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Dynamics of a stochastic excitable system with slowly adapting
feedback

Igor Franović, Serhiy Yanchuk, Sebastian Eydam, Iva Bačić, Matthias Wolfrum

Abstract

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. De-
pending on the adaptation and the noise level, this system may display noise-induced spiking,
noise-perturbed oscillations, or stochastic busting. We show how the system exhibits transitions
between these dynamical regimes, as well as how one can enhance or suppress the coherence
resonance, or effectively control the features of the stochastic bursting. The setup can be consid-
ered as a paradigmatic model for a neuron with a slow recovery variable or, more generally, as
an excitable system under the influence of a nonlinear control mechanism. We employ a multi-
ple timescale approach that combines the classical adiabatic elimination with averaging of rapid
oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary
Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced
slow system and to determine the parameter regions associated with different types of dynam-
ics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced
switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

Recent years have witnessed a rapid expansion of stochastic models for a wide variety of
important physical and biological phenomena, from sub-cellular processes and tissue dynam-
ics, over large-scale population dynamics and genetic switching to optical devices, Josephson
junctions, fluid mechanics and climatology. These studies have demonstrated that the effects
of noise manifest themselves on a broad range of scales, but nevertheless display certain
universal features. In particular, the effects of noise may generically be cast into two groups.
On the one hand, the noise may enhance or suppress the features of deterministic dynamics,
while on the other hand, it may give rise to novel forms of behavior, associated with the cross-
ing of thresholds and separatrices, or with stabilization of deterministically unstable states.
The constructive role of noise has been evinced in diverse applications, from neural networks
and chemical reactions to lasers and electronic circuits. Classical examples of stochastic fa-
cilitation in neuronal systems concern resonant phenomena, such as coherence resonance,
where an intermediate level of noise may trigger coherent oscillations in excitable systems, as
well as spontaneous switching between the coexisting metastable states. In the present study,
we show how the interaction of noise and multiscale dynamics, induced by slowly adapting
feedback, may affect an excitable system. It gives rise to a new mode of behavior based on
switching dynamics, namely the stochastic bursting, and allows for an efficient control of the
properties of coherence resonance.

1 Introduction

Multiscale dynamics is ubiquitous in real-world systems. In neuron models, for instance, the evolution
of recovery or gating variables is usually much slower than the changes of the membrane potential
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[18, 15]. At the level of neural networks, certain mechanisms of synaptic adaptation, such as the spike
timing-dependent plasticity [1, 4, 35], are slower than the spiking dynamics of individual neurons.
When modeling the dynamics of semiconductor lasers [24, 30, 37], one similarly encounters at least
two different timescales, one related to the carriers’ and the other to the photons’ lifetime, whereby their
ratio can span several orders of magnitude. Investigating the dynamics of such multiscale systems has
lead to the development of a number of useful asymptotic and geometric methods, see Refs. [22, 25,
6, 23, 20] to name just a few.

Another ingredient inevitable in modeling real-world systems is noise, which may describe the intrinsic
randomness of the system, the fluctuations in the embedding environment, or may derive from coarse-
graining over the degrees of freedom associated with small spatial or temporal scales [16, 26]. For
instance, neuronal dynamics is typically influenced by intrinsic sources of noise, such as the random
opening of ion channels, and by external sources, like the synaptic noise [7]. In chemical reactions,
noise comprises finite-size effects, while the stochasticity in laser dynamics reflects primarily quantum
fluctuations. In general, the impact of noise can manifest itself by modification of the deterministic
features of the system, or by the emergence of qualitatively novel types of behavior, induced by the
crossing of thresholds or separatrices [10].

In the present paper, we study the effects of slowly adapting feedback and noise on an excitable sys-
tem. Excitability is a general nonlinear phenomenon based on a threshold-like response of a system to
a perturbation [32, 40, 26, 18]. An excitable system features a stable "rest" state intermitted by excita-
tion events (firing), elicited by perturbations. In the absence of a perturbation, such a system remains
in the rest state and a small perturbation induces a small-amplitude linear response. If the perturbation
is sufficiently strong, an excitable system reacts by a large-amplitude nonlinear response, such as a
spike of a neuron. When an excitable system receives additional feedback or a stochastic input, or is
coupled to other such systems, new effects may appear due to the self- or noise-induced excitations,
as well as excitations from the neighboring systems. Such mechanisms can give rise to different forms
of oscillations, patterns, propagating waves, and other phenomena [26, 34, 39, 9, 29, 11, 3, 13, 12, 41].

Our focus is on a stochastic excitable system subjected to a slow control via a low-pass filtered feed-
back

v̇ = f(v, µ) +
√
Dξ(t), (1)

µ̇ = ε(−µ+ ηg(v)), (2)

where ε & 0 is a small parameter that determines the timescale separation between the fast variable
v(t) and the slow feedback variable µ(t). The fast dynamics v̇ = f(v, 0) is excitable and is influenced
by the Gaussian white noise ξ(t) of variance D. Moreover, the slow feedback variable µ controls its
excitability properties. The parameter η is the control gain, such that for η = 0 one recovers a classical
noise-driven excitable system [26]. An important example of a system conforming to (1)–(2) for η 6= 0
is the Izhikevich neuron model [17], where the stochastic input to the fast variable would describe the
action of synaptic noise.

Here we analyze a simple paradigmatic example from the class of systems (1)–(2), where the excitable
local dynamics is represented by an active rotator

ϕ̇ = I0 − sinϕ with ϕ ∈ S1.

The latter undergoes a saddle-node infinite period (SNIPER) bifurcation at |I0| = 1, turning from
excitable (|I0| . 1) to oscillatory regime |I0| > 1, see [38]. The adaptation is represented by a
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positive periodic function g(ϕ) = 1− sinϕ, such that the complete model reads

ϕ̇ = I0 − sinϕ+ µ+
√
Dξ(t), (3)

µ̇ = ε (−µ+ η (1− sinϕ)) . (4)

In the presence of feedback, the noiseless dynamics of the active rotator depends not only on I0, but
is affected by the term I0 + µ involving the control variable µ(t), which can induce switching between
the excitable equilibrium (|I0 +µ| < 1) and the oscillatory regime (|I0 +µ| > 1). This adaptation rule
provides a positive feedback for the spikes and oscillations, since µ increases when ϕ(t) is oscillating
and drives the system towards the oscillatory regime, while in the vicinity of the equilibrium (sinϕ ≈ 1)
the control signal effectively vanishes.

We examine how the behavior of (3)-(4) is influenced by the noise level D and the control gain η,
determining the phase diagram of dynamical regimes in terms of these two parameters. The first part
of our results in Sec. 2 concerns the noise-free system D = 0, where we employ a combination of
two multiscale methods, namely adiabatic elimination in the regime where the fast subsystem has a
stable equilibrium and the averaging approach when the fast subsystem is oscillatory. As a result, we
obtain a reduced slow system that is capable of describing both the slowly changing fast oscillations
and the slowly drifting equilibrium, as well as the transitions between these regimes. The bifurcation
analysis of this slow system reveals the emergence of a bistability between the fast oscillations and
the equilibrium for sufficiently large η.

The second part of our results, presented in Sec. 3, addresses the multiscale analysis of the dynamics
in the presence of noise (D 6= 0). Instead of deterministic averaging, we apply the method of stochas-
tic averaging [36, 33, 14, 28, 3], where the distribution density for the fast variable obtained from a
stationary Fokker-Plank equation is used to determine the dynamics of the slow flow. In this way, we
obtain a deterministic slow dynamics for which one can perform a complete numerical bifurcation anal-
ysis with respect to D and η. In section 4 we investigate the effects of stochastic fluctuations on the
slow dynamics, which vanish in the limit of infinite timescale separation ε → 0 employed in Sec. 3.
The effect of a slowly adapting feedback on the coherence resonance is shown by extracting from
numerical simulations the coefficient of variation of the spike time distribution in the excitable regime.
In particular, we compare the results for small positive ε with the case of infinite time scale separation,
where we use the stationary but noise dependent µ obtained in the preceeding section. The noise-
induced switching dynamics in the bistability region is demonstrated by numerical simulations showing
an Eyring-Kramers type of behavior.

In terms of the different dynamical regimes, our study of stochastic dynamics reveals three character-
istic (D, η) regions featuring noise-induced spiking, noise-perturbed spiking and stochastic busting,
see Figure 1. We show that by varying the control gain within the region of noise-induced spiking, one
can enhance or suppress the coherence resonance, while within the bistability region, one can effi-
ciently control the properties of stochastic bursting. The following sections provide a detailed analysis
of the described phenomena.

2 Slow-fast analysis of the deterministic dynamics

In this Section, we analyze the system (3)–(4) in the absence of noise (D = 0)

˙ϕ(t) = I0 − sinϕ(t) + µ(t), (5)

˙µ(t) = ε (−µ(t) + η (1− sinϕ(t))) , (6)
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Figure 1: Different dynamical regimes in the stochastic excitable system subjected to a slow control via
a low-pass filtered feedback (3)-(4) with ε = 0.005, D = 0.008, and different choices of the control
gain η: noise-induced spiking (a), stochastic bursting (b), and noise-perturbed spiking (c).

considering the limit ε→ 0 within the framework of singular perturbation theory. The dynamics on the
fast timescale is described by the so-called layer equation, obtained from (5)–(6) by setting ε = 0

ϕ̇(t) = I0 + µ− sinϕ(t), (7)

whereby µ acts as a parameter.

2.1 Dynamics for µ < 1− I0: adiabatic elimination

In the case µ < 1− I0, the layer equation (7) possesses two equilibria

ϕ+(µ) = arcsin(I0 + µ), ϕ−(µ) = π − ϕ+(µ), (8)

where ϕ+ is stable and ϕ− is unstable. Considering them as functions of the parameter µ, the equi-
libria give rise to two branches, which merge in a fold at µ = 1− I0, see Fig. 2. Equivalently, the set
of equililbria of the fast subsystem

{(ϕ, µ) : sinϕ = I0 + µ} (9)

comprises the critical manifold of (5)–(6), with the stable part ϕ+(µ) and the unstable part ϕ−(µ)..

Hence, for µ < 1 − I0 the trajectories are rapidly attracted towards the stable branch of the critical
manifold, along which for positive ε they slowly drift. In order to describe this slow dynamics, we rescale
time T = εt and obtain

εϕ′(T ) = I0 + µ(T )− sinϕ(T ), (10)

µ′(T ) = −µ(T ) + η(1− sinϕ(T )), (11)

where the prime denotes the derivative with respect to the slow time T . Setting ε = 0, we can directly
eliminate the term sinϕ = I0 + µ and obtain the equation for the slow dynamics on the critical
manifold

µ′(T ) = −µ(T ) + η(1− I0 − µ(T )). (12)
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Figure 2: Critical manifold and fast dynamics of system (5)–(6). For µ < 1 − I0 the fast dynamics
converges to the stable branch of the critical manifold, while for µ > 1 − I0, it is oscillatory with
periodic rotation of the phase ϕ.

2.2 Dynamics for µ > 1− I0: averaging fast oscillations

For µ > 1− I0, there is no stable equilibrium of the fast subsystem (7), see Fig. 2. Instead, one finds
periodic oscillations

ϕµ(t) = 2 arctan
1 + Ω(µ) tan t

2
Ω(µ)

I0 + µ
(13)

with the µ-dependent frequency
Ω(µ) =

√
(I0 + µ)2 − 1.

In this case, the fast oscillations ϕµ(t) should be averaged in order to obtain the dynamics of the slow
variable µ(T ). A rigorous formal derivation is provided in Appendix A, finally arriving at

µ′(T ) = −µ(T ) + η(1− I0 − µ(T ) + Ω(µ(T ))). (14)

Here we give a simplified explanation of the averaging procedure. First, we substitute the fast-oscillating
solution ϕ = ϕµ(t) of the layer equation into the equation for the slow variable (11):

µ′(T ) = −µ(T ) + η(1− sinϕµ(t)).

Since the term sin(·) is fast oscillating, the last equation can be averaged over the fast timescale
t,which leads to

µ′(T ) = −µ(T ) + η
(
1− 〈sinϕµ(t)〉t

)
. (15)

The average 〈sinϕµ(t)〉t can be found by integrating (7) over the period

〈ϕ̇(t)〉t = Ω(µ) = I0 + µ− 〈sinϕµ(t)〉t. (16)

Hence, by substituting
〈sinϕµ(t)〉t = I0 + µ(T )− Ω(µ(T ))

into (15) we obtain the slow averaged dynamics (14).

2.3 Combined dynamics of the slow variable

Summarizing the results so far, the equation (12) describes the dynamics of the slow variable for
µ < 1− I0, while the equation (14) holds for µ > 1− I0. These two equations can be conveniently
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Figure 3: (a) Graphical solution of the fixed point equation (18): Ω(µ) according to (17) (black) and the
righ-hand side of (18) for different choices of η. One finds from one to three fixed points depending on
η. (b) Scheme of the slow-fast dynamics of system (5),(6) with parameters I0 = 0.95 and η = 0.38
and the numerical sample trajectories for ε = 0.005 (red). For µ < 1− I0, trajectories are attracted
to the stable branch of the slow manifold (blue curve) and subsequently slowly drift toward the stable
fixed point (ϕ+(µ1), µ1) (black dot). For µ > 1− I0, the sample trajectories show fast oscillations in
ϕ with a slow average drift in µ in the direction indicated by the arrows.

combined into a single equation of the form (14) by extending the definition of the frequency Ω(µ) as
follows

Ω(µ) =

{
0, µ < 1− I0√

(I0 + µ)2 − 1, µ > 1− I0
. (17)

Hence, the slow dynamics is described by the scalar ordinary differential equation on the real line
(14), and, as a result, the only possible attractors are fixed points, which are given by the zeros of the
right-hand side:

Ω(µ) =
η + 1

η
µ+ I0 − 1 (18)

Geometrically, they are points of intersection of the frequency profile Ω(µ) with the line η+1
η
µ+I0−1,

see Fig. 3(a). In particular, one can check that there is always one fixed point

µ1 =
η(1− I0)

1 + η
< 1− I0 (19)

for which Ω(µ1) = 0, such that it corresponds to a pair of equilibria on the critical manifold (9). Since
µ1 is stable for the slow dynamics, the point (ϕ+(µ1), µ1) is also a stable equilibrium for the original
system (5)–(6) with small ε. The other two fixed points of the slow equation

µ2,3 =
η
(

1 + η − I0 ∓
√

(η + I0)2 − 1− 2η
)

1 + 2η
(20)
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Figure 4: Fixed points of the slow dynamics (14) for varying control gain η. The values µ2,3 on the upper
branch (black curve) correspond to periodic orbits of the layer equation (7), while µ1 (blue curve) is
the branch of fixed points; solid and dashed lines indicate stable and unstable solutions, respectively.
The direction of the motion in µ(T ) is indicated by the arrows. The dotted lines indicate the onset of
bistability for η = ηsn and the transition at µc = 1− I0 from equilibria to periodic orbits.
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Figure 5: Average frequency of the fast dynamics (3) given by (26)- (27) using numerical solutions of
the stationary Fokker-Planck equation (24), where µ acts as a time independent parameter and fixed
I0 = 0.95.

with Ω(µ2,3) > 0 appear in a saddle-node bifurcation at

ηsn = 1− I0 +
√

2(1− I0), (21)

and correspond to a pair of periodic orbits of the layer equation (7).

In Fig. 3(b) we show schematically the results of our slow-fast analysis for I0 = 0.95 and η = 0.38.
For the chosen parameter values there are two stable regimes: the fixed point (ϕ+(µ1), µ1) and a
fast oscillation with 〈µ(t)〉t ≈ µ3.

Finally, Fig. (4) presents the bifurcation diagram of the fixed points of the slow dynamics with respect to
the control gain η. One observes that there is always one branch of stable fixed points corresponding
to the steady state, and two stable fixed points corresponding to fast oscillations for η > ηsn.

3 Slow-fast analysis of the dynamics with noise

In this section, we consider the dynamics of system (3)–(4) in the presence of noise (D > 0). In
analogy to the noise-free case, one can use the limit ε→ 0 and employ the stochastic average

〈sinϕ(t)〉t = lim
t−→∞

1

t

∫ t

0

sinϕ(t)dt′

for solutions of the stochastic fast equation

ϕ̇(t) = I0 + µ− sinϕ(t) +
√
Dξ(t) (22)
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to approximate the slow dynamics in (11) by

µ′(T ) = −µ(T ) + η(1− 〈sinϕ(t)〉t). (23)

To this end, we consider the stationary probability density distribution ρ(ϕ;µ,D) for the fast noisy
dynamics (3), which for fixed control µ and noise intensity D is given as a solution to the stationary
Fokker-Planck equation

D

2
∂ϕϕρ− ∂ϕ [(I0 + µ− sinϕ)ρ] = 0, (24)

together with the periodic boundary conditions ρ(0) = ρ(2π) and the normalization∫ 2π

0

ρ(ϕ;µ,D)dϕ = 1. (25)

From this we can calculate the average

〈sinϕ(t)〉t =

∫ 2π

0

ρ(ϕ;µ,D) sinϕdϕ (26)

and obtain the mean frequency

ΩD(µ) = I0 + µ− 〈sinϕ(t)〉t, (27)

which depends via (26) both on D and µ. Taking into account (23) and (27), the equation for the slow
dynamics of µ(T ) reads

µ′(T ) = −µ(T ) + η(1− I0 − µ+ ΩD(µ(T ))), (28)

i.e. it is of the same form as in the deterministic case (14). The corresponding fixed point equation for
the stationary values of µ with respect to the slow dynamics is given by (18).

The stationary Fokker-Planck equation (24) can be solved directly by integral expressions, see Ap-
pendix B. In particular, for D = 0 we readily recover the results for periodic averaging from the previ-
ous section. However, for small non-vanishingD, the integrals become difficult to evaluate numerically
and we preferred to solve (24) as a first-order ODE boundary value problem with the software AUTO
[8], which provides numerical solutions to boundary value problems by collocation methods together
with continuation tools for numerical bifurcation analysis.

In Fig. 5 are shown the numerically obtained effective frequencies ΩD(µ) for different noise levels
D. Solving the stationary Fokker-Planck equation (24) together with the fixed point equation for µ(T )
(18), we obtain for fixed values of D and varying control gain η branches of stationary solutions
(µ∗, ρ(ϕ;µ∗, D)), see Fig. 6(a). For small noise intensities, these branches are folded, which indi-
cates the coexistence of up to three stationary solutions, similar as in the noise-free case. Alternatively,
we can also fix η and obtain branches for varying D, see Fig. 7. For small η they are monotonically
increasing, while for larger η they are folded. For ηsn < η there are two separate branches, emanating
from the three solutions of (18) at D = 0.

Continuation of the folds in the (η,D) parameter plane provides the curves outlining the boundaries of
the bistability region. Fig. 6(b) shows that the two branches of folds meet at the cusp point (ηcu, Dcu).
One of the branches approaches for D → 0 the value η = ηsn, which we have calculated in (21),
while the other one diverges to infinite values of η. When I0 approaches the critical value I0 = 1, the
cusp point shifts to a smaller noise intensity D, such that the region of bistability decreases.
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Figure 6: (a) Branches of fixed points µ∗(η) of the slow dynamics (28) for a set of noise values
D = 0.005, 0.006, . . . , 0.019, and I0 = 0.95, calculated from (18) together with the stationary
Fokker-Planck equation (24). (b) Two-dimensional bifurcation diagrams in terms of η and D for three
different values of I0 show the curves of fold bifurcations, which meet at the cusp point. Dashed curves
indicate the case where µ = µc = 1− I0.

Note that for D > 0 all the average frequencies satisfy ΩD > 0 such that a clear distinction between
the stationary and the oscillatory regime of the fast dynamics is no longer possible. However, one can
compare the critical value of the deterministic fast dynamics

µc = 1− I0 (29)

with the corresponding stationary value µ∗ of the slow variable from (28) to distinguish between a
regime of noise-induced oscillations and oscillations derived from the deterministic part of the dynam-
ics. If µ∗ < µc, the oscillations are noise-induced and have the form of rare spikes, see Fig. 1(a),while
for µ∗ > µc the deterministic oscillations are prevalent, see Fig. 1(c).

It turns out that the curves where the stationary values of µ satisfy the condition µ = µc, shown
dashed in Fig. 6(b), pass exactly through the corresponding cusp point and inside the bistability region
refer to the unstable solutions given by the middle part of the S-shaped curves in Fig. 6(a). From
this we conclude that changing the parameters across this line outside the bistability region results
in a gradual transition between the regimes of noise-induced oscillations and the deterministic-driven
oscillations, while a hysteretic transition between the two stable regimes is obtained at the boundary
of the bistability region. Moreover, for finite timescale separation ε > 0, there can be transitions
between the two stable regimes also within the bistability region, which are induced by the stochastic
fluctuations. In the following section we study in detail how the region of bistability found for the singular
limit ε→ 0 also affects the dynamics of the original system in case of a finite timescale separation.
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Figure 7: Branches of fixed points µ∗(D) of the slow dynamics (28) for a set of control gain values
η ∈ {0.2, 0.3, 0.35, 0.4} and fixed I0 = 0.95, calculated from (18) together with the stationary
Fokker-Planck equation (24).

4 Effects of fluctuations and finite timescale separation

The two basic deterministic regimes of the fast dynamics, which are the excitable equilibrium and the
oscillations, induce in a natural way the two corresponding states of the system with noise and small
ε > 0, namely

� Noise-induced spiking, characterized by a Poissonian-like distribution of inter-spike intervals
(ISIs), see Fig. 8(a);

� Noisy oscillations, involving a Gaussian-like distribution of the ISIs, centered around the deter-
ministic oscillation period, see Fig. 8(b).

These states are found for sufficiently small or large values of η, respectively, where only a corre-
sponding single branch of the deterministic system is available and the fluctuations of µ around its
average value have no substantial impact on the dynamics, cf. the blue and orange distributions in
Fig. 8. For sufficiently large noise levels above the cusp (D > Dcu) and intermediate values of η,
one observes a gradual transition between these two regimes. However, for smaller noise D < Dcu,
allowing for the existence of the region of bistability (cf. Fig. 6(b)), new regimes of stochastic dynamics
can emerge, namely:

� Enhanced coherence resonance, where a noise-induced dynamical shift of the excitability pa-
rameter I0 + µD is self-adjusted close to criticality;

� Noise-induced switching between the two coexisting regimes in the bistability region, see Fig. 1(b).

4.1 Enhanced coherence resonance

The phenomenon of coherence resonance [34, 27, 31], where the regularity of noise-induced oscilla-
tions becomes maximal at an intermediate noise level, is well-known for noisy excitable systems such
as the fast equation (22) without adaptation, i.e. for η = 0 and therefore also µ = 0. For values
of the control gain 0 < η < ηcu below the region of bistability, the control leads to a substantially
enhanced coherence resonance. This effect can be quantified by studying the noise dependence of
the coefficient of variation of the inter spike intervals. For a given noisy trajectory of (22),the spiking
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Figure 8: Histograms of inter spike intervals of the phase variable for control gain η = 0.2 (top
panel) and η = 0.5 (bottom panel), obtained from numerical simulations of the full system (3)–(4)
with ε = 0.005 (orange) and in the limit of infinite timescale separation (blue), using (22) with the
stationary µ(T ) ≡ µD determined from the stationary Fokker-Planck equation (24). Solid red and
dashed blue curves represent fits to an exponential decay (a) and a Gaussian (b) for the histograms
concerning the full system and the limit of infinite scale separation, respectively.

times tk are defined as the first passage times ϕ(tk) = 2πk, k ∈ N with corresponding inter spike
intervals τk = tk − tk−1. The coefficient of variation of their distribution is defined as

R(D) =

√
〈τ 2
k 〉 − 〈τk〉2
〈τk〉

. (30)

For (22) with a fixed µ, the latter can be determined from direct numerical simulations. However,
inserting for µ the corresponding stochastic averages µ∗(D; η) obtained in Section shows a strongly
nonlinear dependence both on η andD, see also Figs. 6(a) and 7. In particular, the strongly nonlinear
dependence on D for η slightly below the cusp value ηcu has a substantial impact on the resonant
behavior reflected in the form ofR(D). In Fig. 9, we show theR(D) dependence for different values of
the control gain η, comparing the numerical results for the fast subsystem (22) with inserted stationary
values µ∗(D; η), to numerical simulations of (3)-(4) for ε = 0.005. While for 0 < η < ηcu one finds
that the coherence resonance can be substantially enhanced, cf. for example theR(D) dependencies
for η = 0 and η = 0.3, note that by introducing the negative values of the control gain η, the resonant
effect can be readily suppressed. This implies that the adaptive feedback we employ provides an
efficient control of coherence resonance. Such an effect has already been demonstrated in [2, 21,
19]by using a delayed feedback control of Pyragas type. However, this control method requires the
feedback delay time as an additional control parameter to be well adapted to the maximum resonance
frequency..

4.2 Bursting behavior due to noise-induced switching

For parameter values (η,D) within the bistable region and finite timescale separation ε > 0, the
coexisting states of excitable equilibrium and fast oscillations turn into metastable states of the full
system (3)–(4). Based on our slow-fast analysis, the corresponding dynamics can be understood as
follows. The noisy fluctuations of ϕ(t) around its average distribution, given by the stationary Fokker-
Planck equation (24), induces fluctuations of 〈sinϕ(t)〉t, and hence also of µ, around their stationary

DOI 10.20347/WIAS.PREPRINT.2678 Berlin 2020
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Figure 9: Enhancement or suppression of coherence resonance by a slowly adapting feedback con-
trol. The connected lines with empty symbols refer to R(D) dependencies for the full system 3-4 at
different values of the control gain: η = −0.2 (green hexagonals), η = 0 (black squares), η = 0.2
(red circles), and η = 0.3 (blue diamonds), having fixed I0 = 0.95, ε = 0.005. The unconnected
filled symbols indicate the correspondingR(D) dependencies obtained from numerical simulations of
the layer equation22 with stationary µ∗(D).

average values calculated above. For small ε, the corresponding distribution of µ is centered in narrow
peaks at the stable stationary values. However, with increasing ε, the nonlinear filtering induces a
strong skewness of each peak in the distribution, and their overlapping indicates the possibility of
noise- induced transitions between the two metastable states. Figure 10 shows the distribution for ε =
0.005 and different values of the η within the bistability region. These transitions can be understood
in analogy to the Eyring-Kramers process in a double well potential. In the generic case of different
energy levels for the two potential wells, transitions in one of the directions occur at a higher rate
and the system stays preferably in state associated to the global minimum of the potential. Such a
behavior of biased switching is very pronounced closed to the boundaries of the bistability region,
where a switching to the state close to the fold has a much lower probability than switching back.

In Fig. 11 are shown the numerical time averages 〈µ(T )〉 for varying control gain η. One can see that
for most values of η, the long time behavior is dominated by one of the two metastable states, which
indicates a biased switching process. Nevertheless, at an intermediate value of η, we find a balanced
switching, where transitions in both directions occur at an almost equal rate. A corresponding time
trace is shown in Fig. 12 and Fig. 1(b). For ε→ 0, the switching rate decreases to zero exponentially
and the switching bias in the unbalanced regime increases. This leads to the characteristic steplike
behavior of the averages observed in Fig. 11 for smaller ε.

The noise-induced switching shown in Fig. 12 and Fig. 1(b) resembles the regime of bursting in neu-
ronal systems. Here it emerges by an interplay of slow adaptation and noise. In the present setup, the
bursts are triggered just by the stochastic fluctuations. However, in the regime η > ηcu, the system
is also quite susceptible to external inputs, which could initiate the bursts even without any intrinsic
noise.

5 Discussion and outlook

Our model provides a novel perspective on how the dynamics of an excitable system is influenced
by the interaction of a slowly adapting feedback and noise. The feedback is taken from a low pass
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Figure 10: Stationary distributions P (µ), sampled from numerical simulations of (3)–(4) with ε =
0.005. Parameters η = 0.37 in (a), η = 0.373 in (b) and η = 0.38 in (c) and fixed noise level
D = 0.009 lie inside the bistability region from Fig. 6(b). Blue vertical lines indicate the fixed points
of µ from the stationary Fokker-Planck equation (24) together with the fixed point equation (18) of the
slow dynamics. Red vertical lines indicate the mean values of all µ in P (µ) below and of all µ above
the unstable fixed point in the middle (dashed blue lines).

filter of a function that gives a positive feedback to the oscillations by pushing the excitability param-
eter towards the oscillatory regime. Since excitability, feedback, and noise are typical ingredients of
neural systems, we believe that the application of our results to a specific neural model would be a
next natural step, aiming to gain a deeper understanding of the onset of different dynamical regimes,
as well as the means of controlling their properties and the emerging resonant effects. In Figure 13
are summarized our main results. In particular, the multiple timescale analysis for the limit of infinite
timescale separation has allowed us to perform a numerical bifurcation analysis providing the param-
eter regions for the different dynamical regimes illustrated in Figure 1. Numerical simulations for finite
values of ε (lower panels in Fig. 13) show that the slowly varying control variable µ(T ) is distributed
around the stationary values from the limiting problem ε = 0, see also Figure 10. Moreover, we have
demonstrated that the filtered feedback in our model provides an efficient control of the effect of co-
herence resonance, which can be substantially enhanced or suppressed by a corresponding choice
of the feedback gain. In the regime where the limiting problem ε = 0 indicates a bistability between an
equilibrium and a fast oscillation, the stochastic fluctuations at finite values of ε give rise to a switch-
ing between the associated metastable states. However, our analysis shows that for sufficiently high
noise intensity, this bistability vanishes and the two different deterministic states can no longer be
distinguished.

From the point of view of the theory of multiscale systems, the deterministic part of the presented
model provides one of the simplest examples combining the regimes of stable equilibrium and os-
cillations within the fast subsystem. A rigorous mathematical treatment of the dynamical transitions
between the two regimes and the corresponding reductions by the standard adiabatic elimination and
the averaging technique is still missing. Also, our approach to analysis of stochastic dynamics in mul-
tiscale systems by introducing a stationary Fokker-Planck equation for the fast dynamics leads to
important questions concerning the limiting properties of the trajectories and the specific implications
of the fluctuations. Nevertheless, we have considered only the case when the noise acts in the fast
variable. An open problem is to study how the obtained results are influenced by the noise in the slow
variable, where interesting new effects can be expected [5].
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Figure 11: Long-time averages 〈µ〉T from numerical simulations of (3), (4) with fixed noise intensity
D = 0.008 and varying control gain η at different values of ε ∈ {0.002, 0.005, 0.01, 0.02}. The
black curve represents the corresponding result for the infinite timescale separation, cf. Fig. 6(a).
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Figure 12: Time series ϕ(t) (top panel) and µ(t) (bottom panel) illustrating the regime of balanced
switching. The system parameters are η = 0.38, D = 0.008, I0 = 0.95, ε = 0.01.

Appendix A: Multiscale averaging in the regime of fast oscillations

In this appendix we provide a rigorous formal derivation of the slow averaged equation (14) for the
case of periodic dynamics in the fast layers.

We apply the following general multiscale Ansatz

ϕ = ϕ̄(t, εt) + εϕ̂(t, εt),

µ = µ̄(t, εt) + εµ̂(t, εt).

Substituting this Ansatz into (3)–(4), one obtains up to the terms of the order ε

∂1ϕ̄+ ε∂2ϕ̄+ ε∂1ϕ̂ = I0 − sin (ϕ̄+ εϕ̂) + µ̄+ εµ̂,

∂1µ̄+ ε∂2µ̄+ ε∂1µ̂ = ε (−µ̄− εµ̂+ η (1− sin (ϕ̄+ εϕ̂))) ,
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Figure 13: Upper panel: Parameter regions for different dynamical regimes: noise induced spiking
(blue), noise perturbed oscillations (red), and noise induced bursting (violet). Enhanced coherence
resonance can be found in the hatched region. Lower panels: Sampled distributions of µ(T ) from
numerical solutions with ε = 0.005, D = 0.008 and η ∈ 0.3, 0.38, 0.5.

where the subscripts 1 and 2 refer to partial derivatives with respect to t and εt, respectively. Collecting
the terms of orderO(1), one finds

∂1ϕ̄ = I0 − sin ϕ̄+ µ̄, (31)

∂1µ̄ = 0. (32)

The equation (32) implies that µ̄ = µ̄(εt) depends only on the slow time and acts as a parameter in
(31). For µ̄ > 1 − I0, equation (31) has the oscillating solution ϕ̄ = ϕµ̄(t) given by (13). Note that
the parameters of this solution can depend on the slow time.

As a next step, we consider the terms of order ε:

∂2ϕ̄+ ∂1ϕ̂ = −ϕ̂ cos ϕ̄+ µ̂,

∂2µ̄+ ∂1µ̂ = −µ̄+ η (1− sin ϕ̄) . (33)

We rewrite Eq. (33) as

∂2µ̄+ µ̄ = −∂1µ̂+ η (1− sin ϕ̄) , (34)

where the left-hand side depends only on the slow time. Hence, the solvability condition for (34) is the
requirement that its right-hand side is independent on the fast time t, i.e.

−∂1µ̂+ η (1− sin ϕ̄) = u(T ) (35)

with some function u(T ),where T = εt is the slow time. By integrating (35) with respect to the fast
time, we obtain

µ̂(t) = µ̂(0) + η

(
t−
∫ t

0

sin ϕ̄dt

)
− tu(T ) (36)
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The integral in (36) can be computed using (31):∫ t

0

sin ϕ̄dt = tI0 + tµ̄− ϕ̄(t) + ϕ̄(0)

such that

µ̂(t) = µ̂(0) + t

[
η

(
1− I0 − µ̄+

ϕ̄(t)− ϕ̄(0)

t

)
− u(T )

]
Taking into account that

ϕ̄(t)− ϕ̄(0)

t
= Ω(µ̄) +O

(
1

t

)
,

we obtain the expression for µ̂ :

µ̂(t) = µ̂(0) + t [η (1− I0 − µ̄+ Ω(µ̄))− u(T )] +O(1),

where the linearly growing term must vanish for µ̂(t) to be bounded. Setting such a secular term to
zero (even without computing explicitly µ̂), we have

u(T ) = η (1− I0 − µ̄+ Ω(µ̄)) ,

and, hence, taking into account (34) and (35), the equation for the leading order approximation of the
slow variable reads

∂2µ̄+ µ̄ = η (1− I0 − µ̄+ Ω(µ̄)) .

Since µ̄ is the function of the slow time only, we have ∂2µ̄ = µ̄′ ,which results in the required averaged
equation (14).

Appendix B: Explicit solution of the stationary Fokker-Planck equa-
tion

Here we present the analytic solution of the stationary Fokker-Planck equation (24)–(25). By integrat-
ing Eq. (24) once one obtains

D

2
∂ϕρ− (I0 + µ− sinϕ) ρ = C (37)

with a constant C to be determined. Solving (37), and taking into account the normalization (25) and
the boundary condition ρ(0) = ρ(2π), we arrive at

ρ(ϕ;µ,D) =
1

gΛ

Λ(ϕ),

where

Λ(ϕ) =

∫ 2π

0

Ψ(ϕ)

Ψ(ϕ+ ξ)
dξ,

gΛ =

∫ 2π

0

Λ(ϕ)dξ,

Ψ(ϕ) = exp

{
2

D
[(I0 + µ)ϕ+ cosϕ− 1]

}
.
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