

Topias Jokiniemi

Voice controlled audiobook reader software for
visually impaired

The School of Technology and Innovations
Master`s Thesis in Software Engineering

Degree Programme in Information Technology

VAASA 2021

2

Contents

ABBREVIATIONS 5

ABSTRACT: 6

1. INTRODUCTION 7

1.1. Background 7

1.2. Research problems and the objective 7

1.3. Structure of the thesis 8

1.4. Current state of audiobook services for visually impaired 8

2. RELEVANT RESEARCH 9

2.1. Developing Voice user interfaces 9

2.2. Accessibility 10

2.3. Privacy 10

3. TECHNOLOGY 12

3.1. Google Home Device 12

3.1.1. Google Assistant 12

3.1.2. Devices 13

3.2. Speech recognition 13

3.2.1. Dialogflow 13

3.3. Speech synthesis and Speech Synthesis Markup Language SSML 14

3.4. Google Cloud Platform 14

3.4.1. Actions on Google 14

3.4.2. App Engine 14

3.4.3. Google Cloud Storage 15

3.4.4. Cloud SQL Database 15

3.5. Audiobook standard Daisy 2.02 15

4. REQUIREMENTS 16

4.1. Feature Descriptions and Examples 17

3

5. PLANNING 19

5.1. Research plan 19

5.2. Research for the features 19

5.3. System architecture 25

5.4. Webhook REST API 27

5.5. Daisy 2.02 audiobook parser 28

5.6. Google Cloud Storage 28

5.7. Database 29

5.8. Voice user interface design 31

5.8.1. Book selected state 32

5.8.2. Bookmarks asked state 33

5.8.3. Book playing state 33

6. DEVELOPMENT 36

6.1. Voice User Interface (VUI) development 36

6.1.1. Dialogflow Intents 36

6.2. Webhook REST API 38

6.2.1. Java Project structure 39

6.2.2. Handling Intent request and response 39

6.2.3. User interface states 41

6.2.4. Account linking 42

6.2.5. Playing a book 43

6.2.6. Changing speed 45

6.2.7. Jumping back and forward in the audio 46

6.2.8. Bookshelf 47

6.2.9. Bookmark and lastmark 47

6.2.10. Database connection 49

6.2.11. Deploying to Google Cloud 50

6.3. Database 50

6.4. Daisy 2.02 audiobook Parser 53

4

7. RESULTS 56

7.1. Proof of concept feature requirement analysis 56

7.2. Googles Assistant downtimes, system errors and bugs 57

8. CONCLUSION 59

LIST OF REFERENCES 60

5

ABBREVIATIONS

AI Artificial intelligence

AoG Actions on Google, Platform to develop applications for Google

Home device

HTTP Hypertext, transport protocol, protocol for data transfer

HTML Hypertext Markup Language, ruleset designed to be displayed in

browser

IDE Integrated development environment

NLP Natural language processing, interaction with computer and hu-

man language

NLU Natural-language understanding, AI field that handles reading com-

prehension

POC Proof-of-concept

REST Representational state transfer, stateless software architecture for

webservices

SDK Software development kit, collection of software development

tools

SMIL Synchronized Multimedia Integration Language, XML based lan-

guage to define audio and text synchronization and navigation

SQL Standard Query Language, Standard language for databases

SSML Speech synthesis markup language, XML based speech synthesis

language

VUI Voice user interface

XML Extensible Markup Language, ruleset for encoding documents

XHTML Extensible Hypertext markup language, xml-based version of html

6

UNIVERSITY OF VAASA
The School of Technology and Innovations

Author: Topias Jokiniemi
Topic of the thesis: Voice controlled audiobook reader software for

visually impaired
Degree: Degree Programme in Information Technology
Master’s Programme: Software Engineering
Supervisor: Jouni Lampinen
Year of entering the University: 2015
Year of completing the thesis: 2021
Number of pages: 62
__

ABSTRACT:

This thesis results in a functional proof-of-concept level application that will help
Pratsam Oy Ab to determine if voice-controlled audiobook player developed for Google
Home device has potential to be a quality product. This thesis describes the develop-
ment and the research of functional system that could be used as a starting point, in
case it would be developed into a full product.

Before committing to a product development, software companies might want to test if
the product concept is viable. The concept viability can be verified with research into
possible development problems and with proof-of-concept level software. The proof-
of-concept can explore if the product can be built at all, and if the quality would be high
enough, so that it results in a profitable product.

In this product concept the user would use voice to control and to play Daisy 2.02 format
audiobooks, which is an audiobook format developed for visually impaired. The audio-
book reading software would be developed for Google Home device without a visual
user interface.

Main technologies of the thesis are voice user interface, speech recognition, text-to-
speech technologies, Google cloud platform, cloud-based MySQL database, Java REST
API backend and a Java console application to parse data from Daisy audiobook files into
the database.

The proof-of-concept period did not fully prove the viability of the concept. Google how-
ever has given clues that the required features would be added later, which could make
it worth it to start developing the concept further.

__
KEYWORDS voice user interface, Google Home Device, Google Assistant, smart
speaker

7

1. INTRODUCTION

According to Finnish National Institute for Health and Welfare there are 55 000 visually

impaired in Finland (Näkövammaisten liitto, 2019). Currently they have ways of access-

ing library books with help of Celia. Celia provides free audiobook service for any visu-

ally impaired that would like to listen to books in Finland. The audiobooks can be lis-

tened with help of computers, mobile phones or even specially designed devices (Celia,

2019).

As major tech companies have developed voice controllable Assistants (Amazon Alexa,

Google Assistant, Apple Siri, and Microsoft Cortana) and there are not any Voice con-

trollable audiobook readers for Celia books. It is a good time to try out if the systems

are mature enough for product development.

1.1. Background

This project was made under salaried contract for Pratsam Oy Ab. The project is explor-

ing with a proof-of-concept if voice controllable systems are mature enough for a stable

and high-quality product. Pratsam is a software company specialized in accessible audi-

obook and newspaper. Pratsam has developed mobile app and online web reader keep-

ing especially hearing impaired in mind. Pratsam has also systems in place to automate

the process of converting to audiobook standards that are used globally around the

world. The biggest customers for Pratsam are Celia and The Association of Swedish Talk-

ing Newspapers in Finland (Pratsam, 2021).

1.2. Research problems and the objective

This thesis done proof-of-concept research, which means the result is working soft-

ware that proves that main features of audiobook player can be developed and could

8

the quality of a product be high enough. The researched features were decided by

Pratsam prior to starting this thesis.

1.3. Structure of the thesis

The second chapter goes through the research relevant to voice controllable systems.

The third chapter describes all the major technologies used in the development. The

fourth chapter gives feature descriptions with examples. The fifth chapter goes

through all the requirements and results in a plan for all the features and describes the

system architecture as whole and the design of individual components. The sixth chap-

ter describes how the implementation of the components and all features. The sev-

enth chapter is about describes the results of the proof-of-concept and goes trough of

all elements that could affect the decision Pratsam if the product is viable enough. The

seventh and final chapter is my personal conclusion of the project.

1.4. Current state of audiobook services for visually impaired

Currently in Finland visually impaired can get Celia audiobooks for free if they sign up

for it in their local library. Celia belongs to the administrative sector of the Ministry of

Education and Culture. Celia is a non-profit organization that converts books into audi-

obook format. Celia also has their own systems to keep track of current audiobooks

the user has loaned from the library. Celia audiobooks can be listened with use of com-

puter browser, mobile apps or even with physical reader specifically designed for visu-

ally impaired (Celia 2019).

Audiobooks are converted into Daisy 2.02 standard, which is a globally used specifica-

tion designed especially for visually impaired. While Daisy 3.0 standard was released in

2005, the predecessor 2.02 is still more used in Finland. Both standards are used to de-

fine structure of the book. They define navigation elements and have the text of the

book synchronized with audio (Daisy: 2.02, 2001, Daisy: 3, 2005).

9

2. RELEVANT RESEARCH

2.1. Developing Voice user interfaces

Conversational voice user interfaces can be classified into three main types: Finite

state-based systems, frame-based systems; and agent-based systems. Finite state-

based system would guide the user through pre-determined path and asked single in-

formation questions until the user intent is resolved. Frame-based system is similar,

but the path is more flexible and variable. User can answer with longer sentences con-

taining more information of the user intent and the system will try to correct errors

and understand more complete commands. Agent-based systems provide the most

human like experience with AI and by not constraining to a flow of conversation but in-

stead the user try to have conversation as he would have with human. More evolved

agent-based systems even have a name such as Alexa, Siri, and Cortana (McTear,

2002).

Users are most commonly trying to resolve error situations in voice user interfaces by

articulating sentences slower, more clearly and louder. This strategy was used on aver-

age 40.48% at the time. This strategy was the most common for all different kinds of

errors. Other common strategies were simplification of the phrase, trying to word the

intent differently, and using more information. Which all were uses 12% of the time

(Myers, Furqan, Nebolsky, Caro & Zhu, 2018).

Designing Voice user interfaces should not be only translating visual user interfaces

into voice user interfaces. Just replacing buttons with voice commands will not result

in a great experience. For example, having visual reference of a list of data does not

use the working memory the same way as listing the same data with voice user inter-

faces. Keeping lists short, maximum of seven items, preferably even shorter, makes it

possible to remember all the options without stretching the limitations of the working

memory (Gamm & Haeb-Umbach, 1995).

10

2.2. Accessibility

Children are using speech interfaces differently from adults. Children have harder time

to reformulate their questions in case of an error within system. The younger the child

the more hints they required to be able to formulate their intents into understandable

form. Children are more often repeating their question instead of formulating it in a

different way (Yuan et al., 2019). To design a speech interface to help users to effec-

tively reformulate their questions, the system should be “providing feedback on what

was heard, asking for the missing context, clarify what is known, specifying formula-

tions that are difficult for the system, and allowing context to be provided as a state-

ment.” (Yuan et al., 2019 p. 86)

Elderly people prefer voice control over normal graphical user interfaces. 75% found

the Voice user interface to be pleasant or neutral. For graphical user interfaces only

37,5% found them to be pleasant on neutral. The difference could be effect of declin-

ing eyesight and fine motor skills. Seniors also preferred female voice over male voices

as female voice is more understandable. For elderly, a good error handling is extremely

important in satisfaction as the usage can become tedious if the user gets stuck in

voice user interface (Schlögl, Chollet, Garschall, Tscheligi, & Legouverneur, 2013).

2.3. Privacy

Users are more likely to use their voice assistants if they trust that their voice assistant

device does not collect unnecessary information without user consent. Users are es-

pecially concerned about private conversations being listened without notice and loca-

tion being tracked. Users expect to be in control of what data is being collected and

want have possibility to erase the collected data. Most users want to have power off or

at least mute button on their voice assistant devices (Yeasmin, Das, & Backstrom,

2020).

11

Users are usually placing their smart speakers in the most central location in their

house. Without being concerned of the privacy. Privacy and security concerns are one

of the major factors for not adopting smart speakers. Even if companies such as Ama-

zon or Google do define what data they are collecting and how they are using it. Pri-

vacy concerned users are not trusting that the companies are following their own pri-

vacy agreements or expect them to change the agreements as they please. Interest-

ingly the more user is expecting to benefit from the voice assistants the more they are

also able ignore the privacy concerns (Lau, Zimmerman, & Schaub, 2018).

12

3. TECHNOLOGY

To develop for Google Home device, you are developing for Google Assistant. Assistant

applications are done into platform called Actions on Google (AoG). Actions on Google

platform allows developers to develop a conversational user interface also known as

voice user interface (VUI). Structure of the VUI has similarities to simple console UIs

back in the days before graphical user interfaces. These interfaces are menus of that

guide user and help them select an action they want. AoG sends the text comprehen-

sion of what user said and asks backend system for an answer (Google: Assistant

2021).

Dialogflow is a Googles preferred way to handle voice user interfaces. Dialogflow al-

lows developer to visually develop the conversation. Dialogflow uses ever learning AI

to make sense of incomplete or incorrect sentences just as humans can understand

multiple ways of saying the same thing. Dialogflow gives the developer a prediction of

what was the intent of the users. Back-end systems such as REST API can be used to

answer to the user with voice line guiding the conversation with user until the intent is

found (Google: Dialogflow 2021).

Google Home has possibility to answer with text to speech Speech synthesis using

SSML standards. Additionally, direct audio can be played which can be used to play re-

cordings of books.

3.1. Google Home Device

Google Home is a smart speaker developed by Google. The device has Google Assistant

that allows using the speaker with voice.

3.1.1. Google Assistant

13

Google Assistant is an AI powered virtual assistant developed by Google. Google assis-

tant was initially introduced in May 2016 in Google Home smart speakers. At Decem-

ber 2016 Google launched Actions on Google Developer platform. Allowing third party

developers to develop for Google Assistant (Verge 2016). In May 2017, the Assistant

was deployed to Android and iOS mobile devices. Google has published 3rd party SDK

in April 2019 to allow developers to develop for the smart speakers with Google assis-

tant. After release of the SDK, it has been integrated to many systems including cars,

fridges, ovens, and Raspberry Pi (Google: Assistant, 2021).

3.1.2. Devices

Google has developed multiple sizes for the speaker. All the speakers have the same

Assistant features, but they differ in audio quality. At October 2019 Google published

2nd generation of Home speakers with name Google Nest. Nest has the same features

as 1st generation of their smart speakers, but with better sound quality and added ma-

chine learning chip that handles commonly used commands locally (Techradar, 2019).

3.2. Speech recognition

Google assistant uses machine learning technology to convert speech into text. The

text will be sent to Dialogflow, which has natural language processing artificial intelli-

gence to determine user intent (Google: Dialogflow, 2021).

3.2.1. Dialogflow

Dialogflow is a platform used together with Actions on Google to manage conversional

interfaces. Dialogflow gets users voice command from Actions on Google as text. The

text is then analyzed by Dialogflows AI for user intent. All the intents need to be config-

ured manually with use of example phrases for the AI to determine what was the user

intent. The intent sends a webhook as HTTP POST request to a Developer made API

14

that can describe to response back to the user. The response can be SSML format text

or media file such as an audiobook audio file (Google: Dialogflow, 2021).

3.3. Speech synthesis and Speech Synthesis Markup Language SSML

Speech synthesis is artificial production of human speech. Google assistant supports

Speech Synthesis Markup Language (SSML) for the configuration of phrases. SSML is an

XML based language designed to help describe how synthase the sentence. SSML is

great as it allows developer to customize sentences to be more human like with fea-

tures like pauses after important phrase, emphasis sound levels, change of speed and

possibility to describe how to interpret an element of a sentence (Google: SSML,

2021).

3.4. Google Cloud Platform

Google Cloud Platform is a set of cloud computing services provided by Google. Google

has more than 90 different products under the brand name. While everything in

Google Cloud comes with a cost. Google provides trial period worth for maximum of

300$ for new cloud developer to try out the products. The cloud platform can be used

for web services, databases, to store data, machine learning, cloud computing and so

on (Google: Cloud, 2021).

3.4.1. Actions on Google

Actions on Google is the main service that handles new applications used by Google

Home devices. Actions on Google service allows user to change what voice commands

to use to launch the application. In Actions on Google applications, all the users voice

commands are converted to text and directed to Dialogflow for user intent analysis.

3.4.2. App Engine

15

App Engine is one of the services provided in Google Cloud. App Engine was designed

for scalable web applications such as REST APIs. App Engine supports languages Go,

PHP, Java, Python, Node.js, .NET, Ruby, and custom environment for more. Being in

cloud provides possibility for scaling on demand if the request count for API increases

(Google: App Engine, 2021).

3.4.3. Google Cloud Storage

Google Cloud storage cloud-based file hosting service that is easily accessed by other

projects in a single Google Cloud project. File access can be defined as broad and as

limited as is needed (Google: Storage, 2021).

3.4.4. Cloud SQL Database

Cloud SQL is a service that provides cloud-based MySQL, PostgreSQL, or SQL server.

The database is automatically connected to App Engine based web service and access

can be configured as needed. Google Cloud SQL has built in storage capacity manager

and automatic backup systems to help with database management (Google: Cloud

SQL, 2021).

3.5. Audiobook standard Daisy 2.02

Daisy 2.02 is audiobook standard used by Celia. Defines how audiobook is structured

and how user can navigate through the book. Daisy designed especially for visually im-

paired that require precise navigation and speech-audio synchronization. Daisy 2.02 is

XML based markup language having its structure defined in NCC.html file (Daisy: 2.02,

2001).

16

4. REQUIREMENTS

Pratsam wants to develop proof-of-concept for reading audiobooks with Google Assi-

tant using only voice commands. The picture presents what features are wanted for

the resulting software. The first block in green “POC in scope (milestone 0)” has all the

features required for Pratsam to decide if the product can be viable if fully developed.

The second block in yellow “POC analyze” are features that are not required, but if the

analysis finds out that the features can be implemented in short amount of time

Pratsam can decide to include them in proof-of-concept implementation.

The last block in red “POC out of scope (but interest for later milestones)” contains fea-

tures that will be important after proof-of-concept period and will not be researched in

this thesis.

Picture 1 Requirements

17

4.1. Feature Descriptions and Examples

Invoking the service using voice commands. Example of this would be “Hey Google,

start the audiobook reader”

Stream audio from backend, user can start playing audiobook using voice commands.

Pause and continue playback using voice commands. Examples “Hey Google, pause

the audio” and “Hey Google, continue”

Change playback volume using voice commands. Examples: “Hey Google, volume up”,

“Hey Google, Change the volume to 100%”, “Hey Google, lower the volume”.

Change playback speed of the audiobook. Hearing impaired are used to listening with

great speeds, some even use double the normal speeds for everything from listening

the news to listening books. For that reason, audiobooks should have possibility for up

to double the speed. Examples: “Hey Google, speed up”, “Hey Google, set speed to

200%”, “Hey google, lower the speed”.

List and select contents from a virtual bookshelf. Celia for example has library services

in place for every user to borrowing audiobooks for limited time. All borrowed audio-

books are stored in a virtual bookshelf that user has access to. User can browse the

current audiobooks and select one for listening. It is not required to have full imple-

mentation connected to library services. Instead, idea is to have similar proof-of-con-

cept level implementation. User can browse and select a book from virtual bookshelf.

Examples: “Hey Google, open my bookshelf”, “Hey Google, select book <book name>”.

Jumping back and forward in the audio. Users want to listen a part of the book again

or just scroll through the book with use of voice commands. Common uses for this are

when user did not hear a sentence or just wants to listen the exciting part of the audio-

book again. User might also want to skip forward. Examples: “Hey google, go back 30

seconds”, “Hey google, go to the previous chapter”, “Hey google, jump forwards for 10

minutes”.

Analyze authentication alternatives, how users can be identified and what authentica-

tion methods are available when using Google Home device.

18

Add and select bookmark Users want to save their favorite moments from a book.

Each bookmark needs to be user based and should be usable even after closing the ap-

plication. If possible, bookmarks should be available for all multiple Google home de-

vices where user has authenticated. While reading a book user can add a bookmark

and continue reading. Bookmarks need to be browsable and selecting a bookmark

would result in audiobook continuing form bookmarks position. Examples: “Hey

Google, Add bookmark”, “Hey Google, get my bookmarks for book <book name>”,

“Hey Google, select bookmark one”.

Lastmark is the last position where user left when he closed the book. Like bookmark,

user wants to easily continue the book he was reading last time from the position

where he left. Examples “Hey Google, continue reading <book name>”, “Hey Google,

read <book name> from the lastmark”.

DODP v1 and v2 features The Daisy Online Delivery Protocol is the universal protocol

for distributing online books. Analyze how its features could be implemented in future.

Daisy 2.02 navigation model: levels pages percent, time

Analyze a way to implement Daisy 2.02 navigation features.

19

5. PLANNING

5.1. Research plan

The research is done using proof-of-concept research methodology. Where we imple-

ment a working software that tries to implement all major elements of an audiobook

reader. To prove that it is possible to implement everything for more complete prod-

uct. Software companies use proof-of-concept methodology to find out if a product

idea is possible to implement with feasible cost and timeframe.

“The evidence that a product, technology or an information system is viable and capa-

ble of solving an organization's particular problem. A proof-of-concept is often devel-

oped for new products that have not yet come to market.” (YourDictionary, 2021).

In this proof-of-concept period Pratsam is the most interested in the audio playback

features of Google Home device. Secondary features such as bookmark and bookshelf

are tested after the main features of Google Home device are developed. The main

source of information will be the Google Assistant developer documentation and

Google Cloud documentation.

During the proof-of-concept period the project will not be connected to actual library

services or to any other products that Pratsam has developed. Instead, everything will

be kept simple while keeping in mind that most of the functionality will be used if the

project will be developed into a full product.

5.2. Research for the features

Invoking the service feature requires configuring the project on Actions on Google de-

veloper console. All Assistant applications are initially created in Actions on Google

website. The website allows developer to make the Google Cloud project that will be

20

used for the voice application. The invocation name can be set as soon as Actions on

Google project is made and connected to a natural language processing (NLP) platform

that handles the voice user interface. Google suggests using Dialogflow as it is Googles

owned NLP platform. After the cloud project is connected to Dialogflow it can already

answer to some voice commands such as Hello and answer back with a simple state-

ment. After the invoking phrase is set it can be used on all devices where user has

logged on with the same Google user account as the project was made with. Invoking

the application with Google Home device can be done by the command “Hey Google,

Talk to <invocation name>”. Invocation name can be changed at any time and it will

work on all Google Assistant devices that that support media playback. Before the As-

sistant action is published to public, only the manually added test users can invoke the

action.

Picture 2. Action invocation name

Streaming audio from backend is supported in two different ways. SSML and Media

object. SSML is meant for text-to-speech response such as answer to user. Media ob-

ject is meant for playing larger audio files such as music, video or as in this case, a clip

of an audiobook. Media object also supports chaining multiple audio files together,

which is necessary for playing an audiobook (Google: Media response, 2021).

21

Daisy 2.02 audio files are in mp3 format, which is also the requirement for media ob-

ject audio (Daisy: 2.02, 2001)- Audio files can be stored in anywhere as long as it is ac-

cessible through public internet. One simple way is to store the audio files in a cloud

platform. Google has its own storage that can be used. The Google cloud storage is not

preferable for terabytes of audio data due to the costs, but can be used for the proof-

of-concept purposes.

An intent is required to be configured with Dialogflow. Intent is an action that the user

tries to do. Dialoflow needs multiple example user phrases for the Natural Language

Prosessing (NLP) AI to figure out what the user intent is. These phrases can be given in

text as Actions on Google converts audio to text for Dialogflow to process. The phases

for an intent such as starting the reading can be “Read the book”, “Read my book

<book name>”. It is important to remember that users have multiple ways of saying

the same intent. That is why it is preferable to include as many example phrases as

possible for each intent. The Dialogflow NLP AI can figure out the user intent even if

the phase is little bit different from the example phrases.

When an intent is triggered, an answer can be made. An intent can be configured to

trigger webhook tied to developer made API. Webhook API can answer to the user

with the with the required commands and parameters to start playing the media au-

dio.

22

Picture 3. Intent Creation in Dialogflow

Pause and continue features are built in within all Google Assistants devices. Pause

and continue cannot however be controlled by external API. As no notification, event

or any response comes when user uses those commands (Google: Media response

2021).

Changing playback volume is not possible with voice commands. Feature is not availa-

ble for Conversational Assistant Actions (Google: Media response 2021).

Change playback speed of an audio is not supported directly in the Google Assistant;

however, it is possible to make the Assistant play another audio file that is speeded up

duplicate of the normal speed audio. Changing the audio can be done by changing URL.

Example:

 http://weburl.com/bookname/speed100/chapter1.mp3

 →

http://weburl.com/bookname/speed200/chapter1.mp3

23

List and select contents from a virtual bookshelf feature can be implemented with use

of a database. User can be identified after sign in process. It is possible to use user

email or Google user id to define the owner of a virtual bookshelf. Bookshelf stores ref-

erence to user and holds only the ID of each owned book. Further implementation

could have expiration dates and other logic that libraries usually have. User is required

to have signed in before the bookshelf can be generated or accessed. So that the refer-

ences can be set.

Jumping back and forward in the audio is not directly supported by Google Home de-

vice. Also, the Google Assistant does not support starting audio clip from anywhere

else except from the beginning (Google: Media response 2021). This means going

backwards or forward can only be as accurate as how short the audiobook clip lengths

are in the audiobook. If user wants to go forwards for 10 seconds, and every audio clip

within audiobook is length of 3 minutes. It simply is not possible to be accurate. How-

ever, if user wants to jump forward for 60 minutes, the user will probably be happy

even if the jump is 60minutes ± 3 minutes.

Usually, Daisy 2.02 books are divided to the length of book chapters. The Daisy 2.02

audiobook standard, however, does not force any exact way of splitting book audio

(Daisy: 2.02 2001). Meaning the length of the audio clips could be anything, even as big

as only one audio file for the length of the whole book.

Going to the next and previous chapter with commands in example “Hey Google, go to

the next/previous chapter” is possible if the audio clips are divided into the length of its

chapters. Media response also supports pause, continue, start over and next com-

mands (Google: Media response, 2021). Problem with these commands is that they are

fully controlled by Google and do not send any response back to a webhook. these

Google controlled commands cannot be overridden and will likely result in confusion

for a user. In practice these commands make it impossible to control what happens

when a user says next or previous.

24

For Authentication alternatives, Google provides a possibility to authenticate using

voice. This does not mean that user could a create a new Google Account using voice,

but instead user can give his current Google user details for the application to use

(Google: Sign In, 2021). A user can be identified with user id, even when the user uses

multiple devices with same Google account. The authentication makes it possible to

always give the user its current bookmarks, lastmarks and bookshelf even when the

device is changed. Authentication provides developers with full name, email address

and user id. These details can be stored in database and can be used as identification

every time user invokes the application.

Adding and selecting bookmarks have similar problems to the navigation in time -fea-

tures. Bookmarks suffer from same limitations regarding accuracy in time. As an audio

clip can only be started from the beginning and not from middle of the audio, it is im-

possible to have accurate bookmarks. Instead, bookmarks can be as accurate as length

of the audio clips in each book. Another problem is that there is not a way for

webhook API to receive anything about the current state of running audio. Meaning

there is no way of knowing if the user is closer to start of end of the audio clip. Meas-

uring the time server side is also impossible as Google Home device has built in Pause

command for all media, that does not trigger any event for a webhook API. With these

limitations in mind, it is possible to develop inaccurate but functional bookmarks. The

book, user, and the time in the book can be inserted into a database.

Lastmark means the last position where user has left. This can be implemented as a

bookmark. The only difference being that lastmark needs to be updated constantly and

needs to be differentiated for normal bookmark in the database.

DODP v1 and v2 features mirroring the POC backend

Daisy online protocol has bookmark, lastmark and navigation features build into it. The

features for proof-of-concept should use similar structure so that they can be easily

converted to use Daisy online protocol in the future.

25

Daisy 2.02 navigation model (levels, pages, percent, by time)

These Daisy navigation features cannot be implemented accurately due to same prob-

lem as with any navigation by time and bookmarks. Google assistant only supports

starting each audio file from beginning.

5.3. System architecture

The system architecture will be built using Google Cloud platform. Reasoning for this is

its simplicity as all the guides Google provides have examples on how to implement it

in the Google Cloud environment. Actions on Google platform controls the Google

Home device and sends user speech as text to Dialogflow, which will use it to deter-

mine user intent. After user intent is known Dialogflow will trigger the REST API

webhook. The REST API will decide the response and inserts the important parts into

MySql database. Actions on Google converts the answer back to voice and sends the

response to users Google Home device.

The audiobooks are inserted into the application with help of a parser. A Java applica-

tion that goes through the audiobook files and sets references of audio files and navi-

gational data to the database. The audio files of all audiobooks are stored into Google

Cloud Storage.

26

Picture 4. System Architecture diagram

Picture 5. System flow diagram

27

5.4. Webhook REST API

The REST API will be using Googles recommended boilerplate as the initial code base.

This will provide simple empty project that can be used as base of the development.

Google provides has Actions on Google SDK available in Java and NodeJs. Java was de-

cided due to prior experience with the language.

Google App Engine will be used as the cloud platform to host this web service. App En-

gine supports automatic scaling by default by multiplying instances when one instance

reaches full capacity. Scaling can be configured with limitations to instance amounts,

but it is not necessary for this proof-of-concept. The instances can be configured with

different memory and CPU limitations. By default, the App Engine uses slowest in-

stance class which has 256 MB memory and 600MHz CPU limits. This is good enough

for testing the functionality (Google: App Engine runtimes, 2021).

Gradle will be used for build automation. This includes handling package dependen-

cies, building the project and deploying it into App Engine. Google has developed a

Gradle plugin that helps setting App Engine configurations and to set up one line com-

mand to handle the whole deployment process.

Actions on Google provides two different types of storage to be used within the

webhook: conversation storage and user storage. Conversation storage lasts only for

the time of a single conversation. This storage should be used to keep track of anything

that is needed for current conversation for example, what book has the user selected

or what is the state of the book that is currently playing. Conversation storage can also

be used to cache book data to keep database connections to minimum. The user stor-

age persists across conversations and is only cleared if the user decides to delete the

content. User storage can be used to save the identification of a user (Google: Save

Data, 2021).

28

5.5. Daisy 2.02 audiobook parser

The parser is a Java console application that reads through the Daisy audiobook and

collects all meaningful data to be inserted into database. Parser is not part of the

proof-of-concept and is not required to poof anything. Instead, it is used as a simple

way to insert new books into the database.

The relevant files that need to be parsed are ncc.html and multiple SMIL documents.

NCC stands for navigation control center and is used to define how the book is struc-

tured. Ncc.html contains all the metadata of a book. Including book name, creator, lan-

guage, length, and the narrator. The NCC file contains the order in which all the SMIL

files are meant to be played. SMIL stands for Synchronized Multimedia Integration Lan-

guage. The SMIL documents have text-audio synchronization functionality, it defines

the segments of a book and most importantly it defines the order how the audio files

are meant to be played (Daisy: 2.02 2001).

Parser is meant to be ran once every time a new book is available. After the proof-of-

concept period, the parser is meant to be developed further and to be inserted into a

server that will run it every time a new book is available. It does not need to be pro-

duction ready for the proof-of-concept. But it should be built in a way that it could be

developed into production ready parser and does not need to be remade.

5.6. Google Cloud Storage

Audiobook files are saved into cloud storage. Each book has a single folder named af-

ter the title of the book. The storage is opened to public internet so that it can be eas-

ily accessed. While the data can be secured, it is not needed for proof-of-concept pur-

poses. As all the audiobooks used in this proof-of-concept are test books that are al-

ready available in public internet (Google: Cloud Storage 2021).

29

5.7. Database

Google Cloud SQL has multiple machine type to be used. Smallest ones ‘db-f1-micro’

and ‘db-g1-small’ have shared CPU cores and standard ones go up from 1 CPU up to 96

CPUs and 0.6 ram up to 360GB or ram. The machine type can be changed any time. For

proof-of-concept the smallest machine type with shared CPU and 0.6GB or ram should

be enough as there are not any users. This may cause some delays in database queries

(Google: SQL Pricing, 2021).

Database connection within Google Cloud is by default configured to automatically al-

low only connections from the same Google Cloud project. The database server loca-

tion is set to Finland to keep latency small. The Cloud SQL has automatic backups that

are ran daily. MySQL is open-source relational database by Oracle Corporation. “A re-

lational database stores data in tables rather than putting all the data in one big store-

room.” (MySQL, 2021) The database is designed to mirror the Daisy format in books

and contain all necessary tables needed for features.

30

Picture 6. Database schema

User table contains all information about users of the system. Authenticating to the

system with google gives us name, email, locale and most importantly google user id

(g_sub). These can be used to identify every user and give them their own unique

bookshelf even if they are using multiple devices.

Bookshelf table is a simple collection of users’ books. Users books can only be added

and removed.

Book table contains everything descriptive about the book. Title, publish date, creator,

language, page number and total length of the book. All information is collected from

NCC.html file of a daisy book.

Smil table is collection of .smil file contents in a Daisy 2.02 book. Smil file is usually a

chapter or smaller part of a book, but it can be as big as a single book. It contains refer-

ence to a mp3 audio file which contains voice reading of that part of the book. Smil

31

also contains timestamp of total time of book to the current point and the length of

the current part in mp3.

Src table contains URL references to all mp3 audios in each smil file. Each smil can con-

tain as multiple audio files.

Bookmark table contains references to user, src and the book. Bookmark can be user

placed or lastmark. Lastmark is the last position that user was reading.

5.8. Voice user interface design

The voice user interface is designed to follow conversational principles. Conversational

voice user interface tries to guide user through conversation as if user is in conversa-

tion with a human being (Cathy Pearl, 2016). This is different from traditional menu-

based systems in a way that it has memory of the conversation so far, it does not have

conversational dead ends and is building the conversation to be more precise as the

conversation progresses (Michael H. Cohen, J. P. Giangola, J. Balogh, 2004). For exam-

ple, after user has selected a book and decides to ask for current bookmarks, the user

might change its mind in middle of bookmark process and instead wants to change the

book completely. Voice user interface need to understand that the user intent has

changed and not to lock the state into browsing bookmarks which can be considered

as conversational error. The voice user interface is not trying to replicate text or but-

ton-based menus and instead is trying to behave as human conversation.

To make text to speech conversation be more human like Actions on Google has sup-

port for SSML, which stands for speech synthesis markup language. SSML has im-

portant configuration for text-to-speech conversation such as allowing speech to be

segmented with pauses between sentences and paragraphs. Pause length can be var-

ied based on the situation. This will be especially important when presenting a list of

something for the user. Having longer pause between each item in a list makes under-

standing the list much easier. SSML also features for interpreting words, fractions,

32

characters, dates, possibility to emphasize a word, but mostly the most important one

will be the pausing between sentences.

Currently you have books: <pause>

Book number 1 is <small pause> Fire Safety by Blaxland, Wendy <pause>

Book number 2 is <small pause> xxx by xxx <pause>

...

Slot filling feature is needed for all selecting intents. Such intents are selecting a book

and selecting bookmark. Slot filling means when used tries to select something, and

the intent understood but the parameter is not. The system should ask for clarification

and not lose the user. Simple question such as ‘What was the bookmark?’ is enough.

When the user invokes the application for the first time there will be more guidance.

User is notified of the help section and given rough idea on how to proceed.

During the conversation it is important that user knows if it is expected to give a com-

mand. This can be solved by ending each reply with a question. for example, “What

would like to do next?”.

Voice user interface is developed to be state based. When user enters a new state, a

new set of commands becomes available. The states are book selected, bookmarks

asked and book playing. Commands that are always available are change speed, sign

in, get bookshelf, select book and help.

5.8.1. Book selected state

In the book selected state the system needs to have a reference to the book the user

has selected. The reference is given by user using the select book command. Conversa-

tional example of this would be:

User: “Hey Google, Talk to Pratsam Reader Voice”

33

Assistant: “Welcome to Pratsam reader voice. You can start by asking for your book-

shelf.”

User: “Open my bookshelf”

Assistant: “Currently you have books: 1. Fire Safety by Wendy Blaxland, 2. Climbing the

Highest mountain by Per Sennels. Which book would you like to read?”

User: “Select book 2”

Assistant: “You have selected the book Climbing the highest mountain by Per Sennels”

After the book has been selected, the user can start reading the book, get more infor-

mation of the book and browse bookmarks.

5.8.2. Bookmarks asked state

After selecting a book user can ask for the bookmarks of a book using get bookmarks

command. Continuing the conversation from selecting a book example:

Assistant: “You have selected the book Climbing the highest mountain by Per Sennels”

User: “What bookmarks do I have?”

Assistant: “You have one bookmark. Bookmark one title is Chapter one: Climbing the

highest mountains”.

While in ‘bookmarks asked’ state user can delete and select the bookmarks. This state

lasts for only until next voice command.

User: “Select bookmark 1”

Assistant: “Reading you book Climbing the Highest Mountains from Chapter one,

Climbing the highest mountains”

5.8.3. Book playing state

34

Reading a book is the main feature of every audiobook reader. Minimizing the amount

of commands user needs to give is the most important part of this voice user interface.

User can continue reading from the lastmark of the last read book as the first com-

mand of a conversation. By Using the “Play lastmark” command. There are in total four

ways to get into the reading book state as seen in the user interface diagram below.

While the user is reading a book all the playback control commands are available, such

as pausing, continuing, and moving in time. User can also add a bookmark and ask the

current chapter that is playing at the time.

35

Picture 7. Voice user interface diagram

36

6. DEVELOPMENT

Development phase consists of implementing the designed Voice user interface to Di-

alogflow with all its required example phrases, programming the webhook Java REST

API, implementing the database design, programming the audiobook parser, and con-

necting all the pieces together.

Development was done in long Agile development sprints, but since there is only one

developer there was no need for strict Agile approach. The length of the sprints was on

average two weeks. At the start of each sprint new tasks and new set of goals were

given, where some tasks are on higher priority than others. At the end of each sprint

all the results were discussed, and adjustment for the next sprint were made if any

problems occurred.

6.1. Voice User Interface (VUI) development

Voice user interface is mainly developed in Dialogflow. First step is configuring all in-

tents which have eight configurable parameters. Intent name, Intent priority, Intent

context, Intent event, Training phrases, phrase parameters, response, and fulfillment.

6.1.1. Dialogflow Intents

Intent name is used to keep track of what it does and used to trigger correct function

call in the Webhook.

Intent Priority is value that controls how likely the intent is selected. This will be set as

normal for most intents. If testing shows a conflict between two intents, this is one pa-

rameter that could help in resolving issues. For the most part all the training phrases

should be enough to determine the intent.

Intent context is a way to remember parameter values between intents. Context can

be used to keep track of state of the conversation. Such as reading state, bookmarks

37

asked state. Intent can have input and output context. Input context can be set if the

intent requires a state such as reading state is required for a bookmark to be added.

Intent event is additional way to trigger an intent. Intents that use this are Welcome

intent, media update intent and fallback intent.

Training phrases are the examples for the Dialogflow Natural Language Processing AI

to determine the user intent. Each intent should contain at least 6 different example

phrases. The AI can determine the user intent even if the user says something slightly

differently from the training phrases as long as it is close enough and the training

phrases are broad enough.

Phrase parameters are the important parameters user might give when phrasing a

voice command. Needed parameters are such as numbers, words ‘yes’ and ‘no’, book

names etc.

Response is the response back for the user. These fields can be left empty if the re-

sponse is handled in the webhook. Some intents where there is only simple text re-

sponse could use response field, but for sake of keeping everything consistent we will

always use the webhook.

Fulfillment should always be set to enabled for webhook. This will enable the intent to

be triggered in webhook API and response can be controlled.

38

Picture 8. Bookmark intent configured.

6.2. Webhook REST API

Webhook REST API will be written in Java. Google has built Action on Google Libraries

for two programming languages. Java and Node.js are both fully supported and have as

good documentation. Node.js is used more as it is faster to start the developing with.

Java provides better debugging possibilities which might provide to save time in the fu-

ture.

All the programming is done using Eclipse as the IDE. Eclipse is one of the most used

IDEs when programming for Java. Version controlling is done using Git as that is what

Pratsam has been using in the past.

39

6.2.1. Java Project structure

Google recommends using their project boilerplate to start the project from. The boil-

erplate is an empty project with all Actions on Google Java libraries in place. The boil-

erplate also has artifacts in place for quicker start with Google App Engine deployment.

Choosing to use this boilerplate will save some time and is great starting point for a

proof-of-concept project.

6.2.2. Handling Intent request and response

Dialogflow will generate the JSON request for the REST API after the user intent has

been identified.

JSON Request format

{

 "responseId": "5ed78cb1-87ea-4762-92a1-2d37c94cce55-a14fa99c",

 "queryResult": {

 "queryText": "hello",

 "parameters": {},

 "allRequiredParamsPresent": true,

 "intent": {

 "name": "projects/pratsamexhibitiondemo/agent/intents/91a2d797-

7e16-4db1-9a28-19cdd8b2c729",

 "displayName": "Default Welcome Intent"

 },

 "intentDetectionConfidence": 1,

 "languageCode": "en"

 },

 "originalDetectIntentRequest": {

 "payload": {}

 },

 "session": "projects/pratsamexhibitiondemo/agent/sessions/xxxx-xxxx-

xxxx-xxxx-sensored"

40

Intents can be handled with help of the Actions on Google library. Methods need to be

tagged as intent handlers with special annotation @ForIntent(“<Intent name>”). The

method needs to take ActionRequest as a parameter and return ActionResponse. Ac-

tionRequest parses the JSON request body and converts it into an object. ActionRe-

sponse will be generated into the JSON response. ResponseBuilder is a helper contain-

ing helpful tools for response generation.

@ForIntent("Default Welcome Intent")

 public ActionResponse Welcome(ActionRequest request) {

 ResponseBuilder responseBuilder = getResponseBuilder(request);

 responseBuilder.add("Welcome to Pratsam Reader Voice, you can start

by asking for your bookshelf");

 return responseBuilder.build();

 }

This response is converted into following JSON response.

{

 "fulfillmentText": "Welcome to Pratsam Reader Voice. You can start

by asking for your bookshelf.",

 "outputContexts": [

 {

 "lifespanCount": 99,

 "name": "projects/pratsamexhibitiondemo/agent/sessions/f998f9a9-

daef-00d6-9fe2-3803b3b74bee/contexts/_actions_on_google",

 "parameters": {

 "data": "{}"

 }

 },

 {

 "lifespanCount": 0,

 "name": "projects/pratsamexhibitiondemo/agent/sessions/f998f9a9-

daef-00d6-9fe2-3803b3b74bee/contexts/DefaultWelcomeIntent-followup"

 }

],

 "payload": {

 "google": {

 "expectUserResponse": true,

41

 "richResponse": {

 "items": [

 {

 "simpleResponse": {

 "textToSpeech": "Welcome to Pratsam Reader Voice demo.

You can start by asking for your bookshelf."

 }

 }

]

 },

 "isSsml": false,

 "systemIntent": {

 "intent": "actions.intent.TEXT",

 "data": {}

 },

 "userStorage": "{\"data\":{}}"

 }

 }

}

Data of users can be saved between conversations in user storage or for the duration

of single conversation with conversation storage. User storage persists between con-

versations and especially useful when saving Google User Id (Google: Save Data 2021).

The user id can be used to get user bookmarks and bookshelf from a database. Conver-

sational storage can be used for data that is required for duration of single conversa-

tion, such as current state, selected book, current chapter the user is reading and URLs

to audiobook mp3 files. Conversation storage is faster than getting data from a MySQL

database.

// Example of how to add data to conversation and user storage

Map<String, Object> convData = request.getConversationData();

Map<String, Object> userStorage = request.getUserStorage();

convData.put("book", book.getTitle()); //lasts for converation

userStorage.put("book", book.getTitle()); //lasts forever

6.2.3. User interface states

42

The backend needs to keep track of the state the user is in. The states are book se-

lected, reading and bookmark asked state. Book selected state is active if the title of a

book is in conversational storage. Reading state is active if chapter number of a book is

in conversational storage. Bookmarks asked state is small enough so that it can be han-

dled with Dialogflow context and does not need a state in the backend.

Map<String, Object> convData = request.getConversationData();

// book selected

if (convData.containsKey("book")

...

//reading has been started

if (convData.containsKey("book") && convData.containsKey("chapter"))

...

6.2.4. Account linking

Sign in process requires user permission to access Google account information. The

permission can be asked using SignIn method in the Actions on Google Java library.

@ForIntent("Start Signin")

public ActionResponse startSignIn(ActionRequest request){

 ResponseBuilder rb = getResponseBuilder(request);

 return rb.add(new SignIn()

.setContext("To get your account details"))

.build();

}

After user has given permission to access account information it can be accessed from

the request. The access the user information, the user profile contained in request

needs to be decoded with Google Cloud client ID. The client ID is a Google generated

string that is used to identify the service. Once the profile has been decoded, the

backend can read user data, give user the correct bookshelf and bookmarks. The user

43

can use multiple devices to access the same bookshelf and bookmarks if the same

Google account is used (Google: Sign In 2021).

private GoogleIdToken.Payload decodeIdToken(String idTokenString)

throws GeneralSecurityException, IOException

{

HttpTransport transport = GoogleNetHttpTransport

.newTrustedTransport();

 JacksonFactory jsonFactory = JacksonFactory

.getDefaultInstance();

 List<String> audience = new ArrayList<String>();

 audience.add(clientId);

 GoogleIdTokenVerifier verifier =

new GoogleIdTokenVerifier

.Builder(transport, jsonFactory)

.setAudience(audience).build();

 GoogleIdToken idToken = verifier.verify(idTokenString);

 return idToken.getPayload();

}

6.2.5. Playing a book

Audio can be started with a media response. The media response takes content URL as

parameter as well as optional visual elements picture and description, for users that

are using a device that has screen on it. The Google Home device sends an event back

to the backend once the audio clip has finished. This allows the backend to respond

with another media response, making it possible to chain multiple audio files together

and to play the full book from start to finish. Since the audio is sent as URL the audio

file needs to be accessible from public internet without restrictions. The URL can how-

ever contain a token or any other methodology that limits the file access to a

timeframe and to single user.

44

Google Home device has two big problems in functionality. First it does not send any

notification if the user interrupts the audio with another command, such as pause, add

bookmark or anything. And second it does not allow playing the audio files from any

other point other than from beginning. This will result in user confusion as books can-

not be navigated or bookmarked precisely (Google: Media response 2021).

//starting to play an audio file

public ActionResponse mediaResponse(ActionRequest request) {

ResponseBuilder responseBuilder = getResponseBuilder(request);

Map<String, Object> convData = request.getConversationData();

MediaResponse mediaresp = new MediaResponse();

MediaObject obj = new MediaObject();

obj.setContentUrl(“https://storageUrl/bookName/audiofile.mp3”);

List<MediaObject> mediaObjects = new ArrayList<>();

mediaObjects.add(obj);

mediaresp.setMediaObjects(mediaObjects);

mediaresp.setMediaType("AUDIO");

responseBuilder.add(mediaresp);

//updating the conversational storage with current chapter id

convData.put("current_chapter", {current chapter id});

return responseBuilder.build();

}

//status update triggers when an audio playing has finished

@ForIntent("media.status.update")

public ActionResponse mediaStatusUpdate(ActionRequest request) {

ResponseBuilder responseBuilder = getResponseBuilder(request);

String mediaStatus = request.getMediaStatus();

if (mediaStatus != null && mediaStatus.equals("FINISHED")) {

 //Getting the last played audiofile

String lastchapter = convData.get("current_chapter");

//creating new media response with next chapter

...

45

//updating the conversational storage again

convData.put("current_chapter", {new chapter id});

responseBuilder.add(mediaresp); //the next chapter

}

return responseBuilder.build();

}

6.2.6. Changing speed

Google Home device does not have built in functionality to change audio speed. The

speed change however can be done manually, by having multiple files with different

speeds. In this proof-of-concept we are manually speeding up only one book as it takes

a lot of time for each book. In a full product the generating of speeded up files should

be done automatically as part of parsing process.

Changing the audio playing speed is done by changing the URL to the same file that has

been modified to be faster. The speeded-up audio files are stored in folders that are

named after the speeds. Folder ‘speed120’ contains audio that has been speed to

120% and so on. The book was speeded up to speeds 100%, 120%, 140%, 170% and

200%.

User can change the speed by saying command ‘Change speed to 200%’. The percent-

age is saved into conversional storage and accessed after the user starts playing an au-

dio book. This results in following example URLs for 100%, 120% or 200% speed.

https://storageurl.com/bookname/audiofile.mp3

https://storageurl.com/bookname/speed120/audiofile.mp3

https://storageurl.com/bookname/speed200/audiofile.mp3

//setting the speed

@ForIntent("Set speed")

public ActionResponse SetSpeed(ActionRequest request) {

46

 ResponseBuilder responseBuilder = getResponseBuilder(request);

 String speed = request.getParameter("percentage").toString()

 Map<String, Object> convData = request.getConversationData();

 convData.put("speed", speed);

responseBuilder.add(“The speed was set to ” + speed +” %”);

return responseBuilder.build();

}

//when playing the book

...

String speed = convData.get("speed”);

bookURL += "/speed" + speed;

...

6.2.7. Jumping back and forward in the audio

Navigating the book is precisely has the same problems as bookmarks have. Audio clips

can only be started from the beginning. Usually, the audiobooks are divided so that

each chapter has its own file. This makes navigating between chapters possible. Users

highly likely want a feature where they can go back short amount of time in case, they

missed something and want to listen it again.

In addition to the problems with navigation accuracy, Actions on Google has com-

mands next and previous locked as system intents and those cannot be changed.

‘Next’ command works the same way as when audio clip ends. ‘Previous’ command for

goes to the beginning of audio clip making it really confusing to the users. New intent

can be created that uses every way of saying ‘previous’ that Google has missed. For ex-

ample, if user says ‘go back in time’ or ‘last chapter’ etc. It is not good idea to create

intents that in users’ point of view works sometimes and sometimes not. But as proof-

of-concept it can be implemented, and taken to use later, if Google eventually allows

system intents to be overridden. Similarly, the book can be navigated by jumping mul-

tiple chapters with same command.

47

6.2.8. Bookshelf

Bookshelves are collection of books that user currently has. The information of the

available books is stored in a database. A user is identified with its Google Id after the

sign in process and given access to the bookshelf. The Google id is saved to user stor-

age which persists between multiple conversations.

@ForIntent("Bookshelf")

public ActionResponse Bookshelf(ActionRequest request) {

ResponseBuilder responseBuilder = getResponseBuilder(request);

Map<String, Object> userStorage = request.getUserStorage();

String subject = userStorage.get("subject").toString();//user id

Bookshelf bookshelf = null;

try {

bookshelf = Database.getBookshelf(subject);

}

...

List<Book> books = bookshelf.getBooks();

responseBuilder.add(“currently you have books ”

+ {list of books});

return responseBuilder.build();

}

6.2.9. Bookmark and lastmark

Bookmarks can be added while reading a book by ‘add bookmark’ intent, bookmarks

can be browsed with ‘get bookmarks’ intent, deleted with ‘delete bookmark’ intent

and bookmark can be selected to start playing the book with ‘select bookmark’ intent.

Both bookmark and lastmark are saved in bookmark database table. Bookmark re-

quires book id, location in a book, user id, and if it is a lastmark or not. Lastmarks are

updated in every possible event to have the most precise lastmark possible. User can

play the lastmark when the application opens or after selecting a book. The system will

48

prompt user with “would you like to continue from where you left” and simple “yes”

will start playing the book from the last known position. Playing the book from book-

mark location is the same as playing book from beginning with exception of starting lo-

cation, which is taken from database.

The words ‘bookmark’, ‘bookshelf’, and ‘book’ are all similar and sometimes the

speech recognition mistakes one to another. To minimize critical conversational errors,

the delete bookmark and the select bookmark intents are only available after user has

asked for a list of bookmarks. Get bookmarks intent will save the bookmarks in conver-

sational storage in same order as they were presented to the user. User can select or

delete a bookmark by referring to the number in a list.

Example: Selecting bookmark

Google Home: “Currently you have 3 bookmarks. Bookmark number 1 chapter title is

‘x’, bookmark number 2 chapter title is ‘y’, bookmark number 3 chapter title is ‘z’”

User: “Select bookmark 1”

Google Home: Playing the book from chapter x <book starts playing>

//Getting list of bookmarks from a book

List<Bookmark> bookmarks = Database.getBookmarks(userId, bookId);

convData.put(“bookmarks”, bookmarks)

@ForIntent("Select bookmark")

public ActionResponse SelectBookmark(ActionRequest request) {

ResponseBuilder responseBuilder = getResponseBuilder(request);

Map<String, Object> convData = request.getConversationData();

int bmParameter = request.getParameter(“bookmarkSelection”);

List<Bookmark> bookmarks = (ArrayList<Bookmark>) con-

vData.get(“bookmarks”);

Bookmark selectedBookmark = bookmarks.get(bmParameter - 1);

 ... //start playing the book from bookmark location.

}

49

6.2.10. Database connection

Connecting to the database can take multiple seconds and this would make the con-

versation slow. Database connection can be pooled to keep the connection open for

multiple queries (Jesper Wisborg Krogh, 2018). “Connection pool is a technique of cre-

ating and managing a pool of connections that are ready for use by any thread that

needs them” (MySql, 2021b). The database pool can be saved to servlet context.

Connection between Google Cloud App Engine and Google Cloud MySQL database is

open by default if they are within the same Google Cloud project. Google provides re-

quired configurations and libraries that go with them.

private HikariDataSource createConnectionPool() {

 HikariConfig config = new HikariConfig();

 config.setJdbcUrl(String.format("jdbc:mysql:///%s", DB_NAME));

 config.setUsername(DB_USER);

 config.setPassword(DB_PASS);

config.addDataSourceProperty("socketFactory",

"com.google.cloud.sql.mysql.SocketFactory");

 config.addDataSourceProperty("cloudSqlInstance",CLOUD_SQL_NAME);

HikariDataSource pool = new HikariDataSource(config);

return pool;

}

@Override

public void contextInitialized(ServletContextEvent event) {

 HikariDataSource pool = (HikariDataSource) event.getServletCon-

text().getAttribute("my-pool");

 if (pool == null) {

 pool = createConnectionPool();

 event.getServletContext().setAttribute("my-pool", pool);

 }

}

50

6.2.11. Deploying to Google Cloud

Deploying the Java project to the Google Cloud App Engine is done with use of gcloud

command line tool. This is installed with Google Cloud SDK. The gcloud tool can be

used in Windows command prompt with text commands. The most important com-

mands are ‘gcloud init’ for initializing cloud deployment to the correct Google Cloud

project and ‘gcloud app deploy’ for deploying the project. The ‘gcloud init’ command

includes logging into Google Cloud with command prompt and selecting the Google

Cloud project. The command ‘gcloud app deploy’ is used for deploying the project.

Google recommends using Maven or Gradle to handle the deployment. The boilerplate

includes Gradle ready configurations for the deployment of the App Engine. This can

be done with single command ‘gradle appengineDeploy’ after the the gcloud tool has

been initiated. The default configurations have ‘stopPreviousVersion’ and ‘promote’

properties set to true. These shut down the previous version of the App Engine in-

stance and sets the newly deployed instance to be the new main version that will take

all the traffic.

6.3. Database

MySQL database was using the Google Cloud SQL. The biggest benefits of using the

Google Cloud SQL are that it has immediate access to App Engine within the same

cloud project. Setting it up requires instance name, region, zone, and database ver-

sions to be selected. Region needs to be set to the region closest the users to minimize

latency. In this case it was europe-north1 which is the only one located in Finland. The

machine type was set to the smallest one which is db-f1-micro, which has one shared

CPU and 614.4MB of memory. Google Cloud SQL has great tools to monitor Database

usage to determine if better machine type is needed, and the type can be changed at

any point. Connecting to the database to deploy the designed schema requires author-

izing the public IP of the device that is used to connect.

51

Picture 9. opening database to a single IP address

52

Picture 10. Setting up a database in Google Cloud platform

53

6.4. Daisy 2.02 audiobook Parser

Audiobook parser is a simple program made to transfer data from Daisy 2.02 audio-

books into a database. While in proof-of-concept period of the project, the parser can

require some manual labor to upload each book. Parser itself does not need to prove

anything as everything required related to reading data from audiobooks in Daisy 2.02

format have been done in the past by Pratsam. Daisy 2.02 is using standard XHTML 1.0

for the audiobook formatting (Daisy: 2.02 2001).

The data we are interested in are the book title, writer, publish date, names of the

mp3 files and the length of the book in pages and in time. Most of the data can be

parsed from a single file named NCC.html. NCC stands for Navigation Control Center

and contains all the book meta information and has links to SMIL documents. SMIL

stands for Synchronized Multimedia Integration Language. The main point of the SMIL

files is to provide the text-audio synchronization. Since we are playing the audiobook

from a speaker only, we do not need the synchronization data. Instead, only the names

of all mp3 files and chapter data are parsed and inserted into the database.

Picture 11. Daisy 2.02 book structure

54

Picture 12. Daisy 2.02 folder of the example book Climbing the Highest Mountain

Parsing the SMIL and NCC files was done using Jsoup which is a Java library that has

easy to use html parsing and works well with xHTML style documents such as SMIL.

Parsing NCC and SMIL files work the same with exception of different data and the

number of files. Parsed files are constructed into a Book object that will be inserted

into the database which makes them available on users’ bookshelves.

// parsing NCC file for metadata

File nccFile = new File(folder_src + "ncc.html");

Document doc = Jsoup.parse(nccFile, "UTF-8");

Elements metatags = doc.getElementsByTag("meta");

newBook = new Book();

for (Element meta : metatags) {

String name = meta.attr("name");

 String content = meta.attr("content");

 switch (name)

55

 {

 case "dc:title":

 newBook.setTitle(content);

 break;

 case "dc:creator":

 newBook.setCreator(content);

 break;

 ... // and same for rest of the data

 }

db.putBook(dbconn, newBook); // uploading the book into database

56

7. RESULTS

The result of the development is a completely working application that is able do most

of the requested features. The picture 13 has the requested features on left and the

end result on right. The features marked with green were fully developed without

problems. Yellow features had some issues but are somewhat working. Red features

were not developed.

Picture 13. proof-of-concept result

7.1. Proof of concept feature requirement analysis

Invoking the service works without issues. The solution can be accessed with Google

Home Devices with key words “Ok Google, Talk to Pratsam Reader Voice”.

Streaming mp3 audio can be used for any Daisy 2.02 audiobooks.

57

Changing the Playback volume is not supported by Google yet, but since it is the most

requested feature by developers, it may come later if Google decides to develop it.

Change playback speed feature is possible but required huge amount of storage space

since each audio file is duplicated for every speed. This will likely be developed by

Google into Action on Google media player as it already works on Google Play.

Pause and continue playback is working by default but the feature cannot be con-

trolled by developers. It is completely closed and will result in huge confusion.

List and select contents in a bookshelf feature is fully supported.

Jumping back and forward in the audio was partly done. Navigating by exact amount

of time is impossible but moving between chapters is possible. There are problems

with conflicting system intents that makes using navigation extremely confusing for us-

ers.

Authentication alternatives were developed using built in Google Sign in. This will re-

quire more research in case it needs to be connected to a library service.

Adding and selecting bookmarks was found to be possible during the research phase

and it was implemented to the system.

Lastmark feature was implement together with bookmarks.

Daisy online protocol features task meant that the backend system should mirror the

functionality of Daisy online protocol so that it could eventually be connected without

need for big changes. This task was mostly forgotten during the development, but in

the end the resulting functionalities are not too far off.

Daisy navigation model could not be implemented due to restrictions in Actions on

Google.

7.2. Googles Assistant downtimes, system errors and bugs

During the development Google pushed multiple updates to their Google Home de-

vices. Some of these updates resulted in critical bugs that delayed the development

process and broke main Actions on Google features even on live product. The down-

times lasted from weeks to months. The longest lasting bug was never fixed even with

58

full effort from Pratsam to rise its importance. Pratsam sent regular email back and

forth with Google support who only responded with copy paste replies. Google never

gave time estimations or even progress report of the problems. Google never sent de-

velopers any information about new bugs which resulted in weeks of wasted time in

debugging.

59

8. CONCLUSION

The proof-of-concept period did not prove that the concept is fully viable yet. There

are required features that cannot be implemented, and Google has not provided any

lists of upcoming features, improvements, or estimations on bug fixes. However, most

of the necessary features such as volume control, speed changing and navigation are

already working on YouTube music and Google Play Books, which are Googles own mu-

sic and audiobook platforms. These features could be on the way for other developers.

I can only give my recommendation on continuing into full product with the premise

that Google would eventually extend the features on their own platforms for everyone

to use.

Four months after completing the proof-of-concept period Google surprisingly re-

leased completely new version of Actions on Google which made navigation, volume,

changing speed, and accurate bookmark features possible. Some problems are still

present such as system intents back and forward are still confusing the users. The new

version however had no Java SDK support and the whole backend had to be remade.

Google did not inform about the decision to drop Java support beforehand, and they

are not answering to the question if there will be a Java version.

Couple months after releasing new Action on Google version Google made an update

to the old version which broke the bookmark functionality. This and some other critical

bugs were never fixed but fortunately Pratsam was fast to change to the new version.

60

LIST OF REFERENCES

Cathy Pearl (2016) Designing voice user interfaces.

Pages 16-17, ISBN: 978-1-491-95541-3

Celia (2019) Welcome to Celia

 https://www.celia.fi/eng/

Chelsea Myers, Anushay Furqan, Jessica Nebolsky, Karina Caro, and Jichen Zhu. (2018).

Patterns for How Users Overcome Obstacles in Voice User Interfaces. Paper presented

at 2018 CHI Conference on Human Factors in Computing Systems (CHI '18), Association

for Computing Machinery, April 21–26, 2018 New York

https://doi.org/10.1145/3173574.3173580

Daisy: 2.02 (2001) Daisy 2.02 Specification

 http://www.daisy.org/z3986/specifications/daisy_202.html

Daisy: 3 (2005) Specification for the digital talking book

https://daisy.org/activities/standards/daisy/daisy-3/z39-86-2005-r2012-specifi-

cations-for-the-digital-talking-book/

Google: App Engine (2021) App Engine

 https://cloud.google.com/appengine

Google: App Engine runtimes (2021) The App Engine Standard Environment

 https://cloud.google.com/appengine/docs/standard#first-gen-runtimes

Google: Assistant (2021) Integrate with Google Assistant

 https://developers.google.com/assistant

Google: Cloud (2021) Accelerate your transformation with Google Cloud

 https://cloud.google.com/

Google: Cloud Storage (2021) Cloud Storage

 https://cloud.google.com/storage

Google: Cloud SQL (2021) Cloud SQL

 https://cloud.google.com/sql

Google: Dialogflow (2021) Dialogflow

 https://cloud.google.com/dialogflow

https://www.celia.fi/eng/
https://doi.org/10.1145/3173574.3173580
http://www.daisy.org/z3986/specifications/daisy_202.html
https://daisy.org/activities/standards/daisy/daisy-3/z39-86-2005-r2012-specifications-for-the-digital-talking-book/
https://daisy.org/activities/standards/daisy/daisy-3/z39-86-2005-r2012-specifications-for-the-digital-talking-book/
https://cloud.google.com/appengine
https://cloud.google.com/appengine/docs/standard#first-gen-runtimes
https://developers.google.com/assistant
https://cloud.google.com/
https://cloud.google.com/storage
https://cloud.google.com/sql
https://cloud.google.com/dialogflow

61

Google: Media response (2021) Rich response

https://developers.google.com/assistant/conversational/rich-responses#df-

java-media-response

Google: Save Data (2021) Save data in conversation

https://developers.google.com/assistant/conversational/df-asdk/save-data

Google: Sign In (2021) Google Sign-In concept guide

 https://developers.google.com/assistant/identity/gsi-concept-guide

Google: SQL Pricing (2021) MySQL Pricing

 https://cloud.google.com/sql/pricing#2nd-gen-pricing

Google: SSML (2021) Speech Synthesis Markup Language (SSML)

 https://cloud.google.com/text-to-speech/docs/ssml

Jesper Wisborg Krogh (2018) MySQL Connector/Python Revealed

Pages 223-224 ISBN:978-1-4842-3693-2

Lau J., Zimmerman B., & Schaub F. (2018). Alexa, Are You Listening? Privacy Percep-

tions, Concerns and Privacy-seeking Behaviors with Smart Speakers. ACM Human-Com-

puter Interaction, Article 102 (November 2018).

https://doi.org/10.1145/3274371

McTear M. F. (2002). Spoken dialogue technology: enabling the conversational user in-

terface. ACM Computing Surveys 34, 90–169.

https://doi.org/10.1145/505282.505285

MySQL (2021) What is MySQL?

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

MySql (2021b) Chapter 8 Connection Pooling with Connector/J

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-usagenotes-j2ee-

concepts-connection-pooling.html

Michael H. Cohen, J. P. Giangola, J. Balogh (2004) Voice user interface design

Pages 136-137, ISBN: 978-0-321-18576-1

Näkövammaisten liitto (2019) Arviot näkövammaisten lukumäärästä

https://www.nkl.fi/fi/etusivu/nakeminen/julkaisu/nvrek_vuosikirja/1_3_ar-

viot_nv_lukumaarasta

https://developers.google.com/assistant/conversational/rich-responses#df-java-media-response
https://developers.google.com/assistant/conversational/rich-responses#df-java-media-response
https://developers.google.com/assistant/conversational/df-asdk/save-data
https://developers.google.com/assistant/identity/gsi-concept-guide
https://cloud.google.com/sql/pricing#2nd-gen-pricing
https://cloud.google.com/text-to-speech/docs/ssml
https://doi.org/10.1145/3274371
https://doi.org/10.1145/505282.505285
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-usagenotes-j2ee-concepts-connection-pooling.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-usagenotes-j2ee-concepts-connection-pooling.html
https://www.nkl.fi/fi/etusivu/nakeminen/julkaisu/nvrek_vuosikirja/1_3_arviot_nv_lukumaarasta
https://www.nkl.fi/fi/etusivu/nakeminen/julkaisu/nvrek_vuosikirja/1_3_arviot_nv_lukumaarasta

62

Pratsam (2021) The story of Pratsam

https://www.pratsam.com/the-story-of-pratsam.html

S. Gamm, R. Haeb-Umbach (1995). User interface design of voice controlled consumer

electronics. Philips Journal of Research, Volume 49, Issue 4, Pages 439-454,

https://doi.org/10.1016/0165-5817(96)81590-7

S. Schlögl, G. Chollet, M. Garschall, M. Tscheligi, and G. Legouverneur (2013). Exploring

voice user interfaces for seniors. In Proceedings of the 6th International Conference on

PErvasive Technologies Related to Assistive Environments (PETRA '13). Association for

Computing Machinery, New York, Article 52, 1–2.

https://doi.org/10.1145/2504335.2504391

Techradar (2019) Google Nest Mini release date, price and features

 https://www.techradar.com/news/google-nest-mini-release-date-price-and-

features

Ye Yuan, Stryker Thompson, Kathleen Watson, Alice Chase, Ashwin Senthilkumar, A.J.

Bernheim Brush, Svetlana Yarosh (2019). Speech interface reformulations and voice as-

sistant personification preferences of children and parents. International Journal of

Child-Computer Interaction, Volume 21, Pages 77-88,

https://doi.org/10.1016/j.ijcci.2019.04.005

Yeasmin, F., Das, S, & Backstrom, T. (2020). Privacy Analysis of Voice User Interfaces. In

Proceedings of the 27th FRUCT conference (Vol. 27, pp. 390–395). Trento.

http://doi.org/10.5281/zenodo.4026514

Verge (2016) Google Assistant will open up to developers in December with 'Actions on

Google' https://www.theverge.com/2016/10/4/13164882/google-assistant-ac-

tions-on-google-developer-sd

YourDictionary (2021) Proof-of-concept meaning

 https://www.yourdictionary.com/proof-of-concept

https://www.pratsam.com/the-story-of-pratsam.html
https://doi.org/10.1016/0165-5817(96)81590-7
https://doi.org/10.1145/2504335.2504391
https://www.techradar.com/news/google-nest-mini-release-date-price-and-features
https://www.techradar.com/news/google-nest-mini-release-date-price-and-features
https://doi.org/10.1016/j.ijcci.2019.04.005
http://doi.org/10.5281/zenodo.4026514
https://www.theverge.com/2016/10/4/13164882/google-assistant-actions-on-google-developer-sd
https://www.theverge.com/2016/10/4/13164882/google-assistant-actions-on-google-developer-sd
https://www.yourdictionary.com/proof-of-concept

