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ABSTRACT 

 

New Synthetic Derivatives of Triterpenoids in the 

Treatment of Cancer. (December 2008) 

Sabitha Papineni, B.V.Sc & AH, College of Veterinary Science, India 

Chair of Advisory Committee: Dr. Stephen H. Safe 

 

Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (β-CDODA-Me) and 

methyl 2-cyano-3,11-dioxo-18α-olean-1,12-dien-30-oate (α-CDODA-Me ) isomers are 

synthetic analogs of the naturally occurring triterpenoid glycyrrhetinic acid. The activity 

of these compounds as selective peroxisome proliferator-activated receptor γ (PPARγ) 

agonists and as cytotoxic anticancer agents has been investigated in colon, prostate and 

pancreatic cancer cells. In colon cancer cells β-CDODA-Me arrested the growth at 

G2/M and this was accompanied by decreased expression of Sp1, Sp3 and Sp4 protein 

and mRNA and several Sp-dependent genes including survivin, vascular endothelial 

growth factor (VEGF), and VEGF receptor 1 (VEGFR1 or Flt-1).  β-CDODA-Me also 

inhibited tumor growth in athymic nude mice bearing RKO cells as xenografts.  β-

CDODA-Me decreased expression of microRNA-27a (miR-27a), and this was 

accompanied by increased expression of two miR-27a-regulated mRNAs, namely 

ZBTB10 (an Sp repressor) and Myt-1 which catalyzes phosphorylation of cdc2 to inhibit 

progression of cells through G2/M.    

In LNCaP prostate cancer cells induction of two proapoptotic proteins namely 
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nonsteroidal anti-inflammatory drug- activated gene-1 (NAG-1) and activating 

transcription factor-3 (ATF-3) was PPARγ independent and required activation of 

kinases. β-CDODA-Me also decreased the levels of androgen receptor (AR) and 

prostate-specific antigen (PSA) mRNA and protein levels. Thus the cytotoxicity of β-

CDODA-Me involved multiple pathways that selectively activate growth inhibitory and 

proapoptotic responses.  

Betulinic acid (BA), an inhibitor of melanoma  is a pentacyclic triterpenoid 

natural product that  induces apoptosis and antiangiogenic responses in tumors derived 

from multiple tissues. However, the underlying mechanism of action of BA is unknown.  

In LNCaP prostate cancer cells, BA acts as a novel anticancer agent by inducing 

proteasome-dependent repression of Sp proteins and Sp- dependent genes. The 

anticancer activity of the 2-cyano substituted analogs of BA, CN-BA and its methyl 

ester, CN-BA-Me was also investigated in colon and pancreatic cancer cells.  Both CN-

BA and CN-BA-Me were highly cytotoxic and activated PPARγ and induced several 

receptor-mediated responses. The results clearly demonstrated that both the PPARγ 

agonist activities of CN-BA and CN-BA-Me were structure-, response-/gene- and cell 

context-dependent suggesting that these compounds are a novel class of selective PPARγ 

modulators with potential for clinical treatment of prostate, colon and pancreatic cancer. 
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CHAPTER I 

INTRODUCTION 

CANCER 

Cancer is a devastating disease and Celsus, a Roman encyclopedist translated 

the term “carcinos” described by Greek Physician Hippocrates, the father of Medicine 

into a Latin term “cancer”. Over 565,650 Americans are expected to die of cancer and 

about 1,437,180 new cancer cases will be diagnosed this year (1). Under normal 

conditions, cells in the body divide in a controlled and regulated manner, however; cells 

that lose this regulation divide continuously without control and may develop into 

cancer. The pathogenesis of cancer is not fully characterized and depending on the type 

of cancer, differs widely in etiology and biology. Cancer is caused by both external 

factors such as exposure to chemicals, UV radiation and infectious agents and internal 

factors which include hormones for breast cancer and prostate cancer, inherited 

mutations/genetic abnormalities and a compromised immune system.  Irrespective of the 

type of cancer, all known cancers are characterized by abnormalities in the genetic 

material that results in abnormal expression of genes and proteins leading to the 

development of cancer. Most importantly, cancer develops when genetic changes affect 

two classes of genes namely, oncogenes and tumor suppressor genes. The first 

oncogenes identified were of viral origin with cellular functions ranging from functional 

roles as transmembrane protein receptors to nuclear transcription factors.  

____________ 

This dissertation follows the style of Cancer Research. 
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These proto-oncogenes are constituitive or normal genes that are activated by mutations 

and enhance cell proliferation and transformation. Tumor suppressor genes regulate cell 

division or apoptosis and are downregulated or repressed in cancer cells.  

Carcinogenesis 

Carcinogenesis, the process of cancer development, is complex and can be 

categorized into five main stages: initiation, promotion, progression, invasion and 

metastases (Fig. 1.1). The first stage of initiation involves accumulation of genetic 

changes or hits in a single cell as suggested by Knudson (2) and Nowell (3). The genetic 

changes or DNA damage can be initiated by ionizing radiation such as X-rays, chemical 

carcinogens such as nitrosamines or viruses like papillomavirus and Epstein-Barr virus.  

Epidemiological studies based on age-dependent cancer incidence suggested that rate of 

tumor development is proportional to  the fourth to sixth power of lifetime indicating 

that four to six independent genetic hits or events are necessary for the development of a 

tumor (4).The association of lung cancer with smoking demonstrated by Cairns et al (5) 

is a well-characterized case illustrating  that the frequency of the tumors in humans is 

proportional to the first or second power of cigarettes per day and to the sixth power of 

the duration of smoking. Several different models have been put forward to characterize 

the process of carcinogenesis including a well-characterized  mouse skin tumor 

promotion model. A single sub-threshold dose of a carcinogen such as 7, 12-

dimethylbenz[a]anthracene administration is followed by the repetitive application of a 

tumor promoter such as 12-O-tetradecanoylphorbol-13-acetate. Benign squamous 
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papillomas generally develop within 10 weeks and contain Ha-ras mutations (6). Only 

few of these papillomas develop into malignant squamous  
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Fig. 1.1.  Five stages of carcinogenesis (7). 
 

cell carcinomas (SCC). The progression of papillomas to SCC has been characterized 

phenotypically by inappropriate expression of certain membrane receptor/adhesion 

molecules (8, 9), keratins (10-13), growth factors (14-16) and cyclins/cyclin-dependent 

kinases(17, 18) and genotypically with respect to alterations in p53 and further 

alterations in Ha-ras (19-23). However cancer cells contain thousands of mutations and 

this finding  has led to the proposal of  a new hypothesis by Loeb called “mutator 

phenotype hypothesis” suggesting that the normal rate of mutations doesn’t correlate 
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with the number of mutations observed in the cancer cells (24, 25). According to this 

hypothesis mutations in the genes involved in the regulation of DNA synthesis, DNA 

repair or in the genes regulating the cell cycle or apoptosis will amplify the basal 

mutation rate and promote the tumor initiation/promotion model to a multihit model of 

carcinogenesis. 

Tumor promotion is the second stage of carcinogenesis, during which a single 

initiatied cell with genetic changes expands clonally and is dependent on the favourable 

conditions  for cellular growth such as interactions between tumor cells and stroma, 

growth factor availability, vascularization, O2 partial pressure and many other factors.  

However DNA damage check points or apoptosis pathways may be induced by genetic 

events resulting from the initiation phase. Fifty percent of human cancers are defective 

in these pathways due to mutations in tumor suppressor genes or genes encoding pro-

apoptotic proteins such as p53 or RB or INK4 locus; and  cancer cells  continue to divide 

(26). There are number of tumor promoting agents such as phorbol esters, phenobarbitol, 

peroxisome proliferators, and biphenyls, many of which  reversibly inhibit the gap 

junctions (27, 28). 

 The third stage of carcinogenesis is tumor progression and a classical example of 

this stage was described by Vogelstein and his colleagues in colorectal carcinogenesis 

which involves successive waves of clonal selection (29). According to this model, 

mutations occur randomly in the genome and selection of major mutated genes results 

from clonal proliferation; and since these cells grow rapidly even  a small growth 

advantage will result in  progeny (30).This stage is characterized by genetic alterations 
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that produce permanent genetic instability with a higher rate of chromosomal or base 

modifications resulting in gross morphological and karyotypic changes that transform  

pre-neoplastic cells into neoplastic cells (Fig. 1.1). In colorectal cancers, there is a good  
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anti-growth signals
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& metastasis
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Sustained 
angiogenesis

 
Fig. 1.2. Hallmarks of tumor cells (30). 
 
 
correlation between the allelic imbalance at several loci such as loss of chromosomes 8p 

and 18q and the aggressiveness of the disease measured by disease-free survival at five 

years after surgery (31). 

Invasion is the fourth stage of carcinogenesis and involves progression of 

neoplastic cells to malignant cells; and this is associated with additional gentic and 

epigenetic changes in the tumors and more aggressive characteristics with time. The 

invasion and metastases phenotype of tumor cells is characterized by the ability of these 

cells to attach to  host cells and this may involve extracellular matrix (ECM)  factors. 
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These cells also have the  ability to secrete proteases to lyse barriers such as basement 

membranes in host cells and they can  facilitate tumor angiogenesis in distal sites (32, 

33). To date, the genes involved in this stage of  tumor invasion and metastasis are not 

well defined, however, there is evidence that loss of E-cadherin, a tumor suppressor 

gene, results in rapid progression of gastric adenomas into invasive poorly differentiated 

metastatic carcinomas (34). According to Hanahan and Weinberg (30) there are six 

charactertics or hallmarks that tumor cells acquire during the process of carcinogenesis 

which dictate the fate of the tumor. The hallmarks include self-sufficiency in growth 

signals, insensitivity to anti-growth factors, evasion of  apoptosis, limitless replicative 

potential, sustained angiogenesis and tissue invasion and metastases (Fig. 1.2). 

 

2008 Estimated US New Cancer Deaths and Cases

Non-Hodgkin
Lymphoma (5%)

Kidney & 
renal pelvis (4%)
Oral cavity & 
Pharynx (3%)

Leukemia (3%)

All sites (100%)

Urinary Bladder(10%)

Excludes basal and squamous cell skin cancers and in situ carcinoma except urinary bladder

Men Women
DeathsCases DeathsCases

Prostate (25%)
Prostate(10%)Lung & Bronchus(15%)

Lung &Bronchus (31%)
Lung & Bronchus(26%)

Lung & Bronchus(14%)

Colon & rectum (10%) Colon & rectum (8%)
Colon & rectum(10%) Colon & rectum(9%)

Breast (26%)
Breast(15%)

Pancreas (6%)

Non-Hodgkin 
Lymphoma (3%)

Liver & intrahepatic bile 
duct (4%)

Leukemia (4%)
Esophagus (4%)

Urinary Bladder(3%)

Kidney & 
renal pelvis (3%)
All sites (100%)

Melanoma of skin (5%)

Pancreas (3%)

Uterine corpus(6%)

Non-Hodgkin 
Lymphoma (4%)

Thyroid (4%)
Melanoma of skin (4%)

Ovary (3%)

Kidney & 
renal pelvis (3%)

Leukemia (3%)

All sites (100%)

Pancreas (6%)

Ovary (6%)
Non-Hodgkin 

Lymphoma (3%)

Leukemia (3%)
Uterine corpus (3%)

Liver & intrahepatic bile 
duct (2%)

Brain & other nervous 
system (2%)

All sites (100%)

 
Fig. 1.3. Estimated U.S cancer deaths and new cases in 2008 (1). 
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Tumors are classified based on the tissue of origin; in 2008 the American Cancer 

Society (ACS) estimates prostate cancer in men and breast cancer in women will be 

among the leading causes of cancer deaths, second only to lung cancer (Fig. 1.3) (ACS).  

Treatment of cancer 

  The most common types of treatment for cancer include surgery, radiation and 

chemotherapy which can be used either alone or in combination with other therapies. 

The initial treatments given to the patient are called first-line therapy and  treatments 

given after the first line therapy are called adjuvant therapy. Neo-adjuvant therapy is 

given prior to the first-line therapy and this often involves decreasing the tumor size. 

Surgery involves removal of the cancerous tissue and it is the primary treatment for most 

cancers, particularly solid tumors. It is also used as a diagnostic tool to confirm a 

diagnosis and determine the extent and spread of the tumor. Radiation therapy uses high 

energy X-rays to shrink the tumor. Radiation is mostly used in conjunction with surgery 

or chemotherapy or as neoadjuvant therapy to aid in surgery by reducing the size of the 

tumor. and is considered local treatment since it affects only the tumor region. 

Chemotherapy uses chemicals or drugs to kill cancer cells and the effects are systemic. 

There are several different classes of anticancer drugs based on the mechanism of action 

and these include the following: a)  alkylating agents which damage DNA; b) 

antimetabolites that replace the normal building blocks of RNA and DNA; c)  antibiotics 

that interfere with the enzymes involved in DNA replication; d) topoisomerase inhibitors 

that inhibit either topoisomerase I or II which are the enzymes involved in unwinding  

DNA during replication and transcription; e) mitotic inhibitors that inhibit mitosis and  
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cell division; f) corticosteroids which are used  for the treatment of cancer and  to relieve 

the side effects from other drugs; and g) other miscellaneous drugs such as L-

asparaginase, an enzyme used in the treatment of acute lymphocytic leukemia and the 

proteosome inhibitor bortezomib (Velcade)(Table 1.1). Chemotherapy is also used as an 

adjuvant therapy alone or in combination with other treatments. Hormone therapy is 

used for the treatment of endocrine or reproductive related cancers like prostate, breast 

and testicular cancers which develop in part due to dysregulated hormone signals. For 

example Tamoxifen (Nolvadex) is an antiestrogen used for treatment of hormone 

responsive breast cancers.  

 Cytotoxic anticancer drugs attack all rapidly dividing cells in the body, and this 

includes not only cancer cells but also other dividing normal cells such as hair follicles, 

gastric epithelium, and blood cells. Because of these non-specific effects, chemotherapy 

is associated with side effects such as hair loss, nausea, vomiting, fatigue, increased 

sensitivity to infectious diseases and loss of appetite. Hence several new approaches are 

under development to increase the specificity of cancer treatment and some of these 

include biological therapies and targeted therapies. Immunotherapies utilize the body’s 

defense mechanisms by stimulating the immune response against cancer cells. 

Monoclonal antibodies (mAbs) against antigens or specific molecules expressed on the 

surface of cancer cells have been developed and cancer vaccines that make immune cells 
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Table 1.1. Different classes of anticancer drugs 
 

Chemotherapeutic Drugs 
Alkylating agents 
 
      Nitrogen mustards:    Cyclophosphamide (Cytoxan), melphalan, clorambucil,  
                                          mechlorethamine 
 
               Nitrosoureas:     Streptozocin, carmustine (BCNU), and lomustine. 
 
          Alkyl sulfonates:     Busulfan 
 
                      Triazines:     Dacarbazine (DTIC), and temozolomide (Temodar). 
 
              Ethylenimines:    Thiotepa and altretamine (hexamethylmelamine). 
 
            Platinum drugs:   Cisplatin, carboplatin, and oxaliplatin. 
   
 
Antimetabolites      5-Fluorouracil (5-FU), capecitabine (Xeloda), 6-  
                                         mercaptopurine (6-MP), methotrexate,             
                                         gemcitabine (Gemzar), cytarabine (Ara- C), fludarabine, and   
                                         pemetrexed (Alimta). 
Antitumor antibiotics 
 
          Anthracyclines:     Daunorubicin, doxorubicin (Adriamycin), epirubicin, and 
                                        Idarubicin 
 
        Other antibiotic       Actinomycin-D, bleomycin, and mitomycin-C. 
                         drugs:  
 
Topoisomerase inhibitors 
 
      Topoisomerase I       Topotecan and irinotecan 
                inhibitors:    
      Topoisomerase II      Etoposide (VP-16) and teniposide 
                inhibitors: 
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Table 1.1 Continued 
 
 
Mitotic inhibitors 
 
            The Taxanes:       Paclitaxel (Taxol), docetaxel (Taxotere). 

             Epothilones:       Ixabepilone (Ixempra). 

                The Vinca         Vinblastine (Velban), Vincristine(Oncovin), 
                  alkaloids:        and vinorelbine (Navelbine). 
                                            

 Estramustine (Emcyt). 

 

Corticosteroids                 Prednisone, methylprednisone(Solumedrol), and             
                                         dexamethasoneDecadron. 
 
Others                              L-asparaginase and proteosome inhibitor        
                                         bortezomib(Velcade). 
 

 
 
 
recognize cancer cells and kill them are examples of biological treatments. Targeted 

therapies selectively target cancer cells but not normal cells, and this greatly reduces the 

side effects associated with chemotherapy. Targeted therapies include antiangiogenic 

drugs, various enzyme inhibitors, antisense and gene therapy. This approach has been 

expanding to include drugs that are highly specialized and are only effective in treating a 

narrow range of tumors. For example, the tyrosine kinase inhibitor, geftinib, which 

blocks EGFR signaling, is effective only in lung cancer patients that express the 

mutations in the tyrosone kinase domain of EGFR gene (35). Our laboratory has focused  

on  development of such specific molecules which are synthetic derivatives of natural 
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products and these  include betulinic acid, a hydrolysed product of betulin derived from 

birch bark and methyl 2-cyano-3,11-dioxo-18βolean-1,12-dien-30-oate (CDODA-Me), a 

synthetic derivative of glycyrrhetinic acid, a triterpenoid derived from licorice root 

extract. In order to investigate the mechanism of action of these mechanism-based drugs  

in different cell and organ contexts,  four different cancer cell models have been selected 

and are discussed in another section. The cancer models include prostate cancer, a 

reproductive and hormone related cancer in males, colorectal and pancreatic cancer 

which are gastroinstestinal related cancers and esophageal cancer, an aggressive disease 

in which the incidence rate has been increasing significantly in recent years. 

PROSTATE CANCER 

Incidence 

It is  estimated that there will be  186,320 new cases of prostate cancer and about 

28,660 prostate cancer deaths in the US in 2008 (1). The number of cases and deaths 

have significantly increased from 1988-1992 and declined sharply from 1992-1995 and 

have been relatively constant since 1995. For unknown reasons incidence rates are 

higher among African American and Jamaican men when compared to Caucascians. 

Worldwide, the disease is common in Northern America and northwestern Europe, but 

less common in Asia and South America (1). 

 Both benign prostatic hypertrophy (BPH) and prostate cancer incidence rates are 

negligible or not detected in eunuchs and have been linked to the presence of testes and 

androgen function (36, 37). Autopsy studies indicate that approximately 70% of  men 
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who died of other diseases had prostate cancer at the time of their death but most of 

these cancers were clinically insignificant (38). 

Development of prostate gland 

The prostate gland is a male specific reproductive organ that develops before 

birth and continues to grow until the end of puberty. Growth and development of the 

prostate gland is androgen dependent (39) and androgens elicit their effects on the 

prostate via binding to the androgen receptor (AR), present in the fetal urogenital sinus 

mesenchyme (UGM). Mesenchymal and epithelial interactions play a critical role in the 

prostatic development.  UGM induces ductal morphogenesis, expression of the epithelial 

AR, regulates epithelial proliferation, and induces the expression of prostatic lobe-

specific secretory proteins (40-46). Although prostate development and function are 

androgen dependent, several other growth factors, cytokines and  hormones  such as 

insulin like growth factor-1 ( IGF-1),  fibroblast growth factors (FGFs), and 

prostaglandins are associated with the development, growth and differentiation of the 

epithelium and stroma of the prostate (47).  

Tumorigenesis of prostate gland 

 Nearly all-prostate cancers arise from glandular cells and are called 

adenocarcinomas. Prostate cancers can initially develop when men are  20-30 years of 

age or older and the incidence increases with age (48, 49) . Multiple genetic and 

epigenetic abnormalities have been associated with prostate cancer. Initially the process 

of prostate tumorigenesis  begins with dysplasia associated with proliferative 

inflammatory atrophy (PIA), which further leads to prostatic intraepithelial neoplasia 
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(PIN) and then to carcinoma in few cases (50). During the process of premalignant 

lesion formation and the  progression to primary  and  metastatic cancer and to 

androgen-independent cancer, genetic changes continue to accumulate in the cells and 

these are illustrated in Figure 1.4 (50-52). Added to these alterations in the genome, 

androgenic hormones promote further cancer cell growth and proliferation.  
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Fig. 1.4. Cellular changes in development of metastatic prostate cancer (53). 

 

Testesterone is converted to an active metabolite, dihydrotestosterone (DHT) in 

the prostate cells by the enzyme 5α-reductase.  Binding of DHT to the AR results in 

formation of a phosphorylated homodimer which is then translocated to the nucleus and 

activates transcription of androgen-responsive genes related to growth and proliferation 

(54, 55). The work of Chinnaiyan and collegues (56-59) suggests that the TMPRSS2, a 

prostate-specific androgen regulated gene when fused to ETS family of transcription 

factors  leads to overexpression of an androgen-responsive oncoprotein. This process has 

been identified as one of the most common somatic rearrangements in  prostate cancer,  
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is associated with an  invasive phenotype, and appears to be an important early step in 

the  tumorigenesis (60). In most  prostate cancers, chromosomal abnormalities with loss 

of chromosomes 6q, 7q, 8p, 10q, 13q, 16q, 17q, and 18q have been identified (61).   

NKx-3.1 is a homeobox gene located on human chromosome 8p21, a region that 

undergoes frequent loss of heterozygosity in prostate tumors. Loss of  NKx-3.1 

expression along with phosphatase and tensin homolog (PTEN) hetrozygosity,  which  

inhibits phosphoinositol-3-kinase (PI3K) signaling has also been associated with prostate 

tumorigenesis (62). In addition, hypermethylation of enzymes such as glutathione S-

transferase 1 and O6-methylguanine DNA methyltransferase have also been observed 

(62). 

Grading of prostate cancer 

Grading of prostate carcinomas is based on histologic patterns which are scored  

using the Gleason grading system (63). Prostate cancers with a Gleason score of 5-7 are 

considered to be of intermediate grade or moderately differentiated and cancers with a 

score of 8-10 are considered to be of high grade or poorly differentiated, which predicts 

resistance to treatment and a low rate of patient survival. 

Diagnosis of prostate cancer 

 Prostate cancer is diagnosed by elevated levels of prostate specific antigen 

(PSA) in blood and abnormal digital rectal examination (DRE). PSA is a serine protease 

produced by normal epithelial cells of the prostate gland and the physiological role of 

PSA is to liquefy seminal fluid. It is produced in small quantities in the normal prostate 

gland but is consistently elevated in prostate cancer and other disorders of the prostate 
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such as infection, inflammation and benign prostatic hyperplasia (BPH). Both for initial 

diagnosis of the disease and to monitor the treatment response, PSA levels are widely 

used as a biomarker for prostate cancer. The upper limit for normal levels of PSA  has 

been set at 4.0 ng/ml and higher levels  in patients usually results in prostate biopsies for 

tumors (64). With  increased screening for PSA levels, most cancers are detected at early 

stages where they are localized to the gland itself and this can result in over-diagnosis of 

clinically insignificant or irrelevant prostate cancers (65-69).  

Treatment of prostate cancer  

Prostate cancer treatment is based on the specific type, location and stage of the 

cancer. Radical prostectomy is used to surgically remove the cancer when it has not 

spread from the gland. The major risks associated with surgery include urinary 

incontinence and impotence. Radiation is also used for low grade cancers that are 

confined to the gland itself or have spread only to the nearby tissue. Radiation is used 

alone or performed in combination with surgery and  side effects such as bowel 

problems accompany radiation (1). Cryosurgery or cryotherapy which reduces the size 

of localized tumors by freezing is also being used for the treatment of prostate cancer. 

Hormone therapy 

Androgens are required for the prostate cell growth and play a role not only 

during prostate development but also during tumorigenesis. The major objective of 

hormone therapy is to lower male hormone or androgen levels and thereby minimize 

tumor growth. It is used in patients who are not good subjects for surgery or radiation or 

the combination of surgery with radiation. In most cases of prolonged hormone 
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treatment, tumors become resistant to hormone therapy and there is a poor prognosis for 

disease-free survival. In order to overcome this problem, therapy is used on an “on-again 

and off –again” approach (1). 

Types of hormone therapy 

 Orchiectomy. Surgical removal of testes eliminates the source of androgen 

synthesis however; therapy though simple to perform is accompanied by severe side 

effects. 

 Luteinizing hormone-releasing hormone (LHRH) analogs. LHRH is a 

hormone produced by the hypothalamus, which stimulates the pituitary gland to produce 

luteinizing hormone (LH). LH then stimulates testicles to produce testosterone. 

Treatment with LHRH analogs initially increases levels of testosterone but due to a 

negative feedback loop, androgen levels decrease and slow the process of tumor growth. 

Leuprolide (Lupron, Viadur, Eligard), goserelin (Zoladex), and triptorelin (Trelstar) are 

the major LHRH analogs being used for hormone therapy (70-72). Side effects from 

using LHRH analogs are similar to those observed after orchiectomy and related to low 

testosterone levels. Abarelix ( Plenaxis) is an LHRH antagonist that works like an 

agonist and rapidly reduces   testosterone levels but is accompanied by less severe side 

effects (1). 

Antiandrogens. Antiandrogens work by blocking the action of androgens in the 

body and thus inhibit their effects. Flutamide (Eulexin), bicalutamide (Casodex), and 

nilutamide (Nilandron) are some  antiandrogen drugs currently used for the treatment of 

prostate cancer (70-72). Usually antiandrogens are used in combined androgen blockade 
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(CAB) along with orchiectomy for total inhibition of androgen activity.  Compared to 

orchiectomy or treatment with LHRH agonists, antiandrogens when used alone have 

fewer side effects on sexual competency (1). 

5-alpha reductase inhibitors. Finasteride (Proscar, Propecia) or dutasteride 

(Avodart) inhibit enzyme 5-alpha reductase and this results in decreased conversion of 

testosterone to its active moiety DHT resulting in the  inhibition of prostate tumor 

growth (73).  

Others. Estrogens were once used to suppress the action of testosterone as an 

alternative to orchiectomy. Because of possible serious estrogenic side-effects of breast 

enlargement and blood clot formation estrogens have largely been replaced by 

antiandrogens and LHRH analogs. They are used in some situations if the patient is not 

responding to other treatments. Antifungal compound Ketoconazole (Nizoral)  also  

inhibits production of androgens and is sometimes used for treatment of prostate cancer 

(74). 

Chemotherapy for prostate cancer 

Cytotoxic drugs are used for prostate cancer therapy when other treatments fail. 

Combination treatment with docetaxel and prednisone prolongs survival and has been 

extensively used for treating prostate cancer (75, 76). Other drugs used to treat prostate 

cancer include mitoxantrone (Novantrone), estramustine (Emcyt), doxorubicin 

(Adriamycin), etoposide (VP-16), vinblastine (Velban), paclitaxel (Taxol), carboplatin 

(Paraplatin), vinorelbine (Navelbine) (1). Mitoxantrone plus low-dose prednisone 

treatment showed improvement in the quality of life when compared to the  prednisone 
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treatment alone  and this finding led to a subsequent phase III study TAX 327 by 

Tannock et al  (77, 78) comparing docetaxel plus daily prednisone  with mitoxantrone 

plus prednisone given either every three weeks or weekly. In this study, docetaxel plus 

prednisone showed significant improvement in the survival and response rate when 

compared to the mitoxantrone plus prednisone treatment (75).       

COLON CANCER 

Incidence 
 

Colon cancer is the third most common cancer diagnosed both in men and 

women in the United States excluding skin cancers. Risk factors for developing colon 

cancer include age, history both personal and family, inherited syndromes and lifestyle 

factors (1). 

The risk of developing colon cancer is higher in people older than 50 years but it can be 

observed even in the younger population. People with history of adenomatous polyps 

and any bowel diseases such as inflammatory bowel disease are also at an increased risk. 

People with the family history of colorectal cancer are also at an increased risk of 

developing cancer but accounts only up to 20%.  Most of the people who are diagnosed 

with colon cancer do not have a family history of colon cancer incidence, and only about 

5 % of colon cancer patients have inherited genetic abnormalities (1).  

The most common inherited syndromes that pose a risk of developing colon 

cancer include familial adenomatous polyposis (FAP) and hereditary non-polyposis 

colon cancer (HNPCC). FAP is observed because of mutations in the adenomatous 

polyposis coli (APC) gene and this syndrome accounts to about 1% of of all colorectal 
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cancers diagnosed. This is a syndrome observed in young populations characterized by 

thousands of polyps in the colon and rectum (1). HNPCC, also known as Lynch 

syndrome accounts for about 3-4% of all the colon cancers. It is caused by mutations in 

genes involved in DNA repair which include hMLH1, hMLH2 and hMLH6 (79-81) 

When compared to FAP,  HNPCC is observed in younger populations like FAP but, 

unlike FAP patients, have very few polyps in their gut.  

Other polyposis syndromes that increase the incidence of colorectal cancer 

include Peutz Jegher's syndrome, familial juvenile polyposis, and hereditary mixed 

polyposis syndrome.  These syndromes are linked to mutations in LKB1, STK11, 

SMAD4, PTEN, E-cadherin, cyclin D1, and transforming growth factor β receptors (82).   

Racial and ethnic background 

African Americans in the United States and Jews of Eastern European descent 

(Ashkenazi Jews) in the world have the highest colorectal cancer incidence and several 

mutations in genes that increase the risk of colorectal cancer have been observed in 

Ashkenai jews (1). The colon cancer incidence rate is very low in Asian countries 

especially in India (83) and the increase in incidence of this disease in migrants from 

Asian countries to Western countries suggests that environmental factors related to diet 

contribute to  development of colon cancer (84, 85). 

Environment and lifestyle factors 

 Obesity, physical inactivity, smoking, alcohol intake and diets high in red or 

processed meats and low in fiber (i.e. low intake of fruits and nuts) are some of the 

possible risk factors for colorectal cancer. Fruits, nuts and vegetables contain diverse 
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anticarcinogenic phytochemicals; however, epidemiological studies and particularly 

prospective studies do not strongly correlate high consumption of these foods with 

decreased incidence of colon cancer (86-88).  Several reports suggest that folate intake 

may be protective for colon cancer (89, 90) and in a  study of colorectal cancer cases and 

controls, there was a decrease in colon cancer risk in individuals that express a 677 T–C 

mutation in 5,10-methylenetetrahydrofolate reductase (91).  This decreased enzyme 

activity results in increased levels of 5-10-methylenetetrahydrofolate that plays an 

integral role in DNA synthesis. 

Types of colon cancers 

Most colon cancers (about 90%) develop in the gland cells that form mucus to 

lubricate the inner lining of the gut hence called adenocarcinomas. Other type of tumors 

are less common and these include carcinoid tumors that develop from cells that  

produce hormones, gastrointestinal stromal tumors (GISTs) which develop from 

“interstitial cells of Cajal” and lymphomas-which develop from the immune cells of the 

lymph glands in the colon or rectum (1). 

Diagnosis of colorectal cancer 

Colorectal cancer is diagnosed as soon as the symptoms appear and this results in 

a complete physical examination  along with blood tests to check for any tumor 

biomarkers such as carcinoembryonic antigen (CEA) and CA 19-9, which are produced 

by the cancer and released into the blood. Levels of these markers are not specific to 

colorectal cancer and may be high for other diseases of the gut such as ulcerative colitis; 

sometimes smoking  increases levels of CEA. If the physical examination and symptoms 
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are suggestive of cancer, additional tests are carried out; and these include endoscopic 

tests such as sigmoidoscopy or colonoscopy or imaging such as barium enema, 

computed tomography (CT) colonoscopy. Once cancer is diagnosed, a biopsy is 

performed to confirm the diagnosis (1). 

Stages of colorectal cancer 

      The wall of the intestine is made up of different layers. Colorectal cancer starts in the 

innermost lining also called epithelium. Cancer usually begins as a non-cancerous polyp 

on the innermost layer of the colon or rectum.  
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Fig. 1.5. Genetic progression model of colorectal adenocarcinoma (92). 
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These polyps may or may not transform into malignant tumors and their transformation 

depends on several other factors and the type of polyp (Fig. 1.5) (92). There are two 

kinds of polyps; one is adenomatous polyps that have a higher risk of developing into 

cancer and the second type hyperplastic polyps and inflammatory polyps, which are 

usually not cancerous. Dysplasia is a different type of condition where the cells of the 

colon and rectum look abnormal and have the potential to transform into cancer cells. 

AJCC (TNM) staging system 

TNM is the most common staging method used. This system is focused on three 

elements of the tumor: T for the extent of spreading of the primary tumor into the wall of 

the intestine and N for the extent of the spread of the tumor to the adjacent lymph nodes. 

M stands for metastases and measures the extent of tumor spreading to other organs of 

the body or not (1). Numbers or letters appear after T, N, and M to provide more detailed 

information related to the tumor and the numbers 0 through 4 indicate increasing 

severity. The letter “X” indicates that the tumor cannot be assessed. The letters “is” 

indicates  “in situ carcinoma ” indicating that the  tumor is contained within the top 

layers of the duct and has not invaded deeper into the duct (1). 

Treatment for colorectal cancer 

Depending on the stage of the cancer, any one of the following treatment options 

are available. Colectomy or laparoscopic–assisted colectomy is performed during early 

stages when the cancer is limited to the colon itself. Rectal surgery is performed if the 

cancer is localized in the rectum itself. Sometimes high-energy radiowaves are used to 

destroy the cancer cells and is called radiofrequency ablation (93, 94). Percutaneous 
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injection of ethanol into the tumors is also an option called ethanol ablation; and 

cryosurgery can be used for destroying the larger tumors by freezing (95). Radiation is 

usually performed to destroy any cancer cells that are remaining after surgery. External-

beam and internal radiation therapy or brachytherapy are the two types of radiation to 

destroy cancer cells after surgery, however, here are several side effects such as sexual 

problems, bowel incontinence, etc associated with this method (96). 

Chemotherapy for colorectal cancer 

For treatment of colon cancer, chemotherapy is used as an adjuvant therapy after 

surgery to increase patient survival rates. It is also in use as a neoadjuvant therapy prior 

to the surgery to shrink the tumor and facilitate its removal during surgery. Colon cancer 

chemotherapy usually involves drug combinations. 5-FU has been used for about 50 

years and is given in combination with folinic acid drug leucovorin to increase its 

efficacy. 5-FU is a pyrimidine analogue which is incorporated into DNA and RNA to 

inhibit the cell cycle in S-phase and induces apoptosis (97). Leucovorin is metabolized 

in the cell into polyglutamated 5, 10 methylnetetrahydrofolate and stabilizes the binding 

of 5-FU with thymidylate synthase (98). Capecitabine (Xeloda) is a prodrug that is 

converted into 5-FU in the tissues, and Irinotecan (Camptosar) is a structural analogue of 

camptothecin which is a topoisomerase I inhibitor. Irinotecan is used in combination 

with 5-FU and leucovorin as a first line chemotherapy in the FOLFIRI regimen for 

treatment of advanced colorectal cancers. Topoisomerases are  enzymes that catalyze  

DNA to unwind from its supercoiled topology and to aid in transcription or replication. 

Irinotecan is a topoisomerase I inhibitor which is hydrolysed into an active metabolite 
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SN-38 which inhibits DNA replication and transcription, tumor growth. Major side 

effects with this drug include severe diarrhea and immunosuppression. 

Oxaliplatin (Eloxatin) is a platinum based drug used in combination with 5-FU in 

FOLFOX therapy and in combination with capecitabine in CapeOX therapy (99). This   

is a cisplatin drug with increased efficacy when compared to its counterparts; however, 

the mechanism of action of oxaliplatin is not known. Major side-effects include 

neuropathy, GI problems, neutropenia, and ototoxicity. Many of these therapies use non-

specific cytotoxic agents, which induce undesirable adverse effects, and there is an 

increasing need to develop alternative drugs that target specific pathways to inhibit 

tumor growth, progression, and metastasis and to induce apoptosis.   

PANCREATIC CANCER 

Incidence 
 

 According to ACS, there will be about 37,680 new cases diagnosed and about 

34,290 deaths because of pancreatic cancer this year in US, making it a fourth leading 

cause of cancer deaths (1). 

Risk Factors 

The incidence rates for pancreatic cancer in tobacco smokers is two times higher 

than in nonsmokers (100-105). Men tend to have higher risk when compared to women 

but the differences have decreased; and this has been attributed to increased smoking in 

women.  Obesity, diabetes, cirrhosis and chronic pancreatitis are also risk factors for 

pancreatic cancer. Diets high in fat content also increase the risk for pancreatic cancer. 

About 10% of pancreatic cancer patients have a family history of this disease and 
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germline mutations in genes such as familial atypical multiple melanoma (FAMM), 

BRCA2, PRSS1, Lynch syndrome, Peutz-Jeghers syndrome are associated with 

increased risk of pancreatic cancer. In addition to these germline mutations several 

acquired gene mutations have also been identified in pancreatic tumors and these include 

mutations in oncogenes, tumor suppressors and DNA repair genes (Fig. 1.6) (106-117). 

The K-ras oncogene  mutated in codon 12 is expressed in more than 90% of pancreatic 

cancers; this constitutively active form of ras increases cell proliferation (118). 

Mutations in the tumor suppressor gene p53, cyclin dependent kinase inhibitor p16 and 

SMAD4, the downstream target of transforming growth factor β (TGFβ), are also 

frequently observed in pancreatic tumors (107, 108);  vascular endothelial growth factor 

(VEGF) and Erb2/neu are overexpressed in pancreatic tumors (110, 119, 120). Using 

microarrays, many genes that are differentially expressed in pancreatic adenocarcinoma 

have been identified and further research on these targets for pancreatic cancer 

chemoprevention and chemotherapy is needed (121, 122) . 

Tumorigenesis of pancreas 

The pancreas is composed mainly of two different types of glands – exocrine and 

endocrine. The exocrine part of pancreas secretes pancreatic juice, which contains 

enzymes that help in digestion of the food that enters the duodenum from the stomach. 

The endocrine part of pancreas accounts for a smaller portion of pancreatic mass  and is 

arranged in the form of clusters called Islets of Langerhans, which produce two different 
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types of hormones, namely insulin and glucagon, which are important for maintaining 

glucose levels in the body. Endocrine pancreatic tumors are rare and most pancreatic 

tumors originate from the exocrine part and are adenocarcinomas arising in 
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Fig. 1.6. Genetic progression model of pancreatic adenocarcinoma (123). 
 

 

the ducts of glands or acinar cells and account for 85-90% of all pancreatic tumors (123, 

124). A stepwise pattern of pancreatic adenocarcinoma progression has been described 

by studying the molecular and pathological features of pancreatic intraepithelial 

neoplasias (PanINs) (Fig. 1.6). Mutations in K-ras, ERBB2, and EGFR are associated 

with the transition from normal ductal cells to PanIN-1 stage cells which are 

characterized by elongated morphology and mucin production. Loss of the tumor 

suppressor CDKN2A due to mutations, deletions or hypermethylation of the promoter is 
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observed in 80-95% of the sporadic pancreatic adenocarcinomas. CDKN2A is located at 

the 9q21 gene locus which encodes for two tumor suppressor genes namely INK4A and 

ARF. INK4A inhibits phophorylation of retinoblastoma (RB) and prevent the entry of 

cells into S phase of cell cycle and ARF inhibits MDM2-depedent proteolysis which 

stabilizes p53. These genetic changes are observed in PanIN-2 lesions and are 

characterized by cells with enlarged nuclei and other abnormalities. Other genetic 

alterations that are associated with pancreatic cancer progression of PanIN-2 to PanIN-3 

and adenocarcinoma include mutations in tumor suprressor genes, TP53, 

SMAD4/DPC4, and BRAC2. Moreover chromosomal and microsatellite instability are 

also frequently detected at the late stages of PanIN lesions (Fig. 1.6)  (123). 

Diagnosis of pancreatic cancer 

 Only 7% of pancreatic cancers are detected in their early stages since there are 

not any effective diagnostic methods for early detection.The disease is usually 

asymptomatic until it metastasizes to other organs (125, 126). CA 19-9 is a substance 

produced by pancreatic cancer cells and released into the blood, however, by the time  

blood levels of CA 19-9 are  detectable, the disease is no longer in its early stages. Thus 

the CA19-9 test is  used during treatment but not for detection of pancreatic cancer . 

Once the disease is advanced, patients exhibit signs and symptoms such as jaundice, 

abdominal pain, weight loss, poor appetite, digestive problems, and further tests are 

required to confirm the diagnosis. Imaging tests such as CT scan, positron emission 

tomography (PET) scan, ultrasonography, mangnetic resonance imaging (MRI), 
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endoscopic Retrograde Cholangiopancreatography are used and a biopsy ultimately 

confirms the presence and stage of the cancer (1). 

Staging of pancreatic cancer 

Staging of pancreatic cancer is also done according to the AJCC –TNM system as 

described under colorectal cancer. 

Treatment of pancreatic cancer 

Although surgery is considered as a potential treatment option for pancreatic 

cancer, only 15% of the patients are good surgical subjects.Two types of surgeries are 

performed depending on the stage of cancer. Based on the imaging tests, if they suggest 

that the cancer is not that widespread and can be removed completely, potential curative 

surgery is performed. However, if the imaging tests suggest that the tumor is widespread 

and cannot be removed completely, palliative surgery is done to prevent the 

complications such as blockage of bile ducts or intestine by the cancer and to relieve the 

symptoms. External beam radiation therapy is the most common type of radiation used 

for treating pancreatic cancer (125). 

Chemotherapy for pancreatic cancer 

Gemcitabine is the drug most commonly used for the treatment of pancreatic 

cancer. Gemcitabine replaces cytidine, one of the building blocks of nucleic acids during 

DNA replication and this inhibits cell cycle progression. 5-FU is also used for treatment 

alone or in combination with Gemcitabine. Several clinical trials are underway testing 

the combination of 5-FU and gemcitabine with other chemotherapies that include 

cisplatin, oxaliplatin, docetaxel, irinotecan (125). 
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ESOPHAGEAL CANCER 

The esophagus is a muscular tube connecting throat to the stomach,  and cancer 

of esophagus can arise anywhere along the lining of the tube. Although the incidence of 

cancer is relatively rare accounting for 1% of US cancer incidence, has been increasing 

(1). 

Risk factors 

The risk of esophageal cancer increases with age with 80% diagnosed in people 

between 55 and 85 years old. African Americans have twice the risk as whites for 

developing esophageal cancer. Tobacco and obesity are major risk factors for developing 

esophageal cancer (127). Males have a higher risk than females and this is attributed to 

tobacco use.  People with gastro-esophageal reflux disease (GERD) and with Barrett 

esophagus are also at higher risk. Diets low in fruits, vegetables and vitamins have 

increased risk for esophageal cancer (128, 129) . Various genetic alterations are 

associated with esophageal cancer progression including allelic loss of chromosomes 

17p, 13q, 9p21-22 and mutations in p53 and p16 genes (130, 131). Studies using cDNA 

microarrays have identified differential patterns of gene expression involved in the 

regulation of squamous cell proliferation and differentiation. Genes involved in 

differentiation were downregulated and these include transglutaminase (TGM) 3 and its 

substrates including small proline-rich proteins (SPRRs), calcium binding S100 proteins 

(S100A8 and S100A9), annexin I, epithelial membrane protein (EMP) 1 and cystatin A 

(132-135). All these proteins are expressed in the cell envelope (CE) which functions as 

a barrier and results in impaired CE and accumulation of toxic substances. SPRRs and 
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calcium binding S100 proteins constitutes the epidermal differentiation complex (EDC) 

involved in the terminal differentiation of epithelial cells (134). KRT4, KRT13, and 

KRT15 are cytokeratins involved in epithelial differentiation and these genes were also 

downregulated in contrast to increased expression of KRT16 and KRT17 in esophageal 

cancer (136) . Studies with KRT4-/- mice demonstrated abnormal proliferation and 

improper terminal differention of the epithelial cells (137). Genes involved in 

transcription including gut enriched kruppel-like factor (GKLF), and eukaryotic 

translation elongation factor 1 alpha -1 (EEF1A1) which regulates the cell cycle by 

modulating microtubules were also downregulated (138). Genes that play a role in 

metastasis were differentially expressed including upregulation of proteases such as 

cathepsin B  that degrade ECM and downregulation of  protease inhibitors such as 

cystatin A, cystastin B and serine proteinase inhibitor. However, the role of these genes 

in the progression of esophageal cancer is not well characterized and needs to be 

investigated. 

Diagnosis of esophageal cancer 

Symptoms of esophageal cancer do not appear until the disease has advanced. 

The most common symptom as the tumor grows is difficulty in swallowing and it can 

also cause chest pain or burning. Endoscopy and barium swallow tests are used to 

diagnose esophageal cancer. 

Treatment of esophageal cancer 

Surgery when combined with other treatments can help ease the symptoms and 

improve the quality of life. Esophagectomy is the first line of treatment and is performed 
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if the tumor is localized in the esophagus and has not been spread to the regional lymph 

nodes. If the tumor spreads to other organs and regional lymph nodes, radiation and 

chemotherapy are used. In locally advanced cancer, concurrent cisplatin-based 

chemoradiotherapy or surgery result in 60-90% disease control rate and 20-40% 5-year 

disease free survival rate (139-145). Neoadjuvant chemoradiotherapy after 

esophagectomy is extensively used because of its beneficial effects in the treatment of 

esophageal adenocarcinoma. More than 50% of patients are diagnosed with metastatic or 

unresctable esophageal cancer and chemotherapy  provides improvement in the quality 

of life relieving  symptoms such as dysphagia in 60-80% of the patients (146-148). 

Drugs that are used in esophageal cancer chemotherapy include 5-FU, platinum 

based drugs such as cisplatin, caboplatin, and antibiotics such as bleomycin, 

anthracycline antibiotic doxorubicin, mitotic inhibitors paclitaxel, topoisomerase 

inhibitors irenotecan, topotecan.  

Photodynamic therapy, use drugs that make the precancerous and cancerous cells 

sensitive to light and when light is inserted into the esophagus using endoscope 

cancerous tissues are burned. This is usually used for treatment of Barrett’s esophagus 

and has now been extended to esophageal cancer. 

NEW TARGET MECHANISM BASED DRUGS 

Targeted therapies for treatment of cancer derived from multiple tissues/organs 

are highly promising for future  treatments since these agents are usually more tumor-

specific and are accompanied by fewer adverse side-effects (149-153). Targeted 

therapies include drugs such as kinase inhibitors, antibodies that block various signaling 
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pathways, immunotherapies, and genomic therapies that involve re-expression of tumor 

suppressor genes or specific gene knockdown technologies (including RNA 

interference).  The application of these targeted drugs may be highly tumor-specific or 

specific for only a sub-class of tumors such as the highly effective treatment of non-

small lung cancer patients with specific EGF receptor mutations with the EGF receptor 

inhibitors erlotinib and gefitinib (35, 154). 

Targeted therapies for prostate cancer 

With the increasing knowledge of the genes that play a role in the progression of 

prostate cancer there is  scope for  development of new drugs for  treatment of metastatic 

or hormone-refractory prostate cancer with increased specificity. Recent developments 

in the treatment of prostate cancer are discussed below. 

Drugs that target signal transduction pathways    

Several mechanisms are involved in the transformation of androgen  responsive 

prostate cancer to an androgen  refractory prostate cancer (155) and some of these 

pathways include i) amplification of AR and hypersensitivity to  low levels of DHT; ii) 

decreased specificity of the AR so that it responds  to other growth signals or hormones ; 

iii) activation of AR through kinase-dependent phosphorylation and ; iv) activation of 

AR independent growth pathways (Fig. 1.7) (38). Agents that target growth factors 

involved in androgen independent cancer include rapamycin analogs that inhibit 

Akt/PI3/mTOR, monoclonal antibodies and inhibitors of HER-2/3, IGF-R, IL-6R, and 

platelet-derived growth factor receptor (PDGFR). The Akt/PI3K pathway regulates 

various processes including cell proliferation, growth, apoptosis and cytosketal 
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rearrangement. PI3Ks are heterodimers with different regulatory and catalytic subunits. 

P85 is the regulatory subunit and acts as a substrate for many cytoplasmic and receptor 

tyrosine kinases that bind its SH2 domain to the phosphotyrosine residues of the kinases. 

There are three classes of PI3Ks and classIA PI3Ks are strongly associated with 

oncogenesis. PI3K activation by receptor tyrosine kinases results in generation of PIP3 

which acts as a second messenger for downstream effects involving AKT and other  
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Fig. 1.7. Mechanisms of androgen independence (155). 
 

proteins. The increasing emphasis on the role of Akt/PI3K pathway and its associated 

proteins in survival, differentiation and apoptosis has lead to the identification of the 
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expression and alterations of these genes in the progression of many human cancers. 

Amplification and several mutations of the catalytic and regulatory subunits of PI3K and 

AKT been identified in many human cancers (117, 119). 

In most prostate cancers there is a loss of tumor suppressor gene PTEN which 

results in  activation of Akt/PI3K pathway and  increased cell proliferation and tumor 

growth (156, 157). Loss of PTEN and activation of Akt  is associated with hormonal 

resistance, chemoresistance and increased tumor growth (158, 159). Rapamycin analogs  

inhibit this pathway in mouse models of PTEN loss or Akt activation (159, 160).Three  

rapamycin analogs are currently being investigated, namely rapamycin, CCI-779 

(Temsirolimus), and RAD001 (Everolimus) (161-163). Everolimus in combination with 

epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib and 

docetaxel is in phase II clinical trials. EGFR inhibitors, geftinib and trastuzumab, have 

not been successful for treating metastatic prostate cancer. Recent studies showed that 

EGFR and HER-2 are not  causal determinants in prostate cancer (164-166) and  HER-3, 

IGF-R, TGF-β, IL-6 and other growth factors were shown to be important. Drugs that 

target HER- 3 include neuregulin and pertuzumab, monoclonal antibody (Omnitarg) and 

lapatinib, an intracellular inhibitor (GlaxoSmithkline) of HER-2/HER-3 signaling  (167, 

168).  

Drugs that target the endothelin axis 

 Endothelin (ET) is an important paracrine signaling molecule  that plays a role 

in the mediation of bone-prostate cancer crosstalk (155). ET is a vasoconstrictive agent 

which also regulates mitogenic pathways in prostate cancer cells and osteoblasts and is 
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associated with the aggressive behavior of the hormone refractory prostate cancer (169). 

Atrasetan (Xinlay) is a potent antagonist of the ET-A receptor and Phase III trials using 

this drug resulted in a statistically insignificant outcome (170). Another ET-A receptor 

antagonist, ZD4054 (Astra Zeneca) is also in Phase II clinical trials. 

Drugs that target platelet-derived growth factor receptor (PDGFR)  

 Prostate cancer cells express higher levels of PDGFR; and this receptor 

enhances  PI3 kinase/Akt signaling and  results in prostate cancer progression (171).The 

efficacy of Imatinib (Gleevac), an inhibitor of PDGFR tyrosine kinase alone or  in 

combination with docetaxel, is being investigated for prostate cancer chemotherapy. 

Drugs that target stem cells 

 Elements of the Hedgehog (Hh) signaling pathway, human telomerase and 

CD133 have been  identified  in  stem cells and are overexpressed in prostate cancer 

(172-175). A prolonged period of prostate cancer relapse was observed after inhibiting 

the Hh signaling pathway in xenograft models  of androgen insensitive prostate cancer 

(PC-3) cells (175). Cyclopamine analogs are hedgehog (Hh) antagonists that are being 

investigated in pre-clinical drug development. Human telomerase is a reverse 

transcriptase enzyme that maintains the stability and length of the chromosome by 

protecting the ends of chromosomes also called telomeres (176). Telomeres get shorter 

with each DNA replication and when they  are critically short, cells stop dividing and 

die, this phenomenon of limited cellular division is called the  “Hayflick limit”. However 

some cells such as germ cells, stem cells, hair follicles and cancer cells overcome this 

limit and aquire indefinite replicative ability by overexpressing telomerase which aids in 
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telomere repair. Normal prostate lacks telomerase activity but the enzyme is 

overexpressed in prostate tumors. Drugs targeting telomerase are also underdevelopment 

for treatment of prostate cancer (174). 

Drugs that target angiogenesis 

Angiogenesis plays an important role in physiological processes and also in 

tumor growth and metastasis; inhibition of angiogenesis has become an attractive 

therapeutic strategy. In 1971, Judah Folkman and his colleagues first proposed that 

vascularization is essential for the growth of clinically invasive tumors (Fig. 1.8).  
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Fig. 1.8.  Angiogenesis and cancer (177). 

 

There are several pro- and anti-angiogenic factors that regulate angiogenesis, and 

these include VEGF, basic FGF (bFGF), interleukin-8, placenta-like growth factor 

(PlGF), angiopoeitin-2 TGF, PDEGF, pleiotrophin, and others (178, 179). VEGF is the 

most potent pro-angiogenic factor and has been well characterized as  an important 

regulator of angiogenesis (180). The VEGF family of angiogenic factors include VEGF-
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A, VEGF-B,VEGF-C,VEGF-D, and PlGF (181, 182). VEGF-A, also referred to as 

VEGF, is the major mediator of tumor angiogenesis and binds to two main receptors, 

namely fms like tyrosine kinase (Flt-1) or VEGFR-1and flk-1/ kinase domain region 

(KDR) or VEGFR-2, which are expressed at higher levels by endothelial cells and by 

circulating bone marrow-derived endothelial progenitor cells (Fig. 1.9)(180).  
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Fig. 1.9. The family of VEGF molecules and receptors (183). 
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Angiogenic factors stimulate angiogenesis by two mechanisms. Firstly, they bind 

locally to cognate receptors on the peritumoral vascular endothelial cells and this results 

in budding of new capillaries that supply blood to tumors from the existing host blood 

vessels. The second mechanism involves binding of angiogenic factors to distant 

receptors on bone marrow cells to mobilize them into the circulation and into the tumor 

to promote vacularization in cooperation with  additional angiogenic factors. VEGF 

binding to VEGFR-2 is critical in the former mechanism since it activates endothelial 

cell proliferation and survival whereas PlGF binding to VEGFR-1 recruits macrophages 

and other proangiogenic cells derived from bone marrow and plays an important role in 

the latter mechanism (184). Anti PlGF antibodies inhibited tumor growth, angiogenesis 

and recruitment of macrophages in mouse models of cancer. In contrast antibodies 

against VEGFR-2 inhibited tumor growth and angiogenesis but did not inhibit the 

recruitment of macrophages suggesting different mechanism of actions mediated by 

these two receptors and their ligands (185). Combination therapy with the two antibodies 

resulted in greater inhibition when compared to individual treatments. This preclinical 

data with anti-PlGF antibodies constitutes a significant improvement that will be further 

evaluated in clinical trials of antiangiogenic therapy for human cancers. Hypoxia-

inducible factor-1(HIF-1) mediates the transcription of angiogenic genes and is induced 

in response to reduced levels of oxygen; is also overexpressed in many tumors (186). 

Endothelial and stromal interactions are not only critical for organogenesis but also for 

tumorigenesis and tumor progression. Stroma with respect to tumor constitutes ECM and 

mesenchymal cells such as endothelial cells, fibroblasts, vascular smooth muscle cells 
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and pericytes (187). Interaction of endothelial cells with ECM proteins is mediated 

through cell surface  integrins that are expressed on the surface such as α1β1, α2β1 and 

α3β1, all of which bind collagen and laminin; α6β1, which binds laminin; α4β1 and α5β1, 

which bind fibronectin and fibrin; and αvβ3 and αvβ5, which variously bind vitronectin, 

fibronectin, fibrin and laminin (188). 
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Fig. 1.10. Tumor angiogenesis signaling cascade and endothelial stromal interactions 
(177). 
 

During angiogenesis endothelial cells mainly interact with integrin αvβ3 and 

results in VEGFR-2/αvβ3 complex formation. VEGF-A activated VEGFR-2 recruits c-

src and PI3K, which then phosphorylates cytosolic domain of β3 integrin and thus 
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results in the formation of VEGFR-2/ αvβ3 complex (189-192). A recent study using 

knock-in mice expressing a β3
-/- mutant was not able to form a complex with VEGFR-2 

and had impaired tumor angiogenesis (191). Degradation and remodeling of the ECM is 

critical in the formation of new capillaries from existing ones. Endothelial cells produce 

matrix metalloproteinases (MMPs) that degrade the basement membrane and mobilize 

endothelial cells and growth factors such as VEGF from the matrix towards new vessel 

formation; and pericytes are recruited to form new capillary wall (Fig. 1.10). Knock 

down of a membrane bound MMP, MT1-MMP using RNAinterference mechanism 

impaired lumen formation in an in vitro assay emphasizing its importance in 

angiogenesis (193). Gene deletion methods have shown that MMP2 and MMP9 play a 

significant role in angiogenesis (194). MMPs also cause the release of the antiangiogenic 

factors  angiostatin and tumstatin. Surgical removal of a primary tumor initiates 

secondary tumor development or metastasis. Systemic administration of angiostatin 

inhibited secondary tumor formation and neovascularization after  removal of the 

primary tumor emphasizing the role of angiostatin as an antiangiogenic factor produced 

by tumor cells (195, 196). VEGF has been targeted by various strategies including 

monoclonal antibodies (mAbs), inhibitors of endothelial cell-receptor tyrosine kinase 

activity and antisense oligonucleotides. Bevacizumab (Avastin) is the most well-

characterized recombinant humanized mAb against VEGF. It binds to all isoforms of 

human VEGF and prevents its binding to cognate receptors (197). Bevacizumab is the 

first anti-angiogenesis therapy approved by the U.S. Food and Drug Administration 

(FDA) and is currently approved for  treatment of two of the three largest cancer killers 



  

 

41

in the U.S. (198).  A Phase II study demonstrated safety and efficacy of combination 

therapy with drugs including docetaxel, estramustine, and bevacizumab for the treatment 

of hormonerefractory prostate cancer which  lead to a phase III study, CALGB 90401 to 

compare docetaxel  and  bevacizumab in combination with prednisone for the treatment 

of hormonerefractory prostate cancer. 

There are multiple receptor tyrosine kinase inhibitors (RTKIs)  that target EGFR 

tyrosine kinase (cetuximab, erlotinib, geftinib, ZD6474,CI1033 or PKI1666), VEGFR 

tyrosine kinase (Sorafenib/BAY-43-9006, PTK787, ZD6474, Sutent/SU6668/SU11248), 

PDGF tyrosine kinase (PTK787 or SU11248),  HER-2/Neu receptor (trastuzumab), and 

interferon (IFN)-α receptor. VEGFR tyrosine kinase inhibitors, sorafenib and sutent 

(SU11248), and thalidomide analogs, revlimid and actimid that inhibit VEGF, T-cell 

costimulatory function, TNF-α inhibition and decrease IL-6 levels, are in Phase II and 

Phase III studies clinical trials for the treatment of prostate cancer (199-201). A Phase II 

trial with docetaxel in combination with thalidomide resulted in  significantly decreased 

PSA levels, time to disease progression and disease free survival but was accompanied 

by severe side effects (202). 

There are number of other drugs that target angiogenesis by inhibiting basement 

membrane degradation, endothelial cell proliferation, migration, tube formation, 

neovascularization and inducing apoptosis in endothelial cells. For example, NM-3, an 

isocumarin inhibitor of VEGF blocks combretastatin, induces rearrangement of the actin 

cytoskeleton, and induces early membrane blebbing in endothelial cells (179, 203-205).  
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In addition, there are a number of endogenous antiangiogenic factors which include 

angiostatin, angiomotin, arrestan, canstatin, endostatin, tumstatin, and thrombospondin. 

Agents that induce differentiation and apoptosis 

Epidemiological data suggest a  link between Vitamin D deficiency and prostate 

cancer progression indicating that the  vitamin D receptor (VDR) may be a potential 

target for  development of new anticancer drugs (206). Calcitriol, the active form of 

vitamin D found in the body exhibits proapoptotic, growth inhibitory and differentiation- 

inducing properties  in prostate cancer cells and is currently being evaluated in clinical 

trials (207, 208). Histone deacetylase (HDAC) and DNA methyltransferase inhibitors are 

also being evaluated for the treatment of prostate cancer. HDAC and DNA 

methyltransferase enzymes play a role in epigenetic silencing of  gene expression; and 

inhibition of these enzymes induces apoptosis,  p21 signaling and  inhibition of tumor 

growth (209). SAHA (Merck) is an orally bioavailable HDAC inhibitor currently 

undergoing clinical trials for treatment of androgen-independent prostate cancer. 

Abnormal hypermethylation and gene silencing of the antioxidant enzyme GST-II and 

the tumor suppressor p21 is observed in prostate cancer (210). Antisense Bcl-2, 

oblimersen sodium (Genasense) and the proteasome inhibitor, bortezomib (Velcade) are  

two drugs that target Bcl-2, an anti-apoptotic protein that is overexpressed in metastatic 

hormonerefractory prostate cancer (211). 

Vaccination strategies 

 Provenge, a prostate acid posphatase (PAP)-activated dendriticcellbased 

vaccine, and Prosate GVAX, a wholecell allogeneic vaccine are  being developed for 
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treatment of prostate cancer in combination with docetaxel (212). Provenge is a process 

of antigen delivery to activated antigen-presenting cells that are collected from patients 

and stimulated by fusing cells with PAP-GMCSF protein and then administered 

intradermally to the patients. Prostate GVAX immunotherapy uses whole–cell allogenic 

PC-3 and LNCaP prostate cancer cells  that are virally transduced to express GM-CSF 

an immune adjuvant which is lethally irradiated and injected into patients intradermally 

(213-215). Two other vaccines that are in early phases of testing include Prostvac-VF 

recombinant vaccinia-fowlpox PSA vaccine (TRICOM) and the BLP25MUC1 liposomal 

vaccine MUC-1 (216, 217). 

Novel cytotoxic drugs 

The limitations of Docetaxel therapy are related to the toxicity associated with 

current dosing regimens and there is a need for development of novel cytotoxic drugs 

with fewer toxic sideeffects. Satraplatin, a platinum-based agent exhibited a favourable 

outcome in a Phase- III clinical trial (218). Epithilones are a new class of  cytotoxic 

drugs that target microtubules but pose an advantage over taxanes since they are not 

susceptible to P-glycoprotein induced drug efflux (219). Monoclonal antibodies tagged 

to cytotoxic agents are also an attractive therapeutic approach, for example MLN2704 is 

a prostate-specific membrane antigen conjugated to a toxic substance maytansinoid  and 

this conjugate is in clinical trials for the treatment of androgen independent prostate 

cancer (220). Radioimmunotherapy is also emerging as a novel therapeutic approach 

where specific mAbs are conjugated to radioactive molecules (220-223). 
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Targeted therapies for colon cancer 

Several targeted therapies have already been approved for the treatment of 

colorectal cancer and they include bevacizumab, cetuximab (Erbitux), and panitumumab 

(Vectibix). Bevacizumab is given in combination with intravenous (IV) 5-fluorouracil 

(FU) as first- or second-line treatment in patients with metastatic carcinoma of the colon 

or rectum. Cetuximab (IgG1) and Panitumumab (IgG2) are the mAbs with different 

isotypes that target EGFR. Several other therapies are being developed, and two of these 

include various cyclooxygenase (COX) inhibitors and peroxisome proliferator-activated 

receptor γ (PPARγ) agonists.  These are discussed in the following two subsections. 

PPARγ Agonists 

PPAR is a member of the nuclear receptor (NR) family of transcription factors 

(224-228), and the three members of this subfamily (Fig. 1.11 ) serve as regulators of 

lipid and carbohydrate metabolism and play a critical role in multiple diseases including 

diabetes, atherosclerosis and cancer. Ligand activation of PPARγ results in formation of 

a DNA-bound heterodimer with the retinoic acid X receptor (RXR) (Fig. 1.12 ); and 

after recruitment of the appropriate cofactors, transcriptional activation of target gene 

expression is observed.  The assembly of a transcriptionally-active PPAR/RXR complex 

may be highly variable and depends on expression of coregulatory proteins; and this may 

dictate, in part, the tissue-specific and ligand structure-dependent activation of PPAR-

mediated gene expression and responses.    

PPARγ and cancer 

The proliferation advantage of cancer cells over their normal counterparts is 
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Fig. 1.11. General structure of PPARs. Schematic representation of the domain structure 
of PPARs. The numbers within each domain corresponds to the percentage of aminoacid 
sequence identity of human PPARb and PPARg relative to PPARa. Two transcription 
activation functions (AFs) have been described, a constitutively active AF-1 in 
region A/B and a ligand inducible AF-2 in region E and a DNA binding domain in 
region C. 
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Fig. 1.12. Regulation of PPAR-mediated gene expression. 

 



  

 

46

atleast, in part, due to their inability to undergo terminal differentiation, remain in a 

proliferative state and continue to grow. The potential uses of PPARγ agonists for cancer 

chemotherapy were based on results showing that PPARγ ligands inhibited cell 

proliferation while inducing adipocyte differentiation. Moreover PPARγ is 

overexpressed in most tumor samples and cancer cells lines. PPARγ agonists inhibit 

proliferation of transformed cells mainly by inducing cell cycle arrest or differentiation 

and/or apoptosis. 

Cell cycle. Studies in several tumor cell lines have suggested a role for 

PPARγ in cell cycle arrest. It was initially observed that ligand activation of PPARγ 

induces cell cycle withdrawal of preadipocytes via suppression of the transcriptional 

activity of E2F/DP DNA-binding complex. Decreased E2F/DP activity is in part 

mediated by PPARγ through down-regulation of the protein phosphotase 2A (PP2A). 

E2F/DP activity can also be inhibited by activation of retinoblastoma protein 

(RB) and PPARγ ligands inhibit phosphorylation of RB in vascular smooth muscle 

cells, therefore maintaining RB in its hypophosphorylated form  abrogating the G1 to 

S phase transition. Morrison and Farmer have suggested a role for PPARγ in up-

regulating the cyclin-dependent kinase inhibitors (CDKIs) p18 and p21 during 

adipogenesis (229). Thus PPARγ ligands control genes involved in inhibition of normal 

cell cycle progression and similar responses were also observed in pancreatic cancer cell 

lines (230). However, the specific growth regulatory pathways that are affected by 

PPARγ agonists are highly variable even among cells derived from a common tumor 

type. The most widely used synthetic PPARγ agonists are the thiazolidinedione (TZD) 
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class of antidiabetic drugs, also referred to as glitazones and these include ciglitazone, 

troglitazone (TGZ) (Rezulin), pioglitazone((Actos), rosiglitazone (Avandia)  and 

LY171.833 (Fig. 1.13). Pioglitazone, rosiglitazone and TGZ  sensitize patients to insulin 

and lower blood glucose levels and have been used clinically to treat type 2 diabetes 

(231). 

Troglitazone was recently removed from the market due to idiosyncratic 

hepatotoxicity, which resulted in liver failure in extreme cases. Several other 

structurally distinct ligands, such as the derivative of 2,3-disubstituted indole-5- 

acetic acid called GW0207 or non-thiazolidinedione tyrosine based compounds are 

potent and selective PPARγ agonists (232).  

Non-steroidal anti-inflammatory drugs such as indomethacin, ibuprofen, 

fenoprofen and fulfenamic acid are also PPARγ agonists, and this might explain the anti-

inflammatory effects of these drugs at concentrations that are substantially higher than 

those required to inhibit prostanoid synthesis (233). The synthetic triterpenoid 2-cyano- 

3, 12-dioxooleana-1, 9-dien-28-oic acid (CDDO) binds PPARγ, induces 

Differentiation, inhibits proliferation of a variety of cancer cells, and also 

exhibits anti-inflammatory activity (234). 

TGZ inhibited growth of six of nine pancreatic cancer cell lines by G1 phase cell 

cycle arrest through the up-regulation of p21 mRNA and protein expression (230). In the 

Panc-1 pancreatic cancer cell line, TZD-dependent growth inhibition of G1 phase arrest  
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was accompanied by increased expression of p27 but not p21 (230, 235). A dose- 

dependent cytostatic effect of TZD and G0 to G1 cell cycle arrest was observed in 

different hepatoma cell lines including HLF, HuH-7, HAK-1B, and HAK-5 cells, and 

was related to alterations in p21 protein expression. HLF hepatoma cells, which are 

deficient in RB, responded more profoundly to TGZ, which induced expression of p21, 

p27 and p18  suggesting that these CDKIs may be involved in TGZ-induced cell cycle 

arrest in human hepatoma cell lines (236). 

Hupfeld and Weiss reported that TZDs inhibit vascular smooth muscle cell 

growth by decreasing cyclin D1 and cyclin E levels, suggesting another possible 

mechanism for TZD action (237). MCF-7 breast cancer cell growth and G1-S phase 

progression was inhibited by troglitazone treatment, and cells accumulated in the G1 

phase by modulating RB phosphorylation and decreasing cyclin D1 expression (238). 

CDK-dependent activity which was also decreased by troglitazone and overexpression 

of cyclin D1 and partially rescued MCF-7 cells from troglitazone mediated G1 cell cycle 

arrest (238). PPARγ activation inhibits proliferation of several other malignant cells 

from carcinoma (239-241), non-small cell lung carcinoma (242), bladder cancer cells 

(243) and gastric carcinoma cells (244). 

Differentiation. PPARγ induces differentiation pathways beyond adipocytes, 

and overexpression of PPARγ induces differentiation of hepatocytes, myoblasts and 

several other cell types including mammary and colon epithelium (245). Furthermore, 

treatment of human primary liposarcoma cells with pioglitazone induced terminal 

differentiation (246). PPARγ agonists induce upregulation of several differentiation 
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markers such as carcinoembryogenic antigen, E-cadherin and alkaline phosphotase in 

pancreatic cancer cell lines (247). Ligand-dependent activation of PPARγ induced 

apoptosis in different malignant  lineages such as liposarcoma (248), prostate carcinoma 

(249), colorectal carcinoma (239-241), non-small cell lung carcinoma (242),bladder 

cancer cells (243) and gastric carcinoma cells (244). 

In the colon, levels of PPARγ mRNA are nearly equivalent to that found in 

adipocytes (250) with the highest levels of receptor expressed in the post-mitotic, 

differentiated epithelial cells facing the lumen (251). Consistent with this expression 

pattern, exposure of human colon cancer cells to PPARγ agonists inhibits growth, arrests 

cells in G1 phase, increase  several markers of differentiation including caveolin-1 and 

caveolin-2, which exhibit tumor suppressor activity, and also some members of the 

keratin and CEA families (239, 252, 253). Levels of caveolin-1 and 2 also increase 

during differentiation of pre-adipocytes to adipocytes (254, 255). Breast adenocarcinoma 

and colon adenocarcinoma cells, where caveolin expression is normally downregulated, 

express a functional PPARγ with transcriptional activity (251). These cells undergo 

differentiation in vitro upon treatment with PPARγ agonists (240, 248, 256). The ability 

of PPARγ to promote lineage-specific differentiation and the fact that caveolins are 

characteristic markers for terminally differentiated cells raised the hypothesis that 

PPARγ transcriptionally regulates caveolin expression. Burgermeister et al. have shown 

that PPARγ induces caveolin gene expression in human adenocarcinoma cells and this 

may have important applications in the context of cancer differentiation therapy (257). 
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Fig. 1.13 Chemical structures of different synthetic PPARγ ligands (258). 
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Apoptosis. PPARγ ligands induce apoptotic cell death in a wide variety of 

experimental cancer models both in vitro and in vivo (259-261) including ER negative 

MDA-MB-231 and ER positive MCF-7 breast cancer cells (262). Treatment of MCF-7 

cells with troglitazone irreversibly inhibited growth and induced apoptosis; and this 

was accompanied by a dramatic decrease of the anti apoptotic bcl-2 protein (263). 

Inhibition of RNA or protein synthesis abrogates apoptosis induced by 15d-PGJ2 in 

breast cancer cells. Additionally, 15d-PGJ2-induced caspase activation is inhibited by 

caspase inhibitors, showing that de novo gene transcription was necessary for induction 

of apoptosis in breast cancer cells (264). 

PPARγ ligands such as 15d-PGJ2, LY171 833 and ciglitazone inhibited 

proliferation and induced cell death in human (U87MG and A172) and rat (C6) glioma 

cell lines. This cell death was characterized by DNA fragmentation and nuclear 

condensation which are the hallmarks of apoptosis. In contrast, primary murine 

astrocytes were not affected by treatment with ciglitazone (265). PPARγ ligand-induced 

apoptotic cell death in glioma cells was accompanied by transient upregulation of 

proapoptotic proteins Bax and Bad. Upregulated expression of Bad and Bax induces 

apoptosis by enhanced release of mitochondrial cytochrome C and subsequent activation 

of several effector caspases. In addition, inhibition of Bax expression by specific 

antisense oligonucleotides protected glioma cells against PPARγ mediated apoptosis, 

indicating an essential role of Bax in this process (265). PPARγ activation by 

troglitazone also leads to increased caspase 3 activity in human liver cancer cells (266) 

and in human malignant astrocytoma cell lines (267). 



  

 

52

Shimada and coworkers noted that troglitazone-induced cell death in colon 

cancer cells was inhibited by pan-caspase inhibitors (268). Furthermore, ciglitazone-

induced apoptosis in human pancreatic cell lines is blocked by the pan-caspase inhibitor 

ZVAD-FMK but not by a specific caspase-3 inhibitor  (269). Moreover, treatment of 

human liver cancer cell lines (266) and human thyroid carcinoma cells (270) with 

PPARγ agonists did not increase levels of Bax protein, suggesting that PPARγ agonists 

induce several different apoptotic pathways. TNF-related apoptosis inducing ligand 

(TRAIL) is a member of TNF family of cytokines that induces apoptosis and both 

natural and synthetic PPARγ agonists sensitize tumor cells but not normal cells to 

induction of apoptosis by TRAIL. PPARγ ligands selectively decrease levels of FLICE-

inhibitory protein (FLIP), an apoptosis-suppressing protein that blocks early events in 

TRAIL/TNF family death receptor signaling. PPARγ ligands induced ubiquitination and 

proteasome-dependent degradation of FLIP, without concomitant decreases in FLIP 

mRNA (271). 

PPARγ-independent actions. PPARγ agonists inhibit proliferation of several 

types of cancer cells, however, the role of PPARγ remains controversial; and in many 

cases the compounds induce receptor-independent effects. The sensitivity of cancer cell 

lines growth inhibition by PPARγ agonist does not correlate with levels of PPARγ 

protein in these cells. For example glitazone resistance occurs even in tumors with high 

PPARγ concentrations (e.g., breast-tumor cells) (272). Homologous recombination was 

used to create embryonic stem cells with a null mutation for PPARγ and these stem cells 

could be differentiated into macrophages when treated with glitazones (273). 
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Troglitazone-induced cell cycle arrest and subsequent cell death; and this was associated 

with downregulation of c-myc, c-myb and cyclin D2 expression. These genes lack a 

PPRE in their promoter regions, indicating that these responses were not directly 

mediated through PPARγ (274). Similar results were observed in the human leukemia 

cell line (KU812) suggesting that troglitazone-mediated growth suppression was 

PPARγ-independent and was associated with decreased cyclin E levels and 

hyperphosphorylation of RB (275). 

In human glioblastoma T98G cells, TZD induced cell cycle arrest and apoptosis, 

and the fomer response was associated with increased p27 levels, whereas apoptosis was 

mediated by downregulation of anti-apoptotic Bcl2 and upregulation of pro-apoptotic 

Bax and caspase-3 activation. None of these responses were blocked in cells treated with 

a specific PPARγ antagonist (276). The mechanisms by which PPARγ agonists induce 

glioma cell toxicity were also investigated in another study using rosiglitazone and 

ciglitazone. The rapidity of the mitochondrial damage caused by PPARγ agonists and the 

failure to reverse the cytotoxic effects using the specific PPARγ antagonist GW9662 

suggested a receptor-independent action (277). 

Troglitazone inhibited growth of HCT-116 colon cancer cells by induction of 

NAG-1, most likely via direct activation of the transcription factor early growth 

response-1 (EGR-1) (278). Induction was not blocked by a PPARγ antagonist, thus 

indicating another mechanism by which TZD can cause growth inhibition. In MCF-7 

breast cancer cell lines, troglitazone- induced apoptosis was dependent upon GADD45 

expression. Regulation of GADD45 by troglitazone occurred at the transcriptional level 
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and was associated with MAPK activation. In the same studies neither rosiglitazone nor 

pioglitazone induced GADD45 expression indicating a receptor-independent response 

(279). 

The triterpenoid CDDO inhibits the growth of ovarian cancer cells that express 

PPARγ, but the effects of CDDO were not blocked after co-treatment with the PPARγ 

antagonist T007, suggesting that  growth inhibition was  PPARγ independent 

(280). Another group of PPARγ agonists, 1, 1-bis (3'-indolyl)-1-(p-substituted phenyl) 

methanes inhibited the G0/G1-S phase progression in MCF-7 and several cancer cell 

lines by downregulation of cyclin D1. The PPARγ inhibitor T007 did not affect 

downregulation of cyclin D1 indicating that this response was also PPARγ independent 

(281). More direct evidence of PPARγ independent effects comes from receptor 

knockout studies. Embryonic stem cell induced tumor growth was inhibited by 

troglitazone and ciglitazone in both PPARγ (-/-) and PPARγ (+/+) mice, confirming the 

receptor-independent actions of PPARγ agonists. These compounds blocked the G1/S 

phase transition by inhibiting translation initiation as a consequence of partial depletion 

of intracellular calcium stores. This resulted in activation of PKR, a kinase that 

phosphorylates the alpha subunit of eukaryotic initiation factor 2, thus rendering it 

inactive (282). 

Indirect and direct evidence suggest that many of the anticancer activities of 

PPARγ ligands are PPARγ-independent, however the mechanisms of receptor-

independent pathways warrant further study. Although PPARγ is well characterized, 

there are still numerous challenges before modulators of this receptor will be adopted for 
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therapeutic applications in treating cancer. This will require development of selective 

PPARγ modulators with minimal side effects and an increased understanding of both 

receptor-dependent and independent pathways. 

PPARγ and colon cancer. PPARγ is overexpressed in multiple tumor-types 

(283), and there is evidence that various structural classes of PPARγ agonists inhibit 

growth and induce apoptosis in colon cancer cells/tumors and other cancer cells/tumors 

(235, 241, 253, 284-302).  There is evidence that PPARγ is overexpressed in human 

colon tumors compared to non-tumor tissues (283); however, results of laboratory 

animal studies have been contradictory (239, 291, 303-308). Sarrat and coworkers 

reported that the TZD troglitazone decreased colon tumor growth and malignancy in 

colon tumor xenografts in nude mice (239); however, two reports showed that 

troglitazone and rosiglitazone enhanced colon tumorigenesis in the APCmin+/- mouse 

model which expresses a nonsense mutation in the APC gene (308, 309).  In contrast, 

subsequent studies demonstrate that TZDs inhibit intestinal polyp formation and 

suppress hyperlipidemia in APC1309 mice which contain a truncation mutation in the 

APC gene and is an animal model for the human genetic mutation that leads to an 

increased incidence of colon cancer (291, 305).  A recent study also demonstrated that 

troglitazone enhances colon tumorigenesis in wild-type and mutant mice (306); and it is 

possible that the effects of troglitazone may be due to the intrinsic (PPARγ-independent) 

properties of the compound which has subsequently been withdrawn as a drug for 

treating Type II diabetes due to toxic side-effects.  Further support for the protective role 
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of PPARγ in colon cancer comes from a study showing that homozygous PPARγ 

deficiency in APCmin+/- mice enhances tumorigenesis (307). 

Research in our laboratory has identified a series of 1,1-bis(3'-indolyl)-1-(p-

substitutedphenyl)methanes (C-DIMs) which contain p-trifluoromethyl (DIM-C-

pPhCF3), p-t-butyl (DIM-C-pPhtBu) and p-phenyl (DIM-C-pPhC6H5) and activate 

PPARγ  (281, 297, 299, 301, 310-313).  These PPARγ-active C-DIMs induce both 

PPARγ-dependent (induction of caveolin-1) and -independent (ER stress, NAG-1) 

proapoptotic and growth inhibitory responses in colon and other cancer cell lines.  The 

antitumor activity of other PPARγ agonists is also due to their activation of receptor-

dependent and -independent pathways.   

Cyclooxygenase (COX) inhibitors 

COX is one of the rate limiting steps in the metabolism of arachidonic acid to 

prostaglandins and thromboxanes, and COX inhibitors which include a broad spectrum 

of NSAIDs are extensively used as anti-inflammatory agents (Fig. 1.14) (314).  COX-2 

is also overexpressed in multiple tumor types including colon cancer;  and both NSAIDs 

and COX inhibitors have been investigated as targets for cancer chemoprevention and 

chemotherapy (314-317).  Several studies show that some COX inhibitors including 

aspirin decrease the incidence and/or mortality rate of human colorectal cancer (318-

320).  The COX-2 inhibitor sulindac has also been successfully used for treating patients 

with familial adenomatous polyposis coli (FAP), a hereditary colon cancer syndrome in 

which there is rapid and early development of polyps and tumors (321-323).  COX-2 

inhibitors are also highly effective chemotherapeutic agents for treating colon cancer in 
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laboratory animals including carcinogen-induced and transgenic rodent models (324-

326).   
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Fig. 1.14. Inhibition of prostaglandin synthesis by COX-inhibitors (327). 
 
 

The mechanisms of COX-2 inhibitor-mediated cancer chemoprevention and 

chemotherapy are complex, and the inhibition of prostaglandin/thromboxane production 

(e.g. prostaglandin E2) contributes to these effects (314-317).  However, it is also clear 

that COX-2 inhibitors can be effective in cells with minimal COX-2 expression and 

many cell growth inhibitory responses induced by these compounds are COX-2-

independent (328-330).  For example, sulindac sulfone induces apoptosis in Caco-2  

cells by decreasing polyamine levels through activation of PPARγ-dependent induction 
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of spermidine/spermine N-acetyltransferase gene expression.  

The cancer chemotherapeutic actions of COX-2 inhibitors have also been linked 

to their antiangiogenic activity and inhibition of VEGF expression (314, 317); and 

studies in this laboratory investigated the effects of the COX-2 inhibitors celecoxib 

(Celebrex), nimesulfide (NM) and NS-398 on colon cancer cell growth and expression 

of the key angiogenesis protein VEGF (331).  Treatment of SW-480 colon cancer cells 

with Celebrex, NS-398 or NM decreased vascular endothelial growth factor (VEGF) 

mRNA and immunoreactive protein expression.  This was also accompanied by 

decreased transactivation in cells transfected with constructs containing VEGF gene 

promoter inserts.  Deletion analysis of the VEGF promoter indicated that decreased 

VEGF expression by COX-2 inhibitors was associated with the proximal -131 to -47 

GC-rich region of the VEGF promoter which binds Sp proteins.  Treatment of SW-480 

cells with Cel, NM and NS also decreased Sp1 and Sp4, but not Sp2 or Sp3 protein 

expression.  Similar results were observed in RKO, HT-29 and DLD colon cancer cells 

demonstrating comparable responses in COX-2 expressing and non-expressing colon 

cancer cell lines.  COX-2 inhibitors do not affect Sp1 or Sp4 mRNA levels in SW-480 

cells; however, decreased expression of both proteins was accompanied by increased 

protein ubiquitination and inhibited by the proteasome inhibitor gliotoxin.  These results 

suggest that the antiangiogenic activity of COX-2 inhibitors in colon cancer cells is 

linked to activation of proteasome-dependent degradation of Sp1 and Sp4 protein. 
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Targeted therapies for esophageal cancer 

Table. 1.2. Potential tumor targets for esophageal cancer  (332) 

               

Growth regulation
Epidermal growth factor receptor
HER-2/Neu
Ki-67

Angiogenesis
Vascular endothelial growth factor  
Inflammation
Cyclooxygenase-2
Cell cycle control
p16
p21

Cyclin D1
Apoptosis
p53
bax
bcl-2
Metastatic potential
Tissue inhibitor of metalloproteinase
E-cadherin

Tumor targets

 

 

New drugs that target specific molecules are also being studied for treatment of 

esophageal cancer. Several clinical trials are in progress to test the combination of drugs 

with different mechanism of actions. Potential tumor markers or targets for the 

aggressive esophageal squamous cell carcinoma or gastroesophageal adenocarcinoma 

have been identified and are listed in Table 1.2 (333-335). Earlier these targets were 

understudied as biomarkers to predict the clinical response after chemotherapy or 

chemoradiotherapy but have been now identified as specific molecular targets (333-338). 
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MAbs and signal tranduction/tyrosine kinase inhibitors (TKIs) for EGFR, mAbs for 

HER-2/Neu receptor and VEGF ligand, oral COX-2 inhibitors and many other targeted 

therapies are in Phase I/II clinical trials.    

Drugs that target epidermal growth factor receptor (EGFR) 

 EGFR is a member of ERBB receptor tyrosine kinase family and includes four 

members namely EGFR1 or ERBB1, ERBB2 (HER-2), ERBB3 and ERBB4. EGFR is a 

170 kDa transmembrane glycoprotein having an extracellular domain anchored to the 

plasma membrane and a cytoplasmic component containing a tyrosine kinase domain. 

Upon ligand binding to the extracellular domain, the receptor is activated to form hetero 

-or homodimers resulting in activation of the cytoplasmic tyrosine kinase activity. This 

results in initiation of intracellular signal transduction cascades that regulate cellular 

growth and multiple functions depending on the substrate of the tyrosine kinase (Fig. 

1.15) (339).   

Known ligands for EGFR include EGF and transforming growth factor alpha 

(TGF-α). The Ras-Raf mitogen–activated protein kinase and PI3K/Akt are two of the 

important downstream signaling pathways that regulate the cellular functions for the 

HER /EGFR family (340-343). EGFR and mutant forms of the receptor are 

overexpressed in esophageal and other human cancers; and expression of this receptor is 

positively associated with poor prognosis and aggressiveness of the disease. In order to 

target this receptor monoclonal antibodies and small molecule inhibitors of the tyrosine 

kinase activity of the receptor have been developed.  

 



  

 

61

Plasma Membrane

P
P

P
P

Extracellular domain

Intracellular
domain

EGFR

Ligand
(TGF-α , EGF)

TKI

Grb2

SOS

Ras
Raf-1

MEK

MAPK
Other enzyme or 
adaptor protein

Radiation or 
Chemotherapeutic agents

Metastasis
Cell motility, 
invasiveness

Growth Effects
Proliferation, 

Differentiation

Angiogenic effects
Bloodvessel formation, invasion

metastases

S G1

G2 M

Gene activation
Cell cycle progression

DNA 
damage 
and 
repair

Growth arrest
Or

apoptosis

 
 
Fig. 1.15. Schematic representation of the EGFR in the transmission of signals 
regulating tumor growth and metastasis (344). 
 

 

EGFR Antibodies 

Cetuximab is a mouse-human chimeric antibody of the IgG1 subclass and binds 

to EGFR or HER-1. The antibody inhibits ligand binding to the EGFR and blocks  

phosphorylation of the tyrosine kinase domain and  inhibits its activity (345). Cetuximab 

also decreases receptor levels by inducing internalization of the receptor which leads to 

receptor degradation and inhibition of activity (346). Cetuximab has been used in 

clinical trials for colorectal and head and neck cancers. There are several clinical trials  

being carried out including a South-West Oncology Group (SWOG) trial of cetuximab 

as second line therapy for patients with metastatic esophageal adenocarcinoma. A 
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Memorial Sloan-Kettering Cancer Center study of cetuximab in irinotecan/cisplatin-

refractory patients with metastatic esophageal cancer and a Dana-Farber Cancer Institute 

preoperative trial with cisplatin, irinotecan, cetuximab and radiation are also underway. 

There are significant improvements in patients in Phase I studies using EGFR-directed 

mAbs and this is accompanied by minimal toxicity. 

EGFR tyrosine kinase inhibitors 

These are small molecules that inhibit the tyrosine kinase activity of EGFR by 

inhibiting the binding of ATP to the tyrosine kinase domain and thus inhibit its 

phosphorylation and  signal transduction (347). Erlotinib (Tarceva) and geftinib (Iressa) 

have been approved as second line therapy for metastatic non-small cell lung cancer 

(NSCLC) and four Phase II clinical trials with these inhibitors are ongoing for treatment 

of  esophageal and gastroesophageal adenocarcinomas. The partial response rates (PR) 

of these inhibitors as single agents  are outlined in  Table 1.3.  In  clinical trials for 

NSCLC only, erlotinib as a single agent showed a survival advantage when compared to 

placebo treated group, although both geftinib and  erlotinib showed significant partial 

response rates (9-19 %), disease control (36-54%) and symptomatic improvement (35-

43%) (348-350). 

Drugs that target HER-2/Neu  

HER-2/Neu, also referred to as ERBB2 is a proto-oncogene localized in 

chromosome 17q. Amplication of this gene is observed in up to 30% of breast cancers 

and is related to the aggressiveness of the tumor (351, 352). Several studies have 
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Table. 1.3. Tyrosine kinase inhibitors: Partial response (PR) rates in metastatic cancers 
(332) 

 

Cancer type                                            Erlotinib (%PR)                     Gefitinib (%PR) 

NSCLC                                                           9-12                                              9-19 

Head and neck squamous cell                           4                                                  11 

Gastric adenocarcinoma                                    0                                                   1 

Esophageal, gastroesophageal junction          9-12                                               12     

 

 

observed overexpression of HER-2/Neu in esophageal squamous cell carcinomas and 

gastroesophageal adenocarcinomas; and this receptor is a potential target for treatment of 

esophageal cancer. Overexpression of this receptor is associated with poor response to 

chemotherapy and invasiveness of the disease (353). Trastuzumab (Herceptin) is a 

humanized IgG1 antibody that targets HER-2/Neu antigen and this drug has been 

approved by FDA for treatment of HER-2/Neu-positive  metastatic breast carcinoma 

(354). Safran and colleagues have used trastuzumab, paclitaxel, cisplatin and radiation in 

a PhaseI/II trial in patients with locally advanced gastroesophageal cancer (355). The 

trial has confirmed the efficacy for addition of trastuzumab with the standard, combined 

modality regimen. Many other clinical trials using this mAb are underway for treatment 

of esophageal cancer. 

Drugs that target angiogenesis  

VEGF is overexpressed in 30-60% of esophageal cancers and is associated with 
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poor survival and clinical response and the VEGF neutralizing antibody bevacizumab 

has been developed as antiangiogenic therapy (356-359). As a monotherapy or in 

combination with other therapies, there are more than 30 clinical trials using 

bevacizumab for treatment of solid tumors and hematologic cancers; and for the 

treatment of esophageal cancer, it is still in the early stage. A Phase II study of 

irinotecan, cisplatin and bevacizumab in patients with metastatic gastroesophageal 

adenocarcinomas yielded positive encouraging results (360). VEGF antibody exhibits a 

radiosensitizing effect in several mouse xenograft models including lung, colon, glioma 

and esophageal cancers suggesting that this antibody gives an enhanced anticancer effect 

when combined with radiation (361-365). 

Drugs that target COX-2 

COX-2 affects many pathways including carcinogenesis, apoptosis, 

inflammation, and regulation of immune system (366, 367). There is increasing evidence 

to link COX-2 with carcinogenesis in Barrett’s esophagus; and the use of COX-2 

inhibitors such as aspirin and NSAID’s reduce the risk for esophageal cancer (368, 369). 

With the use of these COX-2 inhibitors such as Celecoxib (Celebrex) at higher doses, an 

increased risk of thrombosis has been observed; and hence NCI trials with these 

inhibitors were sustained. Several  trials are in progress using COX-2 inhibitors in 

combination with radiotherapy for treatment of esophageal cancer (370). 

P53 gene therapy 

Abnormalities or mutations in the p53 tumor suppressor gene are associated with 

esophageal cancer in 40-60% of the patients (371, 372). P53 genetic analysis is used as a 



  

 

65

prognostic indicator of survival and predictor of response to the treatment for esophageal 

cancer (338, 373-375). Retroviral or adenoviral gene expression mediated p53 gene 

therapy has been evaluated in preclinical tumor models and results from these studies 

revealed its efficacy to maintain drug and radiation sensititvity and induces apoptosis in 

the tumors (376-378). Based on these results Phase I trials with adenovirus-mediated 

wild-type p53 gene transfer in combination with cisplatin  were carried out and were 

revealed to be safe and efficiently induce biological effects in patients with advanced 

lung cancer (379-381). Similar trials in patients with esophageal cancer are in progress. 

Targeted therapies for pancreatic cancer 

Drugs that target epidermal growth factor receptor (EGFR) 

EGFR inhibitors erlotinib and gefitinib  are now being tested against pancreatic 

cancer along with cetuximab  (35, 382). A Phase III clinical trial conducted with 569 

patients with advanced pancreatic cancer randomly received gemcitabine alone or in 

combination with erlotinib and the increased effects of the combined therapy  

resulted in approval of this therapy.  One-year survival rates were higher (24%) in the 

combination therapy group compared to the survival rate (17%) of the group receiving 

gemcitabine alone (383). 

Drugs that target angiogenesis 

Antibodies against angiogenic factors such as bevacizumab are being tested for 

treatment of pancreatic cancer in combination with gemcitabine. Results of a Phase II 

trial with this combination were encouraging and futher confirmatory studies are being 

implemented with gemcitabine plus bevacizumab. 



  

 

66

Drugs that target K-ras 

Since K-ras mutations are observed in most pancreatic tumors, proteins in the K-

ras pathway are being investigated as drugs targets. Activation of ras and its substrates 

depends on farnesylation or prenylation, a process which adds hydrophobic groups that  

facilitates membrane association of the proteins. Farnesyl transferase is an enzyme 

involved in farnesylation of proteins bearing a CaaX motif, and this includes the Ras 

superfamily of proteins. Farnesyl transferase inhibitors such as tipifarib and lonafarnib 

are being evaluated for treatment of pancreatic cancer  (384). Preliminary results from 

Phase II studies with these inhibitors alone or in combination with 5-FU or gemcitabine 

in patients with advanced pancreatic cancer resulted in a prolonged response. Ongoing 

Phase III trials will determine the clinical activity of these drugs and whether they can be 

used alone or in combination with other cytotoxic drugs. 

Drugs that target matrix metalloproteinases (MMPs) 

Matrix metalloproteinases belong to the family of zinc metalloendopeptidases 

that play a significant role in tissue remodeling by degrading the basement membrane 

and ECM. They are not only required for physiological processes but are also involved 

in tumor invasion, growth, metastasis and angiogenesis. MMPs are divided into five 

groups namely stromelysins, collagenases, gelatinases, membrane type MMPs and other 

MMPs, with about eighteen different subtypes and these are summarized in Table 1.4. 

(385-388). 

 

 



  

 

67

Table. 1.4. Different classes of MMPs (389) 

Family of Matrix Metalloproteinases (MMPs)

Stromelysins

Collagenases

Gelatinases

Membrane-type MMPs

Other MMPs

MMP-3
MMP-7 (Matrily sin)
MMP-10
MMP-12 (Metalloelastase 

MMP-1
MMP-8
MMP-13

MMP-2

MMP-9

MMP-14 (MT-MMP1)
MMP-15 (MT-MMP2)

MMP-16 (MT-MMP3)
MMP-17 (MT-MMP4)
MMP-24 (MT-MMP5)

MMP-18 (Xenopus MMP)
MMP-19

MMP-20 (Enamely sin)

  

 
 

MMPs are produced as propeptides and are autocatalytic cleaved to form active MMPs. 

This activation can be induced using organomercurials such as p-aminophenylmercuric 

acetate which binds in vitro to the conserved cysteine residue in the propeptide and it is 

then released from the covalently bound catalytic zinc iron. In vivo, MMPs are cleaved 

by a wide range of different extracellular proteinases such as plasmin, serine proteases 

and others (390). MMPs are regulated in tissues by endogenous tissue inhibitor of 

metalloproteinases (TIMPs). The specific role of TIMPs is unclear and they may 

promote tumorigenesis by activating MMPs or inhibit MMP activity and exhibit 

antitumor activity. MMPs are upregulated in many tumors including thyroid, prostate, 
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ovarian, gastric, lung, head and neck, pancreatic and colorectal carcinomas; and this 

increased expression correlates with tumor invasiveness of the disease (386, 387). MMP-

2 and MMP-9 play a major role in tumor metastases; and a study by Bramhall and his 

colleagues showed that MMP-2 mRNA was expressed in approximately 93% of tumors 

from pancreatic cancer patients. Northern blot analysis and in situ the  hybridization did 

not detect MMP expression in normal pancreatic tissue specimens (391). MMPs and 

particularly MMP2 and to a lesser extent MMP-9 play an important role in the 

pathogenesis of pancreatic cancer as indicated in Table 1.5, however, the precise 

function of these protein has not  yet been identified (392-394). BB-94 (Batimastat), 

inhibited MMP-2 activity in pancreatic cancer cells and inhibited pancreatic cancer cell 

invasion without affecting cell proliferation and in an orthotopic nude mouse model BB-

94 treated animals formed fewer tumors and exhibited decreased metastases (395-397). 

An enhanced protective effect was observed  in animals cotreated with BB-94 plus 

gemcitabine, the standard drug used as a first line therapy for pancreatic cancer (398). 

BAY12-9566 and BB-2516 (Marimastat) are orally active synthetic inhibitors of matrix 

metalloproteinases and are being investigated in clinical trials for treatment of pancreatic 

cancer (399, 400). A Phase I study with marimastat determined that 100 mg was the 

highest dose that could be used with minimal toxic side- effects and this drug which is 

tumorostatic was evaluated in a chronic dosing study and a series of six subsequent 

Phase I/II trials were carried out in pancreatic, prostate, ovarian, and colorectal cancers. 
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Table. 1.5. MMP expression in pancreatic cancer (389) 

Year Study No. Patients MMP Findings

p

1995 Gress et al.

Koshiba et al.

Kuniyasuet al.

Ito et al.

Gong et al.

Maatta et al.

Ellenrieder et al.

Fukushima et al.

Yamamoto et al.

Correlation with degree of desmoplasia

Correlation with tumor extent, nodal status, 
metastases, and recurrence rate (MMP-2 only )

No correlations

Correlation with survival

Correlation with nodal status

Correlation with degree of desmoplasia

No correlations

Correlation with tumor extent, nodal status, and TNM
classification

Correlation with tumor extent, nodal status, and TNM
Classification and survival

1998

1999

1999

2000

2000

2000

2001

2001

8

33

22

46

15

35

18

70

70

2, 9

2, 9

2, 9

1

2, 9

2, 9, MT-1

2, 9, MT-1, MT-2, MT-3

7

7

MMP, matrix metalloproteinases; MT, membrane-bound; TNM, tumor, node, metastasis.

 

Changes in levels of tumor markers which  include cancer antigen (CA) 19-9 , PSA, 

CA125 and CEA,  respectively, were used as determinants of tumor response over a 28-

day period (401). The studies demonstrated a dose-dependent decrease in levels of serum 

tumor markers and this was accompanied by musculoskeletal side effects in patients who 

received the treatment beyond 28 days (402). Another Phase II study was conducted in 

113 patients with advanced pancreatic cancer using radiological/computed tomography 

response and changes in CA-19-9 levels as tumor response determinants. Approximately 

49% of the patients had stable disease by computed tomography over a 28-day treatment 

period with no difference in disease-free survival whereas decreased levels of serum CA 

19-9 were observed in 30% of the patients with a significant improvement in disease-

free survival. Based on these reports a large multiinstitutional prospective randomized 

trial was conducted with three different doses of marimastat 5, 10, or 25 mg BID or 
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gemcitabine  with survival as a primary end point (400). Survival was not significantly 

different between the groups, but was longer for patients with nonmetastatic disease 

when compared to metastatic disease in the group receiving marimastat alone, and 

slightly longer when compared to the group treated with gemcitabine alone. The 

National Cancer Institute of Canada sponsored a similar trial and compared gemcitabine 

with another oral synthetic MMP inhibitor, BAY12-9566 in patients with advanced 

pancreatic cancer. There was lower survival in the BAY12-9566 treated group compared 

to treatment with gemcitabine alone, the median progression-free survival in the 

gemcitabine treated group was 3.5 months but only 1.8 months for BAY12-9566 

treatment and the trial was terminated (403). 

Additional studies with these inhibitors has focused on localized disease or 

adjuvant therapy; for example, a Phase III study by the British Biotech in patients with 

resected pancreatic cancer observed a potential benefit using marimastat; and this study 

is still ongoing. 

NATURAL PRODUCTS IN THE TREATMENT OF CANCER 

Phytochemicals have been extensively used in traditional medicine by most 

cultures for thousands of years.  Various diseases are treated with crude or refined 

extracts derived from many natural sources, and the current widespread use of many 

nutriceuticals, herbal extracts, and other non-traditional medicines stems from the long 

history of their therapeutic applications (404-410).  Individual natural products from 

various sources have proven to be highly effective for treating many diseases and some 

of the earliest medicines including aspirin, morphine, quinine, digitoxin and pilocarpine 
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were derived from plants  (405, 406, 411).  The discovery of penicillin (412, 413) 

spurred research on natural products or "secondary metabolites" from various 

microorganisms resulting in the discovery and applications of several different structural 

classes of drugs including antibiotics such as penicillins, cephalosporines, streptomycin, 

tetracyclines, and their synthetic analogs (413-416); HMG-CoA reductase inhibitors 

lovastatin and mevastatin and their analogs are now extensively used as antilipidemic 

drugs for preventing and treating cardiovascular disease (417-419).  Natural products 

and their synthetic derivatives are also important drugs for cancer chemotherapy and are 

further discussed in this section.  Although newer high-throughput screening techniques 

and the development of chemical libraries have facilitated discovery of many new 

synthetic drugs (410), the overall percentage of new drugs derived from natural products 

or their synthetic analogs is approximately 25% (420-422). 

The root extract of mayapple, Podophyllum peltatum has been used for treating 

skin cancers and venereal warts by American Indians. The active ingredient in that root 

extract was identified to be podophyllotoxin which is the forerunner of today’s 

anticancer drugs etoposide and teniposide. Catharanthus roseus also called vinca rosea 

was used in Asian countries as a hypoglycemic agent, but not until 1958 was it found to 

have cytotoxic properties. The cytotoxicity of the plant has been attributed to two main 

ingredients, namely vinblastine and vincristine. In the modern world these compounds 

play a major role as anticancer drugs in treating childhood leukemias, testicular cancer, 

hodgkin’s lymphoma. Several structural analogs of these compounds are also in clinical 

use. Paclitaxel (Taxol), a compound purified from the bark of the plant Pacific yew 
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Taxus brevifolia has become one of the most important anticancer drugs and in contrast 

to the vinca alkaloids  paclitaxel stabilizes the microtubules during cell division (423). 

Camptothecin, a specific inhibitor of topoisomerase I enzyme is derived from 

Chinese ornamental tree Camptotheca accuminata. In order to overcome the bladder 

toxicity observed with camptothecin,  two structural analogs namely topotecan 

(Hycamptin) and irinotecan (Camptosar) were synthesized (424). Topoisomerase I is an 

enzyme that unwinds the DNA double helix during transcription and replication and 

camptothecin and its structural analogs  inhibit this enzyme which results in inhibition of  

transcription and replication  leading to cell death (425). 

There are several molecules derived from plants that are under investigation and 

show promise for treating different cancers. Polyphenols are antioxidant molecules 

found in the skin and seeds of grapes and also from tea leaves. These compounds are 

usually produced by plants as a defense mechanism. Polyphenols have antioxidant 

properties and thus counteract the effects of free radicals which are implicated as a 

causal factor in cancer progression. Resveratrol is a phytoalexin found abundantly in red 

wine and also in grapes, raspberries and other plants. It has also been shown to reduce 

tumor growth and decrease inflammation by inhibiting  nuclear factor κB (NFκB) (426-

429). 

 Epidemiological studies have indicated that nutrition plays a major role in 

carcinogensis. Adjustment of diets can reduce tumor formation (327, 430, 431) and  

epidemiological studies indicate that fruits, vegetables, herbs and spices contain 

compounds associated with cancer chemoprevention (432-435). Tea which is an 
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important source of anticarcinogenic polyphenols is the second largest drink consumed 

in the world. The major polyphenolic group of compounds in tea leaves is catechins 

which induce apoptosis and cell cycle arrest in cancer cells and tumors. Other 

chemopreventive and chemotherapeutic properties of polyphenolics include their 

antioxidant activity  (436), inhibition of cyclooxygenase and lipooxygenase enzymes 

(437), inhibition of angiogenesis (438), and VEGF receptor phosphorylation (439), 

activation of tumor suppressor protein p53 (440) inhibition of telomerase enzyme (441)  

and also activation of NAG-1, a pro apoptotic  member of TGF-β superfamily (442). 

Curcumin (diferuloylmethane) is a polyphenolic natural product and the active 

component of tumeric (Curcuma species) which is used in cooking and in 

traditional medicines (443-445). Curcumin has been extensively investigated as an 

anticancer drug in various cancer cells and laboratory animal models. Curcumin has  

been evaluated in humans, for cancer chemotherapy; and one of the major problems 

associated with clinical applications of curcumin is its low bioavailability (446-449). 

The effects of curcumin in various tumor models are highly variable and dependent on 

both tumor type and cell context. In many studies, curcumin inhibits cancer cell 

proliferation, induces apoptosis, and inhibits angiogenesis (450-453). Mechanisms 

associated with these effects are variable and may involve direct effects on 

mitochondria, activation of endoplasmic reticulum (ER) stress, and modulation of kinase 

pathways including the inhibition of NFκB.  

Anticancer drugs have been derived not only from  plants but also from microbes 

(bleomycins,doxorubicin) (454) and marine sources (bryostatin I, eleutherobin) (455, 
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456). Nature has already provided scientists with highly complex mixtures of medicinal 

compounds which need to be isolated and identified and subsequently modified to make 

them more effective for treating different types of cancers. 

Triterpenoids 

A large number of structural classes of natural products and their derivatives 

have been developed as chemopreventive and chemotherapeutic agents, and these 

include triterpenoids.  Lanosterol, a C-30 triterpenol, is degraded in several steps to 

cholesterol which, in turn, serves as a precursor for the biosynthesis of androgens, 

estrogens, progestins, glucocorticoids and mineralocorticoids.  Lanosterol and other 

triterpenoids are derived from squalene which undergoes 2, 3-epoxidation and 

cyclization to give tetracyclic triterpenes such as lanosterol and many other tetra- and 

pentacyclic triterpenene compounds (Fig. 1.16).  In addition to the differences in the 

overall ring or skeletal structure of triterpenoids, there are multiple sites within each ring 

that can undergo site and stereoselective oxidation or dehydrogenation along with 

oxidation of the exocyclic methyl groups.  Not surprisingly, there are thousands of 

triterpenoid natural products, and these compounds along with their synthetic derivatives 

exhibit a wide spectrum of biological activities. 

Oleanolic and ursolic acids are oleane-derived triterpenes that contain a carboxyl 

group at C-28 (methyl oxidation), and they have been used as traditional medicines in 

Asian countries due to their anti-inflammatory  and potential anticancer activities (457-

460) (Fig. 1.16).  Honda, Sporn and coworkers have synthesized several hundred 
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Fig. 1.16. Chemical structures of Squalene and different triterpenoids.  

 

derivatives of oleanolic and ursolic acid, and evaluated their potential anti-inflammatory 

activities as inhibitors of inducible nitric oxide synthase (iNOS).  The IC50 values of 

these analogs ranged over at least 4 orders of magnitude (461-466) and they identified a 

lead compound, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), and an 

imidazole derivative (CDDO-Im) as a group of highly potent anti-inflammatory and 

anticancer drugs (Fig. 1.17) (234, 280, 302, 466-483).  Initial studies showed that CDDO 

was a peroxisome proliferator-activated receptor γ (PPARγ) agonist that bound and 

activated receptor-dependent responses; however, many of the activities of CDDO and 

related compounds are PPARγ-independent and highly dependent on cell context.  
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Fig. 1.17. Chemical structures of synthetic derivatives of oleanolinic acid, CDDO and 
CDDO-IM. 
 
 
 

These compounds typically inhibit cancer cell proliferation and induce apoptosis 

through a variety of mechanisms including induction of endoplasmic reticulum stress,  

cellular redox, and direct perturbations of mitochondrial pathways.  A recent report 

showed that CDDO-Im inhibited aflatoxin-induced hepatocarcinogenesis through 

induction of a battery NrF2-dependent cytoprotective genes that alter the metabolism of 

aflatoxin (484, 485).  Research in this laboratory showed that CDDO compounds induce 

PPARγ-dependent transactivation in colon cancer cells; and this is accompanied by 

receptor-dependent induction of the tumor suppressor gene caveolin-1.  In contrast, 

induction of apoptosis and the proapoptotic NSAID-activated gene-1 (NAG-1) by 

CDDO was receptor-independent (302).  Currently CDDO is undergoing clinical trials at 

the M. D. Anderson Cancer Center for treatment of patients with leukemia. 
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Glycyrrhetinic acid and its derivatives 
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Fig. 1.18.  Chemical Structures of GA and the synthetic CDODA-Me analogs.  

 

Licorice root extracts have been extensively used for their therapeutic properties 

which include the potentiation of cortisol action, inhibition of testosterone biosynthesis, 

reduction in body fat mass and other endocrine effects (486-489).  The activities of these 

extracts are linked to different classes of phytochemicals particularly the major water-

soluble constituent glycyrrhizin and its hydrolysis product glycyrrhetinic acid (GA) (Fig. 

1.18).   

Many of the properties of licorice root can be attributed to GA; for example, GA 

inhibits 11β-hydroxysteroid dehydrogenase activity increasing corticosterone levels, and 
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this has been linked to apoptosis in murine thymocytes, splenocytes and decreased body 

fat index in human studies (489-492).  GA directly acts on mitochondria to induce 

apoptosis through increased mitochondrial swelling, loss of mitochondrial membrane 

potential, and release of cytochrome c.  GA has also been used as a template to 

synthesize bioactive drugs such as the carbenoxolone, the 3-hemisuccinate derivative of 

GA, which is used in treatment of gastritis and ulcers (493).  Some of the activity of 

carbenoxolone may be due to hydrolysis to GA; however, carbenoxolone itself induced 

oxidative stress in liver mitochondria and decreased mitochondrial membrane potential.  

Other carboxyl and hydroxyl derivatives of glycyrrhizic acid inhibit HIV and exhibit 

anti-inflammatory and immunomodulatory activities (494).  In addition, GA derivatives 

containing a reduced carboxylic acid group at C-30 (CH2OH) and some additional 

functional changes exhibited strong antioxidant activity (495).   

Ongoing studies in this laboratory are developing GA derivatives for cancer 

chemotherapy and as ligands for some nuclear orphan receptors. Introduction of a cyano 

group at C-2 position of oleanolic and ursolic acid increased the cytotoxicity of the 

analogues (464). Methyl 2-cyano-3,11-dioxo-18βolean-1,12-dien-30-oate (βCDODA-

Me), a synthetic derivative of GA is isomeric with 2-cyano-3,12-dioxoolean-1,9-dien-

28-oic acid CDDO-Me (βCDDO-Me), a 2-cyano derivative of oleanolic acid but differs 

with respect to the position of carboxylic acid group in the E-ring, the stereochemistry at 

C-18 (β versus α) in the E/D ring junction, and the enone function in the C ring 

(Fig1.18).  
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To investigate the importance of the stereochemistry at the C-18 position methyl 

2-cyano-3, 11-dioxo-18αolean-1, 12-dien-30-oate (αCDODA-Me) was also synthesized 

in our laboratory. Introduction of the 2-cyano group into α-glycyrrhetinic acid or β-

glycyrrhetinic acid enhanced their cytotoxicity; both compounds induced 

PPARγ−dependent transactivation in colon cancer cells and act as selective receptor 

modulators based on their tissue selective induction of caveolin-1 and KLF-4. These 

genes are associated with growth inhibitory and pro-apoptotic responses and the role of 

these responses on the anticarcinogenic activity  of these compounds as new class of 

anticancer drugs will be investigated. 

Betulin and derived lupane triterpenoids 

  Lupeol and betulin are pentacylic triterpenoids that contain a five-membered E 

ring and an exocyclic propylidene group and triterpenoids with a lupane skeleton have 

been identified as highly promising anticancer drugs (Fig. 1.19) (496-503). Lupeol  is 

found in medicinal plants and various fruits and exhibits multiple biochemical activities 

including inhibition of protein kinases, serine proteases, and topoisomerase II (504-506).  

Lupeol induces differentiation and exhibits a broad spectrum of anti-inflammatory and 

anticarcinogenic activities (502, 503, 507).  A recent study showed that lupeol  inhibited 

proliferation and induced apoptosis in pancreatic cancer cells; this was due, in part, to 

inhibition of Ras signaling which is frequently mutated (and constitutively active) in 

pancreatic cancer (502).   
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Fig. 1.19. Chemical structures of lupane derivatives. 
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Betulin or lup-20(29)-ene-3β,28-diol is found in concentrations as high as 30% 

(dry weight) in birch bark (508), and extracts containing betulin have been used in 

traditional medicine for treating skin diseases (509).  Betulin can be chemically modified 

to give compounds with anti-inflammatory, antibacterial, antiviral and anticarcinogenic 

activities, and many studies within this class of lupane derivatives have focused on the 

anticancer activity of betulinic acid (BA) (Fig. 1.19) (499).  BA has been identified in 

bark extracts but can also be readily synthesized in 75% yield from commercially-

available betulin by oxidation to give betulonic acid which can then be reduced to BA;  

these reactions are routinely carried out in this laboratory.  Initial studies with BA 

showed that it was a highly selective inhibitor of human melanoma cell proliferation 

through induction of apoptosis, and at doses of 50 - 500 mg/kg every 4 days, BA 

inhibited tumor growth in nude mice bearing MEL-2 melanoma cells as xenografts 

(510).  In parallel xenograft studies using MEL-1 cells, doses of BA as low as 5 mg/kg 

inhibited tumor growth, whereas at doses as high as 500 mg/kg, minimal toxicity was 

observed. In a human neuroblastoma cell line (SHEP), BA decreased mitochondrial 

membrane potential resulting in the release of cytochrome c and activation of multiple 

caspases (511).  Treatment of human melanoma cells with BA also decreases 

mitochondrial membrane potential, and this is accompanied by modulation of other 

proapoptotic pathways including activation of p38 and JNK and induction of reactive 

oxygen species (512).  

Subsequent studies have reported that BA or its derivatives exhibit 

antitumorigenic activity, not only in melanoma cells (500, 510, 513-517) but in other 
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tumor-derived lung, colon, prostate, leukemia, ovarian, endothelial carcinoma, breast, 

cervical, medulloblastoma, neuroblastoma, glioblastoma, liver, osteosarcoma, oral 

epidermoid carcinoma, and rhabdomyosarcoma cell lines (500, 510, 517-540).  Other 

lupane derivatives similar in structure to BA exhibit comparable activities in cancer cells 

(536, 541).  In most of these cell lines, the mechanisms of action of BA are variable; 

however, induction of apoptosis is clearly a predominant pathway.  Studies in this 

laboratory have demonstrated that like BA, CDDO and related compounds induce 

apoptosis in several cancer cell lines; and we have observed similar responses using a 

series of new 2-cyano-substituted analogs of glycyrrhetinic acid (GA) that are isomeric 

with CDDO (302) .  However, results obtained with GA derivatives showed that the 

unsubstituted compounds exhibited minimal activity as inhibitors of cancer cell 

proliferation, whereas BA was active in several cell lines at 1 - 5 μM concentrations.  

The high cytotoxicity of 2-cyano substituted analogs of GA was due, in part, to their 

PPARγ activity which is not observed with BA and thus we hypothesized that 

introduction of 2-cyano group into the lupine skeleton of BA would generate a new class 

of PPARγ agonists. Studies to compare the effects of BA, CN-BA, and the 

corresponding methyl ester (CN-BA-Me) in pancreatic and colon cancer cells are carried 

out (Fig. 1.19). These data suggest that among the naturally-occurring triterpenoids 

which contain a carboxylic acid moiety in the E-ring derived from oleane (GA and 

oleanolic acid), ursane (ursolic acid), and lupane (BA), BA was clearly the most potent 

antitumorigenic compound.  Based on the reported low toxicity of BA (510) coupled 

with its high anticancer potency, we initiated both in vitro and in vivo studies to probe 
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the antiproliferative, antiangiogenic and proapoptotic mechanisms of action of BA and 

its cyano analogs in models for prostate, bladder and other cancers.  Our preliminary 

results now show a novel mechanism of action for BA which involves degradation of Sp 

proteins in tumors, whereas minimal effects on Sp protein expression were observed in 

non-tumor tissue.  These results are consistent with the low toxicity of BA in rodent 

models (510).  Moreover, we also show that BA-induced degradation of Sp proteins 

inhibits Sp-dependent antiapoptotic, angiogenic and proliferative pathways in prostate 

and colon cancer cells. 

SPECIFICITY PROTEINS AS NEW DRUG TARGETS 

 Specificity protein 1 (Sp1) was the first transcription factor identified in 1983 by 

its ability to selectively bind and activate transcription of the viral SV40 promoter (542) , 

and the Sp/Krüppel-like factor (KLF) family of zinc finger transcription factors exhibit a 

broad range of tissue-specific and overlapping functions (543-547). Subsequent studies 

revealed that multiple genes that contain GC-boxes are activated by Sp1 and related Sp 

proteins,  including genes such as thymidine kinase (548, 549) , insulin-like growth 

factor- receptor (550)(96), dihydrofolate reductase (DHFR) (551), growth hormone (GH) 

receptor (552)(98), and alcohol dehydrogenase 5 (ADH5) (553). Kadonaga et.al 

determined   various functional domains by cloning Sp1 cDNA from HeLa cell RNA 

using in vitro and whole cell assays (554). These proteins are characterized by their 

carboxy-terminal domains C and D, which contain three C2H2-type zinc fingers that 

recognize GC/GT boxes in promoters of target genes. The amino-terminal domains A 

and B of Sp/KLF proteins are highly variable in both structure and function (Fig. 1.20). 
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Fig. 1.20. Structural motifs in Sp family of proteins (554). 

 

Sp proteins interact with KLF proteins and also with other transcription factors on GC-

rich promoters to activate or repress different classes of genes that are important in the 

regulation of cellular homeostasis (555). Sp1 and Sp3 proteins are ubiquitously 

expressed and have been extensively investigated. For example, Sp1-/- embryos exhibit 

multiple abnormalities, retarded development and embryolethality on day 11 of gestation 

(556).  Sp3-/- mice also exhibit growth retardation, defects in late tooth development, and 

the animals die at birth (557, 558).   

Other members of the Sp/KLF family such as Sp5, Sp6, Sp7, Sp8, and the 

Krüppel-like factors differ from the first four members Sp1,Sp2,Sp3 and Sp4 because 

they are generally of lower molecular weight and do not contain the glutamine-rich N-

terminal activation domain  Sp1-dependent activation of gene expression requires 

interaction with a coactivator complex called CRSP (cofactors required for activation of 

Sp1). CRSP is a multisubunit complex consisting of six to eight polypeptides and is also 
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involved in Sp1-mediated activation of GC-rich genes with TATA boxes or initiator 

sequences and interacts with proteins of the RNA polymerase preinitiation complex 

(559, 560). Sp1 directly interacts with the TBP (561), TATA-binding protein associated 

factors (TAFs) such as TAF130 (562) and TAF110 (563, 564) and other members of the 

preinitiation complex through the glutamine-rich activation domains A and B and with 

TAF55 through the C-terminal domain (565).  Sp1 also interacts with proteins that are 

not involved directly with the transcription machinery and these interactions may 

activate or repress transcription. Most of the proteins that functionally interact with Sp1 

are other sequence-specific transcription factors and these include Oct-1 (566), NF-κB 

(567, 568), and E2F-1 (549, 569). Sp1 and E2F interact cooperatively on the 

dihydrofolate reductase (DHFR) and thymidine kinase promoters resulting in a 

synergistic activation of transcription. Sp1 also functionally and physically interacts with 

GATA-1, an erythroid transcription factor and this interaction activates the 

erythropoietin receptor (EpoR) and chicken α-globin promoters (570). 

Sp proteins and cancer 

The critical requirement for Sp proteins during embryonic and postnatal 

development is in contrast to decreased expression in mature tissue/organs, which are 

relatively quiescent.  In contrast, there is increasing evidence that Sp1 and other Sp 

proteins such as Sp3 and Sp4 are overexpressed in tumors compared to most other 

tissues/organs (571-576). In gastric cancer, expression of Sp1 was high in the tumor cells 

whereas the expression was weak in the stromal and normal glandular cells (576). Lou 

and coworkers (577) reported that transformation of fibroblasts resulted in an 8- to 18-



  

 

86

fold increase in Sp1 expression; and these transformed cells formed highly malignant 

tumors in athymic nude mouse xenograft models, whereas untransformed fibroblasts 

expressing low levels of Sp1 did not form tumors.  In addition, ribozyme-dependent 

knockdown of Sp1 in the transformed cells decreased VEGF expression and increased 

apoptosis.  Sp1 knockdown by using small inhibitory RNA against Sp1  was shown to 

inhibit G0-G1 to S-phase progression in MCF-7 breast cancer cells (578). Knockdown of 

Sp3 and Sp4 along with Sp1 in pancreatic cancer cells show that these proteins regulate  

expression of VEGF, VEGF receptor 1(VEGFR1 or Flt), and VEGFR2 (KDR) (579-

581). In addition, Sp3 has been shown to act as a repressor of p27, a CDK inhibitor in 

pancreatic cancer cells showing that Sp1 and Sp3 play a role in cancer cell proliferation 

and angiogenesis. 

Since Sp proteins are overexpressed in tumors/cancer cells and regulate 

expression of growth, angiogenic and survival genes, then agents that target Sp protein 

degradation should be highly effective as anticancer drugs. Different strategies to 

degrade or repress Sp protein-dependent transactivation are illustrated in Figure 1.21. Sp 

proteins can be targeted by nucleic acid therapy by designing oligos that bind and 

sequester Sp proteins or develop chemical intercalators that inactivate or block Sp 

binding to GC rich motifs. In addition, small molecules that selectively inhibit Sp protein 

activation or expression would also block both Sp-dependent genes or pathways.  The 

COX-2 inhibitor celecoxib decreases  expression of Sp1 and VEGF by  downregulating 

the expression of  Sp1 in pancreatic cancer cells (582).  The Cox-2 inhibitor Celecoxib, 

the NSAID tolfenamic acid (and related anthranilic acids), and the phytochemical 
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Fig. 1.21. Strategies for targeting Sp proteins in cancer cells. 

 

betulinic acid also represses Sp protein expression in cancer cells and tumors but not in 

non-tumor tissue (331, 547, 578-581, 583-585). Moreover, these chemicals are potent 

inhibitors of tumor growth and metastasis and exhibit minimal toxic side-effects. 

Previous studies on these compounds demonstrated their cytotoxicity, proapoptotic and 

antiangiogenic activities but did not show the important contributions of Sp protein 

repression in mediating these responses. Many other anticancer drugs including 

phytochemicals are also cytotoxic and induce antiangiogenic and proapoptotic effects in 

cancer cells. We hypothesize that the underlying mechanism of action may be through 

repression of Sp proteins. 
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MICRORNA’S AS NEW DRUG TARGETS 

MicroRNA’s(miRNAs) are small noncoding single stranded RNA molecules 

about 18-24 nucleotides in length that  play a role in posttranscriptional gene regulation 

(586, 587). The first miRNA discovered was lin-4 from Caenorhabditis elegans (588). In 

mammalian cells, miRNAs are processed from primary transcripts known as pri-miRNA 

which are generated by type II RNA polymerase in the form of long, polycystronic 

messages (589, 590). These pri-miRNA’s are then processed into short hairpin 

precursors of about 60-110 basepair pre-miRNA’s by a microprocessor complex 

comprised of an RNase III endonuclease enzyme Drosha and a double stranded RNA 

binding protein DGCR8 in the nucleus. These pre-miRNA’s are again transported back 

to cytoplasm by exportin 5 where they are processed by Dicer into mature miRNA’s of 

about 18-24 base pair length with 5’ phosphates and a 2-nucleotide 3’ overhang (591-

593). Mature miRNA’s are partially complementary to multiple mRNA molecules and 

hybridization results in downregulation of their gene expression. The antisense strand of 

the miRNA is incorporated into the ribonucleoprotein complex called RNA-induced 

silencing complex (RISC) and this complex binds to the target mRNA at the 3’UTR 

through complementary base pairing as shown in the Figure 1.22 (594).  

Each miRNA interacts with multiple  mRNAs by perfect base pairing and this 

results in translational inhibition and silencing of multiple transcripts (595). MiRNAs 

 

 



  

 

89

Pol II miRNA gene

AAAAA
AAAAA

Drosha

DGCR8
Microprocessor

Ran+GTP

Exportin 5

DIC
ERmiRNA:miRNA duplex

Pre miRNA

CYTOPLASM

NUCLEUS

RISCmiRNA

Translational 
repression

mRNA
degradation

 
 
Fig. 1.22. Schematic representation of miRNA biogenesis (596). 

 
 

have a wide range of functions which include regulation of cell proliferation, 

differentiation, death, stress resistance, and fat metabolism (597). The number and tissue  

distribution of miRNAs is not yet been determined but some miRNAs are  present in all 

tissues and others are tissue specific (598). The function of miRNAs in normal and 

diseased tissues is being extensively studied and transgenic mice deficient in specific 

miRNAs have  clarified the physiologic roles of specific miRNAs (599-602). For 

example, miR-208 is a cardiac-specific miRNA and knockdown of this miR in mice 

resulted in modulation of both a and b myosin heavy chain expression of the muscle 

fibers and their response to both stress and hypothyroidism (602). 
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MicroRNA’s and cancer 

The role of microRNA’s in the development of cancer is being extensively 

studied and includes their use as biomarkers for cancer diagnosis and prognosis (603-

606). The technology of miRNA microarrays is an important element for  high 

throughput screening of miRNA fingerprints in normal and cancer cells (605). Other 

miRNA technologies have also been developed and these include macroarrays (607), 

bead-based flow cytometric miRNA expression (606) and quantitative reverse 

transcription-PCR (608) for determining microRNA expression profiles in different 

types of cancers. Cancer-specific miRNA’s have been identified in almost every tumor 

type using these technologies. The identification of miRNA’s that are altered in  

different types of solid tumors have lead to identification of the their role in pathways 

associated with the development of cancer (609). MicroRNA’s are located in  regions of 

DNA that are involved in cancer and these include minimal regions of  loss of 

heterozygosity (LOH), minimal amplicons or break point cluster regions leading to the 

widespread misexpression in cancers (588). MicroRNA’s are contributors to 

oncogenesis and are involved both in tumor-suppression (e.g. miR-15a and miR-16-1) 

and oncogenic (e.g. miR-155 or miR-17-92 cluster) activities. Repression of the tumor 

suppressor miR-15a/miR-16-1 leads to overexpression of the antiapoptotic protein, Bcl-

2, whereas overexpression of oncogenic miR-17-92 activates c-myc and leads to cell 

proliferation. Overexpressed oncogenic miRNAs are located in the amplified regions of 

DNA and dowregulated tumor suppressor miRNAs are located in the deleted regions in 

cancer. For example, miR-21 interacts with 3’UTR of tropomyosin (TPM1), a tumor 
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suppressor in breast cancer cells and thus plays a role as an oncogenic miR by 

downregulating a tumor suppressor (610). 

MiRNA’s are located in all regions of the  human genome but several are  

concentrated in regions that are altered in many cancers (611) resulting in changes in 

miR expression. For example, miR-15 and –16 are downregulated in B-cell chronic 

lymphocytic leukemia (CLL) and miR-155 is upregulated in Burkitts lymphoma, 

nonsmall cell lung cancer and breast cancer (612-614) (615, 616); miR-143 and –145  

are downregulated in colon cancer whereas let-7, which targets RAS, is downregulated 

in nonsmall cell lung cancers (617) and is indicative of a poor prognosis. MiRNA 

alterations that are observed in somatic cells initiate tumorigenesis, and expression of 

specific miRNAs in germ line cells may predispose these individuals to cancer. 

MicroRNA’s and Sp proteins 

Scott and coworkers (618) reported that miR-27a suppressed ZBTB10/RINZF 

expression in SKBR3 breast cancer cells and  previous studies showed that ZBTB10 is a  

novel zinc finger protein that inhibits Sp-1 dependent activation of the gastrin gene 

promoter (619). This indicates that miR-27a supressess a Sp repressor ZBTB10 and 

could lead to overexpression of Sp proteins in cancer cells. The role of miR-27a in 

regulation of Sp proteins in MDA-MB-231 breast cancer cells was investigated by 

transfecting cells with antisense miR-27a (as-miR-27a) or ZBTB10 expression plasmid. 

As-miR-27a and ZBTB10 decreased levels of Sp proteins and as-miR27a increased 

ZBTB10 mRNA levels. In contrast, the effects of as-miR-27a and ZBTB10 

overexpression on the cell cycle were different.  ZBTB-10 overexpression blocked G0-
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G1 to S phase progression and this was consistent with previous studies in MCF-7 cells 

using RNA interference for Sp1. In contrast, transfection of as-miR-27a resulted in 

accumulation of MDA-MB-231 breast cancer cells in G2-M (585). The failure of cells to 

undergo mitosis is linked to decreased activity of cdc2/cyclin B and both Wee-1 and 

Myt-1 are two genes that are important in the downregulation of cdc2/cyclin B activity 

and are also potential targets of miR-27a since their 3’UTRs have miR-27a binding sites. 

In MDA-MB-231 cells, as-miR-27a induces Myt-1and but not Wee-1gene expression, 

and this results in phosphorylation of cdc-2 and cell cycle arrest at G2/M (585). 

EIF-4E AS A NEW ANTICANCER DRUG TARGET 

 The eukaryotic translation initiation factor eIF-4E is dysregulated in most  

human cancers including breast cancer and acute myeloid leukemia (620) where  it is 

used as a prognostic indicator for cancer survival (621). In experimental mouse models 

increased levels of eIF-4E results in increased tumor number and malignancy (622). 

Translation is a critical step in many important cellular processes and this requires 

regulation of the rate of translation. Translation has been described as a housekeeping 

mechanism but is now recognized as a critical step in different pathophysiological 

processes such as apoptosis and cell proliferation, and dysregulation of this step has  

been associated with malignant transformation and  development of multiple cancers 

(623, 624). Eukaryotic mRNA is monocistronic and has a 5’-7-methylguanosine cap and 

3’ poly (A) tail. Cap-dependent translation is the major translation mechanism in 

eukaryotes. Translation involves three different steps namely initiation, elongation and 

termination and translation initiation has always been the rate limiting step in the process 
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of protein synthesis. This rate limiting step is primarily controlled by two multiprotein 

complexes and their association with mRNA  and  includes the ternary and eIF-4F 

complexes (624). The convergence of these complexes on mRNA allows scanning of 

ribosomes and the initiation of translation. EIF-4F complex is comprised of the scaffold 

eIF4G, the ATP-dependent RNA-helicase eIF4A, and the cap binding protein eIF-4E. 

EIF-4E binds the 5’cap of mRNA and helps deliver mRNAs to the eIF-4F initiation 

complex. Elevated levels of eIF-4E result either from increased expression or release of 

eIF-4E from 4EBPs (eukaryotic binding proteins) after their phosphorylation by 

AKT/mTOR and ras signaling.  

The availability of eIF-4E is the rate limiting factor in the initiation process. The  

availability of eIF-4E  and the structure of mRNA 5’ untranslated region (5’UTR) dictate 

the efficiency of translation (625). Highly complex 5’UTR structured mRNA also called 

weak mRNAs requires eIF-4E in excess and the translation of these mRNAs is restricted 

whereas strong mRNAs those with simple 5’UTRs do not depend on the availability of 

eIF-4E and are translated. Weak mRNAs are those that are involved in cell proliferation 

(cyclin D1, c-Myc, and ornithine decarboxylase),  survival( Bcl-xl) and angiogenesis 

(VEGF, basic FGF, and HIF-1α) and malignancy (MMP9) (Fig. 1.23) (625). Increased  

levels of free eIF-4E  have been identified in multiple cancers including cancers of 

breast, colon, bladder, lung, prostate and head and neck, leukemias, and lymphomas and 

are associated with their progression to malignancy (625, 626). Overexpression and 

dysregulation of eIF-4E results in an increased number of tumors, invasion and 
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Fig. 1.23. Reducing translation initiation factor supresses malignancy (627). 

 

metastases in mouse models (628). Therefore eIF-4E is an attractive target for anticancer 

drugs since multiple genes can be affected (Fig. 1.23).  

At present there are no specific inhibitors of eIF-4E or its association with 

mRNA has not been identified. Ribavarin  is an antimetabolite drug, used in the 

treatment of viral diseases that inhibits the interaction of eIF-4E with the 5’cap of 

mRNA  resulting in  decreased expression of cyclin D1 and suppressesion of tumor 

growth (629). Inhibitors of eIF-4E-eIF4G interactions were developed  by Wagner and 

his colleagues; and these inhibitors  decreased the expression of c-myc and cyclinD1 in 

cell cultures (630).  
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Antisense oligonucleotide chemistry (ASO) has been developed to decrease eIF-

4E expression. Several modifications were made to increase the tissue stability and to 

avoid the immunostimulatory effects of a 20-mer ASO which suppresses the expression 

of eIF-4E (631). Graff and his colleagues  used second generation eIF4E ASOs to treat 

mice with subcutaneous xenograft tumors and the results showed that there was 

approximately 50% decrease in eIF4E levels within the tumors and  almost complete 

reduction in the tumor growth.  EIF4E ASO treatment also reduced VEGF levels and 

vessel number in the tumors with minimal or negligible effect on liver transaminase 

levels (631). Unlike cycloheximide which blocks translation elongation and reduces all 

new protein synthesis, ASO treatment decreases  protein synthesis by only 20% 

suggesting some specificity. Clinical trials are underway with eIF4E ASO to determine 

the efficacy of targeting eIF4E in human cancers.  

EIF-4E is phosphorylated by agents that aid in the activation of translation (632, 

633). In normal tissues eIF-4E is sequestered by hypophophorylated 4EBPs and thereby 

restrict the translation to housekeeping genes whereas in tumors, 4EBPs are 

phosphorylated and release eIF-4E resulting in increased translation of genes involved in 

cell proliferation, survival, and metastases (Fig. 1.24). EIF-4E in mammals is 

phosphorylated on serine209 by the Mnk1 and Mnk2 kinases which are bound to eIF4G. 

The role of eIF-4E  phosphorylation has not been determined; however, some studies 

indicate that phosphorylated eIF-4E aids in growth by increasing  affinity for cap 

analogs (634).  
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Fig. 1.24.  Availability and  phosphorylation of eIF-4E playing a role in differential 
translation in normal tissues and tumors (635). 
 

 
In contrast, some studies  have reported that there is decreased affinity of cap 

analogs for phospho- eIF-4E (636). A correlation between eIF-4E phosphorylation and 

enhanced protein synthesis has been reported; and two models have been proposed to 

describe the regulation of  eIF-4E activity by phosphorylation at Ser209 (637). Based on 

the crystallographic structure of the mouse eIF-4E complex with m7GDP, Marcotrigiano 

et al  (638) have  proposed a clamping model in which  there is formation of salt bridge 

between the phosphorylated Ser 209 and Lys 159 situated across the entry to the cap 

binding slot  and these are separated by 7 A0 . This clamp stabilizes the mRNA chain at 

the protein surface. Phosphorylation and clamping may occur only after mRNA binding. 

The second model was proposed by Scheper who observed 10-fold increase in the 
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dissociation rate of eIF-4E with cap analogs after phosphorylation and this is 

contradictory to the clamping model. With decreasing binding affinity for cap it is 

possible that the tethered eIF4F is released from the 5’end of mRNA to enhance 

ribosome scanning. Another explanation could be the reprogramming of the translational 

machinery by releasing initiation factors from the existing complexes to allow other 

mRNAs to be translated (639). A recent study by Topisirovic and his colleagues 

demonstrated that phosphorylation of eIF-4E though not necessary enhances its ability to 

transform cells and eIF-4E dependent nucleocytoplasmic transport of some mRNAs 

including cyclin D1 (640). Therefore inhibiting the activity of eIF-4E by decreasing the 

phsophorylation also stands as an exciting novel approach in the treatment of cancer. 

The potential for eliciting toxicity with a treatment that inhibits a general protein 

synthesis factor was of concern but surprisingly results from the ASO studies that target 

eIF4E show that there was minimal toxicity associated with this approach. Moreover, the 

ASO significantly decreased the tumor growth suggesting that this may be an effective 

strategy for treatment of human malignancies that should be further investigated.  
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CHAPTER II 

STRUCTURE-DEPENDENT ACTIVITY OF GLYCYRRHETINIC ACID 

DERIVATIVES AS PEROXISOME PROLIFERATOR-ACTIVATED 

RECEPTOR γ (PPARγ)  

AGONISTS IN COLON CANCER CELLS* 

INTRODUCTION 

 Licorice root extracts have been extensively used for their therapeutic properties 

which include the potentiation of cortisol action, inhibition of testosterone biosynthesis, 

reduction in body fat mass and other endocrine effects (487, 641-643). The activities of 

these extracts are linked to different classes of phytochemicals particularly the major 

water soluble constituent glycyrrhizin and its hydrolysis product 18β-glycyrrhetinic acid 

(GA) (Fig. 1.18). Glycyrrhizin is a pentacyclic triterpenoid glycoside which is 

hydrolyzed in the gut to GA and many of the properties of licorice root can be attributed 

to GA. For example, GA inhibits 11β-hydroxysteroid dehydrogenase activity increasing 

corticosterone levels and this has been linked to apoptosis in murine thymocytes, 

splenocytes and decreased body fat index in human studies (489, 644-647). GA also 

directly acts on mitochondria to induce apoptosis through increased mitochondrial 

swelling, loss of mitochondrial membrane potential and release of cytochrome C (648, 

649).  

____________ 

*Reprinted with permission from “Structure-dependent activity of glycyrrhetinic acid 
derivatives as peroxisome proliferator-activated receptor γ (pparγ) agonists in colon 
cancer cells” by Chintharlapalli S, Papineni S, Jutooru I, McAlees A, Safe S. Mol 
Cancer Ther 2007;64:1588-98. Copyright 2007 by American Association for Cancer 
Research. 



  

 

99

GA has also been used as a template to synthesize bioactive drugs. For example 

carbenoxolone, the 3-hemisuccinate derivative of GA, has been used for the treatment of 

gastritis and ulcers (650). Some of the activity of carbenoxolone may be due to 

hydrolysis to GA however carbenoxolone itself induced oxidative stress in liver 

mitochondria and decreased mitochondrial membrane potential. Other carboxyl and 

hydroxyl derivatives of glycyrrhizic acid inhibit HIV and exhibit anti-inflammatory and 

immunomodulatory activities (651). In addition, GA derivatives containing a reduced 

carboxylic acid group at C-30 (CH2OH) and some additional functional changes 

exhibited strong antioxidant activity (652). 

 Structure-activity studies on the anti-inflammatory activities and cytotoxicity of 

several oleanolic and ursolic acid derivatives demonstrated that addition of a 2-cyano 

substituent greatly enhanced their activity (463, 464, 653-655). Moreover, one of the 2-

cyano analogs of oleanolic acid, namely 2-cyano-3,12-dioxo-17α-olean-1,9(11)-diene-

28-oic acid (CDDO) and its methyl ester (CDDO-Me) exhibited PPARγ agonist activity 

(234, 302, 656).  Although GA also has an oleanolane triterpenoid backbone, there are 

major structural differences between GA and oleanolic acid and between CDDO-Me and 

the synthetic GA analog methyl 2-cyano-3, 11-dioxo-18β-olean-1, 12-dien-30-oate (β-

CDODA-Me).  CDODA-Me (β-CDODA-Me) is isomeric with CDDO-Me (α-CDDO-

Me) but differs with respect to the carboxy substitution in the E ring, the stereochemistry 

at C-18 (β vs. α) in the E/D ring junction, and the enone function in the C ring (Fig. 

1.18).  In order to more fully investigate the importance of the stereochemistry at C-18 in 

modulating cytotoxicity and PPARγ agonist activity of triterpenoid acids, we also 
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synthesized methyl 2-cyano-3, 11-dioxo-18α-olean-1,12-dien-30-oate (α-CDODA-Me).  

Our results show that introduction of the 2-cyano group into α- or β-GA resulted in 

enhanced cytotoxicity, and both compounds induced PPARγ-dependent transactivation 

in colon cancer cells, including receptor and cell context-dependent activation of  

caveolin-1 and Krüppel-like factor-4 (KLF-4), two genes associated with growth 

inhibitory responses in colon cancer.  However, it was also apparent that the different 

stereochemistries at C18 and the altered confirmation of the E-ring resulted in different 

PPARγ-dependent effects in colon cancer cells, suggesting that the α-CDODA-Me and 

β-CDODA-Me isomers are selective receptor modulators (SRMs). 

MATERIALS AND METHODS 

Cell lines   

Human colon carcinoma cell lines SW480, HCT-15 and HT29 were provided by 

Dr. Stan Hamilton, M.D. Anderson Cancer Center (Houston, TX); SW-480 and HT-29 

cells were maintained in Dulbecco's modified Eagle's medium nutrient mixture with 

Ham's F-12 (DMEM/Ham's F-12; Sigma-Aldrich, St. Louis, MO) with phenol red 

supplemented with 0.22% sodium bicarbonate, 0.011% sodium pyruvate, and 5% fetal 

bovine serum and 10 ml/L 100x antibiotic antimycotic solution (Sigma-Aldrich).  HCT-

15 cells were maintained in RPMI 1640 (Sigma) supplemented with 0.22% sodium 

bicarbonate, 0.11% sodium pyruvate, 0.45% glucose, 0.24% HEPES, 10% fetal bovine 

serum, and 10 ml/L of 100X antibiotic antimycotic solution.  Cells were maintained at 37 

°C in the presence of 5% CO2. 
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Synthesis 

3, 11-Dioxo-18β-oleana-1,12-dien-30-oic acid (β-DODA) and α-DODA.  A 

mixture of 18β-glycyrrhetinic acid (157 mg, 0.3333 mmol) (Sigma-Aldrich) and 2-

iodoxybenzoic acid1 (IBX) (373.4 mg, 1.333 mmol, 4 equiv) in 7 ml DMSO was stirred 

with heating at 85 °C for 21 h.  After cooling, the solution was poured into water (100 

ml) giving a white precipitate which was filtered and washed with methanol/methylene 

chloride (1:9).  This material (381 mg) was triturated with ethyl acetate (5 ml), washed 

several times with this solvent, and the dissolved material recovered by evaporation and 

purified by preparative scale TLC using MeOH/CH2Cl2 (1:19) as eluant.  The main band 

gave β-DODA as a white solid (133 mg, 85.5%) which was crystallized from methanol 

(104 mg), mp 270-5 °C.  1H NMR δ 7.746 (1H, d, J = 10.4 Hz, C1-H), 5.816 (1H, d, J = 

10.4 Hz, C2-H), 5.817 (1H, s, C12-H), 2.691 (1H, s, C9-H), 1.422, 1.401, 1.245, 1.191, 

1.169, 1.118, 0.872 (all 3H, s, CMe).  A similar procedure was used for the synthesis of 

α-DODA from 18α-glycyrrhetinic acid (Sigma-Aldrich). 

 Methyl 3, 11-dioxo-18β-oleana-1,12-dien-30-oate (β-DODA-Me) and α-DODA-

Me.  Methyl 18β-glycyrrhetinate was prepared by diazomethylation of 18β-

glycyrrhetinic acid and a sample (161 mg, 0.3333 mmol) reacted with the IBX reagent 

(373 mg, 1.333 mmol, 4 equiv) as above for the parent acid.  After a similar work-up, 

the recovered product was purified by preparative TLC (MeOH/CH2Cl2; 1:19) to give a 

colorless solid (155.3 mg, 96.9%) which on crystallization, gave needles (140 mg), mp 

192-4 °C.  1H NMR δ 7.745 (1H, d, J = 10.0 Hz, C1-H), 5.812 (1H, d, J = 10.0 Hz, C2-

H), 5.770 (1H, s, C12-H), 3.078 (3H, s, OMe), 2.681 (1H, s, C9-H), 1.419, 1.390, 1.184, 
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1.166, 1.159, 1.118, 0.833 (all 3H, s, CMe).  A similar procedure was used for the 

synthesis of α-DODA-Me from α-DODA.  

 2-Cyano-3,11-dioxo-18β-oleana-1,12-dien-30-oic acid (β-CDODA) and α-

CDODA.  The two cyano derivative of 18β-glycyrrhetinic acid was synthesized as 

previously described (657), and a sample (422 mg, 0.8961 mmol) of this compound and 

DDQ3 (247 mg, 1.088 mmol) in dry benzene (55 ml) was heated to reflux, with stirring, 

for 6 h.  The reaction mixture was filtered, washed with benzene, and the filtrate plus 

washings were combined, evaporated and purified by preparative TLC (ethyl 

acetate/hexane, 1:1) to give β-CDODA (149 mg, 33.7%).  This material was crystallized 

twice from ethyl acetate/hexane to give a yellow solid (55.5 mg), mp 195-7 °C.  1H 

NMR δ 8.550 (1H, s, C1-H), 5.846 s, C12-H), 2.2.715 (1H, s, C9-H), 1.455, 1.404, 

1.255, 1.225, 1.200, 1.162, 0.876 (all 3H, s, CMe).  A similar procedure was used for the 

synthesis of α-CDODA from 18α-glycyrrhetinic acid. 

 Methyl 2-cyano-3, 11-dioxo-8β-oleana-1,12-dien-30-oate (β-CDODA-Me) and 

α-CDODA-Me.  The nitrile was also prepared from methyl 18β-glycyrrhetinate, and the 

resulting ester (246 mg, 0.4863 mmol) and DDQ (134 mg, 0.5905 mmol) in dry benzene 

(20 mL) was refluxed for 5 h to give β-CDODA-Me.  The compound was purified by 

TLC (ethyl acetate/hexane; 1:3) to give β-CDODA-Me and crystallized from ethyl 

acetate/hexane (138 mg), mp 243-5 °C.  1H NMR δ 8.553 (1H, s, C1-H), 5.805 s, C12-

H), 3.716(3H, s, OMe), 2.706 (1H, s, C9-H), 1.454, 1.393, 1.223, 1.194, 1.168, 1.161, 
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0.834 (all 3H, s, CMe).  A similar procedure was used for the synthesis of α-CDODA-

Me from α-DODA.  

Antibodies and reagents 

Caveolin 1 antibody was purchased from Santa Cruz Biotechnology, Inc. (Santa 

Cruz, CA).  Monoclonal β-actin antibody and 18α- and 18β-glycyrretinic acid (GA) 

were purchased from Sigma-Aldrich.  Reporter lysis buffer and luciferase reagent for 

luciferase studies were supplied by Promega (Madison, WI).  β-Galactosidase (β-Gal) 

reagent was obtained from Tropix (Bedford, MA), and LipofectAMINE reagent was 

purchased from Invitrogen (Carlsbad, CA).  Western Lightning chemiluminescence 

reagent was obtained from PerkinElmer Life and Analytical Sciences (Boston, MA).  

The PPARγ antagonists 2-chloro-5-nitro-N-phenylbenzamide (GW9662) and N-(4'-

aminopyridyl)-2-chloro-5-nitrobenzamide (T007) were synthesized in this laboratory, 

and their identities and purity (>98%) were confirmed by gas chromatography-mass 

spectrometry.  Melting points were determined with a Kofler hot-stage apparatus.  1H 

NMR spectra were run in CDCl3 on a Bruker Avance-400 spectrometer using Me4Si as 

an internal standard.  For analytical and preparative use, TLC plates were spread with 

Silica Gel 60 GF (Merck).  Elemental microanalyses were carried out by Guelph 

Chemical Laboratories Ltd.   

Plasmids  

The Gal4 reporter containing 5x Gal4 response elements (pGal4) was kindly 

provided by Dr. Marty Mayo (University of North Carolina, Chapel Hill, NC).  

Gal4DBD-PPARγ construct (gPPARγ) was a gift of Dr. Jennifer L. Oberfield 
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(GlaxoSmithKline Research and Development, Research Triangle Park, NC).  PPRE3-luc 

construct contains three tandem PPREs with a minimal TATA sequence in pGL2.  The 

GAL4 coactivator (PM coactivator) and VP-PPARγ chimeras were provided by Dr. S. 

Kato, University of Tokyo (Tokyo, Japan)  (658).  

Transfection and luciferase assay   

Colon cancer cell lines SW480 and HT29 (1 x 105 cells/well) were plated in 12-

well plates in DMEM/Ham's F-12 media supplemented with 2.5% charcoal-stripped 

FBS.  After 16 h, various amounts of DNA [i.e., Gal4Luc (0.4 μg), β-Gal (0.04 μg), 

Gal4PPARγ and PPRE-Luc (0.04 μg)] were transfected using Lipofectamine reagent 

(Invitrogen) following the manufacturer's protocol.  Five h after transfection, the 

transfection mix was replaced with complete media containing either vehicle (DMSO) or 

the indicated ligand for 20 to 22 h.  Cells were then lysed with 100 μL of 1x reporter 

lysis buffer, and 30 μL of cell extract was used for luciferase and β-Gal assays.  A 

LumiCount luminometer (PerkinElmer Life and Analytical Sciences) was used to 

quantitate luciferase and β-Gal activities, and the luciferase activities were normalized to 

β-Gal activity.  Results are expressed as means ± S.E. for at least three replicate 

determinations for each treatment group. 

Mammalian two-hybrid assay  

 SW480 cells were plated in 12-well plates at 1 x 105 cells/well in DMEM/F-12 

media supplemented with 2.5% charcoal-stripped fetal bovine serum.  After growth for 

16 h, various amounts of DNA, i.e. Gal4Luc (0.4 μg), β-gal (0.04 μg), VP-PPARγ (0.04 

μg), pMSRC1 (0.04 μg), pMSRC2 (0.04 μg), pMSRC3 (0.04 μg), pMPGC-1 (0.04 μg), 
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pMDRIP205 (0.04 μg), and pMCARM-1 (0.04 μg) were transfected by Lipofectamine 

(Invitrogen) according to the manufacturer's protocol.  After 5 h, the transfection mix 

was replaced with complete media containing either vehicle (DMSO) or the indicated 

ligand for 20 - 22 h.  Cells were then lysed with 100 ml of 1x reporter lysis buffer, and 

30 μL of cell extract was used for luciferase and β-galactosidase assays.  Lumicount was 

used to quantitate luciferase and β-galactosidase activities, and the luciferase activities 

were normalized to β-galactosidase activity. 

Cell proliferation assay   

SW480, HCT-15 and HT 29 cells (2 x 104) were plated in 12-well plates, and 

media was replaced the next day with DMEM/Ham's F-12 media containing 2.5% 

charcoal-stripped FBS and either vehicle (DMSO) or the indicated ligand and dissolved 

in DMSO.  Fresh media and compounds were added every 48 h.  Cells were counted at 

the indicated times using a Coulter Z1 cell counter.  Each experiment was done in 

triplicate, and results are expressed as means ± S.E. for each determination. 

Western blot analysis   

SW-480, HCT-15 and HT-29 (3 x 105) cells were seeded in six-well plates in 

DMEM/Ham's F-12 media containing 2.5% charcoal-stripped FBS for 24 h and then 

treated with either the vehicle (DMSO) or the indicated compounds.  Whole-cell lysates 

were obtained using high-salt buffer [50 mM HEPES, 500 mM NaCl, 1.5 mM MgCl2, 1 

mM EGTA, 10% glycerol, and 1% Triton X-100, pH 7.5, and 5 μL/ml Protease Inhibitor 

Cocktail (Sigma-Aldrich)].  Protein samples were incubated at 100 °C for 2 min, 

separated on 10% SDS-PAGE at 120 V for 3 to 4 h in 1x running buffer (25 mM Tris-
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base, 192 mM glycine, and 0.1% SDS, pH 8.3), and transferred to polyvinylidene 

difluoride membrane (PVDF; Bio-Rad, Hercules, CA) at 0.1 V for 16 h at 4 °C in 1x 

transfer buffer (48 mM Tris-HCl, 39 mM glycine, and 0.025% SDS).  The PVDF 

membrane was blocked in 5% TBST-Blotto (10 mM Tris-HCl, 150 mM NaCl, pH 8.0, 

0.05% Triton X-100, and 5% nonfat dry milk) with gentle shaking for 30 min and was 

incubated in fresh 5% TBST-Blotto with 1:1000 (for caveolin-1), and 1:5000 (for β-

actin) primary antibody overnight with gentle shaking at 4 °C.  After washing with 

TBST for 10 min, the PVDF membrane was incubated with secondary antibody (1:5000) 

in 5% TBST-Blotto for 90 min.  The membrane was washed with TBST for 10 min, 

incubated with 10 ml of chemiluminescence substrate (PerkinElmer) for 1.0 min, and 

exposed to Kodak X-OMAT AR autoradiography film (Eastman Kodak, Rochester,-

NY).  

Semi quantitative reverse transcription-PCR analysis  

 SW480, HT-29 and HCT-15 cells were treated with either DMSO (control) or 

with the indicated concentration of the compound for 12 h.  Total RNA was extracted 

using RNeasy Mini Kit (Qiagen Inc., Valencia, CA), and one microgram of RNA was 

used to synthesize cDNA using Reverse Transcription System (Promega).  The PCR 

conditions were as follows:  initial denaturation at 94 °C (1 min) followed by 28 cycles 

of denaturation for 30 sec at 94 °C, annealing for 60 sec at 55 °C and extension at 72 °C 

for 60 sec, and a final extension step at 72 °C for 5 min.  The mRNA levels were 

normalized using GAPDH as an internal housekeeping gene.  Primers were obtained 

from IDT (Coralville, IA) and used for amplification were:  KLF4 (sense 5'-CTA TGG 
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CAG GGA GTC CGC TCC-3') (antisense 5'-ATG ACC GAC GGG CTG CCG TAC -

3'); GAPDH (sense 5'-ACG GAT TTG GTC GTA TTG GGC G-3') (antisense 5'-CTC 

CTG GAA GAT GGT GAT GG-3').  PCR products were electrophoresed on 1% agarose 

gels containing ethidium bromide and visualized under UV transillumination. 

Statistical analysis 

 Statistical differences between different groups were determined by ANOVA 

and Scheffe's test for significance.  The data are presented as mean ± standard deviation 

for at least three separate determinations for each treatment. 

RESULTS 

Growth inhibitory effects of isomeric GA derivatives 

 This study compares the cytotoxicity of 18β-GA and 18α-GA derivatives and 

results in Figure 2.1 summarize the cytotoxicity of β-DODA-Me, β-CDODA-Me, and 

the corresponding 18α-isomers.  Initial studies showed that GA and its methyl esters 

exhibit minimal cytotoxicity and the methyl esters were more potent than the 

corresponding free triterpenoid acids (data not shown).  The α-DODA and β-DODA 

methyl esters exhibited growth inhibitory IC50 values of 10-20 and 10-15 μM, 

respectively, whereas introduction of the 2-cyano substituents into the α- and β-isomers 

greatly enhanced cytotoxicity.  The IC50 values for α-CDODA-Me and β-CDODA-Me 

were 0.5 and 0.2-0.5 μM, respectively, demonstrating the greatly enhanced cytotoxicity 

of the GA derivatives containing the 2-cyano substituents.  Similar results were observed 

in HT-29 and HCT-15 colon cancer cells (data not shown). 
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α-CDODA-Me and β-CDODA-Me activate PPARγ 

 Previous studies have demonstrated that introduction of 2-cyano substituents into 

oleanolic acid and ursolic acid derivatives enhances cytotoxicity of these triterpenoid 
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Fig. 2.1. Growth inhibition studies.  SW480 colon cancer cells were treated with different concentrations 
of α-DODA-Me , α-CDODA-Me (A), β-DODA-Me  and β-CDODA-Me (B) for 6 days, and cell numbers 
were determined using a Coulter Counter as described in the Materials and Methods.  Results are 
expressed as means ± SE for 3 separate determinations at each time point.  Significant (p<0.05) inhibition 
of cell growth was observed for β-DODA-Me (≤ 5 μM), β-CDODA-Me (≤ 0.2 μM), α-DODA-Me (≤ 10 
μM), and α-CDODA-Me (≤ 0.5 μM). 
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acids  (463, 464, 655) as observed in this study for the α- and β-GA derivatives (Fig. 

2.1).  2-Cyano derivatives of oleanolic acid also exhibit PPARγ agonist activity (234)  

and in this study, we have investigated the PPARγ agonist activity of α- and β-CDODA-

Me isomers which exhibit major structural differences in the E-ring of GA.  Results in 

Figure 2.2 A compare activation of PPARγ by α-CDODA-Me and α-DODA-Me in 

SW480 cells transfected with PPARγ-GAL4/pGAL4; 5 μM α-CDODA-Me induces a 

>10-fold increase in activity, whereas α-DODA-Me was inactive at concentrations as 

high as 20 μM.  In a separate experiment, similar results were obtained for β-CDODA-

Me and β-DODA-Me.  The former compound (5 μM) induced a >18-fold increase in 

luciferase activity, whereas the latter compound (30 μM) was inactive (Fig. 2.2 B).  A 

direct comparison of both α-CDODA-Me and β-CDODA-Me is illustrated in Figure 2.2 

C where 5 μM of both compounds induced an (12- to 16- fold) increase in luciferase 

activity in SW480 cells transfected with PPARγ-GAL4/pGAL4.  Cotreatment with 10 

μM of the PPARγ antagonist T007 significantly decreased α-CDODA-Me/β-CDODA-

Me-induced transactivation.  Both α-CDODA-Me and β-CDODA-Me also induced 

transactivation (Figs. 2.2 D and 2.2 E) in SW480 cells transfected with PPRE3-luc, a 

construct which contains three tandem PPARγ response elements linked to luciferase 

and which relies on activation of the endogenous PPARγ-RXR complex expressed in 

this cell line (302).  In addition, both PPARγ antagonists T007 and GW9662 inhibited α-

CDODA-Me/β-CDODA-Me-induced transactivation.  These results demonstrate for the 

first time that introduction of a 2-cyano group into the GA triterpenoid acid structure is  
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Fig. 2.2. Ligand-induced activation of PPARγ, and effects of PPARγ antagonists.  Activation of PPARγ-
GAL4/pGAL4 in SW480 cells treated with α-DODA-Me/α-CDODA-Me (A), β-DODA-Me/β-CDODA-Me (B), and 
both isomers plus T007 (C).  Cells were transfected with PPARγ-GAL4/pGAL4, treated with different concentrations 
of the triterpenoids alone or in combination with T007, and luciferase activity was determined as described in the 
Materials and Methods.  Results of all transactivation studies in this Figure are presented as means ± SE for at least 3 
separate determinations for each treatment group and significant (p < 0.05) induction compared to solvent (DMSO) 
control (*) and inhibition by cotreatment with T007 (**) is indicated.  Activation of PPRE-luc in SW480 cells treated 
with α-CDODA-Me (D) or β-CDODA-Me (E) alone or in combination with PPARγ antagonists.   SW480 cells were 
transfected with PPRE-Luc, treated with different concentrations of CDODA-Me isomers alone or in combination 
with 10 μM GW9662 and/or T007, and luciferase activities were determined as described in Figure 3A.  Significant (p 
< 0.05) induction of luciferase activity (*) and inhibition of induced transactivation by GW9662 or T007 (**) is 
indicated.   
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sufficient for conferring PPARγ agonist activity on the resulting compound.  Moreover, 

both the α-and β-CDODA-Me isomers exhibit similar potencies as PPARγ agonists (β-

CDODA-Me ≥ α-CDODA-Me), suggesting that the conformational differences in the E-

ring which are observed for the 18α- and 18β-isomers do not affect their PPARγ agonist 

activities in the PPARγ-GAL4/pGAL4 and PPRE-luc transactivation assays. 

α-CDODA-Me and β-CDODA-Me as Selective Receptor Modulators (SRMs) 

 PPARγ agonists are structurally diverse (658-661) and there is evidence that 

many of these compounds are selective PPARγ modulators that exhibit tissue-specific 

differences in their activation of receptor-dependent genes/protein.  The selectivity of 

various structural classes of PPARγ ligands is due, in part, to differential interactions 

within the ligand binding domain of PPARγ which can lead to different conformations of 

the receptor.  This can result in differential interactions of the ligand-bound PPARγ with 

nuclear receptor coactivators (658), and results in Figure 2.3 A summarize β-CDODA-

Me-induced transactivation in SW480 cells transfected with GAL4-coactivator and VP-

PPARγ (ligand binding domain) chimeras and a pGAL4 reporter gene.  In this 

mammalian two-hybrid assay, β-CDODA-Me induced PPARγ interactions only with 

PGC-1 and SRC-1 but not with AIB1 (SRC-3), TIFII (SRC-2), CARM1, TRAP220 and  

the corepressor SMRT.  α-CDODA-Me also induced PPARγ-PGC-1 interactions (Fig. 

 2.3). These results suggest that the two α- and β-CDODA-Me isomers, which differ 

only in the conformations of their E-rings, are selective receptor modulators (SRMs) and             
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Fig. 2.3. Ligand-induced PPARγ-coactivator interactions.  SW480 cells were transfected with VP-PPARγ, 
coactivator-GAL4/pGAL4, treated with different concentrations of α-CDODA-Me (A) or both α- and β-
CDODA-Me (B), and luciferase activity was determined as described in the Materials and Methods.  
Results are expressed as means ± SE for 3 replicate determinations for each treatment group, and 
significant (p < 0.05) induction is indicated by an asterisk. 
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induce different patterns of coactivator-receptor interactions in a mammalian two-hybrid 

assay.  These results also suggest that the α- and β-CDODA-Me isomers should exhibit 

some tissue/cell or response-specific differences in their activation of receptor-dependent 

genes. 

 PPARγ agonists induce caveolin-1 in colon cancer cells through a receptor-

dependent mechanism (257, 300).  The effects of α-CDODA-Me on caveolin-1 

expression in HT-29, HCT-15 and SW480 cells is summarized in Figure 2.4 A, and 

induction was observed in all three cell lines.  In contrast, β-CDODA-Me induced 

caveolin-1 in HT-29 and HCT-15 but not SW480 colon cancer cells (Fig. 2.4 B), and the 

failure to observe induction of caveolin-1 in SW480 cells was noted in several replicate 

experiments.  Figures 2.4 C and 2.4 D show that induction of caveolin-1 by α- and β-

CDODA-Me isomers was inhibited in HT-29 and HCT-15 cells cotreated with the 

PPARγ antagonist T007, and similar results were observed for α-CDODA-Me in SW480 

cells (data not shown).  These results demonstrate the tissue-selective induction of 

caveolin-1 expression by β-CDODA-Me and this is consistent with the activity of α- and 

β-CDODA-Me isomers as SRMs.   

 Based on results of preliminary studies on growth inhibitory/proapoptotic genes 

induced by CDODA-Me isomers, we investigated the induction of the tumor suppressor 

gene KLF-4 in colon cancer cells.  Results in Figure 2.5 A show that 1-5 μM  
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Fig. 2.4. Induction of caveolin-1 in colon cancer cells.  SW480, HT-29 or HCT-15 colon cancer cells were treated with α-CDODA-Me (A) or β-
CDODA-Me (B) for 72 hr as previously described (302), and whole cell lysates were analyzed by Western immunoblot analysis as described in the 
Materials and Methods.  Inhibition of caveolin-1 induction by α- or β-CDODA-Me by T007 in HT-29 (C) or HCT-15 (D) cells.  Cells were treated with 
5 μM T007, 0.5 - 1.0 μM α- or β-CDODA-Me or combinations (as indicated) for 72 hr, and whole cell lysates were analyzed by Western immunoblot 
analysis as described in the Materials and Methods.  Similar results were observed for α-CDODA-Me in SW480 cells (data not shown).  Caveolin-1 
protein expression (relative to β-actin) in the DMSO-treated cells (A and B) was set at 1.0, and significant (p < 0.05) induction is indicated (*).  Results 
are means ± SE for three replicate determinations for each treatment group. 
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concentrations of both α- and β-CDODA-Me isomers induced KLF-4 mRNA levels in 

SW480 cells.  The PPARγ antagonist T007 (10 μM) alone did not induce KLF-4.  In 

SW480 cells cotreated with T007 and the CDODA-Me isomers, there was a significant 

inhibition of the induced response.  A similar experiment was carried out in HT-29 cells 

(Fig. 2.5 B), and both CDODA-Me isomers induced KLF-4 mRNA levels which were 

inhibited after cotreatment with T007.  In contrast, α- and β-CDODA-Me isomers did 

not consistently alter expression of KLF-4 mRNA levels in HCT-15 cells (< 2-fold and 

variable) (Fig. 2.5 C).  These results demonstrate that CDODA-Me isomers exhibited 

similar activities as PPARγ agonists in HT-29 and SW480 colon cancer cells; however, 

induction of KLF-4 mRNA was cell context-dependent and, over several experiments, 

we did not observe significant induction of KLF-4 in HCT-15 cells.  These results on the 

receptor-dependent induction of KLF-4 gene expression by CDODA-Me isomers 

contrasts to the reported receptor-independent induction of KLF-4 gene expression by 

the PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2) in HT-29 cells (662).  

DISCUSSION 

 PPARγ and other members of the nuclear receptor superfamily are characterized 

by their modular structure which contains several regions and domains that are required 

for critical receptor-protein and receptor-DNA interactions (659-661).  Nuclear receptors 

typically contain N- and C- terminal activation functions (AF1 and AF2, respectively), a 
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Fig. 2.5. Induction of KLF-4 gene expression by α- and β-CDODA-Me.  Induction of 
KLF-4 in SW480 (A), HT-29 (B) and HCT-15 (C) cells.  Cells were treated with 
different concentrations of CDODA isomers or T007 alone or in combination and KLF-4 
mRNA levels were determined by real time PCR as described in the Materials and 
Methods.  Quantitated results(A, B) are means ± SE from three replicate experiments, 
and significant (p < 0.05) induction or inhibition of KLF-4 mRNA levels (*) and 
inhibition of these responses after cotreatment with T007 (**) are indicated.  Induction 
of KLF-4 in HCT-15 cells was highly variable (< 2-fold) and was not further quantitated 
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DNA binding domain and a flexible hinge region.  The addition of receptor ligand 

usually results in formation of a transcriptionally active nuclear receptor complex which 

binds cognate response elements in promoter regions of target genes and activates 

transcription.  However, receptor-mediated transactivation is dependent on several 

factors including cell context-specific expression of coregulatory proteins (e.g. 

coactivators), gene promoter accessibility and ligand structure (663).  The complex 

pharmacology of receptor ligands is due, in part, to the ligand structure-dependent 

conformational changes in the bound receptor complex which may differentially interact 

with coregulatory factors and exhibit tissue-specific agonist and/or antagonist activity 

(663, 664).  This has led to development of selective receptor modulators (SRMs) for 

several nuclear receptors which selectively activate or block specific receptor-mediated 

responses in different tissues/cells.   

 There is evidence that different structural classes of PPARγ agonists are also 

SRMs and induce tissue-specific receptor-dependent and independent responses.  For 

example, induction of NAG-1 in HCT116 colon cancer cells by PGJ2 was PPARγ-

dependent, whereas both troglitazone and PPARγ-active 1,1-bis(3'-indolyl)-1-(p-

substitutedphenyl) methanes (C-DIMs) also enhanced NAG-1 expression through 

receptor-independent pathways in the same cell line (278, 299, 665).  Evidence that 

different structural classes of PPARγ agonists are SRMs has been reported in 

mammalian two-hybrid assays in which cells have been transfected with VP-PPARγ and 

GAL4-coactivator constructs.  For example, PGJ2 and rosiglitazone differentially 
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induced coactivator-PPARγ interactions in COS-1 cells (658), and differences in ligand-

dependent coactivator-receptor interactions were also observed for rosiglitazone and 

PPARγ-active C-DIMs in colon cancer cells (300).   

 Previous studies demonstrated that introduction of a cyano group at C-2 of 

oleanolic acid or ursolic acid enhanced the cytotoxicity of the resulting synthetic analogs 

(464).  Moreover, the oleanolic acid derivatives CDDO and CDDO-Me exhibited 

PPARγ agonist activities (234, 302, 666).  Results of this study also demonstrated that 2-

cyano analogs of the α- and β-GA methyl esters also exhibited increased cytotoxicity 

(Fig. 2.1) and PPARγ agonist activity.  Similar results were observed for the 

corresponding acid derivatives which were less active than α-CDODA-Me or β-

CDODA-Me (data not shown).  Thus, introduction of the 2-cyano group into the 

oleanolic acid and GA backbone is necessary for their PPARγ agonist activities and 

differences in their substitution in the C-ring and the position of carboxymethyl groups 

at C-30 (in GA) or C-28 (in oleanolic acid) did not affect PPARγ agonist activity.  GA 

and oleanolic acid are 18β- and 18α-isomers, respectively (e.g. Fig. 1.18), and their 

different sterochemistries at C-18 results in conformational differences in the E-ring of 

these triterpenoids.  Therefore, in order to directly compare the effects of different E-ring 

conformations on cytotoxicity and PPARγ agonist activity, we investigated the 

comparative effects of α- and β-CDODA-Me.  Both isomers exhibited similar 

cytoxtoxicities and PPARγ agonist activities, suggesting that the sterochemical 

differences at C-18 do not affect PPARγ-dependent transactivation in reporter gene 



  

 

119

assays (Fig. 2.2), indicating that the PPARγ agonist activity in this assay was primarily 

governed by the 2-cyano substituents. 

 However, results of the mammalian two-hybrid assay (Fig. 2.3) show that α-

CDODA-Me induces interactions between PGC-1 and TIFII (SRC-2), whereas β-

CDODA-Me induces interactions between PGC-1 and SRC-1.  These differences must 

be due to the unique conformations of the E-ring of these isomeric triterpenoids which is 

dependent on the different sterochemistries (α and β) at C-18 located at the E/D ring 

junction (Fig. 1.18).  The mammalian two-hybrid assay uses the GAL4-coactivator 

chimeras as probes for investigating differences in ligand-dependent conformational 

changes in PPARγ.  These results do not necessarily identify which coactivators are 

important for activation of PPARγ since this will also depend on tissue-specific 

expression of coactivators and other important coregulatory proteins.  However, data 

from the two-hybrid assay suggest that, like other structural classes of PPARγ agonists, 

α-CDODA-Me and β-CDODA-Me are selective receptor modulators and this selectivity 

was further investigated using induction of caveolin-1 and KLF-4 as end-points.  Both 

caveolin-1 and KLF-4 were selected as potential PPARγ-dependent responses based on 

results of previous studies showing that both genes are induced by one or more structural 

classes of PPARγ agonists (302, 667-669).  Caveolin-1 expression in colon cancer and 

some other cancer cell lines is associated with reduced rates of cancer cell proliferation 

and anchorage-independent growth (670-673).  KLF-4 is a member of the Sp/KLF 

family of zinc finger transcription factors (674, 675), and KLF-4 expression is also 

correlated with tumor/cancer cell growth inhibition in gastric and colon cancer 
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suggesting that KLF-4 acts as a tumor suppressor gene (676-679).  Previous studies have 

shown that caveolin-1 is induced by thiazolidinediones, CDDO/CDDO-Me, and 1,1-

bis(3'-indolyl)-1-(p-substitutedphenyl)methanes (C-DIMs) in HT-29 and other colon 

cancer cell lines.  However, PPARγ-active C-DIMs, but not rosiglitazone, induced 

caveolin-1 in HCT-15 cells (300, 302) and this was related, in part, to a mutation in 

PPARγ expressed in the HCT-15 cell line.  The differences in caveolin-1 induction 

between the two structurally unrelated PPARγ agonists in HCT-15 cells is an example of 

the SRM activity of different structural classes of PPARγ agonists.  We also observed 

cell-specificity differences between α-CDODA-Me and β-CDODA-Me with respect to 

their induction of caveolin-1 in colon cancer cells (Fig. 2.4).  Although α- and β-

CDODA-Me induced caveolin-1 in HT-29 and HCT-15 cells, only the former isomer 

induced this response in SW480 cells and this was observed in replicate experiments.  

Since α-CDODA-Me and CDDO-Me contain the 18α configuration and both 

compounds also induce caveolin-1 (Fig. 2.4 ) (302), this suggests that differences in 

caveolin-1 induction by α- and β-CDODA-Me are due to their different E-ring 

conformations (Fig. 1.18) which also affects ligand-induced PPARγ-coactivator 

interactions (Fig. 2.3).   

 A previous report (680) showed that KLF-4 induction by PGJ2 was PPARγ-

independent and this response was used as a model to investigate mechanistic 

differences in KLF-4 induction by α and β-CDODA-Me and PGJ2.  α- and β-CDODA-

Me induce KLF-4 mRNA levels in HT-29 and SW480 cells (Fig. 2.5A and 2.5B), and 
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cotreatment of these cells with the PPARγ antagonist T007 inhibits induction of KLF-4.  

Similar results were observed for induction of KLF-4 protein (data not shown) 

demonstrating receptor-dependent (α- and β-CDODA-Me) and receptor-independent 

(PGJ2) induction of KLF-4 in HT-29 cells and that the two different structural classes of 

PPARγ agonists exhibit SRM-like activity.   

 Results of this study demonstrate for the first time that introduction of 2-cyano 

substituents into the A ring of α- and β-GA significantly enhances their cytotoxicity and 

is necessary for their activity as PPARγ agonists.  This represents an important extension 

of the potential therapeutic applications of synthetic analogs of GA, a major component 

of licorice extracts.  In addition, we also demonstrate that both α- and β-CDODA-Me 

are SRMs based on their tissue-selective induction of caveolin-1 and KLF-4 in colon 

cancer cells.  These differences in activity are consistent with their structure-dependent 

induction of PPARγ interactions with different coactivators in SW480 cells.  Thus, 

synthetic analogs of GA exhibit potent anticancer activity in colon cancer cells and 

mechanisms of their induction of KLF-4 and other receptor-dependent and -independent 

responses and in vivo applications of these compounds as a new class of anticancer drugs 

is currently being investigated. 
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CHAPTER  III 

METHYL 2-CYANO-3,11-DIOXO-18 β-OLEAN-1,12-DIEN-30-OATE IS A 

PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR γ AGONIST 

THAT INDUCES RECEPTOR-INDEPENDENT APOPTOSIS IN LNCaP 

PROSTATE CANCER CELLS* 

INTRODUCTION 

Peroxisome proliferator-activated receptors (PPARs) are a sub-family of the nuclear 

receptor superfamily of ligand-activated receptors (681, 682).  The three members of this 

family, PPARα, PPARγ and PPARβ/σ are lipid sensors and play a key role in regulating 

tissue-specific lipid homeostasis and metabolism (683).  PPARs also play an important 

role in many diseases particularly those related to obesity, metabolic disorders, cancer 

and atherogenesis (659, 684, 685).  Endogenous ligands for PPARs include fatty acid 

derived compounds and 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2) which exhibits high 

affinity for PPARγ; however, PGJ2 may not be the endogenous ligand for this receptor 

due to the low cellular expression of this metabolite.  Synthetic PPARγ agonists, such as 

the thiazolidinediones (TZDs) rosiglitazone and pioglitazone, are insulin-sensitizing 

drugs that are widely used for clinical treatment of type II diabetes. Several different 

structural classes of PPARγ agonists have been characterized and these include flavones,  

____________  

*Reprinted with permission from “Methyl 2-cyano-3,11-dioxo-18 β-olean-1,12-dien-30-
oate is a peroxisome proliferator-activated receptor γ agonist that induces receptor-
independent apoptosis in Lncap prostate cancer cells” by Papineni S, Chintharlapalli S, 
Safe S. Mol Pharmacol 2008;73:553-65. Copyright 2008 by American Society for 
Pharmacology and Experimental Therapeutics. 
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 various indole derivatives, chromane carboxylic acids, phosphonophosphates, and 

triterpenoids such as 2-cyano-3,12-dioxo-17α-olean-1,9-dien-28-oic acid (CDDO) and 

related compounds (281, 463, 482, 686-691).  PPARγ is overexpressed in many tumor 

types and cancer cell lines (283) and PPARγ agonists show promise for the clinical 

treatment of various types of tumors (242, 253, 692-694).  Ligands for this receptor 

typically inhibit G0/G1 to S phase progression and this is accompanied by 

downregulation of cyclin D1 expression and induction of the cyclin-dependent kinase 

inhibitors p27 or p21.  Research from our laboratory has identified a series of 1,1-bis(3'-

indolyl)-1-(p-substituted phenyl)methanes [methylene-substituted diindolyl-methanes 

(C-DIMs)] which inhibit cancer cell and tumor growth (281, 296, 297, 299, 300, 313, 

695) (301)through both receptor-dependent and independent pathways and similar 

observations have been reported for other PPARγ agonists (262, 696-699). 

 A new class of synthetic PPARγ agonists has been derived from glycyrrhetinic 

acid (GA), a major triterpenoid acid found in licorice extracts.  Methyl 2-cyano-3,11-

dioxo-18β-olean-1,12-dien-30-oate (β-CDODA-Me) is a 2-cyano derivative of GA and 

has the same oleanolic acid pentacyclic triterpene backbone structure as CDDO which is 

also a 2-cyano derivative of oleanolic acid (482).  However, there are major structural 

differences between CDODA and CDDO with respect to the position of the carboxylic 

acid group in the E ring, the position of the double bonds and keto group in the C-ring.  

We recently reported that the 18α and 18β isomers of CDODA-Me activate PPARγ in 

colon cancer cells and induced both caveolin-1 and Krüppel-like Factor-4 (KLF4) 

through receptor-dependent pathways (312).  In this study, we have investigated the 
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effects of β-CDODA-Me on the proliferation of LNCaP prostate cancer cells and the 

IC50 value for growth inhibition was approximately 1 μM.  In contrast to studies in colon 

cancer cells, β-CDODA-Me had minimal effects on caveolin-1 or KLF4 expression in 

LNCaP cells.  The proapototic and growth inhibitory effects of β-CDODA-Me in 

LNCaP cells were associated with induction of p21 and p27 expression, downregulation 

of cyclin D1, and induction of NAG-1.  β-CDODA-Me also decreased androgen 

receptor (AR) and prostate specific antigen (PSA) protein and RNA expression and all of 

these responses were PPARγ-independent.  Thus, β-CDODA-Me, a PPARγ agonist, 

inhibited growth and induced apoptosis in LNCaP cells through activation of multiple 

receptor-independent pathways including ablation of AR gene expression. 

MATERIALS AND METHODS  

Cell lines  

 LNCaP human prostate carcinoma cells were obtained from American Type 

Culture Collection (Manassas, VA).  Fetal bovine serum was obtained from JRH 

Biosciences, Lenexa, KS. LNCaP cells were maintained in RPMI 1640 (Sigma 

Chemical, St. Louis, MO) supplemented with 0.22% sodium bicarbonate, 0.011% 

sodium pyruvate, 0.45% glucose, 0.24% HEPES, 10% FBS, and 10 mL/L of 100X 

antibiotic/antimycotic solution (Sigma).  Cells were maintained at 37°C in the presence 

of 5% CO2. 

Antibodies and reagents 

 Antibodies for poly(ADP-ribose) polymerase, cyclin D1, p27, FKBP51, AR, 

ATF3, Akt and caveolin-1 were purchased from Santa Cruz Biotechnology, Inc. (Santa 
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Cruz, CA).  PSA was obtained from Dako Denmark A/S (Glostrup, Denmark); NAG-1 

was purchased from Upstate Biotechnology (Charlottesville, VA); and EGR-1, pAKT, 

pERK, ERK, pJNK, JNK were obtained from Cell Signaling Technology Inc. (Danvers, 

MA).  Monoclonal β-actin antibody and dihydrotesterone were purchased from Sigma-

Aldrich.  Reporter lysis buffer and luciferase reagent for luciferase studies were 

purchased from Promega (Madison, WI).  β-Galactosidase (β-Gal) reagent was obtained 

from Tropix (Bedford, MA), and lipofectamine reagents were supplied by Invitrogen 

(Carlsbad, CA).  Western blotting chemiluminescence reagents were from Perkin-Elmer 

Life Sciences (Boston, MA).  The PPARγ antagonist N-(4'-aminopyridyl)-2-chloro-5-

nitrobenzamide (T007) was prepared in this laboratory and the synthesis of the GA 

derivatives has been previously described (312). 

Cell proliferation and DNA fragmentation assays 

LNCaP prostate cancer cells (2 x 104 per well) were added to 12-well plates and 

allowed to attach for 24 hr.  The medium was then changed to DMEM/Ham's F-12 

media containing 2.5% charcoal-stripped FBS, and either vehicle (DMSO) or the 

indicated C-DIMs were added.  Fresh medium and indicated compounds were added 

every 48 hr, and cells were then trypsinized and counted after 2, 4, and 6 days using a 

Coulter Z1 cell counter (Beckman Coulter, Fullerton, CA).  Each experiment was done 

in triplicate, and results are expressed as means ± S.E. for each set of three experiments.  

The DNA fragmentation assay was performed using a BioVision Apoptotic DNA ladder 

extraction kit (BioVision, Mountain View, CA) according to the manufacturer's protocol. 
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Transfections 

The Gal4 reporter construct containing 5X Gal4 response elements (pGal4) was 

kindly provided by Dr. Marty Mayo (University of North Carolina, Chapel Hill, NC).  

The Gal4DBD-PPARγ construct was a gift of Dr. Jennifer L. Oberfield (Glaxo 

Wellcome Research and Development, Research Triangle Park, NC).  The PPRE-luc 

construct contains three tandem PPREs with a minimal TATA sequence linked to the 

luciferase gene in pGL2.  The AR-luc construct containing the -5400 to +580 region of 

the androgen receptor promoter was provided by Dr. Donald J. Tindall (Mayo Clinic, 

Rochester, MN), and the PSA-luc construct containing the 5.8-kilobase region of the 

PSA promoter was provided by Dr. Hong-Wu Cheng (University of California, Davis, 

CA).  LNCaP cells (1 x 105) were seeded in 12-well plates in DMEM/Ham's F-12 media 

supplemented with 2.5% charcoal-stripped FBS and grown overnight.  Transient 

transfections were performed using Lipofectamine reagent (Invitrogen) according to the 

protocol provided by the manufacturer.  Transfection studies were performed using 0.4 

μg of Gal4Luc, 0.04 μg of β-galactosidase, 0.04 μg of Gal4DBD-PPARγ, 0.4 μg of AR-

luc, and 0.3 μg of PSA-luc.  Six hr after transfection, the transfection mix was replaced 

with complete media containing either vehicle (DMSO) or the indicated ligand for 20 to 

22 hr.  Cells were then lysed with 100 μl of 1 x reporter lysis buffer, and 30  μl of cell 

extract was used for luciferase and β-galactosidase assays.  A Lumicount luminometer 

(PerkinElmer Life and Analytical Sciences) was used to quantify luciferase and β-

galactosidase activities, and the luciferase activities were normalized to β-galactosidase 

activity. 
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Real-time PCR 

Total RNA was isolated using the RNeasy Protect Mini kit (QIAGEN, Valencia, 

CA) according to the manufacturer's protocol.  RNA was eluted with 30 μl of RNasefree 

water and stored at -80°C.  RNA was reverse transcribed using Superscript II reverse 

transcriptase (Invitrogen) according to the manufacturer's protocol.  cDNA was prepared 

from the LNCaP cell line using a combination of oligodeoxythymidylic acid and dNTP 

mix (Applied Biosystems, Foster City, CA) and Superscript II (Invitrogen).  Each PCR 

was carried out in triplicate in a 25-μl volume using SYBR Green Master mix (Applied 

Biosystems) for 15 min at 95°C for initial denaturing, followed by 40 cycles of 95°C for 

30 s and 60°C for 1 min in the ABI Prism 7700 sequence detection system (Applied 

Biosystems).  The ABI Dissociation Curves software was used after a brief thermal 

protocol (95°C 15 s and 60°C 20 s, followed by a slow ramp to 95°C) to control for 

multiple species in each PCR amplification.  The comparative CT method was used for 

relative quantitation of samples.  Values for each gene were normalized to expression 

levels of TATA-binding protein.  Primers were purchased from Integrated DNA 

Technologies (Coralville, IA).  The sequences of the primers used for reverse 

transcription-PCR were as follows:  AR forward, 5'-GTA CCC TGG CGG CAT GGT-3' 

and AR reverse, 5'-CCC ATT TCG CTT TTG ACA CA-3'; PSA forward, 5'-GCA TTG 

AAC CAG AGG AGT TCT TG-3' and PSA reverse, 5'-TTG CGC ACA CAC GTC 

ATT G-3'; and TATA-binding protein forward, 5'-TGC ACA GGA GCC AAG AGT 

GAA-3' and reverse, 5'-CAC ATC ACA GCT CCC CAC CA-3'. 
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Western blot analysis 

 Cells were seeded in DMEM:Ham’s F-12 media containing 2.5% charcoal-

stripped FBS for 24 hr and then treated with either the vehicle (DMSO) or the indicated 

compounds.  Cells were collected by scraping in 150 μl high salt lysis buffer (50 mM 

HEPES, 0.5 M NaCl, 1.5 mM MgCl2, 1 mM EGTA, 10% (v/v) glycerol, 1% (v/v) 

Triton-X-100 and 5 μL/ml of Protease Inhibitor Cocktail (Sigma).  The lysates were 

incubated on ice for 1 hr with intermittent vortexing followed by centrifugation at 

20,000 g for 10 min at 4°C.  Before electrophoresis, samples were boiled for 3 min at 

100°C; the amount of protein was determined and 60 μg protein applied per lane.  

Samples were subjected to SDS-PAGE on 10% gel at 120 V for 3 to 4 hr.  Proteins were 

transferred on to polyvinylidene difluoride membrane (PVDF; Bio-Rad, Hercules, CA) 

at 0.9 amp for 90 min at 4°C in 1x transfer buffer (48 mM Tris-HCl, 39 mM glycine, and 

0.025% SDS).  The membranes were blocked for 30 min with 5% TBST-Blotto (10 mM 

Tris-HCl, 150 mM NaCl (pH 8.0), 0.05% Triton X-100 and 5% non-fat dry milk) and 

incubated in fresh 5% TBST-Blotto with primary antibody overnight with gentle shaking 

at 4°C.  After washing with TBST for 10 min, the PVDF membrane was incubated with 

secondary antibody (1:5000) in 5% TBST-Blotto for 2-3 hr.  The membrane was washed 

with TBST for 10 min and incubated with 10 ml of chemiluminiscence substrate 

(PerkinElmer Life Sciences) for 1.0 min and exposed to ImageTeK-H medical imaging 

film (Eastman American X-ray Supply, Inc.). 
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Statistical analysis 

Statistical differences between different groups were determined by ANOVA and 

Scheffe's test for significance.  The data are presented as mean ± S.E. for at least three 

separate determinations for each treatment group. 

RESULTS 

 Cell proliferation and activation of PPARγ   

β-DODA or 1, 2-dehydro-GA exhibited minimal inhibition of LNCaP cell 

growth with a IC50 value > 15 µM whereas the IC50 for the corresponding methyl ester 

derivative was between 10-15 μM (Fig. 3.1).  Introduction of a 2-cyano group to give β-

CDODA-Me increased the cytotoxicity by at least an order of magnitude and the IC50 

was approximately 1 μM in LNCaP cells (Fig. 3.1A).  These results were similar to 

those observed in colon cancer cells (312) and demonstrate the importance of 2-cyano 

substituents in mediating the cytotoxicity of GA derivatives.  The induction of PPARγ-

dependent transactivation by β-CDODA-Me was also investigated in LNCaP cells 

transfected with PPARγ-GAL4/GAL4-Luc or PPRE3-Luc constructs and treated with 1-

5 μM concentrations.  β-CDODA-Me significantly induced luciferase activity (Fig. 

3.1B) and in cells cotreated with β-CDODA-Me plus 10 μM T007 (a PPARγ 

antagonist), there was significant inhibition of induced transactivation.  In contrast, β-

DODA-Me did not activate PPARγ (data not shown) demonstrating the requirement for 

the 2-cyano substituent to confer PPARγ agonist activity on the GA derivative.  PPARγ  

agonists typically modulate expression of one or more of the cell cycle proteins p27, p21 
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Fig. 3.1. Effects of β-CDODA-Me and related compounds on LNCaP cell survival and activation of PPAR. Cell survival of LNCaP 
(A and B), PC3, and DU145 (C) cells. Prostate cancer cells were treated with different concentrations of β-DODA, β-DODA-Me, or 
β-CDODA-Me alone or in combination with 5 µM T007 (C) for 96 h, and the percentage of cell survival relative to DMSO (solvent 
control set at 100%) was determined as described under Materials and Methods. Results are expressed as means ± S.E. for three 
separate determinations for each treatment group, and significantly (p < 0.05) decreased survival is indicated (*). D, β-CDODA-Me 
activates PPAR. LNCaP cells were treated with β-CDODA, T007, or their combination, transfected with PPAR-GAL4/pGAL4 or 
PPRE-luc, and luciferase activity determined as described under Materials and Methods. Results are expressed as means ± S.E. for 
three replicate determinations for each treatment group, and significant (p < 0.05) induction by β-CDODA-Me (*) and inhibition after 
cotreatment with T007 (**) are indicated. 
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and cyclin D1, and Figure 3.1C illustrates the effects of 1-5 μM β-CDODA-Me on  

expression of these proteins in LNCaP cells.  There was a concentration-dependent 

induction of p27 and p21 and a decrease in cyclin D1 proteins and Rb phosphorylation in  

cells treated with β-CDODA-Me alone, and similar results were observed in cells 

cotreated with the PPARγ antagonist T007 and β-CDODA-Me (Fig. 3.1 D) suggesting 

that these responses were PPARγ-independent. 

Induction of proapoptotic responses by β-CDODA-Me   

NAG-1 and ATF-3 are proapoptotic proteins induced by PPARγ agonists and 

results in Figure 3.2 A show that 1-5 μM β-CDODA-Me induced NAG-1 and ATF-3 

which are often co-induced and this was accompanied by caspase-dependent PARP 

cleavage, DNA fragmentation, and decreased bcl2 expression in LNCaP cells.  In 

LNCaP cells cotreated with β-CDODA-Me plus T007 (Fig. 3.2 B), the induced 

responses were not inhibited by the PPARγ antagonist indicating that induction of these 

proapototic responses was receptor-independent.  Previous studies show that different 

structural classes of PPARγ agonists downregulate AR expression in LNCaP cells and  

this response can also result in activation of apoptosis (695, 699).  Figure 2C 

summarizes the effects of β-CDODA-Me on AR expression in the presence or absence 

of 10 nM DHT and also on the expression of FKBP51 and PSA, two androgen-

responsive genes in LNCaP cells.  DHT increases expression of AR due to stabilization 
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Fig. 3.2. β-CDODA-Me modulates the cell cycle and cell cycle genes and induces apoptosis in prostate cancer cells. 
Modulation of cell cycle genes by β-CDODA-Me alone (A) and in combination with T007 (B). Cells were treated as 
indicated for 24 h, and whole-cell lysates were analyzed by Western blot analysis as described under Materials and 
Methods. C, cell cycle progression. LNCaP cells were treated with DMSO and different concentrations of β-CDODA-
Me for 24 h and analyzed for the percentage of distribution of cells in different phases of the cell cycle by FACS 
analysis as described under Materials and Methods. Results are expressed at means ± S.E. for three replicate 
determinations, and significant (p < 0.05) changes (compared with DMSO group) are indicated by an asterisk. D, 
induction of PARP cleavage. PC3 and DU145 cells were treated for 24 h with different concentrations of β-CDODA-
Me, and whole-cell lysates were analyzed by Western blots as described under Materials and Methods 

 



  

 

133

of the receptor and also induces both androgen-responsive FKBP51 and PSA genes and, 

in cells treated with 1-5 μM β-CDODA-Me, there was a concentration-dependent 

decrease in AR, PSA and FKBP51 expression in the presence or absence of DHT.  In 

addition, downregulation of AR, PSA and FKBP51 proteins in LNCaP cells treated with 

β-CDODA-Me was not affected by cotreatment with the PPARγ antagonist T007 (Fig. 

3.2D) or the proteasome inhibitor MG132 (Fig. 3.2D).  In contrast, β-CDODA-Me-

dependent degradation of cyclin D1 was inhibited after cotreatment with MG132 and 

these observations are similar to those reported for other PPARγ agonists that induce 

proteasome-dependent degradation of cyclin D1 (300-302).  These results clearly show 

that β-CDODA-Me decreases expression of androgen-responsive genes and AR through 

PPARγ-independent pathways.  The downregulation of AR in cells treated with β-

CDODA-Me is consistent with the induction of apoptosis by this compound since 

decreased AR expression by small inhibitory RNAs in LNCaP cells also induces 

apoptosis (700).  

β-CDODA-Me induces kinase-dependent activation of proapoptotic/growth 

inhibitory pathways 

  Previous studies show that NAG-1 is induced by some PPARγ agonists and  

other cytotoxic compounds in colon cancer cells (278, 299, 313, 442, 665) through 

PI3K-dependent activation of EGR-1 which acts as a trans-acting factor to induce NAG-

1 expression.  Figure 3.3A summarizes the time-dependent induction of EGR-1, ATF-3 

and NAG-1 by 2.5 μM β-CDODA-Me  and the induction responses followed a similar 

time course, whereas EGR-1 dependent induction of NAG-1 in colon cancer cells is 
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associated with the increased expression of EGR-1 prior to induction of NAG-1 (299, 

442).  Previous studies show that NAG-1 induction is kinase-dependent (299, 442), and 

results in Figure 3.3B show that 2.5 μM β-CDODA-Me induces activation of the JNK 

(p-JNK), PI3K (p-Akt) and MAPK (p-Erk) pathways.  Maximal activation of JNK and 

PI3K was observed after 8 and 8-12 hr, respectively, whereas p-Erk activation remained 

elevated for 24 hr.  The effects of inhibitors of MAPK (PD98059), PI3K (LY294002), 

protein kinase C (GF109203X) and JNK (SP600125) on induction of NAG-1 and ATF3 

and decreased expression of AR, PSA and FKBP51 was also investigated in LNCaP 

cells treated with 2.5 μM β-CDODA-Me (Fig. 3.3C).  Both PD98059 and LY294002 

inhibited induction of NAG-1 by β-CDODA-Me.  However, the JNK inhibitor 

SP600125 was the most potent inhibitor of ATF-3 induction (Figs. 3.3C and 3.3D).  In 

contrast, decreased expression of AR, PSA and FKBP51 in LNCaP cells treated with β-

CDODA-Me was unaffected by kinase inhibitors. These results suggest that the 

underlying pathways associated with the growth inhibitory/proapoptotic pathways 

induced by β-CDODA-Me in LNCaP cells are due in part to activation of kinases. 

Therefore, the effects of kinase inhibitors on modulation of cell cycle proteins 

 by β-CDODA-Me were also investigated and the downregulation of cyclin D1 and 

induction of p21 were partially blocked in cells cotreated with the MAPK inhibitor 

PD98059 (Fig. 3.4A), and MAPK-dependent activation of p21 has previously been 

observed in embryonal rhabdomyosarcoma cell lines treated with TPA (701).  Results in 

Figure 4B show that the 1-5 μM β-CDODA-Me also induces luciferase activity in 

LNCaP cells transfected with constructs containing -2325 to +8 [p21-Luc (Fl)], -124 to 
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Fig. 3.3. β-CDODA induces apoptotic pathways and decreases androgen-responsiveness in LNCaP cells. β-CDODA-Me alone (A) 
and in combination with T007 (B and C) induces proapoptotic pathways. LNCaP cells were treated as indicated for 24 h, and whole-
cell lysates were analyzed by Western blot analysis as described under Materials and Methods. β-CDODA-Me-induced DNA 
fragmentation (A and B) was also determined as described. Effects of β-CDODA-Me alone and in combination with DHT or T007 
(D) or MG132 (E) on AR and androgen-responsive proteins. LNCaP cells were treated with DMSO or the various compounds for 24 
h, and whole-cell lysates were analyzed by Western blot analysis as described under Materials and Methods. 
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+8 [p21-Luc (-124)], -101 to +8 [p21-Luc (-101)], and -60 to +8 [p21-Luc (-60)] p21 

promoter inserts.  The latter 3 constructs contain the 6 proximal GC rich site (VI - I) and 

the results of the transfection studies suggest that these GC-rich sites are necessary for β-

CDODA-Me-induced transactivation.  Deletion analysis of the p21 promoter indicates 

that loss of inducibility [i.e. p21-luc(60)] is associated with loss of GC-rich sites IV and 

III which are essential for MAPK-dependent activation of p21 by  

β-CDODA-Me.  The role of MAPK in activation of the p21 promoter was 

confirmed in LNCaP cells transfected with p21-luc (101); β-CDODA-Me induced 

luciferase activity and cotreatment with the MAPK inhibitor PD98059 inhibited this 

response (Fig. 3.4C).  These results show that the induction of p21 and the proapototic 

NAG-1 protein by β-CDODA-Me were related to the activation of MAPK and PI3K but 

were independent of PPARγ (Figs. 3.1 D and 3.2 B). 

 β-CDODA-Me differentially decreases AR and PSA gene expression in LNCaP 

cells 

  β-CDODA-Me decreases expression of AR, PSA and FKBP51 protein levels 

through proteasome and PPARγ-independent pathways (Fig 3.2 C-3.2 E) and these 

responses are also not modulated by kinase inhibitors (Fig. 3.3 B).  The results in Figure 

3.5 A show that β-CDODA-Me also decreases AR mRNA levels after treatment for 12 

and 18 hr, and cotreatment with the PPARγ antagonist T007 did not affect mRNA levels 

confirming the β-CDODA-Me-induced downregulation of AR mRNA levels was also 

PPARγ-independent.  Similar results were obtained in LNCaP cells treated with β- 
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Fig. 3.4. β-CDODA-Me induces proapoptotic proteins and kinases. Induction of NAG-1, ATF3, and Egr-1 
(A) and kinases (B) by β-CDODA-Me. LNCaP cells were treated with 2.5 µM β-CDODA-Me, and whole-
cell lysates isolated at different times after treatment were analyzed by Western blot analysis as described 
under Materials and Methods. Effects of kinase inhibitors on proapoptotic responses (C) and quantitation 
of NAG-1 and ATF3 expression (D). LNCaP cells were treated with 2.5 µM β-CDODA alone or in 
combination with various kinase inhibitors, and after 24 h, whole-cell lysates were analyzed by Western 
blot analysis. Levels of NAG-1 and ATF3 proteins (normalized to β-actin) (D) are means ± S.E. for three 
separate determinations for each treatment group, and significantly (p < 0.05) decreased levels after 
cotreatment with a kinase inhibitor are indicated (**). 
 



  

 

138

A

p21

β-Actin

CD1

p27

β-CDODA-Me
(2.5 μM) - + - + - + - + - +

GF109203XLy294002 SP600125PD98059Control

B

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2.5

5

0

1

2.5

5

0

1

2.5

5

0

1

2.5

5

p2
1-

Lu
c 

(F
L)

p2
1-

Lu
c 

(1
24

)
p2

1-
Lu

c 
(1

01
)

p2
1-

Lu
c 

(6
0)

Fold  Induction

*

*

*

*

*

*

*

**
**

LUC
1 2 3 4 5-6

- 2320

LUC
5-6

- 60

LUC
3 4 5-6

- 101

LUC
1 2 3 4 5-6

- 124

Sp1
TATA

 

Fig. 3.5. β-CDODA-Me induction of p21 is MAPK-dependent. A, effects of kinase inhibitors on induction of p21. 
LNCaP cells were treated with DMSO, 2.5 µM β-CDODA-Me alone or in combination with kinase inhibitors for 24 h, 
and whole-cell lysates were analyzed by Western blot analysis as described under Materials and Methods. B, β-
CDODA-Me activates p21 promoter constructs. LNCaP cells were transfected with p21 promoter constructs, treated 
with DMSO or different concentrations of β-CDODA-Me, and luciferase activity was determined as described under 
Materials and Methods. Results are means ± S.E. for three separate determinations for each treatment group, and 
significant (p < 0.05) induction of activity is indicated (*). C, inhibition by PD98059. Cells were transfected with p21-
luc(101), treated with DMSO or β-CDODA-Me alone or in combination with 10 µM PD98059. Results are expressed 
as means ± S.E. for three separate determinations for each treatment group, and significant (p < 0.05) induction by β-
CDODA-Me (*) and inhibition after cotreatment with PD98059 (**) are indicated. 
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 Fig 3.5 Continued 

 

CDODA-Me alone or in the presence of the protein synthesis inhibitor cycloheximide 

(10 μg/ml) (Fig. 3.5 B); cycloheximide did not modulate the effects of β-CDODA-Me,  

suggesting that an induced inhibitory protein(s) does not mediate the effects of β-

CDODA-Me on AR mRNA expression.  β-CDODA-Me also decreased luciferase 

activity in LNCaP cells transfected with the AR-Luc construct that contains the -5400 to 

+580 region of the AR promoter linked to the luciferase genes (Fig. 3.5 C).  The results 

indicate that β-CDODA-Me inhibits AR transcription without the parallel induction of  

inhibitory trans-acting factors.  Recent studies suggest that AR downregulation of a 

PPARγ-inactive thiazolidinedione analog was due to downregulation of Sp protein 

(702).  Results in Figure 3.5 D show that β-CDODA-Me induces a time-dependent 

induction of PARP cleavage and a decrease of both AR and Sp1, suggesting that 

decreased expression of AR may be Sp1-dependent as previously reported (702) . 
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 PSA protein expression is also decreased in LNCaP cells treated with β-

CDODA-Me (Fig. 3. 2 C) and similar effects were observed for PSA mRNA levels after 
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Fig. 3.6. β-CDODA-Me decreases AR gene expression. Effects of T007 (A) and 
cycloheximide (B) on β-CDODA-Me-dependent effects on AR gene expression. LNCaP 
cells were treated with β-CDODA-Me alone or in combination with T007 or 
cycloheximide for 18 h, and AR mRNA levels were determined by real-time PCR as 
described under Materials and Methods. Similar results were observed after treatment 
for 12 h (data not shown). C, β-CDODA-Me decreases AR promoter activity. LNCaP 
cells were transfected with AR-luc, treated with DMSO or β-CDODA-Me, and 
luciferase activity was determined as described under Materials and Methods. Results 
are means ± S.E. for three separate experiments for each treatment group, and a 
significant (p < 0.05) decrease in activity is indicated (*). D, time-dependent effects of β-
CDODA-Me on AR, Sp1, and PARP (cleaved). LNCaP cells were treated with DMSO 
or β-CDODA-Me for up to 24 h, and whole-cell lysates were analyzed by Western blot 
analysis as described under Materials and Methods. 
 



  

 

141

treatment for 12 or 18 hr, and these responses were not inhibited after cotreatment with 

the PPARγ antagonist T007 (Fig.3.6A).  However, β-CDODA-Me-induced 

downregulation of PSA mRNA levels after treatment for 12 or 18 hr was significantly  

 inhibited after cotreatment with cycloheximide (Fig. 3.6 B).  In addition, β-CDODA-Me 

inhibited transactivation in LNCaP cells transfected with the PSA-Luc construct 

(contains 5.85 kb of the PSA promoter insert) (Fig. 3.6 C) and similar results were 

obtained for DHT-induced luciferase activity (Fig. 3.6 D).  Thus, in contrast to results 

obtained for AR, β-CDODA-Me inhibits PSA expression through induction of inhibitory 

trans-acting factors and the mechanisms associated with the decreased PSA expression 

and the cis-elements important for this response are currently being investigated. 

DISCUSSION 

 PPARγ agonists have been extensively investigated in both in vitro and in vivo 

cancer models for their potential applications in cancer chemotherapy (281, 463, 482, 

659, 685-691).  PPARγ agonists inhibit prostate cancer cell and tumor growth (249, 695, 

703, 704) and the fact that approximately 40% of prostate cancer patients carry 

hemizygous deletions of PPARγ (705) suggests that this receptor may serve as a tumor 

suppressor gene for prostate cancer.  However, in animal studies using the transgenic 

adenocarcinoma mouse prostate (TRAMP) model with hemizygous deletion in PPARγ, 

it was shown that the loss of receptor expression did not enhance or inhibit prostate 

tumor development in these animals (706).  Thus, at least in the TRAMP mouse model, 

PPARγ does not appear to act as a tumor suppressor gene. 
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 One of the perplexing problems with PPARγ agonists is that although these 

compounds inhibit cancer cell and tumor growth, their mechanisms of action are both 

receptor-dependent and -independent in different cancer cell lines.  For example, PGJ2, 

troglitazone and PPARγ-active C-DIMS induce NAG-1 in HCT-116 colon cancer cells; 

however, only induction by PGJ2 is inhibited by a PPARγ antagonist (278, 299, 665).  

Caveolin-1 is induced by C-DIM compounds and CDDO in colon cancer cell lines, and 

this response is inhibited after cotreatment with PPARγ antagonists (300, 302).  In 

contrast, C-DIMs decreased caveolin-1 expression in LNCaP cells and this response was 

PPARγ-independent (695). 

 β-CDODA-Me is a triterpenoid acid that contains an oleanolic acid backbone 

structure similar to that of CDDO and CDDO-Me (methyl ester) (463, 482), but there are 

important structural differences in the C, D and E rings that differentiate between these 

compounds; however, for both compounds the 2-cyano group was necessary for 

activation of PPARγ.  

 In this study, we investigated the growth inhibitory and proapoptotic effects of β-

CDODA-Me in LNCaP cells and the role of PPARγ in mediating these responses.  β-

CDODA-Me was a more potent inhibitor of LNCaP cell growth than analogs (β-DODA 

and β-DODA-Me) that did not contain a 2-cyano substituent (Fig. 3.1A).  Moreover, β-

CDODA-Me also activated PPARγ-dependent transactivation in transient transfection 

studies in LNCaP cells (Fig. 3.1B), and compounds without the CN-group were inactive 

(data not shown) as previously reported for these analogs in colon cancer cells (312).  β-
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CDODA-Me induced p27 expression and downregulated levels of cyclin D1 protein 

(Figs. 3.1C and 3.1D).  Similar effects were previously reported for C-DIMs (695) and 

the effects of both compounds were receptor-independent; however, β-CDODA-Me-

induced responses were observed at lower concentrations (1 - 2.5 μM) than the C-DIM 

compounds (7.5 - 10 μM).  C-DIMs did not induce p21 in LNCaP cells (695), whereas 

β-CDODA-Me induced p21 protein and this response was not inhibited after cotreatment 

with PPARγ antagonist T007 (Fig. 3.1D).  Differences between PPARγ-active C-DIMs 

and β-CDODA-Me in their induction of p21 in LNCaP cells was due to activation of 

MAPK signaling by the latter compound (Fig. 3.3 C) which was required for induction 

of p21 protein (Fig. 3.4A) and activation of the p21 promoter (Fig. 3.4 C).  This is a 

novel pathway for induction of p21 in LNCaP cells; however, previous studies in other 

cell lines also demonstrated MAPK-dependent induction of p21 expression (701, 707, 

708).   

 NAG-1 and ATF3 are growth inhibitory and proapoptotic proteins (709, 710), 

and previous studies with PPARγ agonists report both receptor-dependent and -

independent induction of NAG-1 (278, 299, 302, 665).  Induction of NAG-1 and ATF3 

by β-CDODA-Me in LNCaP cells was also PPARγ-independent.  Both PI3K and MAPK 

inhibitors blocked induction of NAG-1; however, the JNK inhibitor SP600125 was the 

most potent inhibitor of ATF-3 (but not NAG-1) induction.  The inhibitory effects of 

SP600125 are consistent with previous studies showing that homocysteine also induces 

ATF3 in vascular cells through activation of JNK which activates c-jun and ATF-3 

through an AP-1 site in the ATF-3 promoter (711).  The kinase-dependent induction of 
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NAG-1 has previously been reported and these effects are both structure and cell 

context-dependent.  For example, troglitazone and PPARγ-active C-DIMs induce NAG-

1 in HCT116 colon cancer cells through rapid activation of Egr-1 which subsequently 

activates NAG-1 through direct interaction with the proximal region of the NAG-1 

promoter (278, 299).  However, this induction response is MAPK-dependent for 

troglitazone and PI3-K-dependent for the C-DIM compound.  In this study, the time-

dependent induction of both EGR-1 and NAG-1 are similar in LNCaP cells (Fig. 3.3 A), 

and inhibition of NAG-1 expression is observed with both PI3K and MAPK inhibitors 

(Fig. 3.3 B).  This may involve cooperative interactions of both kinase pathways for 

induction of NAG-1 by β-CDODA-Me in LNCaP cells, and mechanisms for these 

responses are currently being investigated.  Interestingly, induction of NAG-1 by 

PPARγ-active C-DIMs in LNCaP cells was inhibited only by the MAPK inhibitor 

PD98059 (695), suggesting differences between β-CDODA-Me and C-DIMs in the same 

cell line.  Thus, induction of both NAG-1 and ATF3 in LNCaP cells is differentially 

induced by two PPARγ agonists, C-DIMs and β-CDODA-Me through receptor-

independent activation of different kinase pathways. 

 Two recent reports show that in LNCaP cells AR knockdown by RNA 

interference results in apoptosis (700) and stable knockdown using short hairpin RNAs 

for AR results in decreased AR and PSA expression and inhibition of tumor growth in 

vivo (712).  Like β-CDODA-Me, AR and PSA expressions are also decreased by C-

DIMs and troglitazone in LNCaP cells, and 3,3'-diindolylmethane (DIM) also decreases 

expression of both genes and proteins (713, 714).  Troglitazone differentially decreases 
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PSA and AR expression at relatively low (IC50 ≤ 10 μM) and high (IC50 ~ 40 μM) 

concentrations, respectively (699) .  In contrast, C-DIMs decreased AR and PSA mRNA, 

protein and reporter gene activity in cells transfected with PSA-Luc and AR-Luc 

constructs over a narrow range of concentrations (7.5 - 10 μM) (695) and similar results 

were observed for β-CDODA-Me (1 - 2.5 μM) in this study (Figs 3.5 and 3.6).  

Moreover, cycloheximide reversed the β-CDODA-Me- and C-DIM-dependent 

downregulation of PSA but not AR mRNA levels, suggesting a similar mechanism of 

action for both compounds.  One study reported that DIM inhibited nuclear uptake of 

AR in LNCaP cells (715), and like β-CDODA-Me, DIM also decreased AR and PSA 

expression in LNCaP and androgen-insensitive C4-2B cells (713, 714).  However, there 

are several differences between the pathways associated with downregulation of these 

genes by β-CDODA-Me and DIM and this includes the pivotal role for DIM as an 

inhibitor of phospho-Akt (713, 714), whereas β-CDODA-Me induces phospho-Akt (Fig. 

3.3B) and the PI3K inhibitor LY294002 does not affect β-CDODA-dependent 

downregulation of AR, PSA or FKBP51 (Fig. 3.3C) or induction of p21 or p27 (Fig. 3.4 

A).   

 A recent report indicated that decreased AR expression in LNCaP cells treated 

with a PPARγ-inactive thiazolidinedione derivative was due to proteasome-dependent 

degradation of Sp1 (702) and our results also show a parallel decrease in AR and Sp1 in 

LNCaP cells treated with β-CDODA-Me (Fig. 3.5 D).  However, in contrast to the 

previous report, this effect on AR was not reversed by a proteasome inhibitor (Fig. 3.2 

D).   Loss of AR by RNA interference results in the induction of apoptosis in LNCaP 
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cells (700).  In contrast, 2.5 μM β-CDODA-Me rapidly induces PARP cleavage and 

apoptosis in LNCaP cells prior to decreased AR expression (Fig. 3.5D) demonstrating 

that apoptotic pathways activated by β-CDODA-Me in LNCaP cells are not associated 

with loss of AR, and the proapoptotic mechanisms are currently being investigated.   

 Results of this study demonstrate that β-CDODA-Me is a potent inhibitor of 

LNCaP cell growth and induces proapoptotic responses through activation of kinases 

which differentially activate ATF3, NAG-1 and p21.  In contrast, decreased expression 

of AR and PSA are kinase independent and occur through different pathways (Fig. 3.7).   
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Fig. 3.7. β-CDODA-Me decreases PSA expression.  Effects of T007 (A) and cycloheximide (B) on β-
CDODA-Me-dependent effects on PSA gene expression.  LNCaP cells were treated with β-CDODA-Me 
alone or in combination with T007 or cycloheximide for 12 or 18 hr, and PSA mRNA levels were 
determined by real time PCR as described in the Materials and Methods.  β-CDODA-Me decreases PSA 
promoter (C) and DHT-induced (D) PSA promoter activity.  LNCaP cells were transfected with PSA-luc, 
treated with DMSO, β-CDODA-Me, DHT and β-CDODA-Me plus DHT (combined), and luciferase 
activity determined as described in the Materials and Methods.  Results are means ± SE for three replicate 
determinations for each treatment group, and significantly (p < 0.05) decreased basal or DHT-induced 
luciferase activity by β-CDODA-Me is indicated (*). 
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Fig. 3.7 Continued 

 

β-CDODA-Me, C-DIMs, DIM and troglitazone exhibited both differences and 

similarities in their modes of action in LNCaP cells, although all of these compounds 

decreased expression of AR and PSA.  The growth inhibitory and proapoptotic effects of 

β-CDODA-Me were primarily receptor-independent in LNCaP cells, and similar results 

have been observed for other PPARγ agonists such as the C-DIMs and troglitazone.  

Thus, each agent activates multiple pathways, and the successful use of β-CDODA-Me 

and other such compounds for single or combined prostate cancer chemotherapies 

requires detailed insights on their mechanisms of action and prostate cancer cell context-

dependent differences in activating critical pathways such as those illustrated in Figure 

3.8. 
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Fig. 3.8. β-CDODA-Me-dependent activation of kinases and kinase-dependent genes 
and repression of AR and PSA. 
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CHAPTER IV 
 
 

BETULINIC ACID INHIBITS PROSTATE CANCER GROWTH THROUGH 

INHIBITION OF SPECIFICITY PROTEIN TRANSCRIPTION FACTORS* 

INTRODUCTION 

 Natural products derived from plant sources have been used extensively in 

traditional medicine for treatment of a myriad of diseases including various types of 

cancers (410, 716, 717).  Several individual phytochemicals or their synthetic analogs 

are among the most widely used drugs for cancer chemotherapy and these include taxane 

microtubule inhibitors such as paclitaxel and synthetic analogs that are now widely used 

in cancer chemotherapy (718, 719).  Phytochemical and microbial extracts from various 

sources are routinely screened for biological activities, and it is estimated that 20-25% of 

new drugs are derived from natural products or their synthetic analogs (720-722).  The 

triterpenoids oleanolic acid, ursolic acid and their derivatives, exhibit anti-inflammatory 

and anticarcinogenic activities (459, 723, 724).  Structure-activity studies among several 

oleanolic and ursolic acid derivatives (462, 463, 465) have identified 2-cyano-3,12-

dioxoolean-1,9-dien-28-oic acid (CDDO) and related compounds as highly potent anti- 

inflammatory compounds that inhibit growth and induce apoptosis in several 

____________ 

*Reprinted with permission from “Betulinic acid inhibits prostate cancer growth through 
inhibition of specificity protein transcription factors” by Chintharlapalli S, Papineni S, 
Ramaiah SK, Safe S. Cancer Res.2007;67:2816-23.Copyright 2007 by American 
Association for Cancer Research. 
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cancer cells and tumor types (302, 482, 483, 725-727).  CDDO-like compounds act 

through multiple pathways and are currently undergoing clinical trials for treatment of 

leukemia.   

 Betulin is a lupane-derived triterpene which is present in high concentrations in 

birch bark and betulinic acid (BA), an oxidation product of betulin has also been 

detected in bark extracts (499).  BA was initially characterized as a highly selective 

inhibitor of human melanoma cell and tumor growth through induction of apoptosis 

(510).  Subsequent research has shown that BA and other derivatives are effective 

inhibitors of cell proliferation and induce apoptosis in many different cancer cells.  

However, the underlying mechanisms for these responses are not well understood.   

 In this study, we show that BA decreased proliferation of several cancer cell lines 

including SK-MEL2 melanoma cells and, using LNCaP prostate cancer cells as a model, 

we determined a unique mechanism of action of this compound.  BA modulates 

expression of several growth-related proteins and decreases expression of the 

proangiogenic and proapoptotic proteins vascular endothelial growth factor (VEGF) and 

survivin, respectively.  Previous reports show that in some cancer cell lines, VEGF and 

survivin expression is dependent, in part, on Sp proteins (331, 547, 580, 583, 728-732), 

and Sp1 is overexpressed in cancer cells and tumors (576, 733-736).  Results of this 

study now show that BA induces proteasome-dependent degradation of Sp1, Sp3 and 

Sp4 in LNCaP cells.  The proteasome inhibitor MG132 not only blocked BA-induced 

degradation of Sp proteins but also inhibited the decreased expression of VEGF and 

survivin in cells treated with BA.  In vivo studies showed that BA inhibited tumor 
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growth in athymic nude mice bearing LNCaP cell xenografts, and this was accompanied 

by decreased expression of Sp1, Sp3 and Sp4 proteins and VEGF and increased 

apoptosis in tumors from BA-treated mice.  The results indicate that the antitumorigenic 

effects of BA are associated with targeted degradation of Sp transcription factors which 

are overexpressed in many tumors and this results in activation of proapoptotic and 

antiangiogenic responses in tumor but not in non-target tissues (e.g. liver) which exhibit 

low Sp protein expression. 

MATERIALS AND METHODS 

Chemicals, antibodies, plasmids and reagents  

 BA and β-actin antibody were purchased from Sigma Aldrich (St. Louis, MO) 

and proteasome inhibitor MG132 was  purchased from Calbiochem (San Diego, CA).  

Antibodies against Sp1, Sp4, Sp3, VEGF, CD1, AR, KLF6, survivin and PARP were 

obtained from Santa Cruz Biotechnology (Santa Cruz, CA) and CD31 antibody from 

DakoCytomation (Glostrup, Denmark).  The pVEGF-2018 and pVEGF-133 constructs 

contain VEGF promoter inserts (positions -2018 to +50 and positions -131 to +54, 

respectively) linked to luciferase reporter gene (580).  The pSurvivin-269 and pSurvivin-

150 were kindly provided by Dr. M. Zhou (Emory University, Atlanta, GA).  Reporter 

lysis buffer and luciferase reagent for luciferase studies were purchased from Promega 

(Madison, WI).  β-Galactosidase (β-gal) reagent was obtained from Tropix (Bedford, 

MA).  Lipofectamine reagent was supplied by Invitrogen (Carlsbad, CA).  Western 

Lightning chemiluminescence reagent was from Perkin-Elmer Life Sciences (Boston, 

MA).   
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Cell lines  

 Human carcinoma cell lines LNCaP (prostate) and SK-MEL2 (melanoma) were 

obtained from American Type Culture Collection (Manassas, VA).  Cell lines were 

maintained in RPMI 1640 (Sigma) supplemented with 0.22% sodium bicarbonate, 

0.011% sodium pyruvate, 0.45% glucose, 0.24% HEPES, 10% FBS, and 10 mL/L of 

100x Antibiotic Antimycotic solution (Sigma).  Cells were maintained at 37°C in the 

presence of 5% CO2. 

Cell proliferation assay 

Prostate and melanoma cancer cells (2 x 104 per well) were plated in 12-well 

plates and allowed to attach for 24 hr.  The medium was then changed to DMEM:Ham's 

F-12 medium containing 2.5% charcoal-stripped FBS, and either vehicle (DMSO) or 

different concentrations of the compound were added.  Fresh medium and compounds 

were added every 48 hr and cells were then trypsinized and counted after 48 and 96 hr 

using a Coulter Z1 cell counter.  Each experiment was done in triplicate and results are 

expressed as means ± SE for each set of experiments 

Transfection and luciferase assay  

Prostate cancer cells were plated in 12-well plates at 1 x 105 cells/well in 

DMEM:Ham’s F-12 media supplemented with 2.5% charcoal-stripped FBS.  After 

growth for 16 - 20 hr, various amounts of reporter gene constructs, i.e., pVEGF-2018 

(0.4 μg), pVEGF-133 (0.04 µg), pSurvivin-269 (0.04 μg), pSurvivin-150 (0.04 μg) and 

β-gal (0.04 μg), were transfected by Lipofectamine (Invitrogen) according to the 

manufacturer’s protocol.  After 5 hr of transfection, the transfection mix was replaced 
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with complete media containing either vehicle (DMSO) or the indicated compound for 

20 to 22 hr.  Cells were then lysed with 100 μL of 1x reporter lysis buffer, and 30 μL of 

cell extract were used for luciferase and β-gal assays.  Lumicount was used to quantitate 

luciferase and β-gal activities, and the luciferase activities were normalized to β-gal 

activity. 

Western blotting  

An equal amount of cell lysate (60 μg/well) was separated by 7.5% to 12% SDS-

PAGE, which was followed by immunoblotting onto polyvinylidene difluoride (Bio-

Rad, Hercules, CA).  After blocking in TBST-Blotto (10 mmol/L Tris-HCl, 150 mmol/L 

NaCl (pH 8.0), 0.05% Triton X-100, 5% nonfat dry milk) for 30 min, the membranes 

were incubated with primary antibodies overnight at 4°C, and then with horseradish 

peroxidase-conjugated secondary antibody for 2 hr at room temperature.  Proteins were 

visualized using the chemiluminescence substrate (Perkin-Elmer Life Sciences) for 1 

min and exposed to Kodak X-OMAT AR autoradiography film (Eastman Kodak, 

Rochester, NY).   

Xenograft study  

Male athymic BALB/c nude mice (age 4 - 6 weeks) were purchased from Harlan 

(Indianapolis, IN).  LNCaP cells (1 x 106) were implanted with matrigel (BD 

Biosciences, San Jose, CA) subcutaneously into the flank of each mouse.  Ten days after 

cell inoculation, animals were divided into three equal groups of 10 mice each.  The first 

group received 100 μL vehicle (1% DMSO in corn oil) by oral gavage and the second 

and third groups of animals received 10 and 20 mg/kg/d doses of BA in vehicle every 
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second day for 14 days (7 doses).  The mice were weighed, and tumor areas were 

measured throughout the study.  After 22 days, the animals were sacrificed, final body 

and tumor weights were determined, and selected tissues were further examined by 

routine hematoxylin and eosin staining and immunohistochemical analysis. 

Immunohistochemistry   

Tissue sections (4 - 5 μM thick) mounted on poly-L-lysine-coated slide were 

deparaffinized by standard methods.  Endogenous peroxidase was blocked by the use of 

3% hydrogen peroxide in PBS for 10 min.  Antigen retrieval for VEGF and CD31 

staining was done for 10 min in 10 mmol/L sodium citrate buffer (pH 6) heated at 95°C 

in a steamer followed by cooling for 15 min.  The slides were washed with PBS and 

incubated for 30 min at room temperature with a protein blocking solution 

(VECTASTAIN Elite ABC kit, Vector Laboratories, Burlingame, CA).  Excess blocking 

solution was drained, and the samples were incubated overnight at 4°C with one of the 

following: a 1:100 dilution of VEGF antibody or a 1:40 dilution of CD31 antibody.  

Sections were then incubated with biotinylated secondary antibody followed by 

streptavidin (VECTASTAIN Elite ABC kit).  The color was developed by exposing the 

peroxidase to diaminobenzidine reagent (Vector Laboratories), which forms a brown 

reaction product.  The sections were then counterstained with Gill's hematoxylin.  VEGF 

and CD31 expression was identified by the brown cytoplasmic staining.  hematoxylin 

and eosin staining was determined as previously described (583).   

 



  

 

155

RESULTS 

Antiproliferative, proapoptotic and antiangiogenic effects of BA 

 The antiproliferative effects of BA were initially investigated in SK-MEL2 

melanoma and LNCaP prostate cancer cells, and 6-day IC50 values for growth inhibition 

were 5 - 10 μM and 1 - 5 μM, respectively.  Similar results were observed for pancreatic 

(Panc28, L3.6pl), bladder (KU7), and colon (SW480) cancer cells (data not shown).  

Cell survival curves for LNCaP and SK-MEL2 cells after treatment for 48 or 96 hr are 

illustrated in Figures 4.1A and 4.1B.  At higher concentrations of BA (≥ 10 μM), there 

was an overall decrease in the number of cells remaining compared to the number of 

initially seeded cells which was consistent with the cytotoxicity of BA.   

 We further investigated the effects of BA on growth inhibitory and proapoptotic 

proteins using LNCaP cells as a model.  Results illustrated in Figure 4.1C show that 

relatively short term exposure (24 hr) to BA (≥ 10 μM) induced downregulation of 

cyclin D1, whereas the cyclin-dependent kinase inhibitors p21 and p27 were expressed 

at low levels in these cells and were not affected by the treatment (data not shown).  AR 

expression in LNCaP cells was decreased after treatment with 5 μM BA, and this protein 

was almost completely absent in cells treated with 10 μM concentrations.  Recent studies 

have demonstrated that AR knockdown by RNA interference in LNCaP cells resulted in 

induction of apoptosis (700), suggesting that the proapoptotic effects of BA in LNCaP 

cells may be due, in part, to the effects on AR expression.  However, this mechanism 

would not be applicable to melanoma and other cancer cell lines which are AR-

independent.  The tumor suppressor gene KLF6 was also induced by BA at  
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Fig. 4.1. BA inhibits growth and induces apoptosis in cancer cells.  Decreased cell 
survival in LNCaP (A) and SK-MEL2 (B) cancer cells.  Cells were seeded, treated with 
solvent (DMSO) or different concentrations of BA (1 - 20 μM) for 6 days as described in 
the Materials and Methods.  Cell survival is expressed as the percentage of BA-treated 
cells remaining compared to DMSO (set at 100%), and significantly (p < 0.05) decreased 
survival is indicated by an asterisk.  (C) and (D)  Western blot analysis for modulation of 
protein expression by BA.  LNCaP cells were treated with DMSO or BA (5 - 20 μM) for 
24 hr and whole cell lysates were analyzed by Western blot analysis as described in the 
Materials and Methods.   
 

concentrations between 10 - 15 μM.  BA also induced caspase-dependent PARP 

cleavage in LNCaP cells, and this was accompanied by decreased expression of the 

antiapoptotic protein survivin (Fig. 4.1D) and induction of DNA laddering (data not 
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shown) typically observed in cells undergoing  apoptosis.  In addition, BA also 

decreased expression of the angiogenic protein VEGF.   

BA induces proteasome-dependent degradation of Sp1, Sp3 and Sp4 proteins 

 Previous studies in this laboratory have shown that both basal and hormone-

induced expression of VEGF in cancer cell lines is dependent on Sp protein expression 

(331, 547, 580, 583), and regulation of survivin in some cells is also dependent on these 

transcription factors (737-740).  Moreover, since Sp proteins are upregulated in many 

tumors/cancer cells (576, 741-743) and are associated with proliferative, angiogenic and 

antiapoptotic pathways, we hypothesized that the anticarcinogenic activity of BA may be 

due, in part, to downregulation of Sp proteins.  Results in Figure 4.2A show that 

treatment of LNCaP cells with 5 - 10 μM BA for 24 hr induced downregulation of Sp1, 

Sp3 and Sp4 proteins, and this was also accompanied by decreased expression of VEGF 

and survivin (Fig. 4.1D).  The time-dependent decrease of Sp proteins in LNCaP cells 

treated with 15 μM BA for 4, 8, 12, 16, 20 and 24 hr showed that lower expression of 

these proteins is first observed after treatment for 12 hr (Fig. 4.2B).  Prolonged treatment 

of LNCaP cells with BA for 48 or 72 hr showed that Sp protein degradation and PARP 

cleavage can be observed as doses as low as 1 to 2.5 μM (Fig. 4.2C).  Figure 4.2D 

illustrates that BA also decreased expression of Sp1, Sp3 and Sp4 proteins in SK-MEL2 

melanoma cancer cells, and similar results were obtained in other cancer lines (data not 

shown).   

 Since BA induces degradation of Sp proteins within 12 hr after treatment (Fig. 

4.2 B), we investigated the possible role of induced protein(s) in mediating this response  
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Fig. 4.2. BA induces degradation of Sp and other proteins in LNCaP.  Decreased 
expression of Sp1, Sp3, Sp4 and VEGF in LNCaP (A - C) and SK-MEL2 (D) cells.  
LNCaP or SK-MEL2 cells were treated with DMSO or BA (1 - 20 μM) for 24 (A and 
D), 4 - 24 (B), 48 or 72 (C) hr, and whole cell lysates were analyzed by Western blot 
analysis as described in the Materials and Methods.   
 

by treating LNCaP cells with BA alone (10 - 20 μM) or in the presence of 10 μg/ml 

cycloheximide (Fig. 4.3A).  The protein synthesis inhibitor did not modulate the effects 

of BA on Sp protein levels.  Previous studies showed that COX-2 inhibitors, the NSAID 

tolfenamic acid, and related compounds induced proteasome-dependent degradation of 
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Fig. 4.3. BA induces proteasome-dependent degradation of Sp proteins in LNCaP cells.  
(A)  Effects of cycloheximide.  Cells were cotreated with 10 - 20 μM BA or 10 μg/ml 
cycloheximide alone or in combination, and expression of Sp proteins in whole cell 
lysates was determined by immunoblot analysis as described in the Materials and 
Methods.  Effects of the proteasome inhibitor MG132 on BA-induced decrease of Sp 
proteins/VEGF (B), PARP cleavage, cyclin D1 and AR (C), and PARP cleavage and 
survivin (D).  LNCaP cells were treated with DMSO or BA alone or in combination with 
5 or 10 μM MG132 (pretreated for 30 min) for 24 hr, and protein expression in whole 
cell lysates was analyzed by Western blot analysis as described in the Materials and 
Methods. 
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Sp proteins (331, 583) and therefore we investigated the effects of the proteasome  

inhibitor MG132 on BA-induced downregulation of Sp1, Sp3, Sp4 and VEGF in LNCaP 

cells.  MG132 reversed the effects of BA on expression of these transcription factors 

(Fig. 4.3 B).  BA selectively induced proteasome-dependent degradation of Sp proteins 

and cyclin D1 in LNCaP cells (Fig. 4.3C); however, MG132 did not modulate 

expression of β-actin or reverse BA-dependent downregulation of AR which is due to 

decreased AR RNA expression (data not shown).  MG132 (10 μM) and other 

proteasome inhibitors induced caspase-dependent cleavage of PARP in LNCaP cells; 

however, MG132 also partially inhibited BA-induced apoptosis.  Moreover, using a 

lower concentration of MG132 (5 μM), the effects of the compound alone on PARP 

cleavage were decreased but in combination with BA, there was inhibition of BA-

induced PARP cleavage (Fig. 4.3D).    MG132 also blocked BA-induced downregulation 

of survivin protein (Fig. 4.3 D), suggesting that Sp protein degradation plays a role in the 

apoptosis-inducing effects of BA. 

BA inhibits VEGF and survivin promoter expression through proteasome-

dependent degradation of Sp proteins 

 Expression of both VEGF and survivin in some cancer cell lines is regulated by 

Sp protein interactions with GC-rich promoter sites (744, 745), and therefore the effects 

of BA on decreased expression of VEGF and survivin through Sp protein degradation 

was further investigated in transfection studies.  The effects of BA on transactivation 

was investigated in LNCaP cells transfected with the pVEGF1 and pVEGF2 constructs 

containing the -2068 to +50 and -133 to +50 VEGF gene promoter inserts.  Results in 
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Figures 4.4A and 4.4B show that BA decreased luciferase activity in LNCaP cells 

transfected with pVEGF1 and pVEGF2, and these effects were reversed by the 

proteasome inhibitor MG132, and similar results were observed using the proteasome 

inhibitor lactacystin (data not shown).  These observations further confirm that BA-

induced degradation of Sp proteins results in decreased VEGF expression in LNCaP 

cells, and this is consistent with previous RNA interference studies demonstrating that 

Sp1, Sp3 and Sp4 regulate VEGF expression in cancer cell lines (580). 

 Since the proteasome inhibitor MG132 partially blocks BA-induced PARP 

cleavage (Figs. 4.3C and 4.3D), we further investigated the role of Sp protein 

degradation on induction of apoptosis by examining the effects of BA on transactivation 

in LNCaP cells  transfected with the GC-rich pSurvivin-269 and pSurvivin-150 

constructs contain the -269 to +49 and -150 to +49 survivin promoter inserts.  BA causes 

a concentration-dependent decrease in luciferase activity which was significantly 

reversed by 10 μM MG132 (Figs. 4.4C and 4.4D).  In parallel studies, electrophoretic 

mobility shift assays also show that lysates from BA-treated LNCaP cells exhibited 

decreased binding to GC-rich survivin sequences (data not shown).  These results 

complement a recent study showing that the DNA binding drug hedamycin also 

decreases survivin expression through inhibition of Sp protein interactions with the GC-

rich survivin promoter (746). 

BA inhibits tumor growth an athymic nude mice bearing LNCaP cells as xenografts 

 Pisha and coworkers previously reported that BA inhibits growth of tumors in 

athymic nude mice bearing MEL-1 melanoma cells as xenografts (510).  Results in 
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Fig. 4.4. BA decreases transactivation in LNCaP cells transfected with VEGF and 
survivin constructs.  Transfection with pVEGF-2068 (A), pVEGF-133 (B), pSurvivin-
269 (C), and pSurvivin-150 (D).  LNCaP cells were transfected with the various 
constructs, treated with DMSO or BA (2.5 - 20 μM) alone or in combination with 10 μM 
MG132, and luciferase activity (relative to β-gal) was determined as described in the 
Materials and Methods.  Luciferase activity significantly (p < 0.05) decreased by BA (*) 
and inhibition of this response by cotreatment with MG132 (**) is indicated. 
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Figure 4.5A show that 10 and 20 mg/kg/d betulinic acid inhibited tumor growth in mice 

bearing LNCaP cell xenografts and this was accompanied by significantly decreased 

tumor weights in both treatment groups (Fig. 4.5B).  Examination of the mice showed 

that there were no treatment-related changes in organ or body weights or in the 

histopathology of liver and other tissues (data not shown), and this was consistent with 

the reported low toxicity of this compounds (510).  Representative hematoxylin- and 

eosin-stained histopathology sections of prostate tumors from the control and treated 

mice were examined.  Tumors from untreated mice consisted of minimally encapsulated  

[Fig. 4.5C (a)], dense expansile nests of epithelial cells with marked atypical features 

such as anisocytosis, anisokaryosis, multiple variably sized nucleoli, nuclear molding, 

bi- and multinucleation.  Bizarre mitotic figures were frequently noted within the 

neoplastic cells [Fig. 4.5C (b), arrow heads].  Abundant vascular channels were 

frequently present within neoplastic cells [Fig. 4.5C (b), arrows].  Tumors from the 

treated mice consisted of neoplastic cells similar to that noted from the untreated mice.  

However, the mitotic activity (1-2 microfigures/hpf compared to 6-8 microfigures/hpf in 

the corn oil group) and the epithelial atypia appeared to be decreased [Fig. 4.5C (c)].  In 

addition, the tumor tissue was remarkably less vascular with evidence for necrosis [Fig. 

4.5C (d), area within box], and this is consistent with the antiangiogenic effect of BA 

through decreased expression of Sp proteins and VEGF.   

BA decreases Sp protein and VEGF expression in tumors but not liver 

 We also compared expression of Sp proteins, AR and VEGF as well as PARP 
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Fig. 4.5. Antitumorigenic activity by BA in  vivo.  (A) Decreased tumor area.  Athymic nude mice (10 per 
group) bearing LNCaP cells as xenografts were treated with corn oil (control) or BA in corn oil (10 or 20 
ml/kg) every second day, and tumor areas were determined as described in Materials and Methods.  (B) 
Tumor weights.  After the final treatment, animal were sacrificed and tumor weights were determined as 
described in the Materials and Methods.  Significantly (p < 0.05) decreased tumor areas or volumes are 
indicated by an asterisk.  (C) Histopathological evaluation of tumors.  Tumors from corn oil (a and b) and 
BA (c and d) mice were fixed, stained with hematoxylin and eosin, and examined histopathologically as 
described in the Materials and Methods. 
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cleavage in tumor lysates from control and BA-treated mice (5 animals per group) by 

Western blot analysis using β-actin as a loading control.  Relatively high levels of Sp1, 

Sp3, Sp4 and VEGF proteins were observed in the control tumors, and we did not detect 

PARP cleavage in protein lysates from these tumors (Fig. 4.6A).  In contrast, expression 

of Sp1, Sp3, Sp4, AR and VEGF proteins was decreased in tumors from BA-treated 

mice and PARP cleavage was observed.  Sp protein levels in liver from untreated or BA-

treated mice could be visualized only after prolonged exposures, and the pattern of Sp1, 

Sp3 or Sp4 protein expression was similar in both groups (Fig. 4.6B).  A direct 

comparison of Sp protein expression in tumors and liver from untreated animals (Fig. 4.6 

C) indicates high levels in tumors, whereas in liver only Sp3 could be detected and 

levels of Sp1 and Sp4 were very low.  We also examined Sp proteins in other 

tissues/organs from mice treated with corn oil or BA and observed uniformly very low to 

non-detectable Sp1, Sp3 and Sp4 in both treatment groups (data not shown).  Tumors 

from untreated and treated mice were also stained for VEGF and CD31 (microvessel 

density), and the staining for both factors was decreased in tumors from BA-treated mice 

(Fig. 4.6D).  This study demonstrates that BA is a potent inhibitor of prostate cancer cell 

and tumor growth, and this parallels results showing that BA exhibited anticancer 

activity in in vitro and in vivo models of melanoma (510).  The underlying mechanisms 

of proapoptotic, antiproliferative and antiangiogenic activities of BA are associated with 

induction of proteasome-dependent degradation of Sp proteins in prostate tumor cells.  

Moreover, Sp protein expression was decreased in SK-MEL2 (Fig. 4.2D) and other 
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cancer cell lines (data not shown), suggesting that BA-dependent downregulation of Sp 

proteins which is accompanied by both proapoptotic and antiangiogenic responses is an 

integral part of the anticarcinogenic activity of this compound. 
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Fig.4.6. Sp and VEGF protein expression in tumors and liver.  Whole cell lysates from 
corn oil (untreated) and BA-treated tumors (A) and liver (B) were obtained from tissue 
from at least 5 rats per group and analyzed by Western blot analysis as described in the 
Materials and Methods.  (C)  Comparative Sp protein expression in tumors and liver from 
corn oil (solvent)-treated animals.  Tumor and liver lysates containing the same amount 
of protein were analyzed by electrophoresis and visualized as described in the Materials 
and Methods.  (D)  Immunostaining for CD31 and VEGF.  Fixed tumor tissue from corn 
oil and BA-treated mice were stained with CD31 and VEGF antibodies as described in 
the Materials and Methods. 
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Fig. 4.6 Continued 

 

DISCUSSION 

 BA is a natural product identified in various bark extracts and is readily 

synthesized from betulin, a major component in bark from birch trees (499).  Pisha and 

coworkers (510) initially reported that this triterpenoid inhibited growth of several 

melanoma cell lines, and ED50 values for cytotoxicity varied from 4.8 - 1.1 μg/ml, 

whereas the corresponding values for a series of colon, prostate, breast, lung, squamous 

and glioma cancer cells were > 20 μg/ml.  However, other reports also show that BA 

inhibits growth and induces apoptosis in several different cancer cell lines (499), and this 

corresponds to results of this study in which IC50 values (growth inhibition) for 

melanoma and prostate cancer cells were 5 - 10 μM and 1 - 5 μM, respectively, and 

similar results were obtained in other cancer cell lines.  It has also been reported that BA 

derivatives and related lupane analogs are more cytotoxic than BA to cancer cells (499); 

however, a major advantage in using the latter compound for cancer chemotherapy is the 
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low toxicity.  Doses as high as 500 mg/kg every fourth day (X6) exhibited no detectable 

toxic side effects (510). 

 It has been reported that BA induces apoptosis in several different cancer cell 

lines through multiple pathways which include direct effects on the mitochondria 

accompanied by decreased mitochondrial membrane potential, upregulation of death 

receptors, and interactions with other agents (511, 517, 528, 532, 537, 539, 540, 747-

750).  In addition, BA exhibits antiangiogenic activity in an in vitro assay for tube-like 

structures in ECV304 (751); however, the underlying mechanisms of action for these 

responses are unknown.  In this study, BA also induces proapoptotic and antiangiogenic 

responses in LNCaP cells as evidenced by decreased expression of VEGF and survivin 

and activation of caspase-dependent PARP cleavage (Fig. 4.1D) and DNA laddering 

(data not shown).  BA decreases AR expression in LNCaP cells (Fig. 4.1C) and this 

response is in itself proapoptotic in this cell line since it has been reported that decreased 

AR expression via RNA interference results in increased apoptosis in LNCaP cells 

(700).  Previous studies show that in several cancer cell lines VEGF expression is 

dependent, in part, on Sp1 and other Sp proteins (331, 752), and there is also evidence 

that survivin expression is Sp-dependent (753-755).  Therefore, we examined the effects 

of BA on expression of Sp1, Sp3 and Sp4 proteins in LNCaP cells and the results 

demonstrate for the first time that BA decreases expression of Sp1, Sp3 and Sp4, and 

similar results are observed in SK-MEL2 and other cancer cell lines (Figs. 4. 2A – 

4.2D).   
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 The role of BA-induced downregulation of Sp proteins in mediating the 

proapoptotic and antiangiogenic activities of this compound was further investigated in 

LNCaP cells.  Proteasome inhibitors such as MG132 block Sp protein degradation 

induced by COX-2 inhibitors and tolfenamic acid in colon and pancreatic cancer cells 

(331, 511).  The results in Figure 2D show that MG132 inhibited BA-induced 

degradation of Sp proteins.  Moreover, MG132 blocked degradation of VEGF and 

survivin proteins in LNCaP cells treated with BA, and similar results were observed for 

cyclin D1 but not AR (Figs. 4.3B – 4.3D) which is decreased through proteasome-

independent pathways.  Moreover, in LNCaP cells transfected with constructs containing 

critical GC-rich sequences from the VEGF and survivin gene promoters, BA decreased 

transactivation which was inhibited after cotreatment with MG132 (Fig. 4.4).  These 

results confirm the linkage between the decreased expression of survivin and VEGF in 

LNCaP cells treated with BA with degradation of Sp1, Sp3 and Sp4 in this cell line. 

 Sp proteins are overexpressed in many human tumors and cell lines (576, 756-

759), and therefore these transcription factors are potential targets for development of 

drugs for cancer chemotherapy.  Lou and coworkers (760) reported that transformation 

of fibroblasts resulted in an 8- to 18-fold increase in Sp1 expression and these 

transformed cells formed highly malignant tumors in athymic nude mouse xenograft 

models, whereas fibroblasts expressing low levels of Sp1 did not form tumors.  In 

addition, ribozyme-dependent knockdown of Sp1 in the transformed cells decreased 

VEGF expression and increased apoptosis.  Results in Figure 4.5 clearly showed that BA 

(10 and 20 mg/kg/d) inhibited tumor growth and final tumor weights in athymic nude 
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mice bearing LNCaP cells as xenografts.  Moreover, examination of individual tumors 

clearly showed that Sp1, Sp3 and Sp4 proteins were highly expressed in tumors from 

control animals, whereas there was a marked decreased in expression of these proteins in 

tumors from mice treated with BA (Fig. 4.6A).  Decreased VEGF expression also 

paralleled decreased Sp protein levels in tumors from BA-treated animals, although the 

magnitude of decreased VEGF was lower than that observed for Sp proteins in the latter 

treatment group.  The antiangiogenic activity of BA was confirmed by decreased VEGF 

and CD31 staining in tumors from BA- vs. corn oil-treated mice (Fig. 4.6D), and this 

was consistent with the antiangiogenic activity previously reported for BA (761).  

Hematoxylin and eosin staining also showed that the vascularity of tumors in mice 

treated with BA was significantly lower than in tumors from corn oil treated mice (Fig. 

4.5C).   

 We also examined Sp1, Sp3 and Sp4 protein expression in non-tumor tissue from 

control and BA-treated mice, and levels were barely detectable to non-detectable in both 

treatment groups; however, when gels were overexposed, it was evident that levels of Sp 

protein expression were similar in liver lysates from control and BA-treated mice (Figs. 

4.6B and 4.6C).  These results suggest that activation of proteasome-dependent 

degradation of Sp proteins by BA may be specific for cancer cells and tumors which 

overexpress these transcription factors in order to gain a growth and metastatic 

advantage over normal tissue.  The critical role for Sp proteins in regulating expression 

of antiapoptotic and proangiogenic genes/proteins in tumors is supported by results of 

this study which also highlights the efficacy of anticancer drugs that target specific 
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transcription factors such as Sp proteins that are overexpressed in tumors.  The effects of 

BA in this study were also observed for the closely related derivative betulonic acid 

(data not shown), and we conclude that BA and similar derivatives represent a novel 

class of transcription factor-targeting anticancer drugs.  Moreover, since BA induces 

many other cytotoxic and proapoptotic effects in cancer cell lines (511, 517, 528, 532, 

537-540, 762-765), it is likely that downrequlation of Sp proteins differentially 

contributes to the overall effect of this compound.  Current studies with BA are 

investigating tumor-type similarities and differences in its mechanism of action and the 

development of more potent analogs for clinical applications in the treatment of cancer. 
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CHAPTER V 
 

MICRORNA-27A IS A TARGET FOR ANTICANCER AGENT METHYL 

2-CYANO-3,11-DIOXO-18β-OLEAN-1,12-DIEN-30-OATE IN COLON CANCER 

CELLS 

INTRODUCTION 
 

MicroRNAs (miRNAs) are 20 to 25 bp oligonucleotides that interact with 

complementary binding sites in 3'-untranslated regions of target mRNAs to inhibit their 

expression by blocking translation or by decreasing mRNA stability (766, 767).  MiRNA 

interactions with mRNA requires the overlap of 6 to 8 base pairs and, due to this 

relatively low stringency, computational studies show that miRNAs can potentially 

interact with several hundred mRNAs. 

 Despite this lack of specificity, miRNAs have a profound effect on gene 

expression and cellular homeostasis and, in cancer cells, expression of several critical 

oncogenes and tumor suppressor genes are regulated by miRNA expression (610, 768-

770).  miR-221 and miR-222 target the cyclin-dependent kinase inhibitor p27 (770) and 

miR-21 decreases expression of several mRNAs including the tumor suppressor gene 

tropomyosin 1 (610).   

 Recent studies in this laboratory showed that miR-27a targets ZBTB10 mRNA, a 

putative zinc finger protein that suppresses specificity protein (Sp) transcription factors 

and Sp-dependent gene expression (585).  The Sp transcription factors Sp1, Sp3 and Sp4  
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are highly expressed in cancer cell lines, and results of RNA interference studies show 

that Sp proteins regulate expression of angiogenic genes such as vascular endothelial 

growth factor (VEGF), VEGF receptor 1 (VEGFR1, Flt-1), VEGFR2 (KDR), and the 

antiapoptotic gene survivin (331, 547, 579-581, 583, 584).   

 Betulinic acid and the non-steroidal anti-inflammatory drug tolfenamic acid 

inhibit prostate and pancreatic cell and tumor growth through activation of proteasome-

dependent degradation of Sp1, Sp3 and Sp4 proteins (583, 584).  In this study, we show 

that methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (β-CDODA-Me) is highly 

cytotoxic to colon cancer cells and also decreases Sp and Sp-dependent genes and 

proteins.  However, these effects are proteasome-independent.  We now show for the 

first time that β-CDODA-Me acts through downregulation of miR-27a and this is 

accompanied by enhanced expression of ZBTB10 and Myt-1 which arrests colon cancer 

cells at G2/M phase.  The cell culture studies are complemented by inhibition of tumor 

growth and decreased miR-27a expression in athymic nude mice bearing RKO cells as 

xenografts and treated with β-CDODA-Me 915 mg/kg/d). 

MATERIALS AND METHODS 

Plasmids, antibodies and reagents 

 Sp1 and Sp3 promoter constructs were kindly provided by Drs. Carlos Cuidad 

and Veronique Noe (University of Barcelona, Barcelona, Spain).  The pVEGF-133 

construct contain VEGF promoter insert (positions -131 to +54) linked to luciferase 

reporter gene.  The pSurvivin-269 was kindly provided by Dr. M. Zhou (Emory 

University, Atlanta, GA).  The pCMV6-XL4-ZBTB10 expression vector and empty 
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vector (pCMV6-XL4) were from Origene (Rockville, MD).  Antibodies for Sp1, Sp3, 

Sp4, VEGF and VEGFR1 were purchased from Santa Cruz Biotechnology, Inc. (Santa 

Cruz, CA).  c-PARP and survivin antibodies were from Cell Signaling Technology Inc. 

(Danvers, MA).  Monoclonal β-actin antibody was purchased from Sigma-Aldrich.  

Reporter lysis buffer, and luciferase reagent for luciferase studies were supplied by 

Promega (Madison, WI).  β-Galactosidase (β-Gal) reagent was obtained from Tropix 

(Bedford, MA), and LipofectAMINE 2000 reagent was purchased from Invitrogen 

(Carlsbad, CA).  Western Lightning chemiluminescence reagent was obtained from 

PerkinElmer Life and Analytical Sciences (Boston, MA).  The PPARγ antagonist N-(4'-

aminopyridyl)-2-chloro-5-nitrobenzamide (T007) were synthesized in this laboratory, 

and their identities and purity (>98%) were confirmed by gas chromatography-mass 

spectrometry. 

Cell proliferation and transfection assay and western blot analysis  

 RKO and SW480 colon cancer cells (2 x 104 per well) were plated in 12-well 

plates and allowed to attach for 24 hr.  The medium was then changed to DMEM/Ham’s 

F-12 medium containing 2.5% charcoal-stripped FBS, and either vehicle (DMSO) or 

different concentrations of the compound were added.  Fresh medium and compounds 

were added every 48 hr, and cells were then trypsinized and counted after 48 and 96 hr 

using a Coulter Z1 cell counter.  Transfection experiments in RKO and SW480 cells 

used 0.4 μg of reporter gene constructs and 0.04 μg of β-Gal and LipofectAMINE 2000 

reagent (Invitrogen).  Results of cell proliferation and transfection studies are expressed 

as means ± S.E. for at least three replicate determinations for each treatment group.  
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Western blots were determined with whole cell lysates essentially as described (331, 

579-581, 583). 

Northern blot analysis  

 For miRNA analysis, 20 μg total RNA per lane was electrophoresed on 15% 

TBE urea polyacrylaminde gel (Invitrogen), electrophoretically transferred in 0.5X TBE 

at 300 mA for 45 minutes to GeneScreen Plus membrane (PerkinElmer, Boston, MA), 

UV cross-linked, and hybridized in ULTRAhyb-Oligo hybridization buffer (Ambion, 

Austin, TX) at 42 °C with 32P end-labeled DNA oligonucleotides complementary to the 

miRNA under examination.  Blots were washed at 42 °C in 2x SSC and 0.5% SDS for 

30 min with gentle agitation.   

Semiquantitative RT-PCR  

 RKO and SW480 colon cancer cells were transfected with either as-miRNA-27a 

or with pCMV6-XL4 control and pCMV6-XL4-ZBTB10 expression plasmid using 

Lipofectamine 2000 following manufacturer’s protocol.  Total RNA was extracted using 

RNeasy Mini Kit (Qiagen, Inc.), and 2 μgm of RNA was used to synthesize cDNA using 

Reverse Transcription System (Promega).  Primers were obtained from IDT and used for 

amplification were as follows:  Sp1 (sense 5'- ATG GGG GCA ATG GTA ATG GTG G 

-3'; antisense 5'- TCA GAA CTT GCT GGT TCT GTA AG -3'), Sp3 (sense 5'- ATG 

ACT GCA GGC ATT AAT GCC G -3'; antisense 5'- TGT CTC TTC AGA AAC AGG 

CGA C -3'), Sp4 (sense 5'- ATG GCT ACA GAA GGA GGG AAA AC -3'; antisense 5'- 

TTG ACC AGG GGT GGA AGA ATT AC -3'), ZBTB10 (sense 5'- GCT GGA TAG 

TAG TTA TGT TGC -3'; antisense 5'- CTG AGT GGT TTG ATG GAC AGA G -3'), 
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VEGF (sense 5'- CCA TGA ACT TTC TGC TGT CT T -3'; antisense 5'- ATC GCA 

TCA GGG GCA CAC AG -3'), VEGFR1 (sense 5'- ATG GAG CGT AAG AAA GAA 

AAA ATG -3'; antisense 5'- TCA AGT ACC TCC TTT TCT CAC AT -3'), Survivin 

(sense 5'- ATG GCC GAG GCT GGC TTC ATC -3'; antisense 5'- ACG GCG CAC TTT 

CTT CGC AGT T -3') and GAPDH (sense 5'- ACG GAT TTG GTC GTA TTG GGC G 

-3'; antisense 5'- CTC CTG GAA GAT GGT GAT GG -3').  PCR products were 

electrophoresed on 1% agarose gels containing ethidium bromide and visualized under 

UV transillumination.   

Quantitative real-time PCR of mRNA and miRNA  

 cDNA was prepared from the RKO and SW480, cell lines using Reverse 

Transcription System (Promega).  Each PCR was carried out in triplicate in a 20-μl 

volume using SYBR Green Mastermix (Applied Biosystems, Foster City, CA) for 15 

min at 95 °C for initial denaturing, followed by 40 cycles of 95 °C  for 30 s and 60 °C 

for 1 min in the Applied Biosystems 7900HT Fast Real-time PCR System.  The ABI 

Dissociation Curves software was used following a brief thermal protocol (95 °C  for 15 

s and 60 °C  for 15 s, followed by a slow ramp to 95 °C) to control for multiple species 

in each PCR amplification.  Values for each gene were normalized to expression levels 

of TATA-binding protein.  The primers used for real-time PCR were Myt-1 (sense 5'- 

CCT TCC AAG AGT AGC TCC AAT TC -3'; antisense 5'- GCC GGT AGC TCC CAT 

ATG G -3') and TATA-binding protein (sense 5'- TGC ACA GGA GCC AAG AGT 

GAA -3'; antisense 5'- CAC ATC ACA GCT CCC CAC CA -3').  miRNA was extracted 

using the mirVana miRNA extraction kit (Applied Biosystems).  Quantification of 
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miRNA (RNU6B and  miRNA-27a) was done using the Taqman miRNA kit (Applied 

Biosystems) according to the manufacturer’s protocol with real-time PCR.  U6 small 

nuclear RNA was used as a control to determine relative miRNA expression.   

Fluorescence-activated cell sorting analysis  

 RKO and SW480 cells were treated with either the vehicle (DMSO) or the 

compound for 24 hr or with as-miR27a.  Cells were trypsinized, centrifuged, and 

resuspended in staining solution containing 50 μg/mL propidium iodide, 4 mmol/L 

sodium citrate and 30 units/mL RNase.  After incubation at room temperature for 1 hr, 

cells were analysed on a FACS Vantage SE DiVa made by Becton Dickinson (BD), 

using BD FACSDiva Software V4.1.1.  Propidium iodide (PI) fluorescence was 

collected through a 610SP bandpass filter, and list mode data were acquired on a 

minimum of 50,000 single cells defined by a dot plot of PI width vs. PI area.  Data 

analysis was performed in BD FACSDiva Software V4.1.1 using PI width vs. PI area to 

exclude cell aggregates. 

Xenograft studies in athymic mice  

 Mice were used in accordance with institutional guidelines when they were 8 - 

12 wk old.  To produce tumors, RKO cells were harvested from subconfluent cultures by 

a brief exposure to 0.25% trypsin and 0.02% EDTA and only suspensions consisting of 

single cells with >90% viability were used for the injections.  A xenograft was 

established by s.c. injection of the cells (5 x 106) into the flanks of individual mice and, 

after 6 days, mice were randomized into two groups of 5 mice per group and dosed by 

oral gavage in corn oil or 15 mg/kg/d B-CDODA-Me 5 days a week for 22 days.  The 
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mice were weighed, and tumor size was measured every third day with calipers to permit 

calculation of tumor volumes:  V = LW2/2, where L and W were length and width, 

respectively.  Final tumors weights were determined at the end of the dosing regimen.  

Tumor tissues and selected body organs (liver and kidney) were either stored in 

RNAlater solution (per manufacture's recommendations) for later microRNA analysis, 

snap frozen and stored at -80°C, or fixed in 10% formalin and embedded in paraffin.   

RESULTS 

 β-CDODA-Me is a PPARγ agonist in colon cancer cell lines (312).  Although β-

CDODA-Me decreased proliferation (Fig. 5.1A) and induced apoptosis (Fig. 5.1B) in 

RKO and SW480 cells, these responses were not affected after cotreatment with the 

PPARγ agonist T007, and receptor-independent effects have been observed for other 

PPAR agonists in colon cancer cells (302).  Recent studies with tolfenamic acid and the 

structurally-related triterpenoid betulinic acid show that many of the growth inhibitory 

and proapoptotic responses in pancreatic and prostate cancer cells are due to decreased 

expression of Sp proteins (581, 583, 584).  Results summarized in Figure 5.1C show that 

β-CDODA-Me induced a concentration- and time-dependent decrease in Sp1, Sp3 and 

Sp4 proteins in RKO and SW480 cells and, in RKO cells, decreases were observed with 

concentrations lower than 1.0 μM after treatment for 48 hr.  The role of PPARγ and 

activation of proteasomes in mediating the effects of β-CDODA-Me on Sp protein 

expression was also investigated in RKO cells (Fig. 5.1D).  β-CDODA-Me-induced 

downregulation of Sp1, Sp3 and Sp4 in RKO cells was not affected after cotreatment 

with the PPARγ antagonist T007 or the proteasome inhibitor lactacystin, and similar 
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results were observed in SW480 cells (data not shown).  The proteasome inhibitor 

MG132 also did not block Sp protein downregulation in RKO and SW480 cells treated 

with β-CDODA-Me (data not shown), suggesting that β-CDODA-Me-dependent Sp 

protein degradation is proteasome-independent. 
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Fig. 5.1. β-CDODA-Me inhibits growth, induces apoptosis, and degradation of Sp proteins.  (A) 
Decreased cell survival in RKO and SW480 cells.  Cells were seeded and treated with solvent 
(DMSO) or different concentrations of β-CDODA-Me (0.5-5 μM) alone or in combination with 
T007 for 4 days.  Cell survival is expressed as the percentage of β-CDODA-Me-treated cells 
remaining compared to DMSO (set at 100%).  Results are expressed as means ± SE for three 
replicate determinations for each treatment group and significantly (p < 0.05) decreased survival 
is indicated by an asterisk.  Induction of apoptosis (B) and decreased expression of Sp1, Sp3 and 
Sp4 (C, D).  RKO and SW480 cells were treated with DMSO, β-CDODA-Me (1-5 μM), T007 
(10 μM), Lactacystin (2 μM), or combinations as indicated  for 24 hr or 48 hr and whole cell 
lysates were analyzed by Western blot analysis as described in the Materials and Methods. 
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Fig. 5.1 Continued 

 

Using RKO cells as a model, we showed that β-CDODA-Me induced caspase-

dependent PARP cleavage and decreased expression of at least three Sp-dependent 

proteins including survivin, VEGFR1 (Flt-1), and VEGF (Fig. 5.2A).  Figure 5.2B 

shows that β-CDODA-Me also decreased expression of Sp1, Sp3 and Sp4 mRNA levels 

after treatment for 24 hr, and similar effects were observed for mRNA levels of the Sp-

dependent genes VEGFR1, VEGF and survivin (Fig. 5.2B).  Both the Sp1 and Sp3 

promoters contain GC-rich sites, and Figure 5.2C shows that β-CDODA-Me decreased 

luciferase activity in RKO cells transfected with pSp1For4, pSp1For2 and pSp1For1 
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constructs which contain the -751 to -20, -281 to -20, and -146 to -20 regions 

(respectively) of the Sp1 gene promoter.  Similarly, β-CDODA-Me also decreased 

luciferase activity in RKO cells transfected with pSp3For5 and pSp3For2 constructs 

which contain the -417 to -38 and -213 to -38 regions (respectively) of the Sp3 gene 

promoter.  These results demonstrate that β-CDODA-Me decreases Sp1, Sp3 and Sp4 

transcription. 
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Fig. 5.2. Effects of β-CDODA-Me on Sp and Sp-dependent expression.  β-CDODA-Me 
decreases expression of Sp1, Sp3 and Sp4 proteins (A) and expression of 
angiogenic/survival genes (A) and proteins (B).  RKO cells were treated with different 
concentrations of β-CDODA-Me and after 24 hr, mRNA and protein were extracted and 
analyzed by semi-quantitative RT-PCR and Western blots, respectively, as described in 
the Materials and Methods. β-CDODA-Me decreases Sp1 (C) and Sp3 (D) promoter 
activity.  RKO cells were transfected with various constructs, treated with different 
concentrations of β-CDODA-Me, and luciferase activity determined as described in the 
Materials and Methods.  Results are expressed as means ± SE for three replicate 
determinations for each treatment group and significantly (p < 0.05) decreased activity is 
indicated by an asterisk. 
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Fig. 5.2 Continued 

 

It was recently reported that microRNA-27a (miR-27a) suppresses ZBTB10 mRNA 

levels in breast cancer cells and treatment with antisense miR-27a (as-miR-27a) 

increases expression of ZBTB10 and decreases expression of Sp mRNA and proteins  
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Fig. 5.3. Effects of β-CDODA-Me and as-miR27a.  β-CDODA-Me decreases miR-27a 
(A) and increases ZBTB10 (B) expression.  RKO and SW480 colon cancer cells were 
treated with DMSO or different concentrations of β-CDODA-Me and after 18 hr, total 
RNA was extracted and analyzed for miR27a by Northern blot analysis and real time 
PCR and ZBTB10 by semi-quantitative RT-PCR as described in the Materials and 
Methods.  (C) as-miR27a decreases Sp1, Sp4 and Sp3 proteins. RKO cells were 
transfected with 50 and 100 ng as-miR27a and after 24 hr, whole cell lysates were 
analyzed by Western blot analysis for Sp1, Sp4 and Sp3 proteins as described in the 
Materials and Methods. 



  

 

184

C
0 50 100

RKO

Sp1
Sp4
Sp3

Sp3

β -actin

SW480

0 50 100
Sp1
Sp4
Sp3

Sp3

as-miR-27a (n mo l) as-miR-27a (n mo l)

β -actin

 

Fig. 5.3 Continued 

 

(585).  Results illustrated in Figure 5.3A show that β-CDODA-Me decreased miR-27a in 

RKO and SW480 cells as determined by Northern blot analysis (top) and this was  

confirmed by quantitative real time PCR (bottom).  In addition, treatment of RKO or 

SW480 cells with β-CDODA-Me also induced ZBTB10 levels (Fig. 5.3B).  Thus, the 

effects of β-CDODA-Me on miR-27a and ZBTB10 expression in colon cancer cells are 

identical to those observed in breast cancer cells transfected with as-miR-27a which also 

increases ZBTB10 and decreases Sp protein expression (585).  Results in Figure 5.3C 

confirm that as-miR-27 also decreased expression of Sp1, Sp3 and Sp4 protein levels in 

RKO and SW480 colon cancer cells.   

 The direct effects of ZBTB10 as a "putative" Sp repressor were further 

investigated in colon cancer cells transfected with ZBTB10 expression plasmid.  
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Transfection of SW480 and RKO cells with 2 or 4 μg ZBTB10 expression plasmid 

decreased Sp1, Sp3 and Sp4 mRNA levels and decreased the Sp-dependent VEGF and 

survivin mRNA levels (Fig. 5.4A).  These responses were more pronounced in RKO 

cells and this may be due, in part, to higher basal expression of ZBTB10 in SW480 than 

in RKO cells.  These differences between the two cell lines were less apparent for the 

effects of ZBTB10 on Sp and Sp-dependent proteins (Fig. 5.4B).  ZBTB10 

overexpression decreased levels of Sp1, Sp3 and Sp4 proteins, survivin and VEGF and  
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Fig. 5.4. ZBTB10 decreases expression of Sp proteins and Sp-dependent angiogenic and 
survival genes.  ZBTB10 expression decreases expression of Sp and angiogenic/survival 
proteins (A) and mRNA (B).  RKO and SW480 cells were transfected with ZBTB10 
expression plasmid and after 24 hr, protein and mRNA were extracted and analyzed by 
Western blots and semi-quantitative RT-PCR, respectively, as described in the Materials 
and Methods.  ZBTB10 expression decreases Sp1 and Sp3 (C) and VEGF and survivin 
(D) promoter activity.  RKO cells were transfected with various constructs and ZBTB10 
expression plasmid, and luciferase activity was determined as described in the Materials 
and Methods.  Results are expressed as means ± SE for three replicate determinations for 
each treatment group and significantly (p < 0.05) decreased activity is indicated by an 
asterisk. 
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Fig. 5.4 Continued 

 

induced PARP cleavage in these cells.  The effects of ZBTB10 on luciferase activity in 

RKO cells transfected with constructs containing GC-rich Sp1 and Sp3 gene promoter 

inserts (Fig. 4C) and VEGF and survivin promoter inserts (Fig. 5.4D) complemented the 

effects of ZBTB10 on their respective mRNAs and proteins (Figs. 5.4A and 5.4B).  

Luciferase activity was decreased in RKO cells transfected with all constructs and 

similar results were observed in SW480 cells.  

Figure 5.5A summarizes the effects of β-CDODA-Me on distribution of RKO and 

SW480 cells in G0/G1, S and G2/M phases of the cell cycle.  Compared to treatment with 
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Fig. 5.5. Modulation of cell cycle progression.  (A) Effects of β-CDODA-Me.  RKO and 
SW480 cells were treated for 24 hr with DMSO (0), 2.5 and 5.0 μM β-CDODA-Me, and 
analyzed by FACS analysis as described in the Materials and Methods.  iSp modulates 
Sp protein expression and the cell cycle in SW480 (B) and RKO (C) cells.  Cells were 
transfected with iSp, a combination of small inhibitory RNAs for Sp1, Sp3 and Sp4 or a 
non-specific oligonucleotide (iLamin), and analyzed for Sp proteins by Western blots (to 
confirm Sp knockdown) and FACS analysis as described in the Materials and Methods.  
(D) as-miR-27a modulates the cell cycle.  SW480 and RKO cells were transfected with 
different amounts of as-miR-27a and, after 48 hr, analyzed by FACS as described in the 
Materials and Methods.  All experiments in this Figure [(A) - (D)] were repeated three 
times, and results are expressed as means ± SE.  Significant (p < 0.05) changes 
compared to untreated (0) or iLamin-treated cells are indicated by asterisks. 
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Fig. 5.5 Continued 

 

DMSO, β-CDODA-Me induced a concentration-dependent decrease in the  

 percentage of cells in G0/G1 and an increase of cells in G2/M.  The percentage of cells in 

S phase increased and then decreased after treatment with 2.5 and 5.0 μM β-CDODA-

Me, respectively; however, the dominant effects of β-CDODA-Me were associated with 

a block in progression through G2/M.  The potential role of Sp protein degradation on 

mediating the effects of β-CDODA-Me on distribution of cells in different phases of the 

cell cycle was determined by RNA interference using a combination of small inhibitory 

RNAs for Sp1 (iSp1), Sp3 (iSp3) and Sp4 (iSp4) as previously described for knockdown 

of these proteins in other cancer cell lines (331, 547, 579-581, 583, 771).  Transfection 

of SW480 (Fig. 5.5B) and RKO (Fig. 5.5C) with iSp1/iSp3/iSp4 (combined; iSp) 

significantly decreased expression of all three proteins (least efficiency observed for 

Sp4) and, compared to the results for iLamin (non-specific RNA), Sp knockdown caused 
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a significant G0/G1 to S phase arrest (Figs. 55B and 5.5C).  Thes.e results are comparable 

to previous studies in MCF-7 breast cancer cells transfected with iSp1 (578); however, 

the data were in contrast to the effects of β-CDODA-Me which induced a G2/M arrest in 

both RKO and SW480 cells (Fig. 5.5A).  Since β-CDODA-Me and as-miR-27a induced 

similar responses in colon cancer cells (Figs. 5.1 – 5.4), we also investigated the effects 

of as-miR-27a on distribution of RKO and SW480 cells in G0/G1, S and G2/M phases.  

The results (Fig. 5.5D) demonstrate that like β-CDODA-Me, as-miR-27a induced a 

G2/M arrest in colon cancer cells.  Transfection of as-miR-27a (100 nM RKO; 200 nM 

SW480) increased accumulation of cells in G2/M and this was accompanied by a 

decrease in percentage of cells in S (SW480) and G0/G1 (RKO) phases.  However, the 

magnitude of the G2/M arrest observed in colon cancer cells transfected with as-miR-27a 

was lower than observed for β-CDODA-Me, suggesting that the compound-induced 

response may also be due to other factors. 

 As-miR-27a also arrests MDA-MB-231 breast cancer cells in G2/M phase and 

this is due to upregulation of Myt-1 (585) which is a target for miR-27a and catalyzes 

phosphorylation of cdc2 to inhibit progression through the G2/M checkpoint enzyme 

(772).  Results in Figure 5.6A show that β-CDODA-Me induced Myt-1 mRNA 

expression in RKO and SW480 cells, and this was accompanied by the time-dependent 

induction of cdc2 phosphorylation as previously described in breast cancer cells  

transfected with as-miR-27a (585).  Myt-1 catalyzed inactivation of cdc2 by 

phosphorylation of tyrosine-15 and this resulted in G2/M arrest.  Wee-1 is a potential 
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Fig. 5.6. In vitro and in vivo effects on G2/M and tumor growth.  Effects of β-CDODA-Me
(A) and as-miR-27a (B) on Myt-1 and cdc2 phosphorylation.  Colon cancer cells were
treated with different amounts of β-CDODA-Me or as-miR-27a for the indicated times, and 
Myt-1 expression and cdc2 phosphorylation were determined by real time PCR or Western blots, 
respectively, as described in the Materials and Methods.  β-CDODA-Me inhibits tumor growth 
(volume) (C) and weight/miR-27a expression (D) in a mouse xenograft model.  Nude mice 
bearing RKO cells as xenografts were treated with corn oil (solvent control) or β-CDODA-Me 
(15 mg/kg/d), and tumor volumes, tumor weights, and miR-27a expression were determined as 
described in the Materials and Methods.  Results are expressed as means ± SE for replicate (at 
least three or more) determinations for each treatment group, and significantly (p < 0.05) 
decreased tumor volume or weight is indicated by an asterisk. 
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Fig. 5.6 Continued 

 

miR-27a target that also inactivates cdc2; however, β-CDODA-Me and as-miR-27a did  

not affect Wee-1 expression in SW480 or RKO cells (data not shown).  We also 

investigated the in vivo activity of β-CDODA-Me as an inhibitor of tumor growth in  

 athymic nude mice bearing RKO cells as xenografts.  β-CDODA-Me (15 mg/kg/d) 

inhibited tumor growth (Fig. 5.6C) and tumor weight/miR-27a expression (Fig. 5.6D), 

and this was not accompanied by any body or organ weight loss associated with toxic 

side effects (data not shown).  Thus, like other compounds such as tolfenamic and 

betulinic acids that decrease Sp protein expression (583, 771), β-CDODA-Me inhibits 

both colon cancer cell and tumor growth and represents a novel class of anticancer 

agents that act through targeting miR-27a downregulation in colon cancer cells and 

tumors. 
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DISCUSSION 

 Sp transcription factors are critical for early embryonic development and for 

regulating expression of multiple genes including those important for cell proliferation 

and differentiation (773).  The age-dependent expression of Sp proteins has not been 

extensively investigated; however, a recent study reported that levels of these proteins 

decrease during cellular senescence and aging (774).  Sp1 protein is overexpressed in 

several tumor types compared to non-tumor tissue, and Sp1 was a negative prognostic 

factor for cancer survival (775-780).  For example, Sp1 is overexpressed in human 

gastric tumors compared to non-tumor tissue and overexpression of this protein in 

tumors is a predictor for a poor prognosis.  Sp1 is also overexpressed in malignant 

human fibroblast cell lines and results of Sp1 overexpression or knockdown in 

fibroblasts and fibrosarcoma cells has established a causal linkage between Sp1 

overexpression and malignant transformation (781).   

 Research in this laboratory has shown Sp1, Sp3 and Sp4 are highly expressed in 

cancer cell lines, and RNA interference studies clearly demonstrate that these 

transcription factors cooperatively regulate prosurvival, growth promoting, and 

angiogenic genes, suggesting that targeting Sp protein degradation may be a viable 

strategy for cancer chemotherapy (331, 547, 579-581, 583, 771, 782). 

 Both betulinic acid and tolfenamic acid inhibit growth of prostate and pancreatic 

tumors and cells, and these effects are linked to induction of proteasome-dependent 

degradation of Sp1, Sp3 and Sp4 proteins which is accompanied by decreased 
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expression of Sp-dependent genes such as survivin, VEGF and VEGFR1 (580, 581, 583, 

584).  However, ongoing studies with betulinic and tolfenamic acids in other cancer cell 

lines indicate that their effects on decreased Sp protein and mRNA levels are primarily 

proteasome-independent.  Results in Figure 5.1 show that β-CDODA-Me induced 

apoptosis and inhibited SW480 and RKO colon cancer cell growth and the responses 

were not inhibited by the PPARγ antagonist T007 (Figs. 5.1A and 5.1B) or other PPARγ 

antagonists (data not shown).  β-CDODA-Me also decreased Sp1, Sp3 and Sp4 protein 

expression in SW480 and RKO cells, and these responses were not inhibited by T007 or 

proteasome inhibitors (Figs. 5.1C and 5.1D) but were related to decreased Sp1, Sp3 and 

Sp4 transcription factors (Fig. 5.2). β-CDODA-Me decreased Sp proteins and mRNA 

levels and also decreased protein and mRNA levels of the Sp-dependent genes VEGF, 

VEGFR1 and survivin (Figs. 5.3A and 5.3B).  Interestingly, β-CDODA-Me decreased 

transactivation in colon cancer cells transfected with pSp1For1-luc and pSp3-For2-luc 

(Figs. 5.3C and 5.3D) which do not contain GC-rich sequences, suggesting modulation 

of other trans-acting factors and these are currently being investigated.  

 The effects of β-CDODA-Me on Sp proteins and Sp-dependent genes in colon 

cancer cells were reminiscent of the effects of antisense miR-27a (as-miR-27a) in ER-

negative MDA-MB-231 breast cancer cells (782).  In MDA-MB-231 cells transfected 

with as-miR-27a, there was a parallel increase in a zinc finger transcription factor, 

ZBTB10, which also binds GC-rich promoter sequences (619) and inhibits expression of 

Sp1, Sp3 and Sp4 and Sp-dependent genes (585)f.  Figures 5.3A and 5.3B show that β-

CDODA-Me decreased miR-27a and increased ZBTB10 expression in RKO and SW480 
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colon cancer cells.  Moreover, as previously reported in MDA-MB-231 cells, as-miR-

27a or ZBTB10 overexpression decreased Sp proteins and mRNA levels and Sp-

dependent genes (e.g. survivin and VEGF) in colon cancer cells (Figs. 5.3A and 5.3B).  

The effects of β-CDODA-Me on distribution of RKO and SW480 cells in the G0/G1, S 

and G2/M phases of the cell cycle (Fig. 5.5A) showed that the dominant effect was 

accumulation of cells in G2/M.  Decreased Sp1 expression in MCF-7 cells by RNA 

interference arrests cells in G0/G1 (331) and, in colon cancer cells transfected with small 

inhibitory RNAs for Sp1, Sp3 and Sp4 (combined), we observed a significant block in 

G0/G1 to S phase progression but no effects on G2/M (Figs. 5.5B and 5.5C).  Similar 

results were observed in MDA-MB-231 breast cancer cells transfected with ZBTB10 

(782).  However, transfection of MDA-MB-231 or colon cancer cells with as-miR-27a 

resulted in G2/M arrest (Fig. 5.5D), and this mimicked the effects of β-CDODA-Me 

(Fig. 5.5A).  Growth arrest in colon cancer cells treated with β-CDODA-Me was greater 

than observed for as-miR-27a, suggesting that the compound may activate other 

pathways and these are currently being investigated. 

 Since miR-27a potentially targets both Myt-1 and Wee-1, two kinases that inhibit 

cdc2 and progression of cells through the G2/M checkpoint, we investigated the effects 

of β-CDODA-Me on cdc2 and phospho-cdc2 expression.  β-CDODA-Me induced Myt-1 

but not Wee-1 expression in both RKO and SW480 cells (Fig. 5.6A), and this was 

accompanied by phosphorylation of cdc2 in RKO and SW480 cells.  As-miR-27a also 

induced Myt-1 and cdc2 phosphorylation in these cell lines (Fig. 5.6B) as previously 

observed in MDA-MB-231 breast cancer cells (782).  Thus, like as-miR-27a, β-
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CDODA-Me acts through decreased expression of miR-27a, resulting in enhanced 

expression of ZBTB10 and Myt-1 which subsequently induce downstream growth 

inhibitory, proapoptotic and antiangiogenic genes and pathways in colon cancer cells.  

These in vitro responses induced by β-CDODA-Me were complemented by the 

inhibition of tumor growth and tumor weight in athymic nude mice bearing RKO cells as 

xenografts (Figs. 5.6C and 5.6D), and miR-27a expression was also decreased in tumors 

from β-CDODA-Me-treated animals compared to tumors from corn oil-treated mice. 

 In summary, results of this study show that β-CDODA-Me decreases expression 

of Sp proteins and Sp-dependent genes and induces G2/M arrest in colon cancer cells, 

and these responses are due to repression of miR-27a and increased expression of 

ZBTB10 and Myt-1.  β-CDODA-Me also decreased tumor growth and this was also 

accompanied by decreased miR-27a expression in the tumor and this represents one of 

the first in vivo examples of drug-miR interaction.  Other compounds such as betulinic 

and tolfenamic acids also decrease Sp proteins in prostate and pancreatic cancer cells 

(581, 771), and there is evidence that a hydroxamic acid histone deacetylase inhibitor 

decreases expression of miR-27a and other miRs in SKBR3 cells(618).  The similarities 

of these drugs to β-CDODA-Me and the effects of cancer cell context on their activities 

and their mechanisms of miR-27a downregulation are currently being investigated in this 

laboratory.   
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CHAPTER VI 

2-CYANO-LUP-1-EN-3-OXO-20-OIC ACID, A CYANO DERIVATIVE OF 

BETULINIC ACID, ACTIVATES PEROXISOME PROLIFERATOR-

ACTIVATED RECEPTOR γ IN COLON AND PANCREATIC CANCER CELLS* 

INTRODUCTION 

 Lup-20(29)-ene-3β,28-diol (betulin) is a triterpene natural product found in 

extracts of many bushes and trees, and betulin can constitute up to 30% of the dry weight 

of bark from birch trees (783, 784).  Betulin has been used in folk medicine for treating 

skin diseases; however, betulinic acid (BA), which is both a natural product and 

chemical oxidation product of betulin, induces a broad range of pharmacological 

activities.  BA and several derivatives exhibit anticancer activity, inhibit HIV and other 

viruses through multiple pathways, are effective antibacterial and antimalarial drugs, and 

exhibit anti-inflammatory activity (783, 784).  The antitumorigenic activities of BA has 

been extensively investigated.  Studies show that this compound inhibits tumor growth 

through multiple pathways and these responses are also cancer cell/tumor-dependent 

(510, 511, 517, 528, 532, 533, 537-540, 783-788). Pisha and coworkers reported that BA 

selectively inhibited melanoma cancer cell and tumor growth and in in vivo studies, this 

was accompanied by minimal toxic side-effects at  repeated doses of 

____________ 
*Reprinted with permission from “2-cyano-lup-1-en-3-oxo-20-oic acid, a cyano 
derivative of betulinic acid, activates peroxisome proliferator-activated receptor gamma 
in colon and pancreatic cancer cells” by Chintharlapalli S, Papineni S, Liu S, Jutooru I, 
Chadalapaka G, Cho SD, Murthy RS, You Y, Safe S. Carcinogenesis. 2007;28(11); 
2337-46..Copyright 2007 by Oxford Journals Inc. 
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up to 500 mg/kg (510).  Subsequent studies showed that BA was cytotoxic to many other 

cancer cell lines and this was associated with different activities (511, 517, 528, 532, 

533, 537-540, 789-792).  For example, BA induces apoptosis through decreased 

mitochondrial membrane potential, activation of mitogen-activated protein kinase, and 

modulation of nuclear factor κB (NFκB) (511, 793, 794). 

 Structural modifications of BA and other lupane-derived triterpenoids 

differentially affect their pharmacologic activities (534-536, 795-798).  For example, 

modification of the C-20 exocyclic position of BA did not affect the cytotoxicity of these 

derivatives to a panel of prostate and colon cancer and melanoma cell lines (799).  In 

contrast, A-ring modifications of betulinic acid containing a 1-ene-3-oxo moiety 

substituted at C-2 with electron withdrawing groups were highly cytotoxic (534).  These 

result were similar to ursane and oleanane triterpenoid acids where analogs containing 

electron-withdrawing substituents at C-2 within a 1-ene-3-one functionality were also 

highly cytotoxic to cancer cells compared to the parent acids (234, 312, 463, 464, 655).  

Typical among these synthetic derivatives were 2-cyano-3,12-dioxo-18β-oleana-1,19-

diene-28-oic acid (CDDO; synthesized from oleanolic acid) and 2-cyano-3,12-dioxo-

18β-olean-1,12-diene-30-oic acid (β-CDODA; synthesized from glycyrrhetinic acid, a 

major constituent of licorice extracts).  The high cytotoxicity of both β-CDODA, CDDO 

and related compounds was due, in part, to their peroxisome proliferator-activated 

receptor γ (PPARγ) agonists activity since ligands for this receptor are being developed 

as new anticancer drugs (659, 660). 
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 Although there are multiple structural differences between BA and oleanolic acid 

(the synthetic precursor of CDDO and CDODA) , we hypothesized that introduction of a 

2-cyano group into the lupane skeleton of BA would generate a new class of PPARγ 

agonists.  Previous studies showed that 2-cyano-lup-1-en-3-oxo-20-oic acid (CN-BA), 

the 2-cyano derivative of 20(29)-dihydro betulinic acid, was highly cytotoxic to cancer 

cells, and in this study, we compared the effects of BA, CN-BA and the corresponding 

methyl ester (CN-BA-Me) (Fig. 1.19) in Panc-28 pancreatic and in colon cancer cell 

lines.  Results of growth inhibition studies showed that both CN-BA and CN-BA-Me 

were more cytotoxic than BA in pancreatic and colon cancer cells.  CN-BA and CN-BA-

Me but not BA induced PPARγ-dependent transactivation; however, the receptor-

dependent induction of p21, caveolin1 and Krüppel-like factor-4 expression was cell 

context and gene-dependent.  These results demonstrate for the first time that CN-BA 

and CN-BA-Me are PPARγ agonists and their enhanced cytotoxicity compared to BA is 

due, at least in part, to activation of PPARγ.  Moreover, the structure- and cell context-

dependent activities of CN-BA and CN-BA-Me as PPARγ agonists suggest that these 

compounds are selective PPARγ modulators. 

MATERIALS AND METHODS 

Cell Lines and reagents   

SW480, HT-29 and HCT-15 human colon cancer cells were kindly provided by 

Dr. Stan Hamilton (M. D. Anderson Cancer Center (Houston, TX).  Panc-28 human 

pancreatic cancer cells and 3T3-L1 pre-adipocytes were obtained from American Type 

Culture Collection (Manassas, VA).  SW480, HT-29 and Panc-28 cells were maintained 
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in Dulbecco’s modified/Ham’s F-12 (Sigma-Aldrich, St Louis, MO) with phenol red 

supplemented with 0.22% sodium bicarbonate, 0.011% sodium pyruvate, 5% fetal 

bovine serum, and 10 mL/L 100X antibiotic antimycotic solution (Sigma).  HCT-15 

cells were maintained in RPMI 1640 (Sigma) supplemented with 0.22% sodium 

bicarbonate, 0.011% sodium pyruvate, 0.45% glucose, 0.24% HEPES, 10% fetal bovine 

serum, and 10 mL/L of 100x antibiotic antimycotic solution (Sigma).  Cells were 

maintained at 37°C in the presence of 5% CO2.  Reporter lysis buffer and luciferase 

reagent for luciferase studies were supplied by Promega (Madison, WI).  β-

Galactosidase (β-Gal) reagent was obtained from Tropix (Bedford, MA), and 

LipofectAMINE reagent was purchased from Invitrogen (Carlsbad, CA).  The PPARγ 

antagonist N-(4'-aminopyridyl)-2-chloro-5-nitrobenzamide (T007) (800) was synthesized 

in this laboratory, and its identity and purity (>98%) was confirmed by gas 

chromatography-mass spectrometry.   

Synthesis of CN-BA and CN-BA-Me   

CN-BA and CN-BA-Me were prepared from betulin (Sigma-Aldrich) based on 

the previous methods (534).  The synthesis from a key intermediate, methyl lup-2-

eno[2,3-d]isoxazol-28-oate, is briefly described and only definite peaks in proton NMR 

are recorded.  Methyl Lup-2-eno[2,3-d]isoxazol-28-oate.  To a solution of methyl 

lupan-2-hydroxymethylene-3-oxo-28-oate (350 mg, 0.70 mmoL) in ethanol (20 mL) and 

water (1 mL), hydroxylamine hydrochloride (488 mg, 7.02 mmol) was added.  The 

reaction mixture was refluxed for 1 hr, cooled to room temperature and concentrated 

under vacuum.  Water was added to the reaction mixture and extracted with ethyl acetate 
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(2X).  The organic layer was then washed with brine (2X), separated, and the crude 

product was purified by a flash silica gel column using a solvent system of hexanes:ethyl 

acetate (95:5) to yield methyl lup-2-eno[2,3-d]isoxazol-28-oate as a white cream colored 

solid.  1H NMR (400 MHz, CDCl3): δ 8.00 (1H, s), 3.68 (3H, s), 1.31, 1.21, 0.99, 0.98, 

0.83 (each 3H, s), 0.89 (3H, d, J = 6.8 Hz), 0.78 (3H, d, J = 6.8 Hz). 13C NMR (100 

MHz, CDCl3): δ 177.6, 173.8, 151.1, 109.7, 57.8, 54.3, 52.0, 49.7, 49.6, 45.0, 43.4, 41.5, 

39.7, 38.9, 38.1, 36.6, 35.6, 34.2, 32.8, 30.6, 30.5, 30.4, 29.5, 27.7, 23.8, 23.6, 22.2, 

22.0, 19.6, 16.8, 16.5, 15.5, 15.4.  Methyl 2-Cyano-lup-3-hydroxy-2-en-28-oate.  To a 

solution of lup-2-eno[2,3-d]isoxazol-28-oate (250 mg, 0.50 mmol) in ether (30 mL) and 

methanol (15 mL) in an ice bath, 30% sodium methoxide in methanol (3071 mg, 56.87 

mmol) was added drop wise.  The reaction mixture was then stirred at room temperature 

for 2 hr.  After dilution with ether, the reaction mixture was washed with 5% 

hydrochloric acid (2X).  The organic layer was separated and worked up by standard 

method to yield crude methyl 2-cyano-lup-3-hydroxy-2-en-28-oate (240 mg, 96%) as a 

white solid, which was used for the next without further purification.  1H NMR (400 

MHz, CDCl3):  δ 3.90 (1H, m), 3.67 (3H, s), 1.27, 1.17, 0.98, 0.95, 0.83 (each 3H, s), 

0.89 (3H, d, J = 6.8 Hz), 0.79 (3H, d, J = 6.8 Hz).  Methyl 2-Cyano-lup-1-en-3-oxo-20-

oate (CN-BA-Me).  A mixture of 2-cyano-lup-3-hydroxy-2-en-28-oate (230 mg, 0.46 

mmol) and DDQ (117 mg, 0.52 mmol) in benzene (30 mL) was refluxed for 3 hr.  The 

reaction mixture was cooled in ice and filtered to remove reduced DDQ.  The filtrate 

was then concentrated under vacuum.  The crude product was purified by a flash silica 

gel column using a solvent system of benzene:acetone (98:2) to yield CN-BA-Me (170 
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mg, 74%) as a pale brown solid.  1H NMR (400 MHz, CDCl3):  δ 7.83 (1H, s), 3.66 (3H, 

s), 1.25, 1.18, 1.12, 1.00, 0.95 (each 3H, s), 0.87 (3H, d, J = 6.7 Hz), 0.75 (3H, d, J = 6.6 

Hz). 13C NMR (100 MHz, CDCl3): δ 199.0, 177.4, 171.6, 115.8, 114.6, 57.6, 53.3, 52.0, 

49.4, 45.7, 44.8, 44.4, 43.6, 42.6, 41.5, 38.8, 37.9, 34.2, 32.6, 30.4, 30.2, 28.5, 27.3, 

23.7, 23.5, 22.1, 22.0, 19.6, 19.1, 17.2, 15.4, 15.2.  ESI-HRMS Calcd for (C32H47NO3 + 

H): 494.3634. Found: 494.3685. Anal. (C32H47NO3) C, H.  2-Cyano-lup-1-en-3-oxo-20-

oic acid (CN-BA).  A mixture of CN-BA-Me (120 mg, 0.25 mmol) and lithiumiodide 

(720 mg) in dimethylformamide (2.4 mL) was refluxed for 2 hr.  The reaction mixture 

was cooled to room temperature and 5% hydrochloric acid was added.  The reaction 

mixture was extracted with ethyl acetate (2X).  The organic layer was then washed with 

water (2X) followed by washings with brine (2X).  The organic layer was separated and 

worked up by standard method.  The crude product was purified by a flash silica gel 

column using a solvent system of hexanes:ethyl acetate (80:20) to yield CN-BA (93 mg, 

80%) as a light yellow solid.  1H NMR (400 MHz, CDCl3): δ 10.29 (1H, broad s), 7.83 

(1H, s), 1.27, 1.14, 1.04, 0.99, 0.99 (each 3H, s), 0.91 (3H, d, J = 6.8 Hz), 0.79 (3H, d, J 

= 6.7 Hz). 13C NMR (100 MHz, CDCl3): δ 199.0, 182.1, 171.5, 115.8, 114.8, 57.5, 53.3, 

49.3, 45.8, 44.8, 44.4, 43.7, 42.7, 41.5, 39.0, 38.1, 34.3, 32.7, 32.7, 30.5, 30.3, 28.6, 

27.4, 23.8, 23.5, 22.2, 22.1, 19.6, 19.2, 17.3, 15.4, 15.3.  ESI-HRMS Calcd for 

(C31H45NO3 + H): 480.3478. Found: 480.3540. Anal. (C31H45NO3) C, H.  CN-BA and 

CN-BA-Me were > 97% pure by spectroscopic analysis. 

Cell proliferation assay   

This assay is performed in 12-well tissue culture plates at the concentration of 2 
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x 104 cells per well, using DMEM/Ham’s F-12 media containing 2.5% charcoal stripped 

FBS.  The cells were counted on the initial day using Z1 cell counter (Beckman Coulter, 

Fullerton, CA) and then the cells were treated either with vehicle (DMSO) or the 

indicated triterpenoid compounds, each sample in triplicate.  Every 48 hr, fresh medium 

was added along with the indicated compounds.  The count of the cells was taken after 2, 

4 and 6 days.  The results are expressed as means ± S.E for each set of triplicate. 

Mammalian two hybrid assay   

The GAL4 reporter construct containing 5 x GAL4 response elements (p GAL4), 

kindly provided by Dr.Marty Mayo (University of North California, Chapel Hill, NC).  

The GAL4-coactivator fusion plasmids pM-SRC1, pMSRC2, pMSRC3, pM-DRIP205, 

pM-CARM-1 and PPARγ-VP16 fusion plasmid (Vp-PPARγ) containing the DEF region 

of the PPARγ (amino acids 183 - 505) fused to the pVP16 expression vector were kindly 

provided by Dr.Shigeaki Kato (University of Tokyo, Tokyo, Japan).  SW480 colon 

cancer cells were plated in 12-well tissue culture plates at 1 x 105 cells per well in 

DMEM/Ham’s F-12 medium supplemented with 2.5% charcoal stripped FBS.  After 

allowing them to adhere for overnight, transient transfections were carried out with 

GAL4-Luc (0.4 μg), β-GAL (0.04 μg), VP-PPARγ (0.04 μg), pM-SRC1 (0.04 μg), pM-

PGC-1 (0.04 μg), pM-SMRT (0.04 μg), pM-TRAP220 (0.04 μg), pM-DRIP205 (0.04 

μg), pMCARM1 (0.04 μg) using LipofectAMINE2000 (Invitrogen) following the 

manufacturer’s guidelines.  After 6 hr of transfection, cells were treated in triplicate 

either with vehicle (DMSO) or the indicated compound suspended in complete medium 

for 20-24 hr.  One hundred μL per well of 1x Reporter Lysis Buffer ( Promega) was used 
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to lyse the cells and 30 μl of this lysate was used to perform the luciferase and β-GAL 

assays using Lumicount (Perkin-Elmer Life and Analytical Sciences, Boston, MA).  The 

luciferase activities obtained were normalized to the β-gal activity. 

Transfections   

Cells were seeded on to the 12-well plates and 0.4 μg of GAL4-Luc, 0.04 μg of 

β-GAL, 0.04 μg of GAL4DBD-PPARγ, 0.4 μg of p21-luc(FL) containing -2325 to +8 

insert, 0.4 μg of p21-luc (-124) containing -124 to +8 insert and 0.4 μg of p21-LUC (-

60) containing -60 to +8 insert were transfected using LipofectAMINE reagent 

(Invitrogen) following the manufacturer’s protocol.  Cells were treated either with 

vehicle or respective compounds suspended in complete medium after 6 hr of 

transfection.  Cell lysate is extracted after 20-22 hr by adding 100 μl of 1x reporter lysis 

buffer per well and 30 μl of this extract is used to quantitate the luciferase activity using 

Lumicount (Perkin-Elmer Life and Analytical Sciences).  Each experiment is done in 

triplicate and the results are normalized to the β-GAL activity. 

Western blot analysis   

SW480, HT-29, HCT-15 and Panc-28 (3 x 105) colon cancer cells were seeded in 

6-well tissue culture plates in DMEM/Ham’s F-12 medium containing 2.5% charcoal-

stripped FBS.  Protein is extracted from the cells treated either with vehicle or indicated 

compounds suspended for 24 hr except for caveolin-1 protein which was done for 72 hr.  

Samples were extracted in high salt buffer [50 mmol/L HEPES, 500 mmol/L NaCl, 1.5 

mmol/L MgCl2, 1 mmol/L EGTA, 10% glycerol, and 1% Triton X-100 (pH 7.5), and 5 

μL/mL protease inhibitor cocktail (Sigma-Aldrich)].  Samples were incubated at 100°C 
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for 2 min, separated on either 10% or 12% SDS-PAGE gels and then transferred to 

polyvinylidene difluoride membrane (PVDF; Bio-Rad, Hercules, CA).  The PVDF 

membrane was blocked in 5% TBST-Blotto (10mM Tris HCl, 150 mM NaCl, pH 8.0, 

0.05% Triton X-100, and 5% nonfat dry milk) for about 30 min and was then incubated 

in fresh 5% TBST-Blotto with 1:1000 for caveolin-1 [Santa Cruz Biotechnology (Santa 

Cruz, CA)], 1:1000 for p21(BD Pharmingen, Frank lakes, NJ) and 1: 10000 for β-actin 

(Sigma) primary antibody overnight with gentle shaking at 4°C.  After washing with 

TBST for 10 min, the membrane was incubated with respective secondary antibody 

(1:5000) (Santa cruz, CA) in 5% TBST-Blotto for 3 hr.  The membrane is then washed 

with TBST for 10 min, incubated with chemiluminiscence reagent from Perkin Elmer for 

one min and then exposed to Kodak X-OMAT AR autoradiography film (Eastman 

Kodak, Rochester, NY).  

Differentiation and Oil Red O staining  

 3T3-L1 preadipocytes were cultured on poly-lysine-coated coverslips with 

DMEM and 10% FBS at 5% CO2 in 24-well plates.  At 2 days post-confluence, cells 

were incubated with fresh media supplemented with 3-isobutyl-1-methylxanthine (0.5 

mM), dexamethasone (1 µM), insulin (1.7 µM), and indicated compounds (0.25 µM).  

After 48 hr, cells were changed to fresh media and treated with DMSO or indicated 

compounds for 5 days.  Cells without any treatment for the entire 7 days were used as 

control.  The cells were then fixed with 10% formalin.  Fixed cells were washed with 

60% isopropanol and stained with filtered 60% Oil Red O in deionized water.  After 

staining, cells were washed with water and photographed. 
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Semi quantitative RT-PCR   

SW480 and HT29 colon cancer cells were treated either with vehicle (DMSO) or 

indicated compounds and after 24 hr total RNA was extracted using RNeasy Mini kit 

(Qiagen, Inc., Valencia, CA).  RNA concentration was measured by UV 260:280 nm 

absorption ratio, and 2 µg RNA was used to synthesize cDNA using Reverse 

Transcription System (Promega).  PCR conditions were as follows:  initial denaturation 

at 94°C (1 min) followed by 28 cycles of denaturation for 30 s at 94°C, annealing for 60 

s at 55°C and extension at 72°C for 60 s, and a final extension step at 72°C for 5 min.  

The mRNA levels were normalized using GAPDH as an internal housekeeping gene.  

Primers obtained from IDT and used for amplification are as follows:  KLF4 (sense 5'-

CTA TGG CAG GGA GTC CGC TCC-3'; antisense 5'-ATG ACC GAC GGG CTG 

CCG TAC-3') and GAPDH (sense 5'-ACG GAT TTG GTC GTA TTG GGC G-3'; 

antisense 5'-CTC CTG GAA GAT GGT GAT GG-3').  PCR products were 

electrophoresed on 1% agarose gels containing ethidium bromide and visualized under 

UV transillumination.   

RESULTS 

Figure 6.1 illustrates the effects of BA, CN-BA and the corresponding methyl 

ester (CN-BA-Me) on growth of SW480 and Panc-28 cells.  All three compounds inhibit 

growth of both cell lines and IC50 values range from 1-5, 1-2.5 and 1-2.5 μM (Panc-28) 

and 1-5, 1.0 and 1-2.5 μM (SW480) were observed for BA, CN-BA and CN-BA-Me, 

respectively.  CN-BA was the most cytotoxic compound in both cell lines and this 

confirms results of a previous report showing that 2-cyano derivatives of BA enhanced  
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Fig. 6.1. Cell proliferation and adipocyte differentiation assays.  Panc-28 and SW480 
cells were treated with different concentrations of BA (A), CN-BA (B) or CN-BA-Me 
(C) for 6 days and the number of cells were counted after treatment for 2, 4 or 6 days as 
described in the Materials and Methods.  Results are expressed as means ± SE for three 
separate determinations for each treatment group.  (D) Effects of CN-BA and CN-BA-
Me on differentiation of 3T3-L1 adipocytes.  3T3-L1 adipocytes were treated with 0.25 
μM CN-BA, CN-BA-Me or DMSO.  Induction of fat droplets by Oil-red O staining was 
determined as described in the Materials and Methods.  Induction of intense staining for 
fat droplets was observed in replicate (3) experiments. 
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Fig. 6.1 continued 

 

cytotoxicity (534).  One of the hallmarks of PPARγ agonists is their induction of 

differentiation in 3T3-L1 adipocytes which is characterized by accumulation of fat 

droplets which can be detected by Oil Red O staining.  Results in Figure 6.1D show that 

both CN-BA and CN-BA-Me induce Oil Red O staining in this assay, whereas BA does 

not induce this response (data not shown).  These results suggest that these 2-cyano 

derivatives of BA exhibit activity associated with PPARγ agonists. 
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 The PPARγ agonist activity of BA and related compounds was determined in 

SW480 cells transfected with PPARγ-GAL4/pGAL4 and a PPRE3-luc construct (Fig. 

6.2A).  The results show that 2.5-10 μM CN-BA and CN-BA-Me induced 

transactivation, whereas BA was inactive in this assay.  The PPARγ agonist activities 

were also determined in SW480 cells using the same constructs but treated with CN-BA, 

CN-BA-Me alone or in combination with the PPARγ antagonist T007, and in all cases, 

the induced activities were inhibited by T007 (Fig. 6.2B).  A similar approach was used 

in Panc-28 cells transfected with PPARγ-GAL4/pGAL4 and PPRE3-luc (Fig. 6.2C), and  

CN-BA induced luciferase activity that was inhibited in cells cotreated with CN-BA plus 

T007.  Not surprisingly, BA was inactive in these assays; however, results obtained for 

CN-BA-Me were highly inconsistent in Panc-28 cells compared to the colon cancer cell 

line (Figs. 6.2A and 6.2B).  CN-BA-Me exhibited minimal induction in cells transfected 

with PPARγ-GAL4/pGAL4 and no induction was observed in Panc-28 cells transfected 

with PPRE3-luc (data not shown).  These results were observed in replicate experiments 

suggesting that there were structure-dependent differences (CN-BA vs. CN-BA-Me) for 

 activation of the PPARγ-GAL4/pGAL4 or a PPRE3-luc constructs in Panc-28 (but not 

SW480) cells.  

 PPARγ agonists are structurally-diverse and induce tissue-specific receptor-

dependent responses that are typical of selective PPARγ modulators (659, 660).  Similar  
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Fig. 6.2. Activation of PPARγ in SW480 and Panc-28 cells by BA, CN-BA and CN-BA-
Me.  SW480 cells [(A) and (B)] were transfected with PPARγ-GAL4/pGAL4 or PPRE3-
luc treated with DMSO (control) or different concentrations of the compounds, and 
luciferase activity determined as described in the Materials and Methods.  (C) Activation 
of PPARγ in Panc-28 cells.  Cells were transfected with PPARγ-GAL4/pGAL4 or 
PPRE3-luc treated with DMSO or different concentrations of CN-BA and CN-BA-Me 
alone or in combination with 10 μM T007, and luciferase activity determined as 
described in the Materials and Methods.  Results in (A) - (C) are expressed as means ± 
SE for three replicate determinations for each treatment group, and significant (p < 0.05) 
induction by the BA derivatives (*) and inhibition after cotreatment with T007 (**) are 
indicated.  For studies in Panc-28 cells, we only observed induction of luciferase activity 
using CN-BA and not with CN-BA-Me or BA over several sets of experiments.  (D) 
Mammalian two-hybrid assay in SW480 cells transfected with VP-PPARγ and GAL4-
coactivator chimeras.  SW480 cells were transfected with VP-PPARγ, coactivator-
GAL4/pGAL4, treated with different concentrations of CN-BA or CN-BA-Me and 5 μM 
β-CDODA-Me, and luciferase activity was determined as described in the Materials and 
Methods.  Results are expressed as means ± SE for three replicate determinations for 
each treatment group, and significant (p < 0.05) induction is indicated by an asterisk. 
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 Fig 6.2 Continued 

 

results have been observed for agonists that bind and activate other nuclear receptors and 

this structure-dependent effect is due, in part, to tissue-specific expression of  

coactivators and other nuclear proteins that exhibit ligand structure-dependent 

interactions with receptors.  Results in Figure 6.3D summarize the effects of CN-BA and 

CN-BA-Me on induction of luciferase activity in SW480 cells transfected VP-PPARγ 

and GAL4-co-activator and GAL4-SMRT (a co-repressor) expression plasmids.  We 
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used β-CDODA-Me, a triterpenoid methyl ester derivative which also contains a 2-

cyano-1-en-3-one function (Fig. 1.19) and activates PPARγ in colon cancer cells (312), 

as a comparative reference compound for the mammalian two-hybrid assay.  The results 

show that CN-BA, CN-BA-Me and β-CDODA-Me significantly induced luciferase 

activity in SW480 cells transfected with VP-PPARγ and GAL4-PGC-1 and GAL4-SRC-

1, but not GAL4-AIB1, GAL4-TIFII, GAL4-TRAP220 and GAL4-SMRT.  In contrast, 

only CN-BA-Me also activated GAL4-CARM1 indicating differences between CN-BA  

and CN-BA-Me in the mammalian two-hybrid assay, suggesting that even among these 

two acid-ester analogs, some tissue-specific selective PPARγ modulator activity might 

be expected.  The data are consistent with the differences observed for CN-BA and CN-

BA-Me in activation of transfected constructs in Panc-28 cells (Fig. 6.2C). 

 Previous studies in this laboratory have shown that PPARγ agonists induce p21 

and p27 and decrease cyclin D1 expression in Panc-28 cells, and only the former 

response is receptor dependent (297).  Results in Figure 6.3 C show that both CN-BA 

and CN-BA-Me induce p21 protein expression in Panc-28 cells, and this is also 

accompanied by induction of p27 and downregulation of cyclin D1 (data not shown) as 

previously reported for a series of PPARγ-active methylene-substituted 

diindolylmethanes (C-DIM) analogs in this cell line (297).  Cotreatment of Panc-28 cells 

with 5 μM CN-BA and CN-BA-Me plus the 10 μM T007 significantly inhibited 

induction of p21, confirming that induction of p21 was PPARγ-dependent (Fig. 6.3A).  

In contrast, induction of p21 by BA was not inhibited after cotreatment with T007 and 

this was consistent with results of transactivation studies showing that BA does not 
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activate PPARγ in Panc-28 or SW480 (Fig. 6.2).  Figure 6.3B shows that BA, CN-BA 

and CN-BA-Me induce transactivation in Panc-28 cells transfected with p21-luc(Fl)  

DMSO 2.5 5 7.51
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Panc -28

p21

β-Actin

DMSO 2.5 5 7.51

CN-BA-Me (µM)

CN-BA (µM)         - - - - 5        5        - -
CN-BA-Me (µM)         - - - - - - 5        5

T007 (µM)         - 10      - 10        - 10        - 10

BA (µM)         - - 5      5         - - - -

p21

β-Actin

A

 

     Fig. 6.3. Induction of p21 by BA, CN-BA and CN-BA-Me in Panc-28 cells.  (A)  
Induction of p21 protein.  Panc-28 cells were treated with the different compounds as 
indicated for 24 hr, and whole cell lysates were obtained and analyzed by immunoblots 
as described in the Materials and Methods.  Induction of p21-luc (B) and p21 deletion 
constructs (C) in Panc-28 cells.  Cells were transfected with the various constructs, 
treated with DMSO, BA, CN-BA, CN-BA-Me alone or in combination with T007, and 
luciferase activity determined as described in the Materials and Methods.  Results of all 
transactivation studies in this Figure are presented as means ± SE for at least three 
separate determinations for each treatment group.  Significant (p < 0.05) induction 
compared to solvent (DMSO) control (*) and inhibition by cotreatment with T007 (**) 
are indicated.  (D) Chromatin immunoprecipitation assays.  Primers designed for the 
proximal region of the p21 promoter (i) were used for a ChIP assay in Panc-28 cells (ii) 
treated with DMSO, 5 μM BA, 5 μM CN-BA, and 5 μM CN-BA-Me for 1 or 2 hr.  
Analysis of interactions of Sp1 and PPARγ with the p21 promoter were carried out in the 
ChIP assay as described in the Materials and Methods.  The ChIP assay was also used to 
examine binding of TFIIB to the GAPDH promoter (positive control) (iii) and to exon 1 
of CNAP1 (negative control) as described in the Materials and Methods. 
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Fig. 6.3 Continued 
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which contains the -2325 to +8 region of the p21 promoter.  In cells cotreated with BA 

and related compounds plus the PPARγ antagonist T007, the induction of luciferase 

activity by CN-BA and CN-BA-Me was inhibited, whereas BA-induced activity was 

unaffected by T007.  The results complement the immunoblot data confirming that 

induction of p21 by CN-BA/CN-BA-Me was PPARγ-dependent, whereas induction of 

p21 by BA was PPARγ-independent.  We further investigated induction of luciferase 

activity in Panc-28 cells transfected with constructs containing -2325 to +8 [p21-Luc 

(Fl)], -124 to +8 [p21-Luc (-124)], -101 to +8 [p21-Luc (-101)], and -60 to +8 [p21-Luc 

(-60)] p21 promoter inserts.  The latter three constructs contain the 6 proximal GC rich 

sites (1 - 6) and the results of the transfection studies suggest that these GC-rich sites are 

necessary for CN-BA- and CN-BA-Me-induced transactivation.  Deletion analysis of the 

p21 promoter indicated that loss of inducibility [i.e. p21-luc(60)] was associated with 

loss of GC-rich sites 3 and 4, whereas CN-BA significantly induced activity but only at 

the 7.5 μM concentration, suggesting sites 3 and 4 were also important for this 

compound but induction could also be observed using constructs containing only GC-

rich sites 1 and 2.  Previous studies show that PPARγ-dependent activation of p21 by 

other PPARγ agonists is also dependent on GC-rich sites 3 and 4 and involves 

PPARγ/Sp-dependent activation of p21.  The ligand-dependent recruitment of PPARγ to 

the p21 promoter by CN-BA and CN-BA-Me was further investigated in a ChIP assay in 

Panc-28 cells treated with the BA, CN-BA and CN-BA-Me for 1 or 2 hr.  The results 
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(Fig. 6.3D) show that both CN-BA and CN-BA-Me recruited PPARγ to the proximal 

GC-rich region of the p21 promoter and this was also accompanied by enhanced binding 

 experiment, transcription factor TFIIb bound to the proximal region of the GAPDH 

gene promoter but not to exon-1 of the CNAP1 gene. 

 PPARγ agonists such as CDDO, β-CDODA and related esters and PPARγ-active 

C-DIMs also induce receptor-dependent expression of caveolin-1 in colon cancer cells 

(300-302, 312).  Figure 6.4A shows that CN-BA, CN-BA-Me but not BA induce 

caveolin-1 in HT-29 cells and similar results were observed in HCT-15 cells (Fig. 6.4B).  

In contrast, BA, CN-BA and CN-BA-Me did not induce caveolin-1 expression in 

SW480 cells, and the latter two compounds decreased expression of this protein (Fig. 

6.4C).  Cotreatment of HT-29 and HCT-15 cells with CN-BA/CN-BA-Me plus the 

PPARγ antagonist T007 resulted in inhibition of the induced caveolin-1 response, 

confirming that induction was PPARγ-dependent (Fig. 6.4D).  Thus, receptor-dependent 

activation of caveolin-1 by CN-BA and CN-BA-Me was dependent on cell context and 

this of Sp1.  In contrast, BA did not induce PPARγ interactions with the p21 promoter in 

the ChIP assay.  This is consistent with receptor-independent activation of p21 by BA 

and the mechanism of this response is currently being investigated.  As a control for this 

correlated with results of previous studies with CDDO and the 18α and 18β-isomers of 

CDODA-Me where CDDO and α-CDODA-Me but not β-CDODA-Me induced 

caveolin-1 in HT-29 and SW480 cells, whereas like CN-BA/CN-BA-Me, β-CDODA 

induced caveolin-1 in HT-29 but not in SW480 cells. Previous studies showed that α- 

and β-CDODA-Me induced the tumor suppressor gene KLF-4 in HT-29 and SW480 
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colon cancer cells (312), and the results in Figure 6.5 summarize the effects of CN-BA 

and CN-BA-Me on KLF4 expression in HT-29 and SW480 cells.  In the former cell line, 
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Fig. 6.4. Induction of caveolin-1 expression in colon cancer cells.  HT-29 (A), HCT-15 
(B) and SW480 (C) cells were treated with DMSO, different concentrations of BA, CN-
BA or CN-BA-Me for 72 hr.  Caveolin-1 expression was determined by Western blot 
analysis as described in the Materials and Methods.  Similar results were observed in 
replicate experiments.  (D) Effects of T007 on induction of caveolin-1.  HCT-15 or HT-
29 cells were treated with DMSO or different concentrations of CN-BA and CN-BA-Me 
alone or in combination with 5 μM T007 and caveolin-1 expression was determined by 
Western blot analysis as described in the Materials and Methods. 
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Fig. 6.4 Continued 

 

CN-BA and CN-BA-Me induced KLF4 mRNA levels and similar results were observed 

for β-CDODA-Me which was used as a positive control for this cell line.  However, in 

HT-29 cells cotreated with CN-BA, CN-BA-Me and β-CDODA-Me plus the PPARγ 

antagonist T007, induction of KLF4 was significantly decreased only for β-CDODA-

Me.  In contrast, CN-BA and CN-BA-Me did not induce KLF4 expression in SW480 

cells, whereas β-CDODA-Me treatment  enhanced KLF4 mRNA as previously described 

(312).  The differences between CN-BA/CN-BA-Me and β-CDODA-Me as inducers of 

KLF4 mRNA levels in colon cancer cells clearly distinguished between two classes of 
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Fig. 6.5. Induction of KLF4 gene expression apoptosis by BA and related compounds.  
Induction of KLF4 in HT-29 (A) and SW480 (B) cells.  Cells were treated with different 
concentrations of CDODA isomers or T007 alone or in combination, and KLF4 mRNA 
levels were determined by real time PCR as described in the Materials and Methods.  
Each experiment was replicated (> 3X) and T007 did not inhibit KLF4 mRNA induction 
by BA, CN-BA and CN-BA-Me, whereas 60-80% of the response induced by β-
CDODA-Me was inhibited by T007.  KLF4 mRNA levels were not induced in SW480 
cells by BA derivatives.  (C) Induction of apoptosis.  Cells were treated for 24 hr with 
BA and related compounds, and whole cell lysates were examined by Western blot 
analysis as described in the Materials and Methods. 
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Fig. 6.5 Continued 

 

 structurally related PPARγ agonists derived from triterpenoid acids and confirm that 

CN-BA/CN-BA-Me are a novel class of PPARγ antagonists.  In addition, we also 

confirmed that BA/CN-BA induced apoptosis in SW480 and Panc28 cells, and results in 

Figure 6.5C show that both compounds induced caspase-dependent PARP cleavage in 

these cell lines. 
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DISCUSSION 

 PPARγ is overexpressed in tumors from multiple tissues and cell lines (283) and 

PPARγ agonists are being developed as mechanism-based drugs for cancer 

chemotherapy.  PPARγ agonists typically inhibit cancer cell growth and this is 

associated with induction of p21 and/or p27 and downregulation of cyclin D1 and cells 

treated with these compounds also exhibit morphological and biochemical features of 

apoptosis.  The mechanisms of the growth inhibitory/pro-apoptotic responses induced by 

different structural classes of PPARγ agonists are cell context and gene-dependent, and 

induction of both receptor-dependent and -independent responses are observed.  For 

example, the thiazolidinedione troglitazone induces non-steroidal inflammatory drug-

activated gene-1 (NAG-1) in HCT-116 colon cancer cells through receptor-independent 

activation of kinase pathways, whereas induction of NAG-1 by 15-deoxy-Δ12,14-

prostaglandin J2 in HCT-116 cells is PPARγ-dependent and inhibited by PPARγ 

antagonist (278, 665, 694).  PPARγ-active C-DIMs induce caveolin-1 expression in HT-

29 and HCT-15 colon cancer cells, whereas rosiglitazone induced caveolin-1 only in the 

former cell lines (300).  The induction responses by both compounds were inhibited by 

PPARγ antagonists and cell context-dependent differences of C-DIMs and rosiglitazone 

in HCT-15 cells were associated with expression of mutant PPARγ (K422Q) in this cell 

line  and the mutant receptor was insensitive to rosiglitazone (301). 

 CDDO and its related methyl ester and imidazole derivatives are PPARγ agonists 

(234, 302) and are potent anticancer drugs currently undergoing clinical trials.  These 

triterpenoid acid derivatives of oleanolic acid, a phytochemical used in  traditional 
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medicine induce multiple receptor-independent and some receptor-dependent responses 

including the receptor-dependent induction of caveolin-1 in colon cancer cells (302).  

Although oleanolic acid is only weakly cytotoxic to cancer cells, the introduction of the 

2-cyano-substituted 1-en-3-oxo moiety into the A-ring of oleanolic acid greatly 

enhanced the cytotoxicity of the resulting 2-cyano derivatives including CDDO which 

also has an enone system in the C-ring (655) (463, 464) and similar results were 

observed for the corresponding 2-cyano derivatives of glycyrrhetinic acid, namely α-

CDODA and β-CDODA-Me (312).  Moreover, in studies with glycyrrhetinic acid 

analogs, it was shown that the 2-cyano group was required for PPARγ agonist activity.   

 The major structural differences between betulinic acid and oleanolic and 

glycyrrhetinic acids are their 5 and 6-member E-rings, respectively, and the position of 

substituents in this ring.  However, despite these structural differences, introduction of 

the 2-cyano-1-ene-3-oxo system into the A-ring of betulinic acid gave CN-BA which 

activated PPARγ in both SW480 and Panc-28 cell lines (Figs. 6.1 and 6.2) and enhanced 

the cytotoxicity of these compounds compared to BA (1.19).  Surprisingly, CN-BA-Me 

activated PPARγ-GAL4/pGAL4 and PPRE-luc in SW480 but was much less effective in 

activating these constructs in Panc-28 cells, and these cell context-dependent differences 

in CN-BA and CN-BA-Me suggest that these compounds may be selective PPARγ 

agonists.   

 Selective receptor modulators exhibit tissue-selective receptor agonist activities 

and differences between diverse structural classes of these compounds can be discerned 

in mammalian two-hybrid assays using VP-PPAR and GAL4-coactivator chimeras (300, 
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302, 312).  This assay has some relevance for identifying selective receptor modulators 

since differences between selective receptor modulators may be due, in part, to their 

interaction with coactivator proteins.  Induction of luciferase activity in colon cancer 

cells transfected with VP-PPARγ/GAL4-coactivator constructs is dependent on the 

coactivator and structure of the PPARγ agonist (300, 302, 312).  C-DIM PPARγ agonists 

induce transactivation in cells transfected with GAL4-PGC-1 (300), whereas CDDO and 

CDDO-Me are active in cells transfected with GAL4-chimeras containing SRC-1, SRC-

2 (TIFII), SRC-3 (A1B1), TRAP220, PGC-1 and CARM-1 (302).  β-CDODA and α-

CDODA-Me activate GAL4-chimeras containing PGC-1 and SRC-1 and PGC-1 and 

SRC-2, respectively (312).  CN-BA activates GAL4-chimeras containing PGC-1 and 

SRC-1 in SW480 cells and resembles β-CDODA-Me, whereas CN-BA-Me activates 

PGC-1, SRC-1 and CARM-2 (Fig. 6.2D), whereas these compounds did not activate 

GAL4 chimeras containing SRC-2, TRAP220 or SMRT (data not shown).  The unique 

pattern for CN-BA-Me in the mammalian two-hybrid assay highlights differences that 

are dependent only on methylation of the 20-carboxyl group in the E-ring, and these 

results are consistent with differences between CN-BA and CN-BA-Me in their 

activation of transfected PPARγ-responsive constructs in Panc-28 cells (Fig.6.2C). 

 The PPARγ agonist activities of CN-BA and CN-BA-Me and their role as 

selective receptor modulators were further investigated using four receptor-mediated 

responses, namely (i) the induced differentiation of 3T3-L1 adipocytes, (ii) induction of 

the cyclin-dependent kinase inhibitor p21 in Panc-28 cells, and the induction of (iii) 

caveolin-1 and (iv) KLF4 in colon cancer cells.  Both CN-BA and CN-BA-Me induced 



  

 

223

differentiation of 3T3-L1 adipocytes and this was characterized by accumulation of fat 

droplets which are visualized by Oil-red O staining (Fig. 6.1D).  Previous studies 

showed that PPARγ-active C-DIMs induced p21 expression in Panc-28 cells and this 

response was associated with interactions of PPARγ with the proximal GC-rich region of 

the p21 promoter (297).  Similar results were obtained for both CN-BA and CN-BA-Me 

which induced p21 expression in Panc-28 cells and reporter gene activity in cells 

transfected with p21-luc(F1), and both responses were inhibited after cotreatment with 

PPARγ antagonist T007 (Fig. 6.3A).  Deletion analysis of the p21 promoter suggested 

that for CN-BA-Me, GC-rich sites 3 and 4 were required for activation of p21, whereas 

CN-BA also induced activity with p21-luc (60) which only contained GC-rich sites 1 

and 2.  Nevertheless, sites 3 and 4 appear to play an important role for both CN-BA-Me 

and CN-BA, and these same sites were also required for PPARγ-dependent activation of 

p21 by C-DIMs (297).  It has also previously been reported that progesterone receptor 

and androgen receptor agonists induce p21 through receptor-Sp protein interactions with 

GC-rich sites 3 and 4 and site 3, respectively (801, 802), suggesting that these GC-rich 

sites in the p21 promoter are important targets for nuclear receptors.  We also showed 

that BA induced PPARγ-independent activation of p21, and the differences between BA 

vs. CN-BA/CN-BA-Me are evident not only after treatment with the PPARγ antagonist 

T007 (Figs. 6.3A and 6.3B), but also in the recruitment of PPARγ to the p21 promoter 

by CN-BA/CN-BA-Me but not BA in a ChIP assay in Panc-28 cells (Fig. 6.3D).   

 In a recent study with the 18α and 18β isomers of CDODA, we showed that both 

compounds induced caveolin-1 in HT-29 and HCT-15 cells, whereas only α-CDODA-
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Me induced caveolin-1 in SW480 cells (312).  These results suggested that in SW480 

cells the stereochemistry at C-18 of CDODA which influences the confirmation of the E-

ring also differentially affected PPARγ-dependent activation of caveolin-1.  CN-BA and 

CN-BA-Me but not BA induced caveolin-1 in HT-29 and HCT-15 cells and cotreatment 

with the PPARγ antagonist T007 inhibited the induction response (Fig. 6.5).  In contrast, 

CN-BA and CN-BA-Me do not induce caveolin-1 in SW480 cells as previously 

observed for 18β isomer of CDODA; however, the stereochemistry at C-18 for the BA 

derivatives is α, suggesting that the cell context-dependent activation of caveolin-1 by 

the cyano-substituted triterpenoid acids is not only dependent on the stereochemistry at 

C-18 but also the structure of the E-ring.  The presence of the 5-membered E-ring with 

carboxy and isopropyl substituents (Fig. 1.19) resulted in loss of PPARγ-dependent 

induction of caveolin-1 in SW480 cells by CN-BA and CN-BA-Me and this cell context-

dependent response was consistent with the activity of these compounds as selective 

receptor modulators.  The cytotoxicity of BA and CN-BA derivatives (Fig. 6.1) was due 

not only to growth inhibition but also to induction of apoptosis (Fig. 6.5C) which was 

not inhibited by PPARγ antagonists (data not shown), suggesting a receptor-independent 

proapoptotic pathway which is currently being investigated. 

 The CDODA-Me compound induced the tumor suppressor gene KLF4 in SW480 

and HT-29 colon cancer cells, and this response was inhibited by T007 (312).  In 

contrast, CN-BA/CN-BA-Me did not induce KLF4 mRNA in SW480 cells and induction 

of this gene in HT-29 cells was receptor independent.  These data, coupled with the 

effects of the cyano-substituted compounds on transactivation in the mammalian two-
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hybrid and reporter gene assays, adipocyte differentiation, p21 and caveolin-1 

expression demonstrate that CN-BA and CN-BA-Me represent a novel class of selective 

PPARγ agonists in colon an pancreatic cancer cells.  The concentration-dependent 

differences in the activation of p21 and PPARγ-GAL4/PPRE3-luc (≥ 2.5 μM) and 

induction of Oil Red O staining and caveolin-1 (≤ 0.5 μM) may be due, in part, to 

relatively short (24 hr) and longer (72 - 120 hr) treatment times, respectively.  However, 

differences in gene-responsiveness may also be due to other nuclear proteins and 

competition by receptor complexes bound to response elements on different gene 

promoters for common nuclear cofactors.  The activities of CN-BA and CN-BA-Me 

coupled with their cytotoxicity (Fig. 6.1) suggest that the receptor-dependent and -

independent responses induced by these compounds will be advantageous for further 

development of these compounds for clinical applications in the treatment of colon and 

pancreatic cancer. 
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CHAPTER VII 

SUMMARY 

 Glycyrrhizin, a pentacyclic triterpene glycoside, is the major phytochemical in 

licorice and this compound and its hydrolysis product glycyrrhetinic acid (GA) have 

been associated with the multiple therapeutic properties of licorice extracts. We have 

investigated the effects of 2-cyano substituted analogs of GA on their cytotoxicities and 

activity as selective peroxisome proliferator-activated receptor γ (PPARγ) agonists.  

Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (β-CDODA-Me) and methyl 

2-cyano-3,11-dioxo-18α-olean-1,12-dien-30-oate (α-CDODA-Me ) were more cytotoxic 

to colon cancer cells than their des-cyano analogs and introduction of the 2-cyano group 

into the pentacyclic ring system was necessary for the PPARγ agonist activity of α- and 

β-CDODA-Me isomers.  However, in mammalian two-hybrid assays, both compounds 

differentially induced interactions of PPARγ with coactivators, suggesting that these 

isomers, which differ only in the stereochemistry at C18 (D/E ring junction), are 

selective receptor modulators.  This selectivity in colon cancer cells was demonstrated 

for the induction of two proapoptotic proteins, namely caveolin-1 and the tumor 

suppressor gene Krüppel-like factor-4 (KLF-4).  β-CDODA-Me but not α-CDODA-Me 

induced caveolin-1 in SW480 colon cancer cells, whereas caveolin-1 was induced by 

both compounds in HT-29 and HCT-15 colon cancer cells.  The CDODA-Me isomers 

induced KLF-4 mRNA levels in HT-29 and SW480 cells but had minimal effects on 

KLF-4 expression in HCT-15 cells.  These induced responses were inhibited by 

cotreatment with a PPARγ antagonist.  This demonstrates for the first time that PPARγ 
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agonists derived from GA induced cell-dependent caveolin-1 and KLF-4 expression 

through receptor-dependent pathways.   

 β-CDODA-Me inhibited growth of RKO and SW480 colon cancer cells and this 

was accompanied by decreased expression of Sp1, Sp3 and Sp4 protein and mRNA and 

several Sp-dependent genes including survivin, VEGF, and VEGFR receptor 1 

(VEGFR1 or Flt-1).  β-CDODA-Me also induced apoptosis, arrested RKO and SW480 

cells at G2/M, and inhibited tumor growth in athymic nude mice bearing RKO cells as 

xenografts.  β-CDODA-Me decreased expression of microRNA-27a (miR-27a), and this 

was accompanied by increased expression of two miR-27a-regulated mRNAs, namely 

ZBTB10 (an Sp repressor) and Myt-1 which catalyzes phosphorylation of cdc2 to inhibit 

progression of cells through G2/M.  Both β-CDODA-Me and antisense miR-27a induced 

comparable responses in RKO and SW480 cells, suggesting that the potent 

anticarcinogenic activity of β-CDODA-Me is due to downregulation of oncogenic miR-

27a. 

β-CDODA-Me was also a potent inhibitor of LNCaP prostate cancer cell growth 

(IC50 ~ 1 μM) and activated peroxisome proliferator-activated receptor γ (PPARγ), β-

CDODA-Me induced p21 and p27 and downregulated cyclin D1 protein expression and 

also induced two other proapoptotic proteins, namely NAG-1 and ATF-3.  However, 

induction of these responses by β-CDODA-Me was PPARγ-independent and due to 

activation of phosphatidylinositol-3-kinase (PI3K), mitogen activated protein kinase 

(MAPK), and jun N-terminal kinase (JNK) pathways by this compound.  In contrast, β-

CDODA-Me also decreased androgen receptor (AR) and prostate specific antigen (PSA) 
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mRNA and protein levels through kinase-independent pathways.  β-CDODA-Me 

repressed AR mRNA transcription, whereas decreased PSA mRNA levels were 

dependent on protein synthesis and was reversed by cycloheximide.  Thus, potent 

inhibition of LNCaP cell survival by β-CDODA-Me is due to PPARγ-independent 

activation of multiple pathways that selectively activate growth inhibitory and 

proapoptotic responses. 

Betulinic acid (BA) is a pentacyclic triterpene natural product  initially identified 

as a melanoma-specific cytotoxic agent which exhibits low toxicity in animal models.  

Subsequent studies show that BA induces apoptosis and antiangiogenic responses in 

tumors derived from multiple tissues; however, the underlying mechanism of action is 

unknown.  Using LNCaP prostate cancer cells as a model, we now show that BA 

decreases expression of vascular endothelial growth (VEGF) and the antiapoptotic 

protein survivin.  The mechanism of these BA-induced antiangiogenic and proapoptotic 

responses in both LNCaP cells and in tumors is due to activation of selective 

proteasome-dependent degradation of the specificity protein 1 (Sp1), Sp3 and Sp4 

transcription factors which regulate VEGF and survivin expression.  Thus, BA acts as a 

novel anticancer agent through targeted degradation of Sp proteins which are highly 

overexpressed in tumors. We modified the A-ring of BA to give a 2-cyano-1-en-3-one 

moiety and the effects of the 2-cyano derivative of BA (CN-BA) and its methyl ester 

(CN-BA-Me) were investigated in colon and pancreatic cancer cells.  Both CN-BA and 

CN-BA-Me were highly cytotoxic to Panc-28 pancreatic and SW480 colon cancer cells.  

CN-BA and CN-BA-Me also induced differentiation in 3T3-L1 adipocytes which 
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exhibited a characteristic fat droplet accumulation induced by peroxisome proliferator-

activated receptor γ (PPARγ) agonists.  Based on these results, we investigated the 

activities of CN-BA and CN-BA-Me as PPARγ agonists using several receptor-mediated 

responses including activation of transfected PPARγ-responsive constructs, induction of 

p21 in Panc-28 cells, and induction of caveolin-1 and Krüppel-like factor 4 in colon 

cancer cells.  The results clearly demonstrated that both CN-BA and CN-BA-Me 

activated PPARγ-dependent responses in colon (caveolin-1) and pancreatic (p21) cells, 

whereas induction of KLF4 by these compounds in colon cancer cells was PPARγ-

independent and also dependent on cell context.  The PPARγ agonist activities of CN-

BA and CN-BA-Me were structure-, response-/gene- and cell context-dependent 

suggesting that these compounds are a novel class of selective PPARγ modulators with 

potential for clinical treatment of colon and pancreatic cancer. 
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