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Dualization and automatic distributed parameter selection of
total generalized variation via bilevel optimization

Michael Hintermüller, Kostas Papafitsoros, Carlos N. Rautenberg,
Hongpeng Sun

Abstract

Total Generalized Variation (TGV) regularization in image reconstruction relies on an infimal
convolution type combination of generalized first- and second-order derivatives. This helps to
avoid the staircasing effect of Total Variation (TV) regularization, while still preserving sharp con-
trasts in images. The associated regularization effect crucially hinges on two parameters whose
proper adjustment represents a challenging task. In this work, a bilevel optimization framework
with a suitable statistics-based upper level objective is proposed in order to automatically select
these parameters. The framework allows for spatially varying parameters, thus enabling better
recovery in high-detail image areas. A rigorous dualization framework is established, and for the
numerical solution, two Newton type methods for the solution of the lower level problem, i.e.
the image reconstruction problem, and two bilevel TGV algorithms are introduced, respectively.
Denoising tests confirm that automatically selected distributed regularization parameters lead in
general to improved reconstructions when compared to results for scalar parameters.

1 Introduction

In this work we analyze and implement a bilevel optimization framework for automatically selecting
spatially varying regularization parameters α := (α0, α1)> ∈ C(Ω)2, α > 0, in the following image
reconstruction problem:

minimize
1

2

∫
Ω

(Tu− f)2dx+ TGV2
α(u) over u ∈ BV(Ω), (1.1)

where the second-order Total Generalized Variation (TGV) regularization is given by

TGV2
α(u) = sup

{∫
Ω

u div2φ dx : φ ∈ C∞c (Ω,Sd×d), |φ(x)|r ≤ α0(x),

|divφ(x)|r ≤ α1(x), for all x ∈ Ω
}
.

(1.2)

Here, Ω ⊆ Rd is a bounded, open image domain with Lipschitz boundary, Sd×d denotes the space
of d× d symmetric matrices, T : Ld/d−1(Ω) → L2(Ω) is a bounded linear (output) operator, and f
denotes given data which satisfies

f = Tutrue + η. (1.3)

In this context, η models a highly oscillatory (random) component with zero mean and known quadratic
deviation (variance) σ2 from the mean. Further, L2(Ω) and Ld/d−1(Ω) denote standard Lebesgue
spaces [1], and | · |r, 1 ≤ r ≤ +∞, represents the `r vector norm or its associated matrix norm.
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Noisy TV TGV

Figure 1: Gaussian denoising: Typical difference between TV (piecewise constant) and TGV recon-
structions (piecewise affine)

The space of infinitely differentiable functions with compact support in Ω and values in Sd×d is de-
noted by C∞c (Ω,Sd×d). Further, we refer to Section 2 for the definition of the first- and second-order
divergences div and div2, respectively.

Originally, the TGV functional was introduced for scalar parametersα0, α1 > 0 only; see [14]. It serves
as a higher order extension of the well-known Total Variation (TV) regularizer [23, 53], preserves
edges (i.e., sharp contrast) [49, 57], and promotes piecewise affine reconstructions while avoiding the
often adverse staircasing effect (i.e., piecewise constant structures) of TV [22, 45, 52]; see Figure
1 for an illustration. These properties of TGV have made it a successful regularizer in variational
image restoration for a variety of applications [8, 9, 11, 12, 14, 16, 46, 58]. Extensions to manifold-
valued data, multimodal and dynamic problems [5, 13, 42, 43, 47, 54] have been proposed, as well.
In all of these works, the choice of the scalar parameters α0, α1 is made “manually” via a direct grid
search. Alternatively, selection schemes relying on a known ground truth utrue have been studied;
see [18, 24, 25]. The latter approach, however, is primarily of interest when investigating the mere
capabilities of TGV regularization.

While there exist automated parameter choice rules for TV regularization, see for instance [37] and
the references therein, analogous techniques and results for the TGV parameters are very scarce.
One of the very few contributions is [7] where, however, a spatially varying fidelity weight rather then
regularization parameter is computed. Compared to the choice of the regularization weight in TV-
based models, the infimal convolution type regularization incorporated into the TGV functional sig-
nificantly complicates the selection; compare the equivalent definition (2.1) below. Further difficulties
arise when these parameters are spatially varying as in (1.2). In that case, by appropriately choosing
α = (α0, α1)>, one wishes to smoothen homogeneous areas in the image while preserving fine
scale details. The overall target is then to not only select the parameters in order to reduce noise while
avoiding oversmoothing, as in the TV case, but also to ensure that the interplay of α0 and α1 will not
produce any staircasing.

For this delicate selection task and inspired by [37, 39] for TV, in this work we propose a bilevel
minimization framework for an automated selection of α in the TGV case. Formally, the setting can be
characterized as follows:{

minimize a statistics-based (upper level) objective over (u,α)

subject to u solving (1.1) for a regularization weight α = (α0, α1).
(1.4)

Note here that the optimization variable α enters the lower level minimization problem (1.1) as a
parameter, thus giving rise to u = u(α). We also mention that this optimization format falls into
the general framework which is discussed in our review paper [33] where the general opportunities
and mathematical as well as algorithmic aspects of bilevel optimization in generating structured non-
smooth regularization functionals are discussed in detail.
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Figure 2: Suitability of the functional F (R·) as an upper level objective. Evaluation of F (Ru) where
u solves the TGV denoising problem (1.1) (T = Id), for a variety of scalar parameters (α0, α1)

As our statisical set-up parallels the one in [37, 39], here we resort to the upper level objective pro-
posed in that work. It is based on localized residuals R : Ld/d−1(Ω)→ L∞(Ω) with

Ru(x) =

∫
Ω

w(x, y)(Tu− f)2(y) dy, (1.5)

where w ∈ L∞(Ω×Ω) with
∫

Ω

∫
Ω
w(x, y)dxdy = 1. Note that Ru(x) can be interpreted as a local

variance keeping in mind that, assuming Gaussian noise of variance σ2, we have that
∫

Ω
(Tutrue −

f)2 dx =
∫

Ω
η2 dx = σ2|Ω|. Consequently, if a reconstructed image u is close to utrue then it is

expected that for every x ∈ Ω the value of Ru(x) will be close to σ2. Hence it is natural to consider
an upper level objective which aims to approximately keep Ru within a corridor σ2 ≤ σ2 ≤ σ2 with
positive bounds σ2, σ2. This can be achieved by minimizing F : L2(Ω)→ R with

F (v) :=
1

2

∫
Ω

max(v − σ2, 0)2dx+
1

2

∫
Ω

min(v − σ2, 0)2dx. (1.6)

The function F (R·) is indeed suitable as an upper level objective. This is demonstrated in Figure 2,
where we show (in the middle and right plots) the objective values for a series of scalar TGV denoising
results and for a variety of parameters (α0, α1) for the image depicted on the left. Regarding the
choices of σ, σ, w we refer to Section 6. Upon inspection of Figure 2 we find that the functional F (R·)
is minimized for a pair of scalar parameters (α0, α1) that is close to the one maximizing the peak-
signal-to-noise-ratio (PSNR). Note, however, that in order to truly optimize the PSNR, one would need
the ground truth image utrue, which is course typically not available. In contrast to this, we emphasize
that F (R·) does not involve any ground truth information. Rather, it only relies on statistical properties
of the noise.

For analytical and numerical reasons, rather than having (1.1) as the lower level problem for the bilevel
minimization framework (1.4), we use its Fenchel predual. This yields a bilevel problem which is ex-
pressed in terms of dual variables and is equivalent to the one stated in terms of the primal variable
u. A similar approach was taken in [37, 39] for TV models. In this way, one has to treat a more
amenable variational inequality of the first kind rather than one of second kind in the primal setting
in the constraint system of the resulting bilevel optimization problem. Numerically, one may then uti-
lize very efficient and resolution independent, function space based solution algorithms, like (inexact)
semismooth Newton methods [48]. The other option that will also consider here, is to minimize the
upper level objective subject to the primal-dual optimality conditions, for which Newton methods can
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also be applied for their solution, see for instance [40] for an inexact semismooth Newton solver which
operates on the primal-dual optimality conditions for TV regularization.

Summarizing, this work provides not only a user-friendly and novel hierarchical variational framework
for automatic selection of the TGV regularization parameters, but by making these parameters spatially
dependent it leads to an overall performance improvement; compare, e.g., the results in Section 6.

The structure of the paper

Basic facts on the TGV functional with spacially varying parameters along with functional analytic
foundations needed for (pre)dualization are the subjects of Section 2. Section 3 is concerned with
the derivation of the predual problem of (1.1) and the corresponding primal-dual optimality conditions.
Regularized versions of the primal problem (1.1) and its predual are in the focus of Section 4. Besides
respective primal-dual optimality conditions, we study the asymptotic behavior of these problems and
their associated solutions under vanishing regularization. It is also argued that every regularized in-
stance can be solved efficiently by employing an (inexact) semismooth Newton method. Section 5
introduces two bilevel TGV problems for which the first-order optimality conditions of the predual prob-
lem and the first-order primal-dual optimality conditions serve as constraints, respectively. For these
problems, based on Karush-Kuhn-Tucker theory in Banach space associated first-order optimality con-
ditions are derived. The numerical solution of the proposed bilevel problems is the subject of Section
6. Finally, the paper ends by a report on extensive numerical tests along with conclusions drawn from
theses computational results.

2 The dual form of the weighted TGV functional

2.1 Total Generalized Variation

We recall here some basic facts about the TGV functional (1.2) with constant parameters α0, α1 and
assume throughout that the reader is familiar with the basic concepts of functions of bounded variation
(BV); see [2] for a detailed account. For a function φ ∈ C∞c (Ω,Sd×d) the first- and second-order
divergences are respectively given by

(divφ)i =
d∑
j=1

∂φij
∂xj

, i = 1, . . . , d, and div2φ =
d∑
i=1

∂2φii
∂x2

i

+ 2
∑
i<j

∂2φij
∂xi∂xj

.

When r = 2 in (1.2) then we obtain the isotropic version of the TGV functional; otherwise the functional
is anisotropic. Among all anisotropic versions, r = +∞ is of particular interest to us, primarily for
computational reasons.

In [16] it was shown that a function u ∈ L1(Ω) has finite TGV value if and only if it belongs to BV(Ω).
Here BV(Ω) denotes the Banach space of function of bounded variation over Ω with associated norm
‖ · ‖BV(Ω). Moreover, the bounded generalized variation norm ‖ · ‖BGV := ‖ · ‖L1(Ω) + TGV2

α(·)
is equivalent to ‖ · ‖BV(Ω). Similarly to TV, TGV is a convex functional which is lower semicontinuous
with respect to the strong L1 convergence. In [10, 16] it is demonstrated that the TGV functional can
be equivalently written as

TGV2
α(u) = min

w∈BD(Ω)
α1|Du− w|(Ω) + α0|Ew|(Ω), (2.1)

DOI 10.20347/WIAS.PREPRINT.2689 Berlin 2020



Automatic distributed parameter selection of total generalized variation 5

where BD(Ω) is the space of functions of bounded deformation, with E denoting the distributional
symmetrized gradient [56]. The asymptotical behavior of the TGV model in image restoration with
respect to scalars α0, α1 was studied in [50]; see also in [57]. For instance, when T = Id and either
α0 or α1 converges to zero, then the corresponding solutions of (1.1) converge (weakly∗ in BV(Ω))
to f . When both of the parameters are sent to infinity, then the solutions converge weakly∗ to the L2-
linear regression solution for f . We further note that the set of affine functions constitutes the kernel
of the TGV functional.

There exist combinations of α0, α1 such that TGVα(u) = α1TV(u). This happens for specific
functions u, and in general one can show that there exists a constant C > 0 such that if α0/α1 > C ,
then the TGV value does not depend on α0 and, up to an affine correction, it is equivalent to TV. In
that case the reconstructed images still suffer from a kind of (affine) staircasing effect [50].

The fine structure of TGV reconstructions has been studied analytically mainly in dimension one in
[4, 15, 49, 51]. Under some additional regularity assumptions (compare [57]) it can be shown that for
TGV denoising the jump set of the solution is essentially contained in the jump set of the data; see
[21] for the TV case.

2.2 The space W q
0 (div2; Ω)

Next we introduce several function spaces which will be useful in our subsequent development. For
this purpose, let 1 ≤ q ≤ ∞ and p ∈ Lq(Ω,Rd). Recall that divp ∈ Lq(Ω) if there exists w ∈
Lq(Ω) such that ∫

Ω

∇φ · p dx = −
∫

Ω

φw dx, for all φ ∈ C∞c (Ω).

Based on this first-order divergence, we define the Banach space

W q(div; Ω) :=
{
p ∈ Lq(Ω,Rd) : divp ∈ Lq(Ω)

}
,

endowed with the norm ‖p‖qW q(div;Ω) := ‖p‖q
Lq(Ω,Rd)

+‖divp‖qLq(Ω). Similarly one obtains the Banach

space W q(div2; Ω) as the space of all functions p ∈ Lq(Ω,Sd×d) whose first- and second-order
divergences, divp and div2p, respectively, belong to Lq(Ω). Note that div2p ∈ Lq(Ω) if there exists
a function v ∈ Lq(Ω) such that∫

Ω

∇φ · divp dx = −
∫

Ω

φv dx, for all φ ∈ C∞c (Ω).

This space is equipped with the norm ‖p‖q
W q(div2;Ω)

:= ‖p‖qLq(Ω) + ‖divp‖q
Lq(Ω,Rd)

+ ‖div2p‖qLq(Ω).
We refer to [11] for a more general definition of these spaces. Note that when q = 2 these spaces
are Hilbertian and then the standard notation is H(div; Ω) and H(div2; Ω); see [28]. The Banach
spaces W q

0 (div; Ω) and W q
0 (div2; Ω) are defined as

W q
0 (div; Ω) = C∞c (Ω,Rd)

‖·‖Wq(div;Ω)
, W q

0 (div2; Ω) = C∞c (Ω,Sd×d)
‖·‖Wq(div2;Ω) .

Using the definitions above, the following integration by parts formulae hold true:∫
Ω

∇φ · p dx = −
∫

Ω

φ divp dx, for all p ∈ W q
0 (div; Ω), φ ∈ C∞(Ω,R), (2.2)∫

Ω

Eφ · p dx = −
∫

Ω

φ · divp dx, for all p ∈ W q
0 (div2; Ω), φ ∈ C∞(Ω,Rd), (2.3)∫

Ω

∇φ · divp dx = −
∫

Ω

φ div2p dx, for all p ∈ W q
0 (div2; Ω), φ ∈ C∞(Ω,R), (2.4)

DOI 10.20347/WIAS.PREPRINT.2689 Berlin 2020
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with Eφ denoting the symmetrized gradient of φ.

2.3 Weighted TGV

Throughout the remainder of ths work we use the weighted TGV functional (1.2) with α0, α1 ∈ C(Ω)
and α0(x), α1(x) > α > 0, α ∈ R, x ∈ Ω. Concerning | · |r let r∗ with 1/r + 1/r∗ = 1 and the
obvious definitions for r = 1,∞.

We will show that the space C∞c (Ω,Sd×d) in (1.2) can be substituted by W d
0 (div2; Ω). This fact will

be instrumental when deriving the predual of the TGV minimization problem. For this we need the
following result, which involves the Banach space of functions of bounded deformation here denoted
by BD(Ω); see, e.g., [55] for more details.

Proposition 2.1. Then weighted TGV2
α functional (1.2) admits the equivalent expression

TGV2
α(u) = min

w∈BD(Ω)

∫
Ω

α1 d|Du− w|r∗ +

∫
Ω

α0 d|Ew|r∗ . (2.5)

Proof. The proof is analogous to the one for the scalar TGV functional; see for instance [11, Proposi-
tion 2.8] or [10, Theorem 3.5]. Here, we highlight only the significant steps. Indeed, given u ∈ L1(Ω),
the idea is to define

U = C1
0(Ω,Rd)× C2

0(Ω;Sd×d), V = C1
0(Ω,Rd),

Λ : U → V, Λ(u1, u2) = −u1 − divu2,

F1 : U → R, F1(u1, u2) = −
∫

Ω

u divu1 + I{|·(x)|r≤α1(x)}(u1) + I{|·(x)|r≤α0(x)}(u2),

F2 : V → R, F2(v) = I{0}(v).

Now, after realizing that

TGV2
α(u) = sup

(u1,u2)∈U
−F1(u1, u2)− F2(Λ(u1, u2)), (2.6)

the proof proceeds by next showing that the dual problem of (2.6) is equivalent to (2.5) and then
applying the Fenchel duality result [27]. The only subtle point is the following density result which is
required in order to show that (2.6) is indeed equal to (1.2). In fact, it suffices to show that

{φ ∈ C∞c (Ω,Sd×d) : |φ(x)|r ≤ α0(x), |divφ(x)|r ≤ α1(x), for all x ∈ Ω}
‖·‖

C2
0

=
{
ψ ∈ C2

0(Ω,Sd×d) : |ψ(x)|r ≤ α0(x), |divψ(x)|r ≤ α1(x), for all x ∈ Ω
}
.

(2.7)

Indeed let ψ belong to the second set in (2.7), and let ε > 0. Choose 0 < λε < 1 such that

‖ψ − λεψ‖C2
0
< ε/2. (2.8)

Since α0 and α1 are continuous and bounded away from zero there exists αε > 0, smaller than the
minimum of α0, α1, such that

|λεψ(x)|r ≤ α0(x)− αε, |divλεψ(x)|r ≤ α1(x)− αε, for all x ∈ Ω.

From standard density properties there exists a function φε ∈ C∞c (Ω,Sd×d) such that the following
conditions hold for all x ∈ Ω:

‖φε − λεψ‖C2
0
< ε/2, |φε(x)− λεψ(x)|r ≤ αε/2, |divφε(x)− divλεψ(x)|r ≤ αε/2, (2.9)
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Automatic distributed parameter selection of total generalized variation 7

which implies

|φε(x)|r ≤ α0(x)− αε/2, |divφε(x)|r ≤ α1(x)− αε/2, for all x ∈ Ω. (2.10)

Then, from (2.10) it follows that φε belongs to the first set in (2.7) and from (2.8) and (2.9) we get that
‖ψ − φε‖C2

0
< ε.

Now we are ready to establish the density result needed for dualization. For the sake of the flow of
presentation we defer the proof, which parallels the one of [11, Proposition 3.3], to the appendix; see
Appendix A. Below “a.e.” stands for “almost every” with respect to the Lebesgue measure.

Proposition 2.2. Let u ∈ Ld/d−1(Ω), α = (α0, α1) with α0, α1 ∈ C(Ω) and α0, α1 > α > 0.
Then the weighted TGV functional (1.2) can be equivalently written as

TGV2
α(u) = sup

{∫
Ω

u div2p dx : p ∈ W d
0 (div2; Ω), |p(x)|r ≤ α0(x),

|divp(x)|r ≤ α1(x), for a.e. x ∈ Ω
}
.

(2.11)

Remark : By slightly amending the proof of Proposition 2.2 one can also show that

Cα
L2(Ω)

= Kα, (2.12)

where Kα is defined over H0(div2; Ω) rather than W d
0 (div2; Ω).

3 The predual weighted TGV problem

Now we study the predual problem for the weighted TGV model with continuous weights, i.e., we use
the regularization functional (1.2) or equivalently (2.11). For T ∈ L(Ld/d−1(Ω), L2(Ω)) we assume
for simplicity that B := T ∗T is invertible and define ‖v‖2

B =
∫

Ω
vB−1v, which induces a norm in

Ld(Ω); compare [48].

Proposition 3.1. Let f ∈ L2(Ω), α = (α0, α1), α0, α1 ∈ C(Ω) with α0, α1 > α > 0 and
T ∈ L(Ld/d−1(Ω), L2(Ω)) with T ∗T invertible. Then there exists a solution to the primal problem

minimize
1

2
‖Tu− f‖2

L2(Ω) + TGV2
α(u) over u ∈ BV(Ω), (3.1)

as well as to its predual problem

minimize
1

2
‖T ∗f − div2p‖2

B −
1

2
‖f‖2

L2 over p ∈ W d
0 (div2; Ω)

subject to |p(x)|r ≤ α0(x), |divp(x)|r ≤ α1(x), for a.e. x ∈ Ω,
(3.2)

and there is no duality gap, i.e., the primal and predual optimal objective values are equal. Moreover,
the solutions u and p of these problems satisfy

Bu = T ∗f − div2p. (3.3)
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Proof. We set U = W d
0 (div2; Ω), V = Ld(Ω), Λ : U → V with Λp = div2p, and also F1 : U →

R and F2 : V → R with

F1(p) = I{|·(x)|r≤α0(x), for a.e. x}(p) + I{|div·(x)|r≤α1(x), for a.e. x}(p), (3.4)

F2(ψ) =
1

2
‖T ∗f − ψ‖2

B −
1

2
‖f‖2

L2(Ω). (3.5)

Here, IS(·) denotes the indicator function of a set S. Immediately one gets that

inf
p∈U

F1(p) + F2(Λp) = inf
p∈W d

0 (div2;Ω)
|p(x)|r≤α0(x)
|divp(x)|r≤α1(x)

1

2
‖T ∗f − div2p‖2

B −
1

2
‖f‖2

L2(Ω). (3.6)

The problem in (3.6) admits a solution. Indeed, first observe that the objective is bounded from below.
Then note that since 1

2
‖T · −f‖2

L2(Ω) is continuous at 0 ∈ Ld/d−1(Ω), its convex conjugate (see

[27] for a general definition) which is equal to 1
2
‖T ∗f + ·‖2

B − 1
2
‖f‖2

L2(Ω) is coercive in Ld(Ω); see

[6, Theorem 4.4.10]. Hence, any infimizing sequence (pn)n∈N is bounded in W d
0 (div2; Ω), and thus

there exist an (unrelabeled) subsequence and p ∈ W d(div2; Ω) such that pn ⇀ p, divpn ⇀ divp
and div2pn ⇀ div2p weakly in Ld. We also have that p is a feasible point since the set{

(h, divh, div2h) : h ∈ W d
0 (div2; Ω), |h(x)|r ≤ α0(x), |divh(x)|r ≤ α1(x), for a.e. x ∈ Ω

}
,

is weakly closed. Then p is a minimizer of (3.6) as 1
2
‖T ∗f − ·‖2

B is weakly lower semicontinuous in
Ld(Ω).

We now calculate the expression F ∗1 (Λ∗u) + F ∗2 (−u) for u ∈ Y ∗ = Ld/d−1(Ω). As before one
verifies by direct computation that F ∗2 (−u) = 1

2
‖Tu− f‖2

L2(Ω). Moreover,

F ∗1 (Λ∗u) = sup
p∈X
{〈Λ∗u, p〉X∗,X − F1(p)} = sup

p∈X
{〈u,Λp〉Ld/d−1(Ω),Ld(Ω) − F1(p)}

= sup
p∈W d

0 (div2;Ω)
|p(x)|r≤α0(x)
|divp(x)|r≤α1(x)

∫
Ω

div2p dx = TGV2
α(u).

In order to prove that there is no duality gap, it suffices to show that the set
⋃
λ≥0 λ(dom(F2) −

Λ(dom(F1))) is a closed subspace of V . Then the so-called Attouch-Brezis condition is satisfied;
see [3]. It is immediate to see that dom(F2) = Ld(Ω), and hence the condition holds true. Thus, we
also get existence of a solution for the primal problem (3.1). Finally (3.3) follows from the optimality
condition (Euler-Lagrange system) that corresponds to Λp ∈ ∂F ∗2 (−u).

The assumptions on T in the above proposition are invoked throughout the rest of this work. In the
special case when T = Id (corresponding to image denoising), then we can only get existence of a
solution to the predual problem in the Hilbert space H0(div2; Ω). The proof of this fact is similar to
the one above.

The primal-dual optimality conditions for the problems (3.1) and (3.2) read

p ∈ ∂F ∗1 (Λ∗u), (3.7)

Λp ∈ ∂F ∗2 (−u), (3.8)

and we note once again that (3.3) corresponds to (3.8) with F2 and Λ as in the proof of Proposition
3.1. Instead of making the optimality condition that corresponds to (3.7) explicit, we are interested in
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the analogous optimality conditions written in the variables u and w of the equivalent primal weighted
TGV problem

min
u∈BV(Ω)
w∈BD(Ω)

1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α1 d|Du− w|r∗ +

∫
Ω

α0 d|Ew|r∗ . (3.9)

For this purpose note first that the predual problem (3.2) can be equivalently written asminimize
1

2
‖T ∗f + divq‖2

B −
1

2
‖f‖2

L2(Ω) over (q, p) ∈ W d
0 (div; Ω)×W d

0 (div2,Ω),

subject to− divp = q, |p(x)|r ≤ α0(x), |q(x)|r ≤ α1(x), for a.e. x ∈ Ω.
(3.10)

Then the solutions of the above two problems can be characterized as follows.

Proposition 3.2. The pair (p, q) ∈ W d
0 (div2; Ω)×W d

0 (div; Ω) is a solution to (3.10), and (w, u) ∈
BD(Ω)× BV(Ω) is a solution to (3.9) if and only if the following optimality conditions are satisfied:

Bu = T ∗f + divq, (3.11)

q = −divp, (3.12)

|q(x)|r ≤ α1(x) for a.e. x ∈ Ω (3.13)

and 〈Du− w, q̃ − q〉 ≤ 0 for every q̃ ∈ W d
0 (div; Ω), with |q̃(x)|r ≤ α1(x) for a.e. x ∈ Ω,

|p(x)|r ≤ α0(x) for a.e. x ∈ Ω (3.14)

and 〈Ew, p̃− p〉 ≤ 0 for every p̃ ∈ W d
0 (div2; Ω) with |p̃(x)|r ≤ α0(x) for a.e. x ∈ Ω.

Proof. Define X = (X1, X2) = W d
0 (div2,Ω) × W d

0 (div,Ω), Y = (Y1, Y2) = W d
0 (div; Ω) ×

Ld(Ω), Λ : X → Y with Λ(p, q) = (q + divp, divq), and F1 : X → R, F2 : Y → R with

F1(p, q) = I{|·(x)|r≤α0(x), for a.e. x}(p) + I{|·(x)|r≤α1(x), for a.e. x}(q), (3.15)

F2(φ, ψ) = I{0}(φ) +
1

2
‖T ∗f + ψ‖2

B −
1

2
‖f‖2

L2(Ω). (3.16)

One checks immediately that min(p,q)∈X F1(p, q) + F2(Λ(p, q)) corresponds to (3.10) with the dual
problem reading min(w,u)∈Y ∗ F

∗
1 (−Λ∗(w, u)) + F ∗2 (w, u). Observe that since

−〈Λ∗(w, u), (p, q)〉X∗,X = −〈(w, u),Λ(p, q)〉Y ∗,Y = −〈w, divp〉Y ∗1 ,Y1−〈w, q〉Y ∗1 ,Y1−〈u, divq〉Y ∗2 ,Y2 ,

we have

F ∗1 (−Λ∗(w, u)) = sup
p∈W d

0 (div2;Ω)
|p(x)|r≤α0(x)

−〈w, divp〉Y ∗1 ,Y1 + sup
q∈W d

0 (div;Ω)
|q(x)|r≤α1(x)

−〈w, q〉Y ∗1 ,Y1 − 〈u, divq〉Y ∗2 ,Y2 .

Note that the suprema above are always greater or equal to the corresponding suprema overC∞c (Ω,Sd×d) ⊂
W d

0 (div2; Ω) and C∞c (Ω,Rd) ⊂ W d
0 (div; Ω). Moreover, as we focus on a minimization problem, we

are interesing in those (w, u) ∈ Y ∗ that render the suprema finite. This implies in particular that
w has a distributional derivative Ew with bounded Radon norm, and hence it is a Radon measure.
It follows that w ∈ L1(Ω,Rd) yielding w ∈ BD(Ω); see [10]. This also implies 〈w, divp〉Y ∗1 ,Y1 =
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〈w, divp〉Ld(Ω)∗,Ld(Ω) and similarly 〈w, q〉Y ∗1 ,Y1 = 〈w, q〉Ld(Ω)∗,Ld(Ω). Using now density results anal-
ogous to (A.3) we have

F ∗1 (−Λ∗(w, u)) = sup
p∈W d

0 (div2;Ω)
|p(x)|r≤α0(x)

−〈w, divp〉Ld(Ω)∗,Ld(Ω)

+ sup
q∈W d

0 (div;Ω)
|q(x)|r≤α1(x)

−〈w, q〉Ld(Ω)∗,Ld(Ω) − 〈u, divq〉Ld(Ω)∗,Ld(Ω)

= sup
φ∈C∞c (Ω,Sd×d)
|φ(x)|r≤α0(x)

−〈w, divφ〉Ld(Ω)∗,Ld(Ω)

+ sup
ψ∈C∞c (Ω,Rd)
|ψ(x)|r≤α1(x)

−〈w,ψ〉Ld(Ω)∗,Ld(Ω) − 〈u, divψ〉Ld(Ω)∗,Ld(Ω)

= sup
φ∈C∞c (Ω,Sd×d)
|φ(x)|r≤α0(x)

〈Ew, φ〉+ sup
ψ∈C∞c (Ω,Rd)
|ψ(x)|r≤α1(x)

〈Du− w,ψ〉,

=

∫
Ω

α0 d|Ew|r∗ +

∫
Ω

α1 d|Du− w|r∗ .

Here we used the fact that since the distributionDu−w has a finite Radon norm, it can be represented
by an Rd-valued finite Radon measure and in particular by u ∈ BV(Ω). Furthermore, as in the proof
of Proposition 3.1 we have F ∗2 (w, u) = 1

2
‖Tu− f‖2

L2(Ω).

The fact that there is no duality gap is ensured by Propositions 2.1, 2.2 and 3.1. We now turn our
attention to the optimality conditions

(p, q) ∈ ∂F ∗1 (−Λ∗(w, u)), (3.17)

Λ(p, q) ∈ ∂F ∗2 ((w, u)). (3.18)

It can be checked again that (3.18) gives (3.11) and (3.12). We now expand on (3.17). We have that
(p, q) ∈ ∂F ∗1 (−Λ∗(w, u)) which is equivalent to −Λ∗(w, u) ∈ ∂F1(p, q), that is F1(p, q) = 0 and

〈−Λ∗(w, u), (p̃− p, q̃ − q)〉X∗,X ≤ F1(p̃, q̃)

⇐⇒ −〈w, div(p̃− p)〉 − 〈w, q̃ − q〉 − 〈u, divq̃ − divq〉 ≤ F1(p̃, q̃)

⇐⇒ 〈Ew, p̃− p〉 ≤ I{|·(x)|r≤α0(x), f.a.e.x}(p̃)

〈Du− w, q̃ − q〉 ≤ I{|·(x)|r≤α1(x), f.a.e.x}(q̃)

⇐⇒ 〈Ew, p̃− p〉 ≤ 0

〈Du− w, q̃ − q〉 ≤ 0,

with the last two inequalities holding for any p̃ ∈ W d
0 (div2; Ω) with |p̃(x)|r ≤ α0(x) for a.e. x ∈ Ω

and for any q̃ ∈ W d
0 (div; Ω) with |q̃(x)|r ≤ α1(x) for a.e. x ∈ Ω. Hence we obtain (3.13) and

(3.14).

Note that in the proof above we made use of the following density results:

Cα0

Ld(Ω)
= Kα0 , Cα1

W d
0 (div;Ω)

= Kα1 ,
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where

Cα0 :=
{

divφ : φ ∈ C∞c (Ω,Sd×d), |φ(x)|r ≤ α0(x), for all x ∈ Ω
}
, (3.19)

Kα0 :=
{

divp : p ∈ W d
0 (div2; Ω), |p(x)|r ≤ α0(x), for a.e. x ∈ Ω

}
, (3.20)

Cα1 :=
{
ψ : ψ ∈ C∞c (Ω,Rd), |ψ(x)|r ≤ α1(x), for all x ∈ Ω

}
, (3.21)

Kα1 :=
{
q : q ∈ W d

0 (div; Ω), |q(x)|r ≤ α1(x), for a.e. x ∈ Ω
}
. (3.22)

These results can be proven by using the duality arguments of the proof of Proposition 2.2, which
originate from [11], or with the use of mollification techniques; see [35, 36, 38].

4 A series of regularized problems

4.1 Regularization of the primal problem

With the aim of lifting the regularity of u and w to avoid measure-valued derivatives, we next consider
the following regularized version of the primal weighted TGV problem (3.9):

minimize
1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α1|∇u− w|r∗dx+

∫
Ω

α0|Ew|r∗dx

+
µ

2
‖∇u‖2

L2(Ω) +
α

2
‖w‖2

H1(Ω,Rd) over (u,w) ∈ H1(Ω)×H1(Ω,Rd),

(4.1)

for some constants 0 < µ, α� 1. Existence of solutions for (4.1) follows from standard arguments.

Observe that (4.1) is equivalent to min(w,u)∈X̂ Q1(w, u) +Q2(R(w, u)) where X̂ = H1(Ω,Rd)×
H1(Ω), Ŷ = L2(Ω,Sd×d) × L2(Ω,Rd), R : X̂ → Ŷ with R(w, u) = (Ew,∇u − w), Q1 :
X → R, Q2 : Y → R with Q(w, u) = 1

2
‖Tu − f‖2

L2(Ω) + µ
2
‖∇u‖2

L2(Ω,Rd)
+ α

2
‖w‖2

H1(Ω,Rd)
and

Q2(ψ, φ) =
∫

Ω
α1|φ|r∗dx +

∫
Ω
α0|ψ|r∗dx. Note that the Attouch-Brezis condition is satisfied since

dom(Q2) = Y .

Proposition 4.1. The pairs (w, u) ∈ H1(Ω,Rd)×H1(Ω) and (p, q) ∈ L2(Ω,Rd×d)×L2(Ω,Rd)
are solutions to (4.1) and its predual problem, respectively, if and only if the following optimality condi-
tions are satisfied:

Bu− µ∆u+∇∗q − T ∗f = 0 in H1(Ω)∗, (4.2)

αw − α∆w − q + E∗p = 0 in H1(Ω,Rd)∗, (4.3){
α1(∇u− w)− q|∇u− w| = 0 if |q(x)|r = α1(x),

∇u− w = 0 if |q(x)|r < α1(x),
(4.4){

α0Ew − p|Ew| = 0 if |p(x)|r = α0(x),

Ew = 0 if |p(x)|r < α0(x).
(4.5)

Proof. The proof follows again easily by calculating the corresponding primal-dual optimality condi-
tions.

Next we study the relationship between the solutions of (3.9) and (4.1) as the parameters µ, α tend to
zero.
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Proposition 4.2. In addition to the standing assumptions on T , let T also be injective on the set of
affine functions. Further, let µn, αn → 0 and let (wn, un)n∈N be a sequence of solution pairs of the
problem (4.1). Then un

∗
⇀ u∗ and wn

∗
⇀ w∗ in BV(Ω) and BD(Ω) respectively, where (w∗, u∗) is

a solution pair for (3.9). The convergence is up to subsequences.

Proof. For convenience of notation, define the energies

En(w, u) =
1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α1|∇u− w|r∗dx+

∫
Ω

α0|Ew|r∗dx

+
µn
2
‖∇u‖2

L2(Ω) +
αn
2
‖w‖2

H1(Ω,Rd),

E(w, u) =
1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α1d|Du− w|r∗ +

∫
Ω

α0d|Ew|r∗ .

We have

1

2
‖Tun − f‖2

L2(Ω) +

∫
Ω

α1|∇un − wn|r∗dx+

∫
Ω

α0|Ewn|r∗dx ≤ En(wn, un)

≤ En(0, 0) ≤ 1

2
‖f‖2

L2(Ω).

(4.6)

Thus, the sequences (un)n∈N and (wn)n∈N are bounded in BV(Ω) and BD(Ω), respectively. In
order to see this, note that by setting αi := minx∈Ω αi(x), i = 0, 1, we get

TGV2
α0,α1

(un) = min
w∈BD(Ω)

α1‖∇un − w‖M + α0‖Ew‖M

≤
∫

Ω

α1|∇un − wn|r∗dx+

∫
Ω

α0|Ewn|r∗dx ≤
1

2
‖f‖2

L2(Ω).

Hence, (un)n∈N is bounded in the sense of second-order TGV. Using the fact that T is injective on the
set of affine functions, one can further derive a uniform L1 bound on (un)n∈N; see for instance [16,
Theorem 4.2]. This implies further that this sequence is bounded on BV(Ω). The bound on (wn)n∈N
in BD(Ω) then follows from (4.6).

From compactness theorems in those spaces (for BD(Ω) see for instance [56]) we have that there
exist u∗ ∈ BV(Ω) and w∗ ∈ BD(Ω) such that unk

∗
⇀ u∗ and wnk

∗
⇀ w∗ in BV(Ω) and BD(Ω)

respectively along suitable subsequences. Due to the lower semicontinuity of the functional E with
respect to these convergences, we have for any pair (w̃, ũ) ∈ H1(Ω,Rd)×H1(Ω)

E(w∗, u∗) ≤ lim inf
k→∞

E(wnk
, unk

) ≤ lim inf
k→∞

Enk
(wnk

, unk
) ≤ lim inf

k→∞
Enk

(w̃, ũ) = E(w̃, ũ).

(4.7)

Recall now that LD(Ω) = {w ∈ L1(Ω,Rd) : Ew ∈ L1(Ω,Rd×d)} is a Banach space en-
dowed with the norm ‖w‖LD(Ω) = ‖w‖L1(Ω,Rd) + ‖Ew‖L1(Ω,Rd×d) and that C∞(Ω,Rd) is dense

in that space; see [55]. From this, in combination with the fact that C∞(Ω) is dense in W 1,1(Ω) ⊂
Ld/d−1(Ω) we have that for every (ŵ, û) ∈ LD(Ω)×W 1,1(Ω) there exists a sequence

(ŵh, ûh)h∈N ∈ C∞(Ω,Rd)× C∞(Ω) ⊆ H1(Ω,Rd)×H1(Ω),

such that E(ŵh, ûh)→ E(ŵ, û). Hence, since (4.7) holds we have that

E(w∗, u∗) ≤ E(ŵ, û), for all (ŵ, û) ∈ LD(Ω)×W 1,1(Ω). (4.8)
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Finally, by following similar steps as in the proof of [57, Thm. 3], we can show that for every (w, u) ∈
BD(Ω)× BV(Ω) there exists a sequence (wh, uh)h∈N ∈ LD(Ω)×W 1,1(Ω) such that

‖uh − u‖Ld/d−1(Ω) → 0,

∫
Ω

α1|∇uh − wh|r∗dx→
∫

Ω

α1d|Du− w|r∗ ,∫
Ω

α0|Ewh|r∗dx→
∫

Ω

α0d|Ew|r∗ ,

which implies again that E(wh, uh)→ E(w, u). This, together with (4.8) yields

E(w∗, u∗) ≤ E(w, u), for all (w, u) ∈ BD(Ω)× BV(Ω).

This yields that (w∗, u∗) is a solution pair for (3.9).

Note that if the solution u∗ of (3.9) is unique, then we have un
∗
⇀ u∗ along the entire sequence.

We now proceed to the second level of regularization of the problem (4.1), which, in addition to lifting
the regularity of u and w, respectively, also smoothes the non-differentiable constituents. For this
purpose, we define the following primal problem which will also be treated numerically below:

minimize
1

2
‖Tu− f‖2

L2(Ω) +

∫
Ω

α1ϕγ,r∗(∇u− w)dx+

∫
Ω

α0ϕγ,r∗(Ew)dx

+
µ

2
‖∇u‖2

L2(Ω) +
α

2
‖w‖2

H1(Ω,Rd) over (u,w) ∈ H1(Ω)×H1(Ω,Rd).

(Pγ)

Here ϕγ,r∗ denotes the Huber-regularized version of the | · |r∗ norm. In what follows, for notational
convenience we will focus on ϕγ := ϕγ,2, i.e., for a vector v ∈ X , S = Rd or Rd×d and γ > 0 we
use

ϕγ(v)(x) =

{
|v(x)| − 1

2
γ if |v(x)| ≥ γ,

1
2γ
|v(x)|2 if |v(x)| < γ,

(4.9)

with | · | denoting either the Euclidean norm in Rd or the Frobenius norm in Rd×d. We mention that
this type of Huber regularization of TV-type terms in the primal problem corresponds to an L2 regu-
larization of the dual variables in the predual [17, 40]. In order to illustrate this consider the following
denoising problem (Pγ) without any H1 regularization:

minimize
1

2
‖u−f‖2

L2(Ω) +

∫
Ω

α1d|Du−w|γ1 +

∫
Ω

α0d|Ew|γ2 over (u,w) ∈ BV(Ω)×BD(Ω),

(4.10)
where ∫

Ω

α1d|Du− w|γ1 =

∫
Ω

α1ϕγ1(∇u− w)dx+

∫
Ω

α1d|Dsu|,∫
Ω

α0d|Ew|γ2 =

∫
Ω

α0ϕγ2(Ew)dx+

∫
Ω

α0d|Esw|.

Its corresponding predual problem is given by

maximize − 1

2
‖f + divq‖2

L2(Ω) −
γ0

2

∫
Ω

1

α0

|p|2dx− γ1

2

∫
Ω

1

α1

|q|2dx+
1

2
‖f‖2

L2(Ω),

over (p, q) ∈ W d
0 (div2; Ω)× q ∈ W d

0 (div; Ω),

subject to q = −divp, |p(x)| ≤ α0(x), |q(x)| ≤ α1(x).

(4.11)
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The proof is similar to the one of Proposition 3.2 with

F1(p, q) = I{|·(x)|≤α0(x)}(p) + I{|·(x)|≤α1(x)}(q)−
γ0

2

∫
Ω

1

α0

|p|2dx− γ1

2

∫
Ω

1

α1

|q|2dx,

and in the dualization process we use the fact that for an S-valued measure µ we have,∫
Ω

αdϕγ(µ) = sup

{∫
Ω

φ dµ− I{|·(x)|≤α(x)}(φ)− γ

2
‖φ‖2

L2(Ω) : φ ∈ C∞c (Ω, S)

}
;

see for instance [26].

Returning to the (doubly) regularized primal problem (Pγ), we are primarily interested in its associated
first-order optimality conditions.

Proposition 4.3. We have that the pairs (w, u) ∈ H1(Ω,Rd)×H1(Ω) and (p, q) ∈ L2(Ω,Rd×d)×
L2(Ω,Rd) are solution to (Pγ) and its predual problem, respectively, if and only if the following opti-
mality conditions are satisfied:

Bu− µ∆u+∇∗q − T ∗f = 0 in H1(Ω)∗, (Opt1)

αw − α∆w − q + E∗p = 0 in H1(Ω,Rd)∗, (Opt2)

max(|∇u− w|, γ1)q − α1(∇u− w) = 0 in L2(Ω,Rd), (Opt3)

max(|Ew|, γ0)p− α0Ew = 0 in L2(Ω,Sd×d). (Opt4)

The proof of Proposition 4.3 follows from calculating the corresponding primal-dual optimality condi-
tions as in Proposition 4.1. The analogous approximation result follows, where we have set γ0 = γ1 =
γ and T = Id for simplicity.

Proposition 4.4. Let (w, u, q, p) and (wγ, uγ, pγ, qγ) satisfy the optimality conditions (4.2)–(4.5) and
(Opt1)–(Opt4), respectively. Then, as γ → 0, we have uγ → u strongly inH1(Ω),wγ → w strongly
in H1(Ω,Rd) as well as divqγ → divq and qγ + divpγ → q + divp weakly∗ in H1(Ω)∗ and
H1(Ω,Rd)∗, respectively.

Proof. By subtracting first two equations of the optimality system of Proposition 4.1 and 4.3, respec-
tively, we get for all v ∈ H1(Ω), ω ∈ H1(Ω,Rd)∫

Ω

(u− uγ)v dx+ µ

∫
Ω

∇(u− uγ)∇v dx =

∫
Ω

(qγ − q)∇v dx, (4.12)

α

∫
Ω

(w − wγ)ω dx+ α

∫
Ω

∇(w − wγ)∇ω dx =

∫
Ω

(q − qγ)ω dx+

∫
Ω

(pγ − p)Eω dx. (4.13)

When using v = u− uγ and ω = w − wγ in the equations above and adding them up we get

‖u− uγ‖2
L2(Ω) + µ‖∇u−∇uγ‖2

L2(Ω,Rd) + α‖w − wγ‖2
H1(Ω,Rd) = R1 +R2, (4.14)

where

R1 :=

∫
Ω

(qγ − q)>[∇u− w − (∇uγ − wγ)] dx, R2 :=

∫
Ω

(pγ − p)>E(w − wγ) dx.

We now estimate R1 and R2. Consider the partitions of Ω into disjoint sets (up to sets of measure
zero) Ω = A ∪ I = Aγ ∪ Iγ , where

A = {x ∈ Ω : |∇u− w| > 0}, I = Ω \ A,
Aγ = {x ∈ Ω : |∇uγ − wγ| > γ}, Iγ = Ω \ Aγ.
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We estimate R1 separately on the disjoint sets Aγ ∩ A, Aγ ∩ I , Iγ ∩ A and Iγ ∩ I . Recall that
|q(x)| ≤ α1(x), |qγ(x)| ≤ α1(x) for almost every x ∈ Ω. Starting fromAγ ∩ A and noticing that

q = α1
∇u− w
|∇u− w|

, qγ = α1
∇uγ − wγ
|∇uγ − wγ|

,

it follows that pointwise onAγ ∩ A (with argument x left off for ease of notation) we have

(qγ − q)>[∇u− w − (∇uγ − wγ)] = qγ(∇u− w)− α1|∇uγ − wγ| − α1|∇u− w|+ q(∇uγ − wγ)
≤ α1|∇u− w| − α1|∇uγ − wγ| − α1|∇u− w|+ α1|∇uγ − wγ|
= 0.

Turning now to the setAγ ∩ I and recalling∇u− w = 0 we have

(qγ − q)>[∇u− w − (∇uγ − wγ)] ≤ −α1|∇uγ − wγ|+ |q||∇uγ − wγ| ≤ 0.

For the set Iγ ∩ A, note that

|∇uγ − wγ| ≤ γ, ∇uγ − wγ =
γ

α1

qγ.

Thus, we can estimate

(qγ − q)>[∇u− w − (∇uγ − wγ)] ≤ qγ(∇u− w)− α1|∇u− w| − qγ(∇uγ − wγ) + q(∇uγ − wγ)
≤ α1|∇u− w| − α1|∇u− w| − qγ(∇uγ − wγ) + q(∇uγ − wγ)

≤ − γ

α1

|qγ|2 + α1
γ

α1

|qγ| = γ|qγ|
(

1− |qγ|
α1

)
≤ γα1.

Similarly, for the set Iγ ∩ I we get

(qγ − q)>[∇u− w − (∇uγ − wγ)] ≤ γα1.

Combining the above estimates we have

R1 ≤
∫

Ω

γα1 dx→ 0

and for R2 we get

R2 ≤
∫

Ω

γα0 dx→ 0.

Hence, from (4.14) we obtain the desired convergences for uγ and wγ . From this result and using
(4.12) and (4.13) we get that for every v ∈ H1(Ω) and for every ω ∈ H1(Ω,Rd) we have∫

Ω

vdivqγ dx→
∫

Ω

vdivq dx and

∫
Ω

ω(qγ + divpγ) dx→
∫

Ω

ω(q + divp) dx,

as γ → 0. This completes the proof.

Finally, the following approximation result holds true, when α, µ and γ tend to zero.

Proposition 4.5. Let T = Id, µn, αn, γn → 0, and denote by uµn,αn,γn ∈ H1(Ω) the solution of

(Pγ) with (µ, α, γ) = (µn, αn, γn). Then uµn,αn,γn
∗
⇀ u∗ in BV(Ω), where u∗ solves (3.9).
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Proof. It is easy to show that uµn,αn,γn → u∗ in L1(Ω). Indeed, we have

‖uµn,αn,γn − u∗‖L1(Ω) ≤ ‖uµn,αn,0 − u∗‖L1(Ω) + ‖uµn,αn,γn − uµn,αn,0‖L1(Ω).

According to Proposition 4.2 it holds that ‖uµn,αn,0 − u∗‖L1(Ω) → 0. The other term tends to zero
according to equation (4.14) of Proposition 4.4. There, the estimates for R1, R2 are not affected if we
substitute u and uγ by uµn,αn,0 and uµn,αn,γn , respectively. In other words, the estimate

‖uµn,αn,0 − uµn,αn,γn‖2
L2(Ω) ≤ γn|Ω|‖α0 + α1‖∞

holds and hence ‖uµn,αn,γn − uµn,αn,0‖L1(Ω) → 0.

To finish the proof and show that the convergence is weak∗ in BV(Ω), it suffices to establish that∫
Ω
|∇uµn,αn,γn dx| is uniformly bounded in n; see [2, Prop. 3.13]. Observe first that as in the proof of

Proposition 4.2 we get∫
Ω

α1ϕγ(∇uµn,αn,γn − wµn,αn,γn)dx+

∫
Ω

α0ϕγ(Ewµn,αn,γn)dx ≤ 1

2
‖f‖2

L2(Ω). (4.15)

From (4.9) we have that ϕγ(·) ≥ | · | − 1
2
γ, and hence we obtain∫

Ω

α1|∇uµn,αn,γn − wµn,αn,γn|dx+

∫
Ω

α0|Ewµn,αn,γn|dx ≤
1

2
‖f‖2

L2(Ω) +
(‖α1‖∞ + ‖α0‖∞)|Ω|γn

2

≤ K, (4.16)

for some constant K > 0. Then, as in the proof of Proposition 4.2, we get that (uµn,αn,γn)n∈N is
bounded in TGV which, together with the L1 bound, gives the desired bound in TV.

4.2 Regularization of the predual problem

We now consider the following regularization of the predual problem (3.2) for ε > 0:

min
p∈H2

0 (Ω,Sd×d)

ε

2
‖∆p‖2

L2(Ω,Sd×d) +
ε

2
‖p‖2

L2(Ω,Sd×d) +
1

2
‖T ∗f − div2p‖2

B +
1

ε
M(p), (4.17)

where H2
0 (Ω,Sd×d) denotes the usual Sobolev space with homogeneous first-order trace on the

boundary [1], and the map M : H0(div2; Ω) → R+
0 is convex and continuous, with M(p) = 0 if

and only if |p(x)|r ≤ α0(x) and |divp(x)|r ≤ α1(x) for almost every x ∈ Ω. We also assume
that M is coercive in the sense that M(pn) → ∞ if max{‖pn‖L2(Ω), ‖divpn‖L2(Ω)} → ∞ for
some sequence (pn)n∈N. Further, ∆ denotes the vector Laplacian operator, which is the standard
Laplacian applied component-wise. For the sake of discussion, we mention that more sophisticated
regularizations securing divp ∈ Lr(Ω) with r > 2 for the subsequent application of (function space
versions of) generalized Newton methods for solving this problem are possible as well.

Proposition 4.6. Problem (4.17) admits a unique solution pε ∈ H2
0 (Ω,Sd×d), and

div2pε → div2p, (4.18)

in L2(Ω) as ε→ 0, up to subsequences, where p solves problem (3.2).
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Proof. By J(·) we denote the optimal objective of (3.2), where we ignore the term 1
2
‖f‖L2(Ω), and

let Kα be the corresponding constraint set. Let εn → 0. Note that ‖ · ‖L2 + ‖∆ · ‖L2 is a norm
on H2(Ω,Sd×d) [29]. Thus, the minimizing functional in (4.17), denoted by Jn(·), is coercive over
H2

0 (Ω,Sd×d) for every n ∈ N. Hence, any infimizing sequence of (4.17) has a weakly convergent
subsequence in H2

0 (Ω,Sd×d). Further, Jn is weakly lower semicontinuous and, thus, (4.17) has a
solution pn, which is unique due to strict convexity.

Since Jn(pn) ≤ Jn(0) for all n ∈ N, by using the coercivity assumptions on M , we have that
(pn)n∈N is bounded in H0(div2; Ω). Hence, there exists p∗ ∈ H0(div2; Ω) and an (unrelabeled)
subsequence of (pn)n∈N converging weakly to p∗. We then have

J(p∗) ≤ lim inf
n→∞

J(pn) ≤ lim inf
n→∞

Jn(pn) ≤ lim sup
n→∞

Jn(pn) ≤ lim sup
n→∞

Jn(p̃) = J(p̃), (4.19)

for all p̃ ∈ H2
0 (Ω,Sd×d) with p̃ ∈ Kα. Note that necessarily p∗ ∈ Kα as well since

M(p∗) ≤ lim inf
n→∞

M(pn) ≤ lim inf
n→∞

εn
2
‖T ∗f‖2

B = 0.

We claim that p∗ actually solves (3.2). Indeed, for every p ∈ H0(div2; Ω) with p ∈ Kα, we get from
the density (2.12) that there exists (p̃n)n∈N ⊂ C∞c (Ω,Sd×d) ⊂ H2

0 (Ω,Sd×d) and p̃n ∈ Kα, such
that div2p̃n → div2p in L2(Ω). Hence, from the continuity of J we get J(p∗) ≤ limn→∞ J(p̃n) =
J(p), and thus p∗ solves (3.2). Finally, from (4.19) we observe that ‖div2pn‖L2(Ω) → ‖div2p‖L2(Ω),
and hence (4.18) holds.

For this problem we take r = ∞ leading to the anisotropic version of TGV and use M(p) =
Qδ(p, α0) + Pδ(divp, α1), where

Pδ(q, α1) =

∫
Ω

d∑
i=1

(Gδ(−(qi + α1)) +Gδ(qi − α1))dx, (4.20)

Qδ(p, α0) =

∫
Ω

∑
i,j=1
i≤j

(Gδ(−(pij + α0)) +Gδ(pij − α0))dx, (4.21)

with Gδ : R→ R acting component-wise and defined by

Gδ(t) =


1
2
t2 − δ

2
t+ δ2

6
, if t ≥ δ,

t3

6δ
, if 0 < t < δ,

0, if t ≤ 0,

(4.22)

for δ > 0. Summarizing and allowing for different regularization weights β > 0, γ > 0 (rather than
β = γ = ε > 0), (4.17) takes the form

min
p∈H2

0 (Ω,Sd×d)

β

2
‖∆p‖2

L2(Ω,Sd×d)+
γ

2
‖p‖2

L2(Ω,Sd×d)+
1

2
‖T ∗f−div2p‖2

B+
1

ε0
Qδ(p, α0)+

1

ε1
Pδ(divp, α1),

(4.23)
where, for greater flexibility, we also use 1

ε0
> 0 and 1

ε1
> 0, respectively, in front Qδ and Pδ. Note

that for sufficiently small ε0, ε1, the quantities Qδ(p, α0) and Pδ(divp, α1) get small as well and p
and divp are expected to “approximately” satisfy the box constraints in (3.2).

The Euler-Lagrange equation for (4.23) reads

gd(p, α0, α1) := β∆2p+γp+∇2B−1div2p−∇2B−1T ∗f+
1

ε0
Qδ(p, α0)− 1

ε1
∇Pδ(divp, α1) = 0,

(4.24)
in [H2

0 (Ω,Sd×d)]∗. Here, Pδ denotes Pδ(q, α1) := G′δ(q−α1)−G′δ(−q−α1), andQδ is analogous.
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5 Two bilevel optimization schemes

In this section we will adapt the bilevel optimization framework developed in [37, 39] in order to auto-
matically select the regularization functions α0 and α1. The main idea is to minimize a suitable upper
level objective over both the image u and the regularization parameters α0, α1 subject to u being a
solution to a (regularized) TGV-based reconstruction problem with these regularization weights.

It is useful to recall the definitions of the localized residual R and the function F as stated in the
introduction:

Ru(x) =

∫
Ω

w(x, y)(Tu− f)2(y)dy, (5.1)

where w ∈ L∞(Ω× Ω) with
∫

Ω

∫
Ω
w(x, y) dxdy = 1 and

F (v) :=
1

2

∫
Ω

max(v − σ2, 0)2dx+
1

2

∫
Ω

min(v − σ2, 0)2dx, (5.2)

for some appropriately chosen σ2, σ2. We next describe two bilevel schemes each one based on the
two regularized TGV problems studied in the previous sections.

5.1 Bilevel dual

Noting that the localized residual Ru can also be written in terms of the dual variable p yielding

Ru(x) = R(div2p)(x) :=

∫
Ω

w(x, y)
(
TB−1div2p− (TB−1T ∗ − I)f

)2
dy. (5.3)

The duality based bilevel TGV problem is defined as follows:

min Jd(p, α0, α1) := F (R(div2p)) +
λ0

2
‖α0‖2

H1(Ω) +
λ1

2
‖α1‖2

H1(Ω),

over (p, α) ∈ H2
0 (Ω,Sd×d)×A0

ad ×A1
ad,

subject to p = argmin
p∈H2

0 (Ω,Sd×d)

β

2
‖∆p‖2

L2(Ω,Sd×d) +
γ

2
‖p‖2

L2(Ω,Sd×d) +
1

2
‖T ∗f − div2p‖2

B

+
1

ε0
Qδ(p, α0) +

1

ε1
Pδ(divp, α1).

(PTGV-d)
Here, box constraints on αi are contained in

Aiad := {αi ∈ H1(Ω) : αi ≤ αi ≤ αi}, i = 0, 1, (5.4)

with αi, αi ∈ L2(Ω) and 0 < ε ≤ αi(x) < αi(x) − ε in Ω for some ε, ε > 0, i = 0, 1. Note that
theH1 regularity on the parameter functions α0, α1 facilitates the existence and differential sensitivity
analysis as established in [37, 39] for the TV case. Note, however, that this setting does not guarantee
a priori that these functions belong to C(Ω), the regularity required for applying the dualization results
of the previous sections. Nevertheless, under mild data assumptions, one can make use of a regularity
result of the H1–projection onto the setsA0

ad andA1
ad; see [39, Corollary 2.3]. In particular, if α0, α0,

α1, α1 as well as the initializations for α1 and α0 are constant functions, then along the projected
gradient iterations, compare Algorithms 3 and 4, the weights are guaranteed to belong to H2(Ω)
which (for dimension d ≤ 2) embeds into C(Ω).
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We briefly note that in the TV case it can be shown [30, 33] that W 1,1 regularity for the regularization
parameter α suffices to establish a dualization framework. A corresponding result is not yet known for
TGV, even though one expects that it could be shown by similar arguments. Hence, here we will also
make use of the H1–projection regularity result as described above.

Regarding the box constraints (5.4) in [24] it was shown that for a PSNR-optimizing upper level ob-
jective J̃(u, α) = ‖u(α) − f‖2

L2(Ω) subject to H1 and Huber regularized TV and TGV denoising
problems, under some mild conditions on the data f , the optimal scalar solutions α and (α0, α1) are
strictly positive. As depicted in Figure 2 the upper level objective discussed here appears close to
optimizing the PSNR, keeping the parameters strictly positive via (5.4) seems, however, necessary for
the time being.

We now briefly discuss how to treat the bilevel problem (PTGV-d). Let (α0, α1) 7→ p(α0, α1) denote
the solution map for the lower level problem, equivalently of the optimality condition (4.24). Then the
problem (PTGV-d) admits the following reduced version

min Ĵd(α0, α1) := Jd(p(α0, α1), α0, α1) over α0 ∈ A0
ad, α1 ∈ A1

ad. (5.5)

Similarly to the TV case [37], one can show that the reduced functional ĴTGV : H1(Ω)×H1(Ω)→ R
is differentiable. We can then apply the KKT framework in Banach space [59]:{

minimize T (x) over x ∈ X,
subject to x ∈ C and g(x) = 0,

(5.6)

where V,A, Z are Banach spaces, X = V × A, T : X → R and g : X → Z are Fréchet
differentiable and continuous differentiable functions, respectively, and C ⊂ X is a non-empty, closed
convex set. In the bilevel TGV problem (PTGV-d) we have V = H2

0 (Ω,Sd×d),A = H1(Ω)×H1(Ω),
Z = V ∗, C = V ×A0

ad ×A1
ad, x = (p, α0, α1), T (x) = JTGV(p, α0, α1) and

g(x) = gd(x) := β∆2p+ γp+∇2B−1div2p−∇2B−1T ∗f +
1

ε0
Qδ(p, α0)− 1

ε1
∇Pδ(divp, α1).

Similarly to [37], for an optimal triplet (p̃, α̃0, α̃1) we can further show that there exists an adjoint
variable q ∈ H2

0 (Ω,Sd×d) (Lagrange multiplier) satisfying the following:

〈(div2)∗J ′0(div2p̃, p)〉V ∗,V + 〈β∆q + γq +∇2B−1div2q +
1

ε0
D1Qδ(p̃, α̃0)q

− 1

ε1
D1∇Pδ(p̃, α̃1)q, p〉V ∗,V = 0,

(5.7)

〈λ1(−∆ + I)α̃1 −
1

ε1
(D2∇Pδ(p̃, α̃1))∗q, α1 − α̃1〉H1(Ω)∗,H1(Ω) ≥ 0, (5.8)

〈λ0(−∆ + I)α̃0 +
1

ε0
(D2Qδ(p̃, α̃0))∗q, α0 − α̃0〉H1(Ω)∗,H1(Ω) ≥ 0, (5.9)

for all p ∈ V , α0 ∈ A0
ad and α1 ∈ A1

ad. Here we have used the notation J0 := F (R·), and D1

as well as D2 denote derivatives with respect to the first and second arguments, respectively. The
derivative of the reduced objective is then computed as

Ĵ ′d(α0, α1) = (λ1(−∆ + I)α1, λ0(−∆ + I)α0)

+

(
1

ε0
(D2Qδ(p̃, α0)),− 1

ε1
(D2∇Pδ(p̃, α1))

)∗
q(α0, α1),

(5.10)

DOI 10.20347/WIAS.PREPRINT.2689 Berlin 2020



M. Hintermüller, K. Papafitsoros, C.N. Rautenberg, H. Sun 20

where again q(α0, α1) solves (5.7) for α̃0 = α0, α̃1 = α1 and p̃ = p(α0, α1).

We have Ĵ ′d(α0, α1) ∈ (H1(Ω)×H1(Ω))∗. In order to obtain the gradient of this functional we apply
the inverse Riesz map as follows:

∇Ĵd(α0, α1) :=
(
R−1
H1P1Ĵ

′
d(α0, α1),R−1

H1P2Ĵ
′
d(α0, α1)

)
∈ H1(Ω)×H1(Ω), (5.11)

where for (r1, r2) ∈ H1(Ω)×H1(Ω) we have

Ĵ ′d(α0, α1)[r1, r2] = P1Ĵ
′
d(α0, α1)[r1] + P2Ĵ

′
d(α0, α1)[r2],

with P1, P2 denoting the first and the second component of the derivative of the reduced objective.
Equipped with this gradient, a gradient-related descent scheme as in [39, Algorithm 1] can be set up
for our bilevel TGV problem. This will be discussed further in Section 6.1 below.

5.2 An MPEC

Utilizing the primal-dual first-order optimality characterization (Opt1)–(Opt4) of the solution to the
lower level problem, we arrive at the following mathematical program with equilibrium constraints
(MPEC, for short):

min Jpd(u, α0, α1) := F (R(u)) +
λ0

2
‖α0‖2

H1(Ω) +
λ1

2
‖α1‖2

H1(Ω),

over (u, α0, α1) ∈ H1(Ω)×A0
ad ×A1

ad,

subject to Bu− µ∆u+∇∗q − T ∗f = 0,

αw − α∆w − q + E∗p = 0,

maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0,

maxδ(|Ew|, γ0)p− α0Ew = 0.

(PTGV-p.d.)

In order to avoid constraint degeneracy and for the sake of differentiability, we employ here a smoothed
version maxδ(·, γ) of max and its derivative, denoted by Xδ, defined as follows for r ≥ 0 and for
δ
2
< γ:

maxδ(r, γ) =


γ
1
2δ

(r + δ
2
− γ)2 + γ,

r

Xδ(r, γ) =


0 if r ≤ γ − δ

2
,

1
δ
(r + δ

2
− γ) if γ − δ

2
< r < γ + δ

2
,

1 if r > γ + δ
2
.

We treat (PTGV-p.d.) similarly to (PTGV-d) via the KKT framework, with V = H1(Ω), A, C as be-
fore, X = H1(Ω) × H1(Ω,Rd) × L2(Ω,Rd), L2(Ω,Sd×d) and Z = H1(Ω)∗ × H1(Ω,Rd)∗ ×
L2(Ω,Rd), L2(Ω,Sd×d). Here gpd : X → Z is defined by the optimality conditions (Opt1)–(Opt4).

We will skip here the proofs for the differentiability of the functions g and the reduced objective J as
well as the existence proofs for (PTGV-d) and (PTGV-p.d.). These results can be shown similarly to
the corresponding assertions for TV; see [37, 39].
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5.3 Newton solvers for the lower level problems

5.3.1 Dual TGV Newton

Before we proceed to devising of a projected gradient algorithm for the solution of both aforementioned
bilevel problems, we discuss here two Newton algorithms for the solutions of the corresponding lower
level problems.

We first state the corresponding function space Newton method for the solution of (4.24); see Algorithm
1.

Algorithm 1
Function space Newton algorithm for the solution of the regularized TGV dual problem (4.23)

while some stopping criterion is not satisfied do
Find δpk ∈ H2

0 (Ω,Sd×d) such that the following equation is satisfied in [H2
0 (Ω,Sd×d)]∗:

∇2B−1div2δpk + β∆2δpk + γδp+
1

ε0

(
G′′δ(p

k − α0) +G′′δ(−pk − α0)
)
δpk

− 1

ε1
∇
(
G′′δ(divpk − α1) +G′′δ(−divpk − α1)

)
divδpk = −G(pk),

Update pk+1:

pk+1 = pk + δpk

end while

Here G′′δ denotes the second derivative of Gδ in (4.22). Due to the regularization of p in (4.24) the
algorithm admits a local superlinear convergence; see [31, 32]. Moreover, similar to [41] it can be
shown that the solver is mesh (i.e. image resolution) independent.

A few words on the discrete version of Algorithm 1 are in order. Images (d = 2) are considered as
elements of Uh := {u |u : Ωh → R} where Ωh = {1, 2, . . . , n} × {1, 2, . . . ,m} is a discrete
cartesian grid that corresponds to the image pixels. The mesh size, defined as the distance between
the grid points, is set to h = 1/

√
nm. We define the associated discrete function spaces Wh =

Uh×Uh, Vh = Uh×Uh×Uh, so that p ∈ Vh with p = (p11, p12, p22). For the discrete gradient and
divergence we have,∇ : Wh → Vh and div : Vh → Wh satisfying the adjoint relation∇ = −div>.
We refer the reader to Appendix B for precise definitions of these operators as well as for a detailed
description of the other discrete second- order differential operators,∇2 : Uh → Vh, div2 : Vh → Uh,
the vector bi-Laplacian ∆2 : Vh → Vh, as well as the operator∇2div2 : Vh → Vh. We note here that
these operators must be defined with the correct boundary conditions in order to reflect the boundary
conditions imposed on p ∈ H2

0 (Ω,S2×2).

5.3.2 Primal-Dual TGV Newton

Next we briefly describe the primal-dual TGV Newton method for the solution of the first-order op-
timality conditions in Proposition 4.3 written here for the denoising case, for the sake of readability
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only:

u− µ∆u− divq − f = 0, (5.12)

αw − α∆w − q − divp = 0, (5.13)

maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0, (5.14)

maxδ(|Ew|, γ0)p− α0Ew = 0. (5.15)

For the discretized versions of the above differential operators, we use the standard five-point stencils
with zero Neumann boundary conditions. Note that these act on the primal variables u and w, which
satisfy natural boundary conditions in contrast to the dual variable. The discretized symmetrized gra-
dient Ew is defined as 1

2
(∇w + (∇w)>).

The system of equations (5.12)–(5.15) can be shortly written as gpd(x) = 0, where x = (u,w, q, p).
We compute the derivative of gpd at a point x = (u,w, q, p) as the following block-matrix:

Dgpd(x) = Dgpd(u,w, q, p) =

[
A B
C D

]
,

where

A =

[
I − µ∆ 0

0 α(I −∆)

]
, B =

[
−div 0
−I −div

]
, D =

[
maxδ(|∇u− w|, γ1) 0

0 maxδ(|Ew|, γ0)

]
,

(5.16)

C =

[
−α1∇+ qXδ(|∇u− w|, γ1) ∇u−w|∇u−w| · ∇ α1I + qXδ(|∇u− w|, γ1) ∇u−w|∇u−w| · (−I)

0 −α0E + pXδ(|Ew|, γ0) Ew
|Ew| · E

]
.

(5.17)
Given xk, the Newton iteration for solving the system of equations (5.12)–(5.15), or gpd(x) = 0 for
short, reads

xk+1 = xk −DF(xk)−1F(xk),

which can also be written as

Dgpd(xk)xk+1 = Dgpd(xk)xk − gpd(xk). (5.18)

Here it is convenient to introduce the notation

Dgpd(xk) = Dgpd(uk, wk, qk, pk) =

[
A B
Ck Dk

]
since only the submatricesC andD depend on k. Note that the righthand sideDgpd(xk)xk−gpd(xk)
of the linear system (5.18) can be written as

Dgpd(xk)xk −F(xk) =

(
bk1
bk2

)
,

where

bk1 = (f, 0)> , and bk2 =
(
qkXδ(|∇uk − wk|, γ1)|∇uk − wk|, pkXδ(|Ewk|, γ0)|Ewk|

)>
.
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Notation-wise, the components that appear in bk2 should be regarded as the diagonals of the corre-
sponding diagonal matrices that we mentioned before, multiplied component-wise. By introducing the
notation xk1 = (uk, wk)>, xk2 = (qk, pk)>, the Newton system (5.18) can be written as[

A B
Ck Dk

](
xk+1

1

xk+1
2

)
=

(
bk1
bk2

)
. (5.19)

The above system can be simplified utilizing the Schur complement: First solve for the primal variables
xk+1

1 = (uk+1, wk+1) and then recover the dual ones xk+1
2 = (qk+1, pk+1). This yields

(A−BD−1
k Ck)x

k+1
1 = bk1 −BD−1

k bk2,

xk+1
2 = D−1

k (bk2 − Ckxk+1
1 ).

The folllowing result then holds.

Lemma 5.1. If (qk, pk) belong to the feasible set, i.e., |qk| ≤ α1 and |pk| ≤ α0 component-wise,
then the matrix Sk := (A− BD−1

k Ck) is positive definite and for the minimum eigenvalues we have
λmin(Sk) ≥ λmin(A) > 0. Furthermore, S−1

k is bounded independently of k.

The proof of Lemma 5.1 follows the steps of the analogous proof in [40] and is hence omitted. Sum-
marizing, the Newton method for the solution of the (5.12)-(5.15) is outlined in Algorithm 2. Here we
have followed [40] and project in every iteration the variables q, p onto the feasible sets such that the
result of Lemma 5.1 holds.

Algorithm 2
Newton algorithm for the solution of the regularized TGV primal problem (Pγ)

while some stopping criterion is not satisfied do
Solve the linear system for xk+1

1 = (uk+1, wk+1)

(A−BD−1
k Ck)x

k+1
1 = bk1 −BD−1

k bk2

Update x̃k+1
2 = (q̃k+1, p̃k+1) as follows

x̃k+1
2 = D−1

k (bk2 − Ckxk+1
1 )

Compute qk+1, pk+1 as projections of q̃k+1, p̃k+1 onto the feasible sets {q : |q| ≤ α1}, {p : |p| ≤
α0}
end while

The projections onto the feasible sets are defined respectively as

q =
q̃

max
{

1, |q̃|
α1

} , p =
p̃

max
{

1, |p̃|
α0

} , (5.20)

with the equalities above to be considered component-wise.

6 Numerical implementation

In this section we will describe two projected gradient algorithms for the solution of the discretized
versions of the two bilevel problems (PTGV-d) and (PTGV-p.d.). Note that for most of the experiments
we will keep α0 a scalar – this is justified by the numerical results; see the relevant discussion later
on.
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6.1 The numerical algorithm for (PTGV-d)

We now describe our strategy for solving the discretized version of the bilevel TGV problem (PTGV-d).
For this purpose, we introduce the discrete versions of differential operators and norms that appear in
the upper level objective of (PTGV-d). We will make use of the discrete Laplacian with zero Neumann
boundary conditions ∆N : Uh → Uh which is used to act on the weight function α1. These are the
desired boundary conditions for α1 as dictated by the regularity result for the H1–projection in [39,
Corollary 2.3]. For that we use the standard Laplacian stencil, setting the function values of ghost grid
points to be the same with the function value of the nearest grid point in Ωh. For a function u ∈ Uh we
define the discrete `2 norm as

‖u‖2
`2(Ωh) = h2

∑
(i,j)∈Ωh

|ui,j|2.

For the discrete H1 norm applied to the weight function α1 we use

‖α1‖H1(Ωh) = h
√
α>1 (I −∆N)α1,

while the dual norm is defined as

‖r‖H1(Ωh)∗ = ‖(I −∆N)−1r‖H1(Ωh) = h
√
r>(I −∆N)−1r

based on theH1 → H1(Ω)∗ Riesz map α 7→ r = (I−∆N)α. We will also make use if the following
version of the discrete dual H2

0 (Ωh)
∗:

‖v‖H2
0 (Ωh)∗ = h

√
v>(I + ∆2)−1v.

For the discrete version of the averaging filter in the definition of the localized residuals (5.1) we use
a filter of size nw × nw, with entries of equal value whose sum is equal to one. With these definitions
the discrete version of the bilevel TGV (PTGV-d) is the following:


minimize

1

2
‖(R(div2p)− σ2)+‖2

`2(Ωh) +
1

2
‖(σ2 −R(div2p))+‖2

`2(Ωh) +
λ

2
‖α1‖2

H1(Ωh),

over (p, α0, α1) ∈ Vh × (A0
ad)h × (A1

ad)h,

subject to β∆2p+ γp+∇2B−1div2p−∇2B−1T ∗f +
1

ε0
Qδ(p, α0)− 1

ε1
∇Pδ(divp, α1) = 0.

(Ph
TGV-d)

Here, (·)+ is applied in a component-wise way and we have

(A0
ad)h = {α0 ∈ R : α0 ≤ α0 ≤ α0},

(A1
ad)h = {α ∈ Uh : α1 ≤ (α1)i,j ≤ α1, for all (i, j) ∈ Ωh}.

Note that the discrete penalty functions Pδ : Wh → Wh and Qδ : Vh → Vh are defined straightfor-
wardly by componentwise application of the function G′δ.

Regarding the choice of the lower and upper bounds for the local variance σ2 and σ2, respectively,
we follow here the following rules, where σ2 is the variance of the “Gaussian” noise contaminating the
data:

σ2 = σ2

(
1 +

√
2

nw

)
, σ2 = σ2

(
1−
√

2

nw

)
. (6.1)
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The formulae (6.1) are based on the statistics of the extremes; see [39, Section 4.2.1].

We now proceed by describing the algorithm for the numerical solution of (Ph
TGV-d). In essence, we

employ a discretized projected gradient method with Armijo line search. The discrete gradient of the
reduced objective functional is computed with the help of the adjoint equation which is the discrete
version of (5.7). We summarize this in Algorithm 3.

For the sake of notation, here 1 denotes a matrix either of the form [Id; Id] or [Id; Id; Id] of size
nm × 2nm or nm × 3nm, respectively, depending on whether it is applied on α1 or α0. On the
other hand, 1 denotes a matrix of size 1× nm with all entries equal to one. The projection P(A1

ad)h is
computed as described in [39, Algorithm 4], that is via the semismooth Newton method developed in
[32]. We only mention that the original discretized H1–projection problem P(Aad)h(α̃) given bymin

1

2
‖α− α̃‖2

H1(Ωh) :=
h

2
(α− α̃)>(I −∆N)(α− α̃),

over α ∈ (Aad)h = {α ∈ Uh : α ≤ αi,j ≤ α},
(6.2)

is approximated by the following penalty version:

min
α∈Uh

1

2
‖α− α̃‖2

H1(Ωh) +
1

εα

(
1

2
‖(α− α)+‖2

`2(Ωh) +
1

2
‖(α− α)+‖2

`2(Ωh)

)
, (6.3)

with some small εα > 0. For the projection regarding α0, we simply set

P(A1
ad)h(α0) = max(min(α0, α0), α0).

Furthermore, a path following scheme is employed for solving gd(p, α0, α1) = 0. This done by using
a decaying sequence ε0 = ε`0, ε1 = ε`1 up to a tolerance

gd(p`+1, α0, α1) ≤ tol(`),

and then setting ε`+1
0 := max(θεε

`
0, ε0), ε`+1

1 := max(θεε
`
1, ε1) for some 0 < θε < 1, until a desired

level of penalization is reached.

6.2 The numerical algorithm for (PTGV-p.d.)

We now turn our attention to the discretized bilevel problem (PTGV-p.d.) which, again for simplicity,
is here formulated for the denoising case, only. Since for that problem we also report on numerical
experiments for spatially varying α0 we formulate the problem for this general case:

minimize
1

2
‖(R(u)− σ2)+‖2

`2(Ωh) +
1

2
‖(σ2 −R(u))+‖2

`2(Ωh) +
λ0

2
‖α0‖2

H1(Ωh) +
λ0

2
‖α1‖2

H1(Ωh),

over (u, α0, α1) ∈ Uh × (A0
ad)h × (A1

ad)h,

subject to u− µ∆u− divq − f = 0,

αw − α∆w − q − divp = 0,

maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0,

maxδ(|Ew|, γ0)p− α0Ew = 0.

(Ph
TGV-p.d.)
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Algorithm 3
Discretized projected gradient method for the bilevel TGV problem (Ph

TGV-d)

Input: f , α0, α0, α1, α1, σ, σ, λ, β, γ, ε0, ε1, δ, nw τ 0
0 , τ 0

1 , 0 < c < 1, 0 < θ− < 1 ≤ θ+

Initialize: α0
0 ∈ (A0

ad)h, α0
1 ∈ (A1

ad)h and set k = 0.
repeat

Use Algorithm 1 to compute the solution pk of the lower level problem

gd(pk, αk0, α
k
1) := β∆2pk+γpk+∇2B−1div2pk−∇2B−1T ∗f+

1

ε0
Qδ(p

k, αk0)− 1

ε1
∇Pδ(divpk, αk1) = 0

Solve the adjoint equation for qk

β∆2qk + γqk +∇2B−1div2qk +
1

ε0

(
G′′δ(p

k − 1αk0) +G′′δ(−pk − 1αk0)
)
qk

− 1

ε1
∇
(
G′′δ(divpk − 1αk1) +G′′δ(−divpk − 1αk1)

)
divqk

= −2∇B−1T ∗div2pk
(
w ∗

(
(R(div2pk)− σ2)+ − (σ2 −R(div2pk))+

))
Compute the derivative of the reduced objective with respect to α0 and α1

Ĵ ′d,α0
(αk0, α

k
1) =

1

ε0
[1 1 1]

(
−G′′δ(pk − 1αk0) +G′′δ(−pk − 1αk0)

)
qk,

Ĵ ′d,α1
(αk0, α

k
1) = − 1

ε1
[Id Id]∇

(
−G′′δ(divpk − 1αk1) +G′′δ(−divpk − 1αk1)

)
qk + λ(I −∆N)αk1.

Compute the reduced gradients

∇α0 Ĵd(αk0, α
k
1) = Ĵ ′d,α0

(αk0, α
k
1),

∇α1 Ĵd(αk0, α
k
1) = (I −∆N)−1Ĵ ′d(αk0, α

k
1)

Compute the trial points

αk+1
i = P(Ai

ad)h

(
αki − τ ki ∇αi

Ĵd(αk0, α
k
1)
)
, i = 0, 1

while

Ĵd(αk+1
0 , αk+1

1 ) > Ĵd(αk0, α
k
1)

+ c
(
Ĵ ′d,α0

(αk0, α
k
1)>(αk+1

0 − αk0) + Ĵ ′d,α1
(αk0, α

k
1)>(αk+1

1 − αk1)
)

do (Armijo line search)
Set τ k0 := θ−τ

k
0 , τ k1 := θ−τ

k
1 and re-compute

αk+1
i = P(Ai

ad)h

(
αki − τ ki ∇αi

Ĵd(αk0, α
k
1)
)
, i = 0, 1

end while
Update τ k+1

0 = θ+τ
k
0 , τ k+1

1 = θ+τ
k
1 and k := k + 1

until some stopping condition is satisfied
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Here the set (A0
ad)h is defined similarly to (A1

ad)h before. The constraints in (Ph
TGV-p.d.) are the

discretized versions of (5.12)-(5.15), still denoted by gpd(x) = 0. The upper level objective is still
denoted by Jpd. The corresponding discretized adjoint equation

Dxgpd(x∗)> = −DxJpd(x),

where x∗ := (u∗, w∗, q∗, p∗) is the adjoint variable, reads

[
A> C>

B> D>

]
u∗

w∗

q∗

p∗

 =


−2(u− f) (w ∗ ((R(u)− σ2)+ − (σ2 −R(u))+))

0
0
0

 :=

(
b∗1
b∗2

)
,

(6.4)
where the matrices above were defined in (5.16) and (5.17). The equation can be solved again for
x∗1 := (u∗, w∗) first and then subsequently for x∗2 := (q∗, p∗) as follows(

A> − C>(D>)−1B>
)
x∗1 = b∗1,

x∗2 = (D>)−1(b∗2 −B>x∗1).

The derivatives of the reduced objective with respect to α0 and α1, respectively, are

Ĵ ′pd,α0
(α0, α1) = (Dα0gpd)>x∗ +Dα0Jpd(α0, α1) (6.5)

=
[
Id Id 2Id

]
0

0
0
−diag(Ew)




u∗

w∗

q∗

p∗

+ λ0(Id−∆N)α0

(6.6)

= −
[
Id Id 2Id

]
diag(Ew)p∗ + λ0(Id−∆N)α0,

Ĵ ′pd,α1
(α0, α1) = (Dα1gpd)>x∗ +Dα1Jpd(α0, α1) (6.7)

=
[
Id Id

]
0

0
−diag(Du− w)

0




u∗

w∗

q∗

p∗

+ λ1(Id−∆N)α1,

= −
[
Id Id

]
diag(Du− w)q∗ + λ1(Id−∆N)α1,

where x = (u,w, q, p) solves gpd(x) = 0 for α0, α1. The corresponding reduced gradients are

∇αi
Ĵpd(α0, α1) = (I −∆N)−1Ĵ ′pd,αi

(α0, α1), i = 0, 1. (6.8)

We note that in the case of a scalarα0, we set λ0 = 0. Then, Ĵ ′pd,α0
(α0, α1) = −[1 1 21]diag(Ew)p∗,

and∇α0 Ĵpd(α0, α1) = Ĵ ′pd,α0
(α0, α1).

In summary, the projected gradient algorithm for the solutions of (Ph
TGV-p.d.) is described in Algorithm

4. The projections P(A0
ad)h and P(A1

ad)h are computed as before, using [39, Algorithm 4].
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Algorithm 4
Discretized projected gradient method for the bilevel TGV problem (Ph

TGV-p.d.)

Input: f , α0, α0, α1, α1, σ, σ, λ0, λ1, α, µ, γ0, γ1, δ, nw τ 0
0 , τ 0

1 , 0 < c < 1, 0 < θ− < 1 ≤ θ+

Initialize: α0
0 ∈ (A0

ad)h, α0
1 ∈ (A1

ad)h and set k = 0.
repeat

Use the Algorithm 2 to compute the solution xk = (uk, wk, qk, pk) of the lower level problem

gpd(uk, wk, qk, pk) = 0

Solve the adjoint equation (6.4) for (u∗, w∗, q∗, p∗)
Compute the derivative of the reduced objective with respect to α0 and α1 as in (6.6) and (6.7)
Compute the reduced gradients

∇αi
Ĵpd(αk0, α

k
1) = (I −∆N)−1Ĵ ′pd,αi

(αk0, α
k
1), i = 0, 1

Compute the trial points

αk+1
i = P(Ai

ad)h

(
αki − τ ki ∇αi

Ĵpd(αk0, α
k
1)
)
, i = 0, 1

while

Ĵpd(αk+1
0 , αk+1

1 ) > Ĵpd(αk0, α
k
1)

+ c
(
Ĵ ′pd,α0

(αk0, α
k
1)>(αk+1

0 − αk0) + Ĵ ′pd,α1
(αk0, α

k
1)>(αk+1

1 − αk1)
)

do (Armijo line search)
Set τ k0 := θ−τ

k
0 , τ k1 := θ−τ

k
1 and re-compute

αk+1
i = P(Ai

ad)h

(
αki − τ ki ∇αi

Ĵpd(αk0, α
k
1)
)
, i = 0, 1

end while
Update τ k+1

0 = θ+τ
k
0 , τ k+1

1 = θ+τ
k
1 and k := k + 1

until some stopping condition is satisfied

6.3 Numerical examples in denoising

We now discuss some weighted TGV numerical examples, with regularization weights produced au-
tomatically by Algorithms 3 and 4. We are particularly interested in the degree of improvement over
the scalar TGV examples. We are also interested in whether the statistics-based upper level objective
enforces an automatic choice of regularization parameters that ultimately leads to a reduction of the
staircasing effect. Our TGV results are also compared with the bilevel weighted TV method of [37, 39].
The associated test images are depicted in Figure 3 with resolution n = m = 256. The first one is
the well-known “Cameraman” image which essentially consists of a combination of piecewise constant
parts and texture. The next two images, “Parrot” and “Turtle” contain large piecewise affine type areas,
thus they are more suitable for the TGV prior. The final image “hatchling” is characterized by highly
oscillatory patterns of various kinds, depicting sand in various degrees of focus.

Parameter values for (Ph
TGV-d): For the lower level dual TGV problem we used β = 10−3, γ = 0,

δ = 10−6, ε0 = 10−12, ε1 = 10−12. Initially the lower problem is solved for ε00 = 103, ε01 = 103 and
each of these successively decreased by the same factor θε = 0.05 down to final values ε0 = ε1 =
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Cameraman Parrot Turtle Hatchling

Figure 3: Test images, resolution 256× 256.

10−12.

MATLAB’s backslash was used for the solution of the linear systems. We set α0 = 10−7, α0 = 10−2,
and λ = 10−11, while for the H1–projection we used εα = 10−10, and α1 = 10−7, α1 = 10−2. A
normalized nw × nw filter for w (i.e., with entries 1/n2

w), with nw = 7 was used. The local variance
barriers σ2 and σ2 were set according to (6.1). For our noisy images we have σ2 = 10−2, and thus the
corresponding values for (σ, σ) are (0.00798, 0.01202). For the Armijo line search the parameters
had the values τ 0

0 = 1, τ 0
1 = 10−12, while c = 10−8, θ− = 0.25, θ+ = 2.

Parameter values for (Ph
TGV-p.d.): For the lower level primal-dual TGV problem we used µ = 0.1,

α = 1, δ = 10−5, γ0 = γ1 = 10−3. We note that here we chose a mesh size h = 1. For the
H1–projection, we set εα = 10−6, and we also weighted the discrete Laplacian ∆N with 6 × 104.
For the lower and upper bounds of α0 and α1 we set here α0 = 10−2, α0 = 10 and α1 = 10−4,
α1 = 10. We also set λ1 = 10−11 and when we spatially varied α0 we also set λ0 = 10−11. We used
the same filterw and local variance barriers as before. For the Armijo line search the parameters were
τ 0

0 = 0.05, τ 0
1 = 100, c = 10−9, θ− = 0.25, θ+ = 2. We solved each lower level problem until the

residual of each of the optimality conditions (5.12)–(5.15) had Euclidean norm less than 10−4. Again,
MATLAB’s backslash was used for the solution of the linear systems.

We note that the initialization of the algorithms needs some attention. As it was done in [39] for the
TV case, α0

0 and α1
0 must be large enough in order to produce cartoon-like images, providing the

local variance estimator with useful information. However, if α0 is initially too large then there is a
danger of falling into the regime, in which the TGV functional and hence the solution map of (at least
the non-regularized) lower level problem does not depend on α0. In that case the derivative of the
reduced functional with respect to α0 will be close to zero, thus making no or little progress with
respect to its optimal choice. Indeed this was confirmed after some numerical experimentation. Note
that an analogous phenomenon can occur also in the case where α0 is much smaller than α1. In that
case it is the effect of α1 which vanishes. This has been shown theoretically in [50, Proposition 2]
for dimension one, but numerical experiments indicate that this phenomenon persists also in higher
dimensions. In our examples we used and α0

1 = 9 × 10−4 and α0
0 = 3.125 × 10−6 for (Ph

TGV-d)
and α0

1 = 0.25 and α0
0 = 0.2 for (Ph

TGV-p.d.). Regarding the termination of the projected gradient
algorithm, we used a fixed number of iterations, n = 30 for (Ph

TGV-d) and n = 40 for (Ph
TGV-p.d.).

Neither the upper level objective nor the argument changed significantly after running the algorithm
for more iterations; see for instance Figure 4. The same holds true for the corresponding PSNR and
SSIM values. We also note that a termination criterion as in [39] based on the proximity measures

‖P(Ai
ad)h

(
αki −∇αi

Ĵ(αk0, α
k
1)
)
− αki ‖H1(Ωh), i = 0, 1, is also possible here.

We note that due to the line search, the number of times that the lower level problem has to be
solved is more than the number of projected gradient iterations. For instance for the four examples of
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Figure 4: Upper level objective values vs projected gradient iterations for the problems (Ph
TGV-d) (left)

and (Ph
TGV-p.d.) (right) of Figure 5. Note the different scaling which is due to the different values for

the mesh size h used for the two methods

(Ph
TGV-p.d.) of Figure 5 the lower level problem had to be solved 57, 57, 57, and 59 times respectively

(40 projected gradient iterations). Typically 8-12 Newton iterations were needed per each lower level
problem.

σ2 = 0.01 Cameraman Parrot Turtle Hatchling

scalar TV (PSNR) 27.54, 0.7857 28.88, 0.8119 29.27, 0.7924, 27.57, 0.7597

scalar TV (SSIM) 27.19, 0.8064 28.51, 0.8421 29.11, 0.8044 27.46, 0.7687

bilevel TV 27.85, 0.8259 28.96, 0.8477 29.60, 0.8176 27.55, 0.7750

scalar TGV-dual (PSNR) 27.38, 0.7730 29.07, 0.8438 28.97, 0.8032 28.00, 0.8032

scalar TGV–dual (SSIM) 26.95, 0.8043 28.61, 0.8575 28.70, 0.8200 27.82, 0.8108

bilevel TGV–dual 27.50, 0.8061 29.36, 0.8653 29.10, 0.8231 27.67, 0.7884

scalar TGV–primal-dual (PSNR) 27.23, 0.7873 29.10, 0.8325 29.40, 0.8230 27.88, 0.7991

scalar TGV–primal-dual (SSIM) 26.87, 0.8070 28.61, 0.8588 29.24, 0.8273 27.71, 0.8024

bilevel TGV–primal-dual 27.42, 0.8077 29.47, 0.8628 29.63, 0.8305 28.01, 0.8037

Table 1: PSNR and SSIM comparisons for the images of Figure 5. Every cell contains the correspond-
ing PSNR and SSIM value

For the first series of examples we keep the parameter α0 scalar, whose value nevertheless is deter-
mined by the bilevel algorithms. We depict the examples in Figure 5. The first row shows the noisy
images, while the second contains the bilevel TV results [37]. The third row depicts the best scalar
TGV results with respect to SSIM, either using the dual or the primal-dual approach – whichever had
the largest value – where we have computed the optimal scalars α0, α1 with a manual grid method.
The fourth and the fifth rows show the results of (Ph

TGV-d) and (Ph
TGV-p.d.) respectively. Detailed sec-

tions of all the images of Figure 5 are highlighted in Figure 6. The weight functions α1 for the bilevel
TV and the bilevel TGV algorithms are shown in Figure 7. In Table 1 we report all PSNR and SSIM
values of the best scalar methods (scalar TV, scalar TGV–dual, scalar TGV–primal-dual) with respect
to both quality measures, as well as the corresponding values of the three bilevel algorithms. We next
comment on the results for each image.

Cameraman: Here both the best PSNR and SSIM are obtained by the bilevel TV algorithm. This is
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PSNR=20.00, SSIM=0.3304 PSNR=20.04, SSIM=0.2773 PSNR=19.99, SSIM=0.2448 PSNR=20.00, SSIM=0.3349

PSNR=27.85, SSIM=0.8259 PSNR=28.96, SSIM=0.8477 PSNR=29.60, SSIM=0.8176 PSNR=27.55, SSIM=0.7750

PSNR=26.87, SSIM=0.8070 PSNR=28.61, SSIM=0.8588 PSNR=29.24, SSIM=0.8273 PSNR=27.82, SSIM=0.8108

PSNR=27.50, SSIM=0.8061 PSNR=29.36, SSIM=0.8653 PSNR=29.10, SSIM=0.8231 PSNR=27.67, SSIM=0.7884

PSNR=27.42, SSIM=0.8077 PSNR=29.47, SSIM=0.8628 PSNR=29.63, SSIM=0.8305 PSNR=28.01, SSIM=0.8037

Figure 5: First row: noisy images. Second row: bilevel TV. Third row: Best scalar TGV (SSIM). Fourth
row: bilevel TGV–dual. Fifth row: bilevel TGV–primal-dual

probably not surprising due to the piecewise constant nature of this image. However, both bilevel TGV
algorithms improve upon their scalar versions with respect to both measures. It is interesting to ob-
serve the two different spatial weights α1 produced by the two bilevel TGV algorithms, see the last
two functions at the first column of Figure 7. The dual TGV algorithm, solving the anisotropic version
of TGV, has the tendency to blur thin objects that have a 45 degree orientation with respect to the

DOI 10.20347/WIAS.PREPRINT.2689 Berlin 2020



M. Hintermüller, K. Papafitsoros, C.N. Rautenberg, H. Sun 32

Noisy

Bilevel TV

Best scalar TGV reconstructions (SSIM)

Bilevel TGV-dual

Bilevel TGV–primal-dual

Figure 6: Details of the reconstructions shown in Figure 5

pixel grid, like for instance the middle part of the cameraman’s tripod. We see that the weight α1 drops
significantly at this area aiming to reduce this effect. Otherwise both bilevel algorithms preserve better
the detailed area of the camera with the weights having small values there.

Parrot : Here the best results with respect to both PSNR and SSIM are achieved by the two bilevel
TGV algorithms, (Ph

TGV-p.d.) and (Ph
TGV-d), respectively. There is significant improvement over all
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TV methods, which is due to the parameters being chosen in a way such that the staircasing effect
diminishes. Furthermore, we observe improvement over the scalar TGV results especially around the
parrot’s eye, where the weights α1 drop significantly; see the second column of Figure 7.

Turtle: We get analogous results here as well, with the bilevel TGV (Ph
TGV-p.d.) producing the best

results both with respect to PSNR and SSIM. There a significant reduction of the staircasing effect,
while the weight α1 drops in the detailed areas of the image (head and flipper of the turtle).

Hatchling: In this image, the best PSNR is achieved by (Ph
TGV-p.d.), but only marginally. In fact, the

best SSIM is achieved by the scalar version of the dual TGV algorithm also with a comparable PSNR.
Similarly at least with respect to PSNR, the scalar TV is marginally better than bilevel TV. We attribute
this to the fact that the natural oscillatory features of the image are interpreted as noise by the upper
level objective. Nevertheless, all the bilevel methods are able to locate and preserve better the eyes
area, i.e., sand in focus, with the weight α1 dropping there significantly.

0
100

200

0
100

200

2.0

3.0

4.0

5.0

·10−4

0
100

200

0
100

200
1.0

2.0

3.0

4.0

5.0

6.0

·10−4

0
100

200

0
100

200

2.0

3.0

4.0

5.0

6.0

·10−4

0
100

200

0
100

200

2.0

3.0

4.0

·10−4

0
100

200

0
100

200
0.0

1.0

2.0

3.0

·10−4

0
100

200

0
100

200

1.0

2.0

3.0

4.0

·10−4

0
100

200

0
100

200

1.0

2.0

3.0

4.0

·10−4

0
100

200

0
100

200
0.0

1.0

2.0

3.0

·10−4

0
100

200

0
100

200
4.0

5.0

6.0

7.0

8.0

9.0

·10−2

0
100

200

0
100

200
0.04

0.06

0.08

0.1

0
100

200

0
100

200
0.05

0.06

0.07

0.08

0.09

0.1

0
100

200

0
100

200
0.04

0.06

0.08

0.1

Figure 7: First row: the computed regularization functions α for bilevel TV.
Second row: the computed regularization functions α1 for bilevel TGV–dual. Third row: the computed
regularization functions α1 for bilevel TGV–primal-dual.

Finally, we show an example where also the weight α0 varies spatially. For simplicity we use here
only the primal-dual version (Ph

TGV-p.d.). We note that by spatially varying both TGV parameters, the
reduced problem becomes highly non-convex with many combinations of these parameters leading to
similar values for the upper level objective. In order to deal with this, we use the following initialization
strategy, which according to our numerical experiments, produces satisfactory results. We keep the
spatial weight α1 fixed, as it has been computed from the previous experiments, see the last row of
Figure 7, and we optimize only with respect to a spatially varying α0. As initialization for α0, we set it
constant, equal to 5.

In Figure 8 we depict the computed spatially varying parameters α0 as well as the corresponding
PSNR and SSIM values. Observe that the shape of α0 is different to the one of α1, compare the
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Figure 8: Experiments with optimizing over a spatially varying α0. Top row: the automatically computed
scalar parameters α0, that correspond to the images of the last row of Figure 5. Middle row: the
automatically computed spatially varying parameters α0, where α1 has been kept fixed (last row of
Figure 7). The weight α0 is adapted to piecewise constant parts having there large values and hence
promoting TV like behaviour, see for instance the parrot image at the last row. On the contrary α0 has
low values in piecewise smooth parts promoting a TGV like behaviour reducing the staircasing.

last row of Figure 7 to the second row of Figure 8. This implies that a non-constant ratio of α0/α1 is
preferred throughout the image domain. Secondly, by spatially varying α0 we only get a slight improve-
ment with respect to PSNR and SSIM in all images, apart from the last one. However, it is interesting
to observe the spatial adaptation of α0 with respect to piecewise constant versus piecewise smooth
areas. The values of α0 are high in large piecewise constant areas, like the background of camera-
man, the left area of the parrot image, as well as the top-right corner of the turtle image. This is not
so surprising as large values of α0 imply a large ratio α0/α1 and a promotion of TV like behaviour
in those areas. We can observe this in more detail at the parrot image, see last row of Figure 8. On
the contrary, the values of α0 are kept small in piecewise smooth areas like the right part of the parrot
image and the sun rays around the turtle’s body. This results in low ratio α0/α1 and thus to a more
TGV like behaviour, reducing the staircasing effect. This is another indication of the fact that by mini-
mizing the statistics-based upper level objective one is able not only to better preserve detailed areas
but also to finely adjust the TGV parameters such that the staircasing is reduced.
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7 Conclusion

In this work we have adapted the bilevel optimization framework of [37, 39] for automatically computing
spatially dependent regularization parameters for the TGV regularizer. For that we first examined two
variants of the TGV regularization problem establishing rigorous dualization frameworks that form the
basis for their algorithmic treatment via Newton methods. We showed that the bilevel optimization
framework with the statistics/localized residual based upper level objective is able to automatically
produce spatially varying parameters that not only adapt to the level of detail in the image but also
reduce the staircasing effect.

Future continuation of this work includes adaptation of the bilevel TGV framework for advanced inverse
problems tasks, i.e., Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)
reconstruction as well as in multimodal medical imaging problems where structural TV based regular-
izers (edge aligning) have been suggested. Adaptation of the framework for different noise distributions
e.g. Poisson, Salt & Pepper as well as combination of those [19, 20], should also be investigated. A
fine structural analysis of the weighted TGV regularized solutions in the spirit of [34, 44] would be also
of interest.

A Proof of Proposition 2.2

Proof. The proof follows [11, Proposition 3.3]. Denote by Cα, Kα the following convex sets

Cα =
{

div2φ : φ ∈ C∞c (Ω,Sd×d), |φ(x)|r ≤ α0(x), |divφ(x)|r ≤ α1(x), for all x ∈ Ω
}
,

(A.1)

Kα =
{

div2p : p ∈ W d
0 (div2; Ω), |p(x)|r ≤ α0(x), |divp(x)|r ≤ α1(x), for a.e. x ∈ Ω

}
.

(A.2)

It suffices to show that
Cα

Ld(Ω)
= Kα. (A.3)

We first show that Kα is closed in Ld(Ω). Let g ∈ Kα and assume that there exists (pn)n∈N ⊂
W d

0 (div2; Ω) where every pn satisfies the convex constraints and div2pn → g in Ld(Ω). By bound-
edness of α0, α1 we have that there exist h0 ∈ Ld(Ω,Sd×d), h1 ∈ Ld(Ω,Rd) and a subsequence
of (pnk

)k∈N such that
pnk

⇀ h0 and divpnk
⇀ h1,

in Ld(Ω) and Ld(Ω,Rd) respectively. Using that, we have for every φ ∈ C∞c (Ω,Rd)∫
Ω

∇φ · h0 dx = lim
k→∞

∫
Ω

∇φ · pnk
dx = − lim

k→∞

∫
Ω

φ · divpnk
dx = −

∫
Ω

φ · h1 dx, (A.4)

thus h1 = divh0. Similarly we derive that g = divh1 = div2h0 and hence h0 ∈ W d(div2; Ω).
Finally note that the set{

(h, divh, div2h) : h ∈ W d
0 (div2; Ω), |h(x)|r ≤ α0(x), |divh(x)|r ≤ α1(x), for a.e. x ∈ Ω

}
,

is a norm-closed and convex subset of Ld
(
Ω, (Sd×d × Rd × R)

)
and hence weakly closed. Since

(pnk
, divpnk

, div2pnk
)k∈N belongs to that set, converging weakly to (h0, divh0, div2h0) we get that

the latter also belongs there. Thus, Kα is closed in Ld(Ω) and since Cα ⊂ Kα, we get Cα
Ld(Ω) ⊂

Kα.
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It remains to show the other direction, i.e., Kα ⊂ Cα
Ld(Ω)

. Towards that, note first that the functional
TGV2

α(Ω) : Ld/d−1(Ω)→ R, can also be written as

TGV2
α(u) = I∗Cα

(u).

Using the convexity of Cα one gets

TGV2 ∗

α (v) = I∗∗Cα
(v) = I

Cα
Ld(Ω)(v).

Secondly, note that due to the lower bounds on α0, α1, for u ∈ Ld/d−1(Ω), we have that TGV2
α(u) <

∞ if and only if u ∈ BV(Ω). Indeed this holds from the equivalence of the (scalar) ‖ · ‖BGV with
‖ · ‖BV(Ω) and from the estimate

TGV2
α,α(u) ≤ TGV2

α(u) ≤ ‖α1‖∞TV(u),

for every u ∈ Ld/d−1(Ω). This means that if for div2p ∈ Kα it holds∫
Ω

u div2p dx ≤ TGV2
α(u), for all u ∈ BV(Ω), (A.5)

then in fact the inequality (A.5) will hold for every u ∈ Ld/d−1(Ω) and thus TGV2 ∗

α (div2p) = 0

which implies div2p ∈ Cα
Ld(Ω)

. Thus in order to finish the proof it suffices to show (A.5) for every
div2p ∈ Kα. In view of Proposition 2.1 it suffices to show∫

Ω

u div2p dx ≤ min
w∈BD(Ω)

∫
Ω

α1 d|Du− w|r∗ +

∫
Ω

α0 d|Ew|r∗ (A.6)

for all u ∈ BV(Ω). The first step towards that is to show that for every w ∈ BD(Ω) and for every
p ∈ W d

0 (div2; Ω) with |p(x)|r ≤ α0(x) for a.e. x ∈ Ω, it holds∫
Ω

w divp dx ≤
∫

Ω

α0 d|Ew|r∗ . (A.7)

Indeed, note first that from (2.3) and using the Hölder inequality, we get for every φ ∈ C∞(Ω,Rd)∣∣∣∣∫
Ω

φ · divp dx

∣∣∣∣ =

∣∣∣∣∫
Ω

p · Eφdx
∣∣∣∣ ≤ ∫

Ω

|p|r|Eφ|r∗ dx ≤
∫

Ω

α0 d|Eφ|r∗ . (A.8)

Recall now that everyw ∈ BD(Ω) can be strictly approximated by a sequence (φn)n∈N ⊂ C∞(Ω,Rd),
that is φn → w in Ld/d−1(Ω,Rd) and |Eφ|r∗(Ω)→ |Ew|r∗(Ω), see [11, Proposition 2.10]. Further-
more, using that, along with Reshetnyak’s continuity theorem [2, Theorem 2.39] we also get that∫

Ω

α0 d|Eφn|r∗ →
∫

Ω

α0 d|Ew|r∗ , as n→∞..

Using that fact, by taking limits in (A.8) we obtain (A.7). Finally in order to obtain (A.5) let p ∈
W d

0 (div2; Ω) with |p(x)|r ≤ α0(x) and |divp(x)|r ≤ α1(x) for a.e. x ∈ Ω, and let φ ∈ C∞(Ω,R).
Then by using (2.4) and (A.7), we have for every w ∈ BD(Ω)∫

Ω

φ div2p dx ≤
∣∣∣∣∫

Ω

∇φ · divp dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(∇φ− w) · divp dx+

∫
Ω

w divp dx

∣∣∣∣
≤
∫

Ω

|∇φ− w|r∗|divp|r dx+

∫
Ω

α0 d|Ew|r∗

≤
∫

Ω

α1|∇φ− w|r∗ dx+

∫
Ω

α0 d|Ew|r∗ .
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Similarly as before given u ∈ BV(Ω) and w ∈ BD(Ω), there exists a sequence (φn)n∈N ⊂
C∞(Ω,R) such that φn → u in Ld/d−1(Ω) and |∇φn − w|(Ω) → |Du − w|(Ω), see again
[11, Proposition 2.10]. Using again the Reshetnyak’s continuity theorem and taking limits we get that
for every w ∈ BD(Ω)∫

Ω

u div2p dx ≤
∫

Ω

α1 d|Du− w|r∗ +

∫
Ω

α0 d|Ew|r∗ .

By taking the minimum over w ∈ BD(Ω), we obtain (A.5).

B

We provide here a few more details about the discrete differential operators involved in the implemen-
tation of Algorithm 1. Recall that for the discrete gradient and divergence we have∇ : Wh → Vh and
div : Vh → Wh, where∇ = −div> holds. For p ∈ Vh, the divergence is defined as

(divp)1
i,j =

1

h
(p11
i,j − p11

i−1,j + p12
i,j − p12

i,j−1), (divp)2
i,j =

1

h
(p12
i,j − p12

i−1,j + p22
i,j − p22

i,j−1), (i, j) ∈ Ωh.

Here we set zero values at the ghost points. For the second-order gradient∇2u : Uh → Vh we have
∇2 = (Dxxu,Dxyu,Dyyu), where Dxx, Dxy, Dxy are operators Uh → Vh and are defined using
the following stencils with zero values at ghost points:

Dxy
1
h2 × - 1

2 1 - 1
2

1
2

- 1
2

1
2

- 1
2

Dxx
1
h2 × -2

1

1

Dyy
1
h2 × 1 -2 1

Note that the use of symmetric differences for the mixed derivative results in a symmetric matrix
representing Dxy. All the resulting operators Dxx, Dxy, Dyy are then symmetric. For the discrete
second divergence div2 : Vh → Uh, we have div2p = Dxxp

11 + 2Dxyp
12 +Dyyp

22. The vector bi-
Laplacian is an operator Vh → Vh where p 7→ (∆2p11,∆2p12,∆2p22) with ∆2 = Dxxxx +Dyyyy +
Dxxyy +Dyyxx. The resulting stencil for ∆2 is as shown below.

∆2 1
h4 × 1 -8 20 -8 1

2 -8 2

2 -8 2

1

1

In order to reflect the boundary conditions of H2
0 (Ω,S2×2), the bi-Laplacian must be endowed with

both zero Neumann and zero Dirichlet boundary conditions. Again this is enforced by considering any
ghost points (up to two of them in the boundary), to have zero value. Finally we discuss the dicretization
of the operator∇2div2 : Vh → Vh, which is equal to

(∇2div2p)11 = Dxxxxp11 + 2Dxxxyp12 +Dxxyyp22,

(∇2div2p)12 = Dxyxxp11 + 2Dxyxyp12 +Dxyyyp22,

(∇2div2p)22 = Dyyxxp11 + 2Dyyxyp12 +Dyyyyp22,
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where in fact it holds Dxxxy = Dxyxx, Dxxyy = Dxyxy = Dyyxx and Dxyyy = Dyyxy.
For these fourth order discretized differential operators we use the stencils

Dxxxx
1
h4 ×

1

-4

6

-4

1

Dyyyy
1
h4 × 1 -4 6 -4 1 Dyyxx

1
h4 × -2 4 -2

1 -2 1

1 -2 1

Dxxxy
1
h4 × 3

2 -3 3
2

- 3
2 2 - 1

2

- 1
2 2 - 3

2

1
2

- 1
2

- 1
2

1
2

Dxyyy
1
h4 × - 1

2 2 -3 2 - 1
2

1
2

- 3
2

3
2

- 1
2

- 1
2

3
2

- 3
2

1
2

We use again the same rule to enforce zero Neumann and Dirichlet boundary conditions. Note that
the matrix representing ∇2div2 will not be symmetric due to the factor of 2 multiplying the terms
that correspond to p12. That leads to a non-symmetric linear system corresponding to the equation in
Algorithm 1. However, having a symmetric matrix is desirable as this benefits from efficient iterative
solvers for linear systems, e.g., conjugate gradients. A remedy for that is instead of solving for the
vector (p11, p12, p22) to do so for (p11, 2p12, p22). This eliminates the 2-factor in the p12 part of the
matrix that represents ∇2div2. In that case the other operators must be modified, for instance the
vector bi-Laplacian must take the form (∆2, 1

2
∆2,∆2), and similarly for the other differential operators.

The functions Qδ and Pδ must be also accordingly modified in this case.
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