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On the optimal combination of tensor optimization methods
Dmitry Kamzolov, Alexander Gasnikov, Pavel Dvurechensky

Abstract

We consider the minimization problem of a sum of a number of functions having Lipshitz p-th
order derivatives with different Lipschitz constants. In this case, to accelerate optimization, we
propose a general framework allowing to obtain near-optimal oracle complexity for each function
in the sum separately, meaning, in particular, that the oracle for a function with lower Lipschitz
constant is called a smaller number of times. As a building block, we extend the current theory
of tensor methods and show how to generalize near-optimal tensor methods to work with inexact
tensor step. Further, we investigate the situation when the functions in the sum have Lipschitz
derivatives of a different order. For this situation, we propose a generic way to separate the oracle
complexity between the parts of the sum. Our method is not optimal, which leads to an open
problem of the optimal combination of oracles of a different order.

1 Introduction

Higher-order (tensor) methods, which use the derivatives of the objective up to order p, recently have
become an area of intensive research effort in optimization, despite the idea is quite old and goes
back to the works of P. Chebyshev and L. Kantorovich ([5] and [18]). One of the reasons is that the
lower complexity bounds were obtained in [2, 1, 26], which opened a question of optimal methods,
and it was shown in [26] that Taylor expansion of a convex function can be made convex by appropri-
ate regularization, leading to tractable tensor step implementable in practice. Recently nearly optimal
methods were obtained in [26, 13], and extensions for Hölder continuous higher-order derivatives were
proposed in [16, 28]. In this paper, we consider an interesting question that is still open in the theory of
tensor methods. Namely, if a tensor method minimizes a function f up to accuracy ε in Nf (ε) oracle
calls and possibly another tensor method minimizes a function g in Ng(ε) oracle calls, is it possible to
combine these two methods to minimize f + g up to accuracy ε in Õ(Nf (ε)) oracle calls for f and
Õ(Ng(ε)) oracle calls for g? To say more, we would like to have a generic approach which can take
as an input different particular algorithms for each component. For simplicity, we consider a sum of two
functions, but we believe that the approach can be generalized for an arbitrary number of functions.
Note that in the last few years, the answer to this question plays a crucial role in the development of
optimal algorithms for convex decentralized distributed optimization [21, 20, 9, 14, 3, 27].

Some results in this direction are known for the first-order methods p = 1 [19, 22, 20, 3, 10] and
for the case of the sum of two functions with the second being so simple that it can be incorporated
directly in the tensor step [17] like in composite first-order methods [24]. Yet, the general theory on how
to combine different methods to obtain optimal complexity for tensor methods is not yet developed for
p ≥ 2.

First, we consider uniformly convex sum of two functions f+g each having Lipschitz derivatives of the
same order p. Our approach is based on the recent framework of near-optimal tensor methods [13],
which extends the algorithm of [23] to tensor methods. Our idea is to apply the near-optimal tensor
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method to the sum, considering g as a composite and including it into the tensor step without its Taylor
approximation. Then each tensor step requires to solve properly regularized uniformly convex auxiliary
problem. This is again done by the nearly optimal tensor method. Since the auxiliary problem turns out
to be very well conditioned, it is possible to solve it very fast, and we only need to call the oracle for g.
The careful analysis allows to separate the oracle complexity as we call the oracle for f only on outer
iterations and oracle for g only on the inner, resulting in the optimal number of oracle calls for f and for
g separately. As a building block, we explain how to extend near-optimal tensor methods to work with
inexact tensor step, extending the current theory since existing near-optimal methods assume that
the tensor step is exact. If the function is not uniformly convex, one can use a standard regularization
technique with a small regularization parameter.

Note, there exist number of accelerated envelopes that allows to accelerate tensor methods: Monteiro–
Svaiter envelop [23, 25, 12, 17, 4], Doikov–Nesterov envelope [7]. Further we will use Monteiro–Svaiter
envelope. Note that it seems that Doikov–Nesterov envelop and standard direct Nesterov’s tensor
acceleration [26] doesn’t well suited for our purposes. Note also, that for all envelops for the moment
it’s not known with what accuracy we should solve auxiliary problem. In Monteiro–Svaiter envelop we
working on this in Appendix B. Among different variants of Monteiro–Svaiter envelop we preferred
variant from [4], but we generalize (see Appendixes) [4] on composite case [17] and on uniformly
convex problem target functions [12].

Second, we consider the case when f and g has Lipshitz derivatives of different order pf and pg
respectively. We apply a similar technique as above, but using non-accelerated tensor methods as
building blocks. We demonstrate that in this case, complexities can also be separated, but they turn
out to be not optimal. This states an open problem of an optimal combination of optimal methods that
use oracles of a different order. As far as we know for the moment there exists only one optimal result
concerns the methods of different orders. This is the result from [3], where authors considered sliding
of optimal 0-order and 1-order methods.

2 Problem Statement and Preliminaries

In what follows, we work in a finite-dimensional linear vector space E. Its dual space, the space of all
linear functions on E, is denoted by E∗. For x ∈ E and s ∈ E∗, we denote by 〈s, x〉 the value of a
linear function s at x. For the (primal) space E, we introduce a norm ‖ · ‖E . Then the dual norm is
defined in the standard way:

‖s‖E∗ = max
x∈E
{〈s, x〉 : ‖x‖E ≤ 1} .

Finally, for a convex function f : dom f → R with dom f ⊆ E we denote by ∇f(x) ∈ E∗ one of
its subgradients.

We consider the following convex optimization problem:

min
x∈E

F (x) = f(x) + g(x), (1)

where f(x) and g(x) are convex functions with Lipschitz p-th derivative, it means that

‖Dpf(x)−Dpf(y)‖ ≤ Lp,f‖x− y‖. (2)
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On the optimal combination of tensor optimization methods 3

Then Taylor approximation of function f(x) can be written as follows:

Ωp(f, x; y) = f(x) +

p∑
k=1

1

k!
Dkf(x) [y − x]k , y ∈ E

By (2) and the standard integration we can get next inequality

|f(y)− Ωp(f, x; y)| ≤ Lp,f

(p+ 1)!
‖y − x‖p+1. (3)

Now we introduce an additional condition for the functions.

Definition 1. Function F (x) is r-uniformly convex (r ≥ 2) if

F (y) ≥ F (x) + 〈∇F (x), y − x〉+
σr
r
‖y − x‖r, ∀x, y ∈ E

with constant σr

One of the main examples of r-uniformly convex functions is 1
r
‖x‖r from Lemma 5 [7].

Lemma 1. For fixed r ≥ 2, consider the following function:

fr(x) =
1

r
‖x‖r, x ∈ E.

Function fr(x) is uniformly convex of degree r with σr = 22−r.

Problem (1) can be solved by tensor methods [26] or its accelerated versions [25], [4], [17], [13] . This
methods have next basic step:

TH(x) = argmin
y

{
Ωp(f + g, x; y) +

Hp

p!
‖y − x‖p+1

}
.

For Hp ≥ Lp this subproblem is convex and hence implementable. Note that this method does not
use information about sum type problem and compute their derivatives the same number of times. We
want to separate computation complexity of high-order derivatives for sum of two functions. In next
section we will describe this idea in more details.

As an accelerated optimal method, we introduce Accelerated Taylor Descent (ATD) from [4]. But for
our paper we need to get a composite variant of ATD.

Algorithm 1 is a generalization of ATD from [4] for composite optimization problem. It means, that we
try to minimize sum of two functions F (x) = f(x) + g(x), where g(x) is a proper closed convex
function and subproblem (4) with g(x) is easy to solve. Note that if g(x) smooth and has a gradient,
so g′(yk+1) = ∇g(yk+1), but if g(x) has only subgradient, we should introduce g′(yk+1). Similarly
to (2.9) from [6] by using optimality condition for (4) we define

g′(yk+1) = −∇Ωp(f, x̃k; yk+1)−
(p+ 1)Hp,f

p!
‖yk+1 − x̃k‖p−1(yk+1 − x̃k)

Theorem 2. Let F (x) = f(x) + g(x), where f denote a convex function whose pth derivative is
Lp-Lipschitz, g(x) is a proper closed convex function and let x∗ denote a minimizer of F . Then CATD

satisfies, with cp = 2p−1(p+ 1)
3p+1

2 /(p− 1)!,

F (yk)− F (x∗) ≤
cpLpR

p+1

k
3p+1

2

, (5)
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Algorithm 1 Composite Accelerated Taylor Descent

1: Input: convex function f : Rd → R such that ∇pf is Lp-Lipschitz, proper closed convex g :
Rd → R.

2: Set A0 = 0, x0 = y0
3: for k = 0 to k = K − 1 do
4: Compute a pair λk+1 > 0 and yk+1 ∈ Rd such that

1

2
≤ λk+1

Hp,f · ‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
,

where

yk+1 = argmin
y

{
Ωp(f, x̃k; y) +

Hp,f

p!
‖y − x̃k‖p+1 + g(y)

}
, (4)

and

ak+1 =
λk+1 +

√
λ2k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1 , and x̃k =

Ak

Ak+1

yk +
ak+1

Ak+1

xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)− ak+1g
′(yk+1)

6: end for
7: return yK

where

R = ‖x0 − x∗‖ (6)

is the maximal radius of the initial set. Furthermore each iteration of ATD can be implemented in Õ(1)
calls to a pth-order Taylor expansion oracle, where Õ means up to logarithmic factors.

We prove this theorem similarly to the proof of [4] in Appendix A.

Now we assume that function F (x) is additionally r-uniformly convex, hence we may get a speed up
by using restarts. We formulate method and theorem for CATD with restarts.

Algorithm 2 CATD with restarts

1: Input: r-unformly convex function F : Rd → R with constant σr and CATD conditions.
2: Set z0 = x0 = 0 and R0 = ‖z0 − x∗‖.
3: for k = 0, to K do
4: Set Rk = R0 · 2−k and

Nk = max

{⌈(
rcpLp2

r

σr
Rp+1−r

k

) 2
3p+1

⌉
, 1

}
. (7)

5: Set zk+1 := yNk
as the output of CATD started from zk and run for Nk steps.

6: end for
7: return zK

DOI 10.20347/WIAS.PREPRINT.2710 Berlin 2020



On the optimal combination of tensor optimization methods 5

Theorem 3. CATD with restarts for r-uniformly convex function F with constant σr converges withNr

steps of CATD per restart and with NF total number of CATD steps, where

NF = Õ

[(
Lp,fR

p+1−r

σr

) 2
3p+1

]
.

We prove this theorem similarly to [12] in Appendix C.

3 Uniformly convex functions

We consider similar to (1) problem.

minF (x) = f(x) + g(x), (8)

where additionally F (x) is r-uniformly convex function. We also assume, that p+ 1 ≥ r.

If we will use Algorithm 2 for problem (8) we get next convergence speed. To reach F (xN)−F (x∗) ≤
ε, we need Nf +Ng iterations, where

Nf = Õ

[(
Lp,fR

p+1−r

σr

) 2
3p+1

]
, (9)

Ng = Õ

[(
Lp,gR

p+1−r

σr

) 2
3p+1

]
. (10)

Note that for this method we computeNf +Ng derivatives for both f(x) and g(x) functions. We want
to separate this computations and compute Nf derivatives for the function f and Ng derivatives for
the function g.

Next we will describe the our framework. We assume that Lp,f < Lp,g, it means that Nf < Ng. For
that case we consider problem 8 as a composite problem with g(x) as a composite part. We solve this
problem by Algorithm 2. In this algorithm we have tensor subproblem (4). To solve this subproblem
we run another Algorithm 2 with objective function Ωp(f, x̃k; y) +

Hp,f

p!
‖y − x̃k‖p+1 + g(y) up to

the desired accuracy. As we will prove next, this subproblem may be solved linearly by the desired
accuracy, so we should not worry too much about the level of the desired accuracy. We write more
details about the correctness of this part and the more precise level of desired accuracy in Appendix
B. As a result we get Algorithm 3.

Now we prove that this framework split computation’s complexities.

Theorem 4. Assume F (x) is r-uniformly convex function (r ≥ 2), f(x) and g(x) are convex func-
tions with Lipshitz p-th derivative (p ≥ 1, p + 1 ≥ r) and Lp,f < Lp,g. Then by using our framework
with Hp,f = 2Lp,f , method converges to F (xN) − F (x∗) ≤ ε with Nf as (9) computations of
derivatives f(x) and Ng as (10) computation of derivatives g(x).

Proof. As we prove in 3 for the outer composite method with constantHp,f = 2Lp,f we need to make

Nout = Õ

[(
2pLp,fR

p+1−r

σr

) 2
3p+1

]
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Algorithm 3 Tensor Methods Combination

1: Input: r-unformly convex function F (x) = f(x) + g(x) with constant σr, convex functions f(x)
and g(x) such that∇pf is Lp,f -Lipschitz and∇pg is Lp,g-Lipschitz.

2: Set z0 = y0 = x0
3: for k = 0, to K − 1 do
4: Run Algorithm 2 for problem f(x) + g(x), where g(x) is a composite part.
5: for m = 0, to M − 1 do
6: Run Algorithm 2 up to desired accuracy for subproblem

min
y

(
Ωp(f, x̃k; y) +

Hp,f

p!
‖y − x̃k‖p+1 + g(y)

)
7: end for
8: end for
9: return zK

outer steps, it means that we need to compute Nout = Nf derivatives of f(x). Now we compute how
much steps of inner method we need. Note that inner function has Lipshitz p-th derivative Hp,f + Lg.
Also it is (p + 1)-uniformly convex with σp+1. To compute σp+1 we need to split Hp,f into two parts
Hp,f = H1 +H2, where the first part needs to make Ωp(f, x; y) + H1

p!
‖y− x‖p+1 a convex function

and the second part needs to make H2

p!
‖y − x‖p+1 a uniformly convex term. Hence, from Lemma 1

we have σp+1 = H2(p+1)22−p

p!
. We take H1 = H2 = Lp,f . As a result, the number of inner iterations

equal to

Ninn = Õ

(2Lp,f + Lp,g

(p+1)Lp,f22−p

p!

) 2
3p+1

log

(
F (x0)− F (x∗) +Hp,fR

p+1

ε

)
= Õ

(2Lp,f + Lp,g

(p+1)Lp,f22−p

p!

) 2
3p+1

 Lp,f<Lp,g
= Õ

[(
Lp,g

Lp,f

) 2
3p+1

] (11)

Hence the total number of inner iterations and total number of derivative’s computations of g(x) is

Ng = Nout ·Ninn = Õ

[(
Lp,fR

p+1−r

σr

) 2
3p+1

]
· Õ

[(
Lp,g

Lp,f

) 2
3p+1

]

= Õ

[(
Lp,gR

p+1−r

σr

) 2
3p+1

]
.

So we prove the theorem and split computation complexities.

Note, that this framework also easily adapts to methods without accelerating like [26], [6]. But, unfor-
tunately, it is much harder to adapt for other acceleration schemes. As we know, it is possible to adapt
this framework for speed ups from [12] and [17] for p ≥ 2, but for p = 1 it may arise some troubles
because of adaptive inner regularisation and hence hard subproblem. As for [26] acceleration it also
hard to adapt, because the inner subproblem is much harder with increasing complexity.

Also note that this framework can be generalized to the problem of the sum of m functions.

DOI 10.20347/WIAS.PREPRINT.2710 Berlin 2020
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4 General convex functions

We consider (1) problem for convex functions.

If we will use Algorithm 1 for problem (1) we get next convergence speed. To reach F (xN)−F (x∗) ≤
ε, we need Nf +Ng iterations, where

Nf = Õ

[(
Lp,fR

p+1

ε

) 2
3p+1

]
, (12)

Ng = Õ

[(
Lp,gR

p+1

ε

) 2
3p+1

]
. (13)

Now we prove that the our framework split computation’s complexities for convex functions.

Theorem 5. Assume f(x) and g(x) are convex functions with Lipshitz p-th derivative (p ≥ 1, p +
1 ≥ q) and Lp,f < Lp,g. Then by using our framework with Hp,f = 2Lp,f , method converges to
F (xN)− F (x∗) ≤ ε with Nf as (12) computations of derivatives f(x) and Ng as (13) computation
of derivatives g(x).

Proof. For the outer method 1 with constant Hp,f = 2Lp,f , we make

Nout = Õ

[(
2Lp,fR

p+1

ε

) 2
3p+1

]
outer steps, it means that we need to compute Nout = Nf derivatives of f(x). For inner method 1 to
solve subproblem (4) similarly we has the same rate as (11) Hence the total number of inner iterations
and total number of derivative’s computations of g(x) is

Ng = Nout ·Ninn = Õ

[(
2Lp,fR

p+1

ε

) 2
3p+1

]
· Õ

[(
Lp,g

Lp,f

) 2
3p+1

]

= Õ

[(
Lp,gR

p+1

ε

) 2
3p+1

]
.

So for convex function computation complexities are also splitting.

5 Multi-Composite Tensor Method

The natural generalization of framework 3 is to use for the sum of two functions with different smooth-
ness and hence different order of methods. But as we know, in the literature there is no method that
works with the sum of two functions with different smoothness. We need to use tensor methods for the
smallest order. To improve this situation we we introduce the new type of problem, where f(x) and
g(x) have different smoothness order. Similar idea for the first and second order was in the paper [8].
Next we propose a tensor method to solve such problem with splitting the complexities.

We introduce a multi-composite tensor optimization problem.

F (x) = f(x) + g(x) + h(x),

DOI 10.20347/WIAS.PREPRINT.2710 Berlin 2020
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where h(x) is a simple proper closed convex function, f(x) is a convex functions with Lipschitz q-th
derivative and g(x) is a convex functions with Lipschitz p-th derivative. By using Theorem 1 from [26]
we can get for f(x) if Hq,f ≥ qLq,f , that

Ωq(f, x; y) +
Hq,f

(q + 1)!
‖y − x‖q+1

is convex and

f(y) ≤ Ωq(f, x; y) +
Hq,f

(q + 1)!
‖y − x‖q+1

Now we propose our method

THq,f ,Hp,g(x) ∈ Argmin
y

{
Ωq(f, x; y) +

Hq,f

(q + 1)!
‖y − x‖q+1

+ Ωp(g, x; y) +
Hp,g

(p+ 1)!
‖y − x‖p+1 + h(y)

}
Then

xt+1 = THq,f ,Hp,g(xt) (14)

One can see that our method based on method [26] and combine models of two functions. Next we
start to prove, that our method converges and split the complexities.

We assume that exists at least one solution x∗ of problem (1) and the level sets of F are bounded. By
the first-order optimality condition for T = THq,f ,Hp,g(x) we get:

∇Ωq(f, x;T ) +
Hq,f (T − x)

q!
‖T − x‖q−1

+∇Ωp(g, x;T ) +
Hp,g(T − x)

p!
‖T − x‖p−1 + ∂h(T ) = 0

For the proof we need next small lemma.

Lemma 2. For any x ∈ E, Hq,f ≥ qLq,f and Hp,g ≥ pLp,g, we have

F (THq,f ,Hp,g(x)) ≤ min
y

{
F (y) +

Hq,f + Lq,f

(q + 1)!
‖y − x‖q+1 +

Hp,g + Lp,g

(p+ 1)!
‖y − x‖p+1

}
(15)

Proof.

F (THq,f ,Hp,g(x)) ≤ min
y

{
Ωq(f, x; y) +

Hq,f

(q + 1)!
‖y − x‖q+1

+ Ωp(g, x; y) +
Hp,g

(p+ 1)!
‖y − x‖p+1 + h(y) }

(3)
≤ min

y

{
F (y) +

Hq,f + Lq,f

(q + 1)!
‖y − x‖q+1 +

Hp,g + Lp,g

(p+ 1)!
‖y − x‖p+1

}

This leads us to the main theorem, that proves the convergence speed of our method.

DOI 10.20347/WIAS.PREPRINT.2710 Berlin 2020
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Theorem 6. If fq(x) is convex functions with Lipshitz constant Lq,f for q-th derivative, fp(x) is convex
functions with Lipshitz constant Lp,g for p-th derivative;Hq,f ≥ qLq,f andHp,g ≥ pLp,g. αt is chosen
such that α0 = 1 and αt ∈ [0; 1] t ≥ 1, then for any t ≥ 0 for method (14) we have

F (xt+1)− F (x∗) ≤ At

t∑
i=0

[
Cf
αq+1
i

Ai

‖xi − x∗‖q+1 + Cg
αp+1
i

Ai

‖xi − x∗‖p+1

]
where

Cf =
Hq,f + Lq,f

(q + 1)!
, Cg =

Hp,g + Lp,g

(p+ 1)!
;

At =

1, t = 0
t∏

i=1

(1− αi), t ≥ 1
(16)

Proof. From (15)

F (xt+1) ≤ min
y

{
F (y) +

Hq,f + Lq,f

(q + 1)!
‖y − xt‖q+1 +

Hp,g + Lp,g

(p+ 1)!
‖y − xt‖p+1

}
≤ F (y) + Cf‖y − xt‖q+1 + Cg‖y − xt‖p+1

If we take y = xt + αt(x∗ − xt), then by convexity

F (xt+1) ≤ F (y) + Cfα
q+1
t ‖x∗ − xt‖q+1 + Cgα

p+1
t ‖x∗ − xt‖p+1

≤ (1− αt)F (xt) + αtF (x∗) + Cfα
q+1
t ‖x∗ − xt‖q+1 + Cgα

p+1
t ‖x∗ − xt‖p+1.

Hence

F (xt+1)− F (x∗) ≤ (1− αt) (F (xt)− F (x∗))

+ Cfα
q+1
t ‖x∗ − xt‖q+1 + Cgα

p+1
t ‖x∗ − xt‖p+1

For t = 0 and α0 = 1 we get

F (x1)− F (x∗) ≤ Cf‖x∗ − x0‖q+1 + Cg‖x∗ − x0‖p+1

For t > 0 we divide both sides by At:

1

At

(F (xt+1)− F (x∗)) ≤
(1− αt)

At

(F (xt)− F (x∗))

+ Cf
αq+1
t

At

‖x∗ − xt‖q+1 + Cg
αp+1
t

At

‖x∗ − xt‖p+1

(16)
≤ 1

At−1
(F (xt)− F (x∗))

+ Cf
αq+1
t

At

‖x∗ − xt‖q+1 + Cg
αp+1
t

At

‖x∗ − xt‖p+1

By summarising both sides we obtain (15)

Next we can fix parameters of this theorem and get next corollary.
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Corollary 7. For method (14) and αt = p+1
t+p+1

we have

F (xt+1)− F (x∗) ≤ Eq
(Hq,f + Lq,f )Rq+1

(t+ p+ 1)q
+ Ep

(Hp,g + Lp,g)R
p+1

(t+ p+ 1)p
(17)

where

Ek =
(p+ 1)k+1

(k + 1)!
, k = {q, p}

Proof. We use

F (xt+1)− F (x∗) ≤ At

t∑
i=0

[
Cf
αq+1
i

Ai

‖xi − x∗‖q+1 + Cg
αp+1
i

Ai

‖xi − x∗‖p+1

]
(6)
≤ CfR

q+1

t∑
i=0

Atα
q+1
i

Ai

+ CgR
p+1

t∑
i=0

Atα
p+1
i

Ai

Now we compute these sums for αt = p+1
t+p+1

:

At =
t∏

i=1

(1− αi) =
t∏

i=1

i

i+ p+ 1
=

t! (p+ 1)!

(t+ p+ 1)!
= (p+ 1)!

p+1∏
i=1

1

t+ i

≥ (p+ 1)!

(t+ 1)p+1

For the second sum we get

t∑
i=1

Atα
p+1
i

Ai

=
t∑

i=1

(p+ 1)p+1
∏p+1

j=1(i+ j)

(i+ p+ 1)p+1(p+ 1)!
· (p+ 1)!

p+1∏
i=1

1

t+ i

= (p+ 1)p+1

t∑
i=1

p+1∏
j=1

i+ j

i+ p+ 1

p+1∏
i=1

1

t+ i

≤ (p+ 1)p+1

(t+ p+ 1)p

For the first sum we get For second sum we have

t∑
i=1

Atα
q+1
i

Ai

=
t∑

i=1

(p+ 1)q+1
∏p+1

j=1(i+ j)

(i+ p+ 1)q+1(p+ 1)!
· (p+ 1)!

p+1∏
i=1

1

t+ i

= (p+ 1)q+1

t∑
i=1

∏p+1
j=1(i+ j)

(i+ p+ 1)q+1
·
p+1∏
i=1

1

t+ i

≤ (p+ 1)q+1

(t+ p+ 1)q
.

From this two formulas for sums we get (17)

Finally, we prove that our method converges with the desired speed and split the complexities. Note
that this algorithm can be generalized for the sum of m functions.
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6 Conclusion

In this paper, we consider the minimization of the sum of two functions f + g each having Lipshitz
p-th order derivatives with different Lipschitz constants. We propose a general framework to acceler-
ate tensor methods by splitting computational complexities. As a result, we get near-optimal oracle
complexity for each function in the sum separately for any p ≥ 1, including the first-order methods. To
be more precise, if the near optimal complexity to minimize f is Nf (ε) iterations and to minimize g
is Ng(ε), then our method requires no more than Õ(Nf (ε)) oracle calls for f and Õ(Ng(ε)) oracle
calls for g to minimze f + g. We prove, that our framework works with both convex and uniformly con-
vex functions. To get this result, we additionally generalize near-optimal tensor methods for composite
problems with inexact inner tensor step.

Further, we investigate the situation when the functions in the sum have Lipschitz derivatives of a
different order. For this situation, we propose a generic way to separate the oracle complexity between
the parts of the sum. It is the first tensor method that works with functions with different smoothness.
Our method is not optimal, which leads to an open problem of the optimal combination of oracles of a
different order.
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A Proof of Composite Accelerated Taylor Descent

This section is a rewriting of proof from [4], with adding composite part into the proof. Next theorem
based on Theorem 2.1 from [4]

Theorem 8. Let (yk)k≥1 be a sequence of points in Rd and (λk)k≥1 a sequence in R+. Define
(ak)k≥1 such that λkAk = a2k where Ak =

∑k
i=1 ai. Define also for any k ≥ 0, xk = x0 −∑k

i=1 ai(∇f(yi) + g′(yi)) and x̃k := ak+1

Ak+1
xk + Ak

Ak+1
yk. Finally assume if for some σ ∈ [0, 1]

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ σ · ‖yk+1 − x̃k‖ , (18)

then one has for any x ∈ Rd,

F (yk)− F (x) ≤ 2‖x‖2(∑k
i=1

√
λi

)2 ,
and

k∑
i=1

Ai

λi
‖yi − x̃i−1‖2 ≤

‖x∗‖2

1− σ2
.

To prove this theorem we introduce auxiliaries lemmas based on lemmas 2.2-2.5 and 3.1 , lemmas
2.6 and 3.3 one can take directly from [4] without any changes.

Lemma 3. Let ψ0(x) = 1
2
‖x − x0‖2 and define by induction ψk(x) = ψk−1(x) + akΩ1(F, yk, x).

Then xk = x0−
∑k

i=1 ai(∇f(yi) + g′(yi)) is the minimizer of ψk, and ψk(x) ≤ AkF (x) + 1
2
‖x−

x0‖2 where Ak =
∑k

i=1 ai.

Lemma 4. Let (zk) be a sequence such that

ψk(xk)− AkF (zk) ≥ 0 .

Then one has for any x,

F (zk) ≤ F (x) +
‖x− x0‖2

2Ak

.

Proof. One has (recall Lemma 3):

AkF (zk) ≤ ψk(xk) ≤ ψk(x) ≤ AkF (x) +
1

2
‖x− x0‖2 .

Lemma 5. One has for any x,

ψk+1(x)− Ak+1F (yk+1)− (ψk(xk)− AkF (zk))

≥ Ak+1(∇f(yk+1) + g′(yk+1)) ·
(
ak+1

Ak+1

x+
Ak

Ak+1

zk − yk+1

)
+

1

2
‖x− xk‖2 .
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Proof. Firstly, by simple calculation we note that:

ψk(x) = ψk(xk) +
1

2
‖x− xk‖2, and ψk+1(x) = ψk(xk) +

1

2
‖x− xk‖2 + ak+1Ω1(f, yk+1, x) ,

so that

ψk+1(x)− ψk(xk) = ak+1Ω1(F, yk+1, x) +
1

2
‖x− xk‖2 . (19)

Now we want to make appear the term Ak+1F (zk+1)−AkF (zk) as a lower bound on the right hand
side of (19) when evaluated at x = xk+1. Using the inequality Ω1(F, yk+1, zk) ≤ f(zk) we have:

ak+1Ω1(F, yk+1, x) = Ak+1Ω1(F, yk+1, x)− AkΩ1(F, yk+1, x)

= Ak+1Ω1(F, yk+1, x)− Ak∇F (yk+1) · (x− zk)− AkΩ1(F, yk+1, zk)

= Ak+1Ω1

(
F, yk+1, x−

Ak

Ak+1

(x− zk)

)
− AkΩ1(F, yk+1, zk)

≥ Ak+1F (yk+1)− AkF (zk)

+ Ak+1(∇f(yk+1) + g′(yk+1)) ·
(
ak+1

Ak+1

x+
Ak

Ak+1

zk − yk+1

)
,

which concludes the proof.

Lemma 6. Denoting λk+1 :=
a2k+1

Ak+1
and x̃k := ak+1

Ak+1
xk + Ak

Ak+1
yk one has:

ψk+1(xk+1)− Ak+1F (yk+1)− (ψk(xk)− AkF (yk))

≥ Ak+1

2λk+1

(
‖yk+1 − x̃k‖2 − ‖yk+1 − (x̃k − λk+1(∇f(yk+1)) + g′(yk+1))‖2

)
.

In particular, we have in light of (18)

ψk(xk)− AkF (yk) ≥ 1− σ2

2

k∑
i=1

Ai

λi
‖yi − x̃i−1‖2.

Proof. We apply Lemma 5 with zk = yk and x = xk+1, and note that (with x̃ := ak+1

Ak+1
x+ Ak

Ak+1
yk):

(∇f(yk+1) + g′(yk+1)) ·
(
ak+1

Ak+1

x+
Ak

Ak+1

yk − yk+1

)
+

1

2Ak+1

‖x− xk‖2

= (∇f(yk+1) + g′(yk+1)) · (x̃− yk+1) +
1

2Ak+1

∥∥∥∥Ak+1

ak+1

(
x̃− Ak

Ak+1

yk

)
− xk

∥∥∥∥2
= (∇f(yk+1) + g′(yk+1)) · (x̃− yk+1) +

Ak+1

2a2k+1

∥∥∥∥x̃− (ak+1

Ak

xk +
Ak

Ak+1

yk

)∥∥∥∥2 .
This yields:

ψk+1(xk+1)− Ak+1F (yk+1)− (ψk(xk)− AkF (yk))

≥ Ak+1 · min
x∈Rd

{
(∇f(yk+1) + g′(yk+1)) · (x− yk+1) +

1

2λk+1

‖x− x̃k‖2
}
.

The value of the minimum is easy to compute.
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For the first conclusion in Theorem 8, it suffices to combine Lemma 6 with Lemma 4, and Lemma 2.5
from [4]. The second conclusion in Theorem 8 follows from Lemma 6 and Lemma 3.

The following lemma shows that minimizing the pth order Taylor expansion (4) can be viewed as an
implicit gradient step for some “large” step size:

Lemma 7. Equation (18) holds true with σ = 1/2 for (4), provided that one has:

1

2
≤ λk+1

Lp · ‖yk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
. (20)

Proof. Observe that the optimality condition gives:

∇yfp(yk+1, x̃k) +
Lp · (p+ 1)

p!
(yk+1 − x̃k)‖yk+1 − x̃k‖p−1 + g′(yk+1) = 0 . (21)

In particular we get:

yk+1 − (x̃k − λk+1(∇f(yk+1) + g′(yk+1))) = λk+1(∇f(yk+1) + g′(yk+1))

− p!

Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1
(∇yfp(yk+1, x̃k) + g′(yk+1)) .

By doing a Taylor expansion of the gradient function one obtains:

‖∇f(y)−∇yfp(y, x)‖ ≤ Lp

p!
‖y − x‖p ,

so that we find:

‖yk+1 − (x̃k − λk+1(∇f(yk+1) + g′(yk+1)))‖

≤ λk+1
Lp

p!
‖yk+1 − x̃k‖p +

∣∣∣∣λk+1 −
p!

Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣ · ‖∇yfp(yk+1, x̃k) + g′(yk+1)‖

≤ ‖yk+1 − x̃k‖
(
λk+1

Lp

p!
‖yk+1 − x̃k‖p−1 +

∣∣∣∣λk+1
Lp · (p+ 1) · ‖yk+1 − x̃k‖p−1

p!
− 1

∣∣∣∣)
= ‖yk+1 − x̃k‖

(
η

p
+

∣∣∣∣η · p+ 1

p
− 1

∣∣∣∣)
where we used (21) in the second last equation and we let η := λk+1

Lp·‖yk+1−x̃k‖p−1

(p−1)! in the last

equation. The result follows from the assumption 1/2 ≤ η ≤ p/(p+ 1) in (20).

Finally, if we replace ‖x∗‖ by ‖x0−x∗‖ in Lemma 3.3 and use Lemma 3.4 from [4] we prove Theorem
8.

B Inexact solution of the subproblem

Suppose that (4) can not be solved exactly. Assume that we can find only inexact solution ỹk+1 satisfies∥∥∥∥∇(fp(ỹk+1, x̃k) +
Lp

p!
‖ỹk+1 − x̃k‖p+1 + g(ỹk+1)

)∥∥∥∥ ≤ Lp

2p!
‖ỹk+1 − x̃k‖p. (22)

In this case Lemma 7 should be corrected.

DOI 10.20347/WIAS.PREPRINT.2710 Berlin 2020



D. Kamzolov, A. Gasnikov, P. Dvurechensky 16

Lemma 8. Equation (18) holds true with σ = 3/4 for (22), provided that one has:

1

2
≤ λk+1

Lp · ‖ỹk+1 − x̃k‖p−1

(p− 1)!
≤ p

p+ 1
.

Proof. Let’s introduce

Ξk+1 = ∇
(
fp(ỹk+1, x̃k) +

Lp

p!
‖ỹk+1 − x̃k‖p+1 + g(ỹk+1)

)
.

The main difference with the proof of Lemma 7 is in the following line

‖ỹk+1 − (x̃k − λk+1(∇f(ỹk+1) + g′(ỹk+1)))‖

≤ λk+1
Lp

p!
‖ỹk+1 − x̃k‖p+∣∣∣∣λk+1 −

p!

Lp · (p+ 1) · ‖ỹk+1 − x̃k‖p−1

∣∣∣∣ · ‖∇yfp(ỹk+1, x̃k) + g′(ỹk+1)‖+ λk+1Ξk+1

≤ ‖ỹk+1 − x̃k‖
(
λk+1

Lp

p!
‖ỹk+1 − x̃k‖p−1 +

∣∣∣∣λk+1
Lp · (p+ 1) · ‖ỹk+1 − x̃k‖p−1

p!
− 1

∣∣∣∣)
+ ‖ỹk+1 − x̃k‖ ·

1

2p
· λk+1

Lp · ‖ỹk+1 − x̃k‖p−1

(p− 1)!
.

To complete the proof it’s left to notice that due to the (22)

‖Ξk+1‖ ≤
Lp

2p!
‖ỹk+1 − x̃k‖p.

Based on (22) we try to relate the accuracy ε̃ we need to solve auxiliary problem to the desired
accuracy ε for the problem (1). For this we use Lemma 2.1 from [15]. This Lemma guarantee that if∥∥∥∥∇(fp(ỹk+1, x̃k) +

Lp

p!
‖ỹk+1 − x̃k‖p+1 + g(ỹk+1)

)∥∥∥∥ ≤ 1

4p(p+ 1)
‖∇F (ỹk+1)‖, (23)

then (22) holds true. So it’s sufficient to solve auxiliary problem in terms of (23).

Assume that F (x) is r-uniformly convex function with constant σr (r ≥ 2, σr > 0, see Definition 1),
then from Lemma 2 [7] we have

F (ỹk+1)−min
x∈E

F (x) ≤ r − 1

r

(
1

σr

) 1
r−1

‖∇F (ỹk+1)‖
r

r−1 . (24)

Inequalities (23), (24) give us guarantees that it’s sufficient to solve auxiliary problem with the accuracy

ε̃ = O
((
εr−1σr

) 1
r

)
in terms of criteria (23). Since auxiliary problem is every time r-uniformly convex we can apply (24)
to auxiliary problem to estimate the accuracy in terms of function discrepancy. Anyway we will have
that there is no need to think about it since the dependence of this accuracy are logarithmic. The
only restrictive assumption we made is that F (x) is r-uniformly convex. If this is not a case, like
in Section 4, we may use regularisation tricks [11]. This lead us to σ2 ∼ ε. So the dependence ε̃
becomes worthier, but this doesn’t change the main conclusion about possibility to skip the details
concern the accuracy of the solution of auxiliary problem.
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C CATD with restarts

The proof of the theorem 3.

Proof. As F is r-uniformly convex function we get

Rk+1 = ‖zk+1 − x∗‖ ≤
(
r (F (zk+1)− F (x∗))

σr

) 1
r (5)
≤


r

(
cpLpR

p+1
k

N
3p+1

2
k

)
σr


1
r

=

(
rcpLpR

p+1
k

σrN
3p+1

2
k

) 1
r

(7)
≤
(

Rp+1
k

2rRp+1−r
k

) 1
r

=
Rk

2
.

Now we compute the total number of CATD steps.

K∑
k=0

Nk ≤
K∑
k=0

(
rcpLp2

r

σr
Rp+1−r

k

) 2
3p+1

+K =
K∑
k=0

(
rcpLp2

r

σr
(R02

−k)p+1−r
) 2

3p+1

+K

=

(
rcpLp2

rRp+1−r
0

σr

) 2
3p+1 K∑

k=0

2
−2(p+1−r)k

3p+1 +K
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