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Multiband k - p model and fitting scheme for ab initio-based

electronic structure parameters for wurtzite GaAs

Oliver Marquardt, Miguel A. Caro, Thomas Koprucki,
Peter Mathé, Morten Willatzen

Abstract

We develop a 16-band k - p model for the description of wurtzite GaAs, together with a novel
scheme to determine electronic structure parameters for multiband k - p models. Our approach
uses low-discrepancy sequences to fit k - p band structures beyond the eight-band scheme to
most recent ab initio data, obtained within the framework for hybrid-functional density functional
theory with a screened-exchange hybrid functional. We report structural parameters, elastic con-
stants, band structures along high-symmetry lines, and deformation potentials at the I" point.
Based on this, we compute the bulk electronic properties (I' point energies, effective masses,
Luttinger-like parameters, and optical matrix parameters) for a ten-band and a sixteen-band k - p
model for wurtzite GaAs. Our fitting scheme can assign priorities to both selected bands and k
points that are of particular interest for specific applications. Finally, ellipticity conditions can be
taken into account within our fitting scheme in order to make the resulting parameter sets robust
against spurious solutions.

1 Introduction

The development of novel electronic devices and light sources requires efficient techniques to model
the optoelectronic properties of semiconductor nanostructures. For about two decades now, the six-
and eight-band k - p formalisms represent the backbone of semiconductor device modelling and have
been extensively employed to study semiconductor nanostructures of a wide range of shapes, dimen-
sions, and material compositions. [1,114,139, 121,31, [20] These approaches describe the bulk electronic
band structure of a material perturbatively, such that it is well reproduced in the vicinity of a selected
high-symmetry point within the Brillouin zone (BZ), commonly the zone center I'. For the description
of heterostructures consisting of different materials or crystal phases, the k - p formalism is employed
within envelope functions that contain the description of the shape and dimensions of the heterostruc-
ture in a continuum picture. An accurate description of the electronic properties of semiconductor
nanostructures using k - p models can be achieved only if the electronic properties are governed
by the band structure around the high-symmetry point selected for the corresponding k - p model.
The small number of relevant electronic structure parameters required for these well-established k - p
models: band offsets, energy splittings, electron- and hole effective masses (the latter are commonly
translated to Luttinger-like parameters), deformation potentials and optical matrix elements, are widely
available for most I1I-V [37, 136}, 130] and many II-VI compound semiconductors. [38, [16]

On the other hand, the eight-band k - p model has shortcomings that, despite its past and recent
successes, make it unsuited for a number of material systems and devices: The limitation of the set of
basis functions to the top three valence bands and the bottom conduction band with their respective
| 1) and | J) components makes this model a priori unsuited to materials such as GaSb or GaAs in the
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wurtzite (WZ) phase, where an additional conduction band plays a decisive role. [22] The perturbative
approach yields a good description of the electronic band structure around the BZ center, k = 0,
whereas the limitation to one conduction band and three valence bands coupled via optical matrix
elements cannot resolve all features of the band structure throughout the BZ, so that the description
of indirect band gap materials such as Si or Ge, where the minimum of the conduction band is not at
the same k value as the maximum of the valence band, requires a larger basis, e.g., a 15-band or
even 30-band k - p model. [6, 27]

The existing parameter sets, for instance compiled in the remarkable work by Vurgaftman and cowork-
ers [37] and its update for the IlI-N semiconductors [36], that provide all essential parameters for most
compound semiconductors, are limited to the eight-band model. Furthermore, the application of the
eight-band k - p formalism and envelope function approach to heterostructures can — under some
conditions — find erroneous, so-called spurious solutions that result from a loss of ellipticity of the
respective k - p Hamiltonian operator. [33] While existing parameter sets have been evaluated for se-
lected semiconductor materials, [33} 34} [35] ellipticity conditions have, to our knowledge, never been
taken into account directly in the calculation of k - p electronic structure parameter sets.

The scope of our work is to provide a versatile tool that can generate parameter sets for k - p models
of arbitrary complexity and level of sophistication including, but also going beyond, six or eight basis
functions. We focus on WZ GaAs, as this material can be employed in novel nanowire-based crystal-
phase heterostructures [11] and the description of its electronic structure requires the consideration of
at least one additional conduction band. [22, [12]

We derive a sixteen-band k - p Hamiltonian that takes the second relevant conduction band close to
the band gap as well as the following three conduction bands into account, to provide a better accuracy
and validity of the whole band structure throughout wide parts of the BZ.

We compute the corresponding 16-band k - p parameter set by fitting the k - p band structure to an
up-to-date ab initio band structure.

We note that the parameter fitting tool presented is suited to other materials such that it can be em-
ployed to provide a full spectrum of up-to-date k - p parameters of Ill-V and II-VI semiconductor
materials as well as of any material of which the band structure can be described using a parameter-
ized Hamiltonian, independent of the existence of a band gap. Our approach enables us to increase
the fitting priority of selected bands and high-symmetry-points within the BZ in order to produce the
best-suited set of parameters for applications that rely on the correct description of these bands and
high-symmetry-points. Furthermore, our tool facilitates the calculation of k - p parameter sets that
avoid spurious solutions in the simulation of the electronic properties of nanostructures as it allows us
to control the non-ellipticity of the Hamiltonian operator matrix to a certain extent.

2 Band structure calculation

In order to obtain up-to-date band structure parameters for multi-band k - p models, we have carried
out hybrid-functional density functional theory (DFT) calculations of the electronic properties of GaAs
in the WZ phase (For details, see Appendix A).

Equilibrium lattice parameters and WZ internal parameter were obtained by fitting the total energy of
the crystal to an equation of state. The elastic constants were computed from the stress tensor, rather
than total energy derivatives, which allows for more accurate results. [7] The structural parameters and
elastic constants obtained are listed in Table [2| Note that the internal WZ parameter w is lower than
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Table 1: Structural and elastic parameters for ZB and WZ GaAs. Experimental values, where available,
are in brackets. a: Ref. [37], b: Ref. [23]

ZB GaAs WZ GaAs

a (A) 5.671 (5.642%) 3.997 (3.989)
c (A) n/a 6.588 (6.564°)
U n/a 0.3741
C'h1 (GPa) 119 142

012 (GPa) 51 46

C13 (GPa) n/a 28

Cs3 (GPa) n/a 167

Cyu4 (GPa) 80 40

Table 2: Band gaps, position of the topmost valence band with respect to the average electrostatic
potential, SO splittings and CF splittings of WZ GaAs obtained with SO coupling enabled.

Ey (eV) 1.494

Eys (eV) 3.371

Ag = Aq (w/o SO, meV) 177

Ay = Aq (with SO, meV) 184

AQ = Ag (meV) 123

the ideal value, uy = 0.375, unlike for most other WZ materials. This is an indication of inverse polar-
ity (and piezoelectricity) in GaAs, consistent with zincblende (ZB) results, for which the piezoelectric
coefficient is of opposite sign when compared to the lll nitrides. [8]

The band structure of WZ GaAs along high-symmetry lines, with SO coupling, is shown in Fig.
(left). A detail of the six topmost valence bands and ten lowest conduction bands around the I' point
is given in Fig. [2] (right). Basic band structure information is presented in Table [2 The WZ A; 53
parameters have been obtained by fitting Eq. (11) of Chuang and Chang [10] to the energy differences
obtained from the DFT calculation. The calculation of deformation potentials was carried out without
SO coupling. We present results at the 1" point only. All the values are given with respect to the average
electrostatic (Hartree) potential of the unit cells. The summary of these calculations is presented in
Table 2

3 Sixteen-band Hamiltonian for Wurtzite crystals

In order to provide an accurate description of the two energetically close conduction bands closest to
the band gap in WZ GaAs within the perturbative approach of the k - p formalism beyond the eight-
band model, remote conduction bands gain importance due to their coupling to the I's conduction
band. We have thus employed a sixteen-band model taking the top three p-like valence bands, the
I'; and I's conduction bands, and the following three p-like conduction bands into account, each with
their respective | 1) and | J) component to a total of sixteen bands. The details of the Hamiltonian
can be found together with a schematic plot of bands and coupling terms in Appendix B. In total, 24
parameters need to be determined by fitting to the ab initio band structure, namely: m‘ﬁ me, my, my
(4), the Luttinger-like parameters A; and A$ with ¢« = 1..6 (12), and the optical matrix elements P,

DOI 10.20347/WIAS.PREPRINT.2699 Berlin 2020



O. Marquardt, M. A. Caro, T. Koprucki, P. Mathé, M. Willatzen 4

6
- T~ | | 84 S 1 [ Trd
= With SO —
4t W/eso 1 82r 4 | 1T
M3 //’71
N
T
15
==
10 {§ :
s T—L— T
> o~ N— 3.4
I )Y
ﬂ{) T~._ = \ 321
3L — s , o
o — 7
28 1L
~15
A L M r A H v T 1

Figure 1: Left: Band structure for WZ GaAs. Relevant bands for the 16-band Hamiltonian are depicted
in red. The vicinity of I' is shown in an enlarged view, comparing simulation with (red) and without
(green) spin-orbit splitting. Right: Band structure detail around I'.

Py, PS, PS, P}, Py, P and Py’ (8).

4 Multiband parameter extraction

The parameter sets required in k - p models of arbitrary complexity can be obtained by fitting the
respective k - p band structure to an ab initio band structure as, e.g., the one obtained in Sec. Il.
While some of these parameters can be read directly from the band structure at I" (e.g., the band gap,
crystal-field and spin-orbit splitting parameters), effective masses and Luttinger-like parameters as
well as optical matrix elements can be determined directly from nonlocal empirical pseudopotentials
or ab initio models with some limitations, [28} (13| 40] but are best determined by numerical fitting.
This can be done using gradient minimization schemes readily available in standard mathematics
libraries for k - p models with a limited level of sophistication as, e.g., six- or eight-band models.
However, such schemes commonly fail for more complex multiband-models due to a large number of
local minima in the difference between original and fitted band structure spanned by the amount of
parameters to be fitted. To avoid trapping in local minima, it is thus necessary to sample the whole,
multi-dimensional search space. For the example of an eight-band model for ZB crystals, band gap
and spin-orbit splitting can be obtained directly from the band structure, whereas the electron effective
mass, m., three Luttinger parameters, 7, 2 3, and the Kane parameter p need to be determined by
fitting. With ny data points of the ab initio input band structure and assuming a discretization of N
points in each dimension of the parameter set I°, we minimize the absolute difference between input
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Table 3: Deformation potentials (in the absence of spin-orbit coupling) for WZ GaAs given as the partial
derivative of the bands energies at the 1" point. All the energies are given with respect to the average
Hartree potential of the unit cell. Units are eV.

Band ordering (¢ = 0) Band character a(Eé;Eav) a(Eé;Eav) a(Eé;Eav) B(EE);EE‘V)
VBE — 1 z-like —6.39 —13.88 0 0

VBE y-like —6.79  —7.24 0.15  —3.47 (wyl-like)
VBE 2-like —13.82  —7.24  —0.15 3.47 (z — yl-like)
CBE s-like —16.91 —20.30 0 0

CBE + 1 s-like —17.98 —0.62 0 0

CBE + 2 2-like 1511 —4.65 020  —3.47 (wy)-like)
CBE + 2 y-like —8.22 —4.65 —0.20  3.47 ([x — y)-like)
CBE + 14 z-like —6.32 —17.41 0 0

band structure € and the one obtained from the fit:
v="S eig |H Pl-—e} — s MIN! 1
o f(P) ], "
Nk

Let us assume that we have a band structure of ny, = 150 sample points and that a single eigenvalue
problem can be solved within 50 us of single-processor time. For an eight-band model for zinc-blende
crystals and taking N = 10 discretization points in each direction of the five-dimensional parame-
ter set P, this results in a computational effort of about 12 min. The computational effort increases
exponentially in the numbers of parameters to be fitted. For example, for the WZ structure the dimen-
sion of the parameter space doubles and the computational effort would already exceed two years
of single processor time. Of course, this minimization problem is perfectly suited for parallelization,
but the computational effort nevertheless remains extreme and more sophisticated models than the
eight-band formalism, such as full-zone models for indirect band gap semiconductors that require even
larger parameter sets, are completely beyond the reach of today’s computational capabilities.

This curse of dimensionality can be overcome by stochastic optimization based on randomly chosen
search points for the global minimum. Low-discrepancy points are a natural substitute for random
numbers. Such quasi-Monte Carlo methods provide a higher accuracy with fewer evaluations of the
objective function in Eq. (1). [19] Many practical studies have shown that Sobol points [32] [24] are
superior to many other choices of low-discrepancy point sets. For this reason, we search the whole
Np-dimensional parameter set P by using properly scaled points from an Np-dimensional Sobol se-
quence. In this manner, we can keep the number of search points fixed along different dimensionalities
of the parameter space, still being able to obtain values close to the global minimum. The respective
fitting scheme is illustrated in Fig. [4| for a two-dimensional parameter space. In a first step, the pa-
rameter space sampled by the Sobol sequence is spanned by an initial estimate of each parameter
together with a respective search range. Some parameters may be known with reasonable accuracy
from literature or experience and will have a small surrounding search range whereas this range will
be larger for those parameters of which no reference is known. The Np-dimensional Sobol sequence
is then mapped on the search ranges of all parameters and the best fit is obtained within all parameter
sets defined in this manner (green squares in Fig. [4). Without reducing the size of the search space
around all parameters, a new sequence of parameter sets is then spanned around the best suited set
obtained before, such that the whole search space moves towards the best set (green squares and
blue triangles). Once the best suited parameter set is found and remains unchanged when setting up
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Figure 2: Schematic of the low-discrepancy parameter fitting algorithm. First, the search space is
moved with identical ranges until the minimum remains in its center (green squares, red bullets, blue
triangles). Once this is achieved, the search space is reduced to increase the accuracy of the param-

eters (magenta “+” and orange “X”).

a new sequence of parameter sets, the search space is reduced by a factor two in each parameter
search range such that the numerical accuracy of all parameters increases either to a defined number
of search space reductions or until any other chosen convergence criterion is fulfilled (magenta plus
and orange crosses).

The objective function in Eq. (1) can furthermore be modified such that priorities of selected k points
as well as those of particular bands that are of pronounced importance, can be increased via individual
weights. In order to ensure a good fit at specific high-symmetry points, one can thus easily increase
the importance of these points by assigning higher weights to k values in their vicinity.

Finally, we can evaluate parameter sets within the search space with respect to the degree of non-
ellipticity of a Hamiltonian operator employing them.

We demonstrate our fitting scheme for the example of a sixteen-band k - p model that takes the top
three valence and bottom five conduction bands into account, each with their respective spin-up and
spin-down components. We have extracted these bands from the ab initio band structure computed
above in order to determine the k - p parameters for the model as outlined in Appendix B. This
particular model requires 24 parameters that are to be fitted to the ab initio band structure. The k - p
Hamiltonian is constructed in a basis consisting of P- and S-like bands. Correspondingly, we first
evaluate the orbital character of the ab initio bands involved.

Figure |4 shows the character of the ab initio bands to which the k - p band structure will be fitted. The
valence bands I'7,., I'7,_, and 'y, exhibit predominantely a P-like character (red solid, dashed, and
dash-dotted lines), 7, furthermore contains visible S-like contributions (black solid lines). The two
conduction bands closest to the band gap, I'7. and I's., are mostly of S-character, but also with visible
P-like contributions. The following conduction band states are predominantly of P-character with S-like
contributions in I'g. and I'7., around the high-symmetry A point. Moreover, nonzero D-like character
is seen in these conduction bands (green solid lines), however the impact of D-like bands remains
negligible. The character analysis thus reveals that S- and P-like bands in fact represent a reasonable
basis for the sixteen band model.

Correspondingly, Fig. [4] shows the sixteen-band k - p band structure for WZ GaAs crystals that was
fitted to the above ab initio band structure. Priority was given to the bands closest to the band gap,
namely the bottom two conduction bands and the top two valence bands as they dominate the elec-
tronic structure of WZ GaAs. The k - p band structure is in good agreement with the ab initio one
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Figure 3: Character of S- (black), P- (red), and D-orbitals (green) of the top six valence and bottom ten
conduction bands of the ab initio band structure that is used for the fitting procedure. As all bands are
pairwise almost degenerate, we evaluate here only one of each pair of bands for the sake of readability.
Note that the sum of all contributions to a band is not necessarily one as the underlying atom-centered
spherical harmonics do not represent a complete basis.

throughout wide parts of the BZ for the bands of pronounced priority. This is particularly remarkable
as the k - p perturbation theory commonly allows an accurate description of a band structure only
in the close vicinity of high-symmetry points and is not expected to keep this accuracy throughout
the BZ. In comparison, the band structure obtained from the initial parameters is depicted in Fig. [4|in
blue dashed lines and exhibits very poor agreement with the ab initio band structure. It is therefore
not necessary to start the minimization with initial parameters that are already close to the final ones,
however, the smaller the search range for each parameter, the faster the minimization will deliver a
good fit.

The band structure parameters obtained from the fit are presented in Tab. [4] and could, in principle,
serve as input for electronic-structure simulations of WZ GaAs heterostructures using the more so-
phisticated sixteen-band k - p model. Details of the initial parameters, search spaces, and priorities
can be found in Appendix C.

However, from the curvature of the bands around the BZ boundaries, it can already be expected that
spurious solutions will arise if these parameters are employed in a single-particle calculation of a
heterostructure. For example, the conduction band bending downwards at the L point will continue
deep into the band gap, resulting in energy minima that are a consequence of the incorrect band
structure.

DOI 10.20347/WIAS.PREPRINT.2699 Berlin 2020
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DFT — —- N
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Figure 4: Fit (black and grey solid) of a sixteen-band WZ GaAs k - p band structure to the above
ab initio band structure (red dash-dotted). The blue dashed band structure was obtained from the
initial guess parameter set around which the initial Sobol-sequence generated parameter sets were
constructed. Priority was given to the four valence and conduction bands closest to the band gap
(black solid).

This can also be seen in Fig. [4| where the density of states (DOS) reproduced from the sixteen-band
k - p band structure above is shown, obtained from sampling throughout the whole BZ. The band gap
is indicated with two black solid lines. It can be seen that non-negligible band contributions exist inside
the band gap, which is an indicator for the above unphysical band bending somewhere inside the BZ
that can potentially induce spurious solutions when a 16-band model with the corresponding material
parameters obtained from our fit is applied to study the electronic properties of a nanostructure.

5 Ellipticity considerations

In the following, we include ellipticity conditions in our fitting scheme in order to reduce the unphysical
DOS inside the band gap. The parameters p. and p, as defined in Eq. in Appendix D quantify
the degree of non-ellipticity and are thus a measure for the quality of the parameter set with respect
to robustness against spurious solutions (for more details see Appendix D), where small values of
o and g, represent robust parameter sets. The sum of both, o0 = p. 4+ 0, is then multiplied with
the cost function v from the initial guess and the parameter € that defines the priority to be given to
ellipticity. The respective value is then added to the cost function v for each evaluated parameter set.
Figure [5] shows the impact of imposing ellipticity conditions on our band structure fit for priority values
of € =0.1, 0.2, and 0.3. It can be seen that an increased priority € of the ellipticity conditions in fact
reduces the DOS inside the band gap, however, at the cost of a reduced quality of the band structure
fit, in particular in the remote areas of the BZ.

If we compare the parameters resulting from the fit (cf. Tab. [4) with literature values where available, [9]
4, 13] we see some significant deviations from existing parameters. In particular, our electron effective
masses are quite different from established values, a fact that can also be seen when looking at the
band structure in the vicinity of I'. However, this is not surprising at this point as the intention of our
fitting, and thus the selection of priorities for specific bands and high-symmetry points was to achieve
a good fit throughout the whole BZ rather than a good fit of the effective masses at the zone center I'.
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Table 4: Fitting parameters and band splittings obtained for WZ GaAs within the 16-band k - p model.

(67/ 7///)

Note that the Kane-like parameters P(1 5 are given in units of eV-A, whereas the unit in the cor-

responding script is En-ag. The band splitting parameters Ags can be extracted directly from the
eigenenergies at ['. The splittings A‘{f’m were found to be negligibly small and are therefore not listed.

parameter  value | parameter  value
m‘l”| (mo) 0.032 mﬁ (mg) 1.117
m< (M) 0.090 | m$ (mo) -0.352
Ay (h%/mg) -1.386 | AS (h?/mg) -0.951
A, (h?/mg) -0.816 | AS (h*/mg) -0.375
As (h?/mg)  0.003 | AS (h?/mg) 4.772
Ay (h?/mg)  0.159 | AS (h?/mg) 2.687
As (R /mg) -1.241 | AS (h?/mg) -4.896
Ag (h?/mg)  0.176 | AS (h?/mg) -0.549
Py (eV-A) 2405 | PS5 (eV-A)  1.339
P, (eV-A)  1.368 | P{ (eV-A)  0.058
P, (eV-A)  0.354 | P) (eV-A) 0.796
P, (eV-A)  0.151 | P/ (eV-A)  0.642
A (eV) 0.180 | AS (eV) -0.409
Ags(eV)  0.124 | A5, (eV)  -0.074

6 Parameters for a ten-band model

As the application of a sixteen-band model for the calculation of the electronic properties of a het-
erostructure represents a much larger computational effort than the well-established eight-band model,
we have furthermore extracted a parameter set for a ten-band model required for WZ GaAs and given
in detail in Ref. [22] including the top three valence and the bottom two conduction bands in the closer
vicinity of the center of the BZ, I'. For this model, a total of 13 unknown parameters was determined.
The corresponding parameter set is shown in Tab. |5| Of course, the description of the band structure
is accurate only in the center of the BZ (cf. Fig.[5) due to the limited basis of the ten-band model. Here,
we have also incorporated the ellipticity conditions outlined in Ref. [33] to the valence band part of the
Hamiltonian (cf. Eq. in Appendix D) to reduce the risk of spurious solutions if our parameter set is
applied to a heterostructure. Ellipticity was here given a priority of ¢ = 0.5.

We note that our scheme still requires some knowledge on realistic search ranges for each parameter
and a fitted parameter set will only be as good as the initial search range chosen for it. In particular,
for large search spaces with small initial Sobol sequences, the algorithm can get trapped into local
minima and will not see other, global ones. It is thus necessary to carefully evaluate the convergence
of the band structure with the number of parameter sets generated using the Sobol sequence. Some
of the parameters, e.g., effective masses, can be estimated from the curvature at the I" point, but for
others a respectively large search space is required. Moreover, band- and k-point priorities can be
adjusted to achieve a good fit only for some of the bands employed, leaving both a certain degree of
arbitrariness in the fitting process and large deviations from the ab initio band structure for bands of
low priority (cf. grey bands in Fig. [4).
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Figure 6: Left: band structures obtained from fitting for ¢ = 0.1 (black solid), 0.2 (red dash-dotted),
and 0.3 (blue dashed line). Right: the respective density of states.

7 Summary

We have presented a numerically efficient fitting scheme to obtain k- p electronic structure parameters
for multi-band k - p models beyond the well-established eight-band approach from up-to-date ab
initio band structures. Our scheme employs low-discrepancy sequences to sample multi-dimensional
parameter spaces for more sophisticated k- p models. In addition, it allows direct control of priorities of
specific k-points and bands that are of pronounced importance for the electronic structure to ensure a
highly accurate fit within selected regions. Furthermore, the likelihood to encounter spurious solutions
can be reduced by introducing non-ellipticity conditions during the fitting process. We have presented
material parameters for both a 16-band k - p model that was developed within this work as well as
a ten-band model which is better suited for computationally inexpensive simulations of the electronic
structure of heterostructures containing GaAs in the WZ phase. Finally, we remark that our scheme is
not limited to semiconductors but can provide parameters for all band structures that can be computed
from a Hamiltonian.
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Table 5: Fitting parameters obtained for WZ GaAs within the ten-band k - p model. The parameter P$’
couples the I's conduction band to the top I'y, valence band within the ten-band model employed (the
Hamiltonian is given in Ref. [22], P$’ here enters via: R = (0, + 10y)PY’).
parameter value parameter  value
mi (mg)  0.0582 | A (h*/mg) -13.666
m¢ (mg)  0.0979 | Ay (h*/mg) -7.088
mf (mo) ~ 2.549 As (B*/my)  6.972
m$ (mg)  0.1276 | Ay (R?/mg) 2.727
( )
( )

P, (eV-A) 2270 As (F%/mg)  4.952
P, (eV-A) 2.996 A (h?/mo)  2.641
PS' (eV-A)  1.301

M/10 r A/10

Figure 7: Ab initio band structure (red dash-dotted) and fit using a ten-band k - p model (black solid)
in the vicinity of I". The respective parameters are listed in Tab.

Appendix

7.1 Density functional theory

In view of the scarcity of data available on WZ GaAs, to accurately model its electronic structure we
fitted the screening parameter p of the HSE hybrid functional [15] to yield the experimental zero-
temperature band gap for ZB GaAs first, which is well established at 1.519 eV. This is achieved in our
calculations, in the absence of spin-orbit (SO) coupling, for i = 0.138 A However, SO coupling
reduces the size of the band gap, which means a lower value of y is required to reproduce the ex-
perimental gap with the SO interaction enabled. Therefore we chose 1 = 0.089 A_l, which yields
a good agreement with the experimental value. Compared to the p = 0.3 A" and pw = 0.2 AT
screening parameters of HSE03 and HSEO06, our customized functional is less screened. We explored
a combined optimization of screening parameter and mixing parameter «, to try and improve the si-
multaneous description of both band gap and lattice parameter. However, only marginal improvement
was achieved for reasonable values of «v. Perfect agreement for both quantities without SO coupling
was obtained for the tuple (u, ) = (0.8 A 1.45). In view of the difficulty to optimize both pa-
rameters and the fact that the choice of a = 0.25 is theoretically justified, [26] we decided to settle
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for (11, r) = (0.089 A~',0.25). The DFT code used was VASP, [17] which is based on projector-

augmented wave (PAW) potentials [5] [18] and plane-wave basis sets. We chose a cutoff energy for
the plane waves of 350 eV. The grids used for Brillouin zone (BZ) integration were chosen differently
for structural and elastic properties (finer mesh) and electronic structure (coarser mesh). For a GaAs
ZB primitive unit cell (two atoms) we found that a 10 x 10 x 10 mesh was enough to converge the
total energy below 0.1 meV. For the electronic structure calculations, we used a 6 X 6 x 6 mesh. The
motivation for using a finer k-mesh for structural properties is twofold. First, band structures are less
sensitive to the density of £ points used. Second, for spin-orbit calculations, the spin-orbit coupling
breaks the symmetry of the BZ, leading to a significantly larger number of non-equivalent k£ points;
using dense grids becomes prohibitively expensive. For the evaluation of the Coulomb kernel (for the
exact-exchange calculation) we used a k-point reduction scheme whereby the number of £ points in
the grid was halved along each reciprocal lattice direction. This is known as “downsampling”. [25] All
the other simulations were carried out maintaining a density of k points as close as possible to those
specified above. The semicore d electrons of Ga were included explicitly in the calculation as valence
electrons.

7.2 Sixteen-band Hamiltonian

We start with the assumption that the relevant near-band gap states are spanned by the p-like valence
bands X,, Y, Z, followed by the s-like conduction band .S (commonly the conduction band closest to
the band gap), three p-like conduction bands X, Y, and Z, and another s-like band .S’. We follow the
procedure used in Ref. [10] with the basis set:

1S T, 12X, 1) 1Y 1), 120 DS ), 1 X ), |Ys L), | Zy ) for the top p-like valence bands and the

(commonly bottom) s-like conduction band and |S” 1), | X, 1), | Yz 1), | Ze 1).1S" 1), [ Xe 1), [Ye 1),
| Z. ) for the respective following conduction bands. The Hamiltonian then reads:
B G5 (k) + G5(k) r
H = 1 2
( _rt G1(K) + Go(K) @
with:
ES 1Pk, iP5k, 1Pk, 0 0 0 0
—iPjk, E§ —iA$ 0 0 0 0 A§
—1P5k, iA§ ES 0 0 0 0 —i A
° (k) — —i PPk, 0 0 ES — A 0 —A§  IA§ 0
! 0 0 0 0 ES 1Pk, iP5k, 1 PPk,
0 0 0 —A% —iPsk,  ES 1AS 0
0 0 0 —iA% —iP5k, —iA§  ES 0
0 A§ 1A 0 —i PPk, 0 0 ES — A
o (G50 0y
G5(k) = ( 0 k) with:
AS(K2 + k2) + Ack? Bok,k. BSk,k, Bok,k,
o (k) = Bkyk, Lek2 + Mfkg + MSk? N7k k, Nykyk, — Nk,
2 Bk, k., Nikyky MSk? + Lﬁk; + M2k? Nykyk. + N3k,
Bk, k, Nk k, + Nk, N3kyk. — N3k, Mg(K2 + k;) + LSk?
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The elements A°. ., L¢ M(°17273), and N(°17273) are given by:

(1,2)7 ~(1,2)
i 1 (F5)? i 1 (Pr)?
g — d AC - -
! Zmﬁ E2 — E1 an 2 Qm(j_ E2 — E1 (3)
1 (P L. (P?
LS = - (A5 + A5 + AL ! L;=-A%+ 4
179 (A3 + Af + A3) — B, — El and L 2 M TR, — B (4)
1 1
M= (A5 + A - AS), Mg =2 (A5 4 A3), and Mg = A3 5)
1., (B 1 PeES |
NS = —A¢ + NS = —A¢ + N{ = ivV2AS
1 2 5 E2 El 2 \/5 6 EQ El and 3 Z\/_ 7 (6)
And similarly:
E, Pk, iPk, iPk, 0 0 0 0
—iPk, 0 —1\ 0 0 0 0 Aj
—iPk, iD, 0 0 0 0 0 —id
G (k) = —iPk. 0 0 —Agc 0  —As iA; 0
e 0 0 0 0 E, iPk, iPk, iPik,
0 0 0 —A; —ibBk, 0 1A, 0
0 0 0 —iA, —iBk, —iA, 0 0
0 Ag ZAs 0 —ZP1 kz 0 0 _ACF
k) 0 )
Ga(k) = 2 with:
0= (0 g
Ap(k2 + k2) + Ak? B/kyk. Bk, k. B,k,k,
LK) = Bykyk, LK% + M, k:g + Mk? Nikyk, Nokyk, — Nsk,
2% = Bk, Nykok, Mik2 + Lik2 + Mpk?  Npkyk. + Nak,
Bykyk, Nokok, + Nok, Nokyks — Nk, My(2 + k2) + Lok?
Again, 121(1!2), L(1!2), M(1’2’3), and N(1’2!3) are given by
-1 P 1 P2
= "2 and A _ 7
! 2m|| Eg an 2= 2mJ_ Eg ( )
1 P2 1 P?
L, = 3 (Ay + Ay + As) — E; and L, = —A1 + FQ (8)
1 1
M1 = 5 (Ag —+ A4 — A5) > Mg = 5 (A1 + Ag) 3 and M3 = 5142 (9)
1, P 1 PP
Ny = 5 As + 2N, = ——Ag + and N; =iv2A4 10
5 Eg 2 \/§ 6 Eg 3 7 ( )

From symmetry considerations the B terms are zero. The commonly small parameter A, as well as
its counterpart in the upper conduction bands, AS, were also set to zero. This follows from for B,:
(Slk-pli)(ilk - p|X) = kyk.(S|py|Y)(Y|p.| X) + kyk.(S|p.| Z)(Z|p,| X), and that a reflection
in the x-z-plane: y—-y, x—x, z—z is a symmetry of WZ such that (Y'[p.|X) = (Z|p,|X) = 0. The
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Figure 8: Term scheme of basis bands and coupling elements.

coupling between the upper and the lower eight bands is realized via:

0 Pk, iPk, iPk. 0 0 0 0
—iPk, 0  —iAY 0 0 0 0 Ag
—iP/'k, AP 0 0 0 0 0 —iAY
rag = | ik 0 0 0 0 AP iAY 0
0 0 0 0 0 iPlk, iP)k, iPk.
0 0 0 Ay —iPk, O AP0
0 0 0 —iAg, —iPk, —iAy 0 0
0 Agy Ay, 0 —iPk. 0 0 0

A schematic view of basis functions and respective couplings is shown in Fig. Note that the small,
but nonzero coupling of the I's. and the I'y, as well as the corresponding I'7. and Iy is neglected.

7.3 Conditions and initial data for the parameter fitting

The parameter fitting algorithm has a number of parameters that can be adjusted to achieve a par-
ticularly good representation of selected parts of the band structure. For the band structure shown in
Fig. |4, these were the following: First, the priority of the top four valence bands has been set to 1000,
and for the bottom four conduction bands to 2000, while the default applied to the other bands is 1.
In the respective output of the fit in Fig. [4} black solid lines indicate those with larger priority whereas
the others are depicted in gray. Furthermore, priority was given to the M, I', and A points and another
two points between M and I" where a Gaussian function was multiplied to Eq. with a peak value
of 1000. The parameter space was mapped onto a Sobol sequence of 10000 elements. With these
data, the fitting of all parameters for a band structure with 182 sampling points takes about 60 min on
a single CPU.

7.4 Ellipticity conditions

A linear differential operator of second order as it occurs structurally, e.g., as a component of a multi-
band k - p Hamiltonian, that acts on a scalar function u(x) defined as: [33, [35]

<_ Z 0;a;5(x)0; + Z bi(x)0; + C(X)) u(x) (11)

ij=1
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Table 6: Initial values, search space ranges, and final fitting parameters obtained for WZ GaAs within
the 16-band k - p model.

parameter | initial range final,e =0 e=0.1
me (mo) 0.04 0.01 0.032 0.042
m< (M) 0.1 0.0 0.090 0.100
Ay (h*/mo) | -5 2 -1.386 -2.148
As (B%2/mg) | -05 0.4 -0.816 -0.855
As (h?/mg) | 5 4 0.003 1.104
Ay (h?/mg) | 05 0.4 0.159 0.007
As (F*/mg) | -05 0.4 -1.241 -0.855
Ag (h*/mo) | -05 0.2 0.176 -0.753
P, (eV-A) | 1.44 0.288 2.405 1.379
P, (eV-A) | 1.44 0.288 1.368 0.229
m (mo) 1.0 0.2 1.117 1.378
m< (M) 0.1 0.3 -0.352 -0.561
¢ (h*/my) | -5 2 -0.951 -1.361
AS (F%/mg) | 05 0.2 -0.375 -0.466
AS (R%/mg) | 5 2 4.772 2.374
AS (h%2/mg) | 5 2 2.687 1.234
AS (h?/mg) | -5 2 -4.896 -1.539
AS (h? /mo) 05 02 -0.549 -0.559
P (eV-A) | 1.44 3.60 1.339 0.017
PS (eV-A) | 1.44 3.60 0.058 0.704
P/ (eV-A) 72 288 8.035 6.847
P”’ (eV-A) | 72 288 1.498 5.490
P’2 (eV-A) 72 288 6.134 2.570
Py (eV-A) | 72 288 13.939 9.421

is called elliptic if the second-order differential operator matrix K (a;;(k)) is positive definite. [33] If
one then assumes u to be defined inside a region €2 and zero at its boundary 0¢2, left multiplying the
second-order terms of Eq. with a test function v* and integrating over the region yields

/Zav a;(x)d;ud. (12)
i,j=1
For an elliptic operator and a normed function space V/, this bilinear form is convex:
alu,v) > Cllully Yue V. (13)
Rewriting Eq. in matrix form using the differential operator matrix K we obtain:

Opu
a(u,v) :/Q(&Bv*ayv*@zv*)K Oyu | dS2. (14)
d,u

If K is positive definite for all x, a(;j will be convex. Within a heterostructure, the coupled differen-
tial equation system is defined within an envelope function vector f. The analogy to Eq. here

DOI 10.20347/WIAS.PREPRINT.2699 Berlin 2020



O. Marquardt, M. A. Caro, T. Koprucki, P. Mathé, M. Willatzen 16

reads: [33]

a(f,v) / > 0wiphki0; fid©y (15)

ijkl

with Ayl = (Hz(f))kl where & and [ are the indices of the m Bloch bands involved and i and j =
x, vy, z. For a system quantized in all three directions, the matrix form of Eq. is given by:

a(u,v) = /(8xv{8yvf...8yv;8zv:n) (16)
Q
N IR T Oz
hyt  hyy e hypt haf Oy
X : Do : : oQ (17)
oyt hgyt oo By hE" Oyt
hgit bt Ry R 0t

and has strictly positive eigenvalues if the matrix defined by hf} is positive definite. For Hamiltonians
related to the valence band, the available energy spectrum ranges from —oc to the valence band max-
imum so that for these cases Eq. has to be negative definite. For the eight-band model, however,
the range of accessible energies ranges from —oo to 400 so that no upper or lower boundaries for
the eigenvalues exist. Here, the conduction band and valence band parts of the Hamiltonian need to
be decoupled so that energy spectra of both band types can be evaluated separately. [33]

We have modified the scheme from Ref. [33] to our 16-band Hamiltonian as defined in Eq. above.
Following the considerations in Ref. [33], all contributions quadratic in k enter the Hamiltonian in either
the two 6 x 6 matrices for the p-like valence and conduction band states or in the 2 x 2 matrices for the
s-like conduction bands. The s-like conduction band related matrices are furthermore not coupled to
each other whereas the two 6 X 6 matrices are in fact each two 3 x 3 matrices that lack second-order
coupling. Correspondingly, the eigenvalues of the valence-band related matrix

Ly 0 0 0 Nf O 0 0 N
0 My 0 N O 0O 0 0 0
0 0 M, 0 0 0 Ny 0 0
0O N 0 M 0 0 0 0 0

Ml,=| N 0 0 0 Ly 0 0 0 N (18)

0o 0 0 0 0 M 0 N 0
0 0 Ny 0 0 0 M 0 0
0 0 0 0 0 Ny 0 M 0

Ny 0 0 0 Nf 0 0 0 L

are preferably required to be negative such that

7,2 >0

‘Z])\ <0 ]

(19)

which is an estimate for the degree of nonconvexity, is as small as possible and ideally zero. For the
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five conduction bands in the model, the related matrix reads:

L¢ 0 0 0 NfJr 0 0 0 Nzc+ O 0 0 o 0 0
0 M 0 Ny 0 0 0 0 0 O 0 0 0 0 0
0 0 Mg 0 0 0 N7 0 0 O 0 0 0 0 0
0 N7 0 Mc¢ 0 0 0 0 0 O 0 O 0 0 0
Nf* 0 0 0 LS 0 0 0 N;* O 0 0 0 0 0
0 0 0 0 0 My 0 N7 0 O 0 O 0 0 o0
0 0 Ny 0 0 0 Mg 0 0 O 0 0 o0 0 0
hf]lv = 0 0 0 0 0 N7 0 My 0 O 0 0O 0 0 0
N§+ 0 0 0 N§+ 0 0 0 Ly 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 A 0 0 O 0 O
0 0 0 0 0 0 0 0 0 0 A 0 0 0 O
0 0 0 0 0 0 0 0 0 0O 0 A 0 0 O
0 0 0 0 0 0 0 0 0 0O 0 0 A, 0 0
0 0 0 0 0 0 0 0 0 0O 0 0 0 A 0
0 0 0 0 0 0 0 0 0 0O 0 0 0 0 A
(20)
with its eigenvalues being preferably positive such that
i,A; <0 29
|2M Y @y

Finally, we sum up both conditions to o = o, + o, as a total estimate of the degree of nonconvexity.
Note that N((f;)i = N((f;), as a detailed discussion of asymmetric operator ordering as discussed in
Refs. [33, 134} 35] or a spectral analysis of the Hamiltonian as discussed in Ref. [2] is beyond the scope
of the present work. However, our fitting scheme can be modified to identify the best parameters for
asymmetric operators as well in a straight-forward manner.
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