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Near-optimal tensor methods for minimizing gradient norm
Pavel Dvurechensky, Alexander Gasnikov, Petr Ostroukhov, Cesar A. Uribe, Anastasiya Ivanova

Abstract

Motivated by convex problems with linear constraints and, in particular, by entropy-regularized
optimal transport, we consider the problem of finding approximate stationary points, i.e. points with
the norm of the objective gradient less than small error, of convex functions with Lipschitz p-th
order derivatives. Lower complexity bounds for this problem were recently proposed in [Grapiglia
and Nesterov, arXiv:1907.07053]. However, the methods presented in the same paper do not
have optimal complexity bounds. We propose two optimal up to logarithmic factors methods with
complexity bounds with respect to the initial objective residual and the distance between the
starting point and solution respectively.

1 Introduction

Although, the idea of using higher order derivatives in optimization methods is known at least since
1970’s, see [16], recently these methods started to gain an increased research interest [3, 19, 4, 7, 1, 2]
in optimization. Before [17] the main bottleneck was the auxiliary problem of minimizing the regularized
Taylor expansion of the objective, which potentially can be a non-convex problem. Nesterov showed
that an appropriate regularization makes this a convex problem and proposes an efficient method for
solving this subproblem for the third-order method.

This motivated recent research in order to propose optimal high-order methods for convex optimization
[12, 13, 20, 15, 6, 5].

In this paper, we consider the following unconstrained convex optimization problem:

min
𝑥∈R𝑛

𝑓(𝑥), (1)

where 𝑓 has 𝑝-th Lipschitz-continuous derivative with constant 𝑀𝑝. Contrary to existing approaches,
where the objective is to find an 𝜀-approximate solution 𝑥̄ such that 𝑓(𝑥̄) − 𝑓 * ≤ 𝜀, we will focus on
the problem of finding approximate stationary point ‖∇𝑓(𝑥̄)‖* ≤ 𝜀.

In [12, 13], the authors proposed a class of near-optimal methods up to a logarithmic factor for the
solution of problems of the class (1) in the general convex setting and under additional assumption of
uniform convexity. In the latter case, however, computational complexity was expressed in terms of
the initial objective residual or optimality gap 𝑓(𝑥0) − 𝑓 *, where 𝑥0 is the starting point. At the same
time it is interesting to understand, how the complexity depends on the initial distance to the solution
‖𝑥0 − 𝑥*‖. Recently in [14], the authors proposed a set of methods for problems of the form (1) to
find approximate stationary points. In [14, Theorem 4.2], the authors showed that in order to find a
point 𝑥̄ such that ‖∇𝑓(𝑥̄)‖* ≤ 𝜀, their proposed method require 𝑂(𝜀−(𝑝+1)/(𝑝(𝑝+2))) iterations. Such
complexity bound does not match the corresponding lower bounds proposed in [14, Theorem 6.6] and
[14, Theorem 6.8], where the number of iterations required to find an 𝜀-approximation is of the order
Ω(𝜀−2(𝑝+1)/(3𝑝+1)) with respect to the initial functional residual and Ω(𝜀−2/(3𝑝+1)) with respect to the
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Property Lower Bound Upper Bound

Initial function residual Ω
(︁
𝜀−2(𝑝+1)/(3𝑝+1)

)︁
𝑂(𝜀−1)

Ω
(︁
𝜀−2(𝑝+1)/(3𝑝+1)

)︁
𝑂̃
(︁
𝜀−2(𝑝+1)/(3𝑝+1)

)︁
Initial argument residual Ω

(︁
𝜀−2/(3𝑝+1)

)︁
𝑂
(︁
𝜀−(𝑝+1)/(𝑝(𝑝+2))

)︁
Ω
(︁
𝜀−2/(3𝑝+1)

)︁
𝑂̃
(︁
𝜀−2/(3𝑝+1)

)︁
Table 1: Complexity of minimizing the gradient norm from [14] and ours.

initial argument residual. As a related work, we also mention [4, 7], who study complexity bounds for
tensor methods for finding approximate stationary points in the non-convex setting, thus being not
directly related to our convex setting.

In this paper, we use the framework developed in [12, 13] to propose a near-optimal method to find
an approximate stationary point of a convex function with high-order smoothness. The bound for
our method matches up to a logarithmic multiplier the lower bound from [14]. Our contributions in
terms of the complexity can be summarized in the Table 1. Besides that we present a variant of near
optimal tensor method for minimization of uniformly high-order smooth functions with complexity bound
depending on the initial distance to the solution ‖𝑥0 − 𝑥*‖ as opposed to objective residual in [12].
We also explain, how our methods can be extended to obtain near-optimal methods for functions with
Hölder-continuous high-order derivatives.

This paper is organized as follows. We first start in Section 2 with a motivating example for the problem
of finding approximate stationary points of convex functions. We describe the entropy regularized
optimal transport problem and show that its structure provides a natural justification of tensor methods
that exploit the smoothness properties of the corresponding dual problems. Section3 presents some
results from other works, which we use in our paper. Section 4.1 presents the near-optimal algorithm
for finding approximate stationary points, with respect to the initial objective residual; near-optimal
complexity bounds are shown explicitly. Section 4.2 shows the corresponding near-optimal algorithm
with respect to the initial argument residual; near-optimal complexity bounds are shown as well. In
Section 5 we discuss possible extensions of the proposed methods, in particular for problems with
Hölder-continuous higher-order derivatives. Section 6 shows some numerical results on the proposed
algorithms for the logistic regression problem and minimization of "bad"functions which give the lower
bounds for the considered problem class. Finally, conclusions and future work is presented in Section 7.

1.1 Notation

For 𝑝 ≥ 1, we denote by ∇𝑝𝑓(𝑥)[ℎ1, ..., ℎ𝑝] the directional derivative of function 𝑓 at 𝑥 along directions
ℎ𝑖 ∈ R𝑛, 𝑖 = 1, ..., 𝑝. ∇𝑝𝑓(𝑥)[ℎ1, ..., ℎ𝑝] is symmetric 𝑝-linear form and its norm is defined as

‖∇𝑝𝑓(𝑥)‖2 = max
ℎ1,...,ℎ𝑝∈R𝑛

{∇𝑝𝑓(𝑥)[ℎ1, ..., ℎ𝑝] : ‖ℎ𝑖‖2 ≤ 1, 𝑖 = 1, ..., 𝑝}

or equivalently

‖∇𝑝𝑓(𝑥)‖2 = max
ℎ∈R𝑛

{|∇𝑝𝑓(𝑥)[ℎ, ..., ℎ]| : ‖ℎ‖2 ≤ 1, 𝑖 = 1, ..., 𝑝}.

Here, for simplicity, ‖ · ‖2 is standard Euclidean norm, but our algorithm and derivations can be
generalized for the Euclidean norm given by general a positive semi-definite matrix 𝐵. We consider
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Near-optimal tensor methods for minimizing gradient norm 3

convex, 𝑝 times differentiable on R functions satisfying Lipschitz condition for 𝑝-th derivative

‖∇𝑝𝑓(𝑥) −∇𝑝𝑓(𝑦)‖2 ≤ 𝑀𝑝‖𝑥− 𝑦‖2, 𝑥, 𝑦 ∈ R𝑛. (2)

Given a function 𝑓 , numbers 𝑝 ≥ 1 and 𝑀 ≥ 0, define

𝑇 𝑓
𝑝,𝑀 (𝑥) ∈ Arg min

𝑦∈R𝑛

⎧⎨⎩
𝑝∑︁

𝑟=0

1

𝑟!
∇𝑟𝑓 (𝑥) [𝑦 − 𝑥, ..., 𝑦 − 𝑥]⏟  ⏞  

𝑟

+
𝑀

(𝑝 + 1)!
‖𝑦 − 𝑥‖𝑝+1

2

⎫⎬⎭ , (3)

and given a number 𝐿 ≥ 0 and point 𝑧 ∈ R𝑛, we define

𝐹𝐿,𝑧 (𝑥) , 𝑓 (𝑥) +
𝐿

2
‖𝑥− 𝑧‖22 . (4)

2 A motivating example: problems with linear constraints

Let us consider a convex optimization problem with linear constraints

min
𝑥∈𝑄⊆𝐸

{𝑓(𝑥) : 𝐴𝑥 = 𝑏} , (5)

where 𝐸 is a finite-dimensional real vector space, 𝑄 is a simple closed convex set, 𝐴 is a given linear
operator from 𝐸 to some finite-dimensional real vector space 𝐻 , 𝑏 ∈ 𝐻 is given, 𝑓(𝑥) is a convex
function on 𝑄 with respect to some chosen norm ‖ · ‖𝐸 on 𝐸.

The Lagrange dual problem for (5), written as a minimization problem, is

min
𝜆∈𝐻*

{︂
𝜙(𝜆) := ⟨𝜆, 𝑏⟩ + max

𝑥∈𝑄

(︀
−𝑓(𝑥) − ⟨𝐴𝑇𝜆, 𝑥⟩

)︀}︂
. (6)

We assume that the dual objective is smooth. In this case, by the Demyanov-Danskin theorem,
∇𝜙(𝜆) = 𝑏− 𝐴𝑥(𝜆), where

𝑥(𝜆) := arg min
𝑥∈𝑄

(︀
−𝑓(𝑥) − ⟨𝐴𝑇𝜆, 𝑥⟩

)︀
.

Proposition 2.1 (Lemma 1 in [11]). Assume that for some 𝜆

−⟨𝜆,∇𝜙(𝜆)⟩ ≤ 𝜀𝑓 , ‖𝜙(𝜆)‖𝐻 ≤ 𝜀𝑒𝑞.

Then
𝑓(𝑥(𝜆)) − 𝑓 * ≤ 𝜀𝑓 , ‖𝐴𝑥(𝜆) − 𝑏‖𝐻 ≤ 𝜀𝑒𝑞.

This means that if there is a method for the dual problem, which generates a bounded sequence of
iterates 𝜆𝑘 and a point 𝜆𝑘 s.t. the gradient of the dual objective is small, then, using the relation 𝑥(𝜆𝑘)
we can reconstruct a nearly feasible, nearly optimal solution to the primal problem. This is a general
motivation for convex optimization methods for minimizing the objective gradient norm. Moreover, the
complexity bound for the dual method directly translates to the complexity for solving the primal problem
without any overhead.

To further motivate the high-order methods for minimization of the objective gradient norm, we present
a particular example of smooth dual objective with with high-order Lipschitz derivatives. This example
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is the Entropy-regularized optimal transport problem [8, 9]. Next we provide a brief description of the
problem and the properties of the dual objective.

Consider two histograms 𝑝, 𝑞 ∈ Σ𝑛 on a support of size 𝑛, where Σ𝑛 is the standard simplex. Also,
consider a matrix 𝑀 ∈ R𝑛×𝑛

+ which is symmetric and accounts to the “cost” of transportation such that
𝑀𝑖𝑗 is the cost of moving a unit of mass from bin 𝑖 to bin 𝑗. For example, given support points (𝑥𝑖)1≤𝑖≤𝑛

on the Euclidean space, one can consider 𝑀𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖22, which corresponds to 2-Wasserstein
distance. The entropy-regularized optimal transport problem is defined as:

𝑊𝛾(𝑝, 𝑞) , min
𝑋∈𝑈(𝑝,𝑞)

⟨𝑀,𝑋⟩ − 𝛾𝐸(𝑋), (7)

where 𝛾 ≥ 0 is a regularization parameter, 𝐸(𝑋) , −
∑︀

𝑖,𝑗 𝑋𝑖𝑗 ln(𝑋𝑖𝑗), and 𝑈 is the transport
polytope such that,

𝑈(𝑝, 𝑞) , {𝑋 ∈ R𝑛×𝑛
+ | 𝑋1𝑛 = 𝑝,𝑋𝑇1𝑛 = 𝑞}.

It is known that the problem (7) is strongly convex and admits a unique optimal solution 𝑋*[9]. If 𝛾 = 0
and 𝑀𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖𝑟, (7) is know as the 𝑟-th power of 𝑟-Wasserstein distance between 𝑝 and 𝑞.

A standard way to deal with the optimization problem (7) is to write its dual.

min
𝑋∈𝑈(𝑝,𝑞)

⟨𝑀,𝑋⟩ + 𝛾⟨𝑋, ln𝑋⟩

= min
𝑋∈Σ𝑛2

⟨𝑀,𝑋⟩ + max
𝜉,𝜂

{︀
⟨𝜉, 𝑝−𝑋1𝑛⟩ + ⟨𝜂, 𝑞 −𝑋𝑇1𝑛⟩

}︀
= max

𝜉,𝜂

{︂
⟨𝜉, 𝑝⟩ + ⟨𝜂, 𝑞⟩ + min

𝑋∈Σ𝑛2

{︀
⟨𝑀 + 𝜉1𝑛

𝑇 + 1𝑛𝜇
𝑇 + 𝛾 ln𝑋,𝑋⟩

}︀}︂
= max

𝜉,𝜂
−𝛾ln

𝑛∑︁
𝑖,𝑗=1

exp

(︂
−1

𝛾
(𝑀𝑖𝑗 − 𝜉𝑖 − 𝜂𝑗)

)︂
+ ⟨𝜉, 𝑝⟩ + ⟨𝜂, 𝑞⟩ (8)

In this case the explicit dependence of the primal solution from the dual variables is given by

𝑋(𝜉, 𝜂) =
diag(e

𝜉
𝛾 )e−

𝑀
𝛾 diag(e

𝜂
𝛾 )

e
𝜉
𝛾 e−

𝑀
𝛾 e

𝜂
𝛾

, (9)

where the exponent is applied componentwise to vectors and matrices. We underline that as opposed
to the standard dual problem [8], we consider 𝑋 to lie not in R𝑛×𝑛

+ , but rather in the standard simplex
of the size 𝑛2, the latter bein the corollary of the marginal constraints 𝑋1𝑛 = 𝑝, 𝑋𝑇1𝑛 = 𝑞 since
𝑝, 𝑞 ∈ Σ𝑛. This allows us to obtain a high-order smooth dual objective which has a softmax form.
On the contrary, the dual problem in [8] has sum of exponents in the dual objective, meaning that the
derivatives are not Lipschitz-continuous.

To show the correspondence to a general primal dual pair of problems (5)–(6), let us define 𝐸 = R𝑛2
,

‖ · ‖𝐸 = ‖ · ‖1, and variable 𝑥 = vec(𝑋) ∈ R𝑛2
to be the vector obtained from a matrix 𝑋 by writing

each column of 𝑋 below the previous column. Also we set 𝑓(𝑥) = ⟨𝑀,𝑋⟩ + 𝛾⟨𝑋, ln𝑋⟩, 𝑄 = Σ𝑛2 ,
𝑏𝑇 = (𝑝𝑇 , 𝑞𝑇 ), 𝐴 : R𝑛2 → R2𝑛 defined by the identity (𝐴 vec(𝑋))𝑇 = ((𝑋1𝑛)𝑇 , (𝑋𝑇1𝑛)𝑇 ), and
𝜆𝑇 = (𝜉𝑇 , 𝜂𝑇 ). We also introduce the Euclidean norm in the dual space of variables 𝜆. Note that the
matrix 𝐴 has the form

𝐴 =

⎛⎜⎜⎜⎝
𝐼𝑛𝐼𝑛 𝐼𝑛...

1𝑇
𝑛0

𝑇
𝑛 0𝑇

𝑛 ...

0𝑇
𝑛1

𝑇
𝑛 0𝑇

𝑛 ...

...... ......

⎞⎟⎟⎟⎠ ,
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where 𝐼𝑛 is the identity matrix, 0𝑇
𝑛 is the vector of all zeros. Using these notations, we can write the

dual problem (8) as

max
𝜆

−𝛾ln
𝑛∑︁

𝑖,𝑗=1

exp

(︂
− [𝑀 − 𝐴𝑇𝜆]𝑖𝑗

𝛾

)︂
+ ⟨𝜆, 𝑏⟩

= max
𝜆

−smax𝛾(𝐴𝑇𝜆−𝑀) + ⟨𝜆, 𝑏⟩, (10)

where

smax𝛾(𝑦) , 𝛾 log

(︃
𝑚∑︁
𝑖=1

exp(𝑦𝑖/𝛾)

)︃
.

More importantly, the following property holds.

Proposition 2.2 ( [6, Theorem 3.4] ). Let 𝑧 ∈ R𝑛, 𝑐 ∈ R𝑚 and 𝒜 : R𝑛 → R𝑚. Then the function
smax𝛾(𝒜𝑧 − 𝑐) is (order 3) 15

𝛾3 -smooth with respect to ‖ · ‖𝒜𝑇𝒜.

As a corollary, the dual objective in (10) is order 3 15
𝛾3 -Lipschitz-continuous w.r.t. ‖ · ‖𝐴𝐴𝑇 .

We can conclude that minimizing the norm of the gradient of the dual function provides an estimate for
the optimality gap of the corresponding primal problem, the estimate of the optimal transport cost in
this case. Thus, having a fast method that exploits the high-order smoothness of the dual problem can
provide efficient algorithms for the computation of entropy regularized optimal transport plans.

3 Preliminaries

To make the paper more self-contained, in this section we recall the near-optimal tensor methods for
minimization of convex objective functions with Lipschitz-continupus 𝑝-th derivative [12].

Algorithm 1 Near-Optimal Tensor Method [12, Algorithm 1]
Input: 𝑢0, 𝑦0 — starting points; 𝑁 — iteration number; 𝐴0 = 0
Output: 𝑦𝑁

1: for 𝑘 = 0, 1, 2, . . . , 𝑁 − 1 do
2: Choose 𝐿𝑘 such that

1

2
≤ 2(𝑝 + 1)𝑀𝑝

𝑝!𝐿𝑘

‖𝑦𝑘+1 − 𝑥𝑘‖𝑝−1
2 ≤ 1, (11)

where

𝑎𝑘+1 =
1/𝐿𝑘 +

√︀
1/𝐿2

𝑘 + 4𝐴𝑘/𝐿𝑘

2
, 𝐴𝑘+1 = 𝐴𝑘 + 𝑎𝑘+1, {note that 𝐿𝑘𝑎

2
𝑘 = 𝐴𝑘+1}

𝑥𝑘 =
𝐴𝑘

𝐴𝑘+1

𝑦𝑘 +
𝑎𝑘+1

𝐴𝑘+1

𝑢𝑘, 𝑦𝑘+1 = 𝑇
𝐹
𝐿𝑘,𝑥𝑘

𝑝,𝑝𝑀𝑝
(𝑥𝑘).

3: 𝑢𝑘+1 = 𝑢𝑘 − 𝑎𝑘+1∇𝑓(𝑦𝑘+1)
4: end for
5: return 𝑦𝑁
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Theorem 3.1 (Theorem 1 in [12]). Let sequence (𝑥𝑘, 𝑦𝑘, 𝑢𝑘), 𝑘 ≥ 0 be generated by Algorithm 1.
Then

𝑓(𝑦𝑘) − 𝑓 * ≤ 𝑐𝑀𝑝‖𝑦0 − 𝑥*‖𝑝+1
2

𝑘
3𝑝+1

2

, where 𝑐 =
2

3(𝑝+1)2+4
4 (𝑝 + 1)

𝑝!
.

Moreover, each iteration 𝑘 requires 𝑂
(︀
ln 1

𝜀

)︀
oracle calls.

The following lemma is a particular case of Lemma 5.2 in [14] with 𝜈 = 1, 𝜃 = 0, and 𝜙 = 0.

Lemma 3.2 (Lemma 5.2 in [14]). Let 𝑀𝑝 < ∞, 𝑀 ≥ 𝑝𝑀𝑝 and let for some 𝑥 ∈ R𝑛

𝑧 = 𝑇 𝑓
𝑝,𝑀(𝑥).

Then

𝑓(𝑥) − 𝑓(𝑧) ≥ 1

8(𝑝 + 1)!𝑀
1
𝑝

‖∇𝑓(𝑧)‖
𝑝+1
𝑝

* .

4 Near-optimal tensor methods for gradient norm minimization

4.1 Near-optimal tensor methods with respect to the initial objective residual

In this section we build up from Algorithm 1 to develop a near optimal algorithm for which we can
provide explicit complexity bounds for the approximation of a stationary point. The obtained oracle
complexity bound matches that of the lower bound presented in [14] up to a logarithmic factor. The
basic assumption is that the starting point 𝑥0 satisfies 𝑓(𝑥0) − 𝑓 * ≤ ∆0.

Algorithm 2 Near-optimal algorithm with respect to initial objective residual
1: Input 𝑝,𝑀𝑝,∆0 : 𝑓(𝑥0) − 𝑓 * ≤ ∆0, 𝜀.
2: Define:

𝑀𝜇 = 𝑝𝑀𝑝, 𝜇 =
𝜀2

32∆0

, 𝜀 =
(𝜀/2)

𝑝
𝑝+1

8𝑀
1
𝑝
𝜇 (𝑝 + 1)!

, 𝑓𝜇(𝑥) = 𝑓(𝑥) +
𝜇

2
‖𝑥− 𝑥0‖22.

3: while ∆𝑘 ≥ 𝜀, where ∆𝑘 = ∆0 · 2−𝑘 do
4:

Set ∆𝑘 = ∆0 · 2−𝑘 and 𝑁𝑘 = max

⎧⎨⎩
⎡⎢⎢⎢
(︃

2𝑐𝑀𝑝2
𝑝+1
2

𝜇
𝑝+1
2

∆
𝑝−1
2

𝑘

)︃ 2
3𝑝+1

⎤⎥⎥⎥ , 1

⎫⎬⎭ . (12)

where 𝑐 = 2(3(𝑝+1)2+4)/4(𝑝 + 1)/𝑝!.
5: Set 𝑧𝑘+1 = 𝑦𝑁𝑘 as the output of Algorithm 1 applied to 𝑓𝜇(𝑥) starting from 𝑧𝑘 and run for 𝑁𝑘

steps.
6: 𝑘 = 𝑘 + 1.
7: end while
8: Find 𝑧 = 𝑇

𝑓𝜇
𝑝, 𝑀𝜇

(𝑧𝑘)
9: Output 𝑧.
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Theorem 4.1. Assume the function 𝑓 is convex, 𝑝 times differentiable on R with 𝑀𝑝-Lipschitz 𝑝-th
derivative. Let 𝑧 be generated by Algorithm 2. Then

‖∇𝑓(𝑧)‖2 ≤ 𝜀,

and the total number of iterations of Algorithm 1 required by Algorithm 2 is

𝑂

(︃
𝑀

2
3𝑝+1
𝑝

𝜀
2(𝑝+1)
3𝑝+1

∆
2𝑝

3𝑝+1

0 + log2

2
4𝑝−3
𝑝+1 ∆0(𝑝𝑀𝑝)

1
𝑝 (𝑝 + 1)!

𝜀
𝑝

𝑝+1

)︃
.

Moreover, the total oracle complexity is within a 𝑂
(︀
ln 1

𝜀

)︀
factor of the above iteration complexity.

Proof. By definition of 𝑓𝜇(𝑥):

𝑓𝜇(𝑥0) − 𝑓𝜇(𝑥*
𝜇) = 𝑓(𝑥0) − 𝑓(𝑥*

𝜇) − 𝜇

2
‖𝑥*

𝜇 − 𝑥0‖22 ≤ 𝑓(𝑥0) − 𝑓(𝑥*) ≤ ∆0,

Where 𝑥*
𝜇 is the minimum of 𝑓𝜇(𝑥). So, for 𝑘 = 0 we have 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*

𝜇) ≤ ∆𝑘.

Let us assume that 𝑓𝜇(𝑧𝑘)−𝑓𝜇(𝑥*
𝜇) ≤ ∆𝑘 and show that 𝑓𝜇(𝑧𝑘+1)−𝑓𝜇(𝑥*

𝜇) ≤ ∆𝑘+1. From Theorem
3.1 applied to 𝑓𝜇(𝑥), since it is 𝜇-strongly convex and has 𝑀𝑝-Lipschitz 𝑝-th derivative, it holds that

𝑓𝜇(𝑧𝑘+1) − 𝑓𝜇(𝑥*
𝜇) ≤

𝑐𝑀𝑝‖𝑧𝑘 − 𝑥*
𝜇‖

𝑝+1
2

𝑁
3𝑝+1

2
𝑘

≤ 𝑐𝑀𝑝

𝑁
3𝑝+1

2
𝑘

(︂
2(𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*

𝜇))

𝜇

)︂ 𝑝+1
2

≤ 𝑐𝑀𝑝

𝑁
3𝑝+1

2
𝑘

(︂
2∆𝑘

𝜇

)︂ 𝑝+1
2

≤ ∆𝑘

2
= ∆𝑘+1. (13)

Thus, 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*
𝜇) ≤ ∆𝑘 for all 𝑘 ≥ 0.

According to Lemma 3.2, we have

𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑧) ≥ 1

8(𝑝 + 1)!𝑀
1
𝑝
𝜇

‖∇𝑓𝜇(𝑧)‖
𝑝+1
𝑝

2 . (14)

At the same time, by the stopping criterion in Algorithm 2,

𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑧) ≤ 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*
𝜇) ≤ ∆𝑘 ≤ 𝜀. (15)

By the definition of 𝜀 and (14), (15), we have that

‖∇𝑓𝜇(𝑧)‖2 ≤
𝜀

2
. (16)

By definition, 𝑓𝜇 is 𝜇-strongly convex and, using (14), we have

𝜇

2
‖𝑥*

𝜇 − 𝑥0‖22 ≤ 𝑓𝜇(𝑥0) − 𝑓𝜇(𝑥*
𝜇) ≤ ∆0, (17)

𝜇

2
‖𝑧 − 𝑥*

𝜇‖22 ≤ 𝑓𝜇(𝑧) − 𝑓𝜇(𝑥*
𝜇) ≤ 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*

𝜇) ≤ ∆0. (18)

Applying triangle inequality to the sum of (17) and (18), we get

𝜇

2
‖𝑧 − 𝑥0‖22 ≤ 𝜇

(︀
‖𝑥*

𝜇 − 𝑥0‖22 + ‖𝑧 − 𝑥*
𝜇‖22
)︀
≤ 4∆0,
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and

‖𝑧 − 𝑥0‖2 ≤ 2

√︃
2∆0

𝜇
.

By definition of 𝜇 in Algorithm 2, we have

𝜇‖𝑧 − 𝑥0‖2 ≤ 𝜇 · 2

√︃
2∆0

𝜇
= 2
√︀

2𝜇∆0 =
𝜀

2
. (19)

Finally, according to the definition of 𝑓𝜇, (16), (19) and triangle inequality, we get

‖∇𝑓(𝑧)‖2 ≤ ‖∇𝑓𝜇(𝑧)‖2 + 𝜇‖𝑧 − 𝑥0‖2 ≤
𝜀

2
+

𝜀

2
= 𝜀.

It remains to bound the total number of steps of Algorithm 1. Denote 𝑐 =
(︁

2𝑐2
𝑝+1
2

)︁ 2
3𝑝+1

.

𝑘∑︁
𝑖=0

𝑁𝑖 ≤ 𝑐
𝑀

2
3𝑝+1
𝑝

𝜇
𝑝+1
3𝑝+1

𝑘∑︁
𝑖=0

(∆0 · 2−𝑖)
𝑝−1
3𝑝+1 + 𝑘 ≤ 𝑐

𝑀
2

3𝑝+1
𝑝

𝜇
𝑝+1
3𝑝+1

∆
𝑝−1
3𝑝+1

0 ·
𝑘∑︁

𝑖=0

2−𝑖 𝑝−1
3𝑝+1 + 𝑘

≤ 2𝑐
𝑀

2
3𝑝+1
𝑝

𝜇
𝑝+1
3𝑝+1

∆
𝑝−1
3𝑝+1

0 + log2

∆0

𝜀

= 𝑂

(︃
𝑀

2
3𝑝+1
𝑝

𝜀
2(𝑝+1)
3𝑝+1

∆
2𝑝

3𝑝+1

0 + log2

2
4𝑝−3
𝑝+1 ∆0(𝑝𝑀𝑝)

1
𝑝 (𝑝 + 1)!

𝜀
𝑝

𝑝+1

)︃
(20)

According to Theorem 3.1, the total number of oracle calls is within the 𝑂
(︀
ln 1

𝜀

)︀
factor from the number

of iterations of Algorithm 1. This completes the proof.

4.2 Near-optimal tensor methods with respect to the initial variable residual

In this section we build up from Algorithm 1 to develop a near optimal algorithm for which we provide
explicit complexity bounds for the approximation of a stationary point. The obtained oracle complexity
bound matches that of the lower bound presented in [14] up to a logarithmic factor. The basic assumption
is that the starting point 𝑥0 satisfies ‖𝑥0 − 𝑥*‖2 ≤ 𝑅.

Theorem 4.2. Assume the function 𝑓 is convex, 𝑝 times differentiable on R𝑛 with 𝑀𝑝-Lipschitz 𝑝-th
derivative. Let 𝑧 be generated by Algorithm 3. Then

‖∇𝑓(𝑧)‖2 ≤ 𝜀 (22)

and the total number of iterations of Algorithm 1 required by Algorithm 3 is

𝑂

(︃
𝑀

2
3𝑝+1
𝑝 𝑅

2(𝑝−1)
3𝑝+1

𝜀
2

3𝑝+1

+ log
2

𝑝
𝑝+1 (𝑝 + 1)!(𝑝𝑀𝑝)

1
𝑝

𝜀
1

𝑝+1

)︃
.

Moreover, the total oracle complexity is within a 𝑂
(︀
ln 1

𝜀

)︀
factor of the above iteration complexity.
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Algorithm 3 Near-optimal algorithm with respect to initial argument residual

1: Input 𝑀𝑝, 𝑥0, 𝑅 : ‖𝑥* − 𝑥0‖22 ≤ 𝑅, 𝜀.
2: Define:

𝑀𝜇 = 𝑝𝑀𝑝, 𝜇 =
𝜀

4𝑅
, 𝜀 =

(𝜀/2)
𝑝

𝑝+1

8(𝑝 + 1)!𝑀
1
𝑝
𝜇

, 𝑓𝜇(𝑥) = 𝑓(𝑥) +
𝜇

2
‖𝑥− 𝑥0‖22, 𝑧0 = 𝑥0, 𝑘 = 0.

3: while 𝜇𝑅2
𝑘/2 ≥ 𝜀 where 𝑅𝑘 = 𝑅 · 2−𝑘 do

4:

Set 𝑅𝑘 = 𝑅 · 2−𝑘 and 𝑁𝑘 = max

{︃⌈︃(︃
8𝑐𝑀𝑝𝑅

𝑝−1
𝑘

𝜇

)︃ 2
3𝑝+1
⌉︃
, 1

}︃
, (21)

where 𝑐 = 2(3(𝑝+1)2+4)/4(𝑝 + 1)/𝑝!.
5: Set 𝑧𝑘+1 = 𝑦𝑁𝑘 as the output of Algorithm 1 applied to 𝑓𝜇(𝑥) starting from 𝑧𝑘 and run for 𝑁𝑘

steps.
6: 𝑘 = 𝑘 + 1.
7: end while
8: Find 𝑧 = 𝑇

𝑓𝜇
𝑝, 𝑀𝜇

(𝑧𝑘)
9: Output 𝑧.

Proof. By definition of 𝑓𝜇(𝑥), we have

𝑓(𝑥*
𝜇) +

𝜇

2
‖𝑥*

𝜇 − 𝑥0‖22 = 𝑓𝜇(𝑥*
𝜇) ≤ 𝑓𝜇(𝑥*) = 𝑓(𝑥*) +

𝜇

2
‖𝑥* − 𝑥0‖22 ≤ 𝑓(𝑥*

𝜇) +
𝜇

2
‖𝑥* − 𝑥0‖22.

Hence, ‖𝑥*
𝜇 − 𝑥0‖22 ≤ ‖𝑥* − 𝑥0‖22 ≤ 𝑅2. So, for 𝑘 = 0 we have ‖𝑥*

𝜇 − 𝑧𝑘‖2 ≤ 𝑅𝑘.

Let us assume that ‖𝑥*
𝜇 − 𝑧𝑘‖2 ≤ 𝑅𝑘 and show that ‖𝑥*

𝜇 − 𝑧𝑘+1‖2 ≤ 𝑅𝑘+1. From Theorem 3.1
applied to 𝑓𝜇(𝑥), since it is 𝜇-strongly convex and has 𝑀𝑝-Lipschitz 𝑝-th derivative, it holds that

𝜇

2
‖𝑧𝑘+1 − 𝑥*

𝜇‖22 ≤ 𝑓𝜇(𝑧𝑘+1) − 𝑓𝜇(𝑥*
𝜇) ≤

𝑐𝑀𝑝‖𝑧𝑘 − 𝑥*
𝜇‖

𝑝+1
2

𝑁
3𝑝+1

2
𝑘

≤ 𝜇(𝑅𝑘/2)2

2
=

𝜇𝑅2
𝑘+1

2
.

Thus, ‖𝑧𝑘+1 − 𝑥*
𝜇‖2 ≤ 𝑅𝑘+1, 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*

𝜇) ≤ 𝜇𝑅2
𝑘

2
for all 𝑘 ≥ 0.

From Lemma 3.2, we have

𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑧) ≥ 1

8(𝑝 + 1)!𝑀
1
𝑝
𝜇

‖∇𝑓𝜇(𝑧)‖
𝑝

𝑝+1

2 . (23)

At the same time,

𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑧) ≤ 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*
𝜇) ≤ 𝜇𝑅2

𝑘

2
≤ 𝜀

by the stopping criterion of the algorithm. Combining these two inequalities and from the choice of 𝜀 we
get that

‖∇𝑓𝜇(𝑧)‖2 ≤
𝜀

2
.

From (23) we also have that

𝜇

2
‖𝑧 − 𝑥*

𝜇‖22 ≤ 𝑓𝜇(𝑧) − 𝑓𝜇(𝑥*
𝜇) ≤ 𝑓𝜇(𝑧𝑘) − 𝑓𝜇(𝑥*

𝜇) ≤ 𝜇𝑅2
𝑘

2
=

𝜇

2
(𝑅 · 2−𝑘)2 ≤ 𝜇𝑅2

2
.
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Thus, ‖𝑧 − 𝑥*
𝜇‖2 ≤ 𝑅. Hence, ‖𝑧 − 𝑥0‖2 ≤ ‖𝑧 − 𝑥*

𝜇‖2 + ‖𝑥*
𝜇 − 𝑥0‖2 ≤ 2𝑅.

Finally, from our choice of 𝜇

‖∇𝑓(𝑧)‖2 ≤ ‖∇𝑓𝜇(𝑧)‖2 + 𝜇‖𝑧 − 𝑥0‖2 ≤
𝜀

2
+ 𝜇 · 2𝑅 ≤ 𝜀. (24)

It remains to estimate the number of iterations of the Algorithm 1. Summing up the number of operations
𝑁𝑖, 𝑖 = 0, ..., 𝑘, we obtain

𝑘∑︁
𝑖=0

𝑁𝑖 ≤
𝑘∑︁

𝑖=0

[︃(︂
8𝑐𝑀𝑝𝑅

𝑝−1
𝑖

𝜇

)︂ 2
3𝑝+1

+ 1

]︃
=

(︂
8𝑐𝑀𝑝𝑅

𝑝−1

𝜇

)︂ 2
3𝑝+1

𝑘∑︁
𝑖=0

2
−2𝑖(𝑝−1)

3𝑝+1 + 𝑘

≤ 2

(︂
8𝑐𝑀𝑝𝑅

𝑝−1

𝜇

)︂ 2
3𝑝+1

𝑘∑︁
𝑖=0

2
−2𝑖(𝑝−1)

3𝑝+1 +
1

2
log2

𝜇𝑅2

2𝜀

= 𝑂

(︃
𝑀

2
3𝑝+1
𝑝 𝑅

2(𝑝−1)
3𝑝+1

𝜀
2

3𝑝+1

+
1

2
log

2
𝑝

𝑝−1 (𝑝 + 1)!𝑀
1
𝑝
𝑝

𝜀
1

𝑝+1

)︃
.

According to Theorem 3.1, the total number of oracle calls is within the 𝑂
(︀
ln 1

𝜀

)︀
factor from the number

of iterations of Algorithm 1. This completes the proof

5 Extensions

Let us discuss possible extension of the proposed methods. One straightforward generalization is a
near-optimal method for minimizing the norm of objective with Hölder-continuous gradient, i.e., for some
𝜈 ∈ [0, 1] satisfying

‖∇𝑝𝑓(𝑥) −∇𝑝𝑓(𝑦)‖2 ≤ 𝑀𝑝,𝜈‖𝑥− 𝑦‖𝜈2, 𝑥, 𝑦 ∈ R𝑛.

The idea is to combine near-optimal tensor method for minimization of functions with Hölder-continuous
𝑝-th derivatives [18] with Lemma 5.2 in [14] for general 𝜈. This approach allows to obtain complexity
bounds which, up to a logarithmic and constant factors coincide with the lower bounds in [14]. We defer
the exact derivations to the next version of the paper.

Another possible extension is inexact solution of the auxiliary subproblems and implementing adaptation
to the constant 𝑀𝑝,𝜈 [14]. Importantly, the basic Algorithm 1 is adaptive to 𝑀𝑝. Nevertheless, to apply
the regularization technique with parameter 𝜇 we need to know the parameter 𝑀𝑝. Thus, it is desirable
to overcome this drawback.

6 Numerical analysis

In this section, we present a number of simulations for the proposed near-optimal tensor method.
Particularly, we implement Algorithm 2 for the logistic regression problem on both synthetic and real
data sets. Also, we show the performance of the Algorithm 2 on a family of functions recently described
as are difficult for all tensor methods [17]. We focus on the case where 𝑝 = 3 for which we have
efficient methods for the solution of the auxiliary subproblem [17, Section 5]. Finally, we present the
performance results for the entropy regularized optimal transport problem.
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6.1 Logistic Regression

For the logistic regression problem, we are given a set of 𝑑 data pairs {𝑦𝑖, 𝑤𝑖} for 1 ≤ 𝑖 ≤ 𝑑, where
𝑦𝑖 ∈ {1,−1} is the class label of object 𝑖, and 𝑤𝑖 ∈ R𝑛 is the set of features of object 𝑖. We are
interested in finding a vector 𝑥 that solves the following optimization problem

1

𝑑

𝑑∑︁
𝑖=1

ln
(︁

1 + exp
(︀
−𝑦𝑖⟨𝑤𝑖, 𝑥⟩

)︀)︁
→ min

𝑥∈R𝑛
. (25)

Figure 1 shows the gradient norm of the logistic regression function at the points generated by
Algorithm 2. Initially, we show the results for synthetic data where 𝑑 = 100 and 𝑛 = 10. We focus on
showing the results for different values of 𝜀. We count as iterations each of the iterations of Algorithm 1
[12, Algorithm 1] in Line 3. For implementation simplicity in addition to the 𝑁𝑘 upper bound of each
of the iteration sin Line 3, if the gradient is not longer decreasing we apply the restarting after 500
iterations.

101 102 103
10-10

10-8

10-6

10-4

10-2

100

 = 1  10-1

 = 1  10-2

 = 1  10-3

 = 1  10-4

 = 1  10-5

 = 1  10-6

Figure 1: Gradient norm at the interations generated by Algorithm 2 on synthetic data for various values
of 𝜀 .

Figure 2 shows the gradient norm of the logistic regression function at the points generated by
Algorithm 2. In this case, we use the Mushroom, A9A, Covertype and IJCNN1 datasets from
[10] with a fixed value of 𝜀 = 1 · 10−5.

6.2 A family of difficult functions

Next, we analyse the performance of the proposed algorithm on an universal parametric family of
objective functions, which are difficult for all tensor methods [17, 14] defined as

𝑓𝑚(𝑥) = 𝜂𝑝+1 (𝐴𝑚𝑥) − 𝑥1, (26)
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101 102 103

10-8

10-6

10-4

10-2

Figure 2: Gradient norm at the interations generated by Algorithm 2 on real data sets from [10] with
𝜀 = 1 · 10−5.

where, for integer parameter 𝑝 ≥ 1, 𝜂𝑝+1(𝑥) = 1
𝑝+1

𝑛∑︀
𝑖=1

|𝑥𝑖|𝑝+1, 2 ≤ 𝑚 ≤ 𝑛, 𝑥 ∈ R𝑛, 𝐴𝑚 is the

𝑛× 𝑛 block diagonal matrix:

𝐴𝑚 =

(︂
𝑈𝑚 0
0 𝐼𝑛−𝑚

)︂
, with 𝑈𝑚 =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
. . .

...
0 0 . . . 1 −1
0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ , (27)

and 𝐼𝑛 is the identity 𝑛× 𝑛-matrix. For a detailed description of the high-order derivatives of this class
of functions, and its optimality properties see [17].

Finally, Figure 3 shows the performance results of Algorithm 2 on the family of functions in (26) with
𝑝 = 3 and various values of parameters 𝑚 = 𝑛 with 𝜀 = 1 · 10−5.

7 Conclusions

In this paper we consider the problem of minimization of the gradient norm of a convex objective with
Lipschitz-continuous 𝑝-th derivative. We motivate this problem by minimization problems with linear
constraints and, in particular, by Entropy-regularized optimal transport. We propose two algorithms
together with their complexity bounds which up to a logarithmic factor coincide with existing lower
bounds. Finally, we present preliminary numerical experiments to illustrate the practical performance of
the algorithms.
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Figure 3: Gradient norm at the interations generated by Algorithm 1 on the family of functions in (26)
with 𝑝 = 3 and various values of parameters 𝑚 = 𝑛 with 𝜀 = 1 · 10−5.

References

[1] Naman Agarwal and Elad Hazan. Lower bounds for higher-order convex optimization. In Sébastien
Bubeck, Vianney Perchet, and Philippe Rigollet, editors, Proceedings of the 31st Conference On
Learning Theory, volume 75 of Proceedings of Machine Learning Research, pages 774–792.
PMLR, 06–09 Jul 2018.

[2] Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for
smooth convex optimization. Mathematical Programming, May 2018.

[3] Michel Baes. Estimate sequence methods:extensions and approximations. Technical report, 2009.

[4] E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, and Ph. L. Toint. Worst-case evalu-
ation complexity for unconstrained nonlinear optimization using high-order regularized models.
Mathematical Programming, 163(1):359–368, May 2017.

[5] Brian Bullins. Fast minimization of structured convex quartics. arXiv preprint arXiv:1812.10349,
2018.

[6] Brian Bullins and Richard Peng. Higher-order accelerated methods for faster non-smooth opti-
mization. arXiv preprint arXiv:1906.01621, 2019.

[7] Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Improved second-order evalua-
tion complexity for unconstrained nonlinear optimization using high-order regularized models.
arXiv:1708.04044, 2018.

[8] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 2292–2300. Curran Associates, Inc., 2013.

[9] Marco Cuturi and Gabriel Peyré. A smoothed dual approach for variational wasserstein problems.
SIAM Journal on Imaging Sciences, 9(1):320–343, 2016.

DOI 10.20347/WIAS.PREPRINT.2694 Berlin 2020



P. Dvurechensky, A. Gasnikov, P. Ostroukhov, C.A. Uribe, A. Ivanova 14

[10] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[11] A. V. Gasnikov, E. V. Gasnikova, Yu. E. Nesterov, and A. V. Chernov. Efficient numerical methods
for entropy-linear programming problems. Computational Mathematics and Mathematical Physics,
56(4):514–524, 2016.

[12] Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Se-
likhanovych, and César A. Uribe. Optimal tensor methods in smooth convex and uniformly convex
optimization. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second
Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pages
1374–1391, Phoenix, USA, 25–28 Jun 2019. PMLR. arXiv:1809.00382.

[13] Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Se-
likhanovych, César A. Uribe, Bo Jiang, Haoyue Wang, Shuzhong Zhang, Sébastien Bubeck, Qijia
Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near optimal methods for minimizing convex
functions with lipschitz 𝑝-th derivatives. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings
of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine
Learning Research, pages 1392–1393, Phoenix, USA, 25–28 Jun 2019. PMLR.

[14] Geovani Nunes Grapiglia and Yurii Nesterov. Tensor methods for finding approximate stationary
points of convex functions. arXiv preprint arXiv:1907.07053, 2019.

[15] Oliver Hinder, Aaron Sidford, and Nimit Sharad Sohoni. Near-optimal methods for minimizing
star-convex functions and beyond. arXiv preprint arXiv:1906.11985, 2019.

[16] K. H. Hoffmann and H. J. Kornstaedt. Higher-order necessary conditions in abstract mathematical
programming. Journal of Optimization Theory and Applications, 26(4):533–568, Dec 1978.

[17] Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. Technical
report, CORE UCL, 2018. CORE Discussion Paper 2018/05.

[18] C. Song and Y. Ma. Towards unified acceleration of high-order algorithms under hölder continuity
and uniform convexity. arXiv:1906.00582, 2019.

[19] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–
E7358, 2016.

[20] Ashia Wilson, Lester Mackey, and Andre Wibisono. Accelerating rescaled gradient descent. arXiv
preprint arXiv:1902.08825, 2019.

DOI 10.20347/WIAS.PREPRINT.2694 Berlin 2020


	Introduction
	Notation

	A motivating example: problems with linear constraints
	Preliminaries
	Near-optimal tensor methods for gradient norm minimization
	Near-optimal tensor methods with respect to the initial objective residual
	Near-optimal tensor methods with respect to the initial variable residual

	Extensions
	Numerical analysis
	Logistic Regression
	A family of difficult functions

	Conclusions

