

Aki Huhta

Multi-platform data processing engine

Vaasa 2021

School of Technology and Innovations
Master’s thesis in Automation and Computer Science

Energy and Information technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osuva

https://core.ac.uk/display/427744372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

UNIVERSITY OF VAASA
School of Technology and Innovations

Author: Aki Huhta
Title of the Thesis: Multi-platform data processing engine
Degree: Master of Science (Tech.)
Programme: Automation and Computer Science
Supervisor:
Instructor:

Jouni Lampinen
Lassi Niemistö

Year of completing the
thesis:

2021 Pages: 69

ABSTRACT:
Modern software often must run on multiple different platforms, devices, CPU architectures and
software stacks. To simplify development of software and to minimize implementation mis-
takes, it is often desired to reuse a single implementation in multiple platforms instead of de-
veloping and maintaining another implementation of the software.

The objective of this thesis is to find a technology for a medium sized software company. The
technology should allow running the same code on three platforms, which are web browsers,
servers, and edge devices.

This thesis consists of two parts. The first part describes multi-platform computing, and its his-
tory, its common problems and the runtime environments related to the case company’s prob-
lem. The second part defines the requirements for the chosen technology, selects a set of tech-
nologies to review in detail, reviews the chosen technologies and implements and benchmarks
a proof-of-concept.

The study resulted in a recommendation of a technology to the case company. The study also
identified the constraints and problems that the technology has. Some recommendations for
future development of multi-platform software were given.

In the study it became clear that the greatest constraints for solving the problem were the web
browser environment and edge devices. The choice in technologies for the web is not as wide
as in the case of servers and edge devices. Also, the limited resources of edge devices were an
issue. The study found out that in multi-platform software a constraint on one of the platforms
applies to all the platforms used. Other general observations were also made.

KEYWORDS: Multi-platform software, cross-platform programming, edge computing, V8 em-
bedded

3

VAASAN YLIOPISTO
Tekniikan ja innovaatiojohtamisen yksikkö

Tekijä: Aki Huhta
Tutkielman nimi: Multi-platform data processing engine
Tutkinto: Diplomi-insinööri
Oppiaine: Automaatio- ja tietotekniikka
Työn valvoja:
Työn ohjaaja:

Jouni Lampinen
Lassi Niemistö

Valmistumisvuosi: 2021 Sivumäärä: 69

TIIVISTELMÄ:
Moderneja ohjelmistoja usein käytetään monella eri alustalla, laitteella, prosessoriarkkitehtuu-
rilla ja ohjelmistopaketilla. Ohjelmistokehityksen yksinkertaistamiseksi ja virheiden vähentä-
miseksi toteutuksissa yleensä toivotaan, että yhtä toteutusta voitaisiin käyttää monella eri alus-
talla sen sijaan, että kehitettäisiin ja ylläpidettäisiin uutta toteutusta ohjelmistosta.

Tämän opinnäytetyön tavoitteena on valita teknologia keskisuurelle ohjelmistoyritykselle. Ky-
seisen teknologian tulisi mahdollistaa saman koodin ajamisen kolmella alustalla, jotka ovat
webselaimet, palvelimet ja edge-laitteet.

Opinnäytetyö koostuu kahdesta osasta. Ensimmäinen osa kuvailee alustariippumatonta tieto-
jenkäsittelyä, sen historiaa, sen yleisiä ongelmia ja toimeksiantajayrityksen ongelmaan liittyvät
suoritusympäristöt. Toinen osa määrittelee valittavalle teknologialle asetettavat vaatimukset,
valitsee joukon teknologioita tarkempaan arviointiin, arvioi valittuja teknologioita ja toteuttaa
prototyypin sekä mittaa sen suorituskykyä.

Tutkimuksen tuloksena annettiin suositus teknologiasta toimeksiantajayritykselle. Tutkimus
myös tunnisti rajoitteet ja ongelmat, joita kyseisellä teknologialla on. Tulokset sisälsivät myös
joitakin suosituksia alustariippumattoman ohjelmiston kehitykseen tulevaisuudessa.

Tutkimuksessa tuli selväksi, että suurimmat rajoitteet ongelman ratkaisemiseksi olivat webse-
lainympäristö sekä edge-laitteet. Vaihtoehtoja teknologioille webselaimia varten ei ole yhtä pal-
jon kuin palvelimille ja edge-laitteille. Edge-laitteiden rajalliset resurssit olivat myös ongelma.
Tutkimuksessa selvisi, että alustariippumattomassa ohjelmistossa yhden alustan rajoite pätee
kaikkiin käytettyihin alustoihin. Myös muita yleisiä havaintoja tehtiin.

AVAINSANAT: Alustariippumaton ohjelmisto, monialustaohjelmointi, reunalaskenta, V8 em-
bedded

4

Contents

1 Introduction 6

1.1 Background and motivation 6

1.2 Research questions and objectives 7

1.3 Structure of the thesis 8

2 Current situation and the platforms 9

2.1 Data processing engine 9

2.2 Server 10

2.2.1 Java 10

2.2.2 Java Native Interface 12

2.2.3 Java Scripting API 12

2.2.4 Container-technology 12

2.3 Web browser 13

2.3.1 JavaScript 14

2.3.2 WebAssembly 14

2.4 Edge device 15

2.4.1 Lua 16

3 Multi-platform computing 17

3.1 Multi-platform computing in different contexts 18

3.2 Common problems of multi-platform computing 22

4 Requirements and technology selection 24

4.1 Requirements specification 24

4.2 Selection of technologies to further review 25

5 Technology review 30

5.1 JavaScript and V8 31

5.2 C/C++ and Emscripten 33

5.3 Rust 36

5

5.4 AssemblyScript and WebAssembly Micro Runtime 39

5.5 Decision 41

6 Proof-of-concept 44

6.1 Implementation 44

6.1.1 Compiling V8 45

6.1.2 Block selection 49

6.1.3 JavaScript implementation 49

6.1.4 C++ implementation 50

6.2 Performance testing 51

6.2.1 The test application 52

6.2.2 Results 52

6.3 Discussion 55

7 Conclusions 57

References 60

Appendices 65

Appendix 1. The test application code 65

6

1 Introduction

Multi-platform computing is common, as software is run on various devices that might

have different platforms, CPU architecture, software stack and hardware. For example,

it is very common to have an application running on mobile devices and web browsers.

Another example is edge computing, where data might be gathered from many different

devices and the edge module must run on all those data gathering devices. Multi-plat-

form software is not a new phenomenon. Software has always targeted multiple differ-

ent targets due to the wide spectrum of hardware in use.

Multi-platform or cross-platform software allows using a single implementation (or code

base) on all the different platforms and devices the software is used on. This has multiple

benefits; simplicity of software development, organizational simplicity (one team versus

multiple) and higher surety that the software has the same functionality on all targets.

1.1 Background and motivation

This thesis topic comes as an assignment from a medium-sized Finnish software com-

pany that is the employer of the author. The company has a data processing engine, that

currently has three different implementations. One implementation is in JavaScript and

is used in the web browser, second implementation is in Java and runs on a server and

the third implementation is in Lua and runs on edge devices. The JavaScript and Java

implementations are in use currently, while the Lua implementation is not in use.

The company would like to have the data processing engine on edge devices due to cus-

tomer requests. Currently two implementations are in use and they have different code

bases in different programming languages. Maintaining and developing two code bases

simultaneously is time consuming and difficult. The two implementations have differ-

ences in the functionality they support and there is no guarantee that the shared func-

tionality behaves similarly in the two implementations. Adding a third implementation

in a third programming language to use would worsen these issues. Every new

7

functionality would possibly be implemented three times and the different constraints

of the three technologies would lead to the supported features for each platform diverg-

ing from one another. Thus, a solution for this issue is required.

1.2 Research questions and objectives

The objective of the thesis is to recommend the company a technology to solve their

issue regarding the data processing engine on edge devices. The chosen technology

should allow using a single implementation of the core functionality of the data pro-

cessing engine in all three different platforms (web browser, server, and edge devices).

The data processing engine implements logic blocks that perform a single task. Each plat-

form would still likely have platform-specific blocks, such as graphical user interface ma-

nipulation in JavaScript for the web browser, but each block should be implemented only

once. A core set of blocks implemented with one technology is needed. This would make

the development process easier and simpler, and there would be certainty that the data

processing engine behaves similarly on all platforms.

The research questions are as follows:

• What technology allows using a single implementation on all three platforms?

• Can an existing implementation be taken into use on all three platforms, or is a

new implementation required?

• What are the limitations of the chosen technology?

• What is the performance of the chosen technology?

The thesis’ research will be targeted to solve the case company’s problem, but the results

can be used in general for similar issues. A recommendation of technology for further

evaluation is given. A proof-of-concept is developed and tested, but further analysis,

complete implementation and testing is left for further research.

8

1.3 Structure of the thesis

The thesis will consist mainly of two parts. The first part presents multi-platform compu-

ting, its history, use cases and common problems as a literature review. This part will also

describe the target platforms relevant to the case company’s problem using relevant re-

search and documentation. The case company’s software implementations will also be

presented.

The second part consists of the author’s contribution. This part defines the requirements

for the technology choice based on the opinions of experts at the case company, the

company’s internal documentation and the constraints of the platforms being targeted.

In this part a set of technologies to review is selected and then reviewed. A proof-of-

concept of the most promising technology is implemented, and its performance is tested.

The results of the technology review, proof-of-concept implementation and testing are

presented after the second part. Finally, the author draws conclusions regarding the

technology choice and gives recommendations for the company and for anyone encoun-

tering similar problems.

9

2 Current situation and the platforms

In this chapter the current situation of the case company’s data processing engine will

be described on a high level. Also, the three platforms, the three programming languages

used in the software’s current implementation, and some related technologies are pre-

sented to give enough background for the rest of the thesis. The differences of the plat-

forms and their requirements and the variety in programming languages used will be-

come clear.

2.1 Data processing engine

The data processing engine that is the focus of this thesis implements a set of logic blocks,

that are combined by users into flows to be executed on the selected platform. The logic

blocks implement operations such as bit manipulation, logical operators, arithmetic op-

erations, and signal processing. As the operations are primitive, the idea of a unified

codebase is sensible.

The data processing engine is implemented in three different programming languages

for three different platforms. One implementation is done in Java and is run on a server

in the cloud. The second implementation is done in JavaScript and is run on a web

browser on the user’s machine when viewing the web application. The third implemen-

tation, that is not currently in use, is done in Lua and is supposed to be used on edge

devices.

Currently the Java and JavaScript implementations have almost the same blocks, with

JavaScript implementation having the most blocks and the Java implementation missing

some blocks. The Lua implementation is missing some blocks that the other two imple-

mentations have, but on the other hand it has some blocks that implement functionality

specific to embedded use cases, such as signal edge detection. It has been identified that

all the implementations have a core set of blocks, that could be shared between all of

them.

10

Because all the implementations use a different programming language, the code, its

style, organization, and architecture are different for each implementation. For example,

the Java and JavaScript implementations have implemented one block per source file

whereas the Lua implementation has all its blocks in a single source file. The JavaScript

implementation has organized the blocks into directories based on their categorization

(logic, data, calculation, miscellaneous), but the Java implementation has them all in a

single directory. The implementations are stored all in different Git repositories.

2.2 Server

In a client-server computing clients and servers form a system that allows distributed

computing, analysis, and presentation. A client can be a process interacting with user

that provides the user interface (UI) used by the user for data retrieval, analysis, and

presentation. A server provides the client with services, which are defined by the busi-

ness goals. The service could be print server or file server requiring minimal server-based

computation, or database server or image processing requiring intensive computations.

A server responds to queries and commands from a client. Generally, the server does

not initiate the communication with the client. (Sinha, 1992)

In the case company’s system, the server uses the data processing engine to process the

data sent by the client using the steps defined by the client when it is not desirable or

feasible to process in the client. The client can be the web browser used by a user or it

can be another system that requests and uses data or provides the data.

2.2.1 Java

Java is an object-oriented, interpreted, and portable programming language with gar-

bage collection for automatic memory management. The Java platform supports multi-

threading, dynamic loading of code modules and has built-in tamper-protection. (Gos-

ling & McGilton, 1996)

11

Java originated as a research project where the aim was to develop advanced software

for various network devices and embedded systems. The goal was a small, reliable, dis-

tributed, portable and real-time operating system. Originally, the code was developed in

C++, but due to difficulties faced in development, an entire new programming language

was created. (Gosling & McGilton, 1996)

Java was designed to answer to the needs of development in heterogenous and network-

wide distributed environments. To answer these needs, the main challenges are to de-

liver securely applications that consume minimal resources and can run on any hardware

or software platform while having the option of being dynamically extended. For these

reasons, Java was designed to be architecture neutral, portable, and dynamically adapt-

able. (Gosling & McGilton, 1996)

Java as a programming language has been designed to be simple and object-oriented

from the ground up. Java also has a wide variety of extendable libraries. Portability is

provided by Java Virtual Machine (JVM), on which the bytecode generated by the Java

compiler is run on. The JVM is based on the POSIX interface specification and the imple-

mentation of JVM on new architectures is possible and straightforward if the target plat-

form meets a few basic requirements such as multithreading. The bytecode is architec-

ture neutral intermediate format. Portability is also helped by having the same data

types and arithmetic operator behavior across platforms. The compiler has compile-time

static type checking, but the language and runtime are dynamic in the linking stage –

classes are linked only if needed and new modules can be linked on demand. Java’s

memory management is simple – it has no programmed-defined pointer data types, no

pointer arithmetic and objects are created with simply a new operator and garbage col-

lection automatically frees the memory. (Gosling & McGilton, 1996)

Java also can interoperate with other programming languages which is important for this

thesis as any solution selected should also integrate to the Java codebase on the server.

Java Native Interface and Java Scripting API could help in this regard.

12

2.2.2 Java Native Interface

Java Native Interface (JNI) is a native programming interface that allows Java code run-

ning inside a Java Virtual Machine to interoperate with code written in other program-

ming languages. The JNI is required when the standard Java class library does not sup-

port platform-specific features, when a library written in another language is used with

Java code, or when time-critical code is implemented in a lower-level language such as

assembly. JNI can be used to create, inspect, and update Java objects, to call Java meth-

ods, to catch and throw exceptions, to load classes and obtain their information and to

perform runtime type checking. (Java Native Interface Specification, n.d.)

2.2.3 Java Scripting API

The Java Scripting API is a framework for using script engines from Java code and it is

independent of any scripting language (Java Scripting Programmer’s Guide, n.d.). Origi-

nally, the Java Development Kit (JDK) came with a script engine for JavaScript called

Nashorn builtin, but it has been deprecated (see JEP 372: Remove the Nashorn JavaScript

Engine, n.d.). The GraalVM virtual machine from Oracle can be used as a replacement

(see Migration Guide from Nashorn to GraalVM JavaScript, n.d. and Oracle/graaljs, n.d.).

2.2.4 Container-technology

Containers are a technology for separating an application from the operating system and

the physical infrastructure used for networking. A container is instantiated in the kernel

and it virtualizes an instance of an application. They are used for example to sandbox

applications or by Software-as-a-Service (SaaS) providers to isolate the applications and

data of different customers. (Hogg, 2014)

Hogg (2014) explains that Linux Container (LXC) isolates the CPU, memory, file, I/O, and

network resources with control groups (cgroups), and it also uses namespaces to isolate

the application from the operating system. According to Hogg, LXC separates the process

trees, user IDs, network and file access. The benefit of LXC according to Hogg is that it

allows virtualizing a single application instead of virtualizing the entire operating system

with a virtual machine. Hogg mentions that the popular container technology, Docker

13

which adds image management and deployment tools, was originally built on top of LXC.

Later though Docker has developed its own technology for containers.

The case company uses container technology with the server-side codebase; the appli-

cation is run in a container as the server environment is in the cloud. The container tech-

nology is not expected to pose any problems with the selection of the technology in this

thesis, but it is kept in mind when seeking technologies.

2.3 Web browser

A web browser retrieves information from the web (WWW) and displays it on the device.

Information is transferred using Hypertext Transfer Protocol (HTTP), that defines how

data consisting of text, images and videos is transmitted. After the data is fetched, the

browser uses a rendering engine to translate Hypertext Markup Language (HTML) to text

and images. Browsers support hyperlinks allowing links to other resources on the Web,

each of which has a unique Uniform Resource Locator (URL) also known as an address.

The address tells the browser which server to request data from. (Mozilla, n.d.)

In addition to HTML, web browsers also understand Cascading Style Sheets (CSS), which

is used to define how the components specified by the HTML look like. To bring func-

tionality and interactivity by programming, web browsers support JavaScript and WebAs-

sembly.

Web browsers usually follow web standards, that define how web technologies should

work. World Wide Web Consortium (W3C) standardizes HTML and CSS, whereas JavaS-

cript is standardized by Ecma International.

Commonly used web browsers include Mozilla Firefox, Google Chrome, Microsoft Edge

and Apple Safari.

14

2.3.1 JavaScript

JavaScript was created by Brendan Eich at Netscape. Originally Netscape was looking for

a language inside a browser that could be used to automate parts of a web page or make

it more dynamic. The language was called first LiveScript but was later renamed to Ja-

vaScript. JavaScript was the answer to the need of doing things that HTML was not able

to express – make things move, respond to user input, change colors, ask input with a

dialog box. A draft standard of JavaScript was submitted to European Computer Manu-

facturers’ Association (ECMA), a communication standards body, which then adopted

the standard. The standard now calls the language ECMAScript. (Andreessen, 1998)

As a programming language, JavaScript is lightweight, interpreted, and object-oriented

and it has first-class functions. The object-orientation is prototype-based, and the lan-

guage also supports imperative and functional programming. The type system is dynamic.

In JavaScript, objects are created programmatically by adding methods and properties

to empty objects at runtime. This is different from the class definitions in languages like

C++ and Java. The syntax of JavaScript is similar to Java and C++. (MDN Web Docs, 2021a.)

2.3.2 WebAssembly

Wagner (2017) writes that Alon Zakai, a Mozilla employee, had the idea of converting a

game written in C++ to JavaScript that can be run on the Web. Wagner continues that

this Zakai’s endeavor ended up becoming a software called Emscripten. At the time, Em-

scripten targeted a subset of JavaScript, asm.js, according to Wagner. He explains that

the standardization efforts of this approach of targeting the Web ended up with the birth

of WebAssembly.

Originally web developers had two choices; they could use HTML, CSS and JavaScript to

create applications running in the web browser or they could create browser plugins that

the users would download and install. With these two choices problems were often en-

countered if certain kind of applications were developed. The first approach had

15

mediocre performance with compute-heavy tasks. The plugins required users to down-

load and install possibly malicious code, and the plugin were browser specific. WebAs-

sembly is a technology to solve this problem. (Wagner, 2017)

WebAssembly (Wasm) is a binary instruction format for a virtual machine and is designed

to be a portable compilation target. WebAssembly enables deployment on the web.

WebAssembly aims to execute at native speed while providing a memory-safe, sand-

boxed execution environment. WebAssembly modules can also access browser function-

ality through the same APIs as JavaScript. WebAssembly is not meant only for the web,

but also supports usage in other environments. (WebAssembly.org, n.d.-a)

The high-level goals of WebAssembly are to define a potable, size-efficient and load-

time-efficient binary format that can be used as a compilation target and taking ad-

vantage of common hardware capabilities to achieve high performance. It is designed to

execute and integrate with the existing Web platform. The use cases are for example

better execution for languages such as C/C++ which are cross-compiled to the web, im-

age and video editing, games, encryption and simulation in the browser. Outside the

browser, use cases can include game distribution, server-side computation of untrusted

code, server-side applications, and symmetric computations across many nodes.

(WebAssembly.org, n.d.-d, WebAssembly.org, n.d.-e)

WebAssembly System Interface (WASI) is an API that provides access to operating-sys-

tem-like features such as filesystems, Berkeley sockets, clocks, and random numbers.

WASI is designed to be independent of browsers. Currently C/C++ and Rust toolchains

can take advantage of WASI. WASI can used on the Wasmtime WebAssembly runtime or

on the browser using a polyfill. (Bytecodealliance/wasmtime, n.d.)

2.4 Edge device

Edge computing is about enabling technologies that allow computation to happen near

the data sources. An edge device is any computing or networking resource located in-

between data sources and cloud-based datacenters. For example, a smartphone can be

16

an edge device between body sensors and the cloud. In edge computing, the edge de-

vices both consume and produce data. They request services and information from the

cloud and handle computing tasks such as processing, storage, caching and load balanc-

ing. (Shi & Dustdar, 2016)

2.4.1 Lua

Lua is a general-purpose embedded programming language that is designed for support-

ing procedural programming with data description capabilities. As it is an embedded lan-

guage, it does not work without a host. Lua is a library of C functions that are linked to

the host application. The host can invoke functions from the library to execute a piece of

code in Lua, to write and read Lua variables and to register C functions to be called by

Lua code. As a programming language Lua has first-class functions, object-orientation,

dynamc typing. Lua uses Pascal-like syntax. (Ierusalimschy, Figueiredo, & Filho, 1996.)

17

3 Multi-platform computing

Multi-platform or cross-platform computing refers to developing software for, or running

software on, multiple different types of hardware platforms. An example of multi-plat-

form software could be the web browser, which commonly runs on desktops, laptops,

and mobile devices and on different operating systems. (PC Magazine, 2021)

In this context, platform can mean different processor architectures, operating systems,

or hardware configurations. Each processor architecture can demand compiling the soft-

ware to a different instruction set, each operating system might have different demands

for the software and their own APIs for accessing the hardware. The hardware on differ-

ent devices can vary; combinations of CPU, GPU, RAM, storage devices and so on are

plenty.

The case company is targeting many platforms, both hardware and software. The

browser implementation targets the common web browsers that in turn target many

operating systems. The server implementation targets the Linux operating system, a con-

tainer platform and the x86 architecture. The edge device implementation targets a

Yocto-based custom Linux distribution and the ARM architecture. This shows that the

real-world cases of multi-platform computing are often complex.

Cusumano & Yoffie (1999) note that there are two ways of creating cross-platform prod-

ucts: develop separate platform-specific versions of the product or develop the bulk of

the product in generic, cross-platform code, with little or no code tailored to different

platforms. In this thesis the interest is in the latter method and it fits into the definition

of multi-platform computing given in this section.

PC Magazine’s (2021) definition for cross-platform software gives two main methods of

developing cross-platform software: compile an executable program to the operating

environment of each target computer or use an intermediate language and compile only

once.

18

3.1 Multi-platform computing in different contexts

In some sense, multi-platform computing is nearly as old as computing itself. There has

always been a wide variety of computing hardware and the question of reusing software

on different machines has appeared often and been solved numerous times in different

contexts. In this sub-chapter an overview of various points and notable developments in

the history of multi-platform computing to this date is presented. It will become clear

that many approaches have been used to target the many devices in existence.

Compilers were the first technology to enable multi-platform computing. Aho et al.

(2007, pp. 1-2) define compilers as programs, that read a program written in one lan-

guage (source language) and translate it to an equivalent program in another language

(target). Aho et al. (2007, pp. 2) explain that if the target program is an executable ma-

chine-language program, it can then be executed by the user to process data. If the com-

piler supports targeting different architectures, then it also enables multi-platform com-

puting; the same source code can be compiled to multiple targets. For example, the GCC

(GNU C Compiler) allows targeting many architectures such as the common x86 and ARM

architectures (Free Software Foundation, n.d.).

In addition to compilation, there are other methods to process programming languages.

Interpreters are software, that instead of giving an output in the target language, execute

the operations specified by the source code. Compilation and interpretation can be com-

bined: first the source program is compiled into a bytecode, an intermediate form, and

this bytecode is then interpreted by a virtual machine. The Java programming language

is an example of this. (Aho et al. 2007, pp. 2-3)

Virtual machines are software, that implement a computer and operating system de-

pendent machine architecture. A compiler can then translate a program to target the

virtual machine’s instruction. A compiled program targeting the virtual machine is inde-

pendent of the platforms that run the virtual machine. Additionally, the virtual machine

19

can use just-in-time technology to translate the virtual machine’s instructions to the ma-

chine’s native instructions. (Bishop & Horspool, 2006)

Java and the .NET Common Language Runtime are examples of widely used virtual ma-

chines that execute compiled bytecode. As a virtual machine is implemented on many

platforms, such is the case with Java, then the compiled programs are effectively plat-

form independent. (Bishop & Horspool, 2006)

The procedures of using compiled and interpreted programming languages are shown in

Figure 1. Interpreted languages have an extra step where the interpreted languages have

to be executed on a virtual machine whereas compiled languages allow directly execut-

ing the compiled program.

Figure 1 The processes of using compiled and interpreted programming languages.

20

The original promise of Java’s developer, Sun, was “write once, run everywhere”. This

slogan originates from the fact that developers do not write Java code to run on the APIs

of a specific operating system but instead target Java virtual machine. (Cusumano & Yof-

fie, 1999)

Despite it being possible to compile to different architectures or target a virtual machine,

a common issue in desktop software persists – developing Graphical User Interfaces (GUI)

for different operating systems. Operating systems have different graphics APIs and by

using those APIs, the developer would have to develop a separate GUI for each platform.

This is commonly solved with cross-platform GUI toolkits such as Qt.

Web browsers were the next major point in the history of multi-platform computing.

Taivalsaari et al. (2008) predicted that the web browser will in essence be the de facto

operating system. Taivalsaari et al. (2008) explained that in their belief vast majority of

future software applications will target the Web and browsers instead of the conven-

tional target platforms such as specific operating systems and CPU architectures. Now in

2021 it is quite clear that their belief was correct.

One of the reasons for this explosive increase in web applications might be the ease of

targeting multiple platforms. If web browsers are implemented for example on Windows,

Linux and macOS computers, and on mobile devices and their different operating sys-

tems, then an application developer can target the web browser instead of writing ap-

plications specific to these platforms. Taivalsaari et al. (2008) noted that it was at the

time becoming easier to develop desktop-style web sites or web applications although

they also identified many issues with the web browser as an application platform. Nev-

ertheless, web applications became popular. There was a tradeoff between portability

and functionality when choosing to develop web applications or conventional desktop

applications. Wagner (2017) explains the draw of the web as a platform: what if you

could share a Computer Aided Design (CAD) model with a colleague, asking them to

21

modify it without any need to instruct them to install special software or without worry-

ing if the software is compatible with their environment?

With the popularity of web applications, there were more and more supply of web de-

velopers. Many companies had JavaScript, HTML and CSS experts as just about every

business needed a web page or web application. The question of using web technologies

on the desktop without the browser was natural. JavaScript, HTML and CSS were sup-

ported by web browsers on multiple operating systems already. HTML and CSS were

found to be great for developing cross-platform user interfaces. Electron was a technol-

ogy that answered this need.

Electron is a tool for building cross-platform desktop applications with the web technol-

ogies: JavaScript, HTML and CSS. It is based on Chromium and Node.js. Electron allows

building for and running applications on Linux, Windows, and Mac. Popular applications

built on Electron include Visual Studio Code, Facebook Messenger, and Microsoft Teams.

(Electronjs.org, n.d.)

As Electron allowed bringing code from the web browser environment to the desktop,

WebAssembly on the other hand allows bringing code from other platforms to the web

browser. Now that programming languages such as C/C++ and Rust can be compiled to

WebAssembly, it is possible to share code between the web browser environment and

other platforms.

Smartphones were the next major development after web browsers. Smartphones, like

the traditional desktops and laptops, also have often the need for multi-platform sup-

port. Currently the smartphone market is dominated by Android and iOS operating sys-

tems; according to Gartner (2017) in the first quarter of 2017 Android’s share of sales

was 86.1% and iOS’s 13.7%. Android and iOS do not have a compatible API. Instead of

developing separate applications for both major smartphone operating systems, many

developers choose to use cross-platforms tools such as React Native, Cordova and

22

Xamarin as seen from Stack Overflow Developer Survey 2019 (2019a). These cross-plat-

form toolkits allow using the same code on both major operating systems once again

solving the problem of targeting multiple platforms.

To summarize, the problem of targeting multiple platforms, whether they are hardware

of software platforms, is solved software that handles the difficult multi-platform target-

ing. The tools used include compilers, interpreters, virtual machines, cross-platform GUI

toolkits, cross-platform SDKs.

3.2 Common problems of multi-platform computing

The variety of hardware in devices nowadays is broad. All computing devices have the

same basic components, but due to various use cases of the devices they all have differ-

ent constraints placed on the hardware. A mobile devices processor cannot have as high

of a performance as the processor of a desktop because the mobile device has more

constraints placed on it. Power supply, cooling and available physical space for the CPU

are all more constrained on the mobile device versus the desktop. Edge devices often

have even less computing power than mobile devices; they might be mass produced

leading into the need for cheap components. Edge devices can be used in for example

factories, where they might require hardening against demanding environment.

In addition to hardware, the developer of multi-platform software must consider the

available technologies. Finding a technology, programming language or framework that

can target all desired devices can be difficult. Even if the technology can target all the

devices, then there is the question whether it behaves similarly on all the devices in

question.

When developing the multi-platform software, there is another question to consider.

Should the software be developed to behave the same on all devices with no platform-

specific code or should the software have some platform-specific code? Having some

platform-specific code would certainly help take advantage of the strengths of each

23

platform but it would also lead into losing some of the benefits of sharing the same code

on all platforms such as code reuse, simplicity and guarantee of similar behavior across

devices. Cusumano & Yoffie (1999) claim it is almost always necessary to have some code

tailored to different platforms specifically.

Having even a small amount of code tailored to a specific platform causes logistical issues.

Different code bases and development teams must be synchronized. The organization

must keep track of all the variations in the code and test all versions and changes. On

the other hand, minimizing platform-specific code has its own issues. It would require

the developers to not use any interfaces or programming constructs specific to an oper-

ating system or hardware platform. Developers should instead use simple or low-level

programming constructs and interfaces common to all the platforms. Usually many plat-

form-specific interfaces and programming “tricks” enable developers to write code that

is often faster or more efficient than the code that uses the lowest-common-denomina-

tor interface. Therefore, multi-platform products can be slower to develop or even have

weaker functional performance. (Cusumano & Yoffie, 1999)

24

4 Requirements and technology selection

During discussions with experts that work on the software in question, several require-

ments for the technology were identified. The case company’s internal documentation

also supported requirements gathering. These requirements were used to narrow down

the set of technology choices to review in closer detail and to make the decision for

choosing the recommended technology. Each requirement added more constraints on

the technology selection leading into a small set of possible choices.

The technologies were sought by using both Google and Google Scholar searches and

links in WebAssembly.org documentation. Search terms used in search included WebAs-

sembly, WebAssembly Compiler, JavaScript transpiler, JavaScript Compiler, WebAssem-

bly Runtime, JavaScript to C, JavaScript engine, JavaScript embedded, JavaScript on edge,

Javascript multi-platform, Javascript cross-platform.

4.1 Requirements specification

The requirements for the technology are presented in Table 1. All of these should be

fulfilled by the chosen technology.

Table 1 Requirements for the technology.

R1 The same code can be used on all three platforms (web browser, server,

edge device)

R2 Code can target JavaScript / WebAssembly and run in the web browser

R3 Code can be run on a Linux-based server in the cloud

R4 Code can be run in a container

R5 Code can be run on a specific Linux-based edge device

R6 Code can be run on x86 and ARM architectures

R7 Technology has high performance

R8 The runtime fits into roughly 100 MB

R9 Well-established technology as opposed to a niche technology

R10 The technology can be integrated into the existing code base

25

R11 The license of the technology must allow mass-production of devices and

using the technology as a part of a product

R1 is the fundamental goal of the study, and R2-R6 give additional details to that require-

ment. In the web browser, it is possible to execute only JavaScript and WebAssembly

(R2). The server platform in this case is Linux-based (R3) and the software is run in a

container (R4). The servers’ CPUs likely use x86 architecture (R6). The edge device is

Linux-based (R5), uses an ARM based CPU (R6) and has limited hardware capabilities (R7,

R8). Finally, a well-established technology is desired instead of unmaintained or hobby

projects (R9) and the technology should also integrate with the existing code bases on

all three platforms (R10). The licensing model of the technology should allow the case

company to use it as a part of a commercial product (R11). Specifically, GPLv3 is known

to be problematic and unfit for this purpose.

High performance (R7) and small memory footprint (R8) are required due to the hard-

ware limitations of the edge devices the case company is targeting. The edge device of

the case company has ARM Cortex-A5 536 MHz CPU, 256MB of DDR2 RAM and 256MB

of NAND Flash storage. The CPU in question supports ARMv7-A architecture, which is a

32-bit architecture.

4.2 Selection of technologies to further review

R2 states that the technology should allow running code in the web browser. Because

the commonly used web browsers only support running code written in JavaScript or

compiled to WebAssembly, this requirement ends up limiting the choices the most.

The first option is to use JavaScript on all platforms. This would require using some Ja-

vaScript engine on server and edge device or transforming JavaScript to some other lan-

guage for the server and edge device. Regarding the latter option, no tools that allow

translating JavaScript code to another language such as C, or tools that transpile code to

JavaScript were found to fit the requirements.

26

JavaScript could be run on the server and edge device using a general-purpose JavaScript

engine such as the V8 JavaScript engine (see V8.dev, n.d.-b.). Also, other JavaScript en-

gines, that are aimed for embedded devices, such as DukTape, XS, mJS and JerryScript

exist (see Duktape, n.d., Soquet, P., 2017, Cesanta/mjs, n.d. and Jerryscript.net, n.d.).

According to a benchmark performed by Bellard (n.d.) the performance of these JavaS-

cript engines aimed at embedded devices is significantly inferior to the performance of

V8 (when using JIT technology) although the executable size of V8 is larger.

The second option would be to use a programming language that can be compiled to

WebAssembly. The browser side would use the WebAssembly and on the server and

edge either the language is compiled to the native architecture if possible, or it is com-

piled to WebAssembly and executed using some WebAssembly runtime. It could also be

possible to compile a Lua virtual machine to WebAssembly and use that in the browser

platform, but no such serious project was found.

Webassembly.org (n.d.-c) lists programming languages that allow the compilation of

WebAssembly modules: C/C++, Rust, AssemblyScript, C#, F#, Go, Kotlin, Swift, D, Pascal,

Zig. Of these C/C++, Rust and AssemblyScript fit into the requirements R7 and R9, and

their support for WebAssembly was deemed the most mature based on their documen-

tation.

MDN Web Docs (2021b) also lists the following four as the main options for targeting

WebAssembly :

• Compiling C/C++ with Emscripten to WebAssembly

• Writing WebAssembly directly

• Compiling Rust to Webassembly

• Compiling AssemblyScript to WebAssembly

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Emscripten

27

Out of these the option of writing WebAssembly directly is discarded as it would make

software development too difficult and slow.

If AssemblyScript is compiled to WebAssembly, then WebAssembly runtime is required

to run the code on the server and edge device as AssemblyScript does not compile to

native code. The only WebAssembly runtime that supports ARMv7 architecture was

found to be WebAssembly Micro Runtime (see Bytecodealliance/wasm-micro-runtime,

n.d. and Bytecode Alliance, n.d.). Other WebAssembly runtimes include wasmtime and

Wasmer but they lack ARMv7 support.

In Table 2 the licenses of the different technologies mentioned in this section are listed.

The various programming languages were left out of the listing as programming lan-

guages and compilers generally have permissive licenses such as MIT or Apache 2.0 li-

cense. Only the license of XS might be problematic out of these, but XS and the other

lightweight JavaScript engines were already excluded due to performance.

Table 2 Licenses of various technologies that were considered.

Technology License

V8 V8’s BSD-style license

DukTape MIT

XS LGPLv3 and GPLv3

mJS GPLv2

JerryScript Apache License 2.0

Emscripten MIT

AssemblyScript Apache License 2.0

WebAssembly Micro Runtime Apache License 2.0

The process of selecting the technologies is further visualized in Figure 2. As can be seen

from Figure 2, JavaScript, C/C++ with Emscripten, Rust and AssemblyScript with WebAs-

sembly Micro Runtime fulfilled the requirements and thus they will be compared in more

28

detail in the following chapter. In the figure the requirement R2 is depicted at the top as

it was found to be the most constraining requirement. Thus, the figure does not include

any technologies that cannot be used with JavaScript or WebAssembly.

Figure 2 The requirements fulfilled by different technologies.

JavaScript and the V8 engine would be a good choice because the case company’s focus

is more on the browser and server side. If using JavaScript on the edge device is feasible,

then it would be the preferred choice. The relatively large size of the V8 executable when

compared to the alternatives should not be an issue as the case company’s edge device

has enough memory for it. The benefits of better performance make the V8 more desir-

able option than the others, and V8 is backed by Google versus the other’s being open-

source projects or maintained by smaller companies.

29

C/C++ are good options because the case company’s existing edge device codebase uses

C++ making the integration simple, and C/C++ is known to have high performance and

memory efficiency. Furthermore, WebAssembly’s initial focus is C/C++ support (WebAs-

sembly.org, n.d.-b). Emscripten is the compiler technology used to target WebAssembly.

Rust is a relatively new programming language, and it aims to have high performance

and safety. Rust serves in the review as a contrast to the well-established C/C++. Rust

has recently enjoyed some popularity among software developers; Stack Overflow De-

veloper Survey 2019 (2019b) ranked Rust as the “most loved” language. Rust might see

more use in the future and developing Rust expertise in the case company could be ben-

eficial.

Finally, AssemblyScript is a TypeScript-like language that compiles to WebAssembly. In

the review it serves as the opposite approach of C/C++ or Rust. AssemblyScript would

be compiled to WebAssembly and then the WebAssembly would be executed on the

server and edge device using a WebAssembly runtime whereas C/C++ and Rust can com-

pile to the instruction set of the target CPU architecture.

30

5 Technology review

This chapter concerns the technologies that were found to promise to fulfill the require-

ments defined in the previous chapter and documents the findings of the technology

review. The technology review was conducted by reading the official documentation of

the chosen technologies and by searching the Web for more information.

These technologies will be described, notable strengths and weaknesses noted by prior

literature will be described, and if possible, the following questions will be answered for

each technology:

• What is the maturity of WebAssembly or browser platform support?

• Is there a library ecosystem? Is it possible to use existing libraries with WebAs-

sembly?

• Can the technology be integrated to the case company’s existing code bases?

• Will the performance especially on low-end hardware be enough?

• Is it possible to access system resources on the server and edge devices?

• Does the code require some browser or WebAssembly specific structures? If so,

then does the same code work on server and edge? Or is it possible to write

generic code that works on all platforms?

The set of technologies being reviewed is as follows:

• JavaScript and the V8 engine

• C/C++ and Emscripten

• Rust

• AssemblyScript and WebAssembly Micro Runtime

With JavaScript and V8 the focus is on using JavaScript on the edge device with V8 as

JavaScript is already used in the browser. Due to Node.js using V8, it is already known V8

can be used on the server. The main question is its performance. Regarding C/C++/Em-

scripten and Rust, the focus is on WebAssembly side as it is known that these languages

will run on the server and edge device. In the case of AssemblyScript and WebAssembly

31

Micro Runtime the focus is more on integrating the WebAssembly Runtime with the ex-

isting codebases as well as the maturity and performance of AssemblyScript.

5.1 JavaScript and V8

V8 is an open-source JavaScript and WebAssembly engine by Google written in C++. It is

most known for being used in the Google Chrome web browser and Node.js. It can be

used on many architectures including x64 and ARM. It can also run standalone or be

embedded into a C++ program. (V8.dev, n.d.-b.)

V8 is likely the most mature platform for executing JavaScript as it is used in Google

Chrome and Node.js (see V8.dev, n.d.-b.). Using it would allow also using any existing

JavaScript libraries like it is possible to use JavaScript libraries for example when devel-

oping a web application backend on top of Node.js.

Figure 3 shows how the V8 engine and JavaScript would fit into the larger system. As the

V8 can be embedded into a C++ application and used like a library, integration to the

edge device’s codebase would be simple enough. On the server Java Scripting API could

be used to integrate JavaScript and V8 into the existing codebase. On the server side

other engines could also be used if V8 integrations is difficult as the performance is not

that constrained as on the edge device. Furthermore, it is a likely option that in the fu-

ture the whole server side is converted to JavaScript native, i.e., Node.js that is based on

the V8 engine.

32

Figure 3 Usage of JavaScript and V8 in the system

Oliveira & Mattos (2020) performed a benchmark on a Raspberry PI3 model B and com-

pared JavaScript and WebAssembly on Node.js and C using the Ostrich Benchmark Suite.

Their results are especially interesting for this thesis as their hardware was quite near in

performance to the case company’s edge device, and Node.js uses V8 engine. Their re-

sults show that JavaScript on Node.js had about two to four times the execution time of

C, and JavaScript also used more memory and energy than C. This level of performance

would likely be enough for the case company.

Finally, accessing system resources from the JavaScript running on V8 and using the same

code on all three platforms would be possible. All three platforms would be executed on

V8 engine, or a similar engine if browsers other than Google Chrome are used or em-

bedding V8 into Java turns out to be impossible. The programming language used would

be the same across all platform making the development simple.

If the performance of V8 on the case company’s edge device is found to be adequate, or

atleast on a similar level as found by Oliveira & Mattos (2020) then it would be the pre-

ferred choice. Using JavaScript and V8 does not seem to have any major weaknesses

other than the question of performance on edge devices.

33

5.2 C/C++ and Emscripten

C is a general-purpose programming language though not very high-level language and

is not specialized to any area. Dennis Ritchie originally designed it for the UNIX operating

system on the DEC PDP-11. (Kernighan & Ritchie, 1988.)

C++ was originally designed by Bjarne Stroustrup to answer the question of simultane-

ously directly manipulating hardware and supporting efficient high-level abstraction. In

the beginning C++ was a combination of the features of C and Simula programming lan-

guages. Now it has grown to a complex and effective tool for a wide range of applications.

It started as “C with classes” in 1979. (Stroustrup, 2020. pp. 5-6)

Despite being different programming languages, C and C++ are grouped here together

as it does not make a significant difference whether one is used over the other in this

case. Their main difference is that C++ has a lot more language features such as classes

over C and is more complex in general. They are both known for being suitable for em-

bedded software and high-performance software.

Emscripten is an open-source compiler toolchain for WebAssembly. It enables compiling

C and C++ code (or any other language that uses LLVM) into WebAssembly. Almost any

portable C/C++ codebase can be compiled using Emscripten into WebAssembly. Emscrip-

ten can be used as a drop-in replacement for the common compilers GCC and Clang. it

uses Clang and LLVM to compile to WebAssembly while also outputting JavaScript code

providing API that supports the WebAssembly code. (Emscripten 2.0.12 documentation.

n.d.-a.)

Emscripten is likely the most mature technology when it comes to WebAssembly. Em-

scripten 2.0.12 documentation (n.d.-a) supports this notion by mentioning that Emscrip-

ten has been already used to convert several real-world codebases to WebAssembly and

it lists Unreal Engine and Unity as examples. As another example, Google Earth has also

been ported to WebAssembly using Emscripten (Chromium Blog, 2019). These examples

34

show that Emscripten can be used to port large, real and commercial C/C++ projects to

WebAssembly.

Emscripten 2.0.12 documentation (n.d.-d) states that Emscripten provides support for

standard libraries such as libc, libc++ and SDL, and automatically links them when they

are used. It also explains that other libraries can be used if it is possible to build and link

them. In other words, the standard library functionality can be used and there is no need

to implement it again for the WebAssembly target. Also, third-party libraries can be used

if they can be compiled using Emscripten.

Emscripten also provides an API that allows integration with the browser environment,

interfacing with the HTML5 API, working with the compiled code from JavaScript etc.

(Emscripten 2.0.12 documentation, n.d.-c)

A major benefit to using C/C++ and Emscripten would be the fact that C/C++ can be used

on the server and edge device. Figure 4 shows how C/C++ and Emscripten would fit into

the larger system. On the server-side C/C++ can be called from Java code using for exam-

ple Java Native Interface, while on the edge device the codebase is already C++ which

would make using C++ trivial and easily allow calling C code.

35

Figure 4 Usage of C/C++ and Emscripten in the system

The performance of C/C++ should pose no problems on the edge device. C and C++ are

widely known to be the de facto choice for embedded devices and low-end hardware.

Furthermore, the existing codebase on the edge device already uses C++ proving that its

performance is enough for the case company’s edge device.

Because C/C++ would be compiled to the native architecture on the server and edge

device, using system resources is possible. Also, on the browser side Emscripten supports

some system functions such as networking (asynchronous operations) and file system

functions through a virtual file system (Emscripten 2.0.12 documentation, n.d.-b).

Using the same code on all three platforms should be mostly feasible. As Emscripten

2.0.12 documentation (n.d.-a) explains “Practically any portable C or C++ codebase can

be compiled into WebAssembly using Emscripten”. A core use-case of Emscripten is to

compile existing applications to WebAssembly. Some platform-specific code is necessary

on the three platforms to integrate to the existing codebase, but it should be possible to

implement the core functionality of the data processing engine with generic code. Since

Emscripten aims to compile large, existing applications, it might even be feasible to im-

plement a larger entity than just the core functionality of the data processing engine.

36

Instead of merely sharing the core functionality on all platforms, the surrounding logic

could also be ported to the web browser.

To summarize the findings: Emscripten is a complete toolchain for compiling C/C++ to

WebAssembly. It provides support for standard libraries and glue-code for integration

with JavaScript. It has been used by real projects successfully and C/C++ are the initial

focus of the WebAssembly project.

5.3 Rust

Rust is a fast and memory-efficient programming language with no runtime or garbage

collector. It has an ownership model guaranteeing memory-safety and thread-safety.

WebAssembly is one of the domains where the Rust community has decided to improve

the programming experience. (Rust Programming Language, n.d.)

Rust began as Graydon Hoare’s side project in 2006 and Mozilla got involved in the pro-

ject in 2009. The original goal was to design a safe, concurrent, and practical systems

language. (Frequently Asked Questions · The Rust Programming Language, 2016)

The Rust project appears to be very serious about supporting WebAssembly. The pro-

jects homepage mentions WebAssembly on the landing page (see Rust Programming

Language, n.d.). Rust has also seen production use with regards to targeting WebAssem-

bly: Horn (n.d.) writes that Dropbox were able to embed a codec written in Rust in a

webpage using WebAssembly, according to Pack (2018) Cloudflare compiles Rust to

WebAssembly and calls it from serverless functions and Fitzgerald (2018) explains how

he and Tom Tromey ported the the performance-sensitive portions of the source-map

JavaScript library to Rust and WebAssembly.

Crates [basically libraries in Rust terminology] that avoid things that do not work with

WebAssembly tend to be portable to WebAssembly. If the crate supports embedded and

the ![no_std] directive, that is crates that do not rely on the standard library, then it likely

supports WebAssembly. Anything that uses system libraries will not work with

37

WebAssembly. Neither will using C libraries, file system or spawning threads. (Rust and

WebAssembly, n.d.)

Rust has a library called wasm-bindgen that provides code for high-level interaction be-

tween WebAssembly and JavaScript. It allows JavaScript and WebAssembly to communi-

cate with strings and JavaScript objects, importing JavaScript functionality such as DOM

manipulation to Rust, exporting Rust functionality to JavaScript and automatically gen-

erating TypeScript bindings for the Rust code used by JavaScript. (The `wasm-bindgen`

Guide, n.d.)

According to The Embedded Rust Book (n.d.-b) it is possible to use Rust inside a C or C++

project making the integration to the edge device’s codebase feasible. The book also

details that C is used for any interoperability between different languages. Java Native

Interface should allow using Rust from Java code for the integration with the server code-

base. Because the C ABI is used for interoperability, there is an extra step of creating a C-

friendly API when compared to just using C/C++ and Emscripten. According to the book

the process of building a C API is as follows. First set the cargo build system to output a

systems library. Then on any Rust function that is exported outside Rust use the

#[no_mangle] attributr and mark the functions as extern “C”. Also, any data used should

conform to C’s types. The #[repr(C)] on Rust structs guarantees that the Rust compiler

uses the same rules as C for organizing data (to The Embedded Rust Book (n.d.-a). The

resulting library can then be used with JNI from Java code. Figure 5 shows how Rust

would fit into the larger system.

38

Figure 5 Usage of Rust in the system

Rust’s performance on the edge device should be enough as Rust is compiled to the na-

tive architecture and does not run on a virtual machine nor use a garbage collector. Rust

project does advertise that the language fits well into embedded use cases and is high-

performance (Rust Programming Language, n.d.).

On the server and edge device, accessing system resources with Rust would be fine. As

noted earlier, on the browser side Rust does not support any system libraries. This in

contrast to Emscripten that does emulate the PC environment. This means that any func-

tionality requiring system resources cannot be implemented with the same code on all

three platforms. On the other hand, this makes the resulting WebAssembly code much

smaller in Rust’s case, which is good for the webpage’s load times.

Writing generic code for all three platforms with Rust should be possible if certain fea-

tures such as system libraries are avoided. Like with C/C++ and Emscripten, some plat-

form-specific code is likely needed to integrate to the existing codebases, and there is a

small chance of it being larger in the case of Rust.

To summarize: Rust seriously targets WebAssembly support and provides the glue-code

for working with the browser environment. It does not emulate system libraries on the

39

browser but produces small WebAssembly binaries making it a good fit for computa-

tional libraries in the web. Rust has also seen production use with WebAssembly and the

language’s popularity is high currently. Integration to the existing Java and C++ code-

bases might end up being tricky and require a lot of work.

5.4 AssemblyScript and WebAssembly Micro Runtime

AssemblyScript is a language that targets WebAssembly, while using a TypeScript-like

syntax. It integrates to the existing web ecosystem (npm). It is free and open-source soft-

ware developed by volunteers. AssemblyScript can be described as a TypeScript syntax

on top of WebAssembly instructions, statically compiled to produce WebAssembly bina-

ries. AssemblyScript comes with its own JavaScript-like standard library, and memory

management and garbage collection runtime. (AssemblyScript, n.d., The AssemblyScript

Book, n.d.-b)

WebAssembly Micro Runtime is a standalone WebAssembly runtime. It is compliant to

the W3C WebAssembly MVP, has a small runtime size of 85K for the interpreter, and low

memory usage. It provides libc support with a built-in libc subset or with WASI (WebAs-

sembly System Interface). It is embeddable with C APIs. It supports multiple architec-

tures including ARMv7 and X86-64 and operating systems like Linux and Windows.

(Bytecodealliance/wasm-micro-runtime, n.d.)

AssemblyScript is not as mature as Emscripten and Rust are. In contrast to Emscripten

and Rust, AssemblyScript is a young project, has more limited resources and tries to cre-

ate an alternative from another perspective. AssemblyScript puts anything Web related

first and then glues everything together versus Emscripten and Rust trying to lift an ex-

isting ecosystem to the web. Binaryen, the compiler infrastructure and toolchain library

created by the main Emscipten author, is used by AssemblyScript but it is not as well

optimized for AssemblyScript’s generated code as it is for LLVM’s generated code. (The

AssemblyScript Book, n.d.-b)

40

Because AssemblyScript has its own compiler and different features when compared to

JavaScript or TypeScript, it cannot use existing JavaScript or TypeScript libraries. The As-

semblyScript documentation lists very few libraries written in AssemblyScript. No real-

world commercial projects using AssemblyScript are listed either.

Integrating AssemblyScript to the existing codebases on the server and edge device

would be tricky. Figure 6 shows how AssemblyScript and WebAssembly Micro Runtime

would fit into the larger system. Bytecodealliance/wasm-micro-runtime (n.d.) does men-

tion that it can be embedded using C API, but it makes no mention of Java leaving it

unclear whether it can be integrated into a Java codebase. Likely some method of making

it work with the codebases can be found but there is no documentation from the WebAs-

sembly Micro Runtime’s side.

Figure 6 Usage of AssemblyScript and WebAssembly Micro Runtime in the system

The WebAssembly Micro Runtime promises (see Bytecodealliance/wasm-micro-runtime,

n.d.) enough performance for the edge device and it even has relatively low memory

requirements. It would likely be enough for the case company’s needs on the edge de-

vice, but proper benchmark would be required before any major decision to use this

runtime.

41

On the browser AssemblyScript does not emulate system resources like Emscripten does.

On the server and edge device when running using the WebAssembly Micro Runtime, a

library called as-wasi can be used to access some system calls. WASI is an API that pro-

vides WebAssembly access to the world outside WebAssembly, AssemblyScript has a

low-level WASI set of system calls and as-wasi provides a higher-level API on top of what

AssemblyScript provides (As-wasi, n.d.). The documentation of as-wasi is quite bare-

bones and does not give a good idea of what it supports, but for example networking

support seems to be missing. Furthermore, WASI appears to be very new and still under

development.

In this approach of using AssemblyScript and WebAssembly Micro Runtime, all three

platforms would be using the same code. All platforms would be using WebAssembly

running on a runtime, instead of server and edge device using code compiled to native

architecture and the browser running WebAssembly like the Emscripten and Rust ap-

proaches would do. Of course, the integration to the existing codebases would once

again require platform-specific code and it is difficult to estimate its extent due to poor

documentation of the technologies.

To summarize the findings: AssemblyScript’s own documentation admits it is not mature

technology. There does not appear to be any large projects using it. The documentation

of both AssemblyScript and WebAssembly Micro Runtime is lacking, and these technol-

ogies would require extensive testing and benchmarking. This approach of running

WebAssembly outside the browser environment is likely too young and bleeding edge

still.

5.5 Decision

There are multiple possible approaches based on the requirements defined earlier and

the findings from the technologies’ documentation.

42

The main recommended approach is to use JavaScript and the V8 engine. V8 was found

to be the most mature JavaScript engine, and it can be embedded into C++ applications

or run standalone. Using this approach would allow using a single programming language

on all three platforms without compiling to different targets. Platform-specific code

would be minimal and only concern the integration to the existing codebases. The per-

formance would be less than a C/C++ implementation would have, but it would not be

on a different magnitude making it acceptable for the case company’s needs. This ap-

proach will be tried out in the next section and the performance will be benchmarked.

The second recommended approach would be to use C/C++ on the server and edge de-

vice and to use Emscripten to compile the C/C++ code to WebAssembly for the browser

environment. Emscripten was noted to be very mature technology and used in larger

projects. C/C++ can be integrated to the existing codebases relatively easy. Assem-

blyScript and WebAssembly Micro Runtime were simply not mature enough to be used

yet. Rust would also be a good choice, but it does not aim to support porting over larger

applications to WebAssembly but instead is better fit for small libraries. In this case Rust

would very likely still work, but Rust is as a language quite a bit newer than C/C++. In

addition, using Rust would introduce a fourth language to the system that already uses

JavaScript, Java, and C++.

Third possible approach would be to continue using JavaScript on the browser side and

use C/C++ on the server and edge. This would still give the benefit of reducing the lan-

guages used for the data processing engine from three to two and give the performance

of C/C++ on the edge device. JavaScript is proven to work in the browser environment

whereas WebAssembly is new and in development and not that mature of a technology.

WebAssembly has been around for a few years but has not had a breakthrough in pop-

ularity. This could be because the use case is not useful, or because the technology is not

mature or just due to it being new. Using JavaScript would be in a sense a safe choice.

The current functionality on the browser side is intertwined with the UI and JavaScript

is perfect for that. On the other hand, if V8 engine has acceptable performance on the

43

edge device, then this approach is more work and not that beneficial, which is why it is

not recommended. Finally, this approach would not answer the requirement of using a

single implementation.

44

6 Proof-of-concept

In this section the implementation of a proof-of-concept using JavaScript with V8 is pre-

sented. The goal is to find out if it is feasible to use JavaScript with V8 on the case com-

pany’s edge device. If the performance is significantly (i.e., on a different magnitude)

worse than C++’s, then alternative approaches such as C++ with Emscripten are recom-

mended instead of JavaScript and V8. Also, the memory usage and startup time of the

V8 engine are considered.

In this phase the performance of the V8 engine is benchmarked when running JavaScript

code implementing a few blocks of the data processing engine. The implementation of

the blocks will be simplified; only the core functionality will be tested, and the interface

will be simple. Any data input and output through the network or combining logic blocks

will not be considered. The JavaScript’s performance will be compared to the implemen-

tation of the same blocks in C++. The device used is the case company’s edge device.

First the V8 JavaScript engine must be compiled into a static library so that it can be

embedded in a C++ application. Cross-compilation using the Yocto SDK is required, as

the edge device is ARM-based, and its Linux is developed using the Yocto toolchain. Then

a test application is written in C++. The test application will measure the performance of

JavaScript when running the code in the V8 engine embedded in the application and

measure the performance of C++ implementations of the same logic blocks.

6.1 Implementation

In this chapter the implementation of the proof-of-concept is detailed. This includes the

compilation of the V8 into a static library, the coding of a few basic logic blocks in JavaS-

cript and C++, and the setup for embedding V8 into the code. In the case that V8 is taken

into use, this document may serve as a guide for the real implementation of the system.

45

6.1.1 Compiling V8

For this phase, a VirtualBox virtual machine using the Linux distribution Ubuntu 20.04

was created. All the following steps were done in this environment.

According to V8.dev (n.d.-a), V8 is built using a tool called GN which is a meta build sys-

tem that generates build files for other build systems. V8.dev (n.d.-a) and De-

pot_tools_tutorial(7) (n.d.) document how to get the required files downloaded and in-

stalled, and how to build the V8 engine. Additional details for the configuration were

found from Stackoverflow.com, various blog posts and by trying out different flags. The

whole process is depicted in Figure 7.

46

Figure 7 The process of cross-compiling the V8 engine and relationships between vari-
ous tools and files.

First the following packages were installed using apt: python 2.7, Git and gcc-multilib. A

git extension called depot_tools (https://chromium.googlesource.com/chro-

mium/tools/depot_tools.git) was required for checking out the V8 git repository. After

adding depot_tools’ directory to the path environment variable, the V8 source code

could be checked out with the fetch v8 command from depot_tools.

The latest stable release of V8 at the time, version 8.8, was used by checking out the

corresponding Git branch (branch-heads/8.8) in the source directory. The build

https://chromium.googlesource.com/chromium/tools/depot_tools.git
https://chromium.googlesource.com/chromium/tools/depot_tools.git

47

dependencies were installed by running a script with flags for opting to install 32-bit and

Arm specific dependencies.

./build/install-build-deps.h –lib32 –arm

gclient sync

To cross-compile for the edge device, the Yocto SDK had to be used. The SDK was ob-

tained as an output from the Yocto setup that had been used to build the edge device’s

Linux OS. This step had been done previously and will not be detailed here. The SDK was

distributed as an auto-extracting script file and executing that script file resulted in the

SDK being installed. The output contains a script, and it defines environment variables

such as $CXX, which can be used to use the SDK’s g++ cross-compiler, and $CFLAGS,

which sets the correct flags for the compiler. The environment script file was used with

the source command.

Then the GN build tool had to be configured to use this SDK. In the V8 source directory,

the file ./tools/toolchain/BUILD.gn was modified to contain a toolchain definition for the

SDK

gcc_toolchain("yoctosdk") {

 cc = getenv("CC")

 cxx = getenv("CXX")

 readelf = getenv("READELF")

 nm = getenv("NM")

 ar = getenv("AR")

 ld = cxx

 toolchain_args = {

 current_cpu = "x64"

 current_os = "linux"

 is_clang = false

 }

}

The GN tool generates the build files with the command

gn gen out/arm

48

and the arguments can be set with

gn args out/arm

The following arguments were given:

custom_toolchain = "//tools/toolchain:yoctosdk"

target_cpu = "arm"

target_os = "linux"

target_sysroot = "/opt/poky/3.1.1/sysroots/cortexa5t2hf-vfp-

poky-linux-gnueabi"

is_clang = false

is_component_build = false

use_gold = false

v8_monolithic = true

v8_use_external_startup_data = false

use_custom_libcxx = false

use_goma = false

goma_dir = "None"

v8_static_library = true

is_debug = false

arm_use_neon = false

Now the build files for the Ninja build tool were generated and the V8 could be compiled

with the autoninja command

autoninja -C out/arm v8_monolith

resulting in the static V8 library as an output. To compile the sample code for embedding

the V8 in a C++ program, the following command was used

$CXX -I. -Iinclude samples/hello-world.cc -o

 hello_world_arm -lv8_monolith -Lout/arm/obj -pthread

 -std=c++14 $CXXFLAGS

The sample program was run on the case company’s edge device to verify the cross-

compilation was successful.

49

6.1.2 Block selection

The average, sin and round blocks were selected to be implemented in this proof-of-

concept. The average block simply counts the average of the input array, the sin block

performs the sine function on all elements of the input array and the round block rounds

all elements of the input array. These were selected because they are simple blocks that

perform numerical operations making them a good fit for simple benchmarking. Also, a

block that returns the first item of the input array, and a block that performs an empty

function call were implemented to compare the overhead in function calls and accessing

arrays in JavaScript versus C++.

The input data for all blocks was the same – 100 000 floating point values were gener-

ated with the Python script detailed below and written to a file.

import random

with open("data.txt", "w") as f:

 for i in range(100000):

 f.write(str(random.random() * 1000))

 f.write(" ")

6.1.3 JavaScript implementation

In the JavaScript implementation, the blocks were implemented as simple JavaScript

functions as seen below in a file called blocks.js. The functions take a JavaScript array

containing the previously generated test data as an input.

// return the average value of array input

function average(input) {

 var count = input.length;

 var sum = 0;

 for (var i = 0; i < count; i++) {

 sum += input[i];

 }

 return sum / count;

}

//return an array of the sines of the array input

function sin(input) {

 var output = [];

50

 var count = input.length;

 for (var i = 0; i < count; i++) {

 output[i] = Math.sin(input[i]);

 }

 return output;

}

//return an array of input array's values rounded to preci-

sion

function round(input, precision) {

 var output = [];

 var count = input.length;

 var n = Math.pow(10, precision);

 for (var i = 0; i < count; i++) {

 output[i] = Math.round(input[i] * n) / n;

 }

 return output;

}

function emptyFunctionCall() {

 return;

}

function firstItem(input) {

 return input[0];

}

6.1.4 C++ implementation

The C++ implementation likewise implemented the blocks as simple C++ functions. As

usual for C++, a header file blocks.h with the function declarations was created.

#include <vector>

#include <math.h>

double average(std::vector<double>&);

std::vector<double> calcSin(std::vector<double>&);

std::vector<double> calcRound(std::vector<double>&, int);

void emptyFunctionCall();

double firstItem(std::vector<double>&);

The functions, implemented in blocks.cpp, take the previously generated test data as an

input. The input is given as a vector from the standard library. Vectors were chosen be-

cause they are variable-length just as JavaScript arrays are. The functions were imple-

mented to be as similar to the JavaScript implementations as possible. The function

51

emptyFunctionCall included the assembly directive “nop” to avoid the compiler optimiz-

ing the empty function call away.

#include "blocks.h"

double average(std::vector<double> &input) {

 int count = input.size();

 double sum = 0;

 for (int i = 0; i < count; i++) {

 sum += input[i];

 }

 return sum / count;

}

std::vector<double> calcSin(std::vector<double> &input) {

 std::vector<double> output = std::vector<double>();

 int count = input.size();

 for (int i = 0; i < count; i++) {

 output.push_back(sin(input[i]));

 }

 return output;

}

std::vector<double> calcRound(std::vector<double> &in-

put, int precision) {

 std::vector<double> output = std::vector<double>();

 int count = input.size();

 int n = pow(10, precision);

 for (int i = 0; i < count; i++) {

 output.push_back(round(input[i] * n) / n);

 }

 return output;

}

void emptyFunctionCall() {

 asm("nop");

}

double firstItem(std::vector<double> &input) {

 return input[0];

}

6.2 Performance testing

A test application was written in C++. The goal was to measure the execution times of

the previously implemented logic blocks, and the startup time of the V8 engine.

52

6.2.1 The test application

The test application was written in C++. It initializes the V8 JavaScript engine and reads

the input data from a text file constructing the input vector<double> for the C++ imple-

mentation and the JavaScript array v8::Local<v8::Array> for the JavaScript implementa-

tions. The time spent reading the input data and constructing the input vector and array

were not included in the benchmarks, but the time spent initializing the V8 engine was

measured. After the initializations and data preparation, the test application ran each of

the JavaScript and C++ functions and measured the execution time of each function.

Time was measure with the std::chrono::steady_clock clock. The code of the test appli-

cation is detailed in Appendix 1.

In order to test the application with both -O0 and -O3 optimization levels, it was cross-

compiled with

$CXX -I. -Iinclude v8poc.cpp blocks.cpp -o v8poc -lv8_mono-

lith -Lout/arm/obj -pthread -std=c++14 $CXXFLAGS -Wno-psabi

-O0

and

 $CXX -I. -Iinclude v8poc.cpp blocks.cpp -o v8poc -lv8_mono-

lith -Lout/arm/obj -pthread -std=c++14 $CXXFLAGS -Wno-psabi

-O3

Optimization levels -O0 and -O3 were both tested. The cross-compilation was done using

the Yocto SDK. The cross-compiled executables were then run on the case company’s

edge device.

The memory usage of the executable was measured with the external commands pmap

-x <pid> and cat /proc/<pid>/status while running the executable.

6.2.2 Results

The test application was run three times with both optimization levels -O0 and -O3. The

results were gathered into Table 3.

53

Table 3 The results of the benchmark

O0

O3

Time in milliseconds 1 2 3 1 2 3

V8 startup 64.4497 61.6588 60.6782 62.5851 60.7518 59.4027

JavaScript average 172.328 166.562 166.797 167.371 165.738 166.152

JavaScript sin 236.048 232.766 289.57 232.599 234.466 237.075

JavaScript round 210.268 274.42 220.971 213.383 208.659 208.649

JavaScript empty function
call

0.93260
6

0.67381
9

0.50084
8

0.64769
7

0.49933
3

0.50303

JavaScript access first
item

0.69254
6

0.50254
6

0.48903
1

0.49266
6

0.48993
9

0.48739
4

C++ average 10.2786 10.0273 10.3802 2.23782 2.36564 2.23976

C++ sin 121.602 120.579 121.833 73.9808 71.0308 70.5568

C++ round 98.71 98.5861 98.1158 44.5305 44.7596 47.242

C++ empty function call 0.00309
1

0.00327
3

0.002 0.00272
7

0.00357
6

0.00351
5

C++ access first item 0.00254
5

0.00333
4

0.00260
6

0.00242
5

0.00290
9

0.00284
8

The output of the pmap -x <pid> command was

~# pmap -x 13466

13466: ./v8poc

Address Kbytes RSS Dirty Mode Mapping

00446000 11112 5928 5928 r-x-- v8poc

00f30000 180 180 180 r---- v8poc

00f5d000 60 60 60 rw--- v8poc

00f6c000 708 576 576 rw--- [anon]

21d40000 48 48 48 rw--- [anon]

24cc0000 12 12 12 rw--- [anon]

25700000 256 256 256 rw--- [anon]

39980000 256 68 68 rw--- [anon]

40480000 256 168 168 rw--- [anon]

408c0000 256 256 256 rw--- [anon]

4d380000 12 12 12 rw--- [anon]

4d383000 4 0 0 ----- [anon]

4d384000 64 64 64 r-x-- [anon]

4d394000 4 4 0 ----- [anon]

529c0000 256 24 24 rw--- [anon]

55c00000 256 256 256 rw--- [anon]

5ce40000 124 124 124 r---- [anon]

5d5c0000 400 400 400 rw--- [anon]

b6270000 1028 784 784 rw--- [anon]

b6454000 4 0 0 ----- [anon]

b6455000 8192 8 8 rw--- [anon]

b6c55000 884 532 0 r-x-- libc-2.31.so

b6d32000 60 0 0 ----- libc-2.31.so

b6d41000 8 8 8 r---- libc-2.31.so

54

b6d43000 8 8 8 rw--- libc-2.31.so

b6d45000 8 8 8 rw--- [anon]

b6d47000 72 72 0 r-x-- libpthread-2.31.so

b6d59000 60 0 0 ----- libpthread-2.31.so

b6d68000 4 4 4 r---- libpthread-2.31.so

b6d69000 4 4 4 rw--- libpthread-2.31.so

b6d6a000 8 4 4 rw--- [anon]

b6d6c000 96 56 0 r-x-- libgcc_s.so.1

b6d84000 64 0 0 ----- libgcc_s.so.1

b6d94000 4 4 4 r---- libgcc_s.so.1

b6d95000 4 4 4 rw--- libgcc_s.so.1

b6d96000 348 52 0 r-x-- libm-2.31.so

b6ded000 60 0 0 ----- libm-2.31.so

b6dfc000 4 4 4 r---- libm-2.31.so

b6dfd000 4 4 4 rw--- libm-2.31.so

b6dfe000 1180 732 0 r-x-- libstdc++.so.6.0.28

b6f25000 60 0 0 ----- libstdc++.so.6.0.28

b6f34000 28 28 28 r---- libstdc++.so.6.0.28

b6f3b000 4 4 4 rw--- libstdc++.so.6.0.28

b6f3c000 4 4 4 rw--- [anon]

b6f3d000 100 100 0 r-x-- ld-2.31.so

b6f62000 16 16 16 rw--- [anon]

b6f66000 4 4 4 r---- ld-2.31.so

b6f67000 4 4 4 rw--- ld-2.31.so

bef71000 132 12 12 rw--- [stack]

befb0000 4 0 0 r-x-- [anon]

ffff0000 4 0 0 r-x-- [anon]

-------- ------- ------- -------

total kB 26728 10896 9348

And the output of the cat /proc/<pid>/status command was

~# cat /proc/13466/status

Name: v8poc

Umask: 0022

State: S (sleeping)

Tgid: 13466

Ngid: 0

Pid: 13466

PPid: 2029

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 256

Groups: 0

NStgid: 13466

NSpid: 13466

NSpgid: 13466

NSsid: 2029

VmPeak: 25660 kB

VmSize: 25296 kB

VmLck: 0 kB

VmPin: 0 kB

VmHWM: 8724 kB

55

VmRSS: 8724 kB

RssAnon: 1336 kB

RssFile: 7388 kB

RssShmem: 0 kB

VmData: 10632 kB

VmStk: 132 kB

VmExe: 11112 kB

VmLib: 2748 kB

VmPTE: 40 kB

VmSwap: 0 kB

CoreDumping: 0

THP_enabled: 0

Threads: 2

SigQ: 0/1430

SigPnd: 0000000000000000

ShdPnd: 0000000000000000

SigBlk: 0000000000000000

SigIgn: 0000000000000004

SigCgt: 0000000180000000

CapInh: 0000000000000000

CapPrm: 0000003fffffffff

CapEff: 0000003fffffffff

CapBnd: 0000003fffffffff

CapAmb: 0000000000000000

NoNewPrivs: 0

Speculation_Store_Bypass: unknown

Cpus_allowed: 1

Cpus_allowed_list: 0

voluntary_ctxt_switches: 1

nonvoluntary_ctxt_switches: 31

6.3 Discussion

As was expected, the benchmarking showed that the C++ implementations performed

better than JavaScript and V8. The uncertainty was whether the JavaScript performance

was on an unacceptable level.

The V8 startup time was around 60 milliseconds, which is not too much. If the V8 engine

is kept running continuously, the startup delay is only suffered when rebooting the de-

vice.

If looking at the -O3 performance in Table 3, the JavaScript implementations were from

5 to almost 200 times slower than the C++ implementations. When taking into account

that the input data was 100 000 floating point values, another way of interpreting the

56

results is that the V8 engine can round 500 000 values each second if the device does

nothing else or round 50 000 values each 100 millisecond interval. 100 milliseconds

could be the lowest typical control loop length on the edge device. The overhead of call-

ing JavaScript functions was significant (200x) as seen from the execution times of calling

empty functions. This overhead could be reduced by designing the architecture so that

calls between C++ and JavaScript were minimized. For example the combination of the

blocks could be done in JavaScript so that only a single JavaScript call from C++ is re-

quired to process a single logic flow.

The memory consumption of the test application was around 25 000 to 27 000 kB. Of

this amount most of it can be assumed to be caused by the V8 engine. This amount still

fits into the edge device’s memory, although the static consumption by the V8 engine is

quite a large portion of the edge device’s free memory (256 MB in total).

This test and benchmarking shows that using V8 and JavaScript on the case company’s

edge device is indeed feasible. The performance proved to be significantly worse than

C++’s as was expected. On the other hand, the performance was not bad enough to com-

pletely rule out the possibility of using JavaScript and V8. If the amount of data and cal-

culations being processed is not too large, V8 and JavaScript will be fine for the use case.

57

7 Conclusions

Multi-platform software simplifies the process of developing software for multiple tar-

gets. Developing only a single implementation instead of multiple implementations,

saves time and resources both in development and maintenance of the software. Guar-

antees of conforming behavior across platforms can only be achieved with multi-plat-

form code – with multiple implementations there is always some uncertainty whether

the behavior is the same. To get all these benefits, a flexible and high-performance tech-

nology is required.

The literature review showed that previous research has found the same problems as

the case company has faced. The problem of multi-platform software has been solved in

various ways in many contexts, using for example compilers, interpreters, web applica-

tions and cross-platform mobile GUI SDKs. A lot of the existing research focuses on multi-

platform web and mobile software as they are widespread currently, but the use case is

like the one in this thesis. The study showed that multi-platform software is required in

complex software applications targeting different kinds of hardware and software plat-

forms.

This thesis gave a recommendation to the case company. The recommendation consists

of using JavaScript for the implementation of the data processing engine and using the

V8 JavaScript engine on the server and edge devices to execute JavaScript. A set of tech-

nologies was reviewed, and this approach was chosen because of the maturity of the

technology, its performance, its easy integration to the existing codebases and likelihood

that it will receive support in the future. The requirement of sharing code base with the

edge device is driven by the need for flexibility and independence from internet connec-

tion. The purpose is not to do real-time computation. Thus, JavaScript and V8 solve the

issue.

This approach also allows using an existing implementation of the software, or at the

very least large parts of it. The second alternative of using C/C++ and Emscripten is

58

recommended in case the first approach proves to be problematic in the real implemen-

tation. The recommendation is specific to the case company and the particular software

system but can be used to guide decisions in other cases too.

The limited choice in technologies that can be used in the web browser was found to be

the most limiting factor for the technology choice. Also, the performance requirements

and limited hardware of the edge devices used by the case company further constrained

the choice. Surprisingly, the ARM architecture of the edge device also ruled out certain

technologies. Finally, due to the other requirements the choice was between only a few

technologies. The others were ruled out due to the lacking maturity of the technology

or being niche or hobby projects. As the review was based on the technologies’ docu-

mentation, it is plausible that the projects were more mature than they seemed and only

their documentation was lacking leading into a false conclusion. However, lacking docu-

mentation is a major negative point.

The study also presented some of the limitations and constraints of the chosen technol-

ogy in the review process. A proof-of-concept was developed and compared with a com-

peting approach. The performance of this proof-of-concept was tested and documented.

The technology was found to have adequate performance on all target platforms and its

limitations and constraints did not make it impossible to use on any of the platforms.

In the research process some general observations were made. When designing multi-

platform software, a key issue is that a constraint on one of the platforms will apply to

all the platforms. For example, in this thesis the constraint imposed by the web browser

environment narrowed down the choice of technology to those that support JavaScript

or WebAssembly. It was discovered that even with a technology that allows cross-plat-

form code, there might still be a need for some platform-specific code. Also, it was noted

that an important factor to consider when choosing a cross-platform technology is the

possibility of integrating it to existing code bases.

59

These general observations should be considered when planning, designing, and devel-

oping multi-platform software. It is important to consider these issues early in the soft-

ware development process to avoid large refactoring and integration processes or writ-

ing large amounts of new code. Depending on the platforms and technologies, it might

not be realistic to expect to run the same code on all platforms without any platform-

specific code.

During the technology review and proof-of-concept implementation, multiple new re-

search questions and ideas for future research were found. As this thesis only presented

a proof-of-concept, many facets of the technology choice were left unexplored. Interfac-

ing with other programs and software was not extensively evaluated. Using the V8 en-

gine with Java code was not explored. If the V8 engine is taken into use, the process of

using it in the existing Java code base will need to be researched.

Because WebAssembly is relatively new technology, it has not been researched exten-

sively and more testing is required in case it is chosen to be taken into use. Since WebAs-

sembly was not tested, it is also impossible to say if it would have had better perfor-

mance on the edge devices or the browser than JavaScript.

JavaScript engines other than V8 were not evaluated. Although prior research suggested

their performance is inferior to V8’s, it is not certain that is the case on the case com-

pany’s device. These alternative JavaScript engines would have smaller memory foot-

print, which could make them interesting alternatives to explore in the future.

Prior research with regards to targeting multiple different platforms, such was the case

in this thesis, was found lacking. No research or discussions detailing cross-platform soft-

ware across the browser, server and edge device environments were found. This study

produced clear answers for the case company’s problem area, and it compiled infor-

mation in a new way. The results can be used for solving similar problems in general.

60

References

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007). Compilers: Principles, techniques,

& tools (2nd ed). Pearson/Addison Wesley.

Andreessen, M. (1998, June 24). TechVision: Innovators of the Net: Brendan Eich and

JavaScript. https://web.ar-

chive.org/web/20080208124612/http://wp.netscape.com/comprod/col-

umns/techvision/innovators_be.html

AssemblyScript. (n.d.). Retrieved February 7, 2021, from https://www.assem-

blyscript.org/

As-wasi. (n.d.). Retrieved February 7, 2021, from https://github.com/jedisct1/as-wasi

(Original work published 2019)

Bellard, F. (n.d.). QuickJS Benchmark. Retrieved February 8, 2021, from https://bel-

lard.org/quickjs/bench.html

Bishop, J., & Horspool, N. (2006). Cross-Platform Development: Software that Lasts.

Computer, 39(10), 26–35. https://doi.org/10.1109/MC.2006.337

Bytecode Alliance. (n.d.). Bytecode Alliance. Retrieved February 3, 2021, from

https://bytecodealliance.org/

Bytecodealliance/wasm-micro-runtime. (n.d.). Retrieved January 29, 2021, from

https://github.com/bytecodealliance/wasm-micro-runtime

Bytecodealliance/wasmtime. (n.d.). GitHub. Retrieved February 21, 2021, from

https://github.com/bytecodealliance/wasmtime

Cesanta/mjs. (n.d.). Retrieved February 14, 2021, from https://github.com/cesanta/mjs

Chromium Blog. (2019, June 20). WebAssembly brings Google Earth to more browsers.

Chromium Blog. https://blog.chromium.org/2019/06/webassembly-brings-

google-earth-to-more.html

Cusumano, M. A., & Yoffie, D. B. (1999). What Netscape learned from cross-platform

software development. Communications of the ACM, 42(10), 72–78.

https://doi.org/10.1145/317665.317678

61

Depot_tools_tutorial(7). (n.d.). Retrieved February 28, 2021, from https://common-

datastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/de-

pot_tools_tutorial.html#_setting_up

Duktape. (n.d.). Retrieved February 14, 2021, from https://duktape.org/

Electronjs.org. (n.d.). Electron | Build Cross-Platform Desktop Apps with JavaScript,

HTML, and CSS. Retrieved March 7, 2021, from https://www.electronjs.org/

Emscripten 2.0.12 documentation. (n.d.-a). About Emscripten. https://emscrip-

ten.org/docs/introducing_emscripten/about_emscripten.html

Emscripten 2.0.12 documentation. (n.d.-b). API Limitations. https://emscrip-

ten.org/docs/porting/guidelines/api_limitations.html#

Emscripten 2.0.12 documentation. (n.d.-c). API Reference. https://emscrip-

ten.org/docs/api_reference/index.html

Emscripten 2.0.12 documentation. (n.d.-d). Building Projects. https://emscrip-

ten.org/docs/compiling/Building-Projects.html

Fitzgerald, N. (2018, January 18). Oxidizing Source Maps with Rust and WebAssembly –

Mozilla Hacks—The Web developer blog. Mozilla Hacks – the Web Developer

Blog. https://hacks.mozilla.org/2018/01/oxidizing-source-maps-with-rust-and-

webassembly

Free Software Foundation. (n.d.). Using the GNU Compiler Collection (GCC). Retrieved

January 30, 2021, from https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/

Frequently Asked Questions · The Rust Programming Language. (2016, June 9).

https://web.archive.org/web/20160609195720/https://www.rust-

lang.org/faq.html#project

Gartner. (2017, May 23). Gartner Says Worldwide Sales of Smartphones Grew 9 Percent

in First Quarter of 2017. https://www.gartner.com/en/newsroom/press-re-

leases/2017-05-23-gartner-says-worldwide-sales-of-smartphones-grew-9-per-

cent-in-first-quarter-of-2017

Gosling, J., & McGilton, H. (1996, May). The Java Language Environment.

https://www.oracle.com/java/technologies/introduction-to-java.html

https://emscripten.org/docs/api_reference/index.html
https://emscripten.org/docs/api_reference/index.html

62

Hogg, S. (2014, May 26). Software Containers: Used More Frequently than Most Realize.

Network World. https://www.networkworld.com/article/2226996/software-

containers--used-more-frequently-than-most-realize.html

Horn, D. R. (n.d.). Building better compression together with DivANS. Retrieved February

7, 2021, from https://dropbox.tech/infrastructure/building-better-compression-

together-with-divans

Ierusalimschy, R., Figueiredo, L. H. de, & Filho, W. C. (1996). Lua—An Extensible Exten-

sion Language. Software: Practice and Experience, 26(6), 635–652.

https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<635::AID-

SPE26>3.0.CO;2-P Retrieved February 21, 2021 from

https://www.lua.org/spe.html

Java Native Interface Specification. (n.d.). Chapter 1: Introduction. Retrieved February

21, 2021, from https://docs.oracle.com/en/java/javase/15/docs/specs/jni/in-

tro.html

Java Scripting Programmer’s Guide. (n.d.). Retrieved February 21, 2021, from

https://docs.oracle.com/javase/7/docs/technotes/guides/scripting/program-

mer_guide/

JEP 372: Remove the Nashorn JavaScript Engine. (n.d.). Retrieved February 21, 2021,

from https://openjdk.java.net/jeps/372

Jerryscript.net. (n.d.). Retrieved February 14, 2021, from https://jerryscript.net/

Kernighan, B., & Ritchie, D. (1988). The C Programming Language (2nd ed.). Prentice Hall

PTR.

MDN Web Docs. (2021a). About JavaScript—JavaScript | MDN. https://devel-

oper.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript

MDN Web Docs. (2021b). WebAssembly Concepts—WebAssembly | MDN. WebAssem-

bly Concepts. https://developer.mozilla.org/en-US/docs/WebAssembly/Con-

cepts

Migration Guide from Nashorn to GraalVM JavaScript. (n.d.). Retrieved February 21,

2021, from https://www.graalvm.org/reference-manual/js/NashornMigra-

tionGuide/

63

Mozilla. (n.d.). What Is a Web Browser? Retrieved February 21, 2021, from

https://www.mozilla.org/en-US/firefox/browsers/what-is-a-browser/

Oliveira, F., & Mattos, J. (2020). Analysis of WebAssembly as a Strategy to Improve JavaS-

cript Performance on IoT Environments. Anais Estendidos Do Simpósio Brasileiro

de Engenharia de Sistemas Computacionais (SBESC), 133–138.

https://doi.org/10.5753/sbesc_estendido.2020.13102

Oracle/graaljs. (n.d.). GitHub. Retrieved February 21, 2021, from https://github.com/or-

acle/graaljs

Pack, S. (2018, October 16). Serverless Rust with Cloudflare Workers. The Cloudflare Blog.

https://blog.cloudflare.com/cloudflare-workers-as-a-serverless-rust-platform/

PC Magazine. (2021). Definition of cross platform. PCMAG.

https://www.pcmag.com/encyclopedia/term/cross-platform

Rust and WebAssembly. (n.d.). Which Crates Will Work Off-the-Shelf with WebAssembly?

- Rust and WebAssembly. Retrieved February 7, 2021, from https://rust-

wasm.github.io/docs/book/reference/which-crates-work-with-wasm.html

Rust Programming Language. (n.d.). Retrieved February 4, 2021, from https://www.rust-

lang.org/

Shi, W., & Dustdar, S. (2016). The Promise of Edge Computing. Computer, 49(5), 78–81.

https://doi.org/10.1109/MC.2016.145

Sinha, A. (1992). Client-server computing. Communications of the ACM, 35(7), 77–98.

https://doi.org/10.1145/129902.129908

Soquet, P. (2017, May 24). XS7 @ TC-39. https://www.moddable.com/XS7-TC-39.php

Stack Overflow Developer Survey 2019. (2019a). Stack Overflow. https://insights.stacko-

verflow.com/survey/2019#technology-_-other-frameworks-libraries-and-tools

Stack Overflow Developer Survey 2019. (2019b). Stack Overflow. https://insights.stacko-

verflow.com/survey/2019/#technology-_-most-loved-dreaded-and-wanted-lan-

guages

Stroustrup, B. (2020). Thriving in a crowded and changing world: C++ 2006–2020. Pro-

ceedings of the ACM on Programming Languages, 4(HOPL), 1–168.

https://doi.org/10.1145/3386320

64

Taivalsaari, A., Mikkonen, T., Ingalls, D., & Palacz, K. (2008). Web Browser as an Applica-

tion Platform. 2008 34th Euromicro Conference Software Engineering and Ad-

vanced Applications, 293–302. https://doi.org/10.1109/SEAA.2008.17

The `wasm-bindgen` Guide. (n.d.). Introduction. Retrieved February 7, 2021, from

https://rustwasm.github.io/docs/wasm-bindgen/

The AssemblyScript Book. (n.d.-a). Frequently Asked Questions. https://www.assem-

blyscript.org/frequently-asked-questions.html

The AssemblyScript Book. (n.d.-b). Introduction. https://www.assemblyscript.org/intro-

duction.html

The Embedded Rust Book. (n.d.-a). A Little C with Your Rust. https://rust-embed-

ded.github.io/book/interoperability/c-with-rust.html

The Embedded Rust Book. (n.d.-b). A Little Rust with Your C. https://rust-embed-

ded.github.io/book/interoperability/rust-with-c.html

V8.dev. (n.d.-a). Building V8 with GN · V8. https://v8.dev/docs/build-gn

V8.dev. (n.d.-b). V8 JavaScript Engine. https://v8.dev/

Wagner, L. (2017, November 21). WebAssembly Will Finally Let You Run High-Perfor-

mance Applications in Your Browser—IEEE Spectrum. IEEE Spectrum: Technology,

Engineering, and Science News. https://spectrum.ieee.org/computing/soft-

ware/webassembly-will-finally-let-you-run-highperformance-applications-in-

your-browser

WebAssembly.org. (n.d.-a). https://webassembly.org/

WebAssembly.org. (n.d.-b). FAQ - WebAssembly. https://webassembly.org/docs/faq/

WebAssembly.org. (n.d.-c). I Want To… - WebAssembly. https://webassembly.org/get-

ting-started/developers-guide/

WebAssembly.org. (n.d.-d). Use Cases - WebAssembly. https://webassem-

bly.org/docs/use-cases/

WebAssembly.org. (n.d.-e). WebAssembly High-Level Goals - WebAssembly.

https://webassembly.org/docs/high-level-goals/

https://rustwasm.github.io/docs/wasm-bindgen/
https://www.assemblyscript.org/introduction.html
https://www.assemblyscript.org/introduction.html
https://rust-embedded.github.io/book/interoperability/rust-with-c.html
https://rust-embedded.github.io/book/interoperability/rust-with-c.html
https://webassembly.org/

65

Appendices

Appendix 1. The test application code

#include <iostream>

#include <sstream>

#include <fstream>

#include <chrono>

#include "include/v8.h"

#include "include/libplatform/libplatform.h"

#include "blocks.h"

int main(int argc, char* argv[]) {

 //start measuring V8 startup time

 auto c_start = std::chrono::steady_clock::now();

 v8::V8::InitializeICUDefaultLocation(argv[0]);

 v8::V8::InitializeExternalStartupData(argv[0]);

 std::unique_ptr<v8::Platform> platform = v8::plat-

form::NewDefaultPlatform();

 v8::V8::InitializePlatform(platform.get());

 v8::V8::Initialize();

 v8::Isolate::CreateParams createParams;

 createParams.array_buffer_allocator = v8::Array-

Buffer::Allocator::NewDefaultAllocator();

 v8::Isolate* isolate = v8::Isolate::New(createParams);

 auto c_end = std::chrono::steady_clock::now();

 std::chrono::duration<dou-

ble, std::milli> elapsed = c_end - c_start;

 auto V8StartupTime = elapsed.count();

 {

 v8::Isolate::Scope isolate_scope(isolate);

 v8::HandleScope handle_scope(isolate);

 v8::Local<v8::Context> context = v8::Con-

text::New(isolate);

 v8::Context::Scope context_scope(context);

 //read javascript file and run the script

 //this makes the javascript functions available

 std::ifstream t("./blocks/blocks.js");

 std::stringstream buffer;

 buffer << t.rdbuf();

 t.close();

 v8::Local<v8::String> source = v8::String::New-

FromUtf8(isolate, buffer.str().c_str()).ToLocalChecked();

66

 v8::Local<v8::Script> script = v8::Script::Com-

pile(context, source).ToLocalChecked();

 v8::TryCatch tryCatch(isolate);

 v8::MaybeLocal<v8::Value> result = script->Run(con-

text);

 if (result.IsEmpty()) {

 v8::String::Utf8Value e(isolate, tryCatch.Ex-

ception());

 std::cerr << "Exception: " << *e << std::endl;

 }

 //read test data from file

 std::fstream myfile("./data.txt", std::ios_base::in

);

 double val;

 std::vector<double> data = std::vector<double>();

 while (myfile >> val)

 {

 data.push_back(val);

 }

 myfile.close();

 //copy data into a javascript array

 v8::Local<v8::Array> jsdata = v8::Array::New(iso-

late, data.size());

 for (int i = 0; i < data.size(); i++) {

 v8::Local<v8::Value> num = v8::Number::New(iso-

late, data[i]);

 v8::Maybe<bool> res = jsdata->Set(con-

text, i, num);

 }

 v8::Local<v8::Object> global = context->Global();

 //get the js functions

 v8::Local<v8::Function> averageFunc = v8::Lo-

cal<v8::Function>::Cast(

 global->Get(context, v8::String::New-

FromUtf8(isolate, "average").ToLocalChecked()).ToLocal-

Checked()

);

 v8::Local<v8::Function> sinFunc = v8::Lo-

cal<v8::Function>::Cast(

 global->Get(context, v8::String::New-

FromUtf8(isolate, "sin").ToLocalChecked()).ToLocalChecked()

);

 v8::Local<v8::Function> roundFunc = v8::Lo-

cal<v8::Function>::Cast(

 global->Get(context, v8::String::New-

FromUtf8(isolate, "round").ToLocalChecked()).ToLocal-

Checked()

);

 v8::Local<v8::Function> emptyFunc = v8::Lo-

cal<v8::Function>::Cast(

67

 global->Get(context, v8::String::New-

FromUtf8(isolate, "emptyFunctionCall").ToLocal-

Checked()).ToLocalChecked()

);

 v8::Local<v8::Function> firstItemFunc = v8::Lo-

cal<v8::Function>::Cast(

 global->Get(context, v8::String::New-

FromUtf8(isolate, "firstItem").ToLocalChecked()).ToLocal-

Checked()

);

 //arguments to pass to the javascript functions

 v8::Local<v8::Value> args1[1];

 args1[0] = jsdata;

 v8::Local<v8::Value> args2[2];

 args2[0] = jsdata;

 //round to 3

 int precision = 3;

 args2[1] = v8::Number::New(isolate, precision);

 v8::Local<v8::Value> args3[1];

 //call the javascript functions

 //measure CPU time with std::chrono::steady_clock

 c_start = std::chrono::steady_clock::now();

 v8::Local<v8::Value> averageJSResult = average-

Func->Call(context, global, 1, args1).ToLocalChecked();

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto averageJSTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 v8::Local<v8::Value> sinJSResult = sin-

Func->Call(context, global, 1, args1).ToLocalChecked();

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto sinJSTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 v8::Local<v8::Value> roundJSResult = round-

Func->Call(context, global, 2, args2).ToLocalChecked();

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto roundJSTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 v8::Local<v8::Value> emptyFuncCallJSResult = empty-

Func->Call(context, global, 0, args3).ToLocalChecked();

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto emptyFuncCallJSTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 v8::Local<v8::Value> firstItemJSResult = firstItem-

Func->Call(context, global, 1, args1).ToLocalChecked();

68

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto firstItemJSTime = elapsed.count();

 //call the C++ functions

 //measure CPU time with std::chrono::steady_clock

 c_start = std::chrono::steady_clock::now();

 double averageCPPResult = average(data);

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto averageCPPTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 std::vector<double> sinCPPResult = calcSin(data);

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto sinCPPTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 std::vector<double> roundCPPResult = cal-

cRound(data, precision);

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto roundCPPTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 emptyFunctionCall();

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto emptyFuncCallCPPTime = elapsed.count();

 c_start = std::chrono::steady_clock::now();

 double firstItemCPPResult = firstItem(data);

 c_end = std::chrono::steady_clock::now();

 elapsed = c_end - c_start;

 auto firstItemCPPTime = elapsed.count();

 std::cout << "V8 startup time: " << V8StartupTime <

< " ms" << std::endl;

 std::cout << "In-

put data length: " << data.size() << std::endl;

 std::cout << "Javascript times" << std::endl;

 std::cout << "Average: " << aver-

ageJSTime << " ms" << std::endl;

 std::cout << "Sin: " << sinJSTime << " ms" << std::

endl;

 std::cout << "Round: " << roundJSTime << " ms" << s

td::endl;

 std::cout << "Empty function call: " << emptyFunc-

CallJSTime << " ms" << std::endl;

 std::cout << "First item: " << first-

ItemJSTime << " ms" << std::endl;

 std::cout << "C++ times" << std::endl;

69

 std::cout << "Average: " << averageCPP-

Time << " ms" << std::endl;

 std::cout << "Sin: " << sinCPP-

Time << " ms" << std::endl;

 std::cout << "Round: " << roundCPP-

Time << " ms" << std::endl;

 std::cout << "Empty function call: " << emptyFunc-

CallCPPTime << " ms" << std::endl;

 std::cout << "First item: " << firstItemCPP-

Time << " ms" << std::endl;

 }

 isolate->Dispose();

 v8::V8::Dispose();

 v8::V8::ShutdownPlatform();

 delete createParams.array_buffer_allocator;

 return 0;

}

