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Modeling of chemical reaction systems with
detailed balance using gradient structures

Jan Maas, Alexander Mielke

Abstract

We consider various modeling levels for spatially homogeneous chemical reaction systems,
namely the chemical master equation, the chemical Langevin dynamics, and the reaction-rate
equation. Throughout we restrict our study to the case where the microscopic system satisfies
the detailed-balance condition. The latter allows us to enrich the systems with a gradient struc-
ture, i.e. the evolution is given by a gradient-flow equation. We present the arising links between
the associated gradient structures that are driven by the relative entropy of the detailed-balance
steady state. The limit of large volumes is studied in the sense of evolutionary Γ-convergence
of gradient flows. Moreover, we use the gradient structures to derive hybrid models for coupling
different modeling levels.

1 Introduction

In this work we discuss different models for chemical reactions taking place in a container of volume
V . Throughout we assume that the spatial extent of the container and the position of the chemical
species are irrelevant, which means that we are looking at a well-stirred system. We assume that the
system is composed of I different species namedX1 toXI , which may represent different molecules,
e.g., X1 = H2, X2 = O2, and X3 = H2O. We assume that these I species undergo R different
reactions of mass-action type:

αr1X1 + · · ·+ αrIXI

krbw↼−−−−⇁
krfw

βr1X1 + · · ·+ βrIXI , r = 1, . . . , R, (1.1)

where the vectors αr,βr ∈ NI
0 contain the stoichiometric coefficients, and krfw, k

r
bw > 0 are the

forward and backward reaction rates, see Section 2. The reaction 2H2 + O2 ↼−−⇁ 2H2O would lead to

the vectors α = (2, 1, 0) and β = (0, 0, 2).

Denoting by c = (c1, . . . , cI) ∈ C := [0,∞[I the vector of nonnegative densities, the simplest
model is the macroscopic reaction-rate equation (RRE), which is a system of ODEs on the state
spaceC:

ċ = −R(c) withR(c) :=
R∑
r=1

(
krfwc

αr − krbwc
βr
)(
αr−βr

)
. (RRE)

Here the monomials cα
r

:= ΠI
i=1c

αri
I indicate that the probability for the right number of particles for

the rth reaction to meet is given by a simple product of the corresponding densities, i.e., we assume
that the positions of the particles are independent.

A truly microscopic model can be obtained as a stochastic process. Here we count the number of par-
ticlesNV

i (t) for each speciesXi and consider the random vectorNV (t) = (NV
1 (t), . . . , NV

I (t)) ∈
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J. Maas, A. Mielke 2

N := NI
0. A forward or backward reaction of type r is modeled as an instantaneous event where the

particle numbers jump fromNV (t)+αr toNV (t)+βr or vice versa. The corresponding jump rates
in a volume of size V > 0 are given by krfw BαrV (NV (t)) and krbw Bβ

r

V (NV (t)) respectively; see
(3.1) for the definition of BαV(n) .

Here we study the vector of probabilities

u(t) ∈P(N ) :=
{
v = (vn)n∈N

∣∣ vn ≥ 0,
∑

n∈N
vn = 1

}
that describes the probability distribution of the random variable NV (t). The time evolution of u(t)
is given by the chemical master equation (CME), i.e., the Kolmogorov forward equation associated
with the continuous time Markov chain above. This is a countable linear system of ODEs:

u̇(t) = BVu(t), u(0) = u0, (CME)

where BV is an (unbounded) linear operator on `1(N ), see Section 3, where also existence and
uniqueness of solutions is discussed. We refer to [ML∗11] for a short introduction to the CME and to
[Gil92] for a justification.

The basis of this work is the observation from [Mie11] that (RRE) can be interpreted as a gradient flow
if the reaction system satisfies the detailed-balance condition, i.e., there exists a positive equilibrium
c∗ = (c∗i )i=1,...,I ∈ ]0,∞[I such that

κr∗ := krfwc
αr

∗ = krbwc
βr

∗ for r = 1, . . . , R.

Defining the Boltzmann entropy E and the Onsager operator K via

E(c) =
I∑
i=1

λB

( ci
c∗i

)
c∗i with λB(z) = z log z − z + 1 and

K(c) =
R∑
r=1

κr∗ Λ
(cαr
cαr∗

,
cβ

r

cβ
r

∗

) (
αr−βr

)
⊗
(
αr−βr

)
∈ RI×I

sym,≥0

where Λ(a, b) =
∫ 1

0
asb1−s ds is the logarithmic mean, we see that (RRE) is generated by the

gradient system (C, E,K), namely ċ = −R(c) = −K(c)DE(c). In Section 2.5 we also discuss
further gradient structures, e.g. those used in [MPR14, MP∗17, MiS19].

If (RRE) satisfies the detailed-balance condition, then (CME) does so with an equilibrium distribution
wV ∈P(N ) that is explicitly given as a product of one-dimensional Poisson distributions with mean
c∗iV , namely (cf. Theorem 3.1),

wVn =
I∏
i=1

e−c
∗
i V

(c∗iV )ni

ni!
for all n = (n1, . . . , nI) ∈ N .

Consequently, we are also able to interpret (CME) as a gradient flow induced by a gradient system
(P(N ), EV ,KV ), see (3.7). Here EV (u) is again the Boltzmann entropy with respect to wV , but
now divided by the volume V :

EV (u) =
1

V

∑
n∈N

λB

( un
wVn

)
wVn =

1

V

∑
n∈N

un log un +
∑
n∈N

un
1

V
log

1

wVn
. (1.2)
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Modeling chemical reaction systems using gradient structures 3

Large-volume approximations using gradient structures

A major challenge in modeling chemical reactions is the question of understanding the transition from
small-volume effects to the macroscopic behavior in large volumes. The first breakthrough was ob-
tained in [Kur67, Kur69, Kur70, Kur72] by connecting the particle numbersN (t) ∈ N to the concen-
trations c ∈ C and showing that

1

V
NV (0)→ c0 almost surely implies

1

V
NV (t)→ c(t) almost surely for all t > 0, (1.3)

where t 7→ c(t) is the solution of (RRE) with c(0) = c0. This result may be interpreted as a justi-
fication for the RRE in terms of the Markovian model. In [MRP16, MP∗17] a dynamic large deviation
principle is applied to 1

V
NV (·), which leads to a rate functional that generates a gradient structure

(C, E ,Ψcosh); see Section 2.5. Recent large deviation results for chemical reaction networks can be
found in [ADE18b, ADE18a].

In this paper we study the limit V → ∞ for the gradient system (P(N ), EV ,KV ), and hence for
(CME), in the sense of evolutionary Γ-convergence for gradient systems, as introduced in [SaS04,
Ser11] and further developed in [Mie16, DFM19]. For this purpose we use a suitable embedding
ιV : P(N ) → P(C) (Section 4) and obtain the coarse grained gradient system (P(C),E,K)
with

E(%) =

∫
C

E(c)%(dc) and
(
K(%)ξ

)
(c) = − divc

(
%(c)K(c)∇cξ(c)

)
.

In particular, the coarse grained gradient flow equation is the Liouville equation

%̇(t, c) = divc
(
%(t, c)R(c)

)
, %t=0 = %0, (Lio)

associated with (RRE); here we used that ξ = D%E = E and R = −KDcE. Thus, in this scaling
a pure transport equation remains, while all diffusion disappears, as can be seen in the factor 1/V
before the middle sum in (1.2). In particular, our result is consistent with Kurtz’ result (1.3): by assuming
%(0) = δc0 ∈ P(C) we obtain %(t) = δc(t). While Kurtz works directly on the Markovian random
variables, we work at the level of their distributions:

u ∈P(N )

CME: u̇ = −KV (u)DEV (u)

% ∈P(C)

Liouville: ∂t% = −K(%)DE(%)

N ∈ N
Markovian model

c ∈ C
RRE: ċ = −K(c)DE(c).

here

ιV (uV )→ %

Kurtz

1
VN

V → c

Our convergence result for the gradient systems (P(N ), EV ,KV ) to the limiting gradient system
(P(C),E,K) can be seen as a concrete example of the EDP convergence of gradient systems
as discussed in [LM∗17, DFM19]. Another example treating the convergence of “Markovian discretiza-
tions” towards a Fokker–Planck equation is studied in [DiL15]; see also [FaS16, EF∗16, Sch19] for
applications to interacting particle systems.

In addition to the extreme cases V finite and V → ∞ it is also important to study the case of
intermediate V , where 1

V
NV (t) already behaves continuously but still shows some fluctuations of

standard deviation 1/
√
V , see [WiS17] for a numerical approach to treat the hierarchy via a suitable

DOI 10.20347/WIAS.PREPRINT.2712 Berlin 2020



J. Maas, A. Mielke 4

hybrid method. In [Kur78] it is shown that the random vector t 7→ XV (t) ∈ C obtained by solving
the stochastic differential equation

dXV (t) = −R(XV (t))dt+
1√
V

(
Σfw(XV (t))dBfw(t) + Σbw(XV (t))dBbw(t)

)
with independent Brownian vectors Bfw(t), Bbw(t) ∈ RR, and (1.4)

Σfw(X) =
((

κrXα
r

cαr∗

)1/2
(αr−βr)

)
r
, Σbw(X) =

((
κrXβ

r

cβ
r
∗

)1/2
(βr−αr)

)
r
∈ RI×R,

(see [Kur78, Eqn. (1.7)]) yields an improved approximation as 1
V
NV (t) = XV (t) +O

(
(log V )/V

)
,

while 1
V
NV (t) = c(t) + O

(
1/
√
V
)
. This model is a so-called diffusion approximation, which in

the reaction context also is termed ‘chemical Langevin dynamics’. In [Gil00, Eqn. (23)] and [WiS17,
Eqn. (7)] the stochastic differential equation (1.4) is called chemical Langevin equation (CLE).

The associated Kolmogorov forward equation takes the form

ρ̇ =
1

V

I∑
i,j=1

∂2
ij

(
ρ K̂CLE(c)ij

)
+ div

(
ρR(c)

)
with K̂CLE =

1

2

(
Σfw(Σfw)T+Σbw(Σbw)T

)
. (1.5)

Here the diffusion matrix K̂CLE can be written in the explicit form

K̂CLE(c) =
R∑
r=1

κr
1

2

(cαr
cαr∗

+
cβ

r

cβ
r

∗

) (
αr−βr

)
⊗
(
αr−βr

)
(1.6)

that is different from K(c), because in the former the arithmetic mean while in the latter the logarithmic
mean is taken.

One drawback of the chemical Langevin equation (1.5) is that it cannot be written as gradient flow
of the relative entropy, as the Einstein relation for the drift flux and the diffusion flux is not satisfied.
Therefore we propose other approximations that stay inside the theory of gradient flows and seem to
work sufficiently well if the concentrations are not too large or small. Our simplest approximation is
given by the gradient system (P(C), ẼV ,K) with

ẼV (%) =

∫
C

( 1

V
ρ log ρ + ρE

)
dc, where % = ρdc,

which leads to the linear Fokker–Planck equation

ρ̇ = div
( 1

V
K(c)∇ρ+ ρR

)
. (FPE)

In Section 5 we show that by systematically deriving higher-order corrections to ẼV and K we can
recover the asymptotically correct diffusion matrix K̂CLE while keeping the gradient structure, but have
to accept several additional terms, or switch over to the notion of asymptotic gradient flow structures
in the sense of [BB∗17].

Hybrid modeling using gradient structures

A major advantage of the gradient flow description is that the different structures can be combined
to obtain hybrid models, in which the set of chemical species is divided into subclasses which may
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Modeling chemical reaction systems using gradient structures 5

be treated differently depending on the desired or needed accuracy. Our approach is based on the
idea of model reduction for gradient structures. The idea is to approximate a complicated gradient
structure (X,EX ,KX) by a simpler one (Y,EY ,KY ) via an embedding mapping x = Φ(y). Staying
within the class of gradient systems has the advantage that the most important features of the original
system can be preserved. In particular, decay of the driving functional along the approximate flow
holds automatically. By contrast, such crucial features could get lost in a direct approach based on the
evolution equation itself.

In Section 6 we shall deal with three examples for hybrid models where it is essential to keep V as
a large but finite parameter. First, we shall consider a hybrid model in which an RRE is coupled to a
Fokker–Planck equation. Here the set of species is divided into two classes:C = Cs×Cm. Some of
them will be described stochastically (s), while others are described macroscopically (m). This leads
to a gradient flow structure on the hybrid state space Y = P(Cs)×Cm. The resulting gradient flow
equation turns out to be a mean-field equation, in which the density of the component cs satisfies a
linear equation which is nonlinearly coupled to an ODE for the component cm.

We also study the coupling of an RRE for macroscopic variables to a CME for nmicroscopic variables.
This leads to a hybrid system on P(Nn

0 )×Cm. Finally we analyze a mixed CME / Fokker–Planck
model with state space P(N), in which the underlying space N := {0, 1, . . . , N−1} ∪ [N/V,∞[
contains a mixture of discrete and continuous components.

The present work concentrates solely on the analytical underpinnings of hybrid modeling for CME;
for numerical approaches to CME and to spatio-temporal CME we refer to [AC∗05, HeL07, MuK07,
Hig08, Eng09, Jah11, DoK14, WiS17].

Notational conventions. Throughout the paper we will consistently use the following notation to dis-
tinguish the different modeling levels.

Reaction-rate equation: The RRE is denoted by (C, E,K):
state and state space c ∈ C := [0,∞[I , steady state c∗ = c∗, dual variable ζ
energy functional E(c), Onsager operator K(c)
conserved quantities Qc = q, stoichiometric subsets I(q) = { c ∈ C |Qc = q }.

Chemical master equation: The CME is denoted by (P(N ), EV ,KV ):
state and state space u = (un)n∈N ∈P(N ) ⊂, steady statewV , dual variable µ
energy functional EV (u), Onsager operator KV (u)
invariant subsets I(n) = {n ∈ N |Qn = Qn }.

Liouville equation: The LE is denoted by (P(C),E,K):
state and state space % = ρdc ∈P(C), steady state δc∗ , dual variable ξ
energy functionalE(%) =

∫
C
E(c)d%(c), Onsager operatorK(%) = − div

(
%(·)K(·)∇�

)
Fokker–Planck equation: The FPE is denoted by (P(C), ẼV ,K):
state and state space % ∈ P(C) := P(C), steady state WV , dual variable ξ
energy functional ẼV (%) =

∫
C

(
1
V
ρ(c) log ρ(c)+ρ(c)E(c)

)
dc, Onsager operatorK.

Hybrid systems are denoted by “mathfrak” letters:
(P(Cs)×Cm,E

FP-RR
V ,KFP-RR

V ) for coupling FPE and RRE
(P(NJ

0 )×Cm, ,E
CM-RR
V ,KCM-RR

V ) for coupling CME and RRE
(P(NV,N),EV,N ,KV,N) for merging discrete and continuous modeling for one species.

The space of all signed Borel measures of bounded variation onC is denoted by M (C).

DOI 10.20347/WIAS.PREPRINT.2712 Berlin 2020



J. Maas, A. Mielke 6

2 Reaction rate equations

We denote by c = (c1, . . . , cI) ∈ C := [0,∞[I the concentrations of I different chemical species
X1, . . . , XI reacting according to the mass action law, i.e., the reactions

αr1X1 + · · ·+ αrIXI

krbw↼−−−−⇁
krfw

βr1X1 + · · ·+ βrIXI (2.1)

for r = 1, . . . , R, where R is the number of possible reactions, αr,βr ∈ NI
0 are the vectors of the

stoichiometric coefficients, and krfw, k
r
bw > 0 are the forward and backward reaction-rates. In general

these rates may depend on c, but for simplicity we keep them as constants in this work. A typical
example is the splitting of water into hydrogen and oxygen, namely 2H2 + O2 ↼−−⇁ 2H2O.

The corresponding reaction-rate equations (RRE) are given via the ODE system

ċ = −R(c) withR(c) :=
R∑
r=1

(
krfwc

αr − krbwc
βr
) (
αr−βr

)
, (2.2)

where cα = cα1
1 · · · c

αI
I , see [FeH77, Grö83, ÉrT89].

2.1 Stoichiometry, conservation, and decomposition of the state space

The stoichiometric subspace S ⊂ RI and its orthogonal complement S⊥ are defined via

S := span{αr − βr | r = 1, . . . , R }, S⊥ := { ξ ∈ RI | ξ·µ = 0 for all µ ∈ S }. (2.3)

For each ξ ∈ S⊥ the function Cξ(c) = ξ · c defines a first integral, which easily follows from
ξ ·R(c) ≡ 0. These conservation laws often go under the name conservation of atomic species, see
[ÉrT89]. Suppose now that S⊥ is a non-trivial subspace of RI . We shall argue that the RRE induces
a decomposition of the state spaceC = [0,∞[I into affine invariant subsets. (If S⊥ = {0}, the only
invariant set isC itself.)

Choosing a basis {mk ∈ RI | k = 1, . . . ,mW } of S⊥ we define the matrix Q ∈ RmW×I , which has
the rows mk ∈ RI . By construction we have Q[S] = {0}, and we conclude that the solutions c of
(2.2) conserve Qc as follows:

ċ = −R(c) =⇒ Qc(t) = Qc(0) for t > 0. (2.4)

By construction every affine conserved quantity is of the form ξ · c+ q for some ξ ∈ S⊥ and q ∈ R.
This allows us to decompose the full state space C = [0,∞[I into the invariant, affine subsets
(c0+S) ∩C for c0 ∈ C. Using the notation

Q := {Qc ∈ RmW | c ∈ C }

we define, for all q ∈ Q, the sets

I(q) := { c ∈ C |Qc = q }. (2.5)

Then, q1 6= q2 implies I(q1) ∩ I(q2) = ∅, and we have C =
⋃
q∈Q I(q). Let us note that this

decomposition does not depend on the choice of the orthonormal basis which determines the matrix
Q, although the set I(q) does depend on Q. Note also that we can always write I(q) = (c+S)∩C
for some arbitrary c ∈ C satisfying Qc = q.

DOI 10.20347/WIAS.PREPRINT.2712 Berlin 2020
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2.2 Detailed balance and the Wegscheider matrix

We say that the above reaction system fulfills the condition of detailed balance if there exists a positive
equilibrium density vector c∗ ∈ ]0,∞[I such that all reactions are simultaneously in equilibrium, i.e.,

κr∗ := krfwc
αr

∗ = krbwc
βr

∗ for r = 1, . . . , R. (2.6)

This condition implies that R(c∗) = 0, but we emphasize that this condition is stronger in general
cases. The condition of detailed balance is also called the condition of microscopic reversibility, see
[ÉrT89, p. 45] or [DeM84] for a general discussion of these concepts.

We are looking for a characterization of detailed balance. Let W ∈ ZR×I be the matrix which has the
row vectors γr := αr−βr ∈ ZI , r = 1, . . . , R. We call W the Wegscheider matrix because of the
pioneering work in [Weg02]. We then have

S = RanWT and S⊥ = KerW,

which explains the abbreviation mW := dimS⊥ = dim KerW. Since c∗ is strictly positive, we can
take the logarithm of the polynomial conditions (2.6) and find the equivalent linear system

W log c∗ =
(

log(krbw/k
r
fw)
)
r=1,...,R

, where log c =
(

log ci
)
i=1,...,I

. (2.7)

By Fredholm’s alternative, (2.7) is solvable if and only if

y ·
(

log(krbw/k
r
fw)
)
r=1,...,R

= 0 for all y ∈ KerWT. (2.8)

These conditions on the reaction coefficients krfw and krbw are called Wegscheider conditions (see,
e.g., [Weg02, ScS89, VlR09, GlM13]). By choosing a basis of KerWT and exponentiation they can
be rewritten as polynomial conditions without referring to the equilibrium state c∗.

Let nW := dim(KerWT) ∈ N0 denote the number of Wegscheider conditions. Then the following
assertions hold:

(i) If the stoichiometric vectorsαr−βr, r = 1, . . . , R, are linearly independent, then KerWT =
{0}, hence there is no Wegscheider condition.

(ii) If αr − βr, r = 1, . . . , R, are linearly dependent, then dim(KerWT) > 0 and non-trivial
Wegscheider conditions appear.

Since dim(RanW) = dim(RanWT) = dim S by standard linear algebra, the number of Wegschei-
der conditions can be expressed as

nW = R− dimS = R− I + dim(KerW) = R− I +mW.

Hence, if the number R of reactions is smaller than the number I of species, the Wegscheider condi-
tions can usually be satisfied easily.

Remark 2.1 (Wellposedness of RRE) We conclude this subsection with a statement concerning the
well-posedness of the RRE given as in Theorem 2.2 below. For all c(0) ∈ C = [0,∞[I there exists
a unique global solution c : [0,∞[ → C. Local existence for solutions starting in the interior of C is
trivial, asR is a polynomial vector field. Since the relative entropyE is a coercive Liapunov functional,
the solutions cannot blow up and stay inside a region BR(0) ∩C for some R > 0.

DOI 10.20347/WIAS.PREPRINT.2712 Berlin 2020



J. Maas, A. Mielke 8

Moreover, solutions cannot leave this region via the boundary ∂C, since the vector field is either
tangential to ∂C or points inwards. Indeed, if cj(t0) = 0 for some j, then

ċj(t0) = −Rj(c(t0)) = −
R∑
r=1

κr∗
(cαr (t0)

cαr∗
− cβ

r
(t0)

cβ
r
∗

)(
αrj−βrj

)
≥ 0,

because each term in the sum is nonpositive: If αrj = βrj or min{αrj , βrj} > 0, then the term is 0.
Thus, we are left with the cases (αrj , β

r
j ) ∈ {(n, 0), (0, n)} for some positive n. In the first case

cj(t0) = 0 implies cα
r
(t0) = 0 and the result follows, and the second case is similar.

2.3 The reaction-rate equations as a gradient system

We show that a RRE satisfying the detailed-balance condition can be generated by a gradient system
(C, E,K). Here, the state space C := [0,∞[I contains all possible concentration vectors c. The
driving functional is the relative entropyE : C → [0,∞[ and the Onsager matrix K is chosen suitably
(recall that λB(z) = z log z − z + 1 ≥ 0):

E(c) :=
I∑
i=1

λB

( ci
c∗i

)
c∗i and K(c) =

R∑
r=1

κr∗Λ
(cαr
cαr∗

,
cβ

r

cβ
r

∗

) (
αr−βr

)
⊗
(
αr−βr

)
, (2.9)

where the logarithmic-mean function Λ is given via

Λ(a, b) =

∫ 1

0

asb1−sds =
a− b

log a− log b
. (2.10)

The following result shows that a RRE (2.2) satisfying the detailed-balance condition (2.6) is indeed
generated by the gradient system (C, E,K). This was first established in [Yon08, Sect. VII] to derive
entropy bounds for hyperbolic conservation laws in reactive flows and was rederived in [Mie11] in the
context of reaction diffusion systems including electric charge-interactions. It is interesting to note that
for continuous time Markov chains (CTMC), which form a special subclass of RRE with linear reactions,
there are several distinct gradient structures, see [Maa11, Prop. 4.2] and [Mie13, Thm. 3.1] and Section
2.4. However, in the case of nonlinear reactions according to the mass-action law, only the gradient
structure with the Boltzmann entropy remains. The key fact is the logarithm identity (α−β) · log c =
log(cα−β).

Theorem 2.2 (Gradient structure for RRE) If the RRE (2.2) satisfies the detailed-balance condition
(2.6) for a positive steady state c∗ = (c∗i )i=1,...,I , then it has the gradient structure (C, E,K) defined
in (2.9), namely ċ = −R(c) = −K(c)DE(c).

Proof. Multiplying DE(c) = (log(ci/c
∗
i ))i=1,...,I by αr−βr ∈ RI we obtain

(log(ci/c
∗
i ))i=1,...,I ·

(
αr−βr

)
=

I∑
i=1

(
αri log(ci/c

∗
i )− βri log(ci/c

∗
i )
)

= log
(
cα

r

cαr∗

)
− log

(
cβ
r

cβ
r
∗

)
,

(2.11)

which is the denominator of Λ
(
cα

r

cαr∗
, c
βr

cβ
r
∗

)
. Hence, using Λ(a, b)(log a− log b) = a−b gives

K(c)DE(c) =
R∑
r=1

κr∗
(
cα

r

cαr∗
− cβ

r

cβ
r
∗

)(
αr−βr

) DB
=

R∑
r=1

(
krfwc

αr−krbwc
βr
) (
αr−βr

)
= R(c),
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Modeling chemical reaction systems using gradient structures 9

where we used the detailed-balance condition (2.6) in
DB
= . Thus, the assertion is established.

Summarizing the above derivations, we have rewritten the RRE in thermodynamic form

ċ = −R(c) = −K(c)µ with µ = DE(c), (2.12)

which is also called the Onsager principle [Ons31, OnM53]. The latter states that the rate (flux) of
a macroscopic variable is given as the product of a symmetric positive definite matrix K and the
thermodynamic driving force −µ, see e.g. [DeM84, Ch. X, § 4]. The symmetry K = K> is related to
microscopic reversibility, i.e., detailed balance, see also [MPR14, MRP16]. Subsequently, we refer to
K as the Onsager operator or matrix.

Here we clearly see the advantage of using the Onsager operator K to write the RRE as a gradient
system,as opposed to working with the Riemannian tensor: we do not have to take care of the fact
that K is not invertible except if S = RI .

2.4 Continuous time Markov chains as a gradient system

The forward equation for a reversible CTMC on a discrete space {1, 2, . . . , I} is a special case of the
RRE considered above. In this case all reactions are of the form

Xi

kijbw↼−−−−⇁
kijfw

Xj for 1 ≤ i < j ≤ I,

and the reaction rates kijfw (resp. kijbw) are interpreted as the transition rates from i to j (resp. from j
to i). The reaction-rate equation is the linear system of ODEs

ċ = −R(c) = Ac withAc = −
∑
i<j

(
kijfwci − k

ij
bwcj

)
(ei−ej), (2.13)

and the detailed-balance condition for the equilibrium state c∗ takes the form

κij∗ := c∗i k
ij
fw = c∗jk

ij
bw for 1 ≤ i < j ≤ I. (2.14)

Using this condition, the RRE can be written coordinate-wise as

ċi
c∗i

=
∑
j<i

kjibw

(cj
c∗j
− ci
c∗i

)
+
∑
j>i

kijfw

(cj
c∗j
− ci
c∗i

)
, or equiv., ċi =

∑
j 6=i

κij∗

(cj
c∗j
− ci
c∗i

)
.

Here we used the notational convention that κij∗ := κji∗ for j < i. The relative entropy E is as above
and the Onsager matrix takes the form

KM(c) =
∑
i<j

κij∗ Λ
( ci
c∗i
,
cj
c∗j

)
(ei−ej)⊗ (ei−ej), (2.15)

where ei ∈ RI denotes the i-th unit vector. We then have the gradient structure (C, E,KM), namely

ċ = Ac = −KM(c)DE(c).

This gradient flow structure has been found in the independent works [Maa11] (which deals with
Markov chains exclusively) and [Mie11] (in the setting of reaction-diffusion systems, in which Markov
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chains are implicitly contained). The related work [CH∗12] deals with discretizations of Fokker–Plank
equations.

In fact, for the construction of gradient structures for Markov chains ċ = Ac we do not need the sum-
mation rule for logarithms. Hence, following [Maa11, Mie13] there are more general gradient struc-
tures. Choosing a strictly convex function φ : [0,∞[→ R that is smooth on ]0,∞[ we set

Eφ(c) :=
n∑
i=1

c∗i φ
( ci
c∗i

)
, Kφ

M(c) =
n∑
j=2

j−1∑
i=1

κij∗ Φ
( ci
c∗i
,
cj
c∗j

)
(ei−ej)⊗ (ei−ej), (2.16)

where Φ(a, b) = (a− b)/(φ′(a)−φ′(b)) for 0 < a 6= b and Φ(a, a) = 1/φ′′(a). The gradient flow
structure (C, E,KM) corresponds to the case where φ = λB : z 7→ z log z − z + 1.

Proposition 2.3 (Gradient structure for CTMC) If the CTMC (2.13) satisfies the detailed-balance
condition (2.14) for a positive steady state c∗ = (c∗i )i=1,...,I , then it has the gradient structures
(C, Eφ, Kφ

M), namely ċ = Ac = −Kφ
M(c)DEφ(c).

Remark 2.4 The construction in Proposition 2.3 does not extend to general RRE. There one would

need to replace the quantity Λ
(
cα

r

cαr∗
, c
βr

cβ
r
∗

)
in (2.9) by

(
cα

r

cαr∗
− cβ

r

cβ
r
∗

)
/
(
(αr − βr) · φ′( c

c∗
)
)
, but this

quantity can be negative in general. As a consequence, the corresponding Onsager matrix would not
be positive definite. This cannot happen for Markov chains (i.e., when α = ei and β = ej), by virtue
of the convexity of φ.

In the following we will mainly concentrate on the gradient structure (C, E,KM) with the logarithmic
entropy, as it is the only one that connects with the RRE.

2.5 Generalized gradient structures

For Markov chains and RRE there are several families of generalized gradient structures (C, E,Ψ∗)
where the quadratic function Ψ∗(c, ζ) = 1

2
〈ζ,K(c)ζ〉 is replaced by a general dual dissipation

potential Ψ∗(c, · ) : RI → [0,∞[ that is continuous and convex and satisfies Ψ∗(c, 0) = 0.

In the case of RRE, the monomial terms cα can only be generated by the logarithmic summation
rule

∑I
i=1 log(bi) = log

(
ΠI
i=1bi

)
. Hence, we stick to the relative entropy E defined in (2.9), i.e.,

φ(z) = λB(z). However, we may replace the linear Onsager principle ċ = −K(c)DE(c) by the
more general nonlinear form ċ = ∂ζΨ

∗(c,−DE(c)
)
.

To define Ψ∗ we choose an arbitrary family of smooth dissipation functionals ψr : R → [0,∞[, i.e.,
ψr(0) = ψ′r(0) = 0 and ψ′′r > 0 and define the dissipation potential

Ψ∗(c, ζ) =
R∑
r=1

Lr(c)ψr
(
(αr−βr) · ζ

)
with Lr(c) = κr∗

cβ
r

cβ
r
∗
− cα

r

cαr∗

ψ′r
(

log cβ
r

cβ
r
∗
− log cαr

cαr∗

) . (2.17)

Using (2.11) we easily obtain −R(c) = ∂ζΨ
∗(c,−DE(c)), i.e., ċ = −R(c) is generated by the

generalized gradient system (C, E,Ψ∗).

The case ψr(ζ) = 1
2
ζ2 leads to the quadratic dissipation potential in (2.9), i.e., the functions Lr are

given in terms of the logarithmic mean. In [AGH02] the choices ψr(±ζ) = eζ − 1− ζ is used. Based
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on a derivation via the large deviation principle (see [MPR14, MRP16, MP∗17]) a special role is played
by the choice of a “cosh-type” function ψr:

ψr(ζ) = C∗(ζ) := 4 cosh
(1

2
ζ
)
− 4 giving Lr(c) = κr∗

(cαr
cαr∗

cβ
r

cβ
r

∗

)1/2

. (2.18)

Here C∗ is normalized such that C∗(ζ) = 1
2
ζ2 + O(ζ4). Hence, the dual dissipation potential takes

the form

Ψ∗cosh(c, ζ) :=
R∑
r=1

κr∗

(cαr
cαr∗

cβ
r

cβ
r

∗

)1/2

C∗
(
(αr−βr) · ζ

)
. (2.19)

It is shown in [MiS19, Prop. 4.1] that this generalized gradient structure is distinguished as the only
tilt-invariant gradient structure for CTMCs.

3 The chemical master equation

3.1 Modeling discrete particle numbers via CME

The chemical master equation (CME) is a CTMC that is defined on the set N = NI
0 where n =

(n1, . . . , nI) ∈ N is the vector of particle numbers, see [ML∗11] for an introduction. This means that
ni ∈ N0 denotes the number of particles of species Xi in a sufficiently big volume, whose size is
denoted by V > 0. The modeling assumes that all particles move randomly in this big volume (well-
stirred tank reactor) so that they can meet independently. The dynamics is formulated in terms of the
probabilities

un(t) = probability that at time t there are ni particles of species Xi for i = 1, . . . , I .

All theR reaction pairs may happen independently of each other according to the number of the avail-
able atoms needed for the reactions and the reaction coefficients krfw ≥ 0 and krbw ≥ 0, respectively.
Moreover, the jump intensities

krfwBαrV (n) from n+αr to n+ βr and krbwB
βr

V (n) from n+ βr to n+αr

also depend on the volume V , as ni denotes the absolute particle number, while for the reaction the
densities ci = ni/V matter. The specific form of BαV(n) (cf. [Kur70, ML∗11]) reads

BαV(n) =

{
V (n+α)!

V |α|n!
for n ∈ N ,

0 for n 6∈ N ,
where n! =

I∏
i=1

ni! . (3.1)

To avoid clumsy notation we defined BαV(n) for all n ∈ ZI , but BαV(n) = 0 if n 6∈ N . We also
see that BαV(n) ≈ V cα for c = 1

V
n, where the factor V indicates that the number of reactions is

proportional to the volume of the container, if the densities are kept constant.

The CME associated with the RRE (2.2) is the Kolmogorov forward equation for the probability distri-
butions u = (un)n∈N ∈P(N ), namely

u̇ =
R∑
r=1

BrVu with
(
BrVu

)
n

= krfw
(
BαrV (n−βr)un+αr−βr − BαrV (n−αr)un

)
+ krbw

(
Bβ

r

V (n−αr)un−αr+βr − Bβ
r

V (n−βr)un
)
.

(3.2)
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The rth forward reaction from n+αr to n+βr can only happen (i.e., BαrV (n) > 0) if n ≥ 0. Hence
any occurring um with m 6∈ N is multiplied by intensity 0, so in (3.2) we may set um ≡ 0 for all
m 6∈ N . The operators BrV are the adjoints of the Markov generatorsQrV given by

(QrVµ)n = krfwBαrV (n−αr)(µn−αr+βr − µn) + krbwB
βr

V (n−βr)(µn+αr−βr − µn) (3.3)

for µ = (µn)n∈N .

We emphasize that the RRE as well as the CME are uniquely specified if the reaction network (2.1),
the reaction rates krfw and krbw, and the volume V > 0 are given. Hence, there are obviously close
relations between both models, in particular for V � 1, see [Kur70, Gil92, AC∗05, ACK10, WiS17].

So far, we have not used the detailed-balance condition, i.e., we can even allow for krbw = 0 in the
above considerations. In all cases, the Kolmogorov forward equation is an infinite-dimensional linear
ODE as in Section 2.4. The following result shows that the detailed-balance condition is inherited from
the RRE to the CME, and moreover a simple equilibrium wV can be given explicitly as a product
distribution of individual Poisson distributions, namely m 7→ e−V c

∗
i (V c∗i )

m/m!. This result can also
be retrieved from [ACK10] by combining Theorems 4.1 and 4.5 there, where it is shown that the
weaker “complex-balance condition” is sufficient to guarantee that the Poisson distribution wV is an
equilibrium for CME.

For completeness we give a short and independent proof of the fundamental result that for RRE with
detailed balance the associated CME satisfies detailed balance again.

Theorem 3.1 (Detailed balance for CME) Let BαV(n) be given in the form (3.1). Assume that (2.2)
has the equilibrium c∗ ∈]0,∞[I satisfying the detailed-balance condition (2.6). Then the equilibrium
wV := (wVn )n∈N ∈P(N ) given by

wVn =
1

Z∗V

(V c∗)
n

n!
with Z∗V := ΠI

i=1eV c
∗
i

satisfies the detailed-balance condition for the CME (3.2), namely

∀ r = 1, . . . , R ∀n ∈ N : krfwBαrV (n)wVn+αr = krbwBβ
r

V (n)wVn+βr = κr∗V w
V
n =: ν̂n,rV .

Proof. For each reaction we obtain the relation

krfwBαrV (n)wVn+αr = krfw
V (n+αr)!

V |αr|n!

(V c∗)
n+αr

Z∗V (n+αr)!
= krfwV c

αr

∗
(V c∗)

n

Z∗Vn!
= V κr∗w

V
n .

Analogously we obtain the same result for kbw Bβ
r

V (n)wVn+βr , where the detailed-balance condition
(2.6) is used in the definition of κr∗.

Using the detailed-balance coefficients ν̂n,rV we can rewrite the operator BrV from (3.2) in a symmetri-
cally balanced form as

BrVu =
∑
n∈N

ν̂n,rV

( un+αr

wVn+αr
− un+βr

wVn+βr

)(
e(n+βr)−e(n+αr)

)
, (3.4)

where e(m) is the unit vector, i.e., e(m)
n = δn−m.

It is important to realize that in general the steady state for the detailed-balance condition is highly
non-unique, because of the discrete versions

I(n) :=
{
n ∈ N

∣∣Qn = Qn
}
⊂ N
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of the invariant stoichiometric subspaces I(q) = { c ∈ C | Qc = q } ⊂ C. Indeed, choosing n
arbitrary and defining w = (wn) ∈ P(N ) via wn = 1

Z
wVn for n ∈ I(n) and wn = 0 elsewhere,

we obtain another equilibrium for the CME (3.2). Defining convex combination we obtain a rich family
of steady states.

The following counterexamples show that the above result, which is central to our work, cannot be
expected for systems not satisfying the detailed-balance condition.

Example 3.2 (Equation without detailed balance) For a, b ∈ N we consider the RRE

ċ = 2a− 4b c+ 2 (1−c2), (3.5)

which consists of two individual reaction pairs, namely X
2a
↼−−⇁
4b
∅ and 2X

1
↼−−⇁
1
∅ with the individual

steady states c(1) = a/(2b) and c(2) = 1. The joint steady state of (3.5) is c∗ = (1+a+b2)1/2 − b,
and we have detailed balance if and only if a = 2b.

Building the CME according to (3.2) based on the two reaction pairs we obtain

u̇n = 2aV un−1−(2aV+4bn)un+4b(n+1)un+1 +V un−2−
(
V + n(n−1)+

V

)
un+ (n+2)(n+1)

V
un+2.

For the case a = 2 and b = 1, where the detailed-balance condition holds with c∗ = 1 = c(1) = c(2),
we obtain

u̇n = V un−2 + 4V un−1 −
(
5V + 4n+ n(n−1)+

V

)
un + 4(n+1)un+1 + (n+2)(n+1)

V
un+2,

and it is easy to check that w̃V = (e−V V n/n!)n∈N0 is a steady state.

However, for a = 7 and b = 1 the detailed-balance condition fails with c(1) = 7/2 > c∗ = 2 >
c(2) = 1. The CME reads

u̇n = V un−2 + 14V un−1 −
(
15V+4n+ n(n−1)+

V

)
un + 4(n+1)un+1 + (n+2)(n+1)

V
un+2.

An explicit calculation shows that the Poisson distribution based on c∗ = 2, i.e., w̃Vn = e−2V (2V )n/n!,
is not a steady state. Indeed, inserting w̃V into the right-hand side of the last equation we find (for
n ≥ 1)

u̇n|u=w̃V =
e−2V (2V )n−2

n!

(
−12V 3 + 12nV 2 − 3n(n−1)V

)
6= 0 for general n ∈ N.

Example 3.3 (Microscopic versus macroscopic detailed balance) We may also consider a RRE
that looks macroscopically as being in detailed balance, but is generated by a microscopic model that

is not in detailed balance. The two reactions ∅ 2
⇀ X and 2X

1
⇀ ∅ produce the RRE ċ = 2(1−c2)

that has the equilibrium c∗ = 1. However the CME reads

u̇n = 2V un−1 −
(
2V +

n(n−1)

V

)
un +

(n+2)(n+1)

V
un+2.

Again, the Poisson distribution w̃V with wVn = e−V V n/n! is not the equilibrium:

u̇n|u=w̃V =
e−V V n−1

n!

(
2V n− V 2−n(n−1)

)
6= 0.

Note that the reversible reaction pair 2X
1
↼−−⇁
1
∅ yields the same RRE, and its associated CME satisfies

the detailed-balance condition.
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3.2 Existence and uniqueness of solutions of CME

In this part we establish well-posedness for the CME. We do this by combining classical results from
the theory of Markov chains with abstract semigroup theory.

For fixed n0 ∈ N we construct a special Green’s function pt(n0, ·). General Markov chain the-
ory (e.g., [Lig10, Ch. 2]) implies that there exist a unique minimal solution [0,∞[×N 3 (t,n) 7→
pt(n0,n) to the backward equation

ṗt(n0,n) =
R∑
r=1

(
krfwBαrV (n0−αr)

(
pt(n0−αr+βr,n)− pt(n0,n)

)
+ krbwBβ

r

V (n0−βr)
(
pt(n0+αr−βr,n)− pt(n0,n)

))
associated with the CME with initial condition p0(n0,n) = δn0(n). This minimal solution is non-
negative and satisfies pt(n0,n) ≥ 0 and

∑
n∈N pt(n0,n) ≤ 1, but for general CTMC it can

happen that the latter inequality is strict, which means that the corresponding Markov chain explodes
in finite time. We will show that explosion does not happen for CME with detailed balance.

For the functional analytic existence and uniqueness result we use the sequence spaces

`p(N ) :=
{
u = (un)n∈N

∣∣ ∑
n∈N
|un|p <∞

}
as well as the weighted spaces

Lp(N ,wV ) :=
{
v = (vn)n∈N

∣∣ ∑
n∈N

∣∣ vn
wVn

∣∣p <∞}
with the corresponding norms and the usual modification for p = ∞. Now, we consider the transition
semigroup (Pt)t≥0 defined by

(Ptv)n :=
∑
m∈N

pt(n,m)vm, v = (vm) ∈ `∞(N ),

which we shall study by induction over the number R of reactions using the Trotter-Kato formula,
where the detailed-balance condition guarantees that each subsystem is a contraction semigroup on
L2(N ,wV ).

Theorem 3.4 Assume that the detailed balance condition (2.6) holds. Then, the semigroup (Pt)t≥0

extends to a C0-semigroup of contractions on Lp(N ,wV ) for all 1 ≤ p < ∞. Moreover, the semi-
group is selfadjoint on L2(N ,wV ) and Markovian, i.e., Pt1 = 1 for all t ≥ 0.

A related existence result for the Markov semigroup of the CME was established in [GaY14], which
however does not apply to the case of reversible RRE, because of the restrictions on the growth of the
transition rates.

Proof. All of the above statements follow from the general theory of continuous time Markov chains,
except for the Markovianity. To show the latter, we first consider the case of a single reaction, thus
R = 1. Each of the irreducible components of the state space N is then one-dimensional (see also
[MaM20]), and the Markov chain is a birth-death chain on a countable (possibly finite) set.

If there exist two components ofα−β with opposite sign, then each of the irreducible components of
the state space N is finite. Therefore it is clear that the Markov chain does not explode in finite time.
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Suppose now that all components of α − β have equal sign, say αi − βi ≥ 0 for all i = 1, . . . , I ,
and at least one component is strictly positive. Then each of the infinite irreducible components of N
is of the form

{n(k) := n(0) + k(α− β) | k ∈ N0 }

for some n(0) ∈ N , and the restricted Markov process is a birth-death process with birth rate bk and
death rate dk given by

bk := kbwBβV(n
(k)−β) from n(k) to n(k+1) and

dk := kfwBαV(n(k)−α) from n(k) to n(k−1).

Reuter’s criterion ([Reu57, Thm. 11]) gives a characterization of non-explosion for birth-death chains;
it asserts that the chain is non-explosive if and only if∑

k≥j≥0

rj,k =∞, where rj,k :=
dk · . . . · dj+1

bk · . . . · bj
.

In our setting we have dk+1

bk
= (V c∗)β−αn

(k+1)!
n(k)!

, so that r0,k = 1
bk

(V c∗)k(β−α)n(k)!
n(0)!

, and therefore∑
k≥j≥0

rj,k ≥
∑
k≥0

r0,k ≥
V |β|−1

kbwn(0)!

∑
k≥0

(n(k)−β)!

(V c∗)k(α−β)
.

Since the summands tend to∞ as k →∞, we infer that the latter sum is infinite; hence the Markov
chain is non-explosive, or equivalently Pt1 = 1 (see [Lig10, Thm. 2.33]).

The case of multiple reactions follows by induction on the number of reactions R. Indeed, for R ⊆
{1, . . . , R}, let (PRt )t≥0 denote the semigroup corresponding to the reactions r ∈ R. Then the
Trotter product formula for contraction semigroups on L2(N ,wV ) (see e.g., [Dav80]) asserts that

P{1,...,R+1}
t = lim

n→∞

(
P{1,...,R}t/n P{R+1}

t/n

)n
strongly in L2(N ,wV ). Note that we can apply this formula, since the detailed-balance conditions
hold for all reactions simultaneously, hence all of the semigroups are contractive on the same space
L2(N ,wV ). We also observe that the class of finitely supported functions is a core for each of the
generators. The Markovianity of P{1,...,R+1} thus follows from the Trotter formula and the Markovianity
of P{1,...,R} and P{R+1}.

Remark 3.5 The mere existence of a probability distribution satisfying the detailed-balance equations
is not sufficient to guarantee non-explosion of a continuous time Markov chain. It might happen that the
chain jumps infinitely often in a finite time interval, see [Nor97, Sec. 3.5] for an example. The previous
result shows that this phenomenon does not occur in CME satisfying the detailed-balance condition.

It remains to transfer the results from L1(N ,wV ) to `1(N ). Denoting by Q the generator of the
C0-semigroup (Pt)t≥0 on L1(N ,wV ), we define the operator B : Dom(B) ⊆ `1(N )→ `1(N ) by

Bu = wVQ(u/wV ), Dom(B) = {u ∈ `1(N ) | u/wV ∈ Dom(Q) }.

This definition of B is consistent with the explicit formula for B given above. Since Q generates a
C0-semigroup of contractions on L1(N ,wV ), it follows that B generates a C0-semigroup (Pt)t≥0

of contractions on `1(N ). Furthermore, since Pt preserves positivity and Pt1 = 1, it follows that
P(N ) is invariant under the semigroup generated by B.

As an immediate consequence we obtain global well-posedness for the CME in P(N ).
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Theorem 3.6 (Global well-posedness of the CME) Let the detailed-balance condition (2.6) hold.
Then, for all u0 ∈P(N ) there exists a unique mild solution u : [0,∞)→P(N ) to the CME (3.2)
satisfying u(0) = u0.

3.3 Gradient structures for CME

Since the CME is the forward equation associated with a reversible CTMC, we can formulate it as a
gradient flow in view of Proposition 2.3. Indeed, for a strictly convex function φ : [0,∞[→ R that is
smooth on ]0,∞[, let us write

EφV (u) :=
∑
n∈N

wVn φ
( un
wVn

)
, (3.6)

KφV (u) :=
∑
n∈N

R∑
r=1

ν̂n,rV Φ
( un+αr

wVn+αr
,
un+βr

wVn+βr

)
(e(n+αr)−e(n+βr))⊗(e(n+αr)−e(n+βr)),

where Φ is defined after (2.16), ν̂n,rV is given in Theorem 3.1, and e(m) denotes them-th unit vector
in `1(N ). The following result is then a special case of Proposition 2.3.

Proposition 3.7 (Quadratic gradient structures for CME) If the RRE (2.2) satisfies the detailed-
balance condition (2.6) for a positive steady state c∗ = (c∗i )i=1,...,I , then the associated CME has
the gradient structure (P(N ), EφV ,K

φ
V ) defined in (3.6), namely

u̇ = BVu = −KφV (u)DEφV (u).

In the following we will mainly be concerned with the case that EφV is the logarithmic entropy, where φ
is the Boltzmann function λB(z) = z log z − z + 1. In that case we obtain

EV (u) :=
1

V

∑
n∈N

wVnλB

( un
wVn

)
=

1

V

∑
n∈N

(
un log un − un logwVn

)
, (3.7)

KV (u) := V
R∑
r=1

∑
n∈N

ν̂n,rV Λ
( un+αr

wVn+αr
,
un+βr

wVn+βr

)
(e(n+αr)−e(n+βr))⊗(e(n+αr)−e(n+βr)),

where the logarithmic mean Λ(a, b) is defined in (2.10). The above definitions do not only restrict to
the entropy function φ = λB, but also introduce a normalization with respect to the volume V . Hence,
EV can be seen as an entropy per unit volume. The corresponding scaling of KV was chosen such
that the evolution equation u̇ = −KV (u)DEV (u) is the same as u̇ = −KφV (u)DEφV (u).

For later purposes we also provide the cosh-type gradient structure for CME, whose relevance and
usefulness is discussed in [MPR14, MP∗17, FrL19, MiS19]. Recall the definition of C∗ in (2.18) and
note the special scaling via the volume V in (3.8) below, which is needed because Ψ∗cosh,V (u, ·) is
not scaling invariant.

Proposition 3.8 (cosh-type gradient structure for CME) If the RRE (2.2) satisfies the detailed-ba-
lance condition (2.6) for a positive steady state c∗ = (c∗i )i=1,...,I , then the associated CME has the
gradient structure (P(N ), EV ,Ψ∗cosh,V ) with EV from (3.7) and

Ψ∗cosh,V (u,µ) :=
1

V

R∑
r=1

∑
n∈N

ν̂n,rV

( un+αr

wVn+αr

un+βr

wVn+βr

)1/2

C∗
(
V (µn+βr−µn+αr)

)
. (3.8)
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Modeling chemical reaction systems using gradient structures 17

Proof. The desired formula
∑R

r=1 B
r

Vu = DµΨ∗cosh,V (u,−DEV (u)
)

follows easily by recalling BrV
from (3.4) and by using

√
ab (C∗)′

(
log a− log b

)
= a−b and DEV (u) = 1

V

(
log(un/w

V
n )
)
n∈N .

4 Liouville and Fokker–Planck equations

For general evolutionary equations one can define a measure-valued flow in the phase space that is
given by transporting the measures according to the semiflow of the original equation. The evolution
equation describing this measure-valued flow is the Liouville equation. For our RRE ċ = −R(c) in
C := [0,∞[I we assume that we have a global semiflow c(t) = Φt(c(0)) and consider probability
measures %(t, ·) ∈P(C) that are obtained by transporting %0 with Φt, namely

%(t, ·) = Φ#
t %0, i.e., ∀ψ ∈ Cb(C) :

∫
C

ψ(c)%(t, dc) =

∫
C

ψ(Φt(c))%0(dc).

In particular, if %0 =
∑m

k=1 akδck0 , then %(t, ·) =
∑m

k=1 akδΦt(ck0)(·).

It is now easy to see that t 7→ %t ∈P(C) satisfies the Liouville equation

∂t%(t, c) = div
(
%(t, c)R(c)

)
, (4.1)

in the sense of distributions. We will regard (4.1) as an evolution equation in the space P(C). We
will not always notationally distinguish between an absolutely continuous probability measure and its
density, but if we want to distinguish them we will write %(dc) = ρ(c)dc with ρ ∈ L1(C).

The goal of this section is to give a rigorous connection between the CME for V → ∞ and the
Liouville equation in terms of the associated gradient structures.

4.1 The Liouville equation as a gradient system

We show that the gradient structure ċ = −R(c) = −K(c)DE(c) for the RRE, which was discussed
in Section 2.3, induces a natural gradient structure for the Liouville equation. Consider the “Otto-
Wasserstein-type” Onsager operatorK(%) that acts on functions ξ : C → R via

K(%)ξ = − div
(
%K∇ξ

)
,

where div and ∇ are taken with respect to c ∈ RI . We also consider the affine potential energy
functionalE : P(C)→ [0,+∞] defined by

E(%) =

∫
C

E(c)d%(c). (4.2)

In the next result we identify the formal gradient structure for the Liouville equation.

Proposition 4.1 (Gradient structure for the Liouville equation) If the RRE (2.2) satisfies the detailed-
balance condition (2.6) for a positive steady state c∗ = (c∗i )i=1,...,I , then the associated Liouville
equation has the gradient structure (P(C),E,K), namely

%̇ = −K(%)DE(%) = div
(
%K∇E

)
= div(%R). (4.3)
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Proof. Let % ∈ P(C) and let σ ∈ M (C) be a signed measure of finite total variation such that
σ(C) = 0 and %+ hσ ∈P(C) for |h| sufficiently small. Then we have

E(%+ hσ)−E(%)

h
=

∫
C

E(c)dσ(c),

hence DE(%) = E for all %. Therefore,−K(%)DE(%) = div
(
%K∇E

)
= div(%R). The gradient

flow equation %̇ = −K(%)DE(%) is thus given by the Liouville equation (4.1).

4.2 Passing to the limit from CME to Liouville

In this section we shall demonstrate that the gradient flow structure for the CME converges in a suitable
sense to the gradient structure for the Liouville equation if V →∞.

More precisely, we will show that after a suitable V -dependent embedding of P(N ) into P(C) the
proper scalings of the functionals EV and Ψ∗V : (u,µ) 7→ 1

2
µ · KV (u)µ converge in the sense

of Γ-convergence to the corresponding structures for the Liouville equation given by the gradient
system (P(C),E,K), see Section 4.3 to 4.5. Following the approach in [SaS04, Ser11, Mie16],
and in particular [LM∗17], we are then able to establish the convergence for V → ∞ of solutions
uV : [0,∞[→P(N ) of the CME u̇V = −KV (uV )DEV (uV ) to the solution % : [0,∞[→P(C)
of the Liouville equation %̇ = −K(%)DE(%), thereby recovering Kurtz’ result (1.3), see Section 4.6.

The main tool for proving this evolutionary Γ-convergence for gradient systems is the so-called energy–
dissipation principle, cf. [Mie16, Sec. 3.3], which states that uV solves the CME if and only if for all
T > 0 the following energy-dissipation estimate holds:

EV (uV (T )) +

∫ T

0

(
ΨV (uV , u̇V ) + Ψ∗V

(
uV ,−DEV (uV )

))
dt ≤ EV (uV (0)), (4.4)

where we use the quadratic dissipation potential ΨV and its Legendre dual Ψ∗V defined via Ψ∗V (u,µ) :=
1
2
〈µ,KV (u)µ〉 with KV from (3.7), namely

Ψ∗V (u,µ) =
V

2

∑
n∈N

R∑
r=1

ν̂n,rV Λ
( un+αr

wVn+αr
,
un+βr

wVn+βr

)(
µn+αr−µn+βr

)2
(4.5a)

=
V

2

∑
n∈N

R∑
r=1

Λ
(
krfwBαrV (n)un+αr , k

r
bwBβ

r

V (n)un+βr
)(
µn+αr−µn+βr

)2
, (4.5b)

where the second form uses Theorem 3.1 and is especially useful to perform the limit V → ∞, see
the proof of Proposition 4.6.

We refer to [DaS14, Mie16] for this equivalence and general methods for proving such results on
evolutionary Γ-convergence. In [DiL15] a similar approach was used to establish the convergence
of CTMC to a Fokker–Planck equation. However, there the convergence of a parabolic equation is
established, where upper and lower bounds of the density can be used. Here, the importance is that
our limit measures %(t) may not have densities; indeed, because we want to recover the Kurtz result
(1.3) we are interested in the “deterministic case” %(t) = δc(t). So our analysis has to be more careful
in dealing with general limit measures. For this, we use the dualization approach introduced in [LM∗17]
where t 7→ ΨV (uV , u̇V ) is estimated from below by 〈u̇V ,µV 〉 − Ψ∗V (uV ,µV ) for suitably chosen
recovery functions t 7→ µV (t).
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In order to compare probability measures on different spaces N and C, we consider a suitable em-
bedding ιV : P(N ) → P(C). Here ιV (u) is simply obtained by assigning the mass of u at
n ∈ N uniformly to the cube

AVn :=
[
n1

V
, n1+1

V

[
× · · · ×

[
nI
V
, nI+1

V

[
⊆ C.

More explicitly, ιV (u) is given by

ιV : P(N )→P(C); u 7→ ιV (u) = % = ρdc with ρ(c) := V I
∑
n∈N

un11AVn (c), (4.6)

where 11A denotes the indicator function with 11A(b) = 1 for b ∈ A and 0 otherwise. The correspond-
ing dual operation acting on functions ξ ∈ Cb(C) is given by

ι∗V : Cb(C)→ `∞(N ); (ι∗V ξ)(n) = V I

∫
c∈AVn

ξ(c)dc. (4.7)

The final convergence result will be formulated in Theorem 4.7, which will be a direct consequence of
the following three estimates

Section 4.3 ιV (uV )
∗
⇀ % ⇒ E(%)≤ lim inf

V→∞
EV (uV );

Section 4.4 ιV (uV )
∗
⇀ % ⇒ Ψ∗Lio(%,DE(%))≤ lim inf

V→∞
Ψ∗V (uV ,DEV (uV ));

Section 4.5 ιV (uV )
∗
⇀ %, ξ ∈ C1

c(C)⇒ Ψ∗Lio(%, ξ)≥ lim sup
V→∞

Ψ∗V (uV , ι∗V ξ);

where the dual dissipation potential Ψ∗Lio is defined via

Ψ∗Lio(%, ξ) =
1

2

∫
C

∇ξ(c) ·K(c)∇ξ(c)d%(c).

We will see in Section 4.6 that the limsup estimate for the dual potential Ψ∗V in Section 4.5 provides a
weak form of a liminf estimate for the primal potential ΨV .

A fundamental fact of the chosen gradient structures of the underlying Markov processes is that all
the three terms in the energy-dissipation principle define convex functionals, which is of considerable
help in proving the desired liminf estimates. Note that the convergence ιV (uV )

∗
⇀ % is rather weak.

However, we can use that the coefficients of the transition rates defining the CME are quite regular,
so that the other parts in the integral converge in a much better sense. Moreover, the functionals
% 7→ E(%) and % 7→ Ψ∗Lio(%,DE(%)) are in fact linear in %.

4.3 Γ-limit of the relative entropies

We also define XV := ιV (P(N )) ⊂ P(C) and WV = ιV (wV ) ∈ XV and consider the
functionals

ÊV : P(C)→ [0,∞], ÊV (%) =

{
ẼV (%) if % ∈XV ,
∞ otherwise,

where ẼV : P(C)→ [0,∞] is defined via

ẼV (%) =
1

V
Ent(%|WV dc) =

{
1
V

∫
C
λB(ρ/WV )WV dc for % = ρdc,
∞ otherwise.
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These definitions are chosen such that EV (u) = ẼV (ιV (u)) = ÊV (ιV (u)) for all u ∈P(N ).

Finally we define a natural inverse of ιV , namely

κV : P(C)→P(N ); % 7→
(
%
(
AVn
))
n∈N

, (4.8)

such that PV := ιV ◦ κV is a projection from P(C) ontoXV ⊂P(C).

To understand the limit of ÊV for V →∞ we will use the representation

ẼV (ρdc) =
1

V

∫
C

λB(ρ/WV )WV dc =

∫
C

( 1

V
ρ log ρ+ ρEV (c)

)
dc

with EV (c) =
1

V
log
( 1

WV (c)

)
= −I log V

V
− 1

V
logwV

n for c ∈ AVn . (4.9)

In Lemma 4.2 below we will show that EV converges pointwise to E as defined in (2.9). To quantify
the latter convergence, we use the classical lower and upper bounds of [Nan59] for Stirling’s formula:

∀n ∈ N0 : n! =
√

2πkn

(n
e

)n
with k0 =

1

2π

and kn = n+
1

6
+

γn
124/5 + 72n

with γn ∈ [0.9, 1] for n ≥ 1.
(4.10)

Using this estimate and recalling E from (2.9) we obtain the following estimate.

Lemma 4.2 (Pointwise bound for EV ) For all c∗ > 0 there exist K∗ > 0 and V∗ > 0 such that for
all V ≥ V∗ the following bounds hold:

|EV (c)− E(c)| ≤ K∗
V

(
log V + E(c)

)
for all c ∈ C. (4.11)

Proof. We decompose the error via

EV (c)− E(c) =
(
EV (c)−E(

1

V
n)
)

+
(
E(

1

V
n)−E(c)

)
(4.12)

with n defined by c ∈ AVn . For the second term we use the convexity of λB and the estimate log z ≤
1 + λB(z). Hence, we have

c∗i

[
λB

( ci
c∗i

)
− λB

( ni
V c∗i

)]
≤
(
ci−

ni
V

)
log
( ci
c∗i

)
≤ 1

V

(
1 + λB

( ci
c∗i

))
≤ max{I, 1/c∗i }

V

(1

I
+ c∗iλB

( ci
c∗i

))
.

Summing this inequality over i = 1, . . . , I we obtain the upper bound

E(c)− E
(

1
V
n
)
≤ K1

V

(
1+E(c)

)
with K1 = max{I, 1/c∗1, ..., 1/c∗I}. (4.13)

For the opposite direction we use (a) that λB decreases on [0, 1] and the convexity of λB which implies
(b) λB(z1)− λB(z2) ≤ λB(0)− λB(z2−z1) for 0 ≤ z1 ≤ z2. This yields

E
(

1
V
n
)
− E(c) =

I∑
i=1

c∗i

[
λB

( ni
V c∗i

)
− λB

( ci
c∗i

)] (b)
≤

I∑
i=1

c∗i

[
λB(0)− λB

( ci
c∗i
− ni
V c∗i

)]
(a)
≤

I∑
i=1

c∗i
[
λB(0)− λB

(
1
V c∗i

)]
=

1

V

I∑
i=1

(
1+ log(V c∗i )

) (c)
≤ 2I

log V

V
,

(4.14)
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if V ≥ V ∗1 := max
{

max{1/c∗i , ec∗i }
∣∣ i = 1, ..., I

}
, where V c∗i ≥ 1 and V ≥ ec∗i are needed in

(a) and (c), respectively. Together with (4.13) this controls the second error term in (4.12), viz.∣∣E(c)− E
(

1
V
n)
∣∣ ≤ K2

V

(
log V + E(c)

)
for V ≥ V ∗2 = max{e, V ∗1 }, (4.15)

where K2 = max{2I,K1}.

For controlling the first error term in (4.12) we use (4.9) and obtain the identity

EV (c)− E
(

1
V
n
)

= −I log V

V
+

1

2V

I∑
i=1

log(2πkni) for all c ∈ AVn , (4.16)

with kn from (4.10). Because of 2πkn ≥ 1 we obtain, for all V ≥ 1, the lower bound

EV (c)− E
(

1
V
n
)
≥ −I log V

V
≥ − I

V

(
log V + E(c)

)
.

For the upper bound we use 2πk0 = 1 and 2πkn ≤ 8n for n ≥ 1. Hence for ni ≥ 1 we obtain, using
again the estimate log z ≤ 1 + λB(z),

log(2πkni) ≤ log(8ni) ≤ log(8c∗iV ) + log
( ci
c∗i

)
≤ log V + log(8ec∗i ) +

1

c∗i
c∗iλB

( ci
c∗i

)
.

Summation over i = 1, . . . , I yields, for all c ∈ AVn and V ≥ V ∗3 := 8e max{c∗1, . . . , c∗I}, the upper
bound

EV (c)− E
(n
V

)
≤ K3

V
E(c) with K3 = max

{ 1

2c∗1
, . . . ,

1

2c∗I

}
.

Together with the lower estimate we control the first error term in (4.12) via∣∣EV (c)− E( 1
V
n)| ≤ K4

V

(
log V + E(c)

)
for V ≥ V ∗4 = max{1, V ∗3 },

where K4 = max{I,K3}.
Adding the estimates for first and the second error term (4.12) we obtain the desired estimate (4.11)
with the choices K∗ = K2 +K4 and V∗ = max{V ∗2 , V ∗4 }.

For consistency of notation we remark that ẼV (%) can be rewritten as

ẼV (ρdc) =

∫
C

( 1

V
log ρ(c) + EV (c)

)
ρ(c)dc ,

provided that this integral exists. The limit functionalE is given by

E : P(C)→ [0,∞]; % 7→
∫
C

E(c)d%(c), (4.17)

where we use thatE is a continuous and non-negative function, so thatE can be defined everywhere
but attains the value +∞ if % does not decay suitably at infinity. We will use the following semi-
continuity result.
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Lemma 4.3 (Lower semi-continuity ofE) For sequences (%k)k ⊂P(C) with %k
∗
⇀ %∞, we have

E(%∞) ≤ lim infk→∞E(%k).

Proof. For cut-off functions χ ∈ Cc(C) with χ(c) ∈ [0, 1] we have E(χ%k) → E(χ%∞) by weak*
convergence and continuity of E. Using χ ≤ 1 yields E(χ%∞) ≤ lim infk→∞E(1%k). Choosing
a non-decreasing sequence χn with χn(c) → 1 for all c ∈ C we have E(χn%∞) → E(1%∞) by
Beppo Levi’s monotone convergence, and the assertion follows.

The following result gives the Γ-convergence of EV toE with respect to the sequential weak* conver-
gence as well as the equi-coercivity.

Theorem 4.4 (Γ-convergence of EV toE) Let ÊV andE be defined on P(C) as above. Then we
have the following properties:

(a) Compactness / equi-coercivity:

∃V∗, C, c > 0 ∀V ≥ V∗ ∀ % ∈P(C) : ÊV (%) ≥ −C + cE(%). (4.18)

(b) Weak* liminf estimate:

%V
∗
⇀ % in P(C) =⇒ lim inf

V→∞
ÊV (%V ) ≥ E(%). (4.19)

(c) Limsup estimate / recovery sequence:

∀ %̂ ∈P(C) ∃ (%̂V )V≥1 : ÊV (%̂V )→ E(%̂) and %̂V
∗
⇀ %̂, (4.20)

where we may take %̂V = PV %̂ = ιV
(
κV (%̂)

)
.

Proof. Obviously it is sufficient to show the lower bound (a) and the liminf estimate (b) for the smaller
functional ẼV , and for % = ρdc with ρ ∈ L1(C) (resp. %V = ρV dc with ρV ∈ L1(C)). We use the
elementary convexity estimate

∀ r ≥ 0, a, w > 0 : wλB(r/w) = r log(r/w)− r + w ≥ r log(a/w)− a+ w.

We choose r(c) = %(c), w(c) = WV (c), and a(c) = e−|c|1 = ΠI
i=1e−ci > 0. Note that a ∈

L∞(C)∩P(C) andWV /a is bounded from above, for any fixed V . Hence, c 7→ log(a(c)/WV (c)) =
−|c|1 +V EV (c) is bounded from below, and we can integrate the above estimate to obtain the lower
bound

ẼV (%) ≥ 1

V

∫
C

log
(
a(c)/WV (c)

)
d%(c) =

∫
C

(
EV (c)− |c|1

V

)
d%(c).

Since there exists a constant K1 > 0 such that |c|1 ≤ K1

(
1+E(c)

)
and since EV satisfies the

lower bound in (4.11), we obtain the lower bound

ẼV (%) ≥
∫
C

E(c)d%(c)− K∗+K1

V

∫
C

(
log V+E(c)

)
d%(c)

= E(%)− K∗+K1

V

(
log V +E(%)

)
.

This immediately implies (4.18) in part (a) with V∗/ log V∗ = 2(K∗+K1). Moreover, if %V
∗
⇀ % then

we have the lower bound ÊV (%V ) ≥ E(%V ) − K∗+K1

V

(
log V + E(%V )

)
and the liminf estimate

(4.19) follows from Lemma 4.3.
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To show part (c) we use the indicated recovery sequence and the upper bounds for EV from (4.11).
For a given %̂ ∈ P(C) we define %̂V = ιV (κV (%̂)). For an arbitrary continuous and bounded test
function ψ we define the piecewise constant approximation ψV via averaging over AVn . We obtain∫

C

ψ(c)d%̂V (c) =

∫
C

ψV (c)d%̂V (c) =

∫
C

ψV (c)d%̂(c)→
∫
C

ψ(c)d%̂(c),

where the convergence follows via Lebesgue’s dominated convergence from the pointwise conver-
gence ψV → ψ and the uniform boundedness of ψV . Thus, we conclude %̂V

∗
⇀ %̂.

To show convergence of ÊV (%̂V ) it suffices to prove the upper bound lim supV→∞ ÊV (%̂V )≤ E(%̂).
For this we use the bound ρ̂V (c) ≤ V I = 1/vol(AVn) and the fact that ρ̂V and EV are constant on
the same cubes to obtain

ÊV (%̂V ) =

∫
C

( log ρ̂V (c)

V
+ EV (c)

)
dρ̂V (c) ≤ I log V

V
+

∫
C

EV (c)d%̂(c),

where now only the measure %̂ is left. The first term tends to 0 for V → ∞, and the second can be
estimated from above using the upper estimate in (4.11), which yields

ÊV (%̂V ) ≤ I log V

V
+

∫
C

E(c) +
K∗
V

(
log V+E(c)

)
d%̂(c) =

(
1 +

K∗
V

)
E(%̂) +

I+K∗
V

log V.

This implies the desired upper bound for V →∞, and the proof is complete.

4.4 A liminf estimate for the dual dissipation functional

Here we provide the liminf estimate for the dual dissipation potential Ψ∗V (uV ,DEV (uV )) based on
the lower bound

Ψ∗Lio(%,DE(%)) =
1

2

∫
C

∇E(c) ·K(c)∇E(c)d%(c). (4.21)

We observe that the latter term is linear in % while the former term is convex in uV . Indeed, intro-
ducing the convex function G(a, b) = (a−b)(log a − log b) for a, b > 0 and noting the relation
Λ(a, b)(log a− log b)2 = G(a, b) we have

Ψ∗V
(
uV ,DEV (uV )

)
=

1

2V

R∑
r=1

∑
n∈N

ν̂n,rV G
( uVn+αr

wVn+αr
,
uVn+βr

wVn+βr

)
. (4.22)

To establish the linear lower bound we use the elementary, affine lower bound

∀ a, b > 0, ω ∈ R : G(a, b) ≥ g(ω) a+ g(−ω) b, where g(ω) := 1− e−ω + ω. (4.23)

This estimate follows easily by convexity, G(a, b) ≥ G(eω, 1) + DG(eω, 1) · (a−eω, b−1), and
1-homogeneity giving G(eω, 1) = DG(eω, 1) · (eω, 1). Note that equality holds in (4.23) if ω =
log(a/b). Moreover, we have g(ω) + g(−ω) = 2 − eω − e−ω ≤ 0, so a careful choice of ω
depending on n will be necessary to obtain a good lower bound with a positive leading term.

Proposition 4.5 We have the liminf estimate

ιV (uV )
∗
⇀ % in P(C) =⇒ Ψ∗Lio(%,DE(%)) ≤ lim inf

V→∞
Ψ∗V (uV ,DEV (uV )).
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Proof. The special forms of K(c), E(c), and Ψ∗Lio in (4.21) give the formula

Ψ∗Lio(%,DE(%)) =
1

2

∫
C

R∑
r=1

κr∗G
(cαr
cαr∗

,
cβ

r

cβ
r

∗

)
d%(c). (4.24)

Since Ψ∗V and Ψ∗Lio are defined as sums over r = 1, . . . , R of nonnegative terms, it suffices to show
the result for each r separately, where we suppress the index r.

Inserting (4.23) into (4.22) yields, with ωn ∈ R to be fixed afterwards,

Ψ∗V (uV ,DEV (uV )) ≥ 1

2V

∑
n∈N

ν̂nV

(
g(ωn)

uVn+α

wVn+α

+ g(−ωn)
uVn+β

wVn+β

)
=
κ∗
2

∑
n∈N

(
g(ωn)AαV (n)uVn+α + g(−ωn)AβV (n)uVn+β

)
with AδV (n) :=

wVn
wVn+δ

=
(n+δ)!

(c∗V )δn!
,

where we used the detailed-balance conditions from Theorem 3.1 for the last identity. Rearranging the
sum and recalling that Aδ(n) = 0 for n 6∈ N we find

Ψ∗V (uV ,DEV (uV )) ≥ κ∗
2

∑
n∈N

hVnu
V
n with hVn := g(ωn−α)AαV (n−α)+g(−ωn−β)AβV (n−β).

We now choose ωn = log
(
AαV (n)/AβV (n)

)
for n ∈ N and ωn = 0 otherwise and find, for all n

with n ≥ α or n ≥ β, the relation

hVn = G
(
AαV (n−α),AβV (n−β)

)
+ fVn with

fVn := AαV (n−α)− AαV (n−β) + AβV (n−β)− AβV (n−α)

+ AαV (n−α) log

(
AβV (n−β)

AβV (n−α)

)
+ AβV (n−β) log

(
AαV (n−α)

AαV (n−β)

)

The idea is now that as 1
V
n→ c > 0 we have the convergences

AδV (n−α)→ cδ/cδ∗ and AδV (n−β)→ cδ/cδ∗ ,

which yields fVn → 0 and hVn → G(cα/cα∗ , c
β/cβ∗ ) as desired. To be more precise we define, for all

ε ∈ ]0, 1[, the functions

Gε(a, b) = −ε+ min{(1−ε)G(a, b), 1/ε},

which converge monotonely to G(a, b) for ε ↘ 0. A lengthy calculation using the explicit structure
of Aδ(n) shows that for all ε > 0 there exists Vε � 1 such that hVn ≥ Gε(AαV (n),AβV (n)) for all
V ≥ Vε and all n. Even more, if we define the functions HV : C → R; c 7→

∑
n∈N h

V
n 11AVn (c),

then, for all ε > 0 there exists Ṽε � 1 such that

∀V ≥ Ṽε ∀ c ∈ C : HV (c) ≥ Hε(c) := Gε

(cα
cα∗
,
cβ

cβ∗

)
.
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Hence, using the definition of ιV we find the lower bound

Ψ∗V (uV ,DEV (uV )) ≥ κ∗
2

∑
n

hVnu
V
n =

κ∗
2

∫
C

HV (c)dιV (uV )(c) ≥ κ∗
2

∫
C

Hε(c)dιV (uV )(c).

Since Hε is lower semi-continuous and bounded, this implies the liminf estimate

ιV (uV )
∗
⇀ % =⇒ lim inf

V→∞
Ψ∗V
(
uV ,DEV (uV )

)
≥ κ∗

2

∫
C

Hε(c)d%(c).

Because ε > 0 was arbitrary we can use the monotone convergence Hε(c) ↗ G
(
cα

cα∗
, c
β

cβ∗

)
to con-

clude the desired result for each of the R reactions

lim inf
V→∞

Ψr,∗
V (uV ,DEV (uV )) ≥ κ∗

2

∫
C

G
(
cα

r

cαr∗
, c
βr

cβ
r
∗

)
d%(c)

=
κ∗
2

∫
C

Λ
(
cα

r

cαr∗
, c
βr

cβ
r
∗

)(
∇E(c)·(αr − βr)

)2
d%(c).

Summation over r = 1, . . . , R yields the full result for Ψ∗V .

4.5 A liminf estimate for the dissipation functional

In the evolutionary Γ-convergence method of [SaS04, Ser11, Mie16] it is standard to provide a lim-
inf estimate for the primal dissipation potential ΨV which in our case is defined via the Legendre
transform

ΨV (u,v) = sup
{ ∑
n∈N

unξn −Ψ∗V (u, ξ)
∣∣∣ ξ = (ξn)n∈N

}
.

However, as our theory relies on the dualization ΨV (u,v) ≥
∑
n∈N unξn − Ψ∗V (u, ξ) it will be

sufficient to have the following limsup estimate for Ψ∗V , which crucially relies on the concavity of the
map (a, b) 7→ Λ(a, b).

Proposition 4.6 Consider any pair (%, ξ) ∈ P(C)×C1
c(C) and set ξV = ι∗V ξ : N → R with ι∗V

defined in (4.7). Then, for every family (uV )V >1 we have the limsup estimate

ιV (uV )
∗
⇀ % =⇒ lim sup

V→∞
Ψ∗V (uV , ξV ) ≤ Ψ∗Lio(%, ξ) =

1

2

∫
C

∇ξ ·K∇ξd%(c). (4.25)

Proof. As in the proof of Proposition 4.5 we can exploit that Ψ∗V is a sum of non-negative terms over
r = 1, . . . , R. Hence, it is sufficient to show the desired limsup estimate for each reaction individually.
For notational simplicity we drop the reaction index r.

Defining %V = ρV dc = ιV (uV ), relation (4.5b) leads us to the integral representation

Ψ∗V (uV , ξV ) =
κ∗
2

∫
c∈C

Λ
(
ρV,a(c) , ρV,b(c)

)
M ξ

V (c)dc,

where

ρV,a(c) = aV (c)ρV (c+ 1
V
α), ρV,b(c) = bV (c)ρV (c+ 1

V
β),
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and the functions aV , bV , and M ξ
V are given

aV (c) =
BαV(n)

V cα∗
, bV (c) =

BβV(n)

V cβ∗
, M ξ

V (c) = V 2
(
ξVn+α−ξVn+β

)2
for c ∈ AVn .

Using ξ ∈ C1
c(C) there exists R > 0 such that spptM ξ

V ⊂ CR := BR(0) ∩ C, and we have
uniform convergence

‖aV−a∞‖L∞(CR) + ‖bV−b∞‖L∞(CR) + ‖M ξ
V − (∇ξ · γ)2‖L∞(CR) → 0 as V →∞,

where a∞(c) = cα/cα∗ , b∞(c) = cβ/cβ∗ , and γ = α−β. Using Λ(r, t) ≤ 1
2
(r+t), the uniform

boundedness of aV and bV on CR, and that %V is a probability measure, we see that in the limsup
of Ψ∗V (uV , ξV ) we can replace M ξ

V by
(
(α−β) · ∇ξ

)2
without changing the limsup in the left-hand

side of (4.25).

Next we consider the functionals F : M (CR)×M (CR)→ [0,+∞] given by

F (%1, %2) =

∫
CR

f(ρ1(c), ρ2(c))
(
γ · ∇ξ(c)

)2
dc with f(r, t) =

{
r+t−Λ(r, t), for r, t ≥ 0,

+∞, else.

Note that f(r, t) ≥ 1
2
(r+t). Moreover, f is convex and positively homogeneous of degree 1. Thus,

F is weak* lower semi-continuous on M (CR)×M (CR), cf. [FoL07, Thm. 6.57]. Now using the
convergences

%V,a
∗
⇀ a∞%

∣∣
CR

and %V,b
∗
⇀ b∞%

∣∣
CR

as V →∞,

we obtain the liminf estimate lim infV→∞ F (%V,a, %V,b) ≥ F (a∞%, b∞%).

Thus, in the view of the identity∫
CR

Λ(ρV,a, ρV,b)(γ · ∇ξ(c))2 dc =

∫
CR

(ρV,a+ρV,b)
(
γ · ∇ξ(c)

)2
dc− F (%V,a, %V,b),

and observing that the first term on the right-hand side is weak∗ continuous, the limsup for V → ∞
gives

lim sup
V→∞

Ψ∗V (uV , ξV ) =
κ∗
2

lim sup
V→∞

∫
CR

Λ(ρV,a, ρV,b)(γ · ∇ξ(c))2 dc

≤ κ∗
2

∫
CR

(a∞+b∞)
(
γ · ∇ξ)2 d%− κ∗

2
F (a∞%, b∞%)

=
κ∗
2

∫
CR

Λ(a∞, b∞)
(
γ·∇ξ(c)

)2
d%(c) = Ψ∗Lio(%, ξ).

This is the desired result for one reaction, and the full result follows by summation over r = 1, . . . , R

and the definition of K, namely∇ξ ·K∇ξ =
∑R

r=1 κ
r
∗Λ
(
cα

r

cαr∗
, c
βr

cβ
r
∗

)
(γr·∇ξ)2.

4.6 Convergence of solutions

Here we provide the general convergence result as V →∞ for the appropriately embedded solutions
uV : [0,∞[ → P(N ) of the CME to the solutions % : [0,∞[ → P(C) of the Liouville equation,
which is a simple transport along the solutions of the RRE ċ = −R(c) = −K(c)DE(c). Our
approach follows the strategy of evolutionary Γ-convergence as initiated in [SaS04, Ser11] with the
new idea of dualization as introduced in [LM∗17].
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Theorem 4.7 (Evolutionary Γ-convergence of CME to Liouville) For all V > 1 consider a solution
uV : [0,∞[ → P(N ) of the CME (3.2). Assume that the initial conditions are well-prepared in the
sense that

ιV (uV (0))
∗
⇀ %0 in P(C) and EV (uV (0))→ E(%0).

Then, for all t > 0, we have the convergence

ιV (uV (t))
∗
⇀ %(t) in P(C) and EV (uV (t))→ E(%(t)),

where % : [0,∞[→P(C) is the unique solution of the Liouville equation (4.3) starting at %(0) = %0,
i.e., for all ϕ ∈ C1

c([0, T ]×C) with ϕ(T, ·) = 0 we have∫
C

ϕ(0, c)%0(dc) +

∫ T

0

∫
C

(
∂tϕ(t, c)−∇ϕ(t, c)·K(c)∇E(c)

)
%(t, dc)dt = 0. (4.26)

Moreover, for all r, s ∈ [0, T ] with r < s we have the energy identity

E(%(s)) + 2

∫ s

r

Ψ∗Lio

(
%(t),−DE(%(t))

)
dt = E(%(r)). (4.27)

For the proof we use the energy-dissipation principle for V ≥ 1 and pass to the limit in each of the
terms. If uV is a solution of the CME, then for all T > 0 we have

EV (uV (T )) +

∫ T

0

ΨV (uV , u̇V ) + Ψ∗V
(
uV ,−DEV (uV )

)
dt = EV (uV (0)). (4.28)

Following the ideas in [DiL15] for the passage from a Markov chain to the Fokker–Planck equation or
the general methods in evolutionary Γ-convergence, we want to pass to the limit in each of the four
terms. As a general fact, it will be sufficient to obtain liminf estimates on the left-hand side, since by
a chain-rule argument an estimate with “≤” instead of equality can be turned back into an equality.
Moreover, by the assumptions of the theorem we see that the right-hand side converges to the desired
limit.

However, it is rather delicate to pass to the limit in the integral
∫ T

0
ΨV (uV , u̇V ) dt, because the

potential ΨV is only implicitly defined and we expect the limit to be given in terms of the Benamou-
Brenier formula for the Wasserstein distance induced by the metric on (C,K). A major difficulty is
even to obtain a suitable equi-continuity for the solutions uV to be able to extract a subsequence
converging at all times. In particular, it is unclear how to pass to the limit in ιV (u̇V (t)) by a direct
argument.

Hence, following [LM∗17], we estimate the primal dissipation potential ΨV from below using the defi-
nition in terms of the Legendre transform of Ψ∗V . Using additionally an integration by parts we have∫ T

0

ΨV (uV , u̇V )dt ≥ JV (uV ,η) for all η ∈ C1([0, T ]; `∞(N )) with

JV (u,η) := 〈u(T ),η(T )〉 − 〈u(0),η(0)〉 −
∫ T

0

〈u(t), η̇(t)〉+ Ψ∗V (u(t),η(t))dt,

where 〈u,η〉 :=
∑

n∈N unηn. With this argument we can replace the energy-dissipation principle
(4.28) by the estimate

EV (uV (T )) + JV (uV ,η) +

∫ T

0

Ψ∗V
(
uV ,−DEV (uV )

)
dt ≤ EV (uV (0)), (4.29)
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which holds for all differentiable η. In this equation we are then able to pass to the limit V → ∞,
when choosing η = ηV = ι∗V (ξ) for a smooth function ξ.

At the end we are then able to calculate the supremum over all ξ by using the especially simple
quadratic structure in ξ, which mirrors the fact that the Liouville equation is a simple transport equation.

Proof of Theorem 4.7.

Step 1: Embedding and uniform a priori bounds. We now consider the family uV : [0, T ] →
P(N ) and embed it into P(C) via ιV from (4.6). As in [DiL15] we show an equi-continuity in a
1-Wasserstein distance, but introduce an additional weight accounting for our unbounded domain C.
We define the maximal order p of all reactions via

p := max{ |αr|1, |βr|1 | r = 1, . . . , R }.

For µ ∈M (C) and for %0, %1 ∈P(C) we set

‖µ‖1W := sup

{ ∫
C

f(c)dµ(c)

∣∣∣∣ f ∈ F
}

and d1W(%0, %1) = ‖%0 − %1‖1W,

where F := { f ∈ C1(C) | supC(1+|c|p)|∇f(c)| ≤ 1 }.
Using the definition of the Markov generators QrV in terms of the coefficients BδrV (n) , see (3.3), it is
easy to derive the uniform estimate ‖ιV (u̇V (t))‖1W ≤ C1W independently of the initial conditions
and V ≥ 1 (one simply needs

∑
uVn ≡ 1). Hence, we obtain the uniform Lipschitz bound

d1W

(
ιV (uV (t)), ιV (uV (s))

)
≤ C1W|t−s| for all s, t ∈ [0, T ] and all V ≥ 1.

Moreover, as EV (uV (t)) ≤ EV (uV (0)) ≤ E(%0) + o(1)V→∞ by well-preparedness, the equi-
coercivity of EV established in (4.18) yields the uniform bound

∃V∗ ≥ 1, CB <∞ ∀ t > 0, V ≥ V∗ :

∫
C

(1+|c|)ιV (uV (t))dc ≤ CB. (4.30)

Step 2: Extraction of a subsequence. The subset of P(C) defined by the boundedness of the
above first moment is a compact subset of the metric space (P(C), d1W). Indeed, using Prokhorov’s
theorem one finds that this set is weak∗ sequentially compact. Since d1W is dominated by the bounded
Lipschitz metric (which metrizes weak∗ convergence), the compactness of (P(C), d1W) follows.

Hence, we can apply the abstract Arzelà-Ascoli theorem in (P(C), d1W) to extract a subsequence
Vk →∞ and a limit function % : [0, T ]→P(C) such that

∀ t ∈ [0, T ] : ιV (uV (t))
∗
⇀ %(t) in P(C), (4.31a)

∀ s, t ∈ [0, T ] : d1W(%(t), %(s)) ≤ C1W|t−s|, (4.31b)

∀ t ∈ [0, T ] : E(%(t)) ≤ E(%0), (4.31c)

the mapping t 7→ %(t) is weak* continuous. (4.31d)

At first, in place of (4.31a) one obtains d1W

(
ιV (uV (t)), %(t)

)
→ 0. To derive (4.31a), we use the

bound (4.30) together with the fact that any bounded continuous function can be uniformly approx-
imated on compact sets by (multiples of) functions in F. Similarly, (4.31d) follows from (4.31b). In
particular, combining (4.31d) and the assumption ιV (uV (0))

∗
⇀ %0 we conclude %(0) = %0. Finally,

(4.31c) follows via (4.31a) from Theorem 4.4:

E(%(t)) ≤ lim inf
V→∞

EV
(
uV (t)

)
≤ lim inf

V→∞
EV
(
uV (0)

)
= E(%0).
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Step 3: Limit passage in (4.29). Combining (4.31a) for t = T and Theorem 4.4 (cf. (4.19)), the first
term satisfies the liminf estimate lim infV→∞ EV (uV (T )) ≥ E(%(T )). For the last term we use the
assumption EV (uV (0))→ E(%0) = E(%(0)).

For the third term we employ Proposition 4.5 for each t ∈ [0, T ] based on (4.31a). Using Fatou’s
lemma we conclude the liminf estimate

lim inf
V→∞

∫ T

0

Ψ∗V
(
uV (t),−DEV (uV (t))

)
dt ≥

∫ T

0

lim inf
V→∞

Ψ∗V
(
uV (t),−DEV (uV (t))

)
dt

≥
∫ T

0

Ψ∗Lio

(
%(t),−DE(%(t))

)
dt.

Thus, it remains to pass to the limit in JV (uV , η). For this we choose an arbitrary ξ ∈ C1
c([0, T ]×C)

and define ξV (t) = ι∗V (ξ(t)), cf. (4.7). With this choice we can apply Proposition 4.6 for all t ∈ [0, T ]
based on (4.31a). Now, Fatou’s lemma yields

lim inf
V→∞

JV (uV , ξV ) ≥ JLio(%, ξ) where

JLio(%, ξ) :=

∫
C

ξ(T, c)%(T, dc)−
∫
C

ξ(0, c)%(0, dc)

−
∫ T

0

∫
C

(
∂tξ(t, c) +

1

2
∇ξ(t, c) ·K(c)∇ξ(t, c)

)
%(t, dc)dt.

In summary, we conclude that the limit function % : [0, T ]→P(C) satisfies

E(%(T )) + JLio(%, ξ) +

∫ T

0

Ψ∗Lio

(
%(t),−DE(%(t))

)
dt ≤ E(%(0)) (4.32)

for all ξ ∈ C1
c([0, T ]×C).

Step 4: Energy balance. By inserting ξ ≡ 0 in (4.32) we obtain the upper bound

D(%; 0, T ) :=

∫ T

0

∫
C

∇E(c)·K(c)∇E(c)%(t, dc)dt ≤ 2
(
E(%(0))−E(%(T ))

)
.

We want to show energy balance, i.e., equality when the factor 2 is omitted. For this purpose, we
observe that the measures %(t, ·) ∈ P(C) decay at infinity such that (4.31c) holds. Hence, we
may also use ξ(t, c) = λE(c) as testfunctions in (4.32). Writing shortly e(t) := E(%(t)) we find
JLio(%, λE) = λ

(
e(T )− e(0)

)
− λ2

2
D(%; 0, T ) and obtain

−λ
(
e(0)− e(T )

)
− λ2

2
D(%; 0, T ) = JLio(%, λE) ≤ e(0)− e(T )− 1

2
D(%; 0, T ) for all λ ∈ R.

Maximizing with respect to λ leads to (e(0)−e(T ))2/D ≤ 2(e(0)−e(T )) − D which implies
e(0)−e(T ) = D, or more explicitly D(%; 0, T ) = E(%(0))−E(%(T )), which is the desired energy
balance (4.27) for r = 0 and s = T .

Moreover, we can repeat the calculation on [0, s] with 0 < s < T instead of [0, T ]. The full result
(4.27) follows by subtracting the identity on [0, r] from that on [0, s].
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Step 5: Weak form of gradient flow equation. With Step 4 we rewrite (4.32) as

JLio(%, ξ) ≤ E(%(0))−E(%(T ))− 1

2
D(%; 0, T ) =

1

2
D(%; 0, T ),

and know that the left-hand side is maximized by ξ : (t, c) 7→ −E(c). Inserting the test functions
ξ(t, c) = δϕ(t, c) − E(c) with small δ > 0 and ϕ ∈ C1

c([0, T ]×C) with ϕ(T, ·) = 0 we arrive,
after some cancellations and after dividing by δ > 0, at

−
∫
C

ϕ(0, c)%(0, dc)−
∫ T

0

∫
C

(
∂tϕ−∇ϕ ·K∇

(
E− δ

2
ϕ
))
%(t, dc)dt ≤ 0.

Taking the limit δ ↘ 0 and replacing ϕ by −ϕ, we obtain the desired result (4.26).

With this, Theorem 4.7 is established.

5 Approximation via Fokker–Planck equations

In the above section we have seen that the Liouville equation is the proper limit of the CME for V →
∞. However, for finite but large V it can still be advantageous to replace the discrete CME by a
continuous PDE with V as a large parameter. In this range the stochastic modeling is done by the so-
called Langevin dynamics, see [Kur78, Gil00, WiS17], which is based on a stochastic perturbation of
the reaction-rate equation (RRE), see (1.4). At the level of probability distributions the corresponding
model is the associated Fokker–Planck equation (FPE). We will discuss two different gradient flow
approximations: in the first we simply add a suitable “entropic term” to the driving functional, but keep
the dissipation fixed (cf. Section 5.2), while in the second we expand EV and KV such that all terms
of order 1/V are correct (cf. Section 5.3).

5.1 Improved approximation of the relative entropy

We interpret the sum in the definition of EV as a Riemann sum and replace it by a corresponding
integral. The main point of the improvement is that we keep the entropy term 1

V

∑
un log un in the

definition of EV (u), which is in contrast to the limitE obtained in Theorem 4.4. Working with absolutely
continuous probability measures %(dc) = ρ(c)dc with ρ ∈ L1(C), we can define the V -dependent
entropy by

EV (%) =
1

V

∫
C

ρ(c) log
( ρ(c)

WV (c)

)
dc, (5.1)

where the equilibrium density WV ∈ L1(C) has to be chosen suitably. A first simple approximation

is W̃V (c) = 1

Z̃V
e−V E(c) with E(c) =

∑I
i=1 c

∗
iλB(ci/c

∗
i ) as above and Z̃V =

∫
C

e−V E(c) dc.

However, a better and more refined WV is obtained using the next order of expansion in Stirling’s
formula (4.10) as well. For this we use the approximation kn ≈ n + 1/6, i.e., log(n!) = n log n −
n + 1

2
log
(
2π(n+1

6
)
)

+ O(1/n2) for n → ∞. Hence, taking the limits V, |n| → ∞ such that
n
V
→ c, we obtain

− 1

V
logwVn ≈ E(c) +

1

V
GV (c)

with the V -dependent correction GV (c) := 1
2

∑I
i=1 log

(
2π(V ci + 1

6
)
)

for E.
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We now take a probability measure % = ρdc ∈P(C) and a discrete approximation u ≈ κV (%) ∈
P(N ), where κV : P(C)→P(N ) is the natural projection defined in (4.8). Then the Riemann-
sum approximation results in

EV (u) =
1

V

∑
n∈N

un log un −
1

V

∑
n∈N

un logwVn

≈ 1

V

∫
C

ρ(c) log ρ(c)dc− I log V

V
+

∫
C

(
E(c) +

1

V
GV (c)

)
ρ(c)dc

=
1

V

∫
C

ρ(c) log
( ρ(c)

Ŵ (V, c, c∗)

)
dc,

where Ŵ (V, c, c∗) =
I∏
i=1

Ŵ(V, ci, c
∗
i ) with Ŵ(V, c, c∗) =

V e−V c
∗λB(c/c∗)√

2π(V c+ 1/6)
.

The probability density WV is then defined by normalizing Ŵ (V, ·, c∗). We thus set Z(V, c∗) :=∫∞
0

Ŵ(V, c, c∗)dc and

WV (c) :=
I∏
i=1

W(V, ci, c
∗
i ) with W(V, c, c∗) :=

Ŵ(V, c, c∗)

Z(V, c∗)
. (5.2)

This yields the expansion

− 1

V
logWV (c) = E(c) +

1

V
EV

1 (c) where EV
1 (c) = ẑ(V, c∗) +

1

2

I∑
i=1

log
(
V ci+

1
6

)
with ẑ(V, c∗) :=

∑I
i=1 log

(√
2π Z(V, c∗i )/V

)
. In summary, for EV defined via (5.1) and (5.2) we

have

EV (%) = E(%) +
1

V

∫
C

(
ρ log ρ+ EV

1 ρ
)

dc, (5.3)

and DEV (%)(c) = 1
V

log ρ(c)− 1
V

logWV (c).

5.2 Simple Fokker–Planck approximation

Here we keep the V -independent Onsager operator K(%) : ξ 7→ − div
(
%K∇ξ

)
of the Liouville

equation and obtain the V -dependent continuous gradient system (P(C),EV ,K). The associated
gradient-flow equation %̇ = −K(%)DEV (%) is the FPE

ρ̇ = div
( 1

V
K(c)∇ρ+ ρR(c) + ρAV (c)

)
, (5.4)

where we used K(c)DE(c) = R(c) and setAV (c) := 1
2
K(c)

(
1

V ci+1/6

)
i=1,...,I

.

We expect that this FPE is a good approximation to the CME for all sufficiently large V . In particular,
(5.4) has the steady state ρ = WV , which is close to the discrete steady state wV ∈ P(N )
using the embedding as above. In contrast, the only steady states of the Liouville equation (4.1) are
concentrated on the equilibria of ċ = −R(c). Of course, the FPE still respects the invariant sets
I(q), because the mobility K of the Onsager operatorK is the same as for the Liouville equation. In
particular, ρ = WV is the unique equilibrium density if and only if K has full rank, i.e., I(q) = C for
all q ∈ Q.
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The simpler choice W̃V (c) = 1

Z̃(V )
e−V E(c) for the equilibrium yields the relative entropy

ẼV (%) =
1

V

∫
C

ρ(c) log
( ρ(c)

W̃V (c)

)
dc =

∫
C

( 1

V
log ρ(c)+E(c)

)
ρ(c)dc+

log(Z̃(V ))

V
.

The flow equation %̇ = −K(%)DẼV (%) induced by the gradient system (P(C), ẼV ,K) is the
simplified FPE

ρ̇ = div
( 1

V
K(c)∇ρ+ ρR(c)

)
, (5.5)

which is the same as (5.4) but withAV ≡ 0. The simplified equation will be used below as well, since
W̃V has a simpler explicit form.

We believe that this approximation is suitable for many purposes. However, it does not produce the
correct diffusion as derived in [Kur78, Eqn. (1.7)]. This diffusion correction is used to improve the
RRE ċ = −R(c) by replacing it by a stochastic differential equation called the chemical Langevin
equations (CLE) in [Gil00, WiS17], see (1.4). The associated Fokker–Planck equation takes the form

ρ̇ =
1

V

I∑
i,j=1

∂2
ij

(
ρK̂CLE(c)ij

)
+ div

(
ρR(c)

)
, (5.6)

where K̂CLE(c) ∈ RI×I is given in (1.6) and differs from K as the logarithmic mean Λ(a, b) between
a = cα

r
/cα

r

∗ and b = cβ
r
/cβ

r

∗ is replaced by the arithmetic mean 1
2
(a+b). Obviously, (5.6) does not

have a gradient structure with respect to K̂CLE, because there is no function c 7→ Ê(c) such that
R(c) = K̂CLE(c)∇Ê(c).

5.3 Fokker–Planck equation with higher-order terms

To derive a proper expansion for the term of order 1/V in the evolution equation, we work with the
V -dependent entropy EV defined in Section 5.1. Up to an irrelevant V -dependent constant, this
functional approximates EV from (3.7) up to order 1/V 2.

Similarly, we need to derive a suitable expansion for the dissipation potential, which can be done for
each reaction independently. The discrete dual dissipation potential is given by (4.5b), namely

Ψ∗V (u, ξ) =
V

2

∑
n∈N

Λ
(
kfwBαV(n)un+α, kbwBβV(n)un+β

)(
µn+α−µn+β

)2
.

For a smooth function ξ : C → R we use the second-order accurate midpoint approximation µ =
µ̂ξV : n 7→ ξ

(
1
V

(n+δ)
)

with δ = 1
2
(1, . . . , 1) to obtain the expansion

V
(
µn+α − µn+β

)
= ∇ξ(cVn) ·

(
α−β) +O(1/V 2)V→∞ with cVn :=

1

V

(
n+

α+β

2
+δ
)
,

where we used symmetric difference quotients to obtain second order accuracy. Moreover, for a
smooth and sufficiently fast decaying % = ρdc ∈ P(C) we define the associated discrete u ∈
P(N ) via u = κV (%) = ι∗V %, which yields V Iun = ρ

(
1
V

(n+δ)
)

+O(1/V 2),

V Iun+α = ρ(cVn) +
1

2V
∇ρ(cVn) · (α−β) +O(1/V 2),
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and similarly for V Iun+β. Hence, for the arguments of Λ we find the expansion

1

V
BαV(n)V Iun+α = (cVn)αρ(cVn) +

1

V
F V
n +O(1/V 2)

with F V
n = −(cVn)αρ(cVn)

I∑
i=1

αiβi
2(cVn)i

+
1

2
(cVn)α∇ρ(cVn) · (α−β).

For all smooth functions f, g : C → R with compact support in int(C), the trapezoidal rule for
Riemann integrals gives∑

n∈N

(
f(cVn) +

1

V
g(cVn)

) 1

V I
=

∫
C

(
f(c) +

1

V
g(c)

)
dc+O(1/V 2).

Hence, for smooth ρ and ξ we find the expansion

Ψ∗V
(
κV (%), µ̂ξV

)
= Φ∗V (%, ξ) +O(1/V 2) for V →∞ with

Φ∗V (%, ξ) =
1

2

∫
C

(
Λ(kfwc

α, kbwc
β)ρ(c) +

1

V
Υ
(
c, ρ(c),∇ρ(c)

))(
∇ξ(c) · (α−β)

)2
dc,

where the correction term Υ takes the explicit form

Υ(c, ρ,p) = Υ0(c)ρ+ Υ1(c) p · (α−β) with

Υ0(c) = −1

2
Λ(kfwc

α, kbwc
β)α·Čβ with Č = diag(c−1

i )i=1,...,I ,

Υ1(c) = Λ(kfwc
α, kbwc

β)
kfwc

α+kbwc
β−2Λ(kfwc

α, kbwc
β)

2(kfwcα−kbwcβ)
.

Here we used the relation ∂aΛ(a, b) = Λ(a,b)
a

a−Λ(a,b)
a−b , giving

a∂aΛ(a, b)+b∂bΛ(a, b) = Λ(a, b) and a∂aΛ(a, b)−b∂bΛ(a, b) = Λ(a, b)
a+b−2Λ(a, b)

a− b
.

Now we are in the position to calculate the first-order correction to the Liouville equation from the ap-
proximate entropyEV (cf. (5.3)) and the dual dissipation potential Φ∗V via %̇ = DξΦ

∗
V

(
%,−DEV (%)

)
,

which yields

ρ̇ = div

{(
ρ â(c) +

1

V

[
ρ b̂0(c) + b̂1(c)∇ρ · (α−β)

]
+O(1/V 2)

)(
α−β

)}
,

where the coefficients are given by

â(c) = Λ(kfwc
α, kbwc

β) (α−β) ·∇E(c) = kfwc
α−kbwc

β,

b̂0(c) = Λ(kfwc
α, kbwc

β) (α−β) · Čδ − 1

2
(kfwc

α−kbwc
β)α · Čβ,

b̂1(c) = Λ(kfwc
α, kbwc

β) + Υ1(c)(α−β)·∇E(c) =
1

2
(kfwc

α+kbwc
β).

It is interesting to see the cancellation in the term b̂1, where Υ1 did not have a sign, but after multiplica-
tion with (α−β)·∇E(c) it becomes positive and increases the logarithmic mean Λ(kfwc

α, kbwc
β)

to the arithmetic mean 1
2
(kfwc

α+kbwc
β). Moreover, the coefficient b0 consists of two terms, the first
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of which corresponds (up to order 1/V 2) to the correction AV in (5.4) arising from the improvement
ofEV , while the second term arises from improving the dissipation potential Φ∗V , namely via Υ0.

Putting these derivations together, summing over r = 1, . . . , R different reactions, and dropping all
terms of order 1/V 2, we find the following approximative Fokker–Planck equation:

ρ̇(t, c) = divc

( 1

V
K̂CLE(c)∇ρ(t, c) + ρ(t, c)R(c) +

1

V
ρ(t, c)B(c)

)
(5.7)

whereR(c) = K(c)DE(c), B(c) =
∑R

r=1 b̂
r
0(c)(αr−βr), and K̂CLE is given in (1.6).

The big disadvantage of equation (5.7) is that it is generally no longer a gradient system. However, it
may be considered as an equation with an asymptotic gradient flow structure in the sense of [BB∗17].
To find the simplest true gradient system that is compatible with the Fokker–Planck equation (5.7),
we have to find a true dual dissipation potential Φ̂∗V that is non-negative and coincides with Φ∗V from
above to lowest order. To keep the notation light, we again explain the construction for the case of one
reaction only and set Λ0(c) = Λ(kfwc

α, kbwc
β). Our simplest choice is

Φ̂∗V (ρ, ξ) =

∫
C

(
Λ0(c)ρ(c) +

1

V
Υ0(c)ρ(c) +

1

V
Υ1(c)∇ρ(c)·(α−β)

+
Υ2(c)

V 2
ρ(c) +

Υ3(c)

V 2

(
∇ρ(c)·(α−β)

)2

ρ(c)

)(
∇ξ(c)·(α−β)

)2
dc,

where the higher-order corrections Υ2(c) and Υ3(c) need to be chosen such that Φ̂∗V (ρ, ξ) is still
coercive. Choosing θ1, θ2 ∈ ]0, 1[ with θ1 < θ2, we may require

Λ0(c) +
Υ0(c)

V
+

Υ2(c)

V 2
≥ θ2Λ0(c) and 4θ1Λ0(c)Υ3(c) ≥ Υ1(c)2

for all V > 1, so that Φ̂∗V (ρ, ξ) ≥ (θ2−θ1)
∫
C

Λ0(c)ρ(c)
(
∇ξ(c)·(α−β)

)2
dc. The bounds for

Υ2(c) and Υ3(c) hold for the following choices (or any bigger ones)

Υ2(c) =
Λ0(c)

16(1−θ2)

(
α·Čβ

)2
and Υ3(c) =

1

4θ1Λ0(c)
Υ1(c)2.

Of course, we fix the energy functional to be the improved entropy functional EV from (5.3), and the
gradient system (P(C),EV , Φ̂

∗
V ) has the associated gradient-flow equation %̇ = DξΦ̂

∗
V (%,−DEV (%)).

With DEV (%) = 1
V

(1+ log ρ) + E + 1
V
EV

1 we find

ρ̇ = div

([
âV0 (c)ρ+

âV1 (c)

V
∇γρ+

âV2 (c)

V 2

(∇γρ)2

ρ
+
âV3 (c)

V 3

(∇γρ)3

ρ2

]
γ

)
with âV0 = ΛV

Υ

(
∇γE +

1

V
∇γE1

V

)
, âV1 = ΛV

Υ + Υ1

(
∇γE +

1

V
∇γE1

V

)
,

âV2 = Υ1+Υ3

(
∇γE +

1

V
∇γE1

V

)
, and âV3 (c) = Υ3,

where ΛV
Υ(c) = Λ0(c) +

Υ0(c)

V
+

Υ2(c)

V 2
, γ = α−β, and∇γf = ∇f · γ.

(5.8)

Because ∇γE
V
1 is of order 1/V , we see that this equation involves terms up to order 1/V 4, namely

through âV0 and through âV2 /V
2.
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Clearly, our gradient-flow equation (5.8) is much more complicated than those generated by the
asymptotic gradient-flow structures in the sense of [BB∗17], where higher order terms are simply
dropped.

There is also the question of well-posedness for equation (5.8). To have parabolicity of the leading
terms we need that the mapping p 7→ 1

V
âV1 p + 1

V 2 â
V
2 p

2 + 1
V 3 â

V
3 p

3 is monotone, which amounts to
asking that âV1 + 2âV2 q + 3âV3 q

2 ≥ 0 for all q ∈ R. This can be always be achieved by making Υ2

very big while keeping Υ3 constant, since Υ2 only enters once via âV1 .

5.4 Comparison of models

To appreciate the positive and negative aspects of the different approximations of the CME, we treat
the simplest example, namely the linear RRE onC = [0,∞[:

ċ = 1− c corresponding to the reaction pair X
1
↼−−⇁
1
∅. (5.9)

Obviously, we have the explicit solution c(t) = 1 + (c(0)−1
)
e−t.

The associated CME for u = P(N0) is given by

u̇n = V un−1 −
(
V+n

)
un + (n+1)un+1 for n ∈ N0, (5.10)

where u−1 = 0. Using the linearity in (5.9), which leads to the linearity in n of the coefficients in
(5.10), we obtain explicit closed form relations of the evolution of the rescaled expectation ê(t) :=
1
V

∑
n∈N0

nun(t) and variance v̂(t) := 1
V 2

∑
n∈N0

n2un − ê(t)2, namely

˙̂e(t) = 1− ê(t) and ˙̂v(t) = −2v̂(t) +
1 + ê(t)

V
. (5.11)

Moreover, it can be easily checked that for any solution t 7→ c(t) of the RRE (5.9) the following formula
provides the explicit solution of the CME (5.10):

un(t) =
e−c(t)V

n!

(
c(t)V

)n
for n ∈ N0. (5.12)

Note that this is expression is compatible with the ODEs (5.11) for the moments, since for these
Poisson distributions we have ê(t) = c(t) and v̂(t) = c(t)/V .

The Liouville equation and the simple Fokker–Planck equation read

(Lio) %̇ = ∂c
(
(c−1)%

)
and (FP) ρ̇ = ∂c

(
Λ(1, c)

∂cρ

V
+ (c−1)ρ

)
.

The Fokker–Planck equation for the chemical Langevin equation (cf. (5.6)) takes the form

(FPCLE) ρ̇ = ∂2
c

(1+c

2V
ρ
)

+ ∂c
(
(c−1)ρ

)
.

To compare the solutions of (FP) and (FPCLE) with the true solutions of the CME (5.10), we assume
that the solutions can be approximated by Gaußians. In general, for multidimensional Fokker–Planck
equations of the form ρ̇ = 1

V

∑
ij ∂

2
ij

(
ρMij(c)

)
+ div

(
ρRV

)
the ansatz ρ(t, ·) ∼ N(a(t), 1

V
A(t))

with a(t) ∈ Rd and A(t) ∈ Rd×d
spd leads to the necessary conditions

ȧ(t) = −R(a(t)) and Ȧ(t) = −DR(a(t))A(t)− A(t)DR(a(t))T + 2M(a(t)),
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see [SaS17] for rigorous results of this type. Applying these formulas to (FPCLE) we obtain

ȧ = 1− a and Ȧ = −2A+ 1 + a, (5.13)

hence the ODEs for a and A/V coincide with those for ê and v̂ in (5.11).

A similar argument indicates that solutions to (FP) are well approximated by Gaußians with mean aV
and variance AV satisfying

ȧV = 1− aV +
1

V
∂2Λ(1, aV ) and ȦV = −2AV + 2Λ(1, aV ). (5.14)

On the one hand, this clearly indicates that (FPCLE) provides a better approximation to the CME for t ∈
[0, T ]. By formally passing to the limit V →∞ in (5.14), we see that the ODE for aV is asymptotically
correct. This is not the case for the ODE for AV , since the arithmetic mean in (5.13) is replaced by
the logarithmic mean in (5.14). However, the error of Λ(1, c) compared to 1

2
(1+c) is less than 10 %

for c ∈ [1/3, 3] and it converges to 0 for c → 1, i.e., in the limit t → ∞. Equations (5.13) are
consistent with Kurtz’ central limit theorem, which asserts that the normalized process 1

V
NV (t) has

fluctuations around c(t) of order 1/
√
V , and the rescaled process

√
V
(

1
V
NV (t)−c(t)

)
converges

to a Gaußian process t 7→ V (t) with covariance matrix A satisfying Ȧ(t) = −DR(c(t))A(t) −
A(t)DR(c(t))T + 2K̂CLE(c(t)), see, e.g., [Kur78, Eqn. (1.9)].

On the other hand, (FP) makes a better prediction for the equilibrium distribution that is attained for
t→∞. For (FPCLE) we have the unique steady state

ρeq,CLE
V (c) =

1

ZCLE
V

e−V Ẽ(c) with Ẽ(c) =

∫ c

1

2b−2+1/V
b+1

db = 2c−2−(4− 1
V

) log 1+c
2
.

Thus, Ẽ grows only like c, such that ρeq,CLE
V decays exponentially only. In contrast, the equilibrium

ρeq,FP
V = Z−1

V e−V E(c) of (FP) produces the correct super-exponential decay of the stationary Poisson
distribution equation for the CME (5.10).

5.5 Approximation via cosh-type gradient structure

The derivation of a gradient structure (4.3) for the Liouville equation (4.1) can be repeated very similarly
by starting from the cosh-type gradient structure introduced in [MPR14], see Proposition 3.8. We do
not give the details here but provide the result only.

Starting from the cosh-type dual dissipation potential Ψ∗cosh,V defined in (3.8) instead of the quadratic
dual potential Ψ∗V defined in (4.5) we obtain the counterparts to Propositions 4.5 and 4.6 but now with

Ψ∗cosh,Lio(%, ξ) :=

∫
c∈C

R∑
r=1

κr
(cαr
cαr∗

cβ
r

cβ
r

∗

)1/2

C∗
(
(βr−αr) ·∇cξ(c)

)
d%(c).

Without any need to justify the approximation procedure in the sense of Section 4.2 we easily obtain
the following result.

Proposition 5.1 (cosh-type gradient structure for the Liouville equation) The Liouville equation (4.1)
has the gradient structure (P(C),E,Ψ∗cosh,Lio) withE from (4.2) and Ψ∗cosh,Lio from above.
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Proof. The result follows by using DE(%)(·) = E(·), ∇cE(c) =
(

log(ci/c
∗
i )
)
i=1,...,I

, and

DξΨ
∗
cosh,Lio

(
%,−DE(%)

)
[η] =

∫
C

R∑
r=1

κr
(cαr
cαr∗

cβ
r

cβ
r

∗

)1/2

(C∗)′
(
−γr ·

(
log

ci
c∗i

)
i

)[
γr ·∇η

]
d%(c),

where γr = αr−βr. Using
√
ab (C∗)′

(
log(a/b)

)
= a−b and the definition ofR gives

DξΨ
∗
cosh,Lio

(
%,−DE(%)

)
[η] = −

∫
C
R(c) ·∇η d%(c) which is the desired right-hand side of (4.1)

when testing with η and integrating by parts.

As in the case of quadratic gradient structure for the Liouville equation we may consider the first-order
correction to obtain a Fokker–Planck equation. For this we insert the improved energy EV defined
in (5.3) into the dissipation potential Ψ∗cosh,V (cf. (3.8)) to obtain a quasilinear Fokker–Planck-type

equation, namely %̇ = DξΨ
∗
cosh,V

(
%,−DEV (%)

)
. Using the abbreviations ar := cα

r

cαr∗
and br := cβ

r

cβ
r
∗

we find (note∇cEV
1 (c) = O(1/V ))

DξΨ
∗
cosh,V

(
%,−DEV (%)

)
= DξΨ

∗
cosh,V

(
%,− 1

V
log ρ−E− 1

V
EV

1

)
= div

(
ρ

R∑
r=1

κr
√
arbr

[
(C∗)′

(
log

br
ar

)
γr + (C∗)′′

(
log

br
ar

)γr·∇ρ
V ρ

γr
]

+O(1/V 2)

)
.

Using the identities
√
ab (C∗)′

(
log(b/a)

)
= b − a and

√
ab (C∗)′′

(
log(b/a)

)
= (a+b)/2 the FP

equation has the expansion

ρ̇(t, c) = divc

(
ρ(t, c)R(c) +

1

V
K̂CLE(c)∇cρ(t, c) +O(1/V 2)V→∞

)
where K̂CLE is exactly the same as obtained in (1.6) by a completely different approach.

6 Hybrid models

We show in this section how the different gradient structures for RRE, for CME, and for the FPE can
be combined to obtain hybrid models, which are combinations of several models depending on the
desired accuracy. The importance here is to use the proper rescalings in terms of the volume V to
make the different descriptions compatible. We do not consider a full theory, but highlight first the
general strategy of model reduction for gradient systems in Section 6.1 and then illustrate this by a
simple example in Section 6.2. A nontrivial case of a rigorous coarse graining in this spirit is given
in [MiS19], where a linear RRE with a small parameter ε is considered. The elimination of the fast
relaxations in the time scale ε leads to a coarse-grained gradient system.

In Section 6.3 we discuss the general coupling of the FPE to a RRE and the similar coupling of the
CME to a RRE, both leading to so-called mean-field equations, where a linear equation for a proba-
bility density is nonlinearly coupled to an ODE. Finally, we discuss the mixed discrete and continuous
description, where the CME is used for small numbers of particles and the FPE is used for larger
numbers.
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6.1 Coarse graining for gradient systems

If a gradient system (X,EX ,ΨX) is more complicated than what is needed, one is interested in
approximating the system by a simpler model that still contains the most important features. We explain
how this can be done while keeping the gradient structure.

We assume that the relevant states x ∈ X can be described by states y ∈ Y and that there is a
reconstruction mapping x = Φ(y), i.e., Φ(Y) is a subset (or submanifold) of X. We now pull back
the gradient structure (X,EX ,ΨX) to an approximative gradient structure (Y,EY ,ΨY ). The natural
approach is to restrict the energy functional and the (primal) dissipation potential as follows:

EY(y) = EX(Φ(y)) and ΨY(y, ẏ) := ΨX(Φ(y),DΦ(y)ẏ). (6.1)

The solutions y : [0, T ] → Y of the coarse-grained gradient system (Y,EY,ΨY) will provide good
approximations x̂ : t 7→ Φ(y(t)) ∈ X of the true solutions of the full GS (X,EX ,ΨX), if the set Φ(Y)
approximates a flow-invariant subset of X.

In reaction systems, the primal dissipation potential ΨX is usually not known explicitly. Hence, it is
desirable to have a method for reducing the dual dissipation potential Ψ∗X directly to Ψ∗Y, in the case
where A = DΦ(y) : Y → X is injective but its adjoint mapping A∗ : X∗ → Y∗ has a large kernel.
The following exact result will be the motivation for our modeling approximations in the subsequent
subsections.

Proposition 6.1 Consider reflexive Banach spaces X and Y and a real-valued dissipation poten-
tial Ψ : X → [0,∞[ (i.e. lower semicontinuous, convex, and Ψ(0) = 0) that is superlinear, i.e.
Ψ(v)/‖v‖X →∞ for ‖v‖X →∞. Assume that the bounded linear operator A : Y → X has closed
range. Then the dissipation potential Ψ̃ : Y → [0,∞[; y 7→ Ψ(Ay) satisfies

Ψ̃∗(η) = inf
{

Ψ∗(ξ)
∣∣ A∗ξ = η

}
for all η ∈ Y∗, (6.2)

where we use the convention inf ∅ =∞.

Proof. For the proof we use the saddle-point theory in [EkT76, Ch. VI.2].

Fix η ∈ Y∗ and assume first that η /∈ Ran(A∗). Since Ran(A) ⊂ X is closed, the Closed Range
Theorem yields that Ran(A∗) ⊂ Y∗ is closed as well, and Ran(A∗) = Ker(A)⊥. Consequently,
there exists ỹ ∈ Ker(A) such that 〈η, ỹ〉 6= 0, and we obtain

Ψ̃∗(η) = sup
y∈Y

(
〈η, y〉 −Ψ(Ay)

)
≥ sup

λ∈R

(
λ〈η, ỹ〉 −Ψ(λAỹ)

)
=∞.

This yields (6.2), since the right-hand side is clearly infinite as well.

Fix now η ∈ Ran(A∗) and define the Lagrangian function L : X×X∗ → [−∞,∞[ via

L(x, ξ) = −〈ξ, x〉+ Ψ(x)− χ∗(ξ) with χ∗(ξ) =

{
0 for A∗ξ = η,
∞ otherwise.

For notational convenience we set

h(x) = sup
ξ∈X∗

L(x, ξ), g(ξ) = inf
x∈X

L(x, ξ), P := inf
X
h, D := sup

X∗
g.
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Classical duality theory yields the trivial inequality P ≥ D. Clearly, L(·, ξ) is convex and lower semi-
continuous, whereas L(x, ·) is concave and upper semicontinuous, since the boundedness of A∗

implies that
{
ξ ∈ X∗

∣∣ A∗ξ = η
}

is closed.

Using η ∈ Ran(A∗), we find ξη ∈ X∗ with A∗ξη = η, so that our assumptions guarantee the
coercivity of x 7→ L(x, ξη) ∈ R. Hence, we can apply [EkT76, Chap. VI, Prop. 2.3], which shows that
there is no duality gap:

P = inf
x∈X

h(x) = min
x∈X

(
sup
ξ∈X∗

L(x, ξ)
)

= sup
ξ∈X∗

(
inf
x∈X

L(x, ξ)
)

= sup
ξ∈X∗

g(ξ) = D. (6.3)

We relate P and D with the two sides in our desired formula (6.2). On the one hand,

h(x) = sup
ξ∈X∗

L(x, ξ) = Ψ(x) + sup
ξ∈X∗

(
〈ξ,−x〉 − χ∗(ξ)

)
= Ψ(x)− 〈ξη, x〉+ µ(−x) with µ(x) := sup

ζ∈X∗

(
〈ζ, x〉 − δ0(A∗ζ)

)
,

where in the last step we have substituted ξ = ξη + ζ with A∗ξη = η and introduced δ0(η̃) = 0 for
η̃ = 0 and∞ otherwise. Thus, we conclude

h(x) = Ψ(Ay)− 〈η, y〉 for x = Ay and h(x) =∞ for x 6∈ Ran(A).

Thus, taking the minimum over all of X is the same as taking it over Ran(A), namely

P = inf
x∈X

h(x) = inf
y∈Y

(
Ψ(Ay)− 〈η, y〉

)
= −Ψ̃∗(η).

On the other hand, the definition of g(ξ) = infx∈X L(x, ξ) immediately gives g(ξ) = −Ψ∗(ξ) −
χ∗(ξ). Hence, we arrive at

D = sup
ξ∈X∗

g(ξ) = − inf
ξ∈X∗

(
Ψ∗(ξ) + χ∗(ξ)

)
= − inf

{
Ψ∗(ξ)

∣∣ A∗ξ = η
}
.

As a result, formula (6.2) follows from P = D.

In our applications below (as well as in most others) the explicit minimization in (6.2) is too complicated
to be executed. However, as the coarse-graining mapping through Φ is usually only an approximation,
it may suffice to approximate the minimizers suitably. In general, one has to find an approximation
ξ = M(y, η) ∈ X∗ and sets

Ψ∗Y(y, η) = Ψ∗X(Φ(y),M(y, η)) or 1
2
〈η, K̃Y(y)η〉 = 〈L(y)η,KX(Φ(y))L(y)η〉, (6.4)

where L(y) : Y∗ → X∗ is the linear version of M. Of course, when constructing M or L one should
keep (6.2) in mind to preserve all interesting properties inherited by the coarse-graining process.

6.2 A simple example: from CME to RRE

We apply the above idea with (X,EX,Ψ
∗
X) being (P(N ), EV ,KV ) and with (Y,EY,ΨY) being

(C, E,K). The embedding mapping ΦV : C →P(N ) is given by the Poisson distributions

ΦV (c) :=
(

e−V |c|1
(V c)n

n!

)
n∈N

, where |c|1 =
I∑
1

ci.
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In the simple example ċ = 1 − c treated in Section 5.4 the image of ΦV defines an exactly invariant
submanifold, but this is no longer true for nonlinear equations or systems. Nevertheless our construc-
tion provides the surprising identity

EY(c) = EV (ΦV (c)) = E(c),

with the old E defined in (2.9) which is independent of V .

To reduce the dual dissipation potential ΨX defined via KV we use the derivative

DΦV (c)w =
(

e−V |c|1
(V c)n

n!

I∑
i=1

(ni
ci
− V

)
wi

)
n∈N

.

Thus, the adjoint operator DΦV (c)∗ maps µ = (µn) to ζ = (ζi)i=1,...,I via

µ 7→ ζ = DΦV (c)∗µ =
(∑
n∈N

e−V |c|1
(V c)n

n!

(ni
ci
− V

)
µn

)
i=1,...,I

.

In general, one is not able to solve the minimization problem (6.2) that produces Ψ∗Y from Ψ∗X, so
instead we construct a linear mapping ζ 7→ µ̃ = MV (c)ζ that approximates the minimizer for
V →∞ and satisfies ζ = DΦV (c)∗MV (c)ζ. Indeed, we search for µ̃ in the linear form µ̃an = a ·n
for n ∈ N and obtain

DΦV (c)∗µ̃a = DΦV (c)∗(a·n)n∈N =

(∑
n∈N

e−V |c|1
(V c)n

n!

(ni
ci
− V

) I∑
j=1

ajnj

)
i=1,...,I

=

( I∑
j=1

∑
n∈N

e−V |c|1
(V c)n

n!

(niajnj
ci

− V ajnj
))

i=1,...,I

=

( I∑
j=1

(
V 2 ciajcj

ci
+ δijV ai − V 2ajcj

))
i=1,...,I

= V a,

where we used the identities
∑
n∈N e−V |c|1 (V c)n

n!
ni = V ci and

∑
n∈N e−V |c|1 (V c)n

n!
ninj = V 2cicj+

δijV ci. Thus, we choose the simple operator MV of the form

ζ 7→ µ = MV (c)ζ =
( 1

V
ζ · n

)
n∈N .

For inserting µ = MV (c)ζ and u = ΦV (c) into the full dual dissipation potential Ψ∗X, we use the
form (4.5b) and the relations (MV (c)ζ)n+α − (MV (c)ζ)n+β = 1

V
ζ · (α−β) and

BβV(n)
(
ΦV (c)

)
n+β

=
V (n+β)!

V |β|n!
e−V |c|1

(V c)n+β

(n+β)!
= V e−V |c|1

(V c)n

n!
cβ.

With this, we find an approximation of the reduced dual dissipation potential Ψ∗Y, namely

Ψ∗Y(c, ζ) := Ψ∗X
(
ΦV (c),MV (c)ζ

)
=
V

2

R∑
r=1

∑
n∈N

V e−V |c|1
(V c)n

n!
Λ
(
krfwc

αr , krbwc
βr
)((βr−αr)·ζ

V

)2

=
1

2

R∑
r=1

Λ
(
krfwc

αr , krbwc
βr
)(

(βr−αr)·ζ
)2

=
1

2
ζ ·K(c)ζ.

Thus, the gradient system (Y,EY,Ψ
∗
Y) obtained by the abstract reduction procedure is exactly given

by (C, E,K), which is the gradient system for the RRE (2.2) studied in Theorem 2.2.
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6.3 Coupling a RRE to a Fokker–Planck equation

In many applications one is interested in the microscopic description of some variables cj , while other
variables ci can be described more macroscopically. We first start from the simplified FPE (5.5) as the
gradient system (P(C), ẼV ,K) and partition the components of c into stochastic and macroscopic
parts, cs and cm respectively, via

c = (c1, . . . , cJ , cJ+1, . . . , cI) = (cs, cm) with

cs := (c1, . . . , cJ) ∈ Cs := [0,∞[J and cm := (cJ+1, . . . , cI) ∈ Cm := [0,∞[I−J ,

In the notation of Section 6.1 we let X = P(Cs×Cm) and Y = P(Cs)×Cm.

For the mapping Φ : Y → X we choose the product ansatz

ΦV (%s, ĉm)(dc1, . . . , dcI) := %s(dcs)
I∏

j=J+1

W(cj; ĉj, V )dcj,

where the probability densities W(·; â, V ) are given as follows:

W(a; â, V ) :=
1

â Z(V â)
exp

(
−V â λB(a/â)

)
with Z(v) :=

∫ ∞
0

exp
(
−v λB(z)

)
dz.

According to Section 6.1 the functional ẼVY = ẼV ◦ ΦV on Y is then given by

ẼVY (%s, ĉm) =

∫
Cs

( 1

V
ρs(cs) log ρs(cs) + ρs(cs)Es(cs)

)
dcs +

Z̃(V )

V
+

I∑
j=J+1

êV (ĉj, c
∗
j)

where êV (â, a∗) := A(V â)â log
( â
a∗
)
− â+ a∗ −

log
(
âZ(V â)

)
V

with Es(cs) =
∑J

i=1 c
∗
iλB(ci/c

∗
i ) and A(v) =

∫∞
0
z exp

(
− vλB(z)

)
dz/Z(v).

It can be shown that A(v) ≥ 1 and eV (â, a∗) ≥ a∗λB(â/a∗) for all V , and for V → ∞ we obtain
eV (â, a∗) → a∗λB(â/a∗). To simplify the model we are therefore allowed to replace the last term in

ẼVY by the relative entropy Em(ĉm) =
∑I

j=J+1 c
∗
jλB(ĉj/c

∗
j) for the RRE. Neglecting the irrelevant

constant term Z̃(V )/V , we obtain the hybrid energy again as a relative entropy, namely

EFP-RR
V (%s, ĉm) =

∫
Cs

( 1

V
ρs(cs) log ρs(cs) + ρs(cs)Es(cs)

)
dcs + Em(ĉm).

For the Onsager operator we also use a cruder reduction than the minimization advocated in Section
6.1. We simply postulate the Onsager operator KV via the dual dissipation potential

Ψ∗V,FP-RR(%s, ĉm; ξ, ζ) =
1

2

∫
Cs

ρs(cs)

(
∇sξ(cs)

ζ

)
·K(cs, ĉm)

(
∇sξ(cs)

ζ

)
dcs,

where ξ ∈ C1(Cs) and ζ ∈ RI−J . Indeed, in the sense of the general reduction method explained in
Section 6.1 we see that KFP-RR

V is obtained fromK by inserting % = %s(dcs)⊗δĉm and Ξ = M(ξ, ζ) :
(cs, cm) 7→ ξ(cs) + ζ·cm.
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Thus, the hybrid model induced by the gradient system (P(Cs)×Cm,E
FP-RR
V ,KFP-RR

V ) is given by the
coupled system for ρ ∈P(Cs) and ĉm ∈ Cm:

ρ̇(cs) = divs

(
Kss(cs, ĉm)

(
1
V
∇sρ(cs)+ρ(cs)∇sEs(cs)

)
+ ρ(cs)Ksm(cs, ĉm)∇mEm(ĉm)

)
,

˙̂cm = −
∫
Cs

(
KT

sm(cs, ĉm)
(

1
V
∇sρ(cs)+ρ(cs)∇sEs(cs)

)
+ ρ(cs)Kmm(cs, ĉm)∇mEm(ĉm)

)
dcs.

It is interesting to see that the last terms can be rewritten in terms of the RRE ċ = −K(c)DE(c) =
−R(c) = −(Rs(cs, ĉm),Rm(cs, ĉm)), viz.

ρ̇(cs) = divs

(
1
V
Kss(cs, ĉm)∇sρ(cs) + ρ(cs)Rs(cs, ĉm)

)
,

˙̂cm = −
∫
Cs

(
1
V
KT

sm(cs, ĉm)∇sρ(cs) + ρ(cs)Rm(cs, ĉm)
)

dcs.

This reveals that the system is a classical mean-field model, which is linear in the density ρ for the
component cs while it is nonlinearly coupled to the ODE for the component ĉm.

6.4 Coupling a RRE to a CME

In analogy to the coupling of an RRE for some macroscopic cm to a Fokker–Planck equation we can
directly couple the CME to an RRE, which leads to hybrid system defined on P(NJ

0 )×[0,∞[I−J .
Instead of given the general derivation as in Section 6.3, we just give an explicit example.

For β ∈ N0 we consider the simple reaction X1 ↼−−⇁ βX2 with stoichiometric vectors α = (1, 0),

β = (0, β), and γ = (1,−β). The associated system of RREs is given by

ċ1 = cβ2 − c1, ċ2 = β (c1−cβ2 ). (6.5)

We have the conservation relation Qc = βc1 + c2 = q and the detailed-balance steady state
c∗ = (1, 1)>. The associated CME onN = N2

0 takes the form

u̇n = (n1+1)un+(1,−β) −
(
n1 +

n2!

V β−1(n2−β)!
c
)
un +

(n2+β)!

V β−1n2!
un+(−1,β) for n ∈ N . (6.6)

The detailed-balance steady state by wV
n = (wVn1

wVn2
)n∈N with wVn = e−V V n/n!. As in (4.5b) the

full Onsager operator KV is defined via

〈µ,KV (u)µ〉 =
∑
n∈N

Λ
(
n1+1
V
un+(1,0),

(n2+β)!
V βn2!

un+(0,β)

)(
V (µn+(1,0)−µn+(0,β))

)2
.

We partition c = (c1, c2) = (cs, cm), i.e., we keep c1 ∈ [0,∞[ in stochastic description via the
distribution v = (vm)m∈N0 ∈ P(N0), while c2 ∈ [0,∞[ will be treated macroscopically. Thus,
we define the gradient system (P(N0)×[0,∞[),ECM-RR

V ,KCM-RR
V ) with relative entropy and Onsager

operator defined via

ECM-RR
V (v, c2) = E(c2) +

1

V

∑
m∈N0

vm log(vm/w
V
m), where E(z) = λB(z),

〈
(
ξ
ζ

)
,KCM-RR

V (v, c2)
(
ξ
ζ

)
〉 = V

∑
m∈N0

Λ
(
m+1
V
vm+1, vmc

β
2

)(
ξm+ β

V
ζ − ξm+1

)2
,
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for ξ : N0 → R and ζ ∈ R. Again, KCM-RR
V is obtained from KV by inserting um,n2 = vmδbV c2c(n2)

and Ξ = M(ξ, ζ) : (m,n2) 7→ ξm + 1
V
n2ζ and performing an approximation for large V . The

associated evolution equation is the hybrid system

v̇m = V cβ2vm−1 −
(
m+ V cβ2

)
vm + (m+1)vm+1 for m ∈ N0 (with v−1 = 0),

ċ2 = β
( 1

V

∑
m∈N

mvm − cβ2
)
.

Clearly, this system is consistent with the conservation law Qc = βc1 + c2 = const., in the sense
that c1 := 1

V

∑
m∈Nmvm satisfies ċ1 = cβ2 − c1 = −ċ2/β.

6.5 Combining CME and Fokker–Planck descriptions

We consider the simplest nontrivial model, namely the scalar RRE ċ = a− bc with a, b > 0, which is

induced by the reaction ∅ b
↼−−⇁
a
X . This corresponds to α = 0, β = 1, kfw = a, and kbw = b. We have

the following three derived gradient systems:

(1) The RRE ċ = a − bc is generated by the gradient system (R+,K, E) with steady state
c∗ = a/b, K(c) = Λ(a, bc), and E(c) = a

b
λB(bc/a).

(2) The associated chemical master equation u̇ = BVu is generated by the gradient system
(P(N0), EV ,KV ) and reads

u̇n = V aun−1 −
(
V a+bn

)
un + b(n+1)un+1 for n ∈ N0 (with u−1 = 0) (6.7)

and has the steady statewV = (e−V a/b(V a/b)n/n!)n∈N0 . The entropy and Onsager operator
are

EV (u) =
1

V

∑
n∈N0

un log(un/w
V
n ) and

KV (u) = V 2a
∑
n∈N0

wVn Λ
(
un
wVn
, un+1

wVn+1

)
(en−en+1)⊗ (en−en+1).

(3) The associated Fokker–Planck equation (5.4) takes the form

ρ̇ = ∂c

(Λ(a, bc)

V
∂cρ+

(
bc−a+

Λ(a, bc)

2V c+1/3

)
ρ
)

for t, c > 0 and ρ(t, 0) = 0. (6.8)

This equation has the equilibrium solution WV : c 7→ W(c; a/b, V ) (cf. (5.2)) and is generated
by the gradient system (P(]0,∞[),EV ,K) with

EV (ρ) =
1

V

∫ ∞
0

ρ(c) log
( ρ(c)

WV (c)

)
dc and K(ρ)ξ = −

(
ρΛ(a, bc)ξ′

)′
.

To combine the description via the CME and the Fokker–Planck equation we consider the mixed state
space N := {0, 1, . . . , N−1} ∪ [N/V,∞[. Hence, n ∈ {0, . . . , N−1} counts the number of
atoms, while for n ≥ N we use the concentration c = n/V ≥ N/V as a continuous variable to
describe the state. A typical choice could be 1 � V � N to be sure to capture all small discrete
effects.
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The hybrid gradient system (P(N),EV,N ,KV,N) is described by measures

u =
N−1∑
n=0

unδn + U(c)dc|[N/V,∞[ ∈P(N).

The idea is now to choose EV,N and KV,N rather than to model the evolution equation.

We first choose the equilibrium state in the form

wV,N =
N−1∑
n=0

wVn δn +W V (c)dc :=
N−1∑
n=0

e−V a/b
(V a/b)n

n!
δn +

1

ZV,N
WV (c) dc,

where ZV,N is uniquely determined by asking
∫
N

dwV,N = 1. The entropy functional is defined via
the obvious relative entropy per volume, namely

EV,N(u) =
1

V

∫
N

log
( du

dwV,N

)
du

=
1

V

N−1∑
n=0

λB

( un
wVn

)
wVn +

1

V

∫ ∞
N/V

λB

( U(c)

WV (c)

)
WV (c)dc,

where du
dw

denotes the Radon-Nikodym derivative.

The difficult part is the modeling of the Onsager operator KV,N(u) as it includes the crucial transfer
between the discrete and the continuous parts of the hybrid model. We define K in terms of its asso-
ciated quadratic form acting on smooth functions ξ : N → R, where we write ξn for ξ(n) and W (c)
for WV (c):

〈ξ,KV,N(u)ξ〉 = V 2a
N−1∑
n=1

wn−1Λ
(
un−1

wn−1
, un
wn

)
(ξn−1−ξn)2

+ V 2âwN−1 Λ
( uN−1

wN−1
, U(N/V )
W (N/V )

)(
ξN−1−ξ(N/V )

)2

+

∫ ∞
N/V

Λ(a, bc)ξ′(c)2U(c)dc.

While the first and the third terms on the right-hand side give the purely discrete and the continuous
parts of the state space, respectively, we see that the second term is the new term that couples the
discrete and the continuous parts. The parameter â is still to be chosen, the natural parameter being
a.

The evolution equation for u is again a linear equation of the form u̇ = BV,Nu, i.e., it corresponds to a
continuous-time Markov process. It consists of a discrete part, as in (6.7) but only for n = 0, . . . , N−
2, and a continuous part, as in (6.8) but only for c > N/V . The new structure is the coupling between
the two subsystems which gives rise to the following conditions:

u̇N−1 = V a uN−2 −
(
V â+ b (N−1)

)
uN−1 + V â

wN−1

W (N/V )
U(N/V ),

0 = V â
( wN−1

W (N/V )
U(N/V )− uN−1

)
+

1

V
W (N/V )Λ(a, bN/V )

( U
W

)′
(N/V ).

By our definition of wV,N we have wN−1

W (N/V )
≈ Nb/(aV 2) and see that for â = a these conditions

take the approximate form

u̇N−1 ≈ V a uN−2 −
(
V a+ b (N−1)

)
uN−1 + bN

V
U(N

V
),
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0 ≈ 1
V

Λ(a, bN
V

)U ′(N
V

) + bN
V
U(N

V
)− aV uN−1,

where the second relation clearly shows the corresponding Robin boundary condition connecting the
parabolic Fokker–Planck equation to the discrete system on {0, . . . , N−1}. Note that un and U are
scaled such that V uN−1 is comparable to U(N/V ).
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