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The parabolic Anderson model on a Galton—Watson tree

Frank den Hollander, Wolfgang Kénig, Renato Soares dos Santos

Abstract

We study the long-time asymptotics of the total mass of the solution to the parabolic Ander-
son model ( PAM) on a supercritical Galton-Watson random tree with bounded degrees. We
identify the second-order contribution to this asymptotics in terms of a variational formula that
gives information about the local structure of the region where the solution is concentrated.
The analysis behind this formula suggests that, under mild conditions on the model parame-
ters, concentration takes place on a tree with minimal degree. Our approach can be applied to
finite locally tree-like random graphs, in a coupled limit where both time and graph size tend
to infinity. As an example, we consider the configuration model or, more precisely, the uniform
simple random graph with a prescribed degree sequence.

1 Introduction and main results

In Section |1.1|we give a brief introduction to the parabolic Anderson model. In Section|1.2|we give
the basic notation. In Sections [1.3] and [1.4] we present our results for Galton-Watson trees and for
the configuration model, respectively. In Section[1.5(we discuss these results.

1.1 The PAM and intermittency

The parabolic Anderson model (PAM) concerns the Cauchy problem for the heat equation with a
random potential, i.e., solutions u to the equation

Owu(t,x) = Au(t,z) + {(v)u(t,z), t>0,xe X, (1.1)

where 2 is a space equipped with a Laplacian A, and £ is a random potential on 2. The operator
A + £ is called the Anderson operator. Although Z¢ and R“ are the most common choices for
2, other spaces are interesting as well, such as Riemannian manifolds or discrete graphs. In the
present paper we study the PAM on random graphs. For surveys on the mathematical literature on
the PAM until 2016, we refer the reader to [A16] [K16].

The main question of interest in the PAM is a detailed description of the concentration effect called
intermittency: in the limit of large time the solution u concentrates on small and well-separated
regions in space, called intermittent islands. This concentration effect can be studied particularly
well in the PAM because efficient mathematical tools are available, such as eigenvalue expansions
and the Feynman-Kac formula. In particular, these lead to a detailed description of the locations
of the intermittent islands, as well as the profiles of the potential £ and the solution u inside these
islands.
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F. den Hollander, W. Kdnig, R. Soares dos Santos 2

The analysis of intermittency usually starts with a computation of logarithmic large-time asymp-
totics of the total mass, called Lyapunov exponents. There is an important distinction between the
annealed setting (i.e., averaged over the random potential) and the quenched setting (i.e., almost
surely with respect to the random potential). Often both Lyapunov exponents admit explicit descrip-
tions in terms of characteristic variational formulas that contain information about how the mass
concentrates in space, and serve as starting points for deeper investigations. The ‘annealed’ and the
‘quenched’ variational formula are typically connected but take two different points of view. They con-
tain two parts: a rate function term that identifies which profiles of the potential are most favourable
for mass concentration, and a spectral term that identifies which profiles the solution takes inside
the intermittent islands.

From now on, we restrict to discrete spaces and to random potentials that consist of i.i.d. variables.
For Z?, the above intermittent picture was verified for several classes of marginal distributions. It
turned out that the double-exponential distribution with parameter o € (0, 00), given by

P(£(0) > u) = e’ uweR, (1.2)

is particularly interesting, because it leads to non-trivial intermittent islands and to interesting profiles
of both potential and solution inside. There are four different classes of potentials, distinguished by
the type of variational formula that emerges and the scale of the diameter of the intermittent island
(cf. [HKMO6]). The double-exponential distribution is critical in the sense that the intermittent islands
neither grow nor shrink with time, and therefore represents a class of its own.

The setup of the present paper contains two features that are novel in the study of the PAM: (1) we
consider a random discrete space, thereby introducing another layer of randomness into the model;
(2) this space has a non-Euclidean topology, in the form of an exponential growth of the volume of
balls as a function of their radius. As far as we are aware, the discrete-space PAM has so far been
studied only on Z% and on two examples of finite deterministic graphs: the complete graph with n
vertices [FM90] and the N-dimensional hypercube with n = 2 vertices [AGH16]. These graphs
have unbounded degrees as n — 00, and therefore the Laplace operator was equipped with a
prefactor that is equal to the inverse of the degree, unlike the Laplace operator considered here.

Our main target is the PAM on a Galton-Watson tree with bounded degrees. However, our approach
also applies to large finite graphs that are sparse (e.g. bounded degrees) and locally tree-like (rare
loops). As an illustration, we consider here the configuration model or, more precisely, the uniform
simple random graph with prescribed degree sequence. We choose to work in the almost-sure (or
large-probability) setting with respect to the randomnesses of both graph and potential, and we
take as initial condition a unit mass at the root of the graph. We identify the leading order large-
time asymptotics of the total mass, and derive a variational formula for the correction term. This
formula contains a spatial part (identifying the subgraph on which the concentration takes place)
and a profile part (identifying the shape on that subgraph of both the potential and the solution).
Both parts are new. In some cases we can identify the minimiser of the variational formula. As in the
case of Z%, the structure of the islands does not depend on time: no spatial scaling is necessary.

1.2 The PAM on a graph

We begin with some definitions and notations, and refer the reader to [A16l [K16] for more back-
ground on the PAM in the case of Z.
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The parabolic Anderson model on a Galton—Watson tree 3

Let G = (V, E) be a simple connected undirected graph, either finite or countably infinite. Let Ag
be the Laplacian on G, i.e.,

(AcH@) = D [fly) = f@), zeV,f: VR (1.3)

yeVv:
{z,y}€E
Our object of interest is the non-negative solution of the Cauchy problem for the heat equation with
potential £: V' — R and localised initial condition,

Ou(x,t) = (Agu)(x,t) + &(x)u(z,t), ze€V, t>0,

w(z,0) = bolz), rev, (1.4)

where O € V is referred to as the origin or root of G. We say that (G is rooted at O and call
G = (V,E,O) a rooted graph. The quantity u(t, z) can be interpreted as the amount of mass
present at time ¢ at site  when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (1.4) are well-known for the
case G = Z¢ (see [GM90]), and rely on the Feynman-Kac formula

w(@, 1) = Eo {exp { /0 t §(X5)ds} 1{X, = x}} , (1.5)

where X = (X}):>0 is the continuous-time random walk on the vertices V' with jump rate 1 along
the edges F, and IP» denotes the law of X given Xy = . We will be interested in the total mass

of the solution,
=Y u(z,t) =Eo lexp{/ﬁ H (1.6)

zeV

Often we suppress the dependence on G, £ from the notation. Throughout the paper, we assume
that the random potential £ = (£()).cv consists of i.i.d. random variables satisfying:

Assumption (DE). For some ¢ € (0, o),

P (£(0) >0) =1, P (£(0) > u) = e=""* for u large enough. (1.7)

Under Assumption (DE), £(0) > 0 almost surely and & () has an eventually exact double-exponential
upper tail. The latter restrictions are helpful to avoid certain technicalities that are unrelated to the
main message of the paper and require no new ideas. In particular, ( is enough to guarantee
existence and uniqueness of the non-negative solution to (2.9) on any dlscrete graph with at most
exponential growth, as can be inferred from the proof of the Z%-case in [GM98]. All our results re-
main valid under or even milder conditions, e.g. [GM98, Assumption (F)] plus an integrability
condition on the lower tail of £(0).

The following characteristic variational problem will turn out to be important for the description of the
asymptotics of U (t) when £ has a double-exponential tail. Denote by P (V') the set of probability
measures on V. For p € P(V), define

> <\/p(w)—\/p(y)>2, Jy(p) === p(x)logp(z (1.8)

{zy}teE eV
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and set

xa(o) == peig(fv)[fE(p) + 0Jv(p)], o0 € (0,00). (1.9)

The first term in is the quadratic form associated with the Laplacian, describing the solution
u(+,t) in the intermittent islands, while the second term in is the Legendre transform of the
rate function for the potential, describing the highest peaks of £(-) inside the intermittent islands.
See Section [1.5for its relevance and interpretation, and Section [2.3|for alternate representations.

1.3 Results: Galton-Watson Trees

In this section we focus on our first example of a random graph.
Let Dy, D, be random variables taking values in N = {1, 2. 3, ... }. The Galton-Watson tree with
initial degree distribution Dy and general degree distribution D, is constructed as follows. Start
with a root vertex 0, and attach edges from O to D, first-generation vertices. Proceed recursively:
after having attached the n-th generation of vertices, attach to each one of them an independent
(D, — 1)-distributed number of new vertices, whose union gives the (n + 1)-th generation of
vertices. Denote by GW = (V, E) the graph obtained, by 3 its probability law, and by E the
corresponding expectation. The law of D, — 1 is the offspring distribution of G}V, and the law of
D, is the degree distribution. Write supp(D,) to denote the set of degrees that are taken by D,
with positive probability.
We will work under the following bounded-degree assumption:
Assumption (BD).

dmin := minsupp(Dy,) > 2, E[D,] > 2, (1.10)

and, for some dyax € N, diax > dimin,

max supp(D,) < dmax- (1.11)

Under Assumption (BD), GV is almost surely an infinite tree. Moreover,

log |B,.(O
;- log|B.(0)
7—00 T
where B,.(Q) is the ball of radius r around O in the graph distance (see e.g. [LP16, pp.134-135]).
Note that Assumption (BD) allows deterministic trees with constant offspring d,,;, — 1 (provided
dmin Z 3)

To state our main result, we define the constant

=logED,—1]=9v>0 P-—a.s., (1.12)
9

X(0) := inf {xr(0): T infinite tree with degrees in supp(Dy) } (1.13)

with x (o) defined in (T-9).

Theorem 1.1. [Quenched Lyapunov exponent for the PAM on GW] Let G = GW = (V, E, O)
be the rooted Galton-Watson random tree satisfying Assumption (BD), and let ¥} be as in (1.12). Let
& = (£(x))zev be ani.id. potential satisfying Assumption (DE). Let U (t) denote the total mass at
time t of the solution u to the PAM on GW. Then, ast — oo,

1 )
glogU(t) = plog ( 9

10g10gt> —o—X(e) +o(1), (P xP)-as. (1.14)
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The parabolic Anderson model on a Galton—Watson tree 5

The proof of Theorem[1.1]is given in Section

For o sufficiently large we can identify the infimum in (1.13). For d > 2, denote by 7T the infinite
homogeneous tree with degree equal to d at every node.

Theorem 1.2. [Identification of the minimiser] /f o > 1/log(duin + 1), then X(0) = X,

(0).

The proof of Theorem([1.2)is given in Section|[A]with the help of a comparison argument that appends
copies of the infinite d,,,;,-tree to itself.

min

1.4 Results: Configuration Model

In this section we focus on our second example of a random graph.

Forn € N, let 9™ = (d{”)™_, be a collection of positive integers. The configuration model with
degree sequence 0™ is a random multigraph (i.e., a graph that may have self-loops and multiple
edges) on the vertex set V,, := {1,...,n} defined as follows. To each i € V,,, attach di") ‘half-
edges’. After that, construct edges by successively attaching each half-edge uniformly at random to
a remaining half-edge. For this procedure to be successful, we must require that

d{ + .- +d" is even for every n € N. (1.15)

Draw a root O,, uniformly at random from V,,. Denote by CM,, = (V,,, E,,O,,) the rooted
multigraph thus obtained, and by ‘3, its probability law. For further details, we refer the reader
to [vdH17al Chapter 7].

We will work under the following assumption on 0™:
Assumption (CM): The degree sequences 0™ = (d\")_,, n € N, satisfy (T.15). Moreover,
1 There exists an N-valued random variable D such that dy;’ = D as n — oc.
2 dpyin := minsupp(D) > 3.
3 There exists a dyax € Nsuchthat2 < d\” < dy.foralln € Nand1 < i < n.
In particular, 3 < dpin < dmax < 00 and D < d,,., almost surely. It is possible to take 0™

random. In that case Assumption (CM) must be required almost surely or in probability with respect
to the law of 9, and our results below must be interpreted accordingly.

Proposition 1.3. [Connectivity and simplicity of CM,,] Under Assumption (CM),

[M]

lim 9B, (CM,, is a simple graph) = e 21, (1.16)
n—o0
where E[D(D 1)]
= e 2.00). 117
v ED € [2,00) (1.17)
Moreover,
lim B, (CM,, is connected | CM,, is simple) = 1. (1.18)
n—oo
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F. den Hollander, W. Kdnig, R. Soares dos Santos 6

Proof. See [vdH17a, Theorem 7.12] and [FEvdH17, Theorem 2.3]. O
Proposition [1.3]tells us that for large n the set
U,(d™) := {simple connected graphs on {1, ..., n} with degrees d\"’, . . ., d{}" (1.19)

is non-empty. Hence, we may consider the uniform simple random graph UG,, that is drawn uni-
formly at random from %, (™).

Proposition 1.4. [Conditional law of C.M,, given simplicity] Under the conditional law B3, ( - |
CM,, is simple), CM,, has the same law asUG,,.

Proof. See [vdH17al, Proposition 7.15]. O

As usual, for a sequence of events (A,,),cn, We say that A,, occurs with high probability (whp) as
n — oo if the probability of A,, tends to 1 as n — oc. This notion does not require the events to
be defined on the same probability space. We denote by distry (X, Y') the total variation distance
between two random variables X and Y (i.e., between their laws). Let

1 . -1
(I)n = (E V dlStTv(dOn, D)) 5 (1 20)

and note that, by Assumption (CM), ®,, — co asn — oo.

Theorem 1.5. [Quenched Lyapunov exponent for the PAM on U/G,] Foranyn € N, let G =
UG,, be the uniform simple random graph with degree sequence 0™ satisfying Assumption (CM).
Foranyn € N, let  be an i.i.d. potential on'V,, satisfying Assumption (DE). Let U,,(t) denote the
total mass of the solution to the PAM on G = UG,, as defined in Section Fix a sequence of
times (t,,)nen with t, — oo andt,logt, = o(log®,) asn — oo. Then, with high P x B, -
probability as n — oo,

1 otV -
-1 t)=plog [ -7 ) — o — 1 1.21
Y og U,(t,) = olog <loglogtn> 0 —Xx(o) +o(1), (1.21)

where ¥ := logv > 0 with v as in (1.17), and X (o) is as in (T.13).

The proof of Theorem|[1.5]is given in Section 5] The main ingredients in the proof are Theorem 1.1
and a well-known comparison between the configuration model and an associated Galton-Watson
tree inside a slowly-growing ball, from which the condition on ¢,, originates.

Condition (1) in Assumption (CM) is a standard regularity condition. Conditions (2) and (3) provide
easy access to results such as Propositions above. As examples of degree sequences
satisfying Assumption (CM) we mention:

B Constant degrees. In the case where d; = d > 3 for a deterministic d € N and all
1 < i < n,we have do, = D = d almost surely, and UG,, is a uniform regular ran-
dom graph. To respect (1.15), it is enough to restrict to 7 such that nd is even. In this case
distrv(do,, D) = 0, and so ®,, = n in (1.20).

DOI 10.20347/WIAS.PREPRINT.2675 Berlin 2020



The parabolic Anderson model on a Galton—Watson tree 7

B Random degrees. In the case where (d;);cn forms an i.i.d. sequence taking valuesin {3, . . . , dyax },
classical concentration bounds (e.g. Azuma’s inequality) can be used to show that, for any
7€ (0,3),
drv(do,, D) =o(n™") almost surely as n — oo, (1.22)

and so ®,, > n". The condition in (1.15) can be easily satisfied after replacing d,, by d,, + 1
when d; + - - - + d,, is odd, which does not affect (1.22). With this change, Assumption (CM)
is satisfied. For more information about C.M,, with i.i.d. degrees, see [vdH17a, Chapter 7].

1.5 Discussion

Our main results, Theorems and identify the quenched logarithmic asymptotics of the total
mass of the PAM. Our proofs show that the first term in the asymptotics comes from the height of
the potential in an intermittent island, the second term — g from the probability of a quick sprint by
the random walk in the Feynman-Kac formula from O to the island, and the third term X( o) from the
structure of the island and the profile of the potential inside. Below we explain how each of these
three terms comes about. Much of what follows is well-known from the study of the PAM on Z*° (see
also [K16]), but certain aspects are new and derive from the randomness of the ambient space and
its exponential growth.

» Galton-Watson tree.

e First and second terms. The large-¢ asymptotics of the Feynman-Kac formula for U(t)
comes from those random walk paths (X(s))se[o,t] that run within s, time units to some favorable
local region of the graph (the intermittent island) and subsequently stay in that region for the rest
of the time. In order to find the scale t; of the distance to the region and the time s; of the sprint,
we have to balance and optimise a number of crucial quantities: the number of sites in the ball
B, (O) around O with radius t;, the scale of the maximal value of the potential within that ball, the
probability to reach that ball within time s,, and the gain from the Feynman-Kac formula from staying
in that ball during ¢ — s, time units. One key ingredient is the well-known fact that the maximum
of m independent random variables satisfying Assumption (DE) is asymptotically equal to h,, ~
o0log log m for large m. Another key ingredient is that B, () has approximately e**” vertices (see
(T-12)). Hence, this ball contains values of the potential of height &~ h,«,s ~ plog (r;4}), not just at
one vertex but on a cluster of vertices of arbitrary finite size. The contribution from staying in such as
cluster during = ¢ time units yields the first term of the asymptotics, where we still need to identify
;. A slightly more precise calculation, involving the probabilistic cost to run within s; time units over
t; space units and to afterwards gain a mass of size (¢ — s;)olog (r41), reveals that the optimal
time is 5; =~ t;/plog t;. Optimising this together with the first term g log (r;19) over t;, we see that
the optimal distance is t; = ot/ loglogt. The term —p comes from the probability of making t;
steps within 5, = t;/plog t; time units.

e Third term. The variational formula X (o) describes the second-order asymptotics of the gain
of the random walk from staying ~ ¢ time units in an optimal local region (the first-order term has
already been identified as g log (r41)). Indeed, pick some finite tree T" that is admissible in (T.13),
i.e., has positive probability to occur locally in the graph G = GW. Many copies of 1" occur disjointly
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with positive density in G. In particular, they appear within the ball B,,(O) a number of times that
is proportional to the volume of the ball. By standard extreme-value analysis, on one of these many
copies of 7" the random potential achieves an approximately optimal height (= ¢ log (7)) and
shape. The optimality of the shape is measured in terms of the negative local Dirichlet eigenvalue
—Ar(&) of Ag + € inside T'. The shapes ¢ that £ can assume locally are those that have a large-
deviation rate value £(q) = >__ %@/ at most 1 (note that £(q) measures the probabilistic cost
of the shape g on an exponential scale). All allowed shapes ¢ are present locally at some location
inside the ball B, (O) for large t. Each of these locations can be used by the random walk as an
intermittent island. Optimising over all allowed shapes ¢, we see that the second-order term of the
long stay in that island must indeed be expressed by the term

sup [=Ar(q)] (1.23)
q: L(g)<1

When T is appropriately chosen, this number is close to the number X (o) defined in (T-13) (cf.
Proposition [2.4). This completes the heuristic explanation of the asymptotics in (1.14).

» Configuration Model.

The analogous assertion for the configuration model in is understood in the same way, ig-
noring the fact that the graph is now finite, and that size and time are coupled. As to the additional
growth constraint on t,, log t,, in Theorem 1.5 its role is to guarantee that the ball B;, (O) is small
enough to contain no loop with high probability. In fact, this ball is very close in distribution to the
same ball in an associated Galton-Watson tree (cf. Proposition [5.1), which allows us to carry over
our result.

Minimal degree tree is optimal. What is a heuristic explanation for our result in Theorem[1.2]that
the optimal tree is an infinitely large homogeneous tree of minimal degree d,,;, at every vertex?
The first term in (1.9), the quadratic form associated with the Laplacian, has a spread-out effect.
Apparently, the self-attractive effect of the second term is not strong enough to cope with this,
as the super-linear function p +— plogp in the definition of Jy in is ‘weakly superlinear’.
This suggests that the optimal structure should be infinitely large (also on Z? the optimal profile is
positive anywhere in the ambient space Z%). The first term is obviously monotone in the degree,
which explains why the infinite tree with minimal degree optimises the formula.

Hurdles. The exponential growth of the graph poses a number of technical difficulties that are not
present for the PAM on Z? or R?. Indeed, one of the crucial points in the proof of the upper bound
for the large-time asymptotics is to restrict the infinite graph GG to some finite but time-dependent
subgraph (in our case the ball B, (O)). On 7%, a reflection technique that folds Z into a box of an
appropriate size gives an upper bound at the cost of a negligible boundary term. For exponentially
growing graphs, however, this technique can no longer be used because the boundary of a large
ball is comparable in size to the volume of the ball. Therefore we need to employ and adapt an
intricate method developed on Z< for deriving deeper properties of the PAM, namely, Poisson point
process convergence of all the top eigenvalue-eigenvector pairs and asymptotic concentration in a
single island. This method relies on certain path expansions, which are developed in Section [3]and
rely on results from [BKS18].
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The parabolic Anderson model on a Galton—Watson tree 9

1.6 Outline

The remainder of the paper is organised as follows. In Section [2|we collect some basic notations and
facts about graphs, spectral objects, alternate representations of the characteristic formula X (o),
and the potential landscape. In Section (3| we employ a path expansion technigue to estimate the
contribution to the Feynman-Kac formula coming from certain specific classes of paths. In Section
we prove Theorem In Section [5)we prove Theorem In Appendix [A|we analyse the behavior
of the variational formula x for trees 1" under certain glueing operations, and prove Theorem|1.2

2 Preliminaries

In this section we gather some facts that will be useful in the remainder of the paper. In particular,
we transfer some basic properties of the potential landscape derived in [BK16] and [BKS18] for
the Euclidean-lattice setting to the sparse-random-graph setting. In Section we describe the
classes of graphs we will work with. In Section [2.2)we derive spectral bounds on the Feynman-Kac
formula. In Section [2.3|we provide alternative representations for the constant x in (1.9). In Section
[2.4)we obtain estimates on the maximal height of the potential in large balls as well as on the sizes
and local eigenvalues of the islands where the potential is close to maximal. In Section we
obtain estimates on the heights of the potential seen along self-avoiding paths and on the number
of islands where the potential is close to maximal.

2.1 Graphs

All graphs considered in the paper are simple, connected and undirected, and are either finite or
countably infinite. For a graph G = (V, E'), we denote by dist(z,y) = distg(x,y) the graph
distance between x,y € V/, and by

deg(z) = degg(z) :=#{y € V: {y,2} € E}, (2.1)
the degree of the vertex x € V. The ball of radius ¢ > 0 around a vertex x is defined as
By(z) = BS () :={y € V: distg(y,x) <€},  Ly:=|By. (2.2)
For a rooted graph G = (V, E/, O), the distance to the root is defined as
|z| := distg(z,0), xe€V. (2.3)

The classes of graphs that we will consider are as follows. Fix a parameter d,,.x € N. For r €
Nyo = N U {0}, define

s simple connected undirected rooted graphs G=(V,E,O) with (2 4)
T 7 ] V finite or countable, |V|>r+1 and max,cy degg () <dmax [ ° :

Note thatif G € &, then L, = |B,| > r + 1. Also define

600 _ ﬂ Q5r _ {simple connected undirected rooted graphs G=(V,E,O) with } ‘ (2.5)

V countable, |V |=c0 and max,cy degg () <dmax
reNg
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When dealing with infinite graphs, we will be interested in those that have an exponential growth.
Thus we define, for ¥ > 0,

Y = {G € G lim log L _ 19}. (2.6)

r—00 T

Note that GW € &%) almost surely, with ¢ as in (1.12).

2.2 Spectral bounds

Let G = (V, E) be a simple connected graph with maximal degree d,.., € N, where the vertex
set V' may be finite or countably infinite.

We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson Hamiltonian. For
A C Vandg: V — [—00,00), let \{’(¢; G) denote the largest eigenvalue of the operator
Ag + q in A with Dirichlet boundary conditions on V'\ A. More precisely,

AV (;G) = sup {{(Ac + @)b, D) ey : ¢ € RV, suppo C A, [|0]ley =1}, (27)

We will often omit the superscript (1), i.e., write Ay (¢; G) = A} (¢; G), and abbreviate \¢(q) :=
Av(g; G). When there is no risk of confusion, we may also suppress G from the notation, and omit
qwhen g = €.

Here are some straightforward consequences of the Rayleigh-Ritz formula:

1 Forany I' C A,

max q(2) — dmax < AP (0 G) < A (¢ G) < maxq(2). (2.8)
1S FAS

2 The eigenfunction corresponding to )\x)(q; (3) can be taken to be non-negative.

3 Ifgisreal-valued and I" C A are finite and connected in GG, then the middle inequality in (2.8)
is strict and the non-negative eigenfunction corresponding to )\X)(q; () is strictly positive.

In what follows we state some spectral bounds for the Feynman-Kac formula. These bounds are
deterministic, i.e., they hold for any fixed realisation of the potential £ € RY.

Inside G, fix a finite connected subset A C V/, and let H, denote the Anderson Hamiltonian
in A with zero Dirichlet boundary conditions on A = V\A (i.e., the restriction of the operator
Hg = Ag + £ to the class of functions supported on A). For y € A, let u¥{ be the solution of

Owu(z,t) = (Hpu)(z,t), €A, t>0,

u(z,0) = IL,(x), x € A, 29
and set U} (t) := Y, ui (z, ). The solution admits the Feynman-Kac representation
t
ul (z,t) = E, [exp {/ §(Xs)d5} Hrpe >t, X, =2}, (2.10)
0
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The parabolic Anderson model on a Galton—Watson tree 11

where 7. is the hitting time of A°. It also admits the spectral representation

Al

a2, 1) = 3 W o (y)o (), 2.11)

k=1

where Ay > AP > .. > A" and ¢, 0P, ..., #\"" are, respectively, the eigenvalues and
the corresponding orthonormal eigenfunctions of H . These two representations may be exploited
to obtain bounds for one in terms of the other, as shown by the following lemma.

Lemma 2.1. [Bounds on the solution] Foranyy € A and anyt > 0,

(1) t
et ¢5\1)(y)2 <E, elo E(Xs)dsﬂ{mot,Xt:y}]
(1)
<E, [ehen, ] <eWAP @)

Proof. The first and third inequalities follow from (2.10H2.11) after a suitable application of Parse-
val’s identity. The second inequality is elementary. O

The following lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 2.2. [Mass up to an exit time] Foranyy € A andy > A\,

E, {exp {/ (&(Xs) — ) ds}} <1+ dma—x‘/}ll (2.13)
0 SN

Proof. See [GKMQ7, Lemma 4.2]. O
The following lemma provides control on the principal eigenfunction.

Lemma 2.3. [Representation of the principal eigenfunction] Forany z,y € A,

(1) T Ty )
é\l)( ) =E, {exp {/ (S(Xu) — )\5\)) du} N7, < TAC}} ) (2.14)
A () 0

Proof. See [MP16, Proposition 3.3]. O

2.3 About the constant y

We next introduce alternative representations for x in (1.9) in terms of a ‘dual’ variational formula.
Fix 0 € (0,00) and a graph G = (V, E). The functional

Ly(g0) =) e@eel0,00], g¢: V= [-00,00), (2.15)

zeV

plays the role of a large deviation rate function for the potential £ in V' (compare with (1.7)). Hence-
forth we suppress the superscript “(1)” from the notation for the principal eigenvalue (2.7), i.e., we
write

MGG =M\ (¢:G), AcV, (2.16)
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and abbreviate A (q) = A\v(¢; G). We also define

Xa(0;G) === sup  M(g;G) €[0,00),  Xa(o) = Xv(0;G). (2.17)

q: V‘)[*O0,00),
Lv(g;0)<1

The condition Ly (g; 0) < 1 on the supremum above ensures that the potentials ¢ have a fair
probability under the i.i.d. double-exponential distribution. Finally, for an infinite rooted graph G' =

(V, E,O), we define

X&' (p) = inf X, (03 G). (2.18)

Both ' and  give different representations for .

Proposition 2.4. [Alternative representations for ] For any graph G = (V, E) andany A C V,

Xa(o; G) < xal(o), xv(0;G) = Xa(o) = xa(o). (2.19)
IfG=(V,E,O) € &, then
X&' (e) = lim X5, (0; G) = xc(0). (2.20)

Proposition [2.4] will be proved in Section [A.1

2.4 Potentials and islands

We next consider properties of the potential landscape. Recall that (£(x)).cy are i.i.d. double-
exponential random variables. Set

ar, == ologlog(L V €°). (2.21)
The next lemma shows that a, is the leading order of the maximum of £ in B,.

Lemma 2.5. [Maximum of the potential] Fix r — g, > 0 with lim,_,,, g, = 0o. Then

sup P (
Ge®,

Moreover, for any ¥ > 0 and any G € (’583), P-almost surely eventually as r — o0,

max &(x) — az,

. 1
> logLT> < max{r—z,e 7 } V> 2e2. (2.22)

< 2@103;7“.
- Ur

max &(x) — ag, (2.23)

CEEBT

Proof. Without loss of generality, we may assume that g, < 2plogr. Fix G € &, and estimate

1 —girT _rlogr _gr
P max{(z) <ap, — gr — o glrlloglr)e eRELr TTa " < o K , (2.24)
TEBR IOg Lr

provided r > 2e%. On the other hand, usinge® > 14z, z € R, we estimate

L
log lo Lr+—% r _ar
P(maxﬁ(x)ZaLr—k 9r >_1—<1—e_eg el > <e z. (2.25)

2€Bn log r
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Noting that the bounds above do not depend on (7, so the case G € &,. is concluded.

For the case G € 6583), let g, := %g log r. Note that the right-hand side of (2.22) is summable over
r € N, so that, by the Borel-Cantelli lemma,

G 20logr
< <
log L, Ir

P-almost surely eventually as r — oo. O

max¢(z) —az,

For a fixed rooted graph G = (V, E, O) € &, we define sets of high excedances of the potential
in B, as follows. Given A > 0, let

HT’,A = Hr,A(&) = {Z S Br: 5(2) >ar, — 2A} (2.26)
be the set vertices in B, where the potential is close to maximal. For a fixed o € (0, 1), define
Sy = (logr)® (2.27)

and set
DT,A = Dr,A(f) = {Z € Bri diStg(Z, HT,A) < ST} D) Hr,A, (2.28)

i.e., D, 4 is the S,-neighbourhood of I, 4. Let €, 4 denote the set of all connected components of
D, 4 in G, which we call islands. For C € €, 4, let

zc = argmax{{(z): z € C} (2.29)

be the point with highest potential within C. Since £(0) has a continuous law, z¢ is P-a.s. well
defined for all C € €, 4.

The next lemma gathers some useful properties of €, 4.

Lemma 2.6. [Maximum size of the islands] For every A > 0, there exists M 4 € N such that the
following holds. For a graph G € &,., define the event

B, :={3C €€ awith|CNIL 4] > Mu}. (2.30)
Then ) .y, SUPges, P(B,) < oo. In particular,

lim sup P(B,) =0, (2.31)

r—00 Ge®B,.

and, for any fixed G € &, P-almost surely eventually as r — oo, BB, does not occur. Note that

onB; allC € €, 4 satisfy: |C N 11, 4| < M4, diamg(C) < 2M4S,, |C] < M dor

max”

(2.32)

Proof. The claim follows from a straightforward estimate based on (1.7) (see [BK16, Lemma 6.6]).
L

Apart from the dimensions, it will be also important to control the principal eigenvalues of islands in
€, 4. For this we restrict to graphs in 6&2).

Lemma 2.7. [Principal eigenvalues of the islands] Forany ¥ > 0 and any G € 6&2), P-almost
surely eventually as r — o0,

allC € €, 4 satisfy: \.’(&;G) < ar, —Xe(0;G) + €. (2.33)
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Proof. We follow [GM98, Lemma 2.11]. Lete > 0,G = (V, E,O) € Qig), and define the event

there exists a connected subset ACV with ANB,#£0,
B, := { (2.34)

IA|<Madiig and A (6,6)>ar, —%a (0:G)+e

with M 4 as in Lemma Note that, by (1.7), ef@/ejs stochastically dominated by C'V E, where
E'is an Exp(1) random variable and C' > 0 is a constant. Thus, forany A C V, using (2.17), taking
~v := Vee/¢ > 1 and applying Markov’s inequality, we may estimate

P (AV(&G) 2 ar, — Xa(0;G) +¢) SP(La(€ —ar, —€) > 1) =P (v'La(€) > vlog L)
< e*’YIOgLrE[e’Y_lﬁA(f)] < e*’YIOgLrK’lyAl
(2.35)
for some constant K, € (1, 00). Next note that, for any x € B,, n € N, the number of connected
subsets A C V with x € A and |A| = n is at most ™ for some ¢, = ¢ (dmax) > 0 (see e.g.
[Gr99, Proof of Theorem (4.20)]). Using a union bound and applying log L,. ~ 11, we estimate, for
some constants ¢, co > 0,

LM aditax
o _1
P(B,) < e (-DlogLs Z e“"K" < ¢yexp {—39r + cd(%B7} < e 39 (2.36)
n=1
when r is large. Now the Borel-Cantelli lemma implies that, P-almost surely eventually as r — oo,
B,. does not occur. The proof is completed by invoking Lemma /2.6 O

For later use, we state the consequence for GV in terms of X (p) in (T-13).

Corollary 2.8. [Uniform bound on principal eigenvalue of the islands] For G = GW as in
Section[1.3] ¥ > as in (1.12), and any ¢ > 0, P x P-almost surely eventually as r — oo,

max A\’ (&;G) < ar, — X(0) +&. (2.37)

Cel, 4

Proof. First note that GW € QSSZ,) almost surely, so Lemma applies. By Lemma for any
constant C' > 0, the maximum of £ in a ball of radius C'S,. around O is of order O(log log ). This
means that O is distant from IL, 4, in particular, dist((’), D,,A) > 2 almost surely eventually as
r — 00. For C € €, 4, let T¢ be the infinite tree obtained by attaching to each = € 9C := {y ¢
C: Jz € Cwith z ~ y} # O aninfinite tree with constant offspring dyi, — 1. Then T¢ is an infinite
tree with degrees in supp(D,) and, by Proposition

Xe(0:GW) = Xe(o; Te) < xr.(0) < X(0). O

2.5 Connectivity

We again work in the setting of Section We recall the following Chernoff bound for a Binomial
random variable Bin(n, p) with parameters n, p (see e.g. [BKS18, Lemma 5.9]):

P (Bin(n,p) > u) < exp {—u (log nip — 1)} YVu > 0. (2.38)
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Lemma 2.9. [Number of intermediate peaks of the potential] For any § € (0,1) and any
e € (0, 3/2), the following holds. For G € &, and a self-avoiding path 7 in G, set

Ny = Ni(§) = [{z € supp(m): &(2) > (1 = g)ay, }|. (2.39)
Define the event
there exists a self-avoiding path 7 in G with
B, := {suppw)mBr;é@, [ supp(m)|> (log L,)? and N> Lewn(z] } ' (2.40)

Then ), .y, SUPges, P(B,) < oco. In particular,

lim sup P(B,) =0 (2.41)
r—r00 GE®B,
and, for any fixed G € &, P-almost surely eventually as r — oo, all self-avoiding paths 7 in G
with supp () N B, # 0 and | supp(r)| > (log L,.)” satisfy N, < %.

Proof. Fix 3 € (0,1) and e € (0,3/2). Forany G € &,, implies
pr:=P(£(0) > (1 —¢e)ay,) = exp {—(log L,)'~} . (2.42)

Fix © € B, and k& € N. The number of self-avoiding paths 7 in B, with | supp(7)| = k and
7o = x is at most d* . For such a 7, the random variable N has a Bin(p,, k)-distribution. Using

max”*

(2.38) and a union bound, we obtain

P(EI self-avoiding 7 with | supp()| = k, 7y = x and N, > k/(log LT)€>

_ 1+ eloglog L,
< —k | (log L)% —log dyax — . (24
- exp { (( Og 7”) Og (log [/r)8 ) } ( 3)

Note that, since L, > r and the function z — loglog z/(log x)¢ is eventually decreasing, for
r large enough and uniformly over G € @&, the expression in parentheses above is at least
+(log L,)*~*. Summing over k > (log L,)’ and = € B,, we get

P (3 self-avoiding 7 such that | supp(r)| > (log L)’ and (2:39) does not hold)

244
< 2L, exp {—5(log L,)""77%*} < ¢ exp { —ca(log L)} (@49

for some positive constants ¢, co, §, uniformly over G € &,.. Since L, > r, (2.44) is summable in

r (uniformly over G € &,.). The proof is concluded invoking the Borel-Cantelli lemma. O

A similar computation bounds the number of high exceedances of the potential.

Lemma 2.10. [Number of high exceedances of the potential] Forany A > 0 thereisaC > 1
such that, for all § € (0, 1), the following holds. For G € &,. and a self-avoiding path 7 in G, let

N :=|{z € supp(n): &{(x) > ar, — 2A}|. (2.45)
Define the event
there exists a self-avoiding path  in G with
B, = {supp(w)ﬂBryﬁQL | supp(r)|>C (log Ly)? andNﬁ>7|(T:gpi(7;y } : (2.46)
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Then ) .y, SUPges, P(B,) < oo. In particular,

lim sup P(B,) =0 (2.47)

7—00 GE®B,

and, for any fixed G € &, P-almost surely eventually as r — oo, all self-avoiding paths 7 in G
with supp(7) N B, # 0 and | supp(r)| > C(log L,)° satisfy

. | supp ()|
Proof. Proceed as for Lemma[2.9] noting that this time
pr:=P(£0) > ar, —2A) =L* (2.49)
_24
where e = e~ ¢, and taking C' > 2/e¢. O

3 Path expansions

We again work in the setting of Section In the following, we develop a way to bound the con-
tribution of certain specific classes of paths to the Feynman-Kac formula. In Section [3.1] we state
a key proposition reducing the entropy of paths. This proposition is proved in Section [3.4] with the
help of a lemma bounding the mass of an equivalence class of paths, which is stated and proved
in Section The proof of this lemma requires two further lemmas controlling the mass of the
solution along excursions, which are stated and proved in Section

3.1 Key proposition

Fix a graph G = (V, E,O) € &,. We define various sets of nearest-neighbour paths in G as
follows. For £ € Nj and subsets A, A’ C V, put
A N
Py, N = {(m,...,m)evfﬂz Mo € A, €A, }

{m,m_l}EE’Vlﬁigﬁ (31)
PN N) = | 2\ N), '

VIS

and set
Py = PV, V), P =22V, V). (3.2)

When A or A’ consists of a single point, we write « instead of {x}. For m € ,, we set |r| := (.
We write supp(m) := {mo, ..., Tz} to denote the set of points visited by 7.

Let X = (Xi)i>0 be the continuous-time random walk on G that jumps from € V to any
neighbour iy ~ x with rate 1. We denote by (7} )ren, the sequence of jump times (with Ty := 0).
For / € Ny, let

W(Z)(X) = (X())"')XTg) (33)
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be the path in &, consisting of the first ¢ steps of X and, for ¢ > 0, let
m(Xjoy) = 7 (X), where {; € Ny satisfies Ty, <t < Ty, 41, (3.4)

denote the path in & consisting of all the steps taken by X between times 0 and ¢.
Recall the definitions from Section[2.4l For G € &,, m € &2 and A > 0, define

Ara(T) == sup {Ag)(g; G): C €€, g, supp(m) NCNIL 4 # @}, (3.5)

with the convention sup ) = —oo. This is the largest principal eigenvalue among the components
of &, 4 in G that have a point of high exceedance visited by the path 7.

The main result of this section is the following proposition. Hereafter we abbreviate log® x :=
log log log .

Proposition 3.1. [Entropy reduction] For every fixed dy,.x € N, there exists an Ay = Ao(dpmax) >
0 such that the following holds. Let o« € (0, 1) be as in andletk € (a,1). Forall A > Ay,
there exists a constantcy = ¢ A(dmax) > 0 such that, with probability tending to one as r — oo
uniformly over G € &,., the following statement is true: For each x € B,, each N' C £ (x, B,.)
satisfying supp(m) C B, and maxi<<|x| distg(me, x) > (log L,)" for all = € N, and each
assignment 7w — (Y, zr) € R x V satisfying

Ve > (Ana(m) +e757) V (ar, — A) forallm € N (3.6)
and
2z, € supp(m) U U C forallm € N, (3.7)
CG@T,A:

supp(m)NCNIL,. 4 #0

the following inequality holds for allt > 0:
logE, [eﬁ)t £(Xs)dsIl{,r()(w)e/\f}} < sg}\)f {t% — (log® L, — c4) diste(z, zﬂ)} (3.8)
™
Moreover, for any G € &, P-almost surely eventually as r — oo, the same statement is true.
The key to the proof of Proposition in Section [3.4]is Lemma [3.5)in Section whose proof

depends on Lemmas in Section We emphasize that all these results are deterministic,
i.e., they hold for any fixed potential £: V' — R.

3.2 Mass of the solution along excursions

Fix G = (V, E,O) € &,. The first step to control the contribution of a path to the total mass is to
control the contribution of excursions outside I, 4 (recall (2.26)).

Lemma 3.2. [Path evaluation] For ¢ € Ny, m € &; andy > maxXo<<|«|{£(m;) — deg(m;)},

E., {exp { / e ) ds}
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Proof. The left-hand side of (3.9) can be evaluated by using the fact that 7} is the sum of £ indepen-
dent Exp(deg(;)) random variables that are independent of 7 (X). The condition on ~y ensures
that all integrals are finite. O

Forapathm € Zande € (0, 1), we write

M= {0 <i<|n|: &(m) < (1 —e)az, }], (3.10)

with the interpretation that M»* = 0 if |x| = 0.

Lemma 3.3. [Mass of excursions] For every A, > 0 there existc > 0 and ng € N such that,
forallr > ng, ally > ar, — Aandallm € & satistyingm; ¢ 11, 4 forall0 < i < {:=

e fon { [ 600 - as)

where q4 := (1 + A/dyax) . Note that m, € 11, 4 is allowed.

TO(X) = 71'] < gt elemos®™ L) Mz (3.11)

Proof. By our assumptions on 7 and -y, we can use Lemma [3.2] Splitting the product in the right-
hand side of (3.9) according to whether {(7;) > (1—¢)ay, ornot, and using that {(7;) < a;, —2A
forall 0 < i < |x|, we bound the left-hand side of (3.17) by

(3.12)

o[ eay, — A]THOsIE dm)s(mear, )]
=]

dm ax

Since ay, = ploglog L, > ploglogr, for large r the number within square brackets in (3.12) is
atleast gaco(loglog L,)/2dmay > 1. Hence (3.71) holds with ¢ := 1og(1V 2dmax(qag0) ™). O

3.3 Equivalence classes of paths

We follow [BKS18, Section 6.2]. Note that the distance between II,. 4 and Dy 4 in G is at least
Sy = (log L,)*.

Definition 3.4. [Concatenation of paths] (a) When 7 and 7’ are two paths in & with 71| = 7,
we define their concatenation as

Tom = (Toy s My, Ty s Wr)) € P (3.13)
Note that |7 o | = || + |7'|.

(b) When =+ 7r0, we can still define the shifted concatenation of m and ©’ as w o 7/, where
7' = (Tia)s W) + T, — Ty - oy W) + 7 7). The shifted concatenation of multiple paths is
defined inductively via assoc:at/wty.

|

Now, if a path m € & intersects I1, 4, then it can be decomposed into an initial path, a sequence
of excursions between 11, 4 and Dy 4, and a terminal path. More precisely, there exists m, € N
such that

T=7"orWo. . of™ oglm) o, (3.14)
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where the paths in (3.14) satisfy

e 2V, HTA) with 7Y @14, 0<i<]|7V
e P(Uya,D5,)  with 7Y €Dpa, 0<i<|a®], 1<k <m,—1,
"0 e DD, L) with AP ¢ 0<i<|i®), 2<k<m, OO
7 e P10, 4, ) with — #"7e D,a, 0<i< |z
while
1€ PDiyV)and® ¢ L aVi>0 a0 € P(IL 4, D5 ), 3.16)

7o € Dy a, |7 =0 otherwise.
Note that the decomposition in (3.74)—(3.76) is unique, and that the paths 7™, 7™ and 7 can
have zero length. If 7 is contained in B, then so are all the paths in the decomposition.
Whenever supp(m) N 11, 4 # 0 and ¢ > 0, we define

mm

seo= ) 79+ 7], k= ZM’" + ML* (3.17)

=1
to be the total time spent in exterior excursions, respectively, on moderately low points of the poten-
tial visited by exterior excursions (without their last point).

In case supp(7) N1L,. 4 = 0, we set m, := 0, s, := || and k.° := M"*. Recall from (3.5) that,
in this case, A\, 4(7) = —o0.

We say that 7, 7' € & are equivalent, written 7@’ ~ 7, if m; = my, @9 = 7@ for all i =
L....mgand @ = 7. If 7’ ~ 7, then sp, k.7 and A, 4(7") are all equal to the counterparts for
TT.

To state our key lemma, we define, for m, s € N,
P —Ipe P:omy, =m, s, =5}, (3.18)

and denote by
Cra:=max{|C|: C € &, 4} (3.19)

the maximal size of the islands in €, 4.

Lemma 3.5. [Mass of an equivalence class] For every A,e > 0 there existc > 0 andry € N
such that, for all 7 > 1o, allm, s € Ny, all 7 € 2™ with supp(r) C B,, all 7 > A\pa(7) V
(ar, —A)andallt >0,

¢ Xu)— u
EWO |:efo(5( )—)d H{W(X[O’t])'\/ﬂ'}i|

Lm0y dmax Cr A " qa ° —log(® €
< <01/2) (1+ : ) ( ecloe® L)k 3 5
> r,A ’Y o )\r7A (7'{') dmax ( )

Proof. Fix A,e > 0 andletc > 0, ny € N be as given by Lemma|[3.3] Set

[2 = efab(g(X“)_”)““‘7 0<a<b< . (8.21)
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We use induction on m. Suppose that m = 1, let £ := |7")|. There are two possibilities: either 7
belongs to D, 4 or not. First we consider the case Ty € D, 4, which implies that |7| = 0. By the
strong Markov property,

IE17"0 |:Ié]]'{7r(X[0,t])N7r}:| S ET"O |:I(:)FZI%Z ]]'{Tr([)(X)Zfr(l)}]]-{Tg<t} ]]'{Xu+TéeDr,A Vue[O,t—Tg]}i|
=Er, {IOTZ Lo o=y Lin<n (Efr(gl) [[3—"]1{@ A>t—u}D T} : (3.22)
4 T, u=1y

Put = 7,". Since 2 € II, 4, we may write C, to denote the island in €, 4 containing 2. Since
Tpe , = Tee P.-a.s.,, Lemma2.1|and the hypothesis on ~y allow us to bound the inner expectation

in (3:22) by |C.|'/2. Applying Lemma we further bound (3.22) by

4
c—log®) e
|Cz|1/2E7ro [[Onll{fr(f)(X):ﬂ-(l)}] < Ci’f ( da ) e( log® LT)MfT(l), (3.23)

dmax

which proves (3.20) for m = 1 and 7y € D, 4.
Next consider the case T € Dy 4. Abbreviating o := inf{u > Ty: X, ¢ D, 4}, write

Ery [T lirggmm | S By |10 002r0), 0y (B |16 “Diatxpe pom] ) |- @28

Let /, := |7| and note that, since 7, ¢ 11, 4, by the hypothesis on  we have

/g*
—u T, qA c—log® L, )ML*
Bay [[5 ﬂ{w(X[o,t_u]):ﬁ}] < Er, [[oz ﬂ{n<f*><x)=ﬁ}] < ( ) (e toe™ EMET (325

dmax

where the second inequality holds by Lemma[3.3] On the other hand, by Lemmas [2.2]and
Borg [Ig]l{”w(X):ﬁ(”}] = En, [[()Te]l{w(e)(x):ﬁu)}] E, [Igci]
dmax Cr ¢ c—log® L. re
g (1 + A ) ( qA ) e( log Lr)Mﬁ(l)' (326)
e >\7"7A <7T> dmax

Putting together (3.24)—(3.26), we complete the proof of the case m = 1. The case m = 0 follows
from after we replace 7 by ™ and ¢t — u by ¢.

Suppose now that the claim is proved for some m > 1, and let 7 € Z2("+19) Define 7/ :=
7P of@o. o mtVormtor Then i’ € P(™%) where s = s'+|7"| and k¥ = M5 Ak
Setting ¢ := |7V|, o := inf{u > Ty: X, & D, a}andz = 7", we get

Ero [](tJ]l{ﬂ(Xo,t)Nﬂ}} < Er []gﬂ{n(f)(x):ﬁ(n,aq} <E:c [Ié_uﬂ{w(xoyt_u)Nn/}} )S:U] ,  (8.27)

from which (3.20) follows via the induction hypothesis and (3.26). O

3.4 Proof of Proposition 3.1
Proof. The proof is based on Lemma|[3.5] First define

co := 1+ 3loglog dnax, A := dpax (e3C° — 1) . (3.28)
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Fix A > Ag, 8 < aande € (0,3/2) as in Lemma[2.9] Let o € N be as given by Lemma 3.5
and take > 7 so large that the conclusions of Lemmas[2.6H2.9| hold, i.e., assume that the events
I3, from both lemmas do not occur with either G = (V, E,O) € &, or G € B, accordingly. Fix
x € B,. Recall the definitions of C', 4 and p(mss) Noting that the relation ~ defined below (3.17)
is an equivalence relation in Z2(™*) we define

29 .= {equivalence classes of the paths in 2(z, V) N 2™, (3.29)
Lemma 3.6. [Bound equivalence classes] ]%m’5)| < [2dmaxCr 4] d2 . forallm, s € No.

Proof. The estimate is clear when m = 0. To prove that it holds for m > 1, write OA = {z ¢
A: distg(z,A) = 1} for A C V. Then |0C U C| < (dmax + 1)|C| < 2d1axC' 4. We define
amap &: 2™ P(x, V) x {1,...,2dpaxCra}™ as follows. For each A C V with
1 < |A| < 2dpaxCr 4, fixaninjection fo: A — {1,...,2dnaxCr 4} Givenapath m € Pms)N
P(x, V), decompose 7 as in (3.14), and denote by T € F(x, V') the shifted concatenation (cf.

Definition of 7™, ... 7™ 7. Note that, for 2 < k& < m, the point 7?6’“) lies in OC;, for some
Ci € €, 4, while Ty € IC UC for some C € €, 4. Thus, we may set
O(m) := (7, foc,(75"), - - -5 foc (75™), facue (o)) (3.30)

As is readily checked, ®(7) depends only on the equivalence class of 7 and, when restricted to
equivalence classes, P is injective. Hence the claim follows. O

Now take N' C & (x, V) as in the statement, and set
Nms) = {equivalence classes of paths in V' N ﬂ(m’s)} C %m’s). (3.31)

For each M € /\N/'(m’s), choose a representative 7, € M, and use Lemma (3.6) to write

E. [P o] = TS B o

m,s€Ng MGN(m s)

t
< Z 2dmaXC(TA mdfnax sup El’ |:ef0 é(XU)du]l{ﬂ(X[o,t])Nﬂ}] ’ (332)

m,s€Ny TEN (m25)

where we use the convention sup () = 0. For fixed 7 € N(™*) by (3.6), we may apply (3.20) and
Lemma [2.6]to obtain, for all r large enough and with ¢, as in (3.28),
max

(2dmax)md8 [efg &(Xu)du Il{ﬂ'(X[O’t])Nﬂ'}] < et%r ecoer qie(c—log(S) Lr>k;’s . (3.33)

We next claim that, for 7~ large enough and = € A/ (79

s>[(m—-1)V1]5,. (3.34)

(%) > S, forall 2 < i < m. When m = 0, |supp(r)| >
Max; <p<r |me — x| > (log L))" > S, by assumption. When m = 1, the latter assumption
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and Lemmatogether imply that supp(7) N D; 4 # @, and so either | supp(7™)| > S, or
| supp(7#®)| > S,.. Thus, (3-34) holds by (3-17) and (2.27).

Note that g4 < e 3%, so

Sr oSy Sr coSym (m—1)Sr _
qn e gy + 50 €07 4e—c0Sr
Y ey = I R TR AT
m>0 s>[(m—1)V1]S, —4qa —qa
for r large enough. Inserting this back into (3.32)), we obtain
logE, [efot 5(XS)dSIl{7r()(0 t)e/\/}] < sup {t% + (c — log® LT) k;s} (3.36)
' TeN

Thus the proof will be finished once we show that, for some £’ > 0, whp (respectively, almost surely
eventually) as n — oo, all 7 € N satisfy

ke > distg(z, z:) (1 — 2(log L) ™). (3.37)

To that end, we define for each m € A\ an auxiliary path 7, as follows. First note that by using our
assumptions we can find points z’, 2 € supp(7) (not necessarily distinct) such that

distg(z, 2") > (log L))",  distg(2”, 2;) < 2MaS,, (3.38)

where the latter holds by Lemma [2.6] Write {21, 22} = {2/, 2"} with 21, 2 ordered according to
their hitting times by 7, i.e., inf{¢: m, = z;} < inf{¢: 7w, = 2, }. Define 7, as the concatenation of
the loop erasure of m between x and z; and the loop erasure of 7 between z; and z5. Since . is the
concatenation of two self-avoiding paths, it visits each point at most twice. Finally, define m, ~ m,
by substituting the excursions of 7. from II,. 4 to D;i’ 4 by direct paths between the corresponding
endpoints, i.e., substitute each 7\” with |77| = £;, (7{")o = x; € I, 4 and (7),, = yi € D5 4
by a shortest-distance path 7" with the same endpoints and |7{"| = distg(x;, y;). Since T, visits
each z € 11, 4 at most 2 times,

ke > ke > M — 2| supp(m,) NIL 4| (S, + 1) > M° — 4] supp(m,) N 1L, 4]S,. (3.39)

Note that M= > |{z € supp(m,): &(x) < (1 —¢€)ag, }| — 1 and, by 338), |supp(7,)| >
distg(z, 2') > (log L,)* > (log L, )% for some 0 < £’ < . Applying Lemmas and
using and L, > r, we obtain, for r large enough,

2 4S5 1
kre > (1= — . > Il - — ).
2 fswnp(n)] (1= 52— o) 2 swnla)| (1=
(3.40)
On the other hand, since | supp(m,)| > (log L,.)" and by again,
jsupp(.)| = ([supp(m.)| +2M4S;) — 2M4S,
2M4S,
> (dist Y4+ 2MyS,) (1 — ———
Z (dista(, 2") +2M45y) ( (log Lr)“> (3.41)
1
> distg(z, ) (1 — ——— .
- dis G(.Z',Z ) ( (lOgLT)‘S )
Now follows from (3.40)—(3.41). O
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4 Proof of Theorem 1.1l

This section is devoted to the proof of Theorem We note that, after replacing dax bY dimax V Do
if necessary, we may assume without loss of generality that

Gw e 6. (4.1)

4.1 Lower bound

In this section we give the proof of the lower bound for the large-t asymptotics of the total mass. This
proof already explains the random mechanism that produces the main contribution to the total mass.
This mechanism comes from an optimization of the behavior of the random path in the Feynman-
Kac formula, which in turn comes from the existence of a favorite region in the random graph, both
in terms of the local graph structure and the high values of the potential in this local graph structure.
The optimality is expressed in terms of a distance to the starting point O that can be reached in a
time o(t) with a sufficiently high probability, such that time ¢ —o(t) is left for staying inside the favorite
region, thus yielding a maximal contribution to the Feynman-Kac formula. The latter is measured in
terms of the local eigenvalue of the Anderson operator A + &, which in turn comes from high values
of the potential & in the local region.

We write the total mass of the solution of (2.9) in terms of the Feynman-Kac formula as

U(t) = Eo [eXp { /Otf(Xs) ds}], 4.2)

where (X)s>0 is the continuous-time random walk on GW, i.e., the Markov chain with generator
Agyy = A, the Laplacian on GW, starting from the origin O. As usual in the literature of the PAM,
this formula is the main point of departure for our proof.

Fix £ > 0. By the definition of X, there exists an infinite rooted tree 7" = (V' E’, )) with degrees
in supp(D,) such that x7(0) < X(0) + 1¢. Let Q, = B} () be the ball of radius r around ) in
T'. By Proposition and ([2:17), there exist a radius R € N and a potential profile ¢: B}, — R
with EQR(q; 0) < 1 (in particular, ¢ < 0) such that

)‘QR(CE T) > _SC\QR(Q; T) - %5 > _%(Q) - & (4.3)

For ¢ € N, let B, = By(O) denote the ball of radius ¢ around O in GWW. We will show next that,
almost surely eventually as ¢/ — oo, By contains a copy of the ball () z where £ is lower bounded
by ologlog | B[ + ¢.

Proposition 4.1. [Balls with high exceedances] 3 x P-almost surely eventually as { — oo,
there exists a vertex z € By with Bry1(z) C By and an isomorphism ¢ : Bri1(z) — Qg1
such that § > ploglog |Bs| + q o ¢ in Bg(z). In particular,

ABp(z)(&GW) > ologlog |By| — X(0) — €. (4.4)

Any such z necessarily satisfies |z| > cl B x P-almost surely eventually as { — oo for some
constant c = ¢(0, 9, X(0),€) > 0.
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Proof. First note that, as a consequence of the definition of GVV, it may be shown straightforwardly
that, for some p = p(T, R) € (0,1) and ‘B-almost surely eventually as ¢ — oo, there exist
N € N, N > p|By| and distinct z1,...,zy € By such that Bri1(z;) N Bri1(z;) = 0 for
1<i#j<Nand,foreachl <i <N, Bry1(2;) C By and Br1(z;) is isomorphic to Qg 1.
Now, by (1-7), for eachi € {1,..., N},

P(§ > ologlog | By| + ¢ in BR(zi)) = |Bg|’£QR(Q). (4.5)

Using additionally that | By| > fand 1 — z < e™*, z € R, we obtain

1-Lgp @)

P(Bi€{l,...,N}: £ > ploglog |By| + qin Br(z)) = (1 — | By “er@)" < o7*

which is summable in ¢ € N, so the proof of the first statement is completed using the Borel-Cantelli
lemma. As for the last statement, note that, by (2.8), Lemmaf2.5and L, ~ vr,

A, (§GW) < max £(x) <ar,, +o(1) < ag, + ologed +o(1) < ar, — X(0) —¢ (4.6)
Z cl
provided ¢ > 0 is small enough. O

Proof of the lower bound in {T.14). Let z be as in Proposition Forany s € (0,t), we obtain a
lower bound for U () as follows (write 7, for the hitting time of z):

Ut) > Eo exp / (X du} Ir <oy LixoeBpc )VuE[Tz,t]}]

(4.7)
=Eo [efo CXdug G E, [efo §(Xu) du H{XueTVue[O,v]}} ‘v:ti ] :

where we use the Markov property at time 7,. We first bound the last term in the integrand in (4.7).
Since £ > ploglog|By| + qin Br(z),

E, |elo ¢Xuw)d veloglog Bl [efov a(

u]l{XuEBR(z)Vue[O,v]}} >e u)du]l{XueQRVue[O,v}}}

> ev@loglog\Bg|ev)\QR(q;T)¢5;(y)2 (4.8)
> exp {v (¢loglog |By| — X(e) —¢) }.

for large v, where we used that Br1(z) is isomorphic to Q) g1 and applied Lemmaand 4.3).
On the other hand, since £ > 0,

]Eo exp / (X du ]l{TZ < s}} > Po(r, <), (4.9)

and we can bound the latter probability from below by the probability that the random walk runs
along a shortest path from the root O to z within a time at most s. Such a path (y,)| *l has 1o = O,
Y2l = 2, Y ~ Yi—1 fori = 1,...,]z|, has at each step from y; precisely deg(yl) choices for
the next step with equal probability, and the step is carried out after an exponential time F; with
parameter deg(y;). This gives

Po(r, < s) > (H e ) (ZE < 5) > d,l2Poi, . ([12], %)) (4.10)
=1
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where Poi, is the Poisson distribution with parameter -y, and P is the generic symbol for probability.
Summarising, we obtain

> J- 17l *dminsw (t—s)[eloglog |Be|—X(e)—¢]
U(t) > d_Fe B e
z|!

~ dmax z
> exp {—dmins + (t — s) [ologlog | Bs| — X(0) — €] — |z|log (d %)} (4.11)

min

~ dmaxg
> exp {—dmms + (t — s) [ologlog | Be| — X(0) — €] — Llog (d _ g) } )

where for the last inequality we assume s < |z| and use ¢ > |z|. Further assuming that ¢ = o(t),
we see that the optimum over s is obtained at
14

s = — =o(t). 412
dmin + Qloglog |B€| - X(Q) —¢€ ( ) ( )

Note that, by Proposition 4.1} this s indeed satisfies s < |z|. Applying (T-12) we get, after a straight-
forward computation, almost surely eventually as ¢ — oo,

1 l ~ l
Zlog U(t) > ologlog |B,| — gloglogf —x(0) —e+0 (Z) . (4.13)

Analysing the main terms above and using log |B,| ~ ¥/, we find that the optimal ¢ satisfies

lloglog ¢ — @ ~ to,i.e., { ~ ot/loglogt = v, For this choice we obtain
1 - 1
—logU(t) > ploglog |B,,| — t;loglogt, — X(0) —e + O . (4.14)
t loglogt

Substituting log | B,.| ~ ¥r and the definition of t;, we obtain, 3 x P-almost surely,

1
liminf ¢ —logU(t) — glo > —0—Xx(p) —e. 415
m i {t gU(t) -0 g(loglogt)}_ o — X(o) (4.15)
Since € > 0 is arbitrary, the proof of the lower bound in is complete. O

4.2 Upper bound

In this section we prove the upper bound in (1.14). A first step is to reduce the problem to a ball of
radius t log t. Here we include more general graphs.

Lemma 4.2. [Spatial truncation] Foranyc > 0 andany (; € N, ¢, > ctlogt,

sup Ep [efgg(XS)dS]l{TBc <t}] <e whpast — co. (4.16)
GE@gt &

Moreover, for any G € 6?@,

Eo [efg é(Xs)ds]l{TB; <t}} <e™™ P-as. eventuallyast — co. (4.17)
t
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Proof. Forr > {;and G € By,, let

B, = {maxé(a:) > ar, + QQ} : (4.18)

IEEBT

By Lemma|[2.5/and a union bound, we see that

sup P (U BT> < Z sup P(B,) = 0, (4.19)

GG@gt >0 >0 GG@(t

while, for G € stfi), by the Borel-Cantelli lemma,

U B, does not occur P-a.s. eventually as t — oo. (4.20)
r>0

We may therefore work on the event ﬂr>€t B On this event, we may write

: t
EO |:ef0 g(Xs)dS ]1{7_3E <t}:| — Z ]EO |:ef0 g(X.s)dS ﬂ{SUPse[O,t] |X5‘:7‘}:|
¢ r>f
< %t Z e Py (J, > 1), (4.21)

r>Lt

where J; is the number of jumps of X up to time t, C' = o(2 + loglog dax ), and we use that
|B,.| < d~ ... Note that .J; is stochastically dominated by a Poisson random variable with parameter

max

td.x. Hence

tdmax)" r
Po(Ji >7r) < u <exp< —rlog (4.22)
r! etdmax
for large 7. Using ¢; > ct log t, we can check that, for » > ¢; and t large enough,
T
rlog ( ) — otlogr > 2r (4.23)
etdmax
and thus [@.27) is at most e ‘e (+CtH2 < o=, O

In order to be able to apply Proposition [3.1]in the following, we need to make sure that all paths
considered exit a ball with a slowly growing radius.

Lemma 4.3. [No short paths] Forany v € (0, 1),

EO |:ef(§ E(Xs)dS]]{TBC >t}]

(7]
sup =o(l) whpast — oc. (4.24)
GE@H’Y'\ U(t)
Moreover, for any G € &,
Eo {efg SXodsq >t}}
lim 12l =0 P-a.s. almost surely. 4.25
Pparesy U(t) y (4.25)
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Proof. By Lemmawith g = 2plog r, we may assume that

max £(x) < ploglog Ly + 20 = yologt + 20+ o(1) ast — oo. (4.26)
zEB

By (@.11), for some constant C' > 0,

© { B(tﬂ>t} < eCtlog(:s)tef(lf’y)gtlogt —0. O
U(t) t—o00

For the remainder of the proof we fix v € (a, 1) with « as in (2.27). Let

K, = [t'""ogt], rP=k[t"],1<k<K, and {:=K/[t"]>tlogt.
(4.27)
Forl<k< K,andG € (’552), define

NE = {7r € Z(0,V): supp(r) C BTng),supp(ﬂ) NBw # (7)} (4.28)

and set

U® = e [eh 60X (4.29)

{mr0,q (XN | -

Recall the scale t; = gt/ loglogt.

Lemma 4.4. [Upper bound on U*] Foranye > 0 and any G € &%), P-almost surely eventually
ast — oo, )
sup —log U™ < olog(vry) — 0 — X(0) + €. (4.30)
1<k<K;

Proof. Before we apply Proposition we first do a bit of analysis. For ¢ > 0, let
r
F.(r) := plog(vr) — . (loglogr —c¢), r>0. (4.31)

Note that F. is maximized at a point r.; satisfying

Tet
ot =rqloglogre, —crey + . (4.32)
logrey
In particular, r.; ~ t;, which implies
sup Fi.(r) < olog(d;) — 0+ o(1) ast — oo. (4.33)
r>0
Next, fix k € {1,..., K;}. Form € N, let
Y = >‘r§’“+1),A(7T> + exp{ =St }, zr € supp(m), |2z > 7. (4.34)
By Proposition [3.7] almost surely eventually as ¢ — oo,
1 , Zr
7 log UM < v, + |t_| <log log ¥ — ¢4 + o(l)) . (4.35)
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Using Corollary 2.8 and log L, ~ ¥r, we bound
7 < olog(@r{"™) = X(0) + 3¢ + o(1). (436)
Moreover, |z,| > """ — [¢7] and
7]
t
which allows us to further bound (4.35) by

(k+1)

olog(Wr"™) — TtT (loglogr{""" — 2c4) — X(0) + 3¢ + o(1). (4.38)

2
loglog "tV — c4) < ——loglog(2tlogt) = o(1), (4.37)
t t1_7

1 ~
Applying (#.33) we obtain " log U < olog(vt;) — 0 — X(0) + <. O

Proof of upper bound in (1.14). To avoid repetition, all statements are assumed to be made ‘3 x P-
almost surely eventually as t — oo. Let G = GV and note that GV € &) aimost surely, where

Jis as in (1.12). Define
ot "t
Ut(o) =Ep ejo g(Xs)dsll{TBc >t}] , Uéw) =Ep [ejo é(XS)dS]l{TBC <t}] . (4.39)

[t [tlogt] —

Note that
Ut) <UL + U™ + K; max UM (4.40)
1<k<K
and, since U\” + U™ < o(1)U(t) by Lemmas[4.2H4.3|and @13),
1 log(2K;) 1
< (k) - < Zo\AM) - *) _
U(t) < 2K,  ax, U;”  andso : logU(t) < ; +  mx log U; (4.41)
By Lemmaf4.4|and (4.27), for any € > 0,
1 ~
T logU(t) < olog() — 0 = X(0) +¢ +o(1) (4.42)
therefore, 3 x P-almost surely,
1
li —logU(t) — plo < —o0—x(o) +e. 4.43
Ifiigp{t gU(t) -0 g<loglogt)}_ e—Xx(o) (4.43)
Since ¢ > (0 is arbitrary, this completes the proof of the lower bound in (1.74). O

5 Proof of Theorem 1.5

In this section we give the proof of Theorem The proof is based on the fact that, up to a radius
growing slower than log ®,, (cf. (1.20)), the configuration model equals a Galton-Watson tree with
high probability. From this the result will follow via Theorem [.1]and Lemma[4.2

To describe the associated Galton-Watson tree, we define a random variable D, as the size-biased
version of D in Assumption (CM)(1), i.e.,

(5.1)
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Proposition 5.1. [Coupling of UG, and GW] LetUG, = (V,, E,, O,) be the uniform simple
random graph with degree sequence 0™ satisfying Assumption (CM), and let GW = (V, E, O)
be a Galton-Watson tree with initial degree distribution Dy = D and general degree distribution
D, = D,. There exists a coupling P of UG,, and GW such that, for any m, € N satisfying
1< m, <log®,, B
lim P (B49"(0,) = BIY(0)) = 1. (5.2)
n—oo
Proof. For CM,, in place of G, this is a consequence of the proof of [vdH17b|, Proposition 5.4]:
the statement there only covers coupling |B,,, |, but the proof actually gives B,,,. The fact that
m,, may be taken up to o(log ®,,) can be inferred from the proof. In fact, m,, could be taken up to
clog ®,, with some ¢ = ¢(v) > 0. The result is then passed to UG,, by (see e.g. [vdH17a,
Corollary 7.17]). O

Proof of Theorem[T.3 Let U, () be the total mass for UG,, and U (t) the total mass for GV as in
Proposition Define

US(t) == Eo, [ef(fﬁ(Xs)dS]l{TBc >t}] : (5.3)

tlogt

and analogously U°(t). By Lemmal[4.2]and Proposition [5.1] whp as n — oo,
Un(tn) = U (t,) +0(1) = U°(t,) + o(1) = U(t,) + o(1), (5.4)
and so (1.21) follows from Theorem after we note that v in (T.17) is equal to E[D, — 1]. O

A Analysis of x(p)

In this appendix we study the variational problem in (1.9). In particular, we prove the alternative rep-
resentations in Proposition and we prove Theorem i.e., we identify for o > 1/ log(dmin+1)
the quantity \ (o) that appears in Theorems [1.1|and[1.5/as y with GG the infinite tree with homo-
geneous degree dp,i, € N\{1}, the smallest degree that has a positive probability in our random
graphs. In other words, we show that the infimum in is attained on the infinite tree with the
smallest admissible degrees.

It is not hard to understand heuristically why the optimal tree is infinite and has the smallest degree:
the first part in (the quadratic energy term coming from the Laplace operator) has a spreading
effect and is the smaller the less bonds there are. However, proving this property is not so easy,
since the other term (the Legendre transform from the large-deviation term of the random potential)
has an opposite effect. In the setting where the underlying graph is Z¢ instead of a tree, this problem
is similar to the question whether or not the minimiser has compact support. However, our setting
is different because of the exponential growth of balls on trees. We must therefore develop new
methods.

Indeed, we will not study the effect on the principal eigenvalue due to the restriction of a large
graph to a subgraph, but rather due to an opposite manipulation, namely, the glueing of two graphs
obtained by adding one single edge (or possibly a joining vertex). The effect of such a glueing is
examined in Section The result will be used in Section [A.3]to finish the proof of Theorem [1.2
Before that, we discuss in Section|A.]alternative representations for y and prove Proposition[2.4

In this section, no probability is involved. We drop o from the notation at many places.
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A.1 Alternative representations

Fix a graph G = (V, E). Recall that P(V) denotes the set of probability measures on V, and
recall that the constant x¢ = Xx¢(0) in (1-9) is defined as inf cp()[[r(p) + oJv(p)] with I, J
as in (7.8). As the next lemma shows, the constant  in (2.77) can be also represented in terms of
1.J.

Lemma A.1. [First representation] For any graph G = (V, E) andany A C V/,

xvieG)= inf [Ig(p) +oJv(p)]. (A1)
peP(V):
supp(p)CA
In particular,
Xa(0:G) = xale) = xv(e; G). (A-2)
Proof. For the proof of (A.1), see [GM98, Lemma 2.17]. Moroever, follows from (A.7). O

We next consider the constant Xg) in (2.18) for infinite rooted graphs G = (V, E/, O). Note that, by
28), X5, (0; G) is non-increasing in 7. Together with Lemmathis implies

X¢ (0) = lim X, (¢;G) = xclo). (A3)
Lemma A.2. [Second representation] For any rooted G € &, xa(0) = X&' (0).

Proof. Write G = (V, E,O). By (1.9), Lemma [A.1] and (A.3), it suffices to show that, for any
peP(V)andr € N, thereis a p, € P(V') with support in B, such that

lim inf {/p(p,) + 0Jv(p,)} < Ip(p) + 0Jv(p). (A4)
Simply take
p(z)1p, ()
pelx) = =2—"0 e, (A.5)
(@) p(B;)
i.e., the normalized restriction of p to B,.. Then we easily see that
1
Jy(pr) = Jv(p) = ===~ > plx)logp(z) +logp(B,) + > p(x)logp(x)
p(BT) reB zeV
() r (A.6)
< 2B - p(B,)) — 0,

p(Br) r—>00
where we use log p(B,.) < 0 and p(z) log p(x) < 0 for every x. As for the I-term,

I(p,) = | S (V@) - Vi)

p<BT> {z,y}€E: z,yeB, (A 7)

L 3 p(z) _ Ie() n Amax P(Br_1) '

(egreraeppeps PBr) T p(Br) 2 p(By)
and therefore
IE(p) dmaxp(BC—l)

In(py) — 1 < 1 —p(B, — — 0. A8
5(pr) = 1p(p) < p(BT)( p(Br)) + =5 (B, % (A.8)
O
Proof of Proposition[2.4. The claim follows from Lemmas[A.THA.2/and (A.3). O
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A.2 Glueing graphs

Here we analyse the constant x of a graph obtained by connecting disjoint graphs. First we show
that glueing two graphs together with one additional edge does not decrease the quantity x:

Lemma A.3. [Glue two] Let G; = (V;, E;), i = 1,2, be two disjoint connected simple graphs, and
letx; € V;, i = 1,2. Denote by G the union graph of (G, G5 with one extra edge between x, and
xTa, ie., G = (Vv, E) withV = ‘/1 U ‘/2, E = E1 U E2 U {(Il, Ig)} Then

XG > min {XG17 XG2} : (A9)

Proof. Givenp € P(V),leta; = p(V;), i = 1,2, and define p; € P(V;) by putting
i i (A.10)

Straightforward manipulations show that

2

Io(p) = Y il ) + (Voo = Vo)) ) = 3 lasdulp) — ailog

i=1 =1

(A.11)

and so )
Io(p) + 0 v (p) 2 Y | L, (pi) + 00 (po)| > minfxe e} (A12)
i=1
The proof is completed by taking the infimum over p € P(V). 0O

Below it will be useful to define, forz € V,

oV = inf [I J A.13
X pelpn(w[ () + 0Jv(p)], (A.13)

p(z)=b

i.e., a version of ¢ with “boundary condition” b at . It is clear that x5 > x¢-

Next we glue several graphs together and derive representations and estimates for the correspond-
ing x. Fork € N, let G; = (V;, E;), 1 < i < k, be a collection of disjoint graphs. Let = be a point
not belonging to Ule V;. For a fixed choice y; € Vi, 1 < i < k, we denote by G, = (V, E)
the graph obtained by adding an edge from each iy, ..., yx to z,ie., Vi = Vi U--- UV, U {2}
and £y, = EyU---UE, U{(y1,0),...,(yg, )}

Lemma A.4. [Glue many plus vertex] Forany o > 0, any k € N, and any G; = (V}, E;),
y €V, 1 <1<k,

k

: (yi.¢i/a;)

= = inf Ea et olog ay

XG: = gceitai<t, { i (xa; ologai)
a1+-+ap<l =1

PR (-5 ol B )

=1 =1 =1

(A.14)
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Proof. The claim follows from straightforward manipulations with (1.8). O

Lemma[A.4]leads to the following comparison lemma. For j € N, let
— Gi, i if ¢ < 7,

(Glgfy = (o) (A15)
(Git1,yir1) W12,

i.e., (Gf)ieN is the sequence ((;);en With the j-th graph omitted. Let 5{2 be the analogue of G,
obtained from G, 1 < i < k,i # j, instead of G;, 1 < i < k.

Lemma A.5. [Comparison] Forany o > 0 and any k € N,

k
. . . We . ()i /a5)
—~ = inf inf inf 1—wu [E a; J — olog a;
XGrys 1<kt g oy 1 0<ei<ai<l, {( ) : Z(XGaj(z‘) olog z)
SCRUSER ar+eFap<l =1

) i S en - 5

k
#2 (- (-
=1 1 =1 i=1 (A.16)

_ k 1/2 2
+ uxg;’c/u) + (01/2 — ((1 —u) (1 — ai>> )

1

||‘M»

)

—olulogu + (1 —u)log(l — u)] }

Moreover,

—~ > inf inf 1 —u)y—y
XGk+1 = <i<ktl 1 ( )XG{C
Osusig

+ inf {UX(GZ,J;_’ ) + 1{u(1+v)21} [\/’U —+v1- u] } (A17)

ve(0,1]
—olulogu+ (1 — u)log(l — u)] }
Proof. Note that

o i ((1 )erai)! =t (), (1) )k)

—U)CiyA5 )51\ CU)(L=U)(Ci,A5 );— 5 | ¢

()i 0<e<a, <1,y a<1p=|] 1 ’
s = 0<csu< = 0<ci<ai<i Yt a<1 |

j=1 k1’

(A.18)
from which (A.16) follows by straightforward manipulations on (A.14). To prove (A.17), note that the
first term within the square brackets in the first two lines of (A.16) equals the term minimised in
(A.14), and is therefore not smaller than Xgi - O

Lemma A.6. [Propagation of lower bounds] Ifp > 0, M € R, C' > 0 and k € N satisfy
o> C/log(k+ 1) and

inf  v— > M inf  inf v > M—C A.19
1§j§k+1XG?c - 1§}§k+1 Ué[O,l] Xaj = ’ ( )

then xg, ., = M.
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Proof. Dropping some non-negative terms in (A.17), we obtain
= =M > inf { < ) M) — oulo u}
XGria T 0<u<1/(k+1) XG; guog

> inf 1 1)~ 0)} =0
Z ot u(elog(k +1) = C)} =

(A.20)

by the assumption on . O

The above results will be applied in the next section to minimise x over families of trees with mini-
mum degrees.

A.3 Trees with minimum degrees

Fix d € N. Let 7071 be an infinite tree rooted at O such that the degree of O equals d — 1 and the
degree of every other vertex in 7y is d. Let 7, = {73} and, recursively, let 7" denote the
set of all trees obtained from a tree in 9(") and a d|S]0|nt copy of 7;1 by adding an edge between a

vertex of the former and the root of the latter. Write ,% = UneNO fd("). Assume that all trees in %
are rooted at O.

Recall that 7 is the infinite regular d-tree. Observe that 7 is obtained from (7071, ) and a disjoint
copy ( Dd’, ') by adding one edge between O and O'. Consider 7T to be rooted at O. Let 7, =
{74} and, recursively, let 7,"*" denote the set of all trees obtained from a tree in .7," and a
disjoint copy of 7021 by adding an edge between a vertex of the former and the root of the latter.
Write 9 = UneN0 ﬂd(”), and still consider all trees in .7, to be rooted at . Note that %(")

contains precisely those trees of ﬁod("“) that have 7, as a subgraph rooted at O. In particular,
T c 7" and I C T
Our objective is to prove the following.

Proposition A.7. [Minimal tree is optimal] /f o > 1/log(d + 1), then

x7.(0) = Trrél_% xr(0).

For the proof of Proposition we will need the following.
Lemma A.8. [Minimal half-tree is optimal] For all o € (0, c0),

x7,(0) = ;nir} xr(0)-

€74

Proof. Fix o € (0, 00). It will be enough to show that

X7, = min xr, n € Ny, (A.21)
Te7<"

which we will achieve by induction in n. The case n = 0 is obvious. Assume that (A.21) holds for
some n € Ny. Any tree T € 7" can be obtained from atree T € .7 and a disjoint copy

7; of 7, by adding an edge between a point 7 in the vertex set of T to the root of T’ Applying
Lemma[A.3|together with the induction hypothesis, we obtain

vr 2 min {xz vz} = vz, (n22)

which completes the induction step. O
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Lemma A.9. [A priori bounds] Forany d € N and any ¢ € (0, 00),

X1,(0) < x73(0) < x7,(0) + 1. (A:23)

Proof. The first inequality follows from Lemma|A.8] For the second inequality, note that 7, contains
as subgraph a copy of 73, and restrict the minimum in (1.9) to p € P (7). O

Proof of Proposition[A.7F Fix 0 > 1/log(d + 1). It will be enough to show that

X7, = min xr, n € Np. (A.24)
TeT"

We will prove this by induction in n. The case n = 0 is trivial. Assume that, for some ny > 0, (A.24)
holds for all n. < ng. Let T € 7,"°*". Then there exists a vertex = of T with degree k+1 > d+1.
Let y1, ..., Yr+1 be set of neighbours of x in T". When we remove the edge between y; and =, we

obtain two connected trees; call Gj the one containing y;, and @i the other one. With this notation,
T may be identified with G 1.

Now, for each j, the rooted tree (G, y;) is isomorphic (in the obvious sense) to a tree in fod(lj),
where ¢; € N satisfy {1 + -+ + {11 < ng, while @i belongs to ﬂd("j) for some n; < ny.
Therefore, by the induction hypothesis,

Xgi > X7 (A.25)
while, by (A.13), Lemma[A.8land LemmalA.9]

inf v > > v > v — 1. A.26
vg[})’l] Xa; ZXG; Z X7 ZXT ( )

Thus, by Lemma[A.3|applied with M = y7and C' = 1,

XT = XGjp1 = XT> (A.27)

which completes the induction step. O

Proof of Theorem[1.2. First note that, since 7g,,, has degrees in supp(D,), X(0) < x7; _(0).
For the opposite inequality, we proceed as follows. Fix an infinite tree I’ with degrees in supp(Dg),
and root it at a vertex ). For - € N, let T}, be the tree obtained from B, = BTT()/) by attaching to
each vertex x € B, with |x| = r a number d,,;, — 1 of disjoint copies of (7;_.., O), i.e., adding
edges between x and the corresponding roots. Then fr € ;... and, since B, has more out-going
edges in 1" than in ﬁ, we may check using that

XB.(0;T) > XB.(0;T7) > x7,(0) > X7 (0)- (A.28)

min

Taking r — oo and applying Proposition we obtain x7(0) > x7, (o). Since T'is arbitrary,
the proof is complete. O
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