)∥∥L∞(0,T ;H)
≤ M3.

Thanks to our assumption onB2σ it follows that ϕλ solves a standard linear parabolic initial-boundary
value problem, where the right-hand side `(ϕλ)ϑλ−F ′1,λ(ϕλ)−F ′2(ϕλ) is bounded inL∞(0, T ;H),
independently of λ ∈ (0,Λ]. Moreover, ϕ0 ∈ D(B) ⊂ L∞(Ω). Applying the classical results of [34,
Chap. 7], we therefore can infer that ‖ϕλ‖L∞(Q) is bounded independently of λ ∈ (0,Λ]. Hence,
ϕλ → ϕ weakly-star in L∞(Q), and the lower semicontinuity of norms yields the assertion.

Remark 2.5. The assumptions on B2σ made in (ii), and the condition (2.28) we also used in the
second part of the proof, are not in contradiction with each other. In fact, the former implies the latter.
Indeed, in this case, V σ

B = H1
0 (Ω) or V σ

B = H1(Ω), and therefore it holds for every monotone and
Lipschitz continuous function ψ vanishing at the origin that for every v ∈ V 2σ

B ⊂ H2(Ω) we have
ψ(v) ∈ H1(Ω), as well as

(B2σv, ψ(v)) = (−∆v, ψ(v)) =

∫
Ω

ψ′(v) |∇v|2 ≥ 0.

Moreover, in both (i) and (ii), the Laplacian can be replaced by more general second-order elliptic
operators in divergence form with smooth coefficients complemented with more general zero boundary
conditions. Furthermore, regarding A in (i), even higher order operators can be considered provided
that the assumptions on ρ are modified accordingly. For instance, one can take the plate operator
A = ∆2, assuming as domain the set of v ∈ H4(Ω) satisfying suitable boundary conditions. Two
possibilities are v = ∂nv = 0 and ∂nv = ∂n∆v = 0. In both cases, V ρ

A ⊂ H4ρ(Ω), and then the
condition V ρ

A ⊂ L∞(Ω) used in the above proof is satisfied if ρ > 3/8.
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Remark 2.6. If condition (GB) is fulfilled, then it follows from the assumptions (F2)–(F4) that, by
possibly taking a larger constant K1 > 0, it holds the global bound

max
0≤i≤3

‖F (i)
1 (ϕ)‖L∞(Q) + max

0≤i≤3
‖F (i)

2 (ϕ)‖L∞(Q) + max
0≤i≤2

‖`(i)(ϕ)‖L∞(Q) ≤ K1 (2.37)

whenever (ϑ, ϕ) = S(u) for some u ∈ UR.

The next step in our analysis is to show that under the condition (GB) a rather strong stability estimate
holds true for the solutions to the state system, which constitutes an important preparation for the later
proof of Fréchet differentiability. We have, however, to make a further assumption:

(A7) V σ
B ∩ L∞(Ω) is dense in V σ

B .

The condition (A7) is, for example, fulfilled if V σ
B coincides with one of the Sobolev–Slobodeckij spaces

Hs(Ω) for s > 0. We combine it with (GB) to prove the lemma below. Similar results were established
in [11, Prop. 2.4 and Prop. 2.9] under an assumption close to (2.28).

Lemma 2.7. Suppose that the conditions (F1)–(F4), (A1)–(A4), (A6)–(A7), and (GB) are satisfied.
Then, for every u ∈ UR, the solution (ϑ, ϕ) to the state system satisfies the variational equation

(∂tϕ(t), v) + (Bσϕ(t), Bσv) + (F ′(ϕ(t)), v) = (`(ϕ(t))ϑ(t), v)

for a.e. t ∈ (0, T ) and all v ∈ V σ
B . (2.38)

Moreover, by possibly enlarging the constant K1 that appears in (2.25) and (2.37), we have the esti-
mate

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V σB )∩L∞(0,T ;V 2σ
B ) ≤ K1 . (2.39)

In particular, (ϑ, ϕ) is a strong solution to the state system.

Proof. By recalling (GB), we set δ := min{aR − r−, r+ − bR}. Take now an arbitrary w ∈ V σ
B ∩

L∞(Ω), and let ε0 > 0 be such that ε0‖w‖L∞(Ω) ≤ δ/2. Then, v := ϕ(t) + εw is for every
ε ∈ (0, ε0) an admissible test function in (2.22), and F1(v) ∈ L1(Ω). By using it and then dividing
by −ε, we obtain (for a.a. t ∈ (0, T ))(

∂tϕ(t), w
)

+
(
Bσϕ(t), Bσw

)
+

∫
Ω

F1(ϕ(t) + εw)− F1(ϕ(t))

ε

+
(
F ′2(ϕ(t)), w

)
≥
(
`(ϕ(t))ϑ(t), w

)
.

Since r− + δ/2 ≤ ϕ(t) + εw ≤ r+ − δ/2 for every ε ∈ (0, ε0), and since ϕ(t) + εw converges to
ϕ(t) in the strong topology of V σ

B ∩ L∞(Ω) as ε↘ 0, we immediately deduce that(
∂tϕ(t), w

)
+
(
Bσϕ(t), w

)
+
(
F ′1(ϕ(t)), w

)
+
(
F ′2(ϕ(t)), w

)
≥
(
`(ϕ(t))ϑ(t), w

)
.

By changing w into −w, we obtain the opposite inequality, and thus equality. Finally, by accounting
for (A7), we can remove the boundedness assumption on the test function.

Let us come to (2.39). A part of it is already given by (2.25). To derive the maximal space regularity,
we notice that (2.38) can be written as

B2σϕ = g := `(ϕ)ϑ− ∂tϕ− F ′(ϕ) in V −σB , a.e. in (0, T ),

and that g is bounded in L∞(0, T ;H) by a constant that only depends on R and the data thanks to
(2.25) and (2.37).
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We derive the following result.

Theorem 2.8. Suppose that the conditions (F1)–(F4), (A1)–(A4), (A6)–(A7), and (GB) are satisfied.
Then there is a constant K2 > 0, which depends only on R and the data of the state system, such
that the following holds true: whenever (ϑi, ϕi) = S(ui), i = 1, 2, for some controls u1, u2 ∈ UR,
then, for every t ∈ (0, T ],

‖ϑ1 − ϑ2‖H1(0,t;H)∩L∞(0,t;V ρA) + ‖ϕ1 − ϕ2‖W 1,∞(0,t;H)∩H1(0,t;V σB )

≤ K2 ‖u1 − u2‖L2(0,t;H). (2.40)

Proof. Since (GB) is fulfilled, the global bounds (2.25) and (2.37) are satisfied for (ϑi, ϕi), i = 1, 2.
Moreover, by Lemma 2.7, we can replace the variational inequality (2.22) by the variational equa-
tion (2.38). Now let ϑ := ϑ1 − ϑ2, ϕ := ϕ1 − ϕ2, and u := u1 − u2. Then it is easily seen that
(ϑ, ϕ) is a strong solution to the system

∂tϑ+ A2ρϑ+ (`(ϕ1)− `(ϕ2))∂tϕ1 + `(ϕ2)∂tϕ = u in Q, (2.41)

∂tϕ+B2σϕ+ F ′(ϕ1)− F ′(ϕ2) = (`(ϕ1)− `(ϕ2))ϑ1 + `(ϕ2)ϑ in Q, (2.42)

ϑ(0) = 0, ϕ(0) = 0, in Ω. (2.43)

To begin with, we test (2.41) by ϑ and (2.42) by ∂tϕ ∈ L2(0, T ;V σ
B ), add the resulting equations and

integrate over Ω× (0, t), where t ∈ (0, T ). Adding the same term 1
2
‖ϕ(t)‖2 =

∫ t
0

∫
Ω
ϕ∂tϕ to both

sides of the resulting identity and noting a cancellation, we arrive at the equation

1

2
‖ϑ(t)‖2 +

1

2
‖ϕ(t)‖2

V σB
+

∫ t

0

∫
Ω

|Aρϑ|2 +

∫ t

0

∫
Ω

|∂tϕ|2

=

∫ t

0

∫
Ω

uϑ −
∫ t

0

∫
Ω

ϑ(`(ϕ1)− `(ϕ2))∂tϕ1 +

∫ t

0

∫
Ω

(`(ϕ1)− `(ϕ2))ϑ1 ∂tϕ

−
∫ t

0

∫
Ω

(
F ′(ϕ1)− F ′(ϕ2)

)
∂tϕ +

∫ t

0

∫
Ω

ϕ∂tϕ =:
5∑
j=1

Ij , (2.44)

with obvious notation. We estimate the terms on the right-hand side individually, using the Young and
Hölder inequalities, the embedding conditions of (A4), as well as the global bounds (2.25) and (2.37),
repeatedly without further reference. In this process, Ci, i ∈ N, denote constants that depend only on
R and the data of the state system. Clearly, we have

|I1| ≤
1

2

∫ t

0

∫
Ω

ϑ2 +
1

2

∫ t

0

∫
Ω

|u|2 . (2.45)

Moreover, for every δ > 0 (which is yet to be specified) it follows that

|I2| ≤ C1

∫ t

0

‖ϑ(s)‖L4(Ω) ‖ϕ(s)‖L4(Ω) ‖∂tϕ1(s)‖ ds

≤ δ

∫ t

0

‖ϑ(s)‖2
V ρA
ds +

C2

δ

∫ t

0

‖∂tϕ1(s)‖2
V σB
‖ϕ(s)‖2

V σB
ds . (2.46)

In addition, we see that

|I3| ≤ C3

∫ t

0

‖ϑ1(s)‖L4(Ω) ‖ϕ(s)‖L4(Ω) ‖∂tϕ(s)‖ ds

≤ δ

∫ t

0

|∂tϕ|2 +
C4

δ

∫ t

0

‖ϑ1(s)‖2
V ρA
‖ϕ(s)‖2

V σB
ds . (2.47)
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Finally, owing to the Lipschitz continuity of F ′ in [aR, bR], it turns out that

|I4|+ |I5| ≤ δ

∫ t

0

∫
Ω

|∂tϕ|2 +
C5

δ

∫ t

0

∫
Ω

|ϕ|2 . (2.48)

Now observe that the mapping s 7→ ‖ϑ1(s)‖2
V ρA

+ ‖∂tϕ1(s)‖2
V σB

belongs by (2.25) to L1(0, T ).

Hence, choosing δ = 1/4, we can infer from Gronwall’s lemma that for every t ∈ (0, T ) we have the
estimate

‖ϑ‖L∞(0,t;H)∩L2(0,t;V ρA) + ‖ϕ‖H1(0,t;H)∩L∞(0,t;V σB ) ≤ C6 ‖u‖L2(0,t;H) . (2.49)

In the next estimate, we argue formally, noting that the arguments can be made rigorous by using,
e.g., finite differences in time and the fact that ϑ(0) = ϕ(0) = 0. Indeed, we formally differentiate
(2.42) with respect to time to obtain the identity

∂ttϕ+B2σ∂tϕ+ (F ′′(ϕ1)− F ′′(ϕ2))∂tϕ1 + F ′′(ϕ2)∂tϕ

= (`′(ϕ1)− `′(ϕ2))ϑ1 ∂tϕ1 + `′(ϕ2)ϑ1 ∂tϕ+ ∂tϑ1(`(ϕ1)− `(ϕ2))

+ ϑ `′(ϕ2)∂tϕ2 + `(ϕ2)∂tϑ . (2.50)

Let us add ∂tϕ to both sides of (2.50). Then, we (formally) test (2.41) by ∂tϑ and (2.50) by ∂tϕ and
add the resulting equations. After a cancellation of terms, we obtain the identity∫ t

0

∫
Ω

|∂tϑ|2 +
1

2
‖Aρϑ(t)‖2 +

1

2
‖∂tϕ(t)‖2 +

∫ t

0

‖∂tϕ(s)‖2
V σB
ds

=

∫ t

0

∫
Ω

u ∂tϑ −
∫ t

0

∫
Ω

(`(ϕ1)− `(ϕ2))∂tϕ1∂tϑ −
∫ t

0

∫
Ω

(F ′′(ϕ1)− F ′′(ϕ2))∂tϕ1∂tϕ

+

∫ t

0

∫
Ω

(1− F ′′(ϕ2))|∂tϕ|2 +

∫ t

0

∫
Ω

(`′(ϕ1)− `′(ϕ2))ϑ1∂tϕ1∂tϕ +

∫ t

0

∫
Ω

`′(ϕ2)ϑ1|∂tϕ|2

+

∫ t

0

∫
Ω

∂tϑ1(`(ϕ1)− `(ϕ2))∂tϕ +

∫ t

0

∫
Ω

ϑ `′(ϕ2)∂tϕ2∂tϕ =:
8∑
j=1

Jj , (2.51)

with obvious notation. We estimate the terms on the right-hand side individually, using the Young and
Hölder inequalities, the embeddings from (A4), and the estimates (2.25), (2.37), and (2.49) without
further reference. Again, we denote by Ci > 0, i ∈ N, constants that depend only on R and the data.

Now let δ > 0 be arbitrary (to be chosen later). We obviously have

|J1|+ |J4| ≤ δ

∫ t

0

∫
Ω

|∂tϑ|2 + C1

(
1 + δ−1

)∫ t

0

∫
Ω

|u|2. (2.52)

Moreover, it is clear that

|J2| ≤ C2

∫ t

0

‖∂tϑ(s)‖ ‖∂tϕ1(s)‖L4(Ω) ‖ϕ(s)‖L4(Ω) ds

≤ δ

∫ t

0

∫
Ω

|∂tϑ|2 +
C3

δ
‖ϕ‖2

L∞(0,t;V σB )

∫ t

0

‖∂tϕ1(s)‖2
V σB
ds

≤ δ

∫ t

0

∫
Ω

|∂tϑ|2 +
C4

δ

∫ t

0

∫
Ω

|u|2 . (2.53)
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Also, using the Lipschitz continuity of F ′′ in [aR, bR] and (2.49) once more, we infer that

|J3| ≤ C5

∫ t

0

‖ϕ(s)‖L4(Ω) ‖∂tϕ1(s)‖L4(Ω) ‖∂tϕ(s)‖ ds

≤ C6 ‖ϕ‖L∞(0,t;V σB ) ‖ϕ1‖H1(0,t;V σB ) ‖ϕ‖H1(0,t;H)

≤ C7

∫ t

0

∫
Ω

|u|2 . (2.54)

Similarly, in view of (F4) we observe that

|J5| ≤ C8

∫ t

0

‖ϕ(s)‖L4(Ω) ‖ϑ1(s)‖L4(Ω) ‖∂tϕ1(s)‖L4(Ω) ‖∂tϕ(s)‖L4(Ω) ds

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C9

δ
‖ϑ1‖2

L∞(0,t;V ρA) ‖ϕ1‖2
H1(0,t;V σB ) ‖ϕ‖2

L∞(0,t;V σB )

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C10

δ

∫ t

0

∫
Ω

|u|2 . (2.55)

We also have

|J6| ≤ C11

∫ t

0

‖ϑ1(s)‖L4(Ω) ‖∂tϕ(s)‖L4(Ω) ‖∂tϕ(s)‖ ds

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C12

δ
‖ϑ1‖2

L∞(0,t;V ρA)

∫ t

0

‖∂tϕ(s)‖2 ds

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C13

δ

∫ t

0

∫
Ω

|u|2 . (2.56)

Moreover, it turns out that

|J7| ≤ C14

∫ t

0

‖∂tϑ1(s)‖ ‖ϕ(s)‖L4(Ω) ‖∂tϕ(s)‖L4(Ω) ds

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C15

δ
‖∂tϑ1‖2

L2(0,t;H) ‖ϕ‖2
L∞(0,t;V σB )

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C16

δ

∫ t

0

∫
Ω

|u|2 . (2.57)

Finally, we deduce that

|J8| ≤ C17

∫ t

0

‖ϑ(s)‖ ‖∂tϕ2(s)‖L4(Ω) ‖∂tϕ(s)‖L4(Ω) ds

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C18

δ
‖ϑ‖2

L∞(0,t;H)

∫ t

0

‖∂tϕ2(s)‖2
V σB
ds

≤ δ

∫ t

0

‖∂tϕ(s)‖2
V σB
ds +

C19

δ

∫ t

0

∫
Ω

|u|2 . (2.58)

Summarizing the estimates (2.51)–(2.58), and choosing δ > 0 small enough, we have thus shown the
estimate

‖ϑ‖2
H1(0,t;H)∩L∞(0,t;V ρA) + ‖ϕ‖2

W 1,∞(0,t;H)∩H1(0,t;V σB ) ≤ C20

∫ t

0

∫
Ω

|u|2 . (2.59)

This concludes the proof of the assertion.
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3 Fréchet differentiability of S

In this section, we aim to show the Fréchet differentiability of the control-to-state mapping S between
suitable Banach spaces. To this end, we fix some u ∈ UR and set (ϑ, ϕ) = S(u). We then consider
the linearized problem

∂tη + `′(ϕ) ∂tϕ ξ + `(ϕ)∂tξ + A2ρη = h in Q, (3.1)

∂tξ +B2σξ + F ′′(ϕ)ξ = `′(ϕ)ϑ ξ + `(ϕ)η in Q, (3.2)

η(0) = ξ(0) = 0 in Ω. (3.3)

The expectation is that if a Fréchet derivative DS(u) of S at u exists, then, for a given direction h,
it should satisfy DS(u)[h] = (η, ξ), where (η, ξ) is the solution to (3.1)–(3.3). We first show the
following result.

Theorem 3.1. Suppose that the general assumptions (F1)–(F4), (A1)–(A4) and (A6) as well as (GB)
are fulfilled, and let u ∈ UR be arbitrary and (ϑ, ϕ) = S(u). Then the linearized system (3.1)–(3.3)
has for every h ∈ L2(Q) a unique solution (η, ξ) such that

η ∈ H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ), (3.4)

ξ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

B ). (3.5)

Moreover, the linear mapping h 7→ (η, ξ) is continuous as a mapping between the spaces L2(Q) and(
H1(0, T ;H)∩L∞(0, T ;V ρ

A)∩L2(0, T ;V 2ρ
A )
)
×
(
(H1(0, T ;H)∩L∞(0, T ;V σ

B )∩L2(0, T ;V 2σ
B )
)
.

Proof. We use a Faedo–Galerkin method. To this end, let (see (2.2)) {ej}j∈N and {e′j}j∈N be the
orthonormalized eigenfunctions ofA andB, respectively. We define the n-dimensional spaces Vn :=
span{e1, . . . , en} and V ′n := span{e′1, . . . , e′n} and search for every n ∈ N functions of the form

ηn(x, t) =
n∑
j=1

aj(t)ej(x), ξn(x, t) =
n∑
j=1

bj(t)e
′
j(x),

such that

(∂tηn, v) + (Aρηn, A
ρv) + (`(ϕ)∂tξn, v) = −(`′(ϕ) ∂tϕ ξn, v) + (h, v)

for every v ∈ Vn and a.e. in (0, T ), (3.6)

(∂tξn, v) + (Bσξn, B
σv) + (F ′′(ϕ)ξn, v) = (`′(ϕ)ϑ ξn, v) + (`(ϕ)ηn, v)

for every v ∈ V ′n and a.e. in (0, T ), (3.7)

ηn(0) = ξn(0) = 0. (3.8)

We choose v = e′k, 1 ≤ k ≤ n, in (3.7), which, thanks to the orthogonality of the eigenfunctions,
leads to n explicit first-order ordinary differential equations with leading terms ∂tbk, 1 ≤ k ≤ n.
Next, we insert v = ek, 1 ≤ k ≤ n, in (3.6), and we substitute the explicit expressions for ∂tbk,
1 ≤ k ≤ n, in the terms (`(ϕ)∂tξn, ek) for k = 1, ..., n. By doing this, we obtain from (3.6)–
(3.8) a standard initial value problem for a linear system of 2n ordinary differential equations in the
unknowns a1, . . . , an, b1, . . . , bn. Since all of the occurring coefficient functions belong to L2(0, T ),
it follows from Carathéodory’s theorem the existence of a unique solution (a1, . . . , an, b1, . . . , bn) ∈
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Optimal control of fractional Caginalp systems 15

H1(0, T ;R2n) which specifies the unique solution (ηn, ξn) ∈ (H1(0, T ;Vn) × H1(0, T ;V ′n)) to
(3.6)–(3.8).

In the following, we derive some a priori estimates for the Galerkin approximations. In this process,
we denote by Ci > 0, i ∈ N, constants that may depend on R and the data of the state system, but
not on n ∈ N. We recall that Remark 2.6 applies to ϕ. To begin with, we insert v = ηn in (3.6) and
v = ∂tξn in (3.7), and add the results, which leads to a cancellation of terms. Then, we integrate over
time and add to both sides of the resulting identity the same term 1

2
‖ξn(t)‖2 =

∫ t
0

∫
Ω
ξn∂tξn. We then

obtain the equation

1

2
‖ηn(t)‖2 +

1

2
‖ξn(t)‖2

V σB
+

∫ t

0

∫
Ω

|Aρηn|2 +

∫ t

0

∫
Ω

|∂tξn|2

=

∫ t

0

∫
Ω

hηn −
∫ t

0

∫
Ω

`′(ϕ) ∂tϕ ξnηn −
∫ t

0

∫
Ω

F ′′(ϕ)ξn ∂tξn

+

∫ t

0

∫
Ω

`′(ϕ)ϑ ξn ∂tξn +

∫ t

0

∫
Ω

ξn ∂tξn =:
5∑
j=1

Lj, (3.9)

with obvious meaning. Let δ > 0 be arbitrary (to be specified later). At first, it is readily seen that

|L1|+ |L3|+ |L5| ≤
1

2

∫ t

0

∫
Ω

(|h|2 + |ηn|2) + δ

∫ t

0

∫
Ω

|∂tξn|2 +
C1

δ

∫ t

0

∫
Ω

|ξn|2 . (3.10)

Moreover, we observe that

|L2| ≤ C2

∫ t

0

‖∂tϕ(s)‖L4(Ω) ‖ξn(s)‖L4(Ω) ‖ηn(s)‖ ds

≤ C3

∫ t

0

∫
Ω

|ηn|2 + C4

∫ t

0

‖∂tϕ(s)‖2
V σB
‖ξn(s)‖2

V σB
ds . (3.11)

Finally, we have the estimate

|L4| ≤ C5

∫ t

0

‖ϑ(s)‖L4(Ω) ‖ξn(s)‖L4(Ω) ‖∂tξn(s)‖ ds

≤ δ

∫ t

0

∫
Ω

|∂tξn|2 +
C6

δ

∫ t

0

‖ϑ(s)‖2
V ρA
‖ξn(s)‖2

V σB
ds . (3.12)

Now observe that the mapping s 7→ ‖∂tϕ(s)‖2
V σB

+ ‖ϑ(s)‖2
V ρA

is known to belong to L1(0, T ).

Hence, combining (3.9)–(3.11), and choosing δ > 0 small enough, we obtain from Gronwall’s lemma
the estimate

‖ηn‖L∞(0,T ;H)∩L2(0,T ;V ρA) + ‖ξn‖H1(0,T ;H)∩L∞(0,T ;V σB ) ≤ C7‖h‖L2(0,T ;H) . (3.13)

From (3.13) we can draw some consequences. Namely, invoking the general bounds (2.25) and (2.37),
as well as the embeddings given by (A4), we can easily verify that

‖`′(ϕ) ∂tϕ ξn + `(ϕ) ∂tξn‖L2(0,T ;H) ≤ C8‖h‖L2(0,T ;H),

‖`′(ϕ)ϑ ξn + `(ϕ) ηn − F ′′(ϕ) ξn‖L2(0,T ;H) ≤ C9‖h‖L2(0,T ;H).
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But then we may insert first v = ∂tηn and then v = A2ρηn in (3.6) to conclude that

‖ηn‖H1(0,T ;H)∩L∞(0,T ;V ρA)∩L2(0,T ;V 2ρ
A ) ≤ C10‖h‖L2(0,T ;H). (3.14)

Likewise, by inserting v = B2σξn in (3.7), we find that

‖ξn‖H1(0,T ;H)∩L∞(0,T ;V σB )∩L2(0,T ;V 2σ
B ) ≤ C11‖h‖L2(0,T ;H). (3.15)

Hence, there is a pair (η, ξ) such that (first only for a subsequence, but, by the uniqueness of the limit,
eventually for the entire sequence) we have the convergence properties

ηn → η weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ),

ξn → ξ weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

A ).

It is then a standard matter (which needs no repetition here) to show that (η, ξ) is a strong solution
to the linearized system (3.1)–(3.3), and the validity of the assertion concerning the continuity of the
mapping h 7→ (η, ξ) follows from (3.14) and (3.15) by using the semicontinuity properties of norms.

It remains to show the uniqueness of the solution. To this end, let (ηi, ξi), i = 1, 2, be two solutions
enjoying the regularity properties (3.4) and (3.5), and let η := η1 − η2, ξ := ξ1 − ξ2. Then (η, ξ) is a
strong solution to the system (3.1)–(3.3) with h = 0. Repeating the a priori estimates leading to (3.13)
for the continuous problem, we obtain an estimate for (η, ξ) which resembles (3.13), but this time with
h = 0 on the right-hand side. Thus, η = ξ = 0. This concludes the proof of the assertion.

We are now ready to prove the Fréchet differentiability of the control-to-state operator. To be able to
perform this analysis, we need a slightly stronger embedding condition than that of assumption (A4).
We have to postulate:

(A8) The embeddings V 2ρ
A ⊂ L6(Ω) and V σ

B ⊂ L6(Ω) are continuous.

Remark 3.2. The second condition is more restrictive than the first one. Indeed, ifA = B = −∆ with
zero Dirichlet or Neumann conditions, then V σ

B ⊂ H2σ(Ω) ⊂ L6(Ω) if σ ≥ 1/2, by (1.19). On the
other hand, V 2ρ

A ⊂ H4ρ(Ω) ⊂ L6(Ω) provided that ρ ≥ 1/4. Notice that V ρ
A ⊂ L4(Ω) if ρ ≥ 3/8

(see also Remark 2.2), so that in this case the postulate for A in (A8) is not more restrictive than that
required in (A4).

With these preparations, the road is paved for the proof of Fréchet differentiability.

Theorem 3.3. Suppose that the conditions (F1)–(F4), (A1)–(A4), (A6)–(A8), and (GB) are fulfilled.
Then the control-to-state operator S is Fréchet differentiable on UR as a mapping from L∞(Q) into
the Banach space

Y :=
(
H1(0, T ;V −ρA )∩C0([0, T ];H)∩L2(0, T ;V ρ

A)
)
×
(
H1(0, T ;H)∩L∞(0, T ;V σ

B )
)
. (3.16)

Moreover, if u ∈ UR and (ϑ, ϕ) = S(u), then the Fréchet derivative DS(u) ∈ L(L∞(Q),Y) of S
at u, applied to h ∈ L∞(Q), satisfies DS(u)[h] = (η, ξ), where (η, ξ) is the unique solution of
(3.1)–(3.3).
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Proof. Let u ∈ UR be arbitrary and (ϑ, ϕ) = S(u). Since UR is open, there is some Λ > 0 such
that u+ h ∈ UR whenever ‖h‖L∞(Q) ≤ Λ. In the following, we only consider such perturbations h.
For any such h, we set (ϑh, ϕh) = S(u + h), and we denote by (ηh, ξh) the unique solution to the
linearized system (3.1)–(3.3) associated with h. Moreover, we put

yh := ϑh − ϑ− ηh, zh := ϕh − ϕ− ξh.

Since the linear mapping h 7→ (ηh, ξh) is by Theorem 3.1 continuous from L∞(Q) into Y, it suffices
to show that there is a mapping Z : (0,+∞)→ (0,+∞) such that

‖(yh, zh)‖Y ≤ Z(‖h‖L∞(Q)) and lim
s↘0

Z(s)

s
= 0. (3.17)

To begin with, note that (yh, zh) satisfies the regularity properties (see also (2.39))

yh ∈ H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ), (3.18)

zh ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L2(0, T ;V 2σ

B ). (3.19)

Moreover, (ϑ, ϕ) and (ϑh, ϕh) satisfy the global estimates (2.25) and (2.37), and from (2.40) we have
for all t ∈ (0, T ] the estimate

‖ϑh − ϑ‖H1(0,t;H)∩L∞(0,t;V ρA) + ‖ϕh − ϕ‖W 1,∞(0,t;H)∩H1(0,t;V σB ) ≤ K2 ‖h‖L2(0,t;H) . (3.20)

In the following, we denote by C > 0 constants that may depend on R and the data of the state
system, but not on the special choice of h ∈ L∞(Q) with u+ h ∈ UR. Observe that the meaning of
C may change from line to line within formulas.

At this point, we observe that Taylor’s theorem with integral remainder shows that we have almost
everywhere in Q the identities

`(ϕh) = `(ϕ) + `′(ϕ)(ϕh − ϕ) + (ϕh − ϕ)2Rh
1 , (3.21)

F ′(ϕh) = F ′(ϕ) + F ′′(ϕ)(ϕh − ϕ) + (ϕh − ϕ)2Rh
2 , (3.22)

with the remainders

Rh
1 =

∫ 1

0

(1− s)`′′(ϕ+ s(ϕh − ϕ)) ds, Rh
2 =

∫ 1

0

(1− s)F ′′′(ϕ+ s(ϕh − ϕ)) ds .

By (F2)–(F4), (GB) and the boundedness of F ′′′ in [aR, bR], we have

‖Rh
1‖L∞(Q) + ‖Rh

2‖L∞(Q) ≤ C. (3.23)

Now observe that yh and zh are strong solutions to the system

∂ty
h + A2ρyh = Qh

1 in Q, (3.24)

∂tz
h +B2σzh = Qh

2 in Q, (3.25)

yh(0) = zh(0) = 0 in Ω, (3.26)

DOI 10.20347/WIAS.PREPRINT.2725 Berlin 2020



P. Colli, G. Gilardi, J. Sprekels 18

where simple algebraic manipulations using (3.21) and (3.22) show that

Qh
1 = −(`(ϕh)− `(ϕ))(∂tϕ

h − ∂tϕ)− `(ϕ)∂tz
h − `′(ϕ)zh ∂tϕ−Rh

1 (ϕh − ϕ)2 ∂tϕ, (3.27)

Qh
2 = (`(ϕh)− `(ϕ))(ϑh − ϑ) + `(ϕ)yh + ϑ `′(ϕ)zh + ϑRh

1 (ϕh − ϕ)2 − F ′′(ϕ)zh

−Rh
2 (ϕh − ϕ)2 . (3.28)

Now we test (3.24) by yh and (3.25) by ∂tz
h, add the results (whereby two terms cancel), and add

the same term 1
2
‖zh(t)‖2 =

∫ t
0

∫
Ω
zh∂tz

h to both sides of the resulting identity. Since the terms
involving the product yh∂tzh cancel out, we obtain that

1

2
‖yh(t)‖2 +

1

2
‖zh(t)‖2

V σB
+

∫ t

0

∫
Ω

|∂tzh|2 +

∫ t

0

∫
Ω

|Aρyh|2

= −
∫ t

0

∫
Ω

(`(ϕh)− `(ϕ))(∂tϕ
h − ∂tϕ) yh −

∫ t

0

∫
Ω

`′(ϕ) ∂tϕ z
h yh

−
∫ t

0

∫
Ω

Rh
1 (ϕh − ϕ)2 ∂tϕy

h +

∫ t

0

∫
Ω

(`(ϕh)− `(ϕ))(ϑh − ϑ) ∂tz
h

+

∫ t

0

∫
Ω

ϑ `′(ϕ)zh ∂tz
h +

∫ t

0

∫
Ω

ϑRh
1 (ϕh − ϕ)2 ∂tz

h

+

∫ t

0

∫
Ω

(1− F ′′(ϕ))zh ∂tz
h −

∫ t

0

∫
Ω

Rh
2 (ϕh − ϕ)2 ∂tz

h =:
8∑
j=1

Mj, (3.29)

with obvious meaning. Let δ > 0 be arbitrary (to be specified later). We estimate the terms on the
right-hand side individually, using the Young and Hölder inequalities, the global bounds (2.25), (2.37)
and (3.23), the stability estimate (3.20), as well as the embedding conditions (A4) and (A8), repeatedly
without further reference. Here, for the sake of brevity, we often omit the argument s of the involved
functions. At first, we have

|M1| ≤ C

∫ t

0

‖ϕh − ϕ‖L4(Ω) ‖∂tϕh − ∂tϕ‖L4(Ω) ‖yh‖ ds

≤ C ‖ϕh − ϕ‖2
L∞(0,t;V σB ) ‖ϕh − ϕ‖2

H1(0,t;V σB ) +

∫ t

0

‖yh‖2 ds

≤ C ‖h‖4
L2(0,t;H) +

∫ t

0

‖yh‖2 ds . (3.30)

Moreover, we see that

|M2| ≤ C

∫ t

0

‖∂tϕ‖L4(Ω) ‖zh‖L4(Ω) ‖yh‖ ds

≤ C

∫ t

0

‖∂tϕ‖V σB
(
‖yh‖2 + ‖zh‖2

V σB

)
ds, (3.31)

as well as

|M3| ≤ C

∫ t

0

∫
Ω

‖ϕh − ϕ‖2
L6(Ω) ‖∂tϕ‖L6(Ω) ‖yh‖ ds

≤ C ‖ϕh − ϕ‖4
L∞(0,T ;V σB ) ‖ϕ‖2

H1(0,T ;V σB ) +

∫ t

0

‖yh‖2 ds

≤ C ‖h‖4
L2(0,t;H) +

∫ t

0

‖yh‖2 ds . (3.32)
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Also, it follows that

|M4| ≤ C

∫ t

0

‖ϕh − ϕ‖L4(Ω) ‖ϑh − ϑ‖L4(Ω) ‖∂tzh‖ ds

≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ
‖ϕh − ϕ‖2

L∞(0,t;V σB ) ‖ϑh − ϑ‖2
L∞(0,t;V ρA)

≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ
‖h‖4

L2(0,t;H) , (3.33)

and that

|M5| ≤ C

∫ t

0

‖ϑ‖L4(Ω) ‖zh‖L4(Ω) ‖∂tzh‖ ds ≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ

∫ t

0

‖zh‖2
V σB
ds , (3.34)

as well as

|M6| ≤ C

∫ t

0

‖ϑ‖L6(Ω) ‖ϕh − ϕ‖2
L6(Ω) ‖∂tzh‖ ds

≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ
‖ϕh − ϕ‖4

L∞(0,t;V σB )

≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ
‖h‖4

L2(0,t;H) . (3.35)

Finally, we infer that

|M7| ≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ

∫ t

0

‖zh‖2 ds (3.36)

and

|M8| ≤ C

∫ t

0

‖ϕh − ϕ‖2
L4(Ω) ‖∂tzh‖ ds ≤ δ

∫ t

0

‖∂tzh‖2 ds +
C

δ
‖h‖4

L2(0,t;H) . (3.37)

At this point, we observe that the map s 7→ ‖∂tϕ(s)‖V σB belongs to L2(0, T ). Thus, choosing δ > 0
small enough and combining the estimates (3.29)–(3.37), we conclude that

‖yh‖L∞(0,T ;H)∩L2(0,T ;V ρA) + ‖zh‖H1(0,T ;H)∩L∞(0,T ;V σB ) ≤ C ‖h‖2
L2(0,T ;H) . (3.38)

With this estimate shown, it is a simple comparison argument in (3.24) (which we may leave to the
reader) to verify that also

‖yh‖H1(0,T ;V −ρA ) ≤ C ‖h‖2
L2(0,T ;H) .

Now observe that H1(0, T ;V −ρA ) ∩ L2(0, T ;V ρ
A) is continuously embedded in C0([0, T ];H), so

that (3.17) is satisfied with a function of the form Z(s) = Ĉs2, for a sufficiently large Ĉ > 0. This
concludes the proof of the assertion.

As an immediate consequence of Theorem 3.3, we now deduce a first necessary optimality condition
for the optimal control problem (CP).
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Corollary 3.4. Suppose that the conditions (F1)–(F4), (A1)–(A8), and (GB) hold true. Moreover, let
u ∈ Uad be an optimal control for the problem (CP) and (ϑ, ϕ) = S(u). Then, there holds the
variational inequality

β1

∫
Ω

(ϕ(T )− ϕΩ) ξ(T ) + β2

∫∫
Q

(ϕ− ϕQ) ξ + β3

∫
Ω

(ϑ(T )− ϑΩ) η(T )

+ β4

∫∫
Q

(ϑ− ϑQ) η + β5

∫∫
Q

u (u− u) ≥ 0 ∀u ∈ Uad, (3.39)

where (η, ξ) is the unique solution to the linearized system (3.1)–(3.3) associated with h = u− u.

Proof. By virtue of the quadratic form of J and Theorem 3.3, the reduced cost functional J̃(u) :=

J(S(u), u) is Fréchet differentiable on UR. Since Uad is convex, we must haveDJ̃(u)[u−u] ≥ 0 for
all u ∈ Uad. The result then follows in a standard manner from the chain rule and Theorem 3.3.

4 The optimal control problem

In this section, we investigate the optimal control problem (CP).

4.1 Existence of optimal controls

We begin our analysis of (CP) with an existence result.

Theorem 4.1. Suppose that (F1)–(F4) and (A1)–(A4) are fulfilled. Then (CP) has a solution.

Proof. We pick a minimizing sequence {un} ⊂ Uad and set (ϑn, ϕn) := S(un), for all n ∈ N. We fix
R > 0 such that Uad ⊂ UR and account for (2.25). Hence, invoking standard compactness results
(cf., e.g., [40, Sect. 8, Cor. 4] for the strong compactness), we may assume that there are u ∈ Uad

and (ϑ, ϕ) such that, at least for a subsequence,

un → u weakly-star in L∞(Q), (4.1)

ϑn → ϑ weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ),

strongly in C0([0, T ];H) and pointwise a.e. in Q, (4.2)

ϕn → ϕ weakly-star in W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ),

strongly in C0([0, T ];H) and pointwise a.e. in Q. (4.3)

We now show that (ϑ, ϕ) = S(u) which implies that the pair ((ϑ, ϕ), u) is admissible for (CP). Once
this is proved, the lower semicontinuity of norms shows that ((ϑ, ϕ), u) is an optimal pair.

At first, note that obviously ϑ(0) = ϑ0 and ϕ(0) = ϕ0. In additon, by Lipschitz continuity, F ′2(ϕn)→
F ′2(ϕ) and `(ϕn) → `(ϕ), both strongly in C0([0, T ];H). Since {`(ϕn)ϑn} is easily seen to be
bounded in L2(Q), the latter entails that `(ϕn)ϑn → `(ϕ)ϑ weakly in L2(0, T ;H).

Now, we write the time-integrated version of (2.21), written for u = un and (ϑ, ϕ) = (ϑn, ϕn),
with test functions v ∈ L2(0, T ;V ρ

A). Taking the limit as n → ∞, we find that (ϑ, ϕ) satisfies the
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time-integrated version of (2.21), which is equivalent to (2.21) itself. It remains to show the validity
of (2.22). To this end, we use the semicontinuity of F1 and (4.3), which yield that 0 ≤ F1(ϕ) ≤
lim infn→∞ F1(ϕn) a.e. in Q. Then, owing to Fatou’s lemma and to (2.25),

0 ≤
∫∫

Q

F1(ϕ) ≤ lim inf
n→∞

∫∫
Q

F1(ϕn) ≤ K1.

In particular, F1(ϕ) ∈ L1(Q). Now, the quadratic form v 7→
∫ T

0
‖Bσv(t)‖2 dt is lower semi-

continuous on L2(0, T ;V σ
B ). Thus, starting from (2.24) written for (ϑn, ϕn), we can deduce, for every

v ∈ L2(0, T ;V σ
B ), the following chain:∫ T

0

(Bσϕ(t), Bσ(ϕ(t)− v(t))) dt +

∫∫
Q

F1(ϕ)

≤ lim inf
n→∞

(∫ T

0

(Bσϕn(t), Bσ(ϕn(t)− v(t)) dt +

∫∫
Q

F1(ϕn)
)

≤ lim inf
n→∞

(∫∫
Q

(`(ϕn)ϑn − ∂tϕn − F ′2(ϕn))(ϕn − v) +

∫∫
Q

F1(v)
)

=

∫∫
Q

(`(ϕ)ϑ− ∂tϕ− F ′2(ϕ))(ϕ− v) +

∫∫
Q

F1(v) . (4.4)

In other words, (ϑ, ϕ) satisfies (2.24), which is equivalent to (2.22). This concludes the proof of the
assertion.

4.2 Necessary optimality conditions

We now turn our interest to the derivation of first-order necessary optimality conditions. To this end, we
assume that u ∈ Uad is an optimal control with associated state (ϑ, ϕ), and we assume that all of the
general assumptions (F1)–(F4), (A1)–(A8), and (GB) are satisfied. Hence, in particular, the double
obstacle potential F2obs is excluded from the consideration. We aim at eliminating the expressions
involving (η, ξ) from the variational inequality (3.39) by means of the adjoint state variables. The
adjoint system formally reads:

− ∂tq − `(ϕ)p+ A2ρq = β4(ϑ− ϑQ) in Q, (4.5)

− ∂tp− `(ϕ)∂tq +B2σp+ F ′′(ϕ)p− `′(ϕ)ϑ p = β2(ϕ− ϕQ) in Q, (4.6)

q(T ) = β3(ϑ(T )− ϑΩ), p(T ) = β1(ϕ(T )− ϕΩ)− β3`(ϕ(T ))(ϑ(T )− ϑΩ) in Ω. (4.7)

Owing to the low regularity of the final data appearing in (4.7), we cannot expect to obtain a strong
solution to this system. Indeed, it turns out that (4.6) is meaningful only in its weak form

〈−∂tp(t), v〉V σB − (`(ϕ(t))∂tq(t), v) + (Bσp(t), Bσv) + (F ′′(ϕ(t))p(t), v)

− (`′(ϕ(t))ϑ(t)p(t), v) = β2(ϕ(t)− ϕQ(t), v)

for all v ∈ V σ
B and a.e. t ∈ (0, T ). (4.8)

Another point is that, in order to derive a priori bounds, one would like to test (4.6) by p and (4.5) by
−∂tq, which makes it necessary to assume that the associated final datum belongs to V ρ

A . We thus
postulate:
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(A9) It holds β3 ϑΩ ∈ V ρ
A .

This condition is satisfied if β3 = 0 or ϑΩ ∈ V ρ
A . In the first case, there is no endpoint tracking of the

temperature in the cost functional, while in the second the regularity of the target function coincides
with that of the associated state (which makes sense). We have the following well-posedness result:

Theorem 4.2. Let the assumptions (F1)–(F4), (A1)–(A9), and (GB) be fulfilled, and let u ∈ Uad be
given with associated state (ϑ, ϕ) = S(u). Then the adjoint problem (4.5), (4.8), (4.7) has a unique
solution (p, q) such that

q ∈ H1(0, T ;H) ∩ C0([0, T ];V ρ
A) ∩ L2(0, T ;V 2ρ

A ), (4.9)

p ∈ H1(0, T ;V −σB ) ∩ C0([0, T ];H) ∩ L2(0, T ;V σ
B ). (4.10)

Proof. As in the proof of Theorem 3.1, we use a Faedo–Galerkin technique with the eigenfunctions of
the operators A and B. With the notations used there, we look for functions of the form

qn(x, t) =
n∑
j=1

aj(t)ej(x), pn(x, t) =
n∑
j=1

bj(t)e
′
j(x),

satisfying the system

− (∂tqn(t), v)− (`(ϕ(t))pn(t), v) + (Aρqn(t), Aρv) = (g4(t), v)

for all v ∈ Vn and a.e. t ∈ (0, T ), (4.11)

− (∂tpn(t), v)− (`(ϕ(t))∂tqn(t), v) + (Bσpn(t), Bσv) + (F ′′(ϕ(t))pn(t), v)

− (`′(ϕ(t))ϑ(t)pn(t), v) = (g2(t), v) for allv ∈ V ′n and a.e. t ∈ (0, T ), (4.12)

(qn(T ), v) = (g3, v) ∀ v ∈ Vn , (pn(T ), v) = (g1, v)− (`(ϕ(T ))g3, v) ∀ v ∈ V ′n , (4.13)

where we have set

g1 = β1(ϕ(T )− ϕΩ), g2 = β2(ϕ− ϕQ), g3 = β3(ϑ(T )− ϑΩ), g4 = β4(ϑ− ϑQ). (4.14)

Using an analogous argument as in the proof of Theorem 3.1, we can infer that the system (4.11)–
(4.13) enjoys a unique solution pair (qn, pn) ∈ (H1(0, T ;Vn)×H1(0, T ;V ′n)).

We now derive a priori estimates for the approximations (qn, pn), where we denote by Ci, i ∈ N,
constants that may depend on R and the data, but not on n ∈ N. To begin with, we insert v =
−∂tqn(t) in (4.11) and v = pn(t) in (4.12), add the results, and integrate over (t, T ) where t ∈
[0, T ). Noting a cancellation of two terms, and adding the same quantity 1

2
‖qn(t)‖2 = 1

2
‖qn(T )‖2 −∫ T

t

∫
Ω
qn∂tqn to both sides, we arrive at the identity

1

2
‖pn(t)‖2 +

1

2
‖qn(t)‖2

V ρA
+

∫ T

t

∫
Ω

|∂tqn|2 +

∫ T

t

∫
Ω

|Bσpn|2 +

∫ T

t

∫
Ω

F ′′1 (ϕ)p2
n

=
1

2
‖pn(T )‖2 +

1

2
‖qn(T )‖2

V ρA
−
∫ T

t

∫
Ω

g4 ∂tqn +

∫ T

t

∫
Ω

g2pn −
∫ T

t

∫
Ω

F ′′2 (ϕ)p2
n

+

∫ T

t

∫
Ω

`′(ϕ)ϑ p2
n −

∫ T

t

∫
Ω

qn∂tqn . (4.15)
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Note that the fifth term on the left-hand side of (4.15) is nonnegative due to (F1)–(F2). By means of the
Hölder and Young inequalities, we readily conclude that the sum of the five integrals on the right-hand
side, which we denote by I , satisfies

|I| ≤ 1

2

∫ T

t

∫
Ω

|∂tqn|2 + C1

(∫ T

t

∫
Ω

(
|g2|2 + |g4|2

)
+

∫ T

t

∫
Ω

(
|qn|2 + |pn|2

))
+ C2

∫ T

t

‖ϑ(s)‖L4(Ω) ‖pn(s)‖ ‖pn(s)‖L4(Ω) ds

≤ 1

2

∫ T

t

∫
Ω

|∂tqn|2 + C3

(∫ T

t

∫
Ω

(
|g2|2 + |g4|2

)
+

∫ T

t

∫
Ω

(
|qn|2 + |pn|2

))
+

1

2

∫ T

t

∫
Ω

(
|pn|2 + |Bσpn|2

)
+ C4

∫ T

t

‖ϑ(s)‖2
V ρA
‖pn(s)‖2 ds . (4.16)

It remains to estimate the final value terms. At first, note that the second identity in (4.13) just means
that pn(T ) is the H-orthogonal projection of g1 − `(ϕ(T )) g3 onto V ′n. Thus, ‖pn(T )‖ ≤ ‖g1‖ +
C5 ‖g3‖. By the same token, we have that ‖qn(T )‖ ≤ ‖g3‖. Now observe that ϑ(T ) ∈ V ρ

A . There-
fore, invoking (A9), we have g3 ∈ V ρ

A . But this entails that

‖Aρqn(T )‖2 = (qn(T ), A2ρqn(T )) = (g3, A
2ρqn(T ))

= (Aρg3, A
ρqn(T )), i.e., ‖Aρqn(T )‖ ≤ ‖Aρg3‖.

Hence, it turns out that ‖qn(T )‖V ρA ≤ ‖g3‖V ρA . Observing that the mapping s 7→ ‖ϑ(s)‖2
V ρA

belongs

to L1(0, T ), we obtain from the above estimates, using Gronwall’s lemma, that

‖qn‖H1(0,T ;H)∩L∞(0,T ;V ρA) + ‖pn‖L∞(0,T ;H)∩L2(0,T ;V σB )

≤ C6

(
‖g1‖L2(Ω) + ‖g2‖L2(Q) + ‖g3‖V ρA + ‖g4‖L2(Q)

)
∀n ∈ N. (4.17)

Next, we insert v = A2ρqn in (4.11). Using the estimate ‖qn(T )‖V ρA ≤ ‖g3‖V ρA once more, we can
infer that also

‖qn‖L2(0,T ;V 2ρ
A ) ≤ C7

(
‖g1‖L2(Ω) + ‖g2‖L2(Q) + ‖g3‖V ρA + ‖g4‖L2(Q)

)
∀n ∈ N, (4.18)

and comparison in (4.12) shows that

‖pn‖H1(0,T ;V −σB ) ≤ C8

(
‖g1‖L2(Ω) + ‖g2‖L2(Q) + ‖g3‖V ρA + ‖g4‖L2(Q)

)
∀n ∈ N. (4.19)

From the above estimates there follows the existence of a pair (q, p) such that, possibly only on a
subsequence which is still indexed by n,

qn → q weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ), (4.20)

pn → p weakly-star in H1(0, T ;V −σB ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V σ
B ). (4.21)

Moreover, by continuous embedding, q ∈ C0([0, T ];V ρ
A) and p ∈ C0([0, T ];H).

At this point, it is a standard argument (which needs no repetition here) to show that (q, p) is a solution
to the system (4.5), (4.8), (4.7). It remains to show uniqueness. To this end, let (qi, pi), i = 1, 2, be
two solutions, and q = q1 − q2, p = p1 − p2. Then (q, p) solves (4.5), (4.8), (4.7) with zero right-
hand sides. We now repeat the estimates leading to (4.17) for the continuous problem, concluding that
q = p = 0. The assertion is thus proved.
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We now can eliminate the variables (η, ξ) from the variational inequality (3.39).

Theorem 4.3. Let the assumptions (F1)–(F4), (A1)–(A9), and (GB) be fulfilled, and let u ∈ Uad be
an optimal control of problem (CP) with associated state (ϑ, ϕ) = S(u) and adjoint state (p, q). Then
it holds the variational inequality∫∫

Q

q(u− u) + β5

∫∫
Q

u(u− u) ≥ 0 ∀u ∈ Uad . (4.22)

Proof. We fix u ∈ Uad and consider the associated linearized system (3.1)–(3.3) with h = u−u. We
multiply (3.1) by q and (3.2) by p , add the results, and integrate over Q. We obtain∫∫

Q

q(u− u) =

∫∫
Q

∂tη q +

∫∫
Q

(
`′(ϕ) ∂tϕ ξ + `(ϕ) ∂tξ

)
q +

∫∫
Q

η A2ρq

+

∫∫
Q

∂tξ p +

∫ T

0

(Bσp(t), Bσξ(t)) dt

+

∫∫
Q

F ′′(ϕ) ξ p −
∫∫

Q

`′(ϕ)ϑ ξ p −
∫∫

Q

`(ϕ) η p .

By also integrating by parts with respect to time in three of the terms, we deduce that∫∫
Q

q(u− u) =

∫
Ω

(
η(T )q(T ) + `(ϕ(T ))ξ(T )q(T ) + ξ(T )p(T )

)
+

∫∫
Q

η
[
−∂tq + A2ρq − `(ϕ)p

]
−
∫ T

0

〈∂tp(t), ξ(t)〉V σB dt

+

∫ T

0

(Bσp(t), Bσξ(t)) dt +

∫∫
Q

ξ
[
−`(ϕ)∂tq + F ′′(ϕ)p− `′(ϕ)ϑ p

]
.

Thus, using the adjoint system (4.5), (4.8), (4.7), we find the identity∫∫
Q

q(u− u) = β1

∫
Ω

(ϕ(T )− ϕΩ)ξ(T ) + β2

∫∫
Q

(ϕ− ϕQ)ξ

+ β3

∫
Ω

(ϑ(T )− ϑΩ)η(T ) + β4

∫∫
Q

(ϑ− ϑQ)η .

By combining this with (3.39), we obtain (4.22).

Remark 4.4. If β5 > 0, then (4.22) just means that u is the L2(Q)-orthogonal projection of −β−1
5 q

onto Uad, i.e., we have

u = max
{
umin, min

{
−β−1

5 q, umax
}}

a.e. in Q. (4.23)

4.3 The double obstacle case

In this section, we study the case of the double obstacle potential F2obs in which F1 = I[−1,1] is
the indicator function of the interval [−1, 1] that is given by I[−1,1](r) = 0 for r ∈ [−1, 1] and
I[−1,1](r) = +∞ otherwise. Then the conditions (F1) and (F2) are fulfilled with (r−, r+) = (−1, 1).
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For the other nonlinearities F2 and ` we assume that (F3) and (F4) are valid. We then consider the
following optimal control problem:

(CP0) Minimize J((ϑ, ϕ), u) over Uad subject to the state system (2.21)–(2.23) with
F1 = I[−1,1].

Remark 4.5. Notice that the condition F1(ϕ) ∈ L1(Q) for our notion of solution can only be satisfied
for F1 = I[−1,1] if ϕ ∈ [−1, 1] almost everywhere, which in turn entails that the term involving F1(ϕ)
on the left-hand side of (2.22) vanishes.

Since we cannot expect the condition (GB) to be satisfied in this case, the control theory developed
in the previous section does not apply. We therefore argue by approximation, using the deep quench
approximation, which has proved to be successful in a number of similar situations (see, e.g., [9,10,15,
17,19,37]). The general idea behind this approach is the following: we define the logarithmic functions

h(r) :=


(1 + r) ln(1 + r) + (1− r) ln(1− r) if r ∈ (−1, 1)

2 ln(2) if r ∈ {−1, 1}
+∞ if r 6∈ [−1, 1]

(4.24)

hα(r) := αh(r) for r ∈ R and α ∈ (0, 1]. (4.25)

It is easily seen that
lim
α↘0

hα(r) = I[−1,1](r) ∀ r ∈ R. (4.26)

Moreover, h′(r) = ln(1+r
1−r ) and h′′(r) = 2

1−r2 , and thus

lim
α↘0

h′α(r) = 0 for all r ∈ (−1, 1),

lim
α↘0

(
lim
r↘−1

h′α(r)
)

= −∞, lim
α↘0

(
lim
r↗1

h′α(r)
)

= +∞. (4.27)

Hence, we may regard the graphs of the single-valued functions h′α over the interval (−1, 1) as ap-
proximations to the graph of the subdifferential ∂I[−1,1]. Observe that this is an interior approximation
defined in the interior of the domain of ∂I[−1,1] in contrast to the exterior approximation obtained via
the Moreau–Yosida approach.

In view of (4.26)–(4.27), it is near to mind to expect that the control problem (CP0) is closely related
to the control problem (which in the following will be denoted by (CPα)) that arises when in (2.22) we
choose F1 = hα for α > 0. Indeed, by virtue of Theorem 2.3, the system (2.21)–(2.23) enjoys for
both F1 = I[−1,1] and F1 = hα a solution pair (ϑ, ϕ) and (ϑα, ϕα). We introduce the corresponding
solution operators

S0 : UR 3 u 7→ (ϑ, ϕ), Sα : UR 3 u 7→ (ϑα, ϕα).

It can be expected that (ϑα, ϕα) converges in a suitable topology to (ϑ, ϕ) as α ↘ 0. Moreover,
the optimal control problem (CPα) belongs to the class of problems for which in Section 4.2 first-order
necessary optimality conditions in terms of a variational inequality and the adjoint state system have
been established. One can therefore hope to perform a passage to the limit as α ↘ 0 in the state
and the adjoint state variables in order to derive meaningful first-order necessary optimality conditions
also for (CP0).

DOI 10.20347/WIAS.PREPRINT.2725 Berlin 2020



P. Colli, G. Gilardi, J. Sprekels 26

In order to carry out this program, we now make a restrictive assumption, which still includes the
classical situation:

(A10) It holds B2σ = B = −∆ with zero Dirichlet or Neumann boundary conditions,
and A = −∆ with zero Neumann or Dirichlet boundary conditions with either
ρ > 3

4
or ρ = 1/2.

Remark 4.6. If (A10) is valid, then the conditions (A4), (A7) and (A8) are automatically satisfied.

We now assume that also the assumptions (A1)–(A3), (A5) and (A6) are fulfilled. Now observe that
under (A10) both the assumption (i) of Lemma 2.4 and the condition (2.28) are met (see Remark 2.5).
Since the functions hα satisfy the condition (2.29), we thus can conclude from Lemma 2.4(i) and its
proof that the solutions (ϑα, ϕα) to the state system with F1 = hα satisfy both the boundedness
condition (2.30) and the condition (GB) for every α > 0. Therefore, for every α > 0, there are
constants aαR, b

α
R, c

α
R such that

−1 < aαR ≤ ϕα ≤ bαR < 1 and |ϑα| ≤ cαR a.e. in Q, (4.28)

whenever (ϑα, ϕα) = Sα(u) for some u ∈ UR. In addition, as it was established in Lemma 2.7, the
variational inequality (2.22) takes for every α > 0 the form of a variational equality, namely

(∂tϕα(t), v) + (∇ϕα(t),∇v) + (h′α(ϕα(t)), v) + (F ′2(ϕα(t)), v)

= (`(ϕα(t))ϑα(t), v) for a.e. t ∈ (0, T ) and all v ∈ H1(Ω), (4.29)

and (ϑα, ϕα) is in fact a strong solution.

The approximating control problem reads:

(CPα) Minimize the cost functional (1.7) over Uad subject to the state system (2.21),
(4.29), (2.23).

We recall Remark 4.6 and state the following approximation result.

Theorem 4.7. Suppose that (F3), (F4), (A1)–(A3), (A5)–(A6), and (A10) are fulfilled, and assume that
(ϑα, ϕα) = Sα(uα) for some uα ∈ UR and α ∈ (0, 1]. Then there is some constant K3 > 0, which
depends only on R and the data, such that

‖ϑα‖H1(0,T ;H)∩L∞(0,T ;V ρA)∩L2(0,T ;V 2ρ
A )

+ ‖ϕα‖W 1,∞(0,T ;H)∩H1(0,T ;H1(Ω)) +

∫∫
Q

hα(ϕα) ≤ K3. (4.30)

Moreover, there is a sequence {αn} ⊂ (0, 1] with αn ↘ 0 such that

uαn → u weakly-star in L∞(Q), (4.31)

ϑαn → ϑ weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ),

strongly in C0([0, T ];H) and pointwise a.e. in Q, (4.32)

ϕαn → ϕ weakly-star in W 1,∞(0, T ;H) ∩H1(0, T ;H1(Ω)),

strongly in C0([0, T ];H) and pointwise a.e. in Q, (4.33)

where (ϑ, ϕ) denotes the unique solution to the state system (2.21)–(2.23) for F1 = I[−1,1] and the
control u.
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Proof. The validity of the estimate (4.30) follows from a closer inspection of the derivation of the a
priori estimates performed in [11]: indeed, by virtue of (A3) it turns out that the bounds derived there
are for F1 = hα in fact independent of α ∈ (0, 1]. Hence, there are a sequence αn ↘ 0 and u, ϑ, ϕ
satisfying (4.31)–(4.33), where the strong convergence in C0([0, T ];H) follows from [40, Sect. 8,
Cor. 4]. It remains to show that (ϑ, ϕ) = S0(u).

At first, it is easily seen that ϑ(0) = ϑ0 and ϕ(0) = ϕ0. Moreover, we observe that (4.33) entails,
by Lipschitz continuity, that `(ϕαn)→ `(ϕ) and F ′2(ϕαn)→ F ′2(ϕ), both strongly inC0([0, T ];H).
Moreover, the sequences {`(ϕαn)∂tϕαn} and {`(ϕαn)ϑαn} are bounded inL2(Q) since ` is bounded.
This entails that

`(ϕαn)∂tϕαn → `(ϕ)∂tϕ and `(ϕαn)ϑαn → `(ϕ)ϑ, both weakly in L2(Q).

Hence, we may write (2.21), with F1 = hαn and control uαn , and pass to the limit as n → ∞ to see
that (ϑ, ϕ) satisfies (2.21) with control u. It remains to show (2.22) with F1 = I[−1,1]. We are going
to prove it in the time-integrated form (2.24).

To this end, we first note that (4.30) entails that we must have ϕαn ∈ [−1, 1] a.e. in Q . Since
ϕαn → ϕ pointwise a.e. in Q, also ϕ ∈ [−1, 1] a.e. in Q and thus

∫∫
Q
I[−1,1](ϕ) = 0.

Now let v ∈ L2(0, T ;H1(Ω)) be arbitrary. If I[−1,1](v) 6∈ L1(Q), then the inequality is fulfilled since
its right-hand side is infinite. Otherwise, we have v ∈ [−1, 1] a.e. in Q and thus 0 = I[−1,1](v) ≤
hαn(v) ≤ h1(v) a.e. in Q. Since, thanks to (4.26), hαn(v)→ I[−1,1](v) pointwise a.e. in Q, we infer
from Lebesgue’s dominated convergence theorem that 0 =

∫∫
Q
I[−1,1](v) = limn→∞

∫∫
Q
hαn(v).

Therefore, using the lower semicontinuity of the quadratic form v 7→
∫∫

Q
|∇v|2 onL2(0, T ;H1(Ω)),

we can infer that∫∫
Q

I[−1,1](ϕ) +

∫∫
Q

∇ϕ · ∇(ϕ− v) ≤ lim inf
n→∞

∫∫
Q

∇ϕαn · ∇(ϕαn − v)

≤ lim inf
n→∞

(∫∫
Q

(
`(ϕαn)ϑαn − ∂tϕαn − F ′2(ϕαn)

)
(ϕαn − v) +

∫∫
Q

hαn(v)
)

=

∫∫
Q

(
`(ϕ)ϑ− ∂tϕ− F ′2(ϕ)

)
(ϕ− v) +

∫∫
Q

I[−1,1](v) .

This finishes the proof of the assertion.

Remark 4.8. Notice that a uniform (with respect to α ∈ (0, 1]) bound resembling (2.37) for F1 = hα
cannot be expected to hold true, since it may well happen that aαR ↘ −1 and/or bαR ↗ +1 as
α↘ 0, so that h′α(ϕα) and h′′α(ϕα) may become unbounded as α↘ 0.

In view of the expression (1.7) of the functional J and of Theorem 4.7, it is not difficult to argue that
optimal controls of (CPα) are “close” to optimal controls of (CP0). However, from Theorems 4.7 we
cannot infer sufficient information on the family of the minimizers of (CP0). In order to find first-order
necessary optimality conditions, we recall that in the previous section we have been able to derive
such conditions for the problem (CPα). Thus, we can hope to establish corresponding results for (CP0)
by taking the limit as α↘ 0. However, such an approach fails since the convergence property (4.31)
is too weak to pass to the limit as α ↘ 0 in the variational inequality (4.22) (written for an optimal
control uα and the corresponding adjoint state qα). For this, we seem to need a strong convergence
of {uα} in L2(Q).
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To this end, we employ a well-known technique. Let us assume that u ∈ Uad is any optimal control for
(CP0) with associated state (ϑ, ϕ) = S0(u). We associate with it the adapted cost functional

J̃((ϑ, ϕ), u) := J((ϑ, ϕ), u) +
1

2
‖u− u‖2

L2(Q) (4.34)

and a corresponding adapted optimal control problem:

(C̃Pα) Minimize the cost functional (4.34) over Uad subject to the state system (2.21)–
(2.23), where F1 = hα.

With the same direct argument as in the proof of Theorem 4.1, we can show that (C̃Pα) has a
solution. The following result indicates why the adapted control problem suits better for our intended
approximation approach.

Theorem 4.9. Suppose that (F3)–(F4), (A1)–(A3), (A5)–(A6), and (A10) are fulfilled, assume that
u ∈ Uad is an arbitrary optimal control of (CP0) with associated state (ϑ, ϕ), and let {αn} ⊂ (0, 1]
be any sequence such that αn ↘ 0 as n → ∞. Then there exist a subsequence {αnk}k∈N of

{αn}, and, for every k ∈ N, an optimal control uαnk ∈ Uad of the adapted problem (C̃Pαnk
) with

associated state (ϑαnk , ϕαnk ) such that, as k →∞,

uαnk → u strongly in L2(Q), (4.35)

and the properties (4.32) and (4.33) are satisfied correspondingly. Moreover, we have

lim
k→∞

J̃((ϑαnk , ϕαnk ), uαnk ) = J((ϑ, ϕ), u) . (4.36)

Proof. Let αn ↘ 0 as n→∞. For any n ∈ N, we pick an optimal control uαn ∈ Uad for the adapted

control problem (C̃Pαn) and denote by (ϑαn , ϕαn) the associated solution to the state system with
F1 = hαn and u = uαn . By the boundedness of Uad in L∞(Q), there is some subsequence {αnk}
of {αn} such that

uαnk → u weakly-star in L∞(Q) as k →∞, (4.37)

with some u ∈ Uad, and, thanks to Theorem 4.7, the convergence properties (4.32) and (4.33) hold
true with the pair (ϑ, ϕ) = S0(u). In particular, the pair ((ϑ, ϕ), u) is admissible for (CP0).

We now aim to prove that u = u. Once this is shown, it follows from the unique solvability of the state
system that also (ϑ, ϕ) = (ϑ, ϕ), which implies that (4.32) and (4.33) hold true with (ϑ, ϕ) replaced
by (ϑ, ϕ).

Now observe that, owing to the weak sequential lower semicontinuity of J̃, and in view of the optimality
property of ((ϑ, ϕ), u) for problem (CP0),

lim inf
k→∞

J̃((ϑαnk , ϕαnk ), uαnk ) ≥ J((ϑ, ϕ), u) +
1

2
‖u− u‖2

L2(Q)

≥ J((ϑ, ϕ), u) +
1

2
‖u− u‖2

L2(Q) . (4.38)

On the other hand, the optimality property of ((ϑαnk , ϕαnk ), uαnk ) for problem (C̃Pαnk
) yields that

for any k ∈ N we have

J̃((ϑαnk , ϕαnk ), uαnk ) = J̃(Sαnk (uαnk ), uαnk ) ≤ J̃(Sαnk (u), u) . (4.39)
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Finally, with the same argument used at the beginning of the proof of Theorem 4.7 to justify the esti-
mate (4.30), one sees that Sαnk (u) satisfies a similar bound, whence a subsequence (not relabeled)
converges to some pair (ϑ, ϕ) in the topologies specified in (4.32)–(4.33). As in the proof of the above-
mentioned theorem, one shows that (ϑ, ϕ) solves the original state system associated with u, i.e., it
coincides with S0(u). Therefore, invoking the continuity properties of the cost functional with respect
to the topologies of the spaces C0([0, T ];H) and L2(Q), we deduce from (4.39) that

lim sup
k→∞

J̃((ϑαnk , ϕαnk ), uαnk ) ≤ lim sup
k→∞

J̃(Sαnk (u), u)

= J̃(S0(u), u) = J̃((ϑ, ϕ), u) = J((ϑ, ϕ), u) . (4.40)

Combining (4.38) with (4.40), we have thus shown that 1
2
‖u−u‖2

L2(Q) = 0 , so that u = u and thus

also (ϑ, ϕ) = (ϑ, ϕ). Moreover, (4.38) and (4.40) also imply that

J((ϑ, ϕ), u) = J̃((ϑ, ϕ), u) = lim inf
k→∞

J̃((ϑαnk , ϕαnk ), uαnk )

= lim sup
k→∞

J̃((ϑαnk , ϕαnk ), uαnk ) = lim
k→∞

J̃((ϑαnk , ϕαnk ), uαnk ) ,

which proves (4.35) and (4.36) at the same time, of course along with (4.32) and (4.33). This concludes
the proof of the assertion.

We now discuss the first-order necessary optimality conditions for (C̃Pα), assuming that the gen-
eral assumptions (F3)–(F4), (A1)–(A3), (A5)–(A6), (A9) and (A10) are fulfilled. Obviously, the adjoint
system is the same as for (CPα), and Theorem 4.2 and Theorem 4.3 apply to this situation. More
precisely, the adjoint state (pα, qα) solves the variational system

− ∂tqα − `(ϕα) pα + A2ρqα = gα4 in Q, (4.41)(
−∂tpα(t), v

)
−
(
`(ϕα(t)) ∂tqα(t), v

)
+ (∇pα(t),∇v)

+ ((ψα1 (t) + ψα2 (t)) pα(t), v)− (`′(ϕα(t))ϑα(t)pα(t), v) = (gα2 (t), v)

for all v ∈ H1(Ω) and a.e. t ∈ (0, T ), (4.42)

qα(T ) = gα3 , pα(T ) = gα1 − `(ϕα(T )) gα3 in Ω, (4.43)

where, for α > 0,

ψα1 := h′′α(ϕα), ψα2 := F ′′2 (ϕα), gα1 := β1(ϕα(T )− ϕΩ), gα2 := β2(ϕα − ϕQ),

gα3 := β3(ϑα(T )− ϑΩ), gα4 := β4(ϑα − ϑQ) . (4.44)

By virtue of the general bounds (4.28), (4.30) and owing to (A9), we have that

‖ψα2 ‖L∞(Q) + ‖gα1 ‖+ ‖gα2 ‖L2(Q) + ‖gα3 ‖V ρA + ‖gα4 ‖L2(Q) ≤ C1 ∀α ∈ (0, 1], (4.45)

where, here and in the following, Ci > 0, i ∈ N, denote constants that may depend on the data of
the system, but not on α ∈ (0, 1]. Observe that a corresponding bound for ψα1 cannot be expected.

On the other hand, the variational inequality characterizing optimal controls is different (nevertheless,
obtained using the same arguments that led to (4.22) in Theorem 4.3). Namely, if uα ∈ Uad is optimal
for (C̃Pα) and (pα, qα) is the associated adjoint state, then we have that∫∫

Q

(qα + β5uα + (uα − u))(u− uα) ≥ 0 ∀u ∈ Uad. (4.46)

DOI 10.20347/WIAS.PREPRINT.2725 Berlin 2020



P. Colli, G. Gilardi, J. Sprekels 30

Our aim is to let α tend to zero in both the above inequality and the adjoint system. Thus, we have
to derive some a priori estimates for the adjoint variables that are uniform with respect to α ∈ (0, 1].
To this end, we note that the estimates (4.17), (4.18), derived for the Faedo–Galerkin approximations,
persist by the semicontinuity of norms under limit processes, whence we infer that

‖qα‖H1(0,T ;H)∩L∞(0,T ;V ρA)∩L2(0,T ;V 2ρ
A ) + ‖pα‖L∞(0,T ;H)∩L2(0,T ;H1(Ω))

≤ C2

(
‖gα1 ‖+ ‖gα2 ‖L2(Q) + ‖gα3 ‖V ρA + ‖gα4 ‖L2(Q)

)
≤ C3 ∀α ∈ (0, 1]. (4.47)

However, the comparison argument leading to (4.19) does not work in this situation, because we do
not have a bound for ψα1 . For this reason, we introduce the space

Z := {v ∈ H1(0, T ;H1(Ω)∗) ∩ L2(0, T ;H1(Ω)) : v(0) = 0}. (4.48)

Since the embedding (H1(0, T ;H1(Ω)∗) ∩ L2(0, T ;H1(Ω))) ⊂ C0([0, T ];H) is continuous, the
zero condition for the initial value is meaningful, and Z is a closed subspace of H1(0, T ;H1(Ω)∗)∩
L2(0, T ;H1(Ω)) and thus a Banach space when endowed with the natural norm of this space. More-
over, the embedding Z ⊂ C0([0, T ];H) is continuous, and we also have the dense and continuous
embedding Z ⊂ L2(0, T ;H) ⊂ Z∗, where it is understood that

〈v, z〉Z =

∫ T

0

(v(t), z(t)) dt for all v ∈ L2(0, T ;H) and z ∈ Z . (4.49)

Now, let v ∈ Z be arbitrary and use it as test function in (4.42). By integrating (4.42) over (0, T ), with
the help of (4.43) we find out that∫

Ω

(
`(ϕα(T )) gα3 − gα1

)
v(T ) +

∫ T

0

〈∂tv(t), pα(t)〉H1(Ω)dt

−
∫∫

Q

`(ϕα) ∂tqαv +

∫∫
Q

∇pα · ∇v +

∫∫
Q

ψα1 pα v

+

∫∫
Q

ψα2 pαv −
∫∫

Q

`′(ϕα)ϑα pα v =

∫∫
Q

gα2 v. (4.50)

Then, due to (F4), (4.45) and (4.47), we have that∣∣∣∫
Ω

(
`(ϕα(T )) gα3 − gα1

)
v(T ) +

∫ T

0

〈∂tv(t), pα(t)〉H1(Ω)dt
∣∣∣

≤
(
C3‖gα3 ‖ + ‖gα1 ‖

)
‖v‖C0([0,T ];H)

+ ‖pα‖L2(0,T ;H1(Ω)) ‖∂tv‖L2(0,T ;H1(Ω)∗) ≤ C4 ‖v‖Z . (4.51)

Moreover, (4.47) obviously yields that

‖`(ϕα) ∂tqα‖L2(Q) + ‖ψα2 pα‖L2(Q) + ‖gα2 ‖L2(Q) ≤ C5. (4.52)

Furthermore, using also (4.30) for (ϑα, ϕα) and the fact that (A10) implies (A8) (see Remark 4.6) and
thus also the continuity of the embedding V 2ρ

A ⊂ L4(Ω), we deduce that∣∣∣∫∫
Q

∇pα · ∇v −
∫∫

Q

`′(ϕα)ϑα pα v
∣∣∣

≤ C6 ‖v‖L2(0,T ;H1(Ω)) + C7

∫ T

0

‖ϑα(t)‖L4(Ω) ‖pα(t)‖L4(Ω) ‖v(t)‖ dt

≤ C6 ‖v‖Z + C8 ‖ϑα‖L2(0,T ;V 2ρ
A ) ‖pα‖L2(0,T ;H1(Ω)) ‖v‖C0([0,T ];H) ≤ C9 ‖v‖Z (4.53)
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for all v ∈ Z. Hence, comparison in (4.50) leads to

‖Λα‖Z∗ ≤ C10 , with Λα := ψα1 pα = αh′′(ϕα)pα , ∀α ∈ (0, 1]. (4.54)

At this point, we are in a position to show the following first-order optimality result.

Theorem 4.10. Suppose that the conditions (F3)–(F4), (A1)–(A3), (A5)–(A6), (A9) and (A10) are
fulfilled, and let u ∈ Uad be an optimal control for (CP0) with associated state (ϑ, ϕ). Then there
exist (q, p,Λ) such that the following statements hold true: (i) q ∈ H1(0, T ;H)∩C0([0, T ];V ρ

A)∩
L2(0, T ;V 2ρ

A ),

p ∈ L∞(0, T ;H) ∩ L2(0, T ;H1(Ω)), and Λ ∈ Z∗.

(ii) The adjoint system, consisting of (4.5), the final condition

q(T ) = β3(ϑ(T )− ϑΩ) in Ω (4.55)

and the equation∫
Ω

(
β3`(ϕ(T ))(ϑ(T )− ϑΩ)− β1(ϕ(T )− ϕΩ)

)
v(T )

+

∫ T

0

〈∂tv(t), p(t)〉H1(Ω)dt−
∫∫

Q

`(ϕ) ∂tq v +

∫∫
Q

∇p · ∇v + 〈Λ, v〉Z

+

∫∫
Q

F ′′2 (ϕ) p v −
∫∫

Q

`′(ϕ))ϑ p v = β2

∫∫
Q

(ϕ− ϕQ) v for all v ∈ Z, (4.56)

is satisfied.

(iii) It holds the variational inequality∫∫
Q

(q + β5 u)(u− u) ≥ 0 for all u ∈ Uad . (4.57)

Proof. We choose any sequence {αn} such that αn ↘ 0. By Theorem 4.9 we may assume that there

are optimal controls uαn ∈ Uad of the adapted problem (C̃Pαn) with associated states (ϑαn , ϕαn)

such that (4.35) and the analogues of (4.32)–(4.33) hold true. Then, we deduce that ϑαn → ϑ weakly
in C0([0, T ];V ρ

A) and ϕαn → ϕ strongly in C0([0, T ];Lr(Ω)) for 1 ≤ r < 6, by virtue of, e.g., [40,
Sect. 8, Cor. 4], and it also follows that

`(ϕαn)→ `(ϕ) and `′(ϕαn)→ `′(ϕ)

strongly in C0([0, T ];Lr(Ω)) for 1 ≤ r < 6, (4.58)

gαn1 → β1(ϕ(T )− ϕΩ) strongly in H, (4.59)

gαn2 → β2(ϕ− ϕQ) strongly in L2(Q), (4.60)

gαn3 → β3(ϑ(T )− ϑΩ) weakly in V ρ
A , (4.61)

gαn4 → β4(ϑ− ϑQ) strongly in L2(Q), (4.62)

as well as
F ′′2 (ϕαn)→ F ′′2 (ϕ) strongly in Lr(Q) for 1 ≤ r < +∞ , (4.63)
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since F ′′2 is continuous and bounded. Moreover, by virtue of the estimates (4.47) and (4.54), and
invoking [40, Sect. 8, Cor. 4] once more, there are limits q, p,Λ such that, at least for a subsequence
which is again indexed by n,

qαn → q weakly-star in H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L2(0, T ;V 2ρ

A ),

weakly in C0([0, T ];V ρ
A) and strongly in C0([0, T ];H), (4.64)

pαn → p weakly-star in L∞(0, T ;H) ∩ L2(0, T ;H1(Ω)), (4.65)

Λαn → Λ weakly in Z∗. (4.66)

With these convergence results, it is an easy task to show that

`(ϕαn)pαn → `(ϕ)p, `(ϕαn)∂tqαn → `(ϕ)∂tq, F ′′2 (ϕαn)pαn → F ′′2 (ϕ)p,

`′(ϕαn)ϑαnpαn → `′(ϕ)ϑ p, all weakly in L1(Q), (4.67)

by using for the latter (4.58) with r = 4, the strong convergence ϑαn → ϑ in C0([0, T ];H), and the
weak convergence pαn → p inL∞(0, T ;L4(Ω)) ensured by (4.32) and (4.65), respectively. A fortiori,
since all of the sequences occurring in (4.67) are bounded inL2(Q), we even have weak convergence
in L2(Q).

At this point, we write the variational inequality (4.46) for α = αn, n ∈ N, and pass to the limit
as n → ∞, which immediately yields the validity of (4.57). Next, we easily see that the final value
condition (4.55) holds true. Moreover, writing (4.41) with α = αn, n ∈ N, and passing to the limit as
n → ∞, we recover (4.5). It remains to show that (4.56) is satisfied, but this can be easily achieved
by taking the limit in (4.50) written for α = αn, because of (4.59)–(4.61) and (4.65)–(4.67). With this,
the assertion is proved.

Remark 4.11. Unfortunately, we are unable to derive any complementarity slackness conditions for
the Lagrange multiplier Λ. Indeed, while it is easily seen that

lim inf
n→∞

∫∫
Q

Λαn pαn = lim inf
n→∞

∫∫
Q

αn h
′′(ϕαn) |pαn|2 ≥ 0 ∀n ∈ N,

the available convergence properties do not suffice to conclude that 〈Λ, p〉Z ≥ 0.
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