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ABSTRACT 

 

Uncertainty Evaluation of Delayed Neutron Decay Parameters. (December 2008) 

Jinkai Wang, B.S., Shanghai Jiao Tong University 

Chair of Advisory Committee: Dr. Warren D. Reece 

 

In a nuclear reactor, delayed neutrons play a critical role in sustaining a 

controllable chain reaction. Delayed neutron’s relative yields and decay constants are 

very important for modeling reactivity control and have been studied for decades. 

Researchers have tried different experimental and numerical methods to assess these 

delayed neutron parameters. The reported parameter values vary widely, much more 

than the small statistical errors reported with these parameters. Interestingly, the reported 

parameters fit their individual measurement data well in spite of these differences. 

This dissertation focuses on evaluation of the errors and methods of delayed 

neutron relative yields and decay constants for thermal fission of U-235. Various 

numerical methods used to extract the delayed neutron parameter from the measured 

data, including Matrix Inverse, Levenberg-Marquardt, and Quasi-Newton methods, were 

studied extensively using simulated delayed neutron data. This simulated data was 

Poisson distributed around Keepin’s theoretical data. The extraction methods produced 

totally different results for the same data set, and some of the above numerical methods 

could not even find solutions for some data sets. Further investigation found that ill-

conditioned matrices in the objective function were the reason for the inconsistent results. 



 iv

To find a reasonable solution with small variation, a regularization parameter was 

introduced using a numerical method called Ridge Regression. The results from the 

Ridge Regression method, in terms of goodness of fit to the data, were good and often 

better than the other methods. Due to the introduction of a regularization number in the 

algorithm, the fitted result contains a small additional bias, but this method can 

guarantee convergence no matter how large the coefficient matrix condition number. 

Both saturation and pulse modes were simulated to focus on different groups. Some of 

the factors that affect the solution stability were investigated including initial count rate, 

sample flight time, initial guess values.  

Finally, because comparing reported delayed neutron parameters among different 

experiments is useless to determine if their data actually differs, methods are proposed 

that can be used to compare the delayed neutron data sets. 
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1.  INTRODUCTION 

 

When a fissionable nucleus undergoes neutron-induced fission, it emits fission 

neutrons and fission fragments. There are two types of fission neutrons: prompt neutrons 

and delayed neutrons. Prompt neutrons are released instantaneously (within 1E-13 

seconds of the fission event). If the residual fission fragments are neutron rich, they will 

experience one or more successive beta decays to reduce their neutron excess. The more 

neutron-rich the fragments are, the more energetic and rapid the decay will be. If the 

excited energy of the daughter nucleus is higher than the binding energy of the last 

neutron, a neutron will be emitted as a mode of decay. These neutrons are called delayed 

neutrons, and the fission products that release them are called delayed neutron precursors. 

There are more than 271 known delayed neutron precursors and undoubtedly there are 

more unknown precursors with extremely low yields. A practical way to describe the 

emission rate of delayed neutrons is to divide the precursors into several groups 

according to their half-lives. The majority of precursors’ half-lives vary from several 

hundred milliseconds to about one minute. The total number of delayed neutrons per 

fission depends on the fission material. For the sake of illustration, this project only 

considers U-235 fission. Typically, less than 1% of the fission neutrons per fission are 

delayed neutrons and 30% of them are emitted within 1.0 sec. Nonetheless, these 

delayed neutrons play a critical role in reactor time response.  

____________ 
This dissertation follows the style of Physical Review C. 
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If only prompt neutrons existed in a core, small positive reactivity changes would 

increase power rapidly and it would be extremely difficult to keep a reactor at steady 

power with a safe margin. However, delayed neutrons make the regulation of the chain 

reaction less difficult. Obviously, accurate information about the decay constants and the 

yields of delayed neutrons is important in reactivity control. Delayed neutrons are also 

important in the investigation of nuclear structure, the determination of the fissile 

content of fuel elements, and the development of economical fast reactor systems. 

Great uncertainty in the measurement of delayed neutrons, especially of delayed 

neutrons from precursors with short half-lives, makes it difficult to obtain accurate 

information about the primary fission products. Most published papers focus on finding 

“best-fit” parameters for the grouped precursors and only a few discuss uncertainty 

estimation. Among these, the reported delayed neutron uncertainties are about ±4~5% 

for absolute yields, ±3~15% for group parameters, and ±10~20% for delayed spectra [1]. 

Various models and numerical methods have been used for decades to study the decay 

parameters. Their extracted parameters fit their measurement data very well in decay 

curves, although there is often a large discrepancy between the parameters reported by 

different investigators. No one has adequately explained why these excellent fits of the 

experimental data exhibit such large differences with reported decay parameters. An 

appropriate method is needed to improve optimization result and reduce uncertainty. The 

factors affecting instability should be investigated. 

All delayed neutron experimental data contain error, often dominated by random 

error. The purpose of this research is to investigate the uncertainty of the delayed 
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neutron relative yields and decay time constants. In particular, the numerical methods for 

extracting delayed neutron parameters are analyzed in detail to study the effect of this 

error on parameter estimation. 

In this work, the “experimental data” is simulated using Monte Carlo methods. 

The simulated experimental data contains Poisson error but it is relatively precise due to 

the lack of measurement error or other variation that exist in real experiments. The only 

error in the generated data set is the variation based on the counts in a particular 

simulated channel. Delayed neutrons counts were simulated for both saturation and pulse 

irradiation mode so as to focus on precursors with long and short half-lives, respectively. 

Section 2 is a literature review of previous work in delayed neutron decay parameter 

estimation. Section 3 gives a basic introduction about delayed neutron emission and 

various equations. Section 4 highlights different numerical algorithms that are used to 

compute decay parameters and analyzes their fitted results. Section 5 introduces a new 

algorithm and compares its results with other algorithms. Section 6 presents the 

simulated results under different conditions. The experimental data sets are also used for 

comparison. Section 7 draws the conclusions based on the results. The calculated results 

and computer programs written in FORTRAN and MATLAB used for this research are 

included in Appendices A and B. The experimental data is listed in Appendix C. 
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2. LITERATURE REVIEW OF DELAYED NEUTRON PARAMETERS 

 

For decades since their discovery, delayed neutrons have been studied because of 

their importance in nuclear reactor control. The present review focuses on the 

measurement of the delayed neutron emission rate and the parameters used to describe 

this rate (decay constants and relative yields) induced by fission neutrons with energies 

up to a few MeV. 

The discovery of delayed neutrons was first reported by Roberts et al. [2] shortly 

after nuclear fission was confirmed in 1939. They thought the delayed neutrons were not 

photoneutrons caused by gamma radiation from the fission because the half-life of the 

neutron was different from the decay periods of the gamma radiation groups. Therefore, 

the delayed neutrons were unlikely to be related to the gamma radiation. Bohr and 

Wheeler [3] used a liquid drop nuclear model to explain the experiment of the delayed 

neutron emission. Their experiments proved that the delayed neutrons were released 

from highly excited beta decay daughters of the fission products. 

Snell et al. [4] used a large slab of U3O8 embedded in a graphite block, which 

was irradiated by neutrons from 9Be (d, n) reaction in a cyclotron. Prompt and delayed 

neutrons were detected by a BF3 detector in the graphite behind the U3O8. Some 

corrections were made due to the counting dead time and sample transfer time. But they 

ignored some effects such as scattering, and their final adjusted results were very 

different from the measured data. 
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Redman and Saxon [5] irradiated uranium and 239Pu samples in a graphite reactor 

and put the sample in a paraffin block containing a BF3 detector, which was covered by 

lead. The absolute value for the ratio of 239Pu to 235U was obtained but no uncertainty 

was reported. Hughes et al. [6] performed the similar experiments. They used a stripping 

method to determine the half-lives and the yields of the delayed neutrons, i.e., they 

found the longest period group first, and then used this known value to get the next 

longest, and so on. They adjusted the irradiation time to emphasize the desired period as 

much as possible and found that five groups fit the measured data well. However, this 

method could only give an approximate solution because it dealt with the groups 

separately with different irradiation periods, and the counts from short half-lived groups 

were ignored because relatively short irradiation time resulted in large uncertainties. 

Many improvements were subsequently made in delayed neutron research. A six-

group exponential model was first proposed to describe the delayed neutron emission by 

Keepin et al. [7] [8] as described in the following expression: 

i

6
-λ t

i
i=1

C(t)= A e      (2-1) 

 C(t) is the count rate at time t; i is the number of groups with Group-1 having the 

longest half life;  is the activity of Group i and iA i  is the decay constant of Group i. 

They measured the periods, relative abundances, and absolute yields of delayed neutrons 

from fast and thermal fission of different nuclides. They used two approaches (prompt-

burst irradiation and long-irradiation) to analyze the decay data at the Godiva Reactor in 

Los Alamos, USA. The sample transfer time was 50 ms. They assumed that the delayed 
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neutron yields were energy independent. In this method, they empirically grouped 

delayed neutron precursors together based on the half-lives of precursors. A least-

squares method was used to fit the data and they found that a six-group model was 

satisfactory to describe their data. The probable error of each parameter was determined 

by “weighted standard deviation of fit” and “inverse matrix from the solution of the 

weighted least-square equation” [8]. They found that the variation among group yields 

was much larger than the variation among group periods. In order to predict the most 

probable precursors for a given delayed neutron group, more than 100 possible delayed 

neutron precursors were studied by Keepin et al. [9]. They found that no satisfactory 

prediction was available for the sixth delayed neutron group. Later, additional 

experiments were performed to improve the precision of the parameters. The most 

widely used values were from another Keepin paper [10]. Keepin’s delayed neutron 

decay parameters for 235U by fast and thermal neutrons are listed in Tables 2.1 and 2.2 

below. At that time, Keepin used an iterative method to find the group parameters. These 

parameters are still widely accepted today. As shown later in Section 4.6, a large 

condition number of the matrix in this method can affect the calculated results 

significantly. The calculated errors shown in these tables were based on covariance 

matrix. 
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Table 2.1 Fast Fission Delayed Neutron Data from 235U (Keepin, 1957) 

Decay Constant (sec-1) Relative abundance 
0.0124±0.0003 0.038±0.003 
0.0305±0.0010 0.213±0.005 
0.111±0.004 0.188±0.016 
0.301±0.011 0.407±0.007 
1.14±0.15 0.128±0.008 
3.01±0.29 0.026±0.003 

 
 
 

Table 2.2 Thermal Fission Delayed Neutron Data from 235U (Keepin, 1965) 

Decay Constant (sec-1) Relative abundance 
0.0124±0.0003 0.033±0.003 
0.0305±0.0010 0.219±0.009 
0.111±0.004 0.196±0.022 
0.301±0.011 0.395±0.011 
1.14±0.15 0.115±0.009 
3.01±0.29 0.042±0.008 

 
 
 
In 1958, Cox et al. [11] reported measurements of delayed-neutron emission 

following the spontaneous fission of 252Cf using a BF3 detector. The longest half-life of 

the delayed-neutron component was accurately determined by using essentially infinite 

collection times. The results were analyzed by a least squares method. They found that 

three groups, not six groups, were adequate to describe the delayed neutron emission. 

But they did not list the comparison nor show their own supporting evidence or data. In 

addition, they did not point out whether the three-group model was applicable to all or 

just some of the specified nuclides.  
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Masters et al. [12] used a modulated neutron source operated in antisynchronism 

with a long counter to measure the absolute and relative delayed-neutron yields of five 

fissionable isotopes for neutron-induced fission at 3.1 and 14.9 MeV. They compared the 

delayed-neutron yields at these two energies, and found that the delayed-neutron yields 

from 14.9-MeV fission averaged 40% less than those from fission by 3.1-MeV neutrons, 

in agreement with the prediction of Keepin. But the yields from 3.1-MeV neutrons were 

about 10% higher than those measured by Keepin et al. [9] from fast fission. They did 

not discuss the variances in half-lives of different groups, nor was there any discussion 

of the numerical method used to calculate their parameters. 

Krick and Evans [13] studied the dependence of delayed neutron yields on the 

energy of the incident neutron. They pointed out that, for all fissionable isotopes studied, 

the delayed neutron yield was independent of the incident neutron energy in the range 

from 0.1 to 5 MeV. Krick and Evans measured, to an uncertainty of +/-10%, the absolute 

delayed neutron yields from fission of 233U, 235U, and 239Pu. Their conclusion is similar 

to that of Alexander and Krick’s [14]. Alexander and Krick calculated the delayed 

neutron yields for 235U as a function of the incident neutron energy between thermal and 

15 MeV based on fission data. They set the delayed neutron yields as constant and 

allowed the fission fractions to vary. Since experimental delayed neutron yields showed 

little variation with incident neutron energy below ~4 MeV, they thought the shape of 

the single-fission-model curve was constant from thermal to 5 MeV. The shape of 

delayed neutron yield as a function of incident neutron energy was identical with 

different amplitudes. Similar results were obtained by Caldwell et al. [15] from the 
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irradiated sample of 232Th, 235U, 238U, and 239Pu. 3He proportional counters were 

embedded in polyethylene. They found that the delayed neutron yields did not change 

with the incident neutron energy. 

Tuttle [16] used the empirical extrapolation method to evaluate the previous 

experimental data (such as delayed neutron yields, energy spectrum, group fractions and 

decay constants) for a number of fissionable materials with different incident neutron 

energies selected from thermal to 15 MeV. He recommended that the Keepin’s data were 

better. Rudstam [17] derived the group parameters and spectra from the nuclear data and 

fission yields of the individual precursors using a six-group model. The calculated 

results were claimed to be consistent with the experimental data. 

T. R. England and M. C. Brady et al. [18] [19] compared ENDF/B-V fission 

product yields (with six- and nine- group) to the result from CINDER-10 calculation. 

They found that for short periods (< 3 s) after the pulse, the ENDF/B-V data 

underestimates delayed neutron activity, and for long periods, it overestimates delayed 

neutron activity. A six-group representation fitted the data well. Increasing the group 

number to twelve did not significantly improve the fits. In their report, they gave little 

attention to the error analysis of these parameters. 

R. W. Waldo, R. A. Karam, and R. A. Meyer [20] studied the time dependent 

thermal-induced gross delayed neutron yield for many nuclides from 232Th to 252Cf. The 

sample flight time was 300 msec. Twenty 3He ionization chambers were embedded in 

polyethylene. They developed an expression for the prediction of the absolute delayed 

neutron yield and the prediction of delayed neutron emission with time. The approach 
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accurately predicted observed delayed neutron yields and delay characteristics. The 

results of this analysis were consistent with the experimental values. Waldo [21] used an 

inverse matrix iterative method to derive the delayed neutron parameters. Due to the 

long sample transfer time, only five groups were used. The long half-life group data 

agrees very well with Keepin’s values. Not much information about error analysis was 

given. 

G. Benedetti et al. [22] measured the delayed neutron emission from 233U, 237Np, 

238Pu, 240Pu, 241Pu, and 241Am using a BF3 counter surrounded by paraffin cylinder. A 1-

cm thick lead shield was used to reduce gamma flux at the detector. Their 

instrumentation could not detect the sixth group of neutrons due to their short half-lives. 

The decay constants were derived from the analysis of the decay curves. They found that 

this method fit group yields very well. Compared to the results given by Tuttle [16], they 

found the delayed neutron yields from 240Pu and 241Pu were in good agreement, but the 

233U yields had significant differences. Statistical error estimates were obtained by using 

an error propagation method. These errors were due to the uncertainty in the fission 

product yields and the neutron emission rates at the end of irradiation from the decay 

curves analysis. Systematic errors were not taken into account. 

Y. Kaneko, F. Akino, and T. Yamane [23] evaluated the delayed neutron data for 

thermal fission of 235U. They used the least-square method to minimize the sum of the 

squared deviations between the measured values and the calculated values. After 

comparing the experimental results with the data from Keepin, ENDF/B-V and 

ENDF/B-IV, they found that the effective fraction, βeff, was larger than Keepin’s, but 
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closer to ENDF/B-V data than ENDF/B-IV data. Decay constants values were close to 

Keepin’s data for thermal fission. 

Villani et al. [24] used the least squares method to decompose composite spectra 

measured at different delay time intervals following fission into group-wise delayed 

neutron spectra. They pointed out that the experimental uncertainties in the measured 

composite spectra were not the reason for unstable solutions (small changes in the 

measured spectra will lead to very different group spectra). They thought it was possible 

that the approximation of using the classical six-group fitting model was the cause of 

instability. But they did not investigate further. 

H. H. Saleh et al. [25] measured delayed neutron yields and decay constants of 

235U, 237Np, 241Am, and 243Am at the Texas A&M University TRIGA reactor. The 

sample flight time was 440 ms. By plotting neutron count rate versus time, the 

approximate yields and decay constants were found by a stripping method. These peeled 

values were then used as initial guesses in a weighted least squares fitting computer 

program that was derived specially to refine the initial estimates of the group yields and 

decay constants. Their calculated delayed neutron parameters were consistent with 

values recommended by Keepin [9], Tuttle [16], and Waldo [20], especially for 235U (see 

Table 2.3). Due to the long flight time (0.44 s), the shortest-lived group was ignored; and 

only five groups were fitted. Charlton et al. [26] [27] [28] used pulsed mode (60 ms 

irradiation time) in the same TRIGA reactor to catch the shortest-lived group of 237Np 

and 243Am providing new experimental results. Different irradiation times (180, 60, 20, 

and 5 s) were used to emphasize the different delayed neutron groups. The sample flight 
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time was 0.5 sec and a seven-group fit was applied. Due to the small counts produced by 

pulsing technique, the long half life group data were obtained from previous experiments. 

Only statistical error was considered in error analysis. 

 
 
 

Table 2.3 235U and 237Np Group Constants at TRIGA Reactor 

235U 237Np Group 
Decay Constant 

(sec-1) 
Relative Yield Decay Constant 

(sec-1) 
Relative Yield 

1 0.0125±0.0009 0.036±0.006 0.0129±0.0006 0.040±0.002 
2 0.036±0.002 0.239±0.039 0.0324±0.0010 0.233±0.017 
3 0.111±0.007 0.195±0.033 0.1048±0.0019 0.19±0.01 
4 0.300±0.005 0.390±0.065 0.341±0.013 0.322±0.027 
5 1.100±0.025 0.111±0.018 0.85±0.06 0.193±0.007 

 
 
 
D. Loaiza, G. Brunson, R. Sanchez, et al. [29] [30] studied the delayed neutron 

activity resulting from the fast induced fission of 235U and 237Np. “Instantaneous” and 

“infinite” irradiation were used. The sample transfer time was 0.110 s. The neutron 

detectors were 20 3He tubes embedded in a polyethylene cylinder. A 3He proportional 

counter has high-efficiency, low dead time, and low gamma sensitivity. The absolute 

efficiency was 29.04% ± 0.6% determined by an Am/Li source. The system’s dead time 

was 0.46 ± 0.02 μs. The iterative Levenberg-Marquardt method was used to minimize 

the sum of squared differences between the experimental values and the fitted values. 

They compared the experimental results from a six-group model with the theoretical 

values, and they found that the measurements were in satisfactory agreement with 
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Keepin’s data. The results are listed in Table 2.4. The decay of the delayed neutron 

activity for the saturation and instantaneous irradiations are represented by [30]: 

i

m
-λ t

S i
i=1

N (t)= A e       (saturation irradiation)     (2-2) 

i

m
-λ t

I i i
i=1

N (t)= λ A e    (instantaneous irradiation)    (2-3) 

Here, NS and NI are count rate from saturation and instantaneous modes 

separately, t is the independent variable time, Ai is the abundance, and λi is the decay 

constant of the ith group. The experimental data and the calculated results are depicted in 

Figure 2.1 (Obtained from [30]) for saturation and instantaneous irradiation. They had 

satisfactory agreement with Keepin’s values.  

 
 
 

Table 2.4 235U and 237Np Group Constants in Godiva 4 in LANL 

235U 237Np Group 
Decay Constant 

(sec-1) 
Relative Yield Decay Constant 

(sec-1) 
Relative Yield

1 0.0127±0.0001 0.0395±0.001 0.0123±0.0009 0.032±0.003 
2 0.0315±0.0004 0.235±0.005 0.0284±0.0005 0.238±0.006 
3 0.117±0.0064 0.207±0.008 0.0971±0.007 0.175±0.008 
4 0.314±0.0107 0.381±0.011 0.296±0.014 0.360±0.017 
5 1.37±0.0514 0.114±0.005 0.914±0.058 0.150±0.014 
6 3.83±0.1138 0.0235±0.001 3.20±0.13 0.045±0.006 
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Figure 2.1 Measured and Fitted Delayed Neutron Decay Data for Saturated and 
Burst Irradiations [30] 

 
 
 

J. Blachot, C. Chung and F. Storrer [31] used the summation calculation method 

to calculate the delayed neutron yields for 39 fissile systems using Pn values and 

cumulative fission yields from JEF-2.2. They hoped that the new nuclear mass data for 

235U thermal fission might improve the prediction of Pn values, and that this calculation 

method might be a good way to provide a systematic estimation of the unmeasured yield 

values in terms of the atomic mass for each element with different neutron energies. 

A new eight-group delayed neutron model based on a constant set of half-lives 

was proposed at Los Alamos in co-operation with IPPE at Obninsk by Spriggs et al. [32]. 
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The researchers used the same set of eight half-lives for all fissionable systems. The 

half-lives of three longest-lived groups corresponded to the three dominant long-lived 

precursors: 87Br, 137I and 88Br. The main advantages of this model are: 1) a more 

consistent description of the delayed neutron emission from the longest-lived precursors 

to avoid distortions in reactivity measurement analysis (Keepin’s six-group data did not 

accurately generate the asymptotic die-away time constants associated with the three 

longest-lived dominant precursors); 2) a single set of precursor half-lives for all fissile 

isotopes and incident neutron energies to calculate reactor kinetics without 

approximation (Keepin’s six-group structure obtained different results for different 

isotopes and different incident neutron energies and causes approximations). According 

to the studies in Los Alamos, six-group and seven-group data were less good than an 

eight-group set in the analysis of strong negative reactivity insertion experiments [33]. 

G. D. Spriggs, J. M. Campbell [34] summarized the measured delayed neutron 

group parameters for 20 different fissionable isotopes. Two hundred and forty five sets 

of delayed neutron parameters were identified. The decay curves of each isotope were 

compared as a function of incident neutron energy. They found that the results from six-

group model were still the best so far. 

V. M. Piksaikin et al. [35] measured the absolute delayed neutron yield and 

group constants for fission of 235U, 239Pu, and 237Np induced by neutrons in a wide 

energy range from epithermal to 5 MeV at IPPE in Obninsk. Periodic irradiation with 

different irradiation times was used to focus on different delayed neutron groups. The 

pneumatic transfer system flight time was 150 ms. Thirty boron counters at three 
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different distances were buried in polyethylene. Monte-Carlo correction factors were 

used to evaluate multiple scattering effects in the detection system. They used the 

successive approximation method [7] to optimize the generalized least squares fitting 

procedure. The Gauss-Newton method was used in the correction factor as the classical 

solution of the least squares method. The fitted data for six- and eight- group model were 

obtained for comparison. They noted that for the neutron energy range up to the 

threshold of the (n, n’f) reaction, the average half-life of delayed neutron precursors 

decreased when the energy of primary neutrons increases. They thought that the eight-

Group model developed by Spriggs et al. [34] was a reliable procedure, but the 

improvement is not significant. The results from eight-group model are listed in Table 

2.5. Piksaikin and Isaev [36] used an expression vd = aTb to describe delayed neutron 

characteristics (a and b are empirical constants, T is the average half life of delayed 

neutron precursors, and vd is the total delayed neutron yield). These features were used 

to evaluate procedure that had a higher level of confidence than the evaluation based on 

a simple averaging procedure. 
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Table 2.5 An Eight-group Model Based on a Consistent Set of Half-lives [34] 

Group Half-life (s) Relative Yield: 
eight-group Fit 

Relative Yield: 
Expanded eight-group 

Model 
1 55.7 0.030±0.10E-2 0.030±0.16E-2 
2 24.5 0.172±0.40E-2 0.178±0.56E-2 
3 16.3 0.103±0.30E-2 0.097±0.56E-2 
4 5.21 0.163±0.40E-2 0.175±0.83E-2 
5 2.37 0.364±0.60E-2 0.337±0.67E-2 
6 1.04 0.018±0.10E-2 0.051±0.35E-2 
7 0.424 0.128±0.60E-2 0.124±0.62E-2 
8 0.195 0.022±0.10E-2 0.010±0.19E-3 

 
 
 
S. B. Borzakov, et al. [37] measured the delayed neutron decay curves for the 

thermal-induced fission of 235U and 239Pu using pulse mode during the time interval from 

5 to 730 ms after irradiation. They used a periodic irradiation technique to increase the 

number of precursors. The transfer time was about 1 sec, which resulted in larger 

uncertainties (15~35%) and variation in the fifth and sixth group parameters than those 

measured by Tuttle [16] and Waldo [20]. Compared to the results given by Brady and 

England [18] and Keepin [9] using six-, seven- and eight-group models, Borzakov, et al. 

[37] showed that a new seven-group model for this time interval was satisfactory. These 

comparitive results for 235U are shown in Figure 2.2 and the seven-group parameters are 

listed in Table 2.6. However, Wilson and England [38] came to a different conclusion. 

They used the CINDER-90 code to simulate the emission of over sixty delayed neutron 

precursors based on ENDF/B-VI basic nuclear data. The results from pulse and 

saturation irradiation equations were simulated to get total delayed neutron production. 

They found that using pulse irradiation fitted parameters to describe equilibrium 
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irradiation results would increase deviations at large decay times; while using 

equilibrium irradiation results to fit the pulse irradiation results would result in greater 

deviation at small decay times. The maximum deviations were in the 2-5% range. 

 
 
 

 

Figure 2.2 Experimental Data Obtained for 235U [37]. The curves were calculated 
using the following sets of delayed neutron parameters: Curve 1 - Brady, England [19]; 
Curve 2 - Keepin [7]. The curve calculated using the seven-Group model presented in 
this work coincides with Curve 2. 
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Table 2.6 Seven-group Parameters for Thermal Fission of 235U [37] 
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The Keepin’s six-group fit and the eight-group fit proposed by Piksaikin [35] 

were calculated for comparison with some of the parameters (decay constants) fixed or 

variable. Borzakov et al. [37] found that the six-group fit with free abundances and 

decay constants provide satisfactory results with a small sum of squared residuals. 

Although the eight-group fit also gave a small sum of squared residuals, the difference 

was not significant. They concluded that it was not necessary to change the current six-

group model. 

B. Pfeiffer, K. L. Kratz, and P. Moller [39] listed the present status of the 

experimental delayed neutron precursor data, and compared with two model predictions: 

1) an update of the empirical Kratz Herrmann formula (KHF), and 2) a unified 

macroscopic-microscopic models within the quasi-particle random-phase approximation 

(QRPA). The KHF results appeared to be more reliable than the QRPA results. And all 

half-life calculations agreed better with data for shorter half-lives. The mean deviation 

between calculated and experimental results was a factor of 2-5 for half-lives and 3-6 for 

Pn values. Both of them depended on the model and half-life cutoff during calculation. 

V. M. Piksaikin, L. E. Kazakov, et al. [40] [41], measured the relative yields and 

periods of individual groups of delayed neutrons (in 233U, 235U, 239Pu fission by 

epithermal neutrons and in 239Pu by primary neutrons 0.37-4.97 MeV) by periodic 

irradiation. They compared the experimental results with ENDF/BVI in terms of the 

average half-life of the precursor neutrons using the period- reactivity relation of the 

asymptotic period of the reactor. The group parameters were estimated using a least-

square iteration method in a conventional six-group model. Within the uncertainty limits, 
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the measured results differed substantially from the ENDF/BVI data.  Piksaikin et al. [41] 

was the first to show the character and scale of the group parameters variation as a 

function of the excitation energy of the fissionable compound nucleus. For the primary-

neutron energy range 2.85eV-5 MeV, the average half-life of precursor nuclei decreases 

by 10%. 

S. G. Isaev et al. [42] studied the energy dependence of the relative delayed 

neutron yield related to individual precursors from fast fission of 237Np. They used 

periodic irradiation with sample flight time of 150 ms. The neutron detectors were an 

array of thirty boron counters located at three different distances along the concentric 

circles and buried in polyethylene. In data analysis, they found there was a strong 

correlation between the initial parameter inputs and the final calculated results of the 

delayed neutron yields with the half lives of 6.46 and 5.93 s; 2.3, 2.08 and 2.0 s; 1.002 

and 0.86 s; 0.203 and 0.17 s. Therefore, they combined these precursors into four groups 

with half lives of 6.37, 2.09, 0.942, and 0.195 s. Together with another eight individual 

precursors, there are a total of twelve groups in their final results. The statistical errors 

were calculated in processing the experimental data by iterative least squares method. 

The systematic errors were estimated in the statistical analysis of the calculated relative 

yields, which were obtained by randomly changing the initial guessed inputs within 

±40% of the results from the summation method. The correlation coefficients for the 

parameters showed a strong correlation between Group-3 and Group-4 in the six-group 

model [43]. Piksaikin et al. suggested combining these two groups and found that the 

new fifth group was in agreement with Keepin’s sixth group value. 
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D. Dore and J-C. David et al. [44] studied delayed neutron yields and spectra 

from photofission of actinides with bremsstrahlung photons below 20 MeV. One 3He 

detector was used. Three combinations of irradiation/counting (decay) times were 

applied: 140μs/30s, 5s/100s and 300s/300s. The absolute value of the DN yield for a 

long irradiation mode was 3.05 ± 0.20. An extraction method was used to get Group-1 

and -2 decay parameters first in the long irradiation mode. Then, they subtracted these 

two groups and determined Group-3 and -4 parameters in middle irradiation mode. 

Finally, Group-5 and –6 parameters were found in short irradiation mode. The values for 

Group-6 were claimed to be very accurate with yield 0.085 ± 0.008 and half-life 0.174 ± 

0.019 s. But for other groups, the values had large discrepancy compared to ENDF-B VI 

data. They only obtained the differing DN yield ratios because of the poor statistics in 

the experiment. Later, twelve 3He detectors were used to improve the total counts [45] 

and bremsstrahlung photons energies were between 12 and 18.5 MeV. The MCNPX 

modeling results were compared to experimental data. The Group-5 and Group-6 

parameters were in good agreement. Only statistical error was considered based on 

several measurements, and no systematic uncertainty was evaluated. 

V. M. Piksaikin et al. [46] studied the relative yield and half-life of their 

precursor nuclei from 238U fission by 14.2-17.9 MeV neutrons. Thirty SNM-11 counters 

(with 10B up to 80%) were located at three different concentric circles. Two irradiation 

times were used (180 and 300 sec). Sample flight time was 150 msec. The counting 

times were 524.5 and 724.5 sec. The dwell time was variable: 0.01 sec (150 channels), 

0.02 sec (150), 0.1 sec (200), 1 sec (200), and 10 sec (30 or 50). They found that the 
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average half-life of the precursor nuclei would increase if the primary neutron energy 

increases in that range. It was due to the opening of emissive nuclear fission channels. 

The systematic error from the detector blocking effect was also investigated. The least 

squares method was used for the calculation of the relative yields and half lives. The 

error they gave was the statistical error from several measurements. 

A. Dos Santos et al. [47] used the multiple transient methods in their experiment 

at the IPEN/MB-01 research reactor to find the relative yield and decay constant of 

delayed neutrons. They used the least squares method to fit the parameters in a six-group 

model. This was done by iterative approach. First, the relative yields were fixed to find 

decay constants. Then, the process was inverted to find the relative yields. This was 

repeated until convergence was achieved. The only fixed parameter was Group-6 decay 

constants. Comparing the fitted parameters from the experiment to those from ENDF/B-

VI revised library, they found that the uncertainties increased with the increase of the 

decay constants. They found that ENDF/B-IV.8 library overestimated the first decay 

constant. Their result was closer to JENDL-3.3 values. If all the decay constants were 

fixed, ENDF/B-VI.8 severely underestimated Group-1 relative yield with deviation as 

high as 26%, but the deviation from Group-6 was very small. If all the decay constants 

were fixed during the fit, the experimental values were severely different ENDF/B-VI, 

but they were in good agreement with the revised version of ENDF/B-VI (LANL version) 

library, especially with JENDL-3.3 library. But the multiple transient methods caused 

some difficulties in obtaining data from the short-lived precursor groups. Due to the 

extremely low power level (only 1 W), the detected counts were very low, and this 



24 

increased error. They also did not compare the optimization differences with/without 

decay constants fixed.  

B. Geslot et al. [48] investigated the influence of the delayed neutron group 

model on the fitted parameters. Only one hundred and forty precursors from JEFF-3.1 

data library are used to get various sets of parameters for six, seven and eight groups, 

with six to fourteen variable parameters and in three incident neutron spectra (thermal, 

fast and monoenergetic 14 MeV). Constant time bin of 0.1 s was applied for 3000 points. 

The fitted results as well as their RMSE (root of mean squared error) from thirteen 

models (named from J1 to J13) are listed in Table 2.7. The comparison results between 

six-group data sets and Tuttle’s data [16] are shown in Table 2.8. The highest 

uncertainties occurred in short decay groups and in the model with more free parameters. 

Small number of fitted parameters often gave high RMSE. Compared to the results from 

Tuttle (six-group) [16], Loaiza (seven-Group) [33], and Spriggs (eight-Group) [34], the 

fitted relative yields were significantly different. But the mean decay constants were 

very similar. The comparison for six-group was shown in Table 2.8. They concluded that 

the parameters were very dependent on the mathematical model and the experimental 

data, as well as the data analysis technique. No information was given about how to 

divide these precursors into six, seven, and eight groups. Only pulse mode was simulated. 

They also did not mention which numerical method was used to fit the parameters. Only 

a single fit from JEFF-3.1 data library was used for all parameters. Due to a constant 

dwell time 0.1 sec was used for all the data points, the fitted results have large 

correlation coefficients between short decay groups (few data points are available). The 
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correlation coefficients between long decay groups are also very large because of the 

extremely low counts in the later counting period. The variation on the initial count rate 

in the model is not considered. 

 

Table 2.7 Fitted Models Applied to Simulated Decay Curves [48] 

Spectrum Group 
number 

Parameter 
number 

Fixed 
parameters 

Data set 
name 

RMSE Max. 
Uncertainty 

(%) 
12 None J1 0.0205 45.5 (α6) 
10 α1, λ1 J2 0.0454 26.2 (α6) 

6 

6 λi J3 0.23 2.7 (α5) 
12 α1, λ1 J4 0.0113 63.2 (α7) 7 
7 λi J5 0.17 8 (α4) 
14 α1, λ1 J6 0.0027 213 (α8) 

Thermal 

8 
8 λi J7 0.087 8 (α8) 
12 None J8 0.02 31.5 (α6) 
10 α1, λ1 J9 0.033 15.7 (α6) 

Fast 6 

6 λi J10 0.23 2.7 (α5) 
12 None J11 0.031 31.8 (α6) 
10 α1, λ1 J12 0.033 18.8 (λ5) 

14 MeV 6 

6 λi J13 0.23 2.1 (α5) 
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Table 2.8 Comparison between Six-group Data Sets [48] 

    J1 J2 J3 Tuttle [16] 
1 36.92 25.5 21.1 23.1 
2 155.4 154.8 148.7 153.3 
3 161.3 133.7 186.4 137.2 
4 255.2 279.6 260.7 276.5 
5 70.15 76.4 58.1 80.5 

Relative 
Yield 

6 21.03 30 24.5 29.4 
1 0.014 0.0124 0.0124 0.0124 
2 0.0334 0.0305 0.0283 0.0305 
3 0.137 0.113 0.119 0.111 
4 0.337 0.302 0.365 0.301 
5 1.25 1.03 1.29 1.14 

Decay 
Constant 

6 3.32 2.94 3.45 3.01 

Note: J1, J2, and J3 are defined in Table 2.7. 
 
 
 
Different numerical methods based on different experimental data sets will 

generate different parameters. Further more, the fitted results are also very dependent on 

the data analysis methods as mentioned by Geslot [48]. The delayed neutron parameters 

are different among different researchers; some are significantly different. Several data 

libraries of delayed neutron parameters have been published. Table 2.9 lists delayed 

neutron decay parameters from different data libraries. These data are obtained from 

IAEA Nuclear Data Centre. It is obvious that these values differ significantly. JENDL-

3.3 is the same as Keepin’s [10] and Tuttle’s [16] values. Most of them use six-group 

model, except for JEFF-3.1. The largest discrepancy occurs in short decay groups in all 

libraries. 
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Table 2.9 Thermal Neutrons Induced Delayed Neutron Fission Parameters in 
Different Data Libraries [49] 

 
 Group ENDF/B-VII.0 

(USA, 2006) 
ENDF/B-VI.8 
(USA, 2001) 

JENDL-3.3 
(Japan, 2002)

JEF-2.2 
(Europe, 1992) 

JEFF-3.1 
(Europe, 2005)

1 0.0320 0.0350 0.0330 0.0350 0.0328 
2 0.1664 0.1807 0.2190 0.1807 0.1539 
3 0.1613 0.1725 0.1960 0.1725 0.0913 
4 0.4596 0.3868 0.3950 0.3868 0.1969 
5 0.1335 0.1586 0.1150 0.1586 0.3308 
6 0.0472 0.0664 0.0420 0.0664 0.0902 
7 0.0812 

Relative 
Yield 

8 
    

0.0229 
1 0.0125 0.0133 0.0124 0.0127 0.0125 
2 0.0318 0.0327 0.0305 0.0317 0.0283 
3 0.1094 0.1208 0.1114 0.1160 0.0425 
4 0.3170 0.3028 0.3014 0.3110 0.1330 
5 1.3540 0.8495 1.1360 1.4000 0.2925 
6 8.6364 2.8530 3.0140 3.8700 0.6665 
7 1.6348 

Decay 
Constant 

8 
    

3.5546 

 
 
 
Studies to improve delayed neutron data have been carried out for many years. 

Great progress has been made for the individual precursors (or microscopic) level to get 

the delayed neutron yields, Pn values, and half-lives. In the beginning, simple stripping 

techniques were used on the decay curve to get the delayed neutron parameters. With the 

improvement of detector efficiency, sensitivity and incident neutron energy 

independence, statistical variation has been greatly decreased during measurements, 

particularly with the application of multi-channel analyzers, and very satisfactory time 

resolution can be achieved. Later least squares fitting program codes were developed and 

analysis techniques were used, which avoid the subjective factors in graphical stripping 

methods and allow all the parameters to vary to fit the exponential equations. However, 

these parameters change greatly for different isotopes and incident neutron energies. 
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With the help of advances in computer simulation in advance, the experimental 

conditions can be optimized. Even given these advances, large discrepancies of the fitted 

parameters among different researchers still exist, promoting the investigation of 

parameter variation.  
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3. DELAYED NEUTRON EMISSION THEORY 

 

After neutron-induced fission, the fission products usually undergo beta decay to 

reduce their neutron excess. However, in some cases, a daughter nucleus is formed after 

beta decay, such that the excitation energy is greater than the neutron-binding energy. 

This nucleus will directly emit a neutron as a mode of decay. This kind of neutron is 

called as delayed neutron. The delay time is governed by the half-life of the precursor 

nucleus. 

A typical delayed neutron emission scheme is shown in Figure 3.1. 87Br is one of 

the dominant delayed neutron precursors from 235U fission. 

 

Figure 3.1 Delayed Neutron Emission Scheme [28] 
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Neutron generation time is defined as the time from the emission of one 

generation to the production of the next generation caused by the fission. It includes the 

period of being emitted, slowing down, and absorption to induce the next fission. In a 

fast reactor, the prompt neutron generation time is about 1E-6 seconds. In a thermal 

reactor, it is about 1E-4 seconds to 1E-5 seconds. Taking 235U fission as an example, the 

average time until emission of delayed neutrons from the precursors of 235U is about 12.5 

seconds [50]. These delayed neutrons make a dominant contribution to the total neutron 

mean lifetime. The total delayed neutron yield is 0.0065, and taking the prompt neutron 

generation time as 5E-5 seconds, the weighted average generation time can be calculated 

as follows: 

5

* *

(5 10 sec)(0.9935) (12.5 sec)(0.0065)

0.0813sec

prompt prompt delayed delayedTime Yield Time Yield




  


 

Thus, mean generation time is increased significantly because of the delayed 

neutrons. This gives very important response time to regulate a reactor. 

In this research, some of the delayed neutron decay properties will be explored 

mathematically. The number of precursor nuclei k denoted as Nk(t) at irradiation time t 

in a sample can be expressed as: 

k
f k k k

d N (t)
= N σ φ -λ N (t)

d t
     (3-1) 

Here, N is the number of actinide atoms, σf the microscopic fission cross-section 

of the actinide nuclide, φ is the neutron flux, υk is the cumulative fission yield of the 
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precursor k, and λk is the decay constant of precursors. Therefore, we can get the number 

of the precursors during irradiation time tirr: 

k i r r-λ t

k i r r f k
k

1 - e
N ( t ) = N σ φ ν

λ
    (3-2) 

If the irradiation time is tirr, after decay time t, the activity of the precursor k, 

Actk(t) is 

k irr k-λ t -λ t
k f kA c t ( t )= N σ φ ν (1 -e )e    (3-3) 

If the delayed neutron emission probability from precursor k is Pk, the total 

delayed neutron emission rate from precursor k at decay time t is 

k i r r k-λ t -λ t
k f k kD N ( t ) = N σ φ ν P ( 1 -e ) e    (3-4) 

The total measured counts in the detector from all of the precursors during the 

counting time period  is given by 2 1Δt=t -t

2

1

nt

kt
k = 1

C = ε [ D N ( t ) ]  d t + B      (3-5) 

Here, ε is the efficiency of the delayed neutron detection system; n is the total 

number of precursors; t1 and t2 are the beginning and ending counting time; and B is the 

background counts during the counting time period. The total measured count number 

during the counting time period  is: 2 1Δt=t -t

k ir r k 1 k

n
λ t λ t λ Δ t- - -k k

f
k = 1 k

ν P
C = N σ φ ε [ (1 -e )e (1 -e ) ]+ bΔ t

λ
 

(3-6) 

Where λk is the decay constant of precursor k, n is the total number of the 

precursors, and b is the background count rate. 
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There are more than 271 known delayed neutron precursors, and the production 

and decay for all of these individual precursors are mostly uncertain. Even if all these 

precursors were well known, a system of over 200 linked differential equations is also 

not of practical use. The widely accepted way to model delayed neutron production is to 

lump the precursors into several groups according to their half-lives. The purpose of this 

research is not to judge how many groups are better. A traditional six-group model will 

be used here. For a six-group model, the fraction of delayed neutrons and their main 

precursors are listed in the following Table 3.1 [10]. 

 
 
 

Table 3.1 Delayed Neutron Fractions for Different Nuclides 

Group Possible 
precursor nuclei 

Mean 
energy 
(MeV) 

Average half-life of the 
precursor nuclei(s) 

Delayed-neutron fraction 
(%) 

   235U 239Pu 233U 235U 239Pu 233U 

1 87Br, 142Cs 0.25 55.72 54.28 55 0.021 0.0072 0.0226

2 137I, 88Br 0.56 22.72 23.04 20.57 0.14 0.0626 0.0786

3 138I, 89Br, 
(93,94)Rb 

0.43 6.22 5.6 5 0.126 0.0444 0.0658

4 139I, (93,94)Kr, 
143Xe, (90,92)Br 

0.62 2.3 2.13 2.13 0.252 0.0685 0.073 

5 140I, 145Cs 0.42 0.61 0.618 0.615 0.074 0.018 0.0135

6 (Br, Rb, As etc) - 0.23 0.257 0.277 0.027 0.0093 0.0087

Total 0.64 0.21 0.26 

 
 
 
One of the most widely accepted models to predict delayed neutron production is 

Keepin’s six-group model [10]. Some others used seven groups, such as Spriggs [32], 

Borzakov [37], or eight groups, such as Piksaikin [36], etc., these models are not widely 
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accepted. The delayed neutron count rate CR(t) at decay time t after irradiation time 

can be expressed as a summation of six exponential groups. 

irrt  

    (3-7) i i i r r

6
- λ t - λ t

i
i = 1

C R ( t ) = P A e ( 1 -e ) + b

Here, P is a proportionality constant depending on the reactor power level, the 

sample properties, detection efficiency, micro cross section of fissional nuclide.  Ai and 

λi are the relative yield (the fractional abundance) and decay constant of group i, and b is 

the background count rate. 

The total counts during time can be derived as 2 1Δt=t -t

2

i irr i

1

i irr i 1 i

i irr i 1 2

t 6
λ t λ t- -

i
i= 1t

6
λ t λ t λ Δ t- - -i

i= 1 i

6
λ t λ (t t ) / 2- -

i
i= 1

C  =  P [A (1 -e )e ] + bΔ t

A
   =  P [ (1 -e )e (1 -e )]+ bΔ t

λ

  P [A (1 -e )e ]Δ t+ bΔ t

d t



 
 
 









  (3-8) 

The above equation is a simplified form of Eq.(3-6). If Δ  is small enough, the 

integral part during time  can be simplified as the middle point value of the 

period multiplied by time period Δ . This simplified expression is very helpful in 

computing the first and second derivatives of the unknown parameters. Even for a 5.0 

sec dwell time, the calculated count difference is as low as 0.07% or less. Here, Eq.(3-8) 

can be further simplified under the following conditions:  

t

2 1Δt=t -t

t

1) For saturation irradiation, i irrλ t-(1-e ) 1 ; 

2) Background counts are ignored 
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The total counts during time period  can be derived from Eq. (3-8): 2 1Δt=t -t

i 1 2

6
λ ( t t ) / 2-

i
i = 1

C = P A e Δ t     (3-9) 

The delayed neutron count rate CRS(t) in saturation mode at time t is: 

       (3-10) i

6
λ t-

s
i= 1

C R ( t ) = P A e i

i

Actually, the above conditions can be easily achieved under current experimental 

conditions. The above equation is relatively more useful solution for the long half-life 

groups, such as Group 1 & 2. Because of the difficulties in capturing data from the short 

half-lived groups, the fitted results for Group-5 and 6 have large deviations [38]. The 

pulse irradiation method is used to focus on the short half-life groups, such as group 5 

and 6 (see [29] and [38]). For a single pulse irradiation, the count rate at time t following 

fission is expressed as: 

     (3-11)  i

6
λ t-

p i
i = 1

C R ( t ) = P λ A e
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4. NUMERICAL METHODOLOGIES 

 

Keepin et al. [9] were the first to propose the six-group model, that is, the 

delayed neutron activity as a function of time could be expressed by the sum of six 

exponentially decaying groups (see Eq.(3-10) and Eq.(3-11). The expressions in Eq.(3-

10) and Eq.(3-11) are for saturation and pulse simulation respectively. The value of the 

sum of weighted squared residuals (marked as E2, see below) between the measured 

count and the theoretical count from the model is used to judge the goodness of the fitted 

group parameters. There are thirteen parameters in the fitting equation: six relative yields 

and six decay constants, the last unknown parameter is a constant used to fit the initial 

count rate. The smaller the value of E2, the better the fitted group parameters in the 

model matches the data. To find appropriate group parameters, the least squares method 

is widely used to minimize the sum of the weighted squared differences (E2) between the 

measured values and the calculated results. If yi represents the ith observed count at time 

interval , x is a vector of unknown parameters, and tit i is the independent variable time 

after irradiation, objective function can be expressed as: 

 

j i

j i

2m
2

i i 1 n 1 n
i=1 i

n
-λ t

i j
j=1

i n
-λ t

i j j
j=1

1
E = y -f( ,t )       [ =(A ,...,A ,λ ,...,λ )]

y

P t A e          (saturation irradiation)

f( ,t )=

P t λ A e              (pulse irradiation)

 


 








x x

x
  (4-1) 



36 

Here, f(x, ti) is the fitted count at time ti, it  is dwell time for ith observation; Aj 

and λj are the abundance and decay constant of group j, m and n are the number of the 

measurements and the number of group parameters respectively; P is a constant of 

proportionality depending on the reactor power level, the sample properties, detector 

efficiency, etc. 

Since the above equation is a nonlinear least squares problem, an optimal 

solution usually cannot be found analytically. Iterative methods are used and initial 

estimations are used to start the iterations. Unreasonable initial values sometimes direct 

the algorithm away from a global minimum or even prevent convergence at all. There is 

no absolutely precise method for this problem. The methods used in the literature and 

described below seek to find an appropriate estimation while keeping the uncertainties as 

small as possible. Several numerical algorithms have been used, namely, the Matrix 

Inverse method, the Levenberg-Marquardt method, and the quasi-Newton method. The 

ordinary least squares method, the basis of the Matrix Inverse method, was widely used 

in previous research to solve this optimization problem.  

To evaluate these methods, data sets were generated using Monte Carlo methods 

to simulate the experimental data as follows. Keepin’s original parameters are used to 

generate simulated experimental data sets. The purpose of the simulation is to check 

whether the parameters extracted by the various algorithms are the same or close to the 

Keepin’s initial values. If this is true, the simulated data sets from different random 

numbers should have stable solutions. Otherwise, the extracted values are unstable. If the 
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objective optimization value E2 cannot be guaranteed to be the smallest, the solution is 

not global and the solution only reaches a local optimization.  

 

4.1 Data Generation 

In this project, the experimental data are simulated by Monte Carlo methods. It is 

assumed that there are no experimental errors involving flight time error, detector 

efficiency, dead time, energy dependency, background noise and other sources of 

radiation. The only error source is from the statistic variation due to Poisson distribution. 

The simulated data sets are Poisson distributed along Keepin’s theoretical values.  

In saturation mode, the assumed count  during time  would be: Keepin iy (t ) it

j i

n
-λ t

K e e p in i i j
j= 1

y ( t )= P t A e       (4-2) 

Where i is the time channel number during the counting period,  is the dwell 

time for the i

it

th observation, ti is the mid-point of time interval it , and n is the number 

of groups assumed (n=6 in Keepin’s model), Aj and λj are the “true” yield (the fractional 

abundance) and decay constant for group j, and P is a constant of proportionality 

depending on the reactor power level, the sample properties, detector efficiency, etc. 

To generate the “experimental data”, the simulated counts are Poisson distributed 

around the theoretical values calculated by Eq.(4-2) in each time channel. No other error 

is included. The only scatter about the mean is dictated by Poisson statistics. Poisson 

distribution is done using an inverse normal distribution. The ith “experimental count” 

 is simulated using following method: y(i)
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K eepin K eep in

rand=R A N (seed)

y(i)= IN T {y (i)+A N O R IN (rand)* y (i) +0 .5}
 (4-3) 

Here, “rand” is a random number generated by FORTRAN function RAN with 

an integer as a seed and “rand” varies between 0 and 1.0;  is the theoretical 

count from Keepin’s model in the i

Keepiny (i)

th time channel (see Eq.(3-10) and Eq.(3-11)); INT is 

a FORTRAN function to round off the number as an integer; function ANORIN is a 

function which is the inverse of the standard normal cumulative distribution from IMSL 

library. The data generation for pulse mode is similar as saturation mode except for the 

difference of theoretical function. The detailed information about data generation 

method is written in FORTRAN code in Appendix A.1, A.2 or A.3. 

The counts in each dwell time (counting time channel) should be above 2,500, if 

possible, to ensure less than 2% relative deviation from the mean. If the time increment 

is too large, the counts change rapidly during each time increment and not enough 

information can be obtained for the shorter half-lived groups. If the dwell time is too 

short, the Poisson variation will be too big and the relative deviation will increase. Given 

these constraints, different time steps are chosen according to the count rate changes 

during decay period. During 0 to 10 sec, the dwell time is set to be 0.025 sec, during 10 

to 100 sec, it is set to 0.5 sec, and during 100 to 300 sec, and it is set to 5.0 sec. The 

shortest dwell time 0.025 sec is selected based upon the initial count rate so that the 

shortest half-lived group information can be studied. If it is too small, a lot of channels 

are needed during counting period. This may be not applicable for some counting 

devices. Take MCA device (Model # MP2-2E, Canberra Corp., CT) in Nuclear Science 
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Center at Texas A&M University as an example, the total channels are 16024. If the total 

counting time is 300 sec, the time bin around 0.020 sec is appropriate. Considering the 

extra time to start counting in advance before the sample arrives, 0.025 sec time bin is a 

good selection. What’s more, too few counts will also increase the statistical error. If the 

dwell time is too large, not enough information can be obtained for short half-lived 

groups. The 5.0 sec is selected in the later counting period because of the low count rate 

at that time and long half-life of Group-1 (around 55 seconds). Very long counting time 

is not necessary since the measurement error will increase greatly due to the rapid fall-

off of the delayed-neutron emission when it is close to or below the experimental noise 

(see Figure 4.1). The following figure assumes that the initial count rate is 4.0E5 cps in 

both modes. 

 

Figure 4.1 Delayed Neutron Count Rate with Time 
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As mentioned in Eq.(3-9), the theoretical count during the given dwell time is 

derived as the product of dwell time by the mid-point of the count rate during this time 

channel. This is explained in Figure 4.2. 

 
 
 

 

Figure 4.2 Illustration of Count Calculation in the Dwell Time 

 
 
 

In Figure 4.2, the count during decay time 0.2 to 0.225 for the given dwell time 

0.025 sec is simplified as the product of dwell time, 0.025 sec, by the count rate of the 

middle time, 0.2125 sec. This simplification is very helpful to reduce the complexity in 

computing the first and second derivatives of the unknown parameters. The theoretical 

count during dwell time should be derived from the integral of the count rate over the 

assigned time period. However, this simplified method results in little computational 

error. For very large dwell times, e.g., 5.0 sec, the relative error from this simplified 
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method is 0.07% or less. This small error is negligible, but this method greatly reduces 

the computational complexity. 

To make sure that the simulated data is not significantly different from Keepin’s 

expected data, a Chi-square test is used to compare the difference at different decay time 

intervals. 2  requires the sample data to be discrete and independent. The chi-square 

goodness-of-fit test is applied to binned data (i.e., data put into classes). It requires a 

sufficient sample size in order for the chi-square approximation to be valid. 2  is a 

measure of the distance of the observed counts from the expected counts, and it is an 

one-tailed test. 2  is defined as: 

Chi-square test: 
2(o b se rved  - ex p ec ted )2

ex p ec ted
     (4-4) 

Large values of 2  are the evidence that the observed values are far from what 

we would expect if the hypothesis were true. 

A statistical hypothesis is given in terms of a population parameter: 

0

A

H :   The data follow a specified distribution.

H :  The data do not follow the specified distribution. 
  (4-5) 

For a given confidence level 100*(1- )%, the rejection region is: 

2 2
0 ( , 1)n         (4-6) 

Otherwise, it fails to be rejected because the distribution is not significantly 

different from the theoretical value based on the given confidence level. Here, 2
0 ( , 1)n   is 

the reference value. 
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In order to verify whether the distribution of the simulated data set is 

significantly different as Keepin’s theoretical values or not, the total decay time is 

divided into several periods based on the dominance of different groups. Ten data sets 

are randomly generated in saturation mode, and their 2  values are listed below. The 

confidence level is set to 95%. 

 
 
 
Table 4.1 Chi-square Test between Poisson Data and Keepin’s Data ( =0.05) 

Time 
(s) 

n 
2
0( , 1)n   1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 

0-1 40 55.76 45.39  45.35 27.06 40.11 49.29 46.27 35.03 27.49  23.67 24.00 

1-2 40 55.76 30.17  26.29 40.58 38.82 34.10 47.30 45.06 66.27  42.58 38.43 

2-4 80 101.88 68.25  71.74 62.42 82.81 93.95 86.86 81.90 65.80  78.73 102.42 

4-6 80 101.88 74.68  79.63 90.95 82.03 77.17 80.42 76.77 73.49  64.19 71.64 

6-8 80 101.88 92.87  103.24 97.02 81.36 82.57 74.53 90.50 79.60  91.15 74.94 

8-10 80 101.88 89.38  65.67 98.36 86.19 102.51 70.30 61.24 89.85  76.36 66.81 

10-40 60 79.08 65.12  60.74 55.32 47.62 66.94 55.57 38.66 71.85  76.87 53.58 

40-80 80 101.88 66.19  95.37 88.81 93.19 71.44 67.93 90.42 69.35  83.66 83.84 

80-300 80 101.88 79.89  63.17 64.27 87.03 84.36 97.40 68.34 83.82  64.80 93.20 

 
 
 

From the 2  values in the table, most of them are smaller than . Very 

small parts of them are larger than the reference values, but their occurrence 

probabilities are very small. These data set show that values generated by Eq.(4-3) is not 

significantly different from Keepin’s theoretical values with 95% confidence level. 

2
0 ( , 1)n 
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4.2 Algorithm I --- Matrix Inverse Method 

A Matrix Inverse method for the delayed neutron problem was first proposed by 

Keepin [9], later developed by Waldo [21]. It is assumed that the delayed neutron count 

as a function of time could be expressed by the sum of six exponentially decaying 

groups.  

To find the DN parameters for each group, let z(ti) represent the difference 

between the measured count and the best fitted count at time ti, let Aj and λj be the 

initial guessed yield and decay constant for group j, and let y(ti) be the measured counts 

in channel i, thus: 

j

j i

n
-λ t

i i i j
j=1

z(t )=y(t ) - P t A e             (4-7) 

We seek values Aj’ and λj’ that will improve the fit of the experimental data, the 

new values are expressed as follows: 

       (4-8) 

'
j j

'
j j j

A =A +ΔA

λ =λ +Δλ





Substitute Eq. (4-7) and (4-8) into Eq. (4-1), the new objective function can be 

expressed as: 

j i

m n
-λ t2 2

i i i j j j i
i=1 j=1

E = w [z(t ) - P t e (ΔA -A Δλ t )]    (4-9) 

where the squares of the differences are weighted by the inverse of their 

variances. Assuming that the counts are Poisson distributed, then the variance is just the 

count itself. The weighting factor can be expressed as the inverse of the measured value 
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y(ti) so,  and the total number of time channels are m. Usually, 300 seconds 

counting time is enough to collect the neutrons even from long-lived group precursors. 

iw =1/yi

To optimize the parameters, the above equation can be differentiated with respect 

to ΔAj and Δλj , and the result set to zero (see Waldo’s dissertation, 1981): 

j i l i

2 m n
-λ t -λ t2

i i i j j j i
i=1 j=1l

E
0 - w [z(t ) - (P t ) e (ΔA -A Δλ t )][e ]

ΔA


  

    (4-10) 

and 

j i l i

2 m n
-λ t -λ t2

i i i j j j i l i
i=1 j=1l

E
0 w [z(t ) - (P t ) e (ΔA -A Δλ t )][e (-A t )]

Δλ


   

     (4-11) 

The solution of ΔAl and Δλl can be converted into the matrix notation and by 

inverting and solving the matrix equations to find ΔAl and Δλl. Formally, let 

     (4-12) l j i

m
-(λ +λ )t

i i
i=1

H (l, j)= P t w e

and 

      (4-13) l i

m
-λ t

i i
i= 1

D ( l)= w z ( t )e

The matrix form can be expressed as: 

      (4-14) j

. .

. .

D(l) = ... H(l, j) ... A

. .

. .

    
    
    
     
    
    
    
    

.

.

.

.









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Here, the two differentiation equations are dealt with separately and assumed that 

Δλj is equal to zero in Eq. (4-10). Similarly, ΔAj is assumed as zero when solving for 

Δλj in Eq. (4-11). The matrices H and G are coefficient matrices.  

.

.

.

.










l j i

m
-(λ +λ )t2

i i i j
i= 1

G (l, j)= P t w t (-A )e    (4-15) 

and  

l i

m
-λ t

i i i
i= 1

E (l)= w z (t )t e      (4-16) 

Similarly, 

j

. .

. .

E(l) = ... G(l, j) ... Δλ

. .

. .

    
    
    
    
    
    
    
    

    (4-17) 

If the matrices H and G are nonsingular, it is easy to get the results of ΔAj and 

Δλj by inverse the matrices H(l, j) and G(l, j), as did Waldo [21] before. Using Eq. (4-8) 

to get the new values of delayed neutron yields and decay constants for different groups 

by an iteration method until they fit the experimental results very well. They are 

supposed to converge to the unique (“best fit”) values Aj and λj (j=1, 2…6).  

Sometimes, if the coefficients matrix H or G is ill conditioned or singular, the 

above equations will have very unstable solutions or no solutions at all. In this case, 

another method called singular value decomposition may be a good way to find an 

appropriate solution. 
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4.3 Singular Value Decomposition for Ill-posed Matrix Inverse Problem 

Singular value decomposition is a very useful technique to deal with the 

problems, such as matrix inversion, over-determined and under-determined systems of 

linear equations. For linear algebraic equation A*X=B (A is a m×p design matrix, and B 

is observation vector, X is parameter vectors), the singular value decomposition of 

matrix Am×p (m ≥ p) can be represented by a transformation with A=UWVT (see the 

equation below) [51]. Um×m and Vp×p are orthogonal matrices (UTU=I and VTV=I), 

which are called left and right singular vectors separately. The diagonal elements of 

matrix W are non-negative numbers in descending order, and all off-diagonal elements 

are zeros. The condition number of a matrix is the ratio of the largest ωi to the smallest 

ωj. The diagonal elements are the singular values, which are the square roots of the 

eigenvalues, and the rest of the entries of the matrix are zeros.  

   (4-18) 

1

2

T

p

m p m m p pm p

ω. . .

ω. . .

...... ... = ... ... . . ... ...

ω. . .

. . ....  

     
     
     
     
     
     

          

A U V












The solution of A*X=B can be computed as  [51]. The 

solution can be expressed as:  

T
i= . [diag(1/ω )].( )X V U .B

    (4-19) T
i

. .. .

. ... .. .

= ... ... . diag(1/ω ) . ... ... .

. ... .. .

. .. .

      
                            

       
            

V UX B
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Set , which is the Moore-Penrose inverse of W, u*
i=[diag(1/ω )]W i and vi are 

the ith column of the matrix U and V. Then the above equation is equivalent to: 

p

i=1 i

=
ω
T

* T i
i

u B
X = VW U B v      (4-20) 

If the design matrix Am×p is full rank (r=min (m, p)), the solution from the least 

squares method should be unique. The covariance matrix elements of the estimated 

parameters  can be derived in the following equation:  2Cov(X)= ( ) TA A -1

p
ji ki2

j k 2
i=1 i

V V
Cov(x , x )= ( )

ω
 

    
 (4-21) 

Here, σ2 is the variance of observation error in the regression model. If some of 

the singular values ωi are significantly smaller than the standard deviation of the error, 

the calculated results will be very large. 

If the design matrix A is not full rank (r < min (m, p)), part of the singular values 

are zeros, and the solution will not be unique. In this case, it is useful to set a small 

threshold [51]. If the singular value is smaller than this threshold, then, it is set to be zero. 

Suppose there are only r’s singular values left, the new solution equation is listed as: 

    1 2 r r+1 pω ω ... ω ω ... ω 0.      

 
r

i=1 i

=
ω
T
i

i

u B
X v       (4-22) 
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4.4 Algorithm II --- Levenberg-Marquardt Method 

Theoretically, if the selected model is appropriate and can adequately reflect the 

real delayed neutron count rate decay characteristics, the following equation should be 

satisfied: 

Nexp(x, t ) ≈ Nfit(x, t)     (4-23) 

Nexp(x, t) and Nfit(x, t) indicate the experimental counts and the fitted counts 

from a designed model at time t for a perfect set of “true” parameters. If a set of 

satisfactory result is achieved for a proper model, it is possible that the fitted value is 

very close to the real counting data and only has a slight difference. The relationship 

between them can be expressed by a Taylor-series expansion of the model at the “true” 

value. 

 

exp i

2 2p p p
ji i

fit i j
j=1 j=1 k=1j j

p
i

fit i j

k

( ,t )

(Δx )( ,t ) ( ,t )
= ( ,t )+ Δx + +....

x 2! x x

( ,t )
( ,t )+ Δx                 (i=1,..., m)

    
   

        
 

  

 



0 0
0

0
0

N x

N x N x
N x

N x
N x

  (4-24) 

number of the parameters. The above 

equation can also be de

bian matrix of the objective function N(x,t). The elements of matrix J0 are defined 

as: 

j=1 jx  

Here, ∆x is the difference between “true” value x and the assumed value at x0, m 

is the number of the measurements, and p is the 

scribed in matrix form as: 

∆N0 = Nexp - Nfit ≈ J0∆x     (4-25) 

∆N0 is a vector of the measurement departure from “true” value. J0 is the 

Jaco
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p
0 i
ij

j=1 j

( ,t )
J =

x

 
 

  
 0N x

  

    (4-26) 

It can be written as: 

 

1 1

1 p

0
1 p

m m

1 p

N N
...

x x

(x ,...,x )= ... ... ...

N N
...

x x

  
   
 
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J     (4-27) 

Here,       

1 1 1 p

m m 1 p

N =N (x ,...,x )

N =N (x ,...,x )









The weighting factor is usually used to keep equal weighting influence for all the 

points. It plays a very important role in the least squares method if the count changes 

with decay time greatly while still keeping slight offset in relative changes. If the two 

sides of Eq. (4-25) are multiplied by a weighting factor iw  where wi is assumed as the 

inverse of the observation counts at time ti for Poisson distribution data, then 

∆N≈J∆x      (4-28) 

Here, ∆N is a vector of weighted residuals with its elements, and J is a 

corresponding vector of weighted Jacobian matrix which rows are weighted from 

original matrix J0 with 0
i iΔN = w ΔNi .  

If the matrix J is a square matrix, it is very easy to get the solution by inverting 

matrix J. However, the measurement number of an experiment is usually more than the 
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number of unknown parameters (m > p). Therefore, Eq. (4-23) cannot be solved by 

matrix inversion method directly if m > p. The following method can solve this problem. 

In Eq. (4-24), the approximation value only covers the first derivative of the 

fitting equation. The weighted residual ri from the model at time ti is expressed as: 

     (4-29) 

2
pm m

2 0 0
i i i ij

i=1 i=1 j=1

r = w ΔN - J Δx
 

 

   j 

2
ix

2
j0

To optimize the above equation, the sum square of the unknown parameters 

deviation from the “true” values is also added for minimization. It is subjected to the 

constraint: , where △x2
0i   

p p

i=1 i=1

x i
0 is the deviation of the “best fit” value from the 

“true” value. A Lagrange multiplier is applied in new function for optimization ([52], 

page 434): 

2
p p pm m

2 2 2 0 0 2
i j i i ij j j

i=1 j=1 i=1 j=1 j=1

E r +λ Δx = w ΔN - J Δx λ (Δx Δx )
 

  
 

       (4-30) 

 For minimization, the derivative of the objective function with respect to the 

unknown parameters deviation ∆x is set to zero. 
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Set 0
i ik ikw J =J , and 0

i iΔN = w ΔNi

T

2

, the above equation can be rewritten in 

matrix form as: 

T -1 TΔx=(J J+λI) J ΔN       (4-32) 

This is Levenberg-Marquardt method [52] [53]. Sometimes, the condition 

number, which is the matrix norm of the square matrix JTJ, may be very large. In this 

situation, the matrix JTJ is ill posed. If this is true, a small random relative perturbation 

of the value in the matrix will result in a large variation in a linear system. Thus, the 

regularization constant λ in Levenberg-Marquardt can play a very important role to 

adjust the condition number. Due to the introduction of diagonal matrix λI with proper 

value λ, the matrix item JTJ+λI will no longer be singular. In practice, the diagonal 

elements of JTJ are sometimes of significantly different magnitudes, and Marquardt [52] 

suggested 

T T -1Δx=[J J+λdiag(J J)] J ΔN     (4-33) 

The Levenberg-Marquardt technique uses a trust region method to shrink the step 

size to ensure the reduction of sum-of-residuals at each iteration. At each iteration, λ is 

decreased after each successful step (reduction in objective function) and is increased 

only when a tentative step increases the objective function. If , increase λ and 

recalculate ; otherwise, decrease λ and recalculate  

2
k+1 kE > E

2
k+1E 2

k+1E .

The Levenberg-Marquardt technique combines the Gauss-Newton method and 

the steepest-descent method. It uses the method of linear descent in early iterations and 

then gradually switches to the Gauss-Newton approach. It almost always converges to 

http://planetmath.org/encyclopedia/MatrixNorm.html
http://planetmath.org/encyclopedia/SquareMatrix.html
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the correct parameter estimates even when the Hessian matrix (defined in Section 4.5) is 

not positive. It can deal with a near-singularity matrix in a reasonable way to generate 

accurate predictions even if the optimal weight values are very bad. It restricts the step to 

stay at the surface of or inside an n-dimensional elliptical (or spherical) trust region. If λ 

gets small or if the sum of weighted squared residuals gets smaller at each iteration, the 

algorithm will use the Gauss-Newton algorithm. If λ gets large or if the sum of weighted 

squared residuals increases at each iteration, the algorithm will use the steepest descent 

technique. The performance of this algorithm is usually poor in the large-residual case 

due to slow or no convergence [53]. Asymptotic convergence is only linear-slower than 

the super-linear convergence rate attained by algorithms for general unconstrained 

problems, such as Newton or quasi-Newton. 

 

4.5 Algorithm III --- Quasi-Newton Method 

As mentioned before, the objective function can be expanded into Taylor series: 

k k k k k

1
( )= ( )+ '( )( - )+ ( - ) "( )( - )

2
N x N x N x x x x x N x x xk     (4-34) 

The solution can be found by setting the derivatives to zero. 

k k k

-1
k k k

'( )= '( ) "( )( - )=0

= -[ "( )] '( )

N x N x N x x x

x x N x N x
     (4-35) 

If the function N(x) is quadratic, the solution can be found in a single step. If it is 

not quadratic, the solution need to be found be iteration method.  is the Hessian 

matrix. However, Hessian matrix is very difficult to find computationally. Quasi-Newton 

attempts to produce an estimation of the inverse of Hessian matrix for the next iteration 

k"( )N x
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point by Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [54]. If the point xk is far 

from the optimum, the quadratic function may be poorly approximated. A step length α  

is introduced to deal with this. A line search is used to find the next point 

-1
k+1 k k k

T T
k+1 k

T T
k+1 k

= -λ ,   λ>0  

= -* * * *
BFGS:    - +           

= -* * *

 
  

 

x x A g

s x xA s s A y y
A A

y g gs A s y s

  (4-36) 

so that                  (4-37) T 1
k+1 k k k k ,    (0,0.5)   N N g A g

The optimization values are achieved when ||g(x)||=ε (gradient tolerance). Here, g 

is the gradient; xk is the parameter set at the kth iteration; λ is the positive step length; A 

is a positive definite approximation of the Hessian matrix obtained by BFGS formula 

[54]; and  is regularization constant. This routine uses Quasi-Newton [54] method with 

a finite difference gradient to help locate a minimum.  If λ=1 and A is the exact Hessian 

matrix, the above algorithm becomes Newton method. If A is the identity matrix, it 

becomes the steepest descent method. The quasi-Newton method doesn’t require 

calculation of the inverse of the second derivatives of the weight estimates. The quasi-

Newton method develops an approximation to the Hessian during training and therefore 

adapts even more effectively to changing condition numbers. Both of the above methods 

(Levenberg-Marquardt and quasi-Newton) can find local optima, and they are not 

guaranteed to find a global optimum. Quasi-Newton converges at a faster asymptotic 

rate than Levenberg-Marquardt in the large-residual case, but slower than Newton-based 

methods. Its behavior on early iterations (before the iteration reach a neighborhood of 

the solution) may be inferior to Levenberg-Marquardt. At the beginning, quasi-Newton 
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takes steps in the gradient descent direction and uses an identity Hessian matrix instead. 

When the quasi-Newton method reaches a local minimum point, the error estimate will 

stay a local minimum. If the optimization technique approaches a saddle point, the error 

estimate will keep a saddle point for an extended period of time. Same as Levenberg-

Marquardt method, this algorithm results in a deviance objective function. One of the 

drawbacks of this method is that the quasi-Newton method might generate inadequate 

approximation of Hessian matrix. The routines of these two methods can be found from 

IMSL math library [55]. 

Once the necessary minimum data have been searched, the estimated covariance 

matrix C of the standard errors is the inverse of Hessian matrix h at the final fitted 

parameters. It is not the inverse of the estimated Hessian matrix A. 

-1=C h        (4-38) 

Hessian matrix is described as below: 
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       (4-39) 

Here, N=N (x1, x2, …, xp) is a function of the delayed neutron fitting parameters. 
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4.6 Results and Analysis 

4.6.1 Fitted Results from Saturation Irradiation 

As described earlier in Section 4.1, simulated data was generated and the three 

algorithms were used to extract parameters from this data. The only variation for this 

data is from the Poisson distribution. No other measurement errors are considered. Here, 

twelve different random seeds are randomly selected to generate twelve sets of simulated 

“experimental data”. In different numerical algorithms, the simulated “experimental data 

sets” generated from same random numbers are also the same for comparison. The 

theoretical data are generated based on the values provided by Keepin with the same 

initial count rate (4E+5 cps as an example) in all these three algorithms. If the initial 

count rate is too low, the relative count variation from Poisson data will be very high. If 

it is too large, the dead time problem in the real experiment will be very severe. This 

count rate is a reasonable value. The computation programs written in FORTRAN codes 

are listed in Appendix A.1, A.2, and A.3. 

The calculated results in a saturation mode using different numerical algorithms 

mentioned in the previous sections are shown in tables below (Table 4.2, 4.3, and 4.4). 

Ai/Ai’ and Ri/Ri’ are the ratios of calculated relative yields and decay constants to 

Keepin’s recommended values [10] for group i (i = 1, 2 … 6) respectively. The symbol 

E2 is the sum of the weighted squared differences between the simulated “experimental 

data” and the theoretical data. If the original parameters were returned exactly by the 

algorithm, the fitted ratio will be equal to 1.0.  The purpose of this comparison is to 

determine how well these algorithms can return the input parameters. 



 

 

Table 4.2 Fitted Results from Matrix Inversion with SVD Algorithm (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673 4250 -25 

A1/A1' 0.99134 1.00606 1.00571 1.00634 0.99556 0.99260 1.00596 1.01054 0.99947 0.99363 0.98788 0.99942

A2/A2' 1.00493 0.99845 0.99669 0.99681 1.00264 1.00440 0.99658 0.99389 0.99959 1.00421 1.00772 1.00135

A3/A3' 0.98753 0.99726 1.00284 1.01028 0.99393 0.98630 1.01244 1.02060 1.00781 0.99058 0.97426 0.98776

A4/A4' 1.00856 1.00824 1.00067 0.99280 1.00064 1.01186 0.98998 0.98236 0.99136 1.00112 1.02022 1.01237

A5/A5' 0.93188 0.85975 0.96871 1.01026 1.03124 0.98209 1.03131 1.07870 1.05136 0.99089 0.90738 0.91772

A6/A6' 
'

1.14866 1.47314 1.22348 1.06739 0.75566 0.90959 0.97250 0.77673 0.95117 0.85037 1.09334 1.29992
λ1/λ1  0.99662 0.99966 1.00037 1.00205 0.99982 0.99764 1.00339 1.00346 1.00287 0.99506 0.99626 0.99807
λ2/λ2' 1.00092 1.00047 1.00055 0.99947 0.99975 1.00042 0.99895 0.99966 0.99915 1.00170 0.99978 1.00162
λ3/λ3' 1.00398 0.98883 0.99638 0.99529 0.99863 1.00610 0.99939 0.98730 1.00142 0.99489 1.01357 0.98623
λ4/λ4' 0.99433 1.00689 1.00460 1.00352 1.00334 0.99397 0.99965 1.00937 0.99884 1.00236 0.99006 1.01193
λ5/λ5' 1.09542 0.99482 0.97010 0.95498 0.97618 1.03508 1.00560 0.96060 0.97750 1.09093 1.07452 0.95182
λ6/λ6' 0.69251 1.05737 1.05045 1.30784 1.01209 0.75921 0.99180 1.17428 1.10825 0.69556 0.84690 1.12338

E2 645.14 667.66 565.97 653.44 668.86 616.75 568.11 588.96 626.69 664.55 598.36 600.94
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Table 4.3 Fitted Results from Levenberg-Marquardt Algorithm (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673 4250 -25 

A1/A1' 0.96866 1.00789 1.02352 1.00105 0.99465 1.06648 0.99186 0.97128 1.02258 1.04708 0.99522 0.98823

A2/A2' 0.99848 0.99989 0.99356 0.99922 1.00408 0.99157 0.99836 1.01071 0.98327 1.00266 1.00656 0.99610

A3/A3' 0.96638 1.01132 1.01693 0.99825 0.99457 0.95238 1.01620 0.91100 0.84078 1.06866 1.06216 1.03629

A4/A4' 1.03065 0.99974 1.00967 0.99753 0.99840 1.01439 0.98770 0.85553 1.01348 0.97599 0.99202 1.01884

A5/A5' 0.84899 0.82692 0.95981 1.09398 0.95412 0.64688 0.97407 1.29219 1.26829 0.82334 0.45779 0.92504

A6/A6' 
'

1.37227 1.53010 1.09719 0.90741 0.94495 1.94759 1.15188 1.97190 0.84280 1.00958 2.08246 1.05273
λ1/λ1  0.99070 1.00192 1.00727 1.00036 0.99875 1.02121 0.99875 0.98844 1.01274 1.01314 0.99904 0.99728
λ2/λ2' 0.99191 1.00127 1.00244 0.99968 1.00097 1.00905 0.99676 0.99570 1.00334 1.01366 1.00294 0.99549
λ3/λ3' 0.96928 1.00550 0.99778 0.99354 1.00317 0.98216 0.99877 0.97012 0.93191 1.05133 1.04646 0.99342
λ4/λ4' 0.98507 1.01043 1.02176 0.99714 1.00506 0.98109 0.99995 0.87466 0.91829 1.05134 1.04134 1.04289
λ5/λ5' 1.09584 0.98863 1.04088 1.00128 0.94131 0.82781 0.96545 0.53909 0.91294 1.32339 0.97555 1.08175
λ6/λ6' 0.62948 1.00469 1.10698 1.71523 0.87051 0.61389 0.91643 0.69969 1.56007 0.49297 0.65009 1.27612

E2 643.18 662.67 564.22 652.18 667.67 605.84 567.81 574.31 621.39 659.18 590.86 595.10 
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Table 4.4 Fitted Results from Quasi-Newton Algorithm (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663-1141185387 774385225 397015485 534354673 4250 -25 

A1/A1' 1.15059 1.03515 1.01249 1.00110 0.97480 0.94484 0.97906 0.90862 1.01042 1.09663 1.00127

A2/A2' 1.24255 0.98662 0.98329 1.01212 1.00478 0.87845 0.98534 0.94542 0.97158 1.03342 1.01118

A3/A3' 0.71069 1.11547 1.00518 0.95058 1.00129 0.73558 1.00366 0.85336 0.83078 1.14558 1.07053

A4/A4' 0.77189 0.94142 0.99956 1.03184 0.97662 0.65531 0.97553 0.80121 1.00142 0.98166 0.99079

A5/A5' 3.22380 0.23949 0.95163 1.19910 0.85107 1.32360 0.97514 1.20443 1.25321 0.88731 0.31159

A6/A6' 
'

4.13037 2.62317 1.08886 0.96053 1.35363 2.58144 1.08914 1.84035 0.83278 0.83292 2.52245
λ1/λ1  0.96788 1.01663 1.00709 0.99492 0.99300 1.01985 0.99880 0.98848 1.01274 1.01909 0.99958
λ2/λ2' 0.96365 1.01627 1.00225 0.99305 0.99940 1.00591 0.99681 0.99575 1.00334 1.01996 1.00349
λ3/λ3' 0.72943 1.08819 0.99680 0.95007 1.01162 0.92788 0.99911 0.97072 0.93191 1.08407 1.04939
λ4/λ4' 0.60875 1.09421 1.02080 0.95764 1.00240 0.82228 1.00085 0.87585 0.91829 1.07806 1.04205
λ5/λ5' 0.32127 0.75268 1.03869 0.94565 0.82757 0.37204 0.97723 0.54074 0.91294 1.34928 0.82173
λ6/λ6' 0.54372 0.72374 1.10901 1.82089 0.78057 0.53719 0.93763 0.70058 1.56007 0.51102 0.61850

E2 640.52 660.10 564.22 651.74 666.87 605.57 567.81 574.31 621.39 658.86 590.84

No solution 
is found.
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The sum of weighted squared difference E2 is a useful indication of how closely 

the data is fit by these algorithms, and a fitted ratio near 1.0 is an indicator of solution 

stability. From the results in Table 4.2, 4.3 and 4.4, it is very clear that the above 

numerical algorithms can produce fitted results with similar E2 values (the sum of 

weighted squared differences) in most cases. However, the quasi-Newton method cannot 

find a solution for some data sets. Among those solvable data sets, the solutions are not 

stable, especially for short half-lived groups (Group-5 and -6) because the ratios are not 

near 1.0. For the same data set with similar E2 value, some extracted parameters are 

significantly different, meaning that the solution is not stable. What the algorithms found 

are not the real global optima. For same simulated input data, the calculated E2 values 

using Levenberg-Marquardt (LM) and quasi-Newton (QN) method can often achieve a 

relatively smaller sum of weighted squared difference (E2) compared to the Matrix 

Inverse method combined with singular value decomposition (SVD). However, the 

extracted parameters from LM and QN have much larger departure from the original 

input parameters. For all of the methods above, the biggest difference always happens to 

Group-5 and -6 parameters (the shorter half-lived groups). Failure of the quasi-Newton 

algorithm to converge means that the estimated Hessian matrix using this method is 

essentially singular and cannot be inverted for the solution.  

The fitted curves using the results from three different numerical algorithms are 

plotted in the Figure 4.3 below. The Poisson distributed data set (seed=774385225) is 

randomly selected and is plotted for comparison. The initial count rates from these data 

sets are Poisson distributed around the same value (4E+5 cps) as an example. From the 



60 

plot, all of the fitted results fit the simulated experimental data (Poisson data) very well 

and it is hard to distinguish any significant difference between them. 

The distribution of extracted results from many data sets can provide more 

detailed information. A solution with a small deviation is considered to be a stable and 

convincing solution. Figure 4.4 shows the standard deviation of fitted group parameter 

ratios. Since the Levenberg-Marquardt method always converges with small E2 values, 

this algorithm is chosen to evaluate the solution distribution. The data sources are from 

twelve data sets mentioned in Table 4.3. The standard deviation shows how stable these 

data are clustered around the ideal value 1.0. 

From the plots, it is obvious that for shorter half-lived groups, Group-5 and -6, 

the calculated results have larger uncertainty in saturation mode. The variation of the 

yields is larger than those of the decay constants for same group. Longer half-lived 

groups, Group-1, -2, -3, and 4, have smaller variations and the fitted results are relatively 

more stable than the short half-lived groups (Group-5 and -6). This is because the total 

counts from shorter-lived groups are relatively much smaller than longer-lived groups, 

and this increase the uncertainties. 
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Figure 4.3 Simulation Results from Three Algorithms 

 
 
 

 

Figure 4.4 Standard Deviations of Fitted Group Parameter Ratios from 
Levenberg-Marquardt Algorithm (Saturation Mode) 
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4.6.2 Fitted Results from Pulse Irradiation 

For single pulse irradiation, the objective function is described as: 

 j i

2
m n

-λ t2
i i j j

i=1 j=1i

1
E = y -P t λ A e      

y

 


 
      (4-40) 

Here, yi is the ith experimental count, it  is the dwell time for the ith 

measurement. The fitted results from pulse irradiation are also calculated and listed in 

Table 4.5 (Levenberg-Marquardt) and Table 4.6 (quasi-Newton). Ten data sets were 

used for calculation. The standard deviation of different group parameters from ten 

different data sets analyzed using Levenberg-Marquardt method is shown in Figure 4.5. 

The simulated data sets are generated from Keepin’s parameters as described earlier and 

both saturated and pulse data are set so that the initial count rate is the same (4E+5 cps). 

Then, the data are randomized so as to be Poisson distributed including this first channel. 

In pulse mode, from Figure 4.5 it is clear that the fitted data for short-lived groups 

(Group-5 and -6) are relatively more stable compared to that in saturation mode (Figure 

4.4), but for long-lived group (Group-1), the fitted data in pulse mode are very unstable. 

 



 

Table 4.5 Fitted Results from Levenberg-Marquardt Algorithm (Pulse Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

A1/A1' 0.81490 1.36500 1.04563 0.87687 0.97636 1.23462 1.03147 0.98429 1.14010 1.37309 

A2/A2' 1.00132 0.99770 0.97929 0.99075 1.01946 0.94936 1.00334 1.01132 0.93937 1.00323 

A3/A3' 0.96291 1.06923 1.01995 0.98815 0.99457 0.96104 1.04598 0.99134 0.89891 0.97406 

A4/A4' 1.02054 0.95150 0.99756 1.01986 0.98680 1.01884 0.98322 0.98881 1.01394 0.99111 

A5/A5' 0.94495 0.90861 1.00404 1.07026 0.99343 0.95208 0.99728 1.03128 1.04922 0.93862 

A6/A6' 1.22837 1.26469 1.00279 0.78314 1.07820 1.26892 0.93597 1.01553 0.82656 1.71797 
λ1/λ1' 0.92846 1.11682 1.02508 0.95781 0.98544 1.11183 1.02238 0.99183 1.09581 1.10359 
λ2/λ2' 0.97300 1.05397 0.99675 0.97598 1.00901 1.00769 1.00591 1.00731 1.01335 1.04499 
λ3/λ3' 0.94920 1.08739 0.98918 0.95330 1.01292 0.95445 1.03158 1.00857 0.93944 1.00804 
λ4/λ4' 0.97826 1.02876 1.00572 0.99016 1.00208 0.98001 1.01729 0.98888 0.97333 0.96080 
λ5/λ5' 0.94750 0.92654 0.99712 1.04609 0.95728 0.91595 1.03478 0.97059 1.02691 0.77468 
λ6/λ6' 0.90676 0.93771 1.01647 1.12619 0.95778 0.89195 1.02346 0.98838 1.08102 0.80229 

E2 643.73 660.28 567.11 653.34 667.11 604.94 569.56 577.77 621.02 656.68 
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Table 4.6 Fitted Results from Quasi-Newton Algorithm (Pulse Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

A1/A1' 0.59946 1.29956 1.18268 0.89182 0.96908 1.28058 1.02294 0.93476 1.15876 1.25563 

A2/A2' 0.97159 0.95006 0.95361 1.03402 1.01199 0.89239 1.00272 0.99498 0.95474 0.91770 

A3/A3' 0.87905 1.01784 1.02775 1.03031 0.99022 0.88543 1.04432 0.93422 0.91361 0.89089 

A4/A4' 1.01316 0.90624 0.96744 1.06570 0.97067 0.97176 0.98351 0.97351 1.03052 0.90667 

A5/A5' 0.94289 0.86541 0.97676 1.11796 0.97665 0.91208 0.99687 1.03460 1.06638 0.85871 

A6/A6' 1.56164 1.20517 0.92944 0.81686 1.10370 1.35231 0.94977 1.13483 0.84008 1.57170 
λ1/λ1' 0.81393 1.11676 1.07937 0.94626 0.98530 1.14262 1.01924 0.97725 1.09581 1.10347 
λ2/λ2' 0.93308 1.05388 1.01937 0.97235 1.01072 1.01868 1.00416 1.00243 1.01336 1.04491 
λ3/λ3' 0.86348 1.08703 1.02158 0.94907 1.02101 0.94029 1.02792 0.98687 0.93944 1.00787 
λ4/λ4' 0.92445 1.02853 1.02388 0.98896 1.00336 0.96145 1.01571 0.96219 0.97333 0.96072 
λ5/λ5' 0.79036 0.92607 1.02894 1.04590 0.94533 0.85331 1.02895 0.90079 1.02691 0.77456 
λ6/λ6' 0.82703 0.93749 1.03736 1.13255 0.94764 0.85982 1.01871 0.94535 1.08102 0.80226 

E2 642.07 660.28 566.63 653.21 666.97 604.27 569.51 577.13 621.02 656.68 
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Figure 4.5 Standard Deviations of Fitted Group Parameter Ratios from 
Levenberg-Marquardt Algorithm (Pulse Mode) 

 
 
 

4.7 Problem Analysis 

In order to make clear why the solution is so variable even for the same Poisson 

distributed data, the condition number, which is a useful indicator for unstable or ill-

conditioned matrix, is analyzed. The condition number of matrix A, is the product of 

||A||*||A-1||. If we use the usual Euclidean norm on vectors and the associated matrix 

norm, then the condition number is the ratio of the largest singular value of matrix to the 

smallest singular value of matrix. The ill-conditioned problem does not have an existing, 

unique, or stable solution. Any “noise” such as round off errors can be significantly 

amplified and may cause a physically meaningless solution. If the design matrix is 

singular, or close to singular with large condition numbers, it is difficult to get the 
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inverse matrix directly through traditional Gaussian elimination or LU decomposition 

methods. Even if the final results can be obtained, the parameters usually have very large 

magnitudes and are unstable when the fitted function is evaluated. Therefore, direct 

derivation is almost impossible when the normal equations encounter a zero pivot.  If 

condition number is very large, the solutions are unstable with respect to small changes 

of input data. In an ill-posed problem, the singular values  in Eq. (4-17) gradually 

converge toward zero and become so small that the solution from ordinary least squares 

becomes unstable. 

To verify this, a small perturbation of ΔB is inserted in the original problem 

A*X=B. The solution of the perturbed system is: X*=X+ΔX, and the condition number 

of matrix A is 

-1 || || / || ||
cond( ) = || ||*|| ||  = 

|| || / || ||

Relative error of solution
        = max

Relative error of inputs

 
 


 
 
 

ΔX X
A A A

ΔB B 
   (4-41) 

Thus, any relative changes in the input value B will be multiplied by the 

condition number and generate the relative changes in the output solutions X. If machine 

precision is ε (epsilon), the order of relative error will be ε*cond(A), which is usually 

2.2204E-016*cond(A) 

A condition number is said to be too large if it is larger or comparable to  

1/ε = 4.5036E+015 

In this condition, no significant digit in the result is reliable! 
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Taking saturation mode as an example, the condition number of the 

corresponding matrices used in different the algorithms are listed in Table 4.7. Ten data 

sets mentioned in previous simulation are used to compare. In the table below, H and G 

are the matrices used in the Matrix Inverse method; J is Jacobian matrix; h is the 

Hessian matrix. The condition numbers listed below are the values in the first iterative 

loop before regularization.  

 
 
 
Table 4.7 Condition Numbers of the Matrices Used in Different Algorithms 

(Saturation Mode) 
 

  Cond(H) Cond(G) Cond(JT*J) Cond(h) 
Data 1# 2.39E+04 7.13E+09 1.83E+12 2.72E+13 
Data 2# 5.65E+05 2.08E+07 9.47E+11 1.53E+12 
Data 3# 6.10E+03 5.27E+09 6.46E+10 9.43E+10 
Data 4# 4.52E+03 7.10E+07 1.27E+13 1.07E+10 
Data 5# 5.89E+03 8.89E+07 2.05E+11 3.76E+10 
Data 6# 1.31E+04 6.04E+10 2.48E+13 2.72E+11 
Data 7# 6.70E+03 5.35E+07 1.37E+11 1.01E+10 
Data 8# 1.23E+04 4.62E+13 8.78E+17 4.76E+13 
Data 9# 5.55E+03 6.77E+07 1.86E+11 6.93E+09 
Data 10# 1.82E+04 6.06E+10 1.21E+12 1.45E+09 

 
 
 
Most of the condition numbers are very high in the above matrices before 

regularization.  In the Matrix Inverse method without singular value decomposition, 

condition number of matrix G is as high as 4.62E13 for data set 8#. Only two significant 

digits are reliable in this situation. Obviously, the matrix is severely ill conditioned. 

After several iterations in the algorithm, some condition numbers even become infinity. 

With the help of regularization, the condition numbers can be reduced.  In LM algorithm, 
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the item JTJ is replaced with JTJ +λI to avoid the ill-posed problem as long as λ is not 

too small. In the quasi-Newton algorithm, the estimated Hessian matrix is multiplied by 

a regularization parameter to adjust the condition number. Due to the diversity of the 

regularization techniques, the final results can be different even for the same data set. It 

is very important to choose an appropriate regularization number to reduce the condition 

number as well as to keep the bias as small as possible. If the value is too small, the 

solution will still not be able to converge. If it is too large, the solution of the parameters 

will be predominated with bias. A new numerical method introduced in the next section 

will improve this situation and produce a better solution. 
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5. IMPROVEMENT IN NUMERICAL OPTIMIZATION 

 

5.1 Modified Optimization Technique 

It is difficult to get a stable solution for the objective function using traditional 

least squares method if the matrix is ill-conditioned. Even with regularization, the 

solutions from the previous numerical methods are also different. This is because of the 

differences of the regularization methods. In this section, a new optimization method is 

introduced which was not used for this problem before. First, a vector of offset data is 

introduced in the fitting model. Second, a new numerical optimization method called 

Tikihonov [56] or Ridge Regression is used to find a relatively better solution, which is 

closer to the “best fit”. In a real experiment, there are different errors involved in 

measurement. These include random error (unbiased) and the systematic error (biased) 

from the experiment systems. Considering the influence of bias on the RR method, for 

example, the bias from background counts, or the bias from mathematical model of 

delayed neutron emission itself, the new objective function based on Eq. (4-24) is 

described to be: 

   N J X R       (5-1) 

R is a vector of biased item, and J is Jacobian matrix of the fitted exponential 

model (see Eq. (4-26)). In this linear model, if matrix J is ill-conditioned, the solution 

will be very unstable or even not exist. As mentioned in Section 4, singular value 

decomposition is one way to deal with this problem. But singular value decomposition 

method can fail due to rank deficiency or round off error which will cause the residual 
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|  J X N |

2

 to be very large. In this case, it is essential to regularize the estimate of the 

regression coefficients by introducing a small amount of bias into the matrix, which can 

dramatically reduce the variance. There are several ways to accomplish this.  The 

truncated singular value decomposition (TSVD) filters out both the zero values and the 

“small” values of ωi that are relatively very small compared with a certain threshold. 

Another regularization method is Tikhonov regularization [56], which is also called 

Ridge Regression. Compared to TSVD, this method is better because Tikhonov used a 

very “smooth” regularization parameter to reduce the variance. It does not just truncate 

the small values of ωi.  

According to the method of Tikhonov optimization, a Tikhonov regularization 

multiplier is introduced together with the constraint conditions to get the best fit of the 

parameters to minimize errors. Therefore, the new least squares equation is described as 

below: 

pm
2 2 2 2 2 2

i i j j0
i=1 j=1

2
p pm

0 0 0 2 2 2 2
i i ij j i j j0

i=1 j=1 j=1

w r +h ( x -Δx )+h θ  

= w ΔN J Δx b θ h ( x Δx ) h θ



 
      

 

 

  
  (5-2) 

Here, h2 is a flexible regularization multiplier acting as a weighting factor to 

minimize the parameter deviation *θR b . Here,  is a vector of un-weighted constant, 

which is equivalent to the dwell times at different time periods, b

b

i
0 is an element of 

matrix b corresponding to the ith observation, and θ is a constant count rate due to the 

system error from the fitting model offset, etc. To find the optimal values of ∆x and θ to 
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minimize the sum square residuals, set the partial derivatives of the above expression 

with respect to ∆x and θ equal to zero. 

The derivative to ∆xk is: 

2
p pm

0 0 0 2 2 2 2 2
i i ij j i j j0

i=1 j=1 j=1k

pm
0 0 0 0 2

i i ij j i ik k
i=1 j=1

pm
0 0 0 0 2

i i ij j i i ik
i=1 j=1

w ΔN - J Δx -b θ +h (Δx Δx ) h θ =0
Δx

2w ΔN - J Δx -b θ (-J ) + 2h Δx =0

w ΔN - J Δx -b θ ( w J ) =h Δ

           
      
   
      
   

  

 

  kx

  (5-3) 

Apply this to all parameters, then 

T T 2J ΔN=(J J+h I)Δx+θJ bT      (5-4) 

The derivative with respect to θ is: 

2
p pm

0 0 0 2 2 2 2 2
i i ij j i j j0

i=1 j=1 j=1

pm
0 0 0 0 2

i i ij j i i
i=1 j=1

w ΔN - J Δx -b θ +h (Δx Δx ) h θ =0
θ

2w ΔN - J Δx -b θ ( b ) 2h θ 0

           
 

    
 

  

 
 (5-5) 

Written in matrix form as: 

T T Tb ΔN=b JΔx+θ(b b+h )2      (5-6) 

Set 0
i ik ikw J =J , and 0

i i iw b =b , the unknown parameters ∆x and θ in two 

equations Eq. (5-4) and Eq. (5-6) can be written in matrix form as: 

1
   

    
     

TT 2 T

T T 2 T

Δx J ΔNJ J+h I J b

θ b J b b+h b ΔN
   (5-7) 
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JT is the transpose matrix of J, and I(p×p) is an identity matrix, θ is a constant. 

Similar to Levenberg-Marquardt expression, the expression in Eq. (5-7) can be easily 

changed into a similar form: 

    
1

*
 

  
 

T 2Δx
X = J b [ J b]+h I J b ΔN

θ
T

  (5-8) 

Here, b is an m×1 known vector, and now I is a (p+1) × (p+1) matrix in this new 

expression. The definition of the symbols is: 0
i ij ijw J =J , 0

i i iw b =b , 0
i iw ΔN =ΔN .i  

Matrix J is the original Jacobian matrix from the model function. When b=0, the above 

equation is just exactly the same as Levenberg-Marquardt algorithm. 

For simplicity, the solution of the above equation is written as: 

* hT 2 -1 TX = (A A + I) A B     (5-9) 

Matrix A (m×p) is the design matrix (in this equation, A=[J b], B (p×1) is the 

observation vector with B=ΔN, and h is the regularization parameter whose role is to 

determine the trade off between minimizing the residual sum squares and minimizing the 

norm of the parameter. 

For any nonzero value h, the matrix  will no longer be singular even 

if the matrix  is severely ill posed. If the value h is too small, the above solution 

will be still unstable; if h is too large, the item  will be a diagonal dominated 

matrix and the solution is dominated by initial input. 

hT 2(A A + I)

hT(A A +

TA A

2I)

Applying the SVD method A=UWVT into the above equation:   
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T T T 2 -1 T T

2 T 2 T -1 T

2 2 T -1 T
i i

Ti
2 2
i

p

i=1 i

* (( ) h ) ( )

     ( (h ) )

     ( diag(ω +h ) ) diag(ω )

ω
     diag( )

ω +h

     f
ωi










T
i

i

X UWV UWV + I UWV B

VW V + V I V VWU B

V V V U

V U B

u B
v

B    (5-10) 

Here, the filter factor fi is defined as 

2
i

i 2 2
i

ω
f =

ω +h
       (5-11) 

If ωi >> h, then , the right singular vectors vif 1 i is retained; if ωi << h, then 

, the right singular vector element vif 0 i is filtered out due to the small ratio of 

“signal” ( ) to “noise” (h2
iω

2). TSVD is similar to the above smooth filter factor with: 

i

1  for i  effective rank
f

0  for i > effective rank


 


     (5-12) 

In TSVD, the regularization parameter is discrete; while in Ridge Regression, it 

is continuous that it might suppress noise with less loss of relevant information than 

TSVD. 

For small levels of measurement errors, the relationship between the random 

errors in measurements and the resulting random errors in parameter values can be 

considered linear and the covariance of the estimated parameter is similar to that of SVD 

covariance in the following expression structure: 
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-1T T T 2 T T
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-1T T T T 2
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( h ) ( h )
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

   

  

   
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

T 2 -1 T T 2 -1
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i

2

2 2i
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* *

          diag(ω +h )

ω
      diag( )        (suppose )

ω +h
 
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  

 
  

 
T

VWU C

UWV V V

VV C I

  (5-13) 

XC  is the covariance matrix of the unknown parameters and bC  is the 

covariance matrix of measurement error which is assumed to be white noise and equal to 

σ2I. σ2 is standard deviation of the observations, which is the value of sum of weighted 

squared residuals divided by degree number. Thus, the covariance matrix element 

between parameter xj and xk is derived as: 

22p
ji ki2 i

j k 2 2 2
i=1 i i

V Vω
Cov(x , x )= ( )

ω +h ω


 
 
 

    (5-14) 

The above expression is similar to that of the result from SVD method except for 

the additional item of the filter factor square as a multiplier. 

For the least squares method, there is no bias, but for the Ridge Regression 

method, due to perturbation from the regularization parameter, there is bias. The mean 

square error, MSE, is just the mean squared difference between the fitted estimation  

and the expected values X from Ridge Regression [57]. The MSE is explained through 

the derivation of the following expressions. 

ˆ *X
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2 -1

2 -1 -1 -1

2 -1 -1

ˆ *=[ +h ]

    =[ +h ( ) ] ( )

ˆ    =[ +h ( ) ]

ˆ    =

T T

T T

T

X A A I A B

I A A A A A

I A A X

ZX

TB

-1

-2

    (5-15) 

Here,  is the solution vector from unbiased ordinary least squares method. Z is 

set to be  and can be further derived from 

X̂

h (I A2 -1[ + ) ]TA

2 -1 2 -1 2 2

2 1 -1 2 2 -1

2 2 -1

 [ +h ] [ +h ] [ +h h ]

 [ +h ( ) ] - h [ +h ]

 - h [ +h ]



 

 

 

T T T T

T T

T

A A I A A A A I A A I I

I A A I A A I

Z I A A I

  (5-16) 

The mean squared error can be derived as: 

 

T

T T

2 T -1 T T T

2 T 2 -1 2 T 2

4 T T 2 -2

2 T 2

ˆ ˆMSE=E[( * ) ( *- )]
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λ
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


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

A A X A A I X

X A A I X

X X

  (5-17) 

Here, X is replaced by  for the bias approximation calculation. In Eq. (5-17), 

is the eigenvalue of matrix A

ˆ *X

i 1 2 pλ  (λ λ ... λ >0)   TA, and  

is the singular value of matrix A mentioned before. Trace is the sum of diagonal entries 

of a matrix. From the above expression, it is obvious that Ridge Regression reduces the 

variance dramatically, especially for a matrix with very small eigenvalues. However, on 

i 1 2 pω  (ω ω ... ω 0)   
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the other hand, it also introduces bias. Increasing the regularization parameter h will 

increase the bias. Figure 5.1 (This figure is obtained from Hoel and Kennard [57]) shows 

in qualitative form the relationship between variance, bias, and the regularization 

parameter. The above equation for variance and bias of the model parameters can be 

expressed as: 

 
p

* 2 * *T 2 i
i ii 2 2

i=1 i

λˆVar ( ) =σ ( * ) =
(λ +h )

   X A A    (5-18) 

* T 2 -1( +h )A A A I AT X   (5-19) 2 T 2 -1ˆ ˆBias( *)=E( * ) -h ( +h ) X X X A A I

 
 
 

 

Figure 5.1 Comparisons of Mean Square Error Functions between Least Squares 
and Ridge Regression Method [57] 
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5.2 Methods to Find the Regularization Parameter 

The best way to minimize MSE from Ridge Regression is to find a trade-off 

parameter h to balance these two errors. A reasonable regularization parameter should 

satisfy this goal 

2
2RSS || ||

=
m m

AX - B
    (5-20) 

There are several ways to optimize h value. Two of them will be introduced here. 

The first method is to plot an L-curve to find the turning point, which was first proposed 

by Hansen [58]. The second is called the generalized cross-validation (GCV) [59].  

 

5.2.1 L-curve 

Hansen [58] suggested selecting h by inspecting the plot of the squared solution 

parameter norm ||X||2 with respect to the residual sum of squares ||AX-B||2 using a log-

log scale. The items of ||X||2 and ||AX-B||2 [60] can be expressed as: 

2 22p
2 i

2 2
i=1 i i

ω
|| || =

ω +h ω

  
  
  


T
iu B

X




     (5-21) 

24 2 2pm
2 2 i i

i 2 2 2
i=1 i=1 i i

ω (ω +2h )
|| || =

(ω +h ) ω

 
 

 
 

T
iu B

AX- B B     (5-22) 

The shape of the curve is usually like “L”. The optimal value of h is just at the 

corner of L-curve, which separates the vertical and horizontal part of the curve (see 

Figure 5.2). The regularization parameter at the corner of the curve is h ≈ 1.0. When the 

regularization parameter h is smaller than the corner value, the squared solution 
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parameter norm ||X||2 will increase greatly with almost the same value of the residual 

sum of squares ||AX-B||2. This means that many values can fit the objective function 

very well at almost the same sum of weighted squared residuals point while with very 

large estimator variation. The solution is thus very unstable in this region. The code to 

plot L-curve is given in MATLAB code in Appendix A.5. 
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Figure 5.2 L-curve for Decay Yield from Matrix Inverse Method 
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5.2.2 Generalized Cross-validation 

Generalized cross-validation uses leave-one-out method to remove elements bi 

from the observation vector B, compute a regularized parameter vector X from the 

reduced data set, and then predict the left-out observation bi with the model [61]. The 

optimal regularization parameter h is selected by optimizing the GCV function: 

2

RSS
GCV=

r
      (5-23) 

where 

2p p
i

i 2 2
i=1 i=1 i

ω
r m f m

ω +h
          (5-24) 

Here, RSS is the residual sum of squares,  is the effective number of degrees of 

freedom and f

r

i is the filter factor in Tikhonov regularization method. r  may not be an 

integer. The total sum of residual squares RSS is partitioned into two parts: a sum of 

squares due to regression (biased) (RSSR) and a sum of squares due to error (unbiased) 

(RSSE). That is, RSS=RSSR+RSSE. Using SVD method, it can be expressed as: 

22 2p p
T
i i i i2 2

i=1 i=1 i

h
RSS= - ( ) + ( )

ω +h

 
 
 

 B u B u u B uT    (5-25) 

Increasing the regularization parameter h will increase the degree of freedom and 

usually also increase the residual of sum of squares. The optimal regularization value h 

is at the minimization point of GCV (see Figure 5.3). The GCV program code is written 

in MATLAB in Appendix A.5. Compared to the value from L-curve in Figure 5.2, the h 

value from GCV is very close to that from L-curve. 
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Figure 5.3 GCV Function for Decay Yield from Matrix Inverse Method 
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6. RESULTS AND DISCUSSION 

 

Based on the theories mentioned previously, this section illustrates the 

calculated results using the Ridge Regression (RR) method under different 

conditions. The fitted results from RR are compared to the results from other 

numerical methods, such as MI-SVD, LM and QN. Optimization results from 

different mathematical models are compared, such as the results obtained by freezing 

one or more of the parameters. Both saturation and pulse modes are examined, and 

the factors affecting the fitted results are analyzed. These include the sample flight 

time, initial count rate, and initial guessed values. To check the goodness of fit, the 

fitted data sets are compared to Keepin’s values, which are used to generate the input 

data. Finally, real experimental data sets are applied to verify the simulated results. 

The experiments were done in the TRIGA reactor at the Nuclear Science Center at 

Texas A&M University [62]. The data sets are listed in Appendix C.  

 

6.1 Results from the Ridge Regression Algorithm 

Ridge Regression can always converge if the regularization parameters are 

properly selected. The same data sets are used for the calculation. The fitted results 

from RR are listed below in Table 6.1 (saturation mode) and Table 6.2 (pulse mode). 

All unknown parameters are variable. The values Ai/Ai’ (λi/λi’) listed in the tables 

are the ratios of the fitted relative yield Ai (decay constant λi) to the Keepin’s values 

Ai’ (λi’). E
2 is the sum of weighted squared differences between the fitted counts and 
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Keepin’s theoretical counts at different decay times. The selection of parameter h for 

each data set is based on the “L-Curve” method. The initial count rate in all the 

simulated data sets is assumed to be Poisson distributed around the same value 

(4.0E+5 cps as an example). The sample has zero transfer flight time. 

The extracted ratios from RR also cannot return to 1.0. In fact, some are far 

from 1.0. This indicates that the extracted results from RR are unstable. Compared to 

the extracted results from other methods, such as MI-SVD (Table 4.2), LM (Table 

4.3), QN (Table 4.4), this method is relatively better. RR can always converge and 

find a solution. The fitted E2 values using RR are the smallest among these 

algorithms (see Figure 6.1). QN can achieve very small E2 values, close to RR values 

in most of the cases, but the QN method cannot guarantee convergence for some data 

sets (see Table 4.4). That means RR achieves better optimization results. 

The Matrix Inverse method is derived from the least squares method. Its 

solution is relatively more stable than other algorithms if the coefficient matrix is not 

ill-posed. For the ill-posed problem, the Matrix Inverse method with SVD always 

leads to a solution. However, the fitted result may have very large E2 values. LM 

attains a better solution than MI-SVD, but its E2 is generally not the smallest. 

Compared to other algorithms, RR gives relatively more stable fitted values for 

longer-lived groups in saturation mode, such as Group-1, Group-2 and Group-3. For 

shorter-lived groups, it has larger variation. In pulse mode, the variations for short-

lived groups decrease, but for long-lived groups, the variations increase compared to 

that in saturation mode (see Group-1 in Table 6.2). 



 

Table 6.1 Fitted Results from Ridge Regression (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673 4250 -25 

h 0.6 0.4 0 0.1 0.7 0.9 0.5 0.15 0.4 0.8 0.35 0.4 

A1/A1' 0.8863 1.0608 0.7054 1.0060 0.9776 1.0669 0.9902 0.9628 1.0304 0.8964 1.0013 0.9746

A2/A2' 0.9572 1.0126 0.9976 0.9914 1.0084 0.9896 0.9976 1.0038 0.9925 0.8353 1.0105 0.9972

A3/A3' 0.5500 1.1436 0.9529 0.9374 1.0024 0.8900 1.0149 0.9038 0.8482 1.1587 1.0718 1.0823

A4/A4' 0.5972 0.9654 1.0341 1.0077 0.9798 0.9255 0.9877 0.8496 1.0232 0.9388 0.9926 1.0304

A5/A5' 2.4703 0.2464 0.9851 1.1673 0.8550 0.9945 0.9823 1.2851 1.2803 1.1461 0.3713 1.0640

A6/A6' 3.1784 2.7052 1.3387 0.9398 1.3750 2.1534 1.1236 1.9600 0.8525 1.1902 2.3224 1.6314

λ1/λ1' 0.9679 1.0160 0.8515 1.0050 0.9927 1.0212 0.9984 0.9877 1.0120 0.9783 0.9999 0.9932

λ2/λ2' 0.9637 1.0160 0.9500 0.9972 0.9992 1.0080 0.9966 0.9954 1.0030 1.0935 1.0036 0.9935

λ3/λ3' 0.7307 1.0874 0.9086 0.9581 1.0101 0.9551 0.9982 0.9693 0.9313 1.1310 1.0504 1.0100

λ4/λ4' 0.6110 1.0929 0.9699 0.9615 1.0002 0.9127 0.9998 0.8740 0.9180 1.1022 1.0446 1.0827

λ5/λ5' 0.3220 0.7373 0.9112 0.9485 0.8194 1.4618 0.9712 0.5385 0.9122 1.3716 0.9113 1.4195

λ6/λ6' 0.5441 0.7221 1.0205 1.7972 0.7760 0.1827 0.9245 0.6993 1.5559 0.0079 0.6341 15.8420

E2 640.52 660.08 560.22 651.29 666.87 605.61 567.79 574.30 621.35 658.42 590.84 583.96

Note:  1) Ai/Ai' (λi/λi') are the ratios of DN abundance and decay constant to Keepin’s values for group i.  2) E2 
is the sum of weighted squared residuals between observation and fitted count.  3) h is the regularization parameter. They 
are the same in the following tables. 

83



 
84

Table 6.2 Fitted Results from Ridge Regression with No Parameter Fixed (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

h 0 0.8 0.2 0 0.2 0 0.1 0 0.2 0 

A1/A1' 0.6782 1.3175 0.9142 3.5766 0.8199 1.2048 0.7682 0.8183 0.8482 2.1571 

A2/A2' 0.9854 0.9947 1.0072 0.6896 1.0429 0.9485 1.0366 1.0264 1.0026 0.8879 

A3/A3' 0.8977 1.0602 1.0461 0.9962 1.0048 0.9261 1.0448 0.9472 0.9272 0.9762 

A4/A4' 1.0334 0.9456 0.9887 0.9693 0.9839 1.0190 0.9885 0.9945 1.0450 0.9371 

A5/A5' 0.9604 0.9027 0.9953 1.0521 0.9889 0.9562 0.9988 1.0553 1.0782 0.8793 

A6/A6' 1.5876 1.2573 0.9513 0.7086 1.0872 1.4263 0.9493 1.1619 0.8548 1.6196 

λ1/λ1' 0.8936 1.0992 0.8723 1.6594 0.8334 1.0837 0.7666 0.8618 0.8654 1.3645 

λ2/λ2' 0.9419 1.0499 0.9870 1.2874 0.9912 1.0041 0.9727 0.9853 0.9770 1.1412 

λ3/λ3' 0.8699 1.0845 1.0063 1.1035 1.0125 0.9315 1.0117 0.9735 0.9217 1.0821 

λ4/λ4' 0.9267 1.0277 1.0198 1.0314 1.0039 0.9585 1.0120 0.9582 0.9696 0.9882 

λ5/λ5' 0.7941 0.9252 1.0247 1.0945 0.9553 0.8479 1.0272 0.8963 1.0226 0.8059 

λ6/λ6' 0.8284 0.9372 1.0351 1.1755 0.9557 0.8573 1.0189 0.9431 1.0779 0.8101 

E2 642.07 660.18 564.82 649.54 666.04 604.25 568.37 577.07 619.25 656.17 
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Figure 6.1 Fitted E2 from Different Algorithms (Saturation Mode) 
Note: No solution from QN algorithm for data set 12#. 
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To ensure the program codes are correct, a simple nonlinear least squares 

equation is used as an example. The calculated results from the different algorithms 

are listed in Appendix B, and the codes are listed in Appendices B.1, B.2, B.3, and 

B.4. From the results, it is clear that they can all obtain the correct solution to the 

problem. The codes and the methods have no apparent shortcomings. The function 

value F from RR is nonzero due to the machine precision. But it can be taken as zero 

due to its extremely small value. 

In Table 6.1 and 6.2, all the unknown parameters are variable in the model. 

To attain a better optimization result, some parameters are fixed and the optimization 

results are compared. In the simulation, ten random numbers are chosen to get ten 

sets of results (same random seeds as those in Table 6.2). All of the data sets are 

generated from the same input parameters so that they have the same initial count 

rate before being randomized. To simplify the computation complexity, the six decay 

constants in the model are fixed, and the model becomes linear. The new extracted 

results for relative yields ratios are listed in Table 6.3 (saturation mode) and Table 

6.4 (pulse mode). In this case, only seven unknown parameters exist in the objective 

function. Compared to the results in Table 6.1 (thirteen variables), this new fit 

provides a relatively more stable solution. The fitted ratio values are closer to 1.0. 

However, the E2 values are larger, meaning that the overall fit quality is worse. Table 

6.5 shows the results when the longest-lived group decay constant is fixed (twelve 

unknown group parameters left) in saturation mode. Table 6.6 shows the results 

when Group-1 parameters (yield and decay constant) are fixed in pulse mode. The 
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reason to choose Group-1 is that it is very dominant in the later period of decay due 

to its long half-life and the fitted result is relatively more stable in saturation 

irradiation. From the results shown in the tables, it is obvious that when all unknown 

parameters are variable, the fitted results are the best because E2 values are the 

smallest. The smaller the number of the fitted parameters, the worse the optimization 

result. This conclusion is similar to that in Geslot et al. [48]. If all parameters are 

variable, smaller E2 values are achieved, but the fitted parameters have larger 

uncertainty compared to these values with part of the parameters fixed, as reflected 

in Tables 6.3 and 6.4. 

The fitted results from the six-group model obtained by Geslot et al. [48] are 

listed in Table 2.8. Their fitted results are closer to Tuttle’s values (Note: Tuttle’s 

values are the same as Keepin’s values), but the fitted results from RR here have 

larger discrepancy from Keepin’s values. This is because Geslot used only a single fit 

based on 140 precursors in the JEFF-3.1 data library. There was no statistical 

variation in their merged data set. Another reason may be their numerical method, 

which was not mentioned in their paper. Other researchers, such as Loaiza [63], have 

suggested using fixed decay constants in the model due to its computational 

simplicity. The results in this study suggest that this model gives a worse fit and it is 

not recommended here. The most variable results are from short decay groups, such 

as Group-6. This conclusion is the same as that made by Geslot et al. [48] in their 

results. 

 



 

Table 6.3 Fitted Results from Ridge Regression with Six Decay Constants Fixed (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

A1/A1' 0.9896  0.9859  0.9936  1.0010  1.0373  1.0213  0.9946  1.0284  0.9941  1.0175  
A2/A2' 0.9925  0.9841  0.9900  1.0018  1.0442  1.0204  0.9965  1.0307  1.0037  1.0116  
A3/A3' 0.9936  0.9821  0.9959  1.0057  1.0297  1.0176  1.0022  1.0386  0.9935  1.0234  
A4/A4' 0.9886  0.9859  0.9874  0.9986  1.0434  1.0258  0.9891  1.0179  1.0065  0.9927  
A5/A5' 0.9974  0.8556  1.0131  0.9913  1.1015  1.0607  1.0101  1.1119  0.9975  1.0890  
A6/A6' 1.0752  1.4358  1.0710  1.0002  0.6954  0.8327  1.0115  0.7396  1.0043  0.8065  
E2 646.17  663.44  566.45  654.19  668.94  612.66  568.57  578.21  626.36  663.26  

 
 
 

Table 6.4 Fitted Results from Ridge Regression with Six Decay Constants Fixed (Pulse Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

A1/A1' 0.9811  1.0041  1.0061  0.9953  0.9818  0.9985  0.9880  0.9854  0.9557  1.0223  
A2/A2' 1.0022  1.0000  0.9902  1.0011  1.0152  1.0030  1.0015  1.0048  1.0159  0.9928  
A3/A3' 1.0020  0.9959  1.0030  1.0090  1.0001  0.9958  1.0086  1.0154  0.9992  1.0115  
A4/A4' 0.9997  0.9982  0.9932  0.9982  1.0030  1.0043  0.9974  0.9965  1.0081  0.9854  
A5/A5' 0.9969  0.9662  1.0042  1.0021  1.0297  1.0139  1.0003  1.0208  1.0104  1.0055  
A6/A6' 1.0176  1.0405  1.0063  0.9942  0.9634  0.9834  1.0060  0.9752  1.0034  0.9847  
E2 647.85  664.67  569.86  655.98  669.67  615.28  570.37  579.80  626.42  663.80  

 

 

88



 

Table 6.5 Fitted Results from Ridge Regression with Group-1 Decay Constant Fixed (Saturation Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

A1/A1' 0.9966  1.0057  1.0072  0.9951  1.0019  0.9916  0.9956  1.0033  0.9885  1.0082  
A2/A2' 0.9986  1.0069  0.9951  0.9926  1.0113  0.9793  0.9983  1.0104  0.9849  1.0058  
A3/A3' 0.9774  1.0930  1.0182  0.9402  1.0239  0.8795  1.0198  0.9854  0.8135  1.0716  
A4/A4' 1.0222  0.9833  1.0124  1.0087  0.9766  1.0399  0.9868  0.8659  1.0343  0.9895  
A5/A5' 1.0224  0.3781  0.9786  1.1669  0.8473  0.9846  0.9942  1.0984  1.3039  1.0671  
A6/A6' 0.8263  2.4928  1.0307  0.9187  1.2912  1.2710  1.0710  1.8720  0.9130  0.3356  
λ1/λ1' 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  
λ2/λ2' 0.9989  1.0032  1.0002  0.9960  1.0049  0.9895  0.9979  1.0055  0.9922  1.0040  
λ3/λ3' 0.9867  1.0458  0.9961  0.9586  1.0283  0.9127  1.0024  1.0197  0.8934  1.0356  
λ4/λ4' 0.9943  1.0599  1.0228  0.9635  1.0142  0.9375  1.0032  0.9309  0.8979  1.0498  
λ5/λ5' 1.1854  0.8179  1.0619  0.9581  0.8450  0.8693  0.9857  0.5933  0.8775  1.3756  
λ6/λ6' 0.6762  0.7368  1.1333  1.8380  0.7828  0.7405  0.9543  0.7141  1.4615  0.5219  
E2 643.89  661.43  563.78  651.60  668.05  607.95  567.81  574.78  621.80  663.49  
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Table 6.6 Fitted Results from Ridge Regression with Group-1 Parameters Fixed (Pulse Mode) 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663 -1141185387 774385225 397015485 534354673

A1/A1' 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

A2/A2' 0.9922  1.0035  0.9804  0.9919  1.0181  0.9603  1.0054  1.0097  0.9811  0.9762  

A3/A3' 0.9280  1.0127  1.0329  1.0015  0.9946  0.9216  1.0451  0.9546  0.9227  0.8911  

A4/A4' 1.0097  0.9759  0.9960  1.0113  0.9801  1.0276  0.9826  0.9861  1.0439  0.9884  

A5/A5' 0.9251  0.9324  1.0000  1.0673  0.9844  0.9672  0.9969  1.0491  1.0780  0.9736  

A6/A6' 1.4851  1.3169  0.9701  0.7580  1.1391  1.4417  0.9397  1.1466  0.8545  1.7545  
λ1/λ1' 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  
λ2/λ2' 1.0005  0.9978  0.9894  0.9969  1.0126  0.9752  1.0022  1.0101  0.9938  0.9876  
λ3/λ3' 0.9562  1.0083  0.9890  0.9818  1.0188  0.9031  1.0282  0.9970  0.9266  0.9156  
λ4/λ4' 0.9601  0.9946  1.0118  1.0007  1.0005  0.9493  1.0166  0.9658  0.9701  0.9194  
λ5/λ5' 0.8492  0.8845  1.0133  1.0621  0.9351  0.8373  1.0327  0.9050  1.0228  0.7213  
λ6/λ6' 0.8477  0.9229  1.0283  1.1471  0.9390  0.8546  1.0223  0.9475  1.0780  0.7883  

E2 644.61  662.00  566.77  653.61  667.07  604.43  569.36  577.16  620.25  657.77  
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Standard deviations of the fitted results from simulated data sets are 

calculated to provide information about fitted group parameters distribution. The 

information is shown in Figures 6.2, 6.3, and 6.4. Figures 6.2 and 6.3 are the 

standard deviation of the fitted ratios in saturation mode and pulse mode, 

respectively. Figure 6.4 illustrates the standard deviation when Group-1 parameters 

are fixed in pulse mode. The data sources in these figures are from the values in 

Tables 6.1, 6.2 and 6.6, respectively. Group-5 and -6 (shorter half-lived groups) are 

the most variable groups in saturation mode (Figure 6.2), but in pulse mode (Figure 

6.3), the most variable data are from Group-1 and -6. Group-1 has large variation 

because the Group-1 counts in the later decay period are much lower in pulse mode. 

Variation for Group-6 is reduced in pulse mode compared to that in saturation mode. 

The variation from relative yields is larger than decay constants in most cases. This 

is because the yields reflect a linear relationship in the objective function, while 

decay constants represent an exponential relationship. The change in exponential part 

is more significant. 
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Figure 6.2 Standard Deviations of Fitted Parameter Ratios (Saturation Mode) 

 
 
 

 

Figure 6.3 Standard Deviations of Fitted Parameter Ratios (Pulse Mode) 
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Figure 6.4 Standard Deviations of Fitted Parameter Ratios with Group-1 
Fixed (Pulse Mode) 

 
 
 

All of the above solutions from different algorithms used the same values 

(Keepin’s values) as initial guessed input, and their solutions are totally different 

with different E2. Obviously, the extracted values are not global optimum at all. 

These local optimization values are highly dependent on the initial guessed values. 

RR always obtains a smaller E2 than other algorithms because it has a broader 

searching range to find the optimization point. If the initial guessed inputs are 

changed in different algorithms, the new fitted results may be different. To verify this 

effect, the extracted values from RR are used as initial guessed values in other 

algorithms. The results are shown in Table 6.7 (Saturation Mode) and Table 6.8 

(Pulse Mode). Only two data sets are listed as examples. 
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Table 6.7 Fitted Results Using New Initial Values from Ridge Regression 
(Saturation Mode) 

 
MI-SVD LM  QN   

  
RR 

Before* After* Before After Before After 

A1/A1' 0.8863 0.9913 0.8896 0.9687 0.8863 1.1506 0.8846

A2/A2' 0.9572 1.0049 0.9558 0.9985 0.9572 1.2426 0.9553

A3/A3' 0.5500 0.9875 0.5498 0.9664 0.5500 0.7107 0.5464

A4/A4' 0.5972 1.0086 0.5996 1.0307 0.5972 0.7719 0.5934

A5/A5' 2.4703 0.9319 2.4609 0.8490 2.4703 3.2238 2.4784

A6/A6' 3.1784 1.1487 3.1912 1.3723 3.1784 4.1304 3.1754

λ1/λ1' 0.9679 0.9966 0.9682 0.9907 0.9679 0.9679 0.9679

λ2/λ2' 0.9637 1.0009 0.9638 0.9919 0.9637 0.9637 0.9637

λ3/λ3' 0.7307 1.0040 0.7278 0.9693 0.7307 0.7294 0.7294

λ4/λ4' 0.6110 0.9943 0.6138 0.9851 0.6110 0.6088 0.6088

λ5/λ5' 0.3220 1.0954 0.3209 1.0958 0.3220 0.3213 0.3213

λ6/λ6' 0.5441 0.6925 0.5451 0.6295 0.5441 0.5437 0.5437

Data set 1# 
(seed= 

-6295779) 

E2 640.52 645.14 641.69 643.18 640.52 640.52 640.52

A1/A1' 1.0608 1.0061 1.0713 1.0079 1.0607 1.0352 1.0649

A2/A2' 1.0126 0.9985 1.0069 0.9999 1.0126 0.9866 1.0150

A3/A3' 1.1436 0.9973 1.1619 1.0113 1.1436 1.1155 1.1476

A4/A4' 0.9654 1.0082 0.9486 0.9997 0.9654 0.9414 0.9685

A5/A5' 0.2464 0.8598 0.3007 0.8269 0.2464 0.2395 0.2464

A6/A6' 2.7052 1.4731 2.6562 1.5301 2.7049 2.6232 2.6987

λ1/λ1' 1.0160 0.9997 1.0193 1.0019 1.0161 1.0166 1.0166

λ2/λ2' 1.0160 1.0005 1.0153 1.0013 1.0160 1.0163 1.0163

λ3/λ3' 1.0874 0.9888 1.0805 1.0055 1.0874 1.0882 1.0882

λ4/λ4' 1.0929 1.0069 1.1005 1.0104 1.0929 1.0942 1.0942

λ5/λ5' 0.7373 0.9948 0.6674 0.9886 0.7372 0.7527 0.7527

λ6/λ6' 0.7221 1.0574 0.7403 1.0047 0.7221 0.7237 0.7237

Data set 2# 
(seed= 

-389279151) 

E2 660.08 667.66 665.74 662.67 660.11 660.10 660.10

*Note: 
Before: Using Keepin’s data as initial guessed values; 
After: Using RR fitted data as initial guessed values. 
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Table 6.8 Fitted Results Using New Initial Values from Ridge Regression 
(Pulse Mode) 

 
LM  QN 

 
  

RR 
Before After Before After 

A1/A1' 0.6782 0.8149 0.6286 0.5995 0.6143 

A2/A2' 0.9854 1.0013 0.9925 0.9716 0.9957 

A3/A3' 0.8977 0.9629 0.8983 0.8791 0.9009 

A4/A4' 1.0334 1.0205 1.0322 1.0132 1.0383 

A5/A5' 0.9604 0.9450 0.9589 0.9429 0.9663 

A6/A6' 1.5876 1.2284 1.6014 1.5616 1.6004 

λ1/λ1' 0.8936 0.9285 0.8278 0.8139 0.8139 

λ2/λ2' 0.9419 0.9730 0.9366 0.9331 0.9331 

λ3/λ3' 0.8699 0.9492 0.8683 0.8635 0.8635 

λ4/λ4' 0.9267 0.9783 0.9257 0.9245 0.9245 

λ5/λ5' 0.7941 0.9475 0.7893 0.7904 0.7904 

λ6/λ6' 0.8284 0.9068 0.8239 0.8270 0.8270 

Data set 1# 
(seed= 

-6295779) 

E2 642.07 643.73 642.11 642.07 642.07 

A1/A1' 1.3175 1.3650 1.3538 1.2996 1.3019 

A2/A2' 0.9947 0.9977 0.9918 0.9501 0.9517 

A3/A3' 1.0602 1.0692 1.0615 1.0178 1.0196 

A4/A4' 0.9456 0.9515 0.9463 0.9062 0.9078 

A5/A5' 0.9027 0.9086 0.9036 0.8654 0.8669 

A6/A6' 1.2573 1.2647 1.2602 1.2052 1.2073 

λ1/λ1' 1.0992 1.1168 1.1160 1.1168 1.1168 

λ2/λ2' 1.0499 1.0540 1.0535 1.0539 1.0539 

λ3/λ3' 1.0845 1.0874 1.0862 1.0870 1.0870 

λ4/λ4' 1.0277 1.0288 1.0280 1.0285 1.0285 

λ5/λ5' 0.9252 0.9265 0.9249 0.9261 0.9261 

λ6/λ6' 0.9372 0.9377 0.9369 0.9375 0.9375 

Data set 2# 
(seed= 

-389279151) 

E2 660.18 660.28 660.28 660.28 660.28 

*Note: 
Before: Using Keepin’s data as initial guessed values; 
After: Using RR values as initial guessed values. 
MI-SVD is not used in pulse mode. 
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As shown in the above tables, if the extracted values from RR are used as 

new initial guessed values in other algorithms, they can provide almost the same 

results as that from RR, except for MI-SVD. MI-SVD can secure a smaller E2 

compared to its previous result, but it is still larger than those from other algorithms. 

LM and QN can attain almost the same optimization point if initial guessed values 

are chosen from RR fitted values. This evidence shows that these algorithms are 

quite dependent on the initial guessed values for this problem, especially the MI-

SVD and LM methods. 

Since no numerical methods so far can guarantee finding a global minimum 

solution for this problem, the initial guessed input values would affect the search 

range to find a local minimum point. A stable solution would not depend on the 

initial input values, but for an unstable solution, its value would be sensitive to the 

guessed input value. The fitted values for Group-6 abundance are highly variable in 

both modes, but they all fit the simulated experimental data very well. Here, a small 

change in the initial guessed A6 is applied to check its sensitivity on the fitted results. 

RR and LM algorithms are used for comparison. Six randomly selected data sets in 

saturation mode are used as examples. 

In the LM algorithm, the initial guessed value for Group-6 relative yield A6 is 

increased by only 5% for different simulated measurement data. The relative changes 

for the new fitted results are shown in Table 6.9. In the RR method, a 10% increase is 

applied, instead of 5%, due to the very small changes in the results from a 5% 

increase in this method. The relative changes in the results are shown in Table 6.10. 
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ΔA1/A1' and Δλ1/λ1' are the relative changes of the ratios for relative yield and decay 

constant of group i. From the tables, the fitted objective values E2 are almost the 

same (ΔE2/ E2 ≈ 0), even after a 10% change in the initial guess input using the RR 

method. While from LM method, with even a 5% input change, the relative changes 

in the new fitted values are much larger than those for RR with 10% guessed input 

change. This means RR is less sensitive than LM to initial guessed input value A6 

and can find relatively more stable E2 than LM. The fitted results for Group-1, -2, -3, 

and -4 are not changed or just changed a small amount. For Group-5 and -6, the 

changes are larger. The relative changes in the results from the Matrix Inverse 

method are very large and the results are not listed here. 

As mentioned in Section 5, the introduction of the regularization parameter h 

in the solution brings bias into the solution. The traditional statistical error in the 

model using the least squares method is simply the estimate of variance. In the Ridge 

Regression method, the mean squared error is the sum of the errors from variance 

and squared bias (see Eq.(5-17)). A properly selected regularization parameter h can 

achieve a smaller error than the traditional least squares method. 
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Table 6.9 Fitted Results from Levenberg-Marquardt by Increasing Guessed 
Value A6 with 5% (Saturation Mode) 

 
seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663

ΔA1/A1' 0.282% 0.086% 0.025% 0.890% 0.025% 1.510% 

ΔA2/A2' 0.031% 0.007% 0.050% 0.162% 0.013% 0.115% 

ΔA3/A3' 0.678% 0.157% 0.029% 5.488% 0.010% 7.240% 

ΔA4/A4' 0.168% 0.089% 0.068% 2.014% 0.030% 9.503% 

ΔA5/A5' 5.429% 2.710% 0.140% 7.957% 0.639% 4.455% 

ΔA6/A6' 11.897% 3.615% 0.947% 5.404% 2.034% 47.198% 

Δλ1/λ1' 0.090% 0.027% 0.010% 0.463% 0.010% 0.370% 

Δλ2/λ2' 0.092% 0.024% 0.010% 0.581% 0.003% 0.200% 

Δλ3/λ3' 0.493% 0.111% 0.059% 4.012% 0.020% 2.456% 

Δλ4/λ4' 0.439% 0.090% 0.062% 3.763% 0.016% 7.850% 

Δλ5/λ5' 2.976% 0.970% 0.343% 5.589% 0.442% 95.753% 

Δλ6/λ6' 0.168% 3.602% 0.039% 5.509% 0.463% 18.172% 

ΔE2/ E2 0.003% 0.017% 0.001% 0.060% 0.008% 0.079% 

 
 
 
Table 6.10 Fitted Results from Ridge Regression by Increasing Guessed Value 

A6 with 10% (Saturation Mode) 
 

seed -6295779 -389279151 738164549 -1778841095 1234 -1031501663

ΔA1/A1' 0.169% 0.023% 0.000% 0.000% 0.041% 0.196% 

ΔA2/A2' 0.141% 0.010% 0.001% 0.000% 0.020% 0.087% 

ΔA3/A3' 2.589% 0.150% 0.010% 0.001% 0.262% 1.403% 

ΔA4/A4' 1.954% 0.064% 0.010% 0.000% 0.152% 0.714% 

ΔA5/A5' 2.651% 3.135% 0.127% 0.009% 0.070% 8.773% 

ΔA6/A6' 0.411% 1.072% 0.396% 0.009% 1.967% 16.433% 

Δλ1/λ1' 0.043% 0.010% 0.000% 0.000% 0.011% 0.049% 

Δλ2/λ2' 0.072% 0.010% 0.000% 0.000% 0.014% 0.079% 

Δλ3/λ3' 1.141% 0.064% 0.003% 0.000% 0.129% 0.688% 

Δλ4/λ4' 1.878% 0.145% 0.010% 0.001% 0.238% 1.181% 

Δλ5/λ5' 1.081% 0.187% 0.126% 0.004% 1.227% 11.981% 

Δλ6/λ6' 0.274% 0.753% 0.224% 0.070% 0.621% 4.093% 

ΔE2/ E2 0.002% 0.005% 0.000% 0.000% 0.001% 0.013% 
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The differences of root of mean squared error (RMSE) from these two 

methods are shown in Table 6.11 (saturation mode) and Table 6.12 (pulse mode). 

One random number (seed=1234) is used for data generation, and the initial count 

rates are the same in both modes (e.g., 4.0E+5 cps) before randomization. The 

calculated relative error (RMSE-RR/X*) in saturation mode has larger uncertainty 

for short-lived groups (G-5 and G-6). For short-lived groups, the relative errors from 

pulse mode are smaller than those from saturation mode using the same initial count 

rate, but for Group-1, it increases. Compared to the least squares method, RMSE 

from RR is reduced with the help of regularization parameter h. This role is more 

significant for G-5 & G-6 in both modes, due to the smaller singular values from the 

matrices in the modes. Researchers previously used the inverse of the matrix from 

the normal equation to obtain the statistical error. This is not correct and it is only 

valid for a linear model without bias. For those who used LM method, or some other 

methods related to a regularization number, they did not consider the bias in the error 

estimation at all. 

As shown in the tables above, there are several reasons that RR is better than 

other algorithms (MI-SVD, LM, and QN). RR has the following advantages: 

1) It achieves better fit illustrated by its smaller E2 values for the same 

data set. 

2) It converges if parameter h is properly selected. 

3) It is not as sensitive as other algorithms to the initial guessed values. 
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Table 6.11 Root of Mean Squared Error (Saturation Mode) 

 X* 
RMSE-RR 

(Ridge Regression)
RMSE-LS 

(Least Squares)
RMSE-RR/X*

A1 3.22E-02 1.77E-03 6.28E-03 5.49% 
A2 2.21E-01 2.78E-03 3.07E-03 1.26% 
A3 1.96E-01 2.44E-02 3.54E-02 12.49% 
A4 3.88E-01 2.11E-02 4.06E-02 5.44% 
A5 9.96E-02 3.57E-02 8.63E-02 35.88% 
A6 5.62E-02 2.40E-02 1.32E-01 42.64% 
λ1 1.23E-02 1.97E-04 9.57E-04 1.60% 
λ2 3.05E-02 4.31E-04 1.01E-03 1.42% 
λ3 1.12E-01 8.27E-03 1.25E-02 7.39% 
λ4 3.00E-01 2.63E-02 4.48E-02 8.76% 
λ5 9.42E-01 2.86E-01 1.03E+00 30.38% 
λ6 2.35E+00 7.33E-01 2.71E+00 31.19% 

 
 
 

Table 6.12 Root of Mean Squared Error (Pulse Mode)  

 X* 
RMSE-RR 

(Ridge Regression)
RMSE-LS 

(Least Squares)
RMSE-RR/X*

A1 2.67E-02 6.75E-03 1.52E-02 25.30% 
A2 2.28E-01 5.12E-03 1.14E-02 2.24% 
A3 1.96E-01 1.64E-02 1.67E-02 8.34% 
A4 3.90E-01 1.39E-02 1.60E-02 3.57% 
A5 1.14E-01 8.52E-03 8.65E-03 7.48% 
A6 4.56E-02 1.35E-02 1.37E-02 29.51% 
λ1 1.03E-02 2.12E-03 6.40E-03 20.64% 
λ2 3.02E-02 1.16E-03 2.29E-03 3.84% 
λ3 1.12E-01 8.71E-03 1.07E-02 7.78% 
λ4 3.02E-01 1.48E-02 1.60E-02 4.91% 
λ5 1.09E+00 1.48E-01 1.52E-01 13.64% 
λ6 2.88E+00 3.38E-01 3.42E-01 11.76% 

Note:   X*: Fitted parameter results from Ridge Regression method. 
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4) RMSE from RR is much smaller than from the ordinary least squares 

method, especially for short-lived groups. 

The calculated results in the above tables also reveal some other facts: 

1) All algorithms mentioned above cannot find global optimum. The fitted 

solutions are highly variable. 

2) In saturation mode, fitted results from Group-6 have very large 

variation. In pulse mode, the larger variations are from Group-1 and 

Group-6. Group-6 variation is still very large but it is reduced compared 

to that in saturation mode. Group-1 variation increases because the 

count from Group-1 is much smaller than that from saturation mode, 

and this increase uncertainty.  

3) Fixing some parameters does not improve the optimization effect based 

on the simulated results. Let all parameters free, the optimization results 

are the best. 

 

6.2 Data Comparison 

Since all the extracted parameters fit the simulated data sets very well even if 

they have very large discrepancies, it is not possible to judge the goodness-of-fit 

between investigators just by the fitted parameters themselves. One should compare 

the difference between data sets to see if they are significantly different or not. 

Figure 6.5 plots the ratios of four fitted data sets from RR, as well as the original 

Poisson data, to Keepin’s input values for saturation mode. Figure 6.6 is for pulse 
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mode with Group-1 parameters fixed. These figures show that the fitted data from 

RR fit Keepin’s input data very well. In saturation mode, after about 100 seconds, 

there is a small departure from the ratio of 1.0 because only Group-1 is dominant in 

this period and the fitted parameters are not exactly the same as Keepin’s values, due 

to the limited counts used for fitting.  

 
 
 

  

Figure 6.5 The Ratios of Different Data Sets to Keepin’s Values (Saturation Mode) 
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Figure 6.6 The Ratios of Different Data Sets to Keepin’s Values (Pulse Mode 
with Group-1 Fixed) 

 
 
 
In this section, the data sets are analyzed from the following components: 

1) The comparison between the fitted data and simulated counts. The 

purpose is to check if the fitted results are significantly different from 

the Poisson distributed simulated count. The comparison between 

Poisson data and Keepin’s data will not be analyzed here because it has 

already been done in the Data Generation part of Section 4. 

2) The comparison between the fitted data and Keepin’s data. This is to 

check if the fitted data are still the same as Keepin’s original data. 

3) The comparison between the newly fitted results with A6 increased by 

10% and Keepin’s original data with zero flight time. A6 is chosen 

because it is the most variable value among the fitted parameters and it 
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still fit well by the data set. The purpose here is to discover if a small 

change in A6 can be differentiated from Keepin’s original data. 

4) The comparison between new fitted data with A6 increased by 10% and 

Keepin’s original data under different sample flight time and initial 

count rate. It is very helpful in a real experiment to see how much flight 

time is acceptable for a given experiment. 

To obtain more detailed information at different decay times, the total 

counting time (300 sec) is divided into several time intervals according to the count 

contribution from different groups. Both saturation and pulse modes are analyzed. A 

Chi-square test is used to compare the difference of sample data from the expected 

data.  If  , that means the sample data are significantly different from the 

expected data under given confidence level 100(1-α)% with n-1 degrees of freedom. 

 
2
0 ( , 1)n  is the reference value. 

  2 2
0 ( , 1)n

The comparisons between RR data sets and Poisson data, and RR data and 

Keepin’s data are listed in Table 6.13 (saturation mode) and Table 6.14 (pulse mode) 

with significance level α=0.05. Data sets 1#, 2#, 3# and 4# are generated from seeds 

–6295779, -389279151, -1031501663, and 4250 respectively. They were chosen 

because their fitted values A6 have larger discrepancies against Keepin’s values. 

All 2  values in Table 6.13 and Table 6.14 are smaller than the reference 

values . This means that the fitted data sets from RR are not significantly 

different from the corresponding Poisson distributed data sets, nor are they from 

 , 1)n 2
0 (
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Keepin’s data. As 2  values are very small in the comparisons of RR data sets and 

Keepin’s data, it shows that the data sets from RR fit Keepin’s data very well. 

 
 
 
Table 6.13 Difference Comparison of RR Data to Poisson and Keepin’s Data 

(Saturation Mode) (α=0.05) 
 

RR & Poisson data RR & Keepin 
Time (s) 

data 1# data 2# data 3# data 4# data 1# data 2# data 3# data 4# 
n χ0

2(α,n-
1) 

0-1 53.43 40.20 30.92 31.81 1.04 0.04 1.29 0.90 40 55.76
1-2 35.07 30.81 39.27 48.40 0.68 0.09 0.02 0.47 40 55.76
2-4 81.63 79.24 72.84 91.95 0.15 0.06 0.33 0.47 80 101.88
4-6 74.23 75.79 90.85 92.87 0.05 0.04 0.50 0.15 80 101.88
6-8 81.59 78.46 62.64 73.64 0.07 0.23 0.16 0.04 80 101.88

8-10 98.43 72.67 83.91 64.44 0.10 0.37 0.92 0.09 80 101.88
10-40 68.77 61.68 58.45 58.38 0.68 1.17 2.04 0.43 60 79.08
40-80 68.96 66.00 60.89 51.90 0.71 0.04 0.24 2.31 80 101.88

80-300 77.87 63.07 74.63 67.60 2.36 0.76 2.63 0.28 80 101.88
 
 
 
Table 6.14 Difference Comparison of RR Data to Poisson and Keepin’s Data 

(Pulse Mode) (α=0.05) 
 

RR & Poisson data RR & Keepin 
Time (s) 

data 1# data 2# data 3# data 4# data 1# data 2# data 3# data 4# 
n χ0

2(α,n-1)

0-1 52.93 40.42 31.00 31.88 2.43 0.04 1.32 1.11 40 55.76
1-2 35.32 30.96 39.36 48.03 1.65 0.11 0.01 0.76 40 55.76
2-4 81.62 78.99 73.00 92.47 0.11 0.13 0.48 0.40 80 101.88
4-6 74.48 77.18 91.34 92.25 0.02 0.02 0.75 0.05 80 101.88
6-8 81.59 77.90 63.09 74.00 0.01 0.07 0.10 0.12 80 101.88

8-10 98.43 73.89 82.74 64.86 0.05 0.14 0.69 0.12 80 101.88
10-40 68.51 61.76 58.18 58.51 0.35 1.23 1.64 0.51 60 79.08
40-80 70.43 66.83 62.51 52.07 0.44 0.04 0.22 1.49 80 101.88
80-300 81.55 63.70 75.31 67.70 0.89 0.02 2.91 0.61 80 101.88
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Although the extracted Group-6 values are very variable, the final fitted data 

sets still fit Keepin’s data set very well. However, if a small artificial change of count 

is introduced, for example, if A6 is increased by 10% in new Poisson data generation, 

the new data can be differentiated from Keepin’s original data (see Table 6.15). A 

Chi-square test is used to analyze the data distribution of the new Poisson data set 

against Keepin’s original data during different decay periods at a 95% confidence 

level. The initial count rate in Keepin’s data is variable to fit the new Poisson data set 

using SOLVER tool in Microsoft Excel. The initial count rate to generate Poisson 

data set was set at 4.0E+5 cps before randomization. 

 
 
 
Table 6.15 Difference Comparison between Poisson Data and Keepin’s Data 

(A6 Increased by 10%) (α=0.05) 
 

Saturation Mode Pulse Mode 
Time (s) 

data 1# data 2# data 3# data 4# data 1# data 2# data 3# data 4# 
n χ0

2(α,n-1)

0-1 34.62 50.37 46.91 34.26 81.94 66.50 71.98 64.50 40 55.76 

1-2 24.58 40.53 43.12 39.83 29.71 23.41 35.98 65.78 40 55.76 

2-4 96.58 104.54 105.55 106.06 76.72 107.31 66.73 77.82 80 101.88

4-6 104.70 52.97 106.82 81.57 59.27 67.34 107.77 65.08 80 101.88

6-8 78.18 79.43 73.89 49.04 80.04 110.49 74.71 94.08 80 101.88

8-10 69.84 69.62 88.09 74.44 114.30 98.56 56.04 92.62 80 101.88

10-40 66.20 34.59 79.60 49.49 46.76 84.74 63.81 67.45 60 79.08 

40-80 106.83 87.00 104.79 71.92 64.35 59.17 88.44 94.66 80 101.88

80-300 89.03 70.22 76.72 68.37 93.32 80.29 59.52 96.02 80 101.88
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The calculated χ2 values in Table 6.15 shows that if A6 is 10% larger than 

Keepin’s original value, the newly simulated data set can be differentiated from 

Keepin’s data. This small artificial change causes significant difference from 

Keepin’s theoretical data in both modes, but it is more obvious in pulse mode. This is 

expected because it was A6 that was increased and pulse mode favors the signal from 

the short-lived groups. 

All the simulated data sets mentioned above have zero sample flight time, 

and the same initial counts rate before randomization. In real experiments, the 

sample flight times are not zero, and initial count rates are higher or lower depending 

on the setup. The purpose here is to find how much initial count rate and flight time 

affect our ability to identify differences between the experimental data and Keepin’s 

expected data. To create this difference, a small artificial change is added to A6 under 

different flight time and initial count rate to check if it can be differentiated or not. 

Since the short-lived groups are more sensitive to the sample flight time and initial 

count rate, a small change on A6 (increase by 10%) is chosen to create the difference. 

A Chi-square test is used to judge the difference between the newly generated data 

set and Keepin’s expected data. One may increase the flight time or decrease the 

initial count rate until this difference is no longer significant. For a given 95% 

confidence level, the significant difference regions in both irradiation modes under 

different flight times and initial count rates are plotted in Figure 6.7. To derive 

Keepin’s data for comparison, the initial count rate is adjusted so that both Keepin’s 

data and newly fitted RR data have a satisfactory fit after time t=5.0 sec. This 5.0 sec 
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is chosen because the counts from Group-6 have decayed away at this time and the 

10% change on A6 will not affect the total counts in the later period. 

If the initial count rate is very low, the difference can only be identified for a 

very short period of time. With the increase of flight time, this difference will 

disappear gradually because of the decay of the short-lived groups. When flight time 

is too long, or the initial count rate is too low, the two data sets (new Poisson data 

and Keepin’s data) are not significantly different under a 95% confidence level. The 

influence of this 10% change is more sensitive in pulse mode than in saturation mode 

because the fraction of count from Group-6 in pulse mode is much higher than in 

saturation mode at the beginning decay time and its influence lasts much longer. 

 
 
 

 

Figure 6.7 Differences between Fitted Data from RR (with A6 Increased by 
10%) and Keepin’s Data 

 



109 

6.3 Experiment Result 

All of the calculated results in the above sections are based on simulated data. 

To apply the above methods in a real experiment, two experimental data sets are used 

here for verification. The experiment was conducted at the TRIGA reactor at Texas 

A&M University for both saturation and pulse irradiation modes. Detailed 

information can be found in Heinrich [62]. The saturation mode has a flight time 

0.443 sec, and the pulse mode has a flight time 0.45 sec. The experimental data sets 

are listed in Appendix C. The experimental data are compared to Keepin’s expected 

values to check differences. 

Because of dead time in the detectors, the measured counts must be corrected. 

If the measured count rate in the detector for the ith observation is C(i), the dead time 

for the detector is τ sec, and the corrected count rate C’(i) is derived by: 

( )
'( )

1 ( )*

C i
C i

C i 



     (6-1) 

To compare the measured counts to Keepin’s theoretical counts, three 

unknown parameters need to be fitted: dead time τ, initial count rate N0, and an 

optimized sample flight time t0. Although the sample flight time was measured in the 

experiment, there was still a small difference between the sample’s arrival time and 

the detector’s initial responding time. If these three unknown parameters remain 

variable, they can be fitted in Microsoft Excel by the SOLVER tool. The objective 

optimization value is the sum of the weighted squared difference between the 

measured data and Keepin’s data. After optimization, the initial count rate in 
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saturation mode is 4.834E+4 cps, and in pulse mode, it is 2.760E+5 cps. The dead 

time in saturation mode is 1.01E-6 sec, and in pulse mode it is 6.01E-6 sec.  The 

fitted sample flight time is 0.45sec in both modes. The fitted decay parameters using 

different algorithms are listed in Table 6.16 for comparison. From the fitted E2 values, 

the RR algorithm is the best among these methods because it can achieve the 

smallest E2 in saturation mode. The results in the table below further support the 

conclusion that the RR algorithm can achieve a better optimization result because its 

E2 value is smaller. 

 
 
 

Table 6.16 The Fitted Results from Experimental Data 

Saturation Pulse 
  MI-SVD LM QN RR LM QN RR 

A1/A1' 0.896  1.017 1.163 1.197 1.421 1.410  1.807  
A2/A2' 1.031  1.024 1.025 1.057 1.108 1.099  1.035  
A3/A3' 0.947  0.584 1.246 1.274 1.290 1.280  1.283  
A4/A4' 1.012  1.064 0.904 0.935 0.889 0.882  0.857  
A5/A5' 1.082  1.227 0.923 0.968 0.619 0.614  0.597  
A6/A6' 2.290  4.562 0.859 0.856 1.030 1.021  0.995  
λ1/λ1' 0.978  0.998 1.070 1.069 1.116 1.116  1.286  
λ2/λ2' 1.019  0.992 1.091 1.091 1.118 1.118  1.163  
λ3/λ3' 1.016  0.657 1.257 1.252 1.307 1.307  1.338  
λ4/λ4' 0.955  0.715 1.150 1.143 1.212 1.213  1.227  
λ5/λ5' 0.759  1.260 1.410 1.393 1.123 1.123  1.143  
λ6/λ6' 0.979  0.160 0.534 0.538 0.731 0.732  0.727  

E2 616.64  612.08 607.95 607.94 667.99 667.98  667.60 
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The comparison between the experimental data and other data sets are plotted 

in Figure 6.8 and Figure 6.9. The fitted data from RR, the Keepin’s theoretical data, 

and ENDF/B-VII.0 data are plotted using the same initial value (same value of P in 

Eq.(4-1)). 

From Figure 6.8 and 6.9, the fitted curve from RR has a good fit with the 

experimental data in both modes, which can also be proven by the Chi-square test 

values in Tables 6.17 and 6.18. Keepin’s theoretical data are very close to these 

values. As mentioned in Table 2.7 in Section 2, different data libraries have totally 

different values. Here, ENDF/B-VII.0 is taken as an example because it is the latest 

version for DN parameters in the U.S. From the plots below, the curve of ENDF/B-

VII.0 is very different from both the Keepin’s and the experimental data curves. The 

experimental data are closer to the Keepin’s expected data. 

To check if the experimental data are different from Keepin’s values or not, 

their count distributions in different periods are compared. The variance comparison 

is done by a Chi-square test at a 95% confidence level. Another comparison is the 

total counts in a given time period. If the counts are significantly different from 

Keepin’s data during the given time period, the absolute value of the difference 

should be larger than 1.96σ under 95% confidence level. Here, σ is the random 

variation in a count. Because of the low detection efficiency (including intrinsic 

efficiency and geometry efficiency), random variation can be taken as the square root 

of the measurement count even for counts from long counting time compared to the 

group half-lives [64]. Table 6.17 lists the comparison in saturation mode. According 



112 

to the Chi-square test, in most part of time intervals, the experimental data 

distributions are very close to Keepin’s expected values. So are the total counts. In 

some time periods, the experimental data are significant difference from Keepin’s 

data. In both modes, the fitted data from the RR algorithm are not significantly 

different from Keepin’s values, indicating that the experimental data are close to 

Keepin’s data. They are all different from ENDF/B-VII.0 data from the plots in 

Figures 6.8 and 6.9. Our fit of the data to Keepin’s although not perfect, it is better 

than the difference between Keepin’s and ENDF/B-VII.0 data. In both modes, the 

variances in the later counting period are significantly different. This may come from 

the low counts in the later period. Another reason is that this is just from a single 

experimental data. To improve this, several detectors should be used to run several 

experiments to reduce the statistical error. 
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Figure 6.8 Experimental Data (Saturation Mode) 

 
 
 

 

Figure 6.9 Experimental Data (Pulse Mode) 
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Table 6.17 Experimental Data Comparison (Saturation Mode) 

Time (s) χ2 
(Exp~Keepin) 

χ2 
(Fit~Keepin)

n χ0
2(0.05,n-1)

N1 
(Exp) 

N2 
(Keepin) 

N1-N2 1.96σ

0.443-1.0 31.65  0.42  22 32.67 21593 21326 267  288 

1-2 35.85  0.57  40 55.76 32942 32999 -57  356 

2-4 50.42  2.42  80 101.88 52762 52171 591  450 

4-6 88.86  2.37  80 101.88 41221 40732 489  398 

6-8 91.22  1.77  80 101.88 33600 33478 122  359 

8-10 66.83  1.39  80 101.88 28848 28520 328  333 

10-40 58.83  3.14  60 79.08 219436 218924 512  918 

40-80 105.43  16.20  80 101.88 102883 103846 -963  629 

80-300 161.37  55.40  80 101.88 72591 73465 -874  528 

Note:  
1) Exp-Keepin: Comparison between experimental data and Keepin’s expected 

data. 
2) Fit-Keepin: Comparison between experimental data and Keepin’s expected data. 
3) χ0

2(0.05,n-1): Reference χ2 at significant level 0.05 and degrees of freedom n-1. 
4) N1, N2: Total counts from experiment and Keepin’s data in the given period. 
5) 1.96σ: Reference value for significant difference with 95% confidence level. 

 
 
 

Table 6.18 Experimental Data Comparison (Pulse Mode) 

Time (s) χ2 
(Exp~Keepin) 

χ2 
(Fit~Keepin)

n 
χ0

2(0.05,n-
1) 

N1 
(Exp) 

N2 
(Keepin) 

N1-N2 1.96σ

0.45-1.0 29.41 3.40 22 32.67 29384 29899 315 337 

1-2 48.67 9.09 40 55.76 35513 35377 136 369 

2-4 75.30 19.83 80 101.88 42498 42158 340 404 

4-6 67.23 3.09 80 101.88 25319 25377 -58 312 

6-8 64.69 0.21 80 101.88 16800 16851 -51 254 

8-10 71.41 0.28 80 101.88 11630 11877 -247 211 

10-40 90.74 21.73 60 79.08 51906 51772 134 447 

40-80 171.58 27.23 80 101.88 16084 15377 707 249 

80-300 80.76 2.15 80 101.88 8337 8426 -89 179 
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7. CONCLUSION 

 

As reported in the literature, the fitted delayed neutron parameters agree very 

well with their measurement data, although these results differ markedly from one 

another. These differences are far larger than the small deviation they reported. The 

reported errors in their parameters are not correct actually. This project uses different 

numerical methods to investigate the estimation of delayed neutron decay parameters 

(relative yields and decay parameters) emitted from thermal fission of U-235. 

Most researchers used the least squares method to obtain the fitted parameters. 

This project compares the least squares method (Matrix Inverse with SVD is used here) 

to other numerical methods, such as the Levenberg-Marquardt method, and the quasi-

Newton method. To test these algorithms, data sets were made so that the Poisson 

distribution was the only variance. No experimental errors are included in the simulated 

data. The fitted results from different algorithms used on this relatively precise data 

revealed that all the fitted results can fit the simulated experimental data very well but 

the parameters may be totally different. The Matrix Inverse method without SVD and 

the quasi-Newton method cannot guarantee finding solutions for certain data sets 

because of ill-conditioned matrices in the algorithm and inappropriate searching methods. 

The Levenberg-Marquardt method can always find a solution, but its optimized result is 

not the best among those methods. Further investigation shows that the coefficient 

matrices (without regularization) in different algorithms are ill-posed causing the 

solution not to be unique. Due to the diversity of the regularization techniques, the fitted 
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results have large variation. The optimized values from these methods are not global and 

the results are not stable. 

An improved algorithm called Ridge Regression is used for the first time in this 

study to find delayed neutron parameters. A modified model considering the offset 

between the experimental data and the mathematical model is used to fit the 

measurement data in this project. To avoid an ill-conditioned problem, a regularization 

parameter h is introduced in the Ridge Regression algorithm and it guarantees finding a 

solution. Due to the regularization parameter, Ridge Regression introduces bias into the 

fitted results. The Ridge Regression method is to find a best “h” value between estimate 

variance and bias. Ridge Regression shows improvement in convergence and it achieves 

smaller sum of weighted square residuals, E2, than other algorithms. Compared to the 

traditional least squares method, the Ridge Regression method achieves a smaller root of 

mean square error. This effect is very obvious to the short decay groups. This method is 

also not as sensitive to the initial guessed values as other algorithms. 

The results with different numbers of fitted parameters are also investigated. It is 

found that reducing the number of unknown parameters cannot improve the optimization 

results. In saturation mode, the extracted values for long-lived groups are more stable. 

While for short-lived groups, they have large uncertainty. Pulse mode reduces the 

uncertainty for short-lived group parameters, but increases uncertainty for long decay 

groups. Further investigation found that the root of mean square error (RMSE) from 

such a precise Poisson distributed data still has extensive uncertainty some groups. The 

RMSE values are not as small as those claimed by previous researchers.  
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Many researchers compared the root of mean square error of the parameters to 

judge the fit. Actually, it means nothing due to the instability of the solution. Although 

the fitted parameters have large differences compared to Keepin’s values, it does not 

mean the fitted parameters are not satisfactory. In fact, they are a good fit, as illustrated 

by very small sums of weighted squared residuals. The comparison shows that the fitted 

data sets from RR are not significantly different from Keepin’s theoretical data sets. 

However, for a small change in data set (generated by increasing A6 by 10%), the newly 

fitted data set resulting from this small change can be significantly different from 

Keepin’s expected values at a 95% confidence level. With the increase of flight time 

and/or decrease of initial count rate, the influence of the change in the counts from short 

decay groups becomes less and less significant on the fitted result. But if the flight time 

is too long, this small change in the counts will no longer have an effect on the fitted 

values, no matter how high the initial count rate because the delayed neutrons from the 

shortest-lived group have decayed away. The fraction of delayed neutrons from the 

shortest-lived group is much higher in pulse mode than in saturation mode for the same 

decay time with the same initial count rates. Thus, the change from short decay group is 

more sensitive to the fitted results in pulse mode and its influence lasts much longer than 

in saturation mode. 

Finally, based on the experimental data sets from saturation and pulse modes, the 

optimization result from the RR algorithm is the best among these four algorithms (MI-

SVD, LM, and QN). It is the same for experimental data sets. The fitted values are 

satisfactory with Keepin’s expected values, but they obviously differ from ENDF/B-
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VII.0 data sets. The experimental data sets are a little different from Keepin’s expected 

values in some periods under a 95% confidence level. This difference may be from the 

low count rate in the experiment and a single experiment data set. It suggests using 

several detectors and running multiple experiments to reduce the statistical error. 
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APPENDIX A 

 

PROGRAM CODES 
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A.1 Matrix Inverse Algorithm 
 

 
!*********** Matrix Inverse with SVD ********************************* 
 USE NUMERICAL_LIBRARIES  
     INTEGER I, J, L, K, M, NN, COUNT, ISEED 
 INTEGER IPATH, LDA, NRA, NCA, LDU, LDV, NT 
 REAL*8 A0(6),R0(6),A(6),R(6),H(6,6),G(6,6),F, DT,TOL 
  REAL*8 UH(6,6),UG(6,6),VH(6,6),VG(6,6),SH(6),SG(6) 
 REAL*8 SHMIN, SHMAX, SGMIN, SGMAX, CVM_H(6,6), CVM_G(6,6) 
 PARAMETER (NN=6,NT=620, IPATH=11,NRA=6,NCA=6) 
 PARAMETER (LDA=NRA, LDU=NRA, LDV=NCA) 
 REAL*8 D(6), E(6), W(NT), D_A(6), D_R(6), DWELL(NT) 

REAL*8 THEORY(NT), MEASURED(NT), STEP_TIME(NT), TEMP(NT), 
REAL*8 CT(NT), T 

C COMMON MEASURED, STEP_TIME, THEORY, A0, R0, DWELL, COUNT 
     
 DATA A0/3.3E-2, 2.19E-1, 1.96E-1, 3.95E-1, 1.15E-1, 4.2E-2/ 
    DATA R0/1.24E-2, 3.05E-2, 1.11E-1, 3.01E-1, 1.14E0, 3.01E0/ 
 TOL=10.*AMACH(6) 
 COUNT=4.0E5     
 DT=0.0 
 
 DO I=1,400 
  STEP_TIME(I) = (REAL(I)-0.5)*0.025 
  DWELL(I)=0.025 
 ENDDO 
 DO I=401,580 
  STEP_TIME(I)=10.0+(REAL(I-400)-0.5)*0.5 
  DWELL(I)=0.5 
 ENDDO 
 DO I=581,NT 
  STEP_TIME(I) = 100.0+(REAL(I-580)-0.5)*5.0 
  DWELL(I)=5.0 
 ENDDO 
 ISEED = -1031501663 
 DO I=1,NT  
    T=STEP_TIME(I)+DT 
    THEORY(I)= COUNT*DWELL(I)* 
   & (A0(1)*EXP(-R0(1)*T) + A0(2)*EXP(-R0(2)*T) 
   &   + A0(3)*EXP(-R0(3)*T) + A0(4)*EXP(-R0(4)*T) 
   &   + A0(5)*EXP(-R0(5)*T) + A0(6)*EXP(-R0(6)*T))  
    RAND=RAN(ISEED)  
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MEASURED(I)=INT(THEORY(I)+SQRT(THEORY(I))*ANORIN(RAND)+0.5) 

 ENDDO  
 DO J=1,6 
  D_A(J)=0. 
  A(J)=A0(J) 
  D_R(J)=0. 
  R(J)=R0(J) 
 ENDDO  
 DO K = 1,10   
  DO J=1,6 
   D(J)=0. 
   E(J)=0. 
    DO M =1,6 
     H(J,M)=0. 
     G(J,M)=0. 
    ENDDO 
  ENDDO  
  F=0.  
 
C *********Define matrices: H(n,m),D(n),E(n,m),G(n)*************** 
  DO I=1,NT  
     T=STEP_TIME(I)+DT 
     TEMP(I)= COUNT*DWELL(I)*(A(1)*EXP(-R(1)*T) 
     &                + A(2)*EXP(-R(2)*T) 
     &                + A(3)*EXP(-R(3)*T) 
     &                + A(5)*EXP(-R(5)*T) 
     &                + A(4)*EXP(-R(4)*T) 
     &                + A(6)*EXP(-R(6)*T))  
     W(I)=1.0/MEASURED(I) 
   DO L=1,6 
   D(L)=D(L)+W(I)*EXP(-R(L)*T)*(MEASURED(I)-TEMP(I)) 
  E(L)=E(L)+W(I)*(MEASURED(I)-TEMP(I))*T*EXP(-R(L)*t)* A(L) 
    DO M=1,6 

H(L,M)=H(L,M)+W(I)*EXP(-R(L)*T)*EXP(-
R(M)*T)*DWELL(I)*COUNT 

        G(L,M)=G(L,M)+W(I)*T*EXP(-R(L)*T)*EXP(-R(M)*T)*(-A(M))*T*A(L) 
     &            *DWELL(I)*COUNT 
    ENDDO 
   ENDDO 
  ENDDO 
 
C     *******Inverse of matrix using singular value decomposition ****** 
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CALL 
DLSVRR(NRA,NCA,H,LDA,IPATH,TOL,IRANK,SH,UH,LDU,VH,LDV) 

CALL 
DLSVRR(NRA,NCA,G,LDA,IPATH,TOL,IRANK,SG,UG,LDU,VG,LDV) 

  SHMAX=0. 
  SGMAX=0. 
  DO J=1,6 
   IF(SH(J).GT.SHMAX) SHMAX=SH(J) 
   IF(SG(J).GT.SGMAX) SGMAX=SG(J) 
  ENDDO 
  SHMIN=SHMAX*1.0E-6 
  SGMIN=SGMAX*1.0E-6 
  DO J=1,6 
   IF(SH(J).LT.SHMIN) SH(J)=0. 
   IF(SG(J).LT.SGMIN) SG(J)=0. 
  ENDDO  
  CALL SVBKSB(UH,SH,VH,NN,NN,NN,NN,D,D_A) 
  CALL SVBKSB(UG,SG,VG,NN,NN,NN,NN,E,D_R) 
  CALL SVDVAR(VH,NN,NN,SH,CVM_H,NN) 
  CALL SVDVAR(VG,NN,NN,SG,CVM_G,NN) 
  DO J=1,6 
   A(J)=A(J)+0.8*D_A(J) 
   R(J)=R(J)+0.8*D_R(J) 
  ENDDO 
 ENDDO 
 
 DO I=1,NT 
   T=STEP_TIME(I)+DT 
   TEMP(I)= COUNT*DWELL(I)*(A(1)*EXP(-R(1)*T) 
     &                + A(2)*EXP(-R(2)*T) 
     &                + A(3)*EXP(-R(3)*T) 
     &                + A(4)*EXP(-R(4)*T) 
     &                + A(5)*EXP(-R(5)*T) 
     &                + A(6)*EXP(-R(6)*T)) 
 
   F=F+(MEASURED(I)-TEMP(I))**2/MEASURED(I) 
 ENDDO 
C ****** Complete one run  *************************************    
  WRITE (6,901) (A(L)/A0(L), L=1,6) 
  WRITE (6,902) (R(L)/R0(L), L=1,6) 
  WRITE (6,903) F 
901  FORMAT("THE YIELD RATIO IS: ", //,6(F12.5,/)) 
902  FORMAT("THE LAMMDA RATIO IS: ", //,6(F12.5,/)) 
903  FORMAT (" THE SQUARE DIFFERENCE F=", F12.5) 



129 

  DO I=1,620 
  WRITE (6,'(F8.3, 3(3X,F10.2))') STEP_TIME(I), THEORY(I), 
     &     MEASURED(I),TEMP(I) 
           IF (I.EQ.400) THEN 
   PAUSE 
  ENDIF   
  ENDDO   
 END  
 
C
 **********************SUBROUTINE******************************
*** 
C    ********************* Singular Value Decomposition ******************** 
 SUBROUTINE SVDVAR(V,MA,NP,W,CVM,NCVM) 
 PARAMETER (MMAX=20) 
 REAL*8 V(NP,NP),W(NP),CVM(NCVM,NCVM),WTI(MMAX) 
 DO 11 I=1,MA 
    WTI(I)=0.0 
    IF(W(I).NE.0.0) WTI(I)=1.0/(W(I)*W(I)) 
11 CONTINUE 
 DO 14 I=1,MA 
    DO 13 J=1,I 
       SUM=0.0 
       DO 12 K=1,MA 
          SUM=SUM+V(I,K)*V(J,K)*WTI(K) 
12      CONTINUE 
    CVM(I,J)=SUM 
   CVM(J,I)=SUM 
13   CONTINUE 
14  CONTINUE 
 RETURN 
 END 
 
C  ********************* Subroutine SVBKSB 
******************************* 
C  ***** Solves A*X=B for a vector X. Where, X=V*[diag(1/wj)]*(U'.B) *** 
 SUBROUTINE SVBKSB(U,W,V,M,N,MP,NP,B,X) 
 PARAMETER (NMAX=20) 
 REAL*8 U(MP,NP),W(NP),V(NP,NP),B(MP),X(NP),TMP(NMAX) 
 
 DO J=1,N 
 S=0. 
  IF(W(J).NE.0.) THEN 
   DO I=1,M 
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    S=S+U(I,J)*B(I) 
   ENDDO 
   S=S/W(J) 
  ENDIF 
 TMP(J)=S 
 ENDDO 
 DO J=1,N 
  S=0. 
  DO JJ=1,N 
   S=S+V(J,JJ)*TMP(JJ) 
  ENDDO 
  X(J)=S 
 ENDDO 
 RETURN 
 END 
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A.2 Levenberg-Marquardt Algorithm 
 
 
!********** Levenberg-Marquardt Algorithm ***************************** 
 USE NUMERICAL_LIBRARIES 
 INTEGER N, I, K, M 
 INTEGER LDFJAC 
 INTEGER IPARAM(7),L, NOUT 
 PARAMETER (LDFJAC=620,NT=620,M=620,N=13) 
 REAL*8 MEASURED(NT),STEP_TIME(NT),THEORY(NT),DWELL(NT),F 
     REAL*8 RPARAM(7), X(13),VALUES(13), XSCALE(13),TF(NT),  
 INTEGER*4 ISEED 
 EXTERNAL FCN   
 REAL*8 FVEC(M),FJAC(M,N),FSCALE(M),TEMP(NT), XGUESS(13) 
 COMMON MEASURED, STEP_TIME, THEORY, VALUES, DWELL 
 DATA VALUES/3.3E-2, 2.19E-1, 1.96E-1, 3.95E-1, 1.15E-1, 4.2E-2, 
   &    1.24E-2, 3.05E-2, 1.11E-1, 3.01E-1, 1.14E0, 3.01E0, 4.0E5/ 
             
 DO I=1,13 
  XGUESS(I)=1.0 
 ENDDO  
 DO I=1,400 
  STEP_TIME(I) = (REAL(I)-0.5)*0.025 
  DWELL(I)=0.025 
 ENDDO  
 DO I=401,580 
  STEP_TIME(I)=10.0+(REAL(I-400)-0.5)*0.5 
  DWELL(I)=0.5 
 ENDDO 
 DO I=581,NT 
  STEP_TIME(I) = 100.0+(REAL(I-580)-0.5)*5.0 
  DWELL(I)=5.0 
 ENDDO 
 DO I=1,13 
  XSCALE(I) =0.05 
 ENDDO  
 ISEED =-10  
 DO K=1,1 
  CALL DISTRIBUTE(VALUES,ISEED) 
 
C ********** CHANGE DIFFERENT ISEED FOR EACH LOOP  ********** 
  F=0    
  IPARAM(1) = 1 
  IPARAM(3) = 200000 
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  IPARAM(4) = 200000 
  IPARAM(5) = 200000 
  IPARAM(6) = 1 
  FSCALE = 0.005 
  CALL DU4LSF (IPARAM,RPARAM) 
  RPARAM(4)=2.0*RPARAM(4) 
  CALL DUNLSF (FCN,M,N,XGUESS,XSCALE,FSCALE,IPARAM, 
     &  RPARAM,X,FVEC,FJAC,LDFJAC) 
  CALL UMACH (2,NOUT) 
  F=0  
  DO I=1, NT 
  T=STEP_TIME(I) 
  TEMP(I)= X(13)*VALUES(13)*DWELL(I)* 
     &               (X(1)*VALUES(1)*EXP(-X(7)*VALUES(7)*T) 
     &           +    X(2)*VALUES(2)*EXP(-X(8)*VALUES(8)*T) 
     &           +    X(3)*VALUES(3)*EXP(-X(9)*VALUES(9)*T) 
     &           +    X(4)*VALUES(4)*EXP(-X(10)*VALUES(10)*T) 
     &           +    X(5)*VALUES(5)*EXP(-X(11)*VALUES(11)*T) 
     &           +    X(6)*VALUES(6)*EXP(-X(12)*VALUES(12)*T)) 
  F=F+(MEASURED(I)-TEMP(I))**2/MEASURED(I) 
  ENDDO     
  WRITE (6,901) (X(L), L=1,13) 
901  FORMAT("THE SOLUTION IS ", //,13(F12.5,/)) 
  WRITE (*,*) F  
 ENDDO  
 DO I=1,NT 
  WRITE(*,903) STEP_TIME(I), THEORY(I), MEASURED(I),TEMP(I) 
903  FORMAT(3X,F8.3,3(3X,F12.2))    
  IF (I.EQ.200) THEN  
  PAUSE 
  ENDIF 
 ENDDO 
 END 
 
C **********************SUBROUTINE****************************** 
C fills the common block with values for measured and theory 
 SUBROUTINE DISTRIBUTE(Y,ISEED) 
 PARAMETER (NT=620) 
 REAL*8 THEORY(NT), VALUES(13) 
 REAL*8 T, Y(13), STEP_TIME(NT), MEASURED(NT), DWELL(NT) 
 REAL*4 RAND 
 INTEGER N, I 
 INTEGER*4 ISEED 
 COMMON MEASURED, STEP_TIME, THEORY, VALUES, DWELL 
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 DO I=1,NT 
  T=STEP_TIME(I) 
  THEORY(I)= Y(13)*DWELL(I)* 
     &  (Y(1)*EXP(-Y(7)*T) + Y(2)*EXP(-Y(8)*T) 
     & + Y(3)*EXP(-Y(9)*T) + Y(4)*EXP(-Y(10)*T) 
     & + Y(5)*EXP(-Y(11)*T)+ Y(6)*EXP(-Y(12)*T))  
  RAND=RAN(ISEED) 
 MEASURED(I)=INT(THEORY(I)+SQRT(THEORY(I))*ANORIN(RAND)+0.5)
  
 ENDDO 
 RETURN 
 END 
 
C *********************DEFINE FUNCTION********************** 
 SUBROUTINE FCN(J,N,X,TF) 
 PARAMETER (NT=620) 
 INTEGER N,I,J 
 REAL*8 MEASURED(NT),STEP_TIME(NT),THEORY(NT),VALUES(13) 
 REAL*8 X(13),TF(NT),TEMP(NT),DWELL(NT),T 
 COMMON MEASURED, STEP_TIME, THEORY, VALUES, DWELL 
  
 DO I=1,NT 
  T=STEP_TIME(I) 
  TEMP(I)= X(13)*VALUES(13)*DWELL(I)* 
     &             (X(1)*VALUES(1)*EXP(-X(7)*VALUES(7)*T) 
     &         +    X(2)*VALUES(2)*EXP(-X(8)*VALUES(8)*T) 
     &         +    X(3)*VALUES(3)*EXP(-X(9)*VALUES(9)*T) 
     &         +    X(4)*VALUES(4)*EXP(-X(10)*VALUES(10)*T) 
     &         +    X(5)*VALUES(5)*EXP(-X(11)*VALUES(11)*T) 
     &         +    X(6)*VALUES(6)*EXP(-X(12)*VALUES(12)*T)) 
  TF(I)=(MEASURED(I)-TEMP(I))/SQRT(MEASURED(I)) 
 ENDDO 
 RETURN 
 END 
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A.3 Quasi-Newton Algorithm 
 

 
!********** Quasi-Newton Algorithm ******************************** 
 USE NUMERICAL_LIBRARIES  
 INTEGER N, I 
 INTEGER IPARAM(7),L, NOUT 
 PARAMETER (N=13, NT=620) 
 REAL*8 MEASURED(NT), STEP_TIME(NT), THEORY(NT),F,DWELL(NT) 
 REAL*8 FSCALE, RPARAM(7), X(13),VALUES(13), XSCALE(13), Y(13) 
 REAL*8 T, TEMP, F_1 
 INTEGER*4 ISEED 
 EXTERNAL DIFFSQUARES  
 COMMON MEASURED, STEP_TIME, THEORY, VALUES, DWELL 
 DATA VALUES/3.3E-2, 2.19E-1, 1.96E-1, 3.95E-1, 1.15E-1, 4.2E-2, 
   &     1.24E-2, 3.05E-2, 1.11E-1, 3.01E-1, 1.14E0, 3.01E0, 4.0E5/ 
  
 DO I=1,400 
  STEP_TIME(I) = (REAL(I)-0.5)*0.025 
  DWELL(I) = 0.025 
 ENDDO 
 DO I=401,580 
  STEP_TIME(I)=10.0+(REAL(I-400)-0.5)*0.5 
  DWELL(I) = 0.5 
 ENDDO 
 DO I=581,NT 
  STEP_TIME(I) = 100.0+(REAL(I-580)-0.5)*5.0 
  DWELL(I) = 5.0 
 ENDDO 
 DO I=1,13 
  Y(I) = 1.0 
  XSCALE(I) =0.5 
 ENDDO 
 ISEED =774385225 
  CALL DISTRIBUTE(VALUES,ISEED) 
  IPARAM(1) = 1 
  IPARAM(3) = 20000 
  IPARAM(4) = 20000 
  IPARAM(5) = 20000 
  IPARAM(6) = 1 
  FSCALE =0.05 
  CALL DIFFSQUARES(N,Y, F_1) 

CALL DUMINF(DIFFSQUARES,N,Y, XSCALE, FSCALE,IPARAM, 
RPARAM,X,F) 
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  RPARAM(1)=2.0*RPARAM(1) 
  CALL UMACH (2, NOUT) 
  WRITE (6,901) (X(L), L=1,13) 
901  FORMAT("THE SOLUTION IS ", //,13(F12.5,/)) 
  WRITE(6,*) F  
 DO I=1,NT 
  T=STEP_TIME(I) 
  TEMP= X(13)*VALUES(13)*DWELL(I)* 
     &           (X(1)*VALUES(1)*EXP(-X(7)*VALUES(7)*T) 
     &            + X(2)*VALUES(2)*EXP(-X(8)*VALUES(8)*T) 
     &            + X(3)*VALUES(3)*EXP(-X(9)*VALUES(9)*T) 
     &            + X(4)*VALUES(4)*EXP(-X(10)*VALUES(10)*T) 
     &            + X(5)*VALUES(5)*EXP(-X(11)*VALUES(11)*T) 
     &            + X(6)*VALUES(6)*EXP(-X(12)*VALUES(12)*T)) 
     WRITE (6,'(F8.3,3(1F12.2))') STEP_TIME(I), THEORY(I),  
     &      MEASURED(I),TEMP 
  IF (I.EQ.200) THEN 
   PAUSE 
  ENDIF 
 ENDDO 
 END 
 
C **********************SUBROUTINE***************************** 
 SUBROUTINE DISTRIBUTE(Y,ISEED) 
 PARAMETER (NT=620) 
 REAL*8 THEORY(NT),VALUES(13) ,MEASURED(NT) 
 REAL*8 T, Y(13),STEP_TIME(NT),DWELL(NT) 
 REAL*4 RAND 
 INTEGER N, I 
 INTEGER*4 ISEED 
 COMMON MEASURED, STEP_TIME, THEORY, VALUES, DWELL 
 DO I=1,NT 
  T=STEP_TIME(I) 
  THEORY(I)= Y(13)*DWELL(I)*(Y(1)*EXP(-Y(7)*T) 
     &          + Y(2)*EXP(-Y(8)*T) + Y(3)*EXP(-Y(9)*T) 
     &          + Y(4)*EXP(-Y(10)*T) + Y(5)*EXP(-Y(11)*T) 
     &          + Y(6)*EXP(-Y(12)*T)) 
  RAND=RAN(ISEED) 
 MEASURED(I)=INT(THEORY(I)+SQRT(THEORY(I))*ANORIN(RAND)+0.5) 
 ENDDO 
 RETURN 
 END 
 
C *********************DEFINE FUNCTION********************** 
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 SUBROUTINE DIFFSQUARES(N,X,F) 
 INTEGER N, I 
 PARAMETER (NT=620) 
 REAL*8 MEASURED(NT),STEP_TIME(NT),THEORY(NT),VALUES(13) 
 REAL*8 X(13),F,TEMP,TEMP2,T,DWELL(NT) 
 COMMON MEASURED, STEP_TIME, THEORY, VALUES, DWELL 
  F=0.0 
  DO I=1,NT 
  T=STEP_TIME(I) 
  TEMP= X(13)*VALUES(13)*DWELL(I)* 
     &           (X(1)*VALUES(1)*EXP(-X(7)*VALUES(7)*T) 
     &          + X(2)*VALUES(2)*EXP(-X(8)*VALUES(8)*T) 
     &          + X(3)*VALUES(3)*EXP(-X(9)*VALUES(9)*T) 
     &          + X(4)*VALUES(4)*EXP(-X(10)*VALUES(10)*T) 
     &          + X(5)*VALUES(5)*EXP(-X(11)*VALUES(11)*T) 
     &          + X(6)*VALUES(6)*EXP(-X(12)*VALUES(12)*T)) 
  F=F+(MEASURED(I)-TEMP)**2/MEASURED(I) 
  ENDDO 
 RETURN 
 END 
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A.4 Ridge Regression Algorithm 
 
 

% ****  Ridge Regression for saturation irradiation mode  ***** 
clear all; 
format short e 
a10=0.033;a20=0.219;a30=0.196;a40=0.395;a50=0.115;a60=0.042; 
r10=0.0124;r20=0.0305;r30=0.111;r40=0.301;r50=1.14;r60=3.01; 
A0=[a10; a20; a30; a40; a50; a60]; 
R0=[r10; r20; r30; r40; r50; r60]; 
  
% *** Define the initial guessed values, such as records number and  
%  flight time, background noise b, original counts, etc. *********** 
b=1.0; 
v0=[A0; R0;b];  
count=4.0e5; 
dt=0.0; 
for i=1:13 
    x0(i)=1.0; 
end 
x=x0'; 
 
%  To read the measured counts  *************** 
[ti, keepin, measured, fit]=textread('p10.txt'); 
rn=size(measured,1); 
 
%  For saturation mode, call [f,J,temp]=LMfun13noiseRATIO(x) 
%  For pulse mode, call [f,J,temp]=LMfun13noiseRATIO(x); 
%  It should be the same function name when it is called later. 
 
[f,J,temp]=LMfun13noiseRATIO(x); 
new_f=f; 
old_f=700.0; 
loop=0; 
rx=size(x,1); 
  
dn=dt/0.025; 
for i=1:rn 
    if i<(401-dn) 
       t0(i)=(i-0.5)*0.025+dt; 
       dwell(i)=0.025; 
    elseif i<(581-dn) 
       t0(i)=10.0+(i-400-0.5+dn)*0.5; 
       dwell(i)=0.5; 
    else 
       t0(i)=100.0+(i-580-0.5+dn)*5.0; 
       dwell(i)=5.0; 
    end     
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    w(i)=1.0/measured(i);    
end 
  
while abs((new_f-old_f)/old_f)>=1.0e-4 
    [f,J,temp]=LMfun13noiseRATIO(x); 
    old_f=f; 
    for i=1:rn  
        delta_y(i,1)=sqrt(w(i))*(measured(i)-temp(i));  

end  
 

%  *************** Ridge Regression method ************ 
%  If h is decided by GCV method, call this function: 
%  [delta_x, rss, delta_x_ss, dof, h, G]=ridge(delta_y, J); 
 
%  If h is given by L-Curve, call this function: 
h=1.2; 
[delta_x,rss,delta_x_ss,dof]=ridge(delta_y, J, h); 
%  ********* end of Ridge Regression **************** 
 
    for i=1:12 
        x(i)=x(i)+delta_x(i); 
    end 
    x(13)=delta_x(13); 
    [f,J,temp]=LMfun13noiseRATIO(x); 
    new_f=f; 
    loop=loop+1; 
end 
%  End "while" loop.  
  
% ********** Calculate Root of mean square error  ******** 
[f, J, temp]=LMfun13noiseRATIO(x); 
chi_square=(J*delta_x-delta_y)'*(J*delta_x-delta_y)+h*h*delta_x'*delta_x; 
f0=(J*delta_x-delta_y)'*(J*delta_x-delta_y); 
AA=inv(J'*J+h*h*eye(rx))*J'; 
VAR1=f/(rn-rx)*diag(AA*AA'); 
BIAS1=-h*h*inv(J'*J+h*h*eye(rx))*x; 
RMSE=sqrt(VAR1+BIAS1.*BIAS1).*v0; 
  
   
% *******  Define the function for saturation mode ********* 
function [f, J, temp]=LMfun13noiseRATIO(x) 
count=4.0e5; 
dt=0.0; 
a10=0.033;a20=0.219;a30=0.196;a40=0.395;a50=0.115;a60=0.042; 
r10=0.0124;r20=0.0305;r30=0.111;r40=0.301;r50=1.14;r60=3.01; 
b=1.0; 
va0=[a10; a20; a30; a40; a50; a60]; 
vr0=[r10; r20; r30; r40; r50; r60]; 
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v0=[va0; vr0; b]; 
f=0.0; 
 
[ti, keepin, measured, fit]=textread ('p10.txt'); 
[rn]=size(measured); 
dn=dt/0.025; 
 
for i=1:rn 
    if i<(401-dn) 
       t0(i)=(i-0.5)*0.025+dt; 
       dwell(i)=0.025; 
    elseif i<(581-dn) 
       t0(i)=10.0+(i-400-0.5+dn)*0.5; 
       dwell(i)=0.5; 
    else 
       t0(i)=100.0+(i-580-0.5+dn)*5.0; 
       dwell(i)=5.0; 
    end 
    t=t0(i); 
    w(i)=1.0/measured(i); 
    temp(i)=count*dwell(i)*(x(1)*v0(1)*exp(-x(7)*v0(7)*t)+x(2)*v0(2)*exp(-x(8)*v0(8)*t)+… 

x(3)*v0(3)*exp(-x(9)*v0(9)*t)+x(4)*v0(4)*exp(-x(10)*v0(10)*t)+… 
x(5)*v0(5)*exp(-x(11)*v0(11)*t)+x(6)*v0(6)*exp(-x(12)*v0(12)*t)); 

    f=f+w(i)*(measured(i)-temp(i)-x(13)*v0(13)*dwell(i))^2.0; 
end 
  
%  ************** Compute Jacobian matrix jacob(i,np)  ************* 
%  For Modified LM, delta_x=inv([J b]'*[J b]+a*I)*[J b]'*delta_y.  
%  Here, a is the regulator number,and J is the weighted Jacobian matrix 
%  with sqrt(w(i))*jacob(i,j)=J(i,j).   
%  delta_y(i)=sqrt(w(i))*(measured(i)-temp(i)). There are 13 unknown  
%  parameters, including background count rate b. 
  
for i=1:rn 
    t=t0(i); 
    w(i)=1.0/measured(i); 
    for k=1:13 
        if k<=6 
            jacob(i,k)=count*dwell(i)*v0(k)*exp(-x(k+6)*v0(k+6)*t); 
        elseif k<=12 

jacob(i,k)=(-t*v0(k))*x(k-6)*v0(k-6)*count*dwell(i)*exp(-x(k)*v0(k)*t); 
        else 
            jacob(i,k)=dwell(i)*v0(k); 
        end 
        J(i,k)=jacob(i,k)*sqrt(w(i)); 
    end     
end 
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% *******  Define the function for pulse mode ********* 
function [f,J,temp]=LMfun13pulseRATIO(x) 
count=4.0e5; 
dt=0; 
a10=0.033;a20=0.219;a30=0.196;a40=0.395;a50=0.115;a60=0.042; 
r10=0.0124;r20=0.0305;r30=0.111;r40=0.301;r50=1.14;r60=3.01; 
b=1.0; 
va0=[a10; a20; a30; a40; a50; a60]; 
vr0=[r10; r20; r30; r40; r50; r60]; 
v0=[va0;vr0;b]; 
f=0.0; 
 
%  Read Poisson data, which is generated from the corresponding seed in FORTRAN code. 
[ti, keepin, measured, fit]=textread('pulse2.txt'); 
 
[rn]=size(measured); 
dn=dt/0.025; 
 
for i=1:rn 
    if i<(401-dn) 
       t0(i)=(i-0.5)*0.025+dt; 
       dwell(i)=0.025; 
    elseif i<(581-dn) 
       t0(i)=10.0+(i-400-0.5+dn)*0.5; 
       dwell(i)=0.5; 
    else 
       t0(i)=100.0+(i-580-0.5+dn)*5.0; 
       dwell(i)=5.0; 
    end 
    t=t0(i); 
    w(i)=1.0/measured(i); 
    temp(i)=count*dwell(i)*(x(1)*v0(1)*x(7)*v0(7)*exp(-x(7)*v0(7)*t)+… 

x(2)*v0(2)*x(8)*v0(8)*exp(-x(8)*v0(8)*t)+… 
x(3)*v0(3)*x(9)*v0(9)*exp(-x(9)*v0(9)*t)+… 
x(4)*v0(4)*x(10)*v0(10)*exp(-x(10)*v0(10)*t)+… 
x(5)*v0(5)*x(11)*v0(11)*exp(-x(11)*v0(11)*t)+… 
x(6)*v0(6)*x(12)*v0(12)*exp(-x(12)*v0(12)*t));  

    f=f+w(i)*(measured(i)-temp(i)-x(13)*v0(13)*dwell(i))^2.0;     
end 
  
%  ************** Compute Jacobian matrix jacob(i, np)  ************* 
%  For Modified LM,delta_x=inv([J b]'*[J b]+a*I)*[J b]'*delta_y.  
% Here, a is the regulator number,and J is the weighted Jacobian matrix 
% with sqrt(w(i))*jacob(i,j)=J(i,j).   
% delta_y(i)=sqrt(w(i))*(measured(i)-temp(i)). There are 13 unknown  
% parameters, including background count rate b. 
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for i=1:rn 
    t=t0(i); 
    w(i)=1.0/measured(i); 
    for k=1:13 
        if k<=6 
            jacob(i,k)=count*dwell(i)*v0(k)*x(k+6)*v0(k+6)*exp(-x(k+6)*v0(k+6)*t); 
        elseif k<=12 

jacob(i,k)=count*dwell(i)*x(k-6)*v0(k-6)*v0(k)*exp(-x(k)*v0(k)*t)*… 
(1.0-t*x(k)*v0(k)); 

        else 
            jacob(i,k)=dwell(i)*v0(k); 
        end 
        J(i,k)=jacob(i,k)*sqrt(w(i)); 
    end     
end 

 
 

%   ************* Define function ridge  **************** 
function [Xh, rss, Xh_ss, dof, HGout] = ridge(B, A, h) 
 
%    For a linear model: B = A*X + noise 
%    Given a regularization parameter h,  
%    Just call: [Xh, rss, Xh_ss, dof] = ridge (B, A, h)  
%    Xh is the vector of unknown parameters 
%    If no regularization parameter h is given, just call: 
%            [Xh, rss, Xh_ss, dof, h, G] = ridge(B, A); 
 
  [n, p]= size(A);  
  q = min(n, p); 
  if nargin < 3 
    hh = 1; 
  else 
    hh = length(h); 
  end 
  Xh = zeros (p, hh); 
  rss = zeros (hh, 1);  
  Xh_ss = zeros (hh, 1); 
  dof = zeros (hh, 1);   
  [U, S, V] = svd (A, 0); 
  s = diag(S); 
  s2 = s.^2;  
  fc = U(:, 1:q)'*g; 
  fs= s .* fc;   
  if nargin < 3 
    [h, G] = gcv(U, s, g); 
    HGout(1) = {h}; 
    HGout(2) = {G}; 
  end 
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  for j = 1:hh 
     Xh(:, j) = V(:, 1:q) * (fs./ (s2 + h(j)^2)); 
     Xh_ss(j) = sum(Xh(:, j).^2); 
     rss(j) = h(j)^4 * sum(fc.^2 ./ (s2 + h(j)^2).^2); 
     dof(j) = n - sum(s2./(s2 + h(j)^2)); 
  end 
  if (n > p) 
     rss = rss + sum((g - U(:, 1:q)*fc).^2); 
  end 

 
%  *********  Define function GCV *************** 
% GCV  Generalized cross-validation. 
 
function [rpar, G] = gcv(U, s, g) 
  [n, q] = size(U); 
  s = s(:); 
  if length (s) ~= q  
    error ('The value s should be the same vector of singular values.'); 
  end 
  fc = U(:, 1:q)'*g; 
  s2 = s.^2;  
  rss0 = 0; 
  if n > q   
    rss0 = sum((g - U(:, 1:q)*fc).^2); 
  end   
    h_tol = ((q^2 + q + 1)*eps)^(1/2); 
    h_max = max(s); 

h_min = min(s) * h_tol; 
  

% Find the minimized value of GCV function 
    minopt = optimset('TolX', h_tol, 'Display', 'off'); 
    [rpar, G] = fminbnd('gcvfunc', h_min, h_max, minopt, s2, fc, rss0, n-q); 

 
% *********  Define function G  ********************* 
function G = gcvfunc (h, s2, fc, rss0, dof0) 
  f = h^2 ./ (s2 + h^2);  
  G = (norm (f.*fc)^2 + rss0) / (dof0 + sum(f))^2; 
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A.5 Codes for L-curve and GCV Curve 
 

%  ***** This appendix contains the code used to plot L-curve and GCV curve.  
 
B = [ ];  %  !! Matrix B is obtained from the results in previous algorithms. 
A = [ ];  %   !!Matrix A is obtained from the results in previous algorithms. 
% End of data reading. 
 
[n, p]= size(A); 
q = min(n, p);  
noise_std = .001; 
[U,s,V]= svd(X,0); 
s = diag(s); 
nh= 200;     % number of regularization parameters 
h_max = s(1); 
h_min= (eps)^(1/3); 
h= h_max * (h_min/h_max).^( [0:nh-1] / (nh-1) ); 
  
[Xh, rss_h, Xh_ss, dof_h] = ridge (B, A, h); 
% get regularization parameter from discrepancy principle 
[d, idis] = min(abs( rss_h - n* noise_std^2 )); 
h_dis = h(idis); 
disp(['From discrepancy principle: h = ', num2str(h_dis)]) 
  
% plot the L-curve 
h_l = 0.5;    % corner of L-curve 
% get corresponding estimate of density variations 
[Xhl, rss_hl, Xhl_ss] = ridge (B, A, h_l); 
ihs = zeros(q, 1); 
for k = 1:q 
  [dum, i] = min(abs( s(k)-h )); 
  ihs(k) = i;  
end 
figure(1) 
clf 
loglog(rss_h, Xh_ss, 'k-', ... 
       rss_h(ihs), Xh_ss(ihs), 'kx') 
hold on 
% label the singular values 
for k = 1:q    
  hd = text(rss_h(ihs(k)), Xh_ss(ihs(k)), num2str(h(ihs(k)))); 
  set(hd, 'VerticalAlignment', 'bottom') 
end 
% mark corner of L-curve 
loglog([1e-3 rss_hl], [Xhl_ss Xhl_ss], 'k--', ... 
       [rss_hl rss_hl], [1 Xhl_ss], 'k--') 
set(gca, 'Box', 'on') 
axis([1e2  1e3  1e-12 1e3]) 
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xlabel('Residual SS (||AX-b||**2)') 
ylabel('Estimate SS (||X||**2)') 
disp(['From L-curve: h = ', num2str(h_l)]); 
  
% plot GCV  
G = rss_h ./ dof_h.^2; 
[f_hgcv, rss_hgcv, f_hgcv_ss, dof_hgcv, h_gcv, G_hgcv] = ... 
    ridge(B, A); 
disp(['From GCV: h = ', num2str(h_gcv)]); 
figure(2) 
clf 
loglog(h, G, 'k-', ... 
       [h_gcv h_gcv], [10^(-3) G_hgcv], 'k--') 
set(gca, 'Box', 'on') 
xlabel('Regularization parameter h') 
ylabel('GCV function') 
axis([1e-5 1e6 2e-4 1e-2]) 
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APPENDIX B  
 

VALIDATION OF PROGRAM CODES 
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To verify the validation of the program codes (Matrix Inverse with SVD, 

Levenberg-Marquardt, quasi-Newton, Ridge Regression), a nonlinear least squares 

equation is listed as an example to check the calculated results from above numerical 

methods. The function is: 

2 2
1 2 1F = 2(x  - 2x )  + (1 - x )  

Set the partial differentiation of function F with respect to x1 and x2 to zero for 

optimization. The new equation can be expressed in matrix form as: 

1

2

1 3 4

0 1 2

x

x

     
         

 

The above matrix will be used in Matrix Inverse and Ridge Regression methods. 

The codes are listed in Appendices B.1, B.2, B.3 (FORTRAN), and B.4 (MATLAB). 

Set the initial guessed values as: x1=2.0, x2=2.0, the calculated results are: 

Algorithm x1 x2 F 

MI-SVD 1.0 0.5 0 
LM 1.0 0.5 0 
QN 1.0 0.5 0 
RR 1.0 0.5 5.92E-31

 

Note: The F value from RR algorithm is not zero. This is due to the machine 

precision. It is almost equal to zero. 
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B.1 Matrix Inverse Algorithm 

USE NUMBERICAL-LIBRARIES  
      INTEGER I,J,L,K,M,NN,NM,COUNT 
 INTEGER IPATH,LDA,NRA,NCA,LDU,LDV 
 REAL*8 X0(2),X(2),H(2,2),F,TOL    
  REAL*8 UH(2,2),VH(2,2),SH(2),D(2) 
 REAL*8 SHMIN, SHMAX, CVM_H(2,2) 
 PARAMETER (NM=2,NN=2,NT=2, IPATH=11) 

    PARAMETER (NRA=2,NCA=2,LDA=NRA,LDU=NRA,LDV=NCA) 
  
 TOL=10.*AMACH(6)   
 H(1,1)=3.0   
 H(1,2)=-4.0 
 H(2,1)=1.0 
 H(2,2)=-2.0     
 D(1)=1.0 
 D(2)=0.0  
C  ****************** Matrix Inverse ************************** 

CALL 
DLSVRR(NRA,NCA,H,LDA,IPATH,TOL,IRANK,SH,UH,LDU,VH,LDV) 

 SHMAX=0.   
 DO J=1,2 
  IF(SH(J).GT.SHMAX) SHMAX=SH(J)    
 ENDDO 
 SHMIN=SHMAX*1.0E-8  
 DO J=1,2 
  IF(SH(J).LT.SHMIN) SH(J)=0. 
 ENDDO 
 CALL SVBKSB(UH,SH,VH,NM,NN,NM,NN,D,X) 
 CALL SVDVAR(VH,NN,NN,SH,CVM_H,NN) 
 F=2.0*(X(1)-2.0*X(2))**2+(1.0-X(1))**2 
 
 WRITE (*,901) (X(J), J=1,2)  
 WRITE (*,903) F 
901 FORMAT("THE SOLUTION IS:  ", //,2(F12.5,/)) 
903 FORMAT (" FUNCTION VALUE F=",F12.5) 
 END 
C  ********** SUBROUTINE SVDVAR ******************* 
 SUBROUTINE SVDVAR(V,MA,NP,WT,CVM,NCVM) 
 PARAMETER (MMAX=20) 
 REAL*8 V(NP,NP),WT(NP),CVM(NCVM,NCVM),WTI(MMAX) 
 DO I=1,MA 
  WTI(I)=0.0 
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  IF(WT(I).NE.0.0) WTI(I)=1.0/(WT(I)*WT(I)) 
 ENDDO 
 DO I=1,MA  
  DO J=1,I 
   SUM=0.0 
   DO K=1,MA 
    SUM=SUM+V(I,K)*V(J,K)*WTI(K) 
   ENDDO 
   CVM(I,J)=SUM 
   CVM(J,I)=SUM 
  ENDDO 
 ENDDO 
 RETURN 
 END 
 
C  ********************* Subroutine SVBKSB ******************** 
C  Solves A.X=B for a vector X. Where X=V.[diag(1/wj)].(U'.B)  
  
 SUBROUTINE SVBKSB(U,WT,V,M,N,MP,NP,B,X) 
 PARAMETER (NMAX=20) 
 REAL*8 U(MP,NP),WT(NP),V(NP,NP),B(MP),X(NP),TMP(NMAX) 
 DO J=1,N 
 S=0. 
  IF(WT(J).NE.0.) THEN 
   DO I=1,M 
    S=S+U(I,J)*B(I) 
   ENDDO 
   S=S/WT(J) 
  ENDIF 
 TMP(J)=S 
 ENDDO 
 DO J=1,N 
  S=0. 
  DO JJ=1,N 
   S=S+V(J,JJ)*TMP(JJ) 
  ENDDO 
  X(J)=S 
 ENDDO 
 RETURN 
 END 
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B.2 Levenberg-Marquardt Algorithm 
 
 USE NUMERICAL_LIBRARIES 
 INTEGER N,I,K,M,LDFJAC,NT 
 PARAMETER (LDFJAC=2,M=2,N=2,NT=2) 
 INTEGER IPARAM(7),L,NOUT,F  
      REAL*8 RPARAM(7), X(N),XSCALE(N),TF(NT),XGUESS(N) 
 EXTERNAL FCN   
 REAL*8 FVEC(M),FJAC(M,N),FSCALE(M)  
C ******** SET INITIAL GUESS VALUES  ********************** 
 DO I=1,2 
  XGUESS(I)=2.0 
  XSCALE(I)=0.5 
 ENDDO 
 IPARAM(1) = 1 
 IPARAM(3) = 2000 
 IPARAM(4) = 2000 
 IPARAM(5) = 2000 
 IPARAM(6) = 1 
 FSCALE =0.005 
 CALL DU4LSF (IPARAM,RPARAM) 
 RPARAM(4)=2.0*RPARAM(4) 
 CALL DUNLSF (FCN,M,N,XGUESS,XSCALE,FSCALE,IPARAM, 
     & RPARAM,X,FVEC,FJAC,LDFJAC) 
 CALL UMACH (2,NOUT)  

F=2.0*(X(1)-2.0*X(2))**2+(1.0-X(1))**2 
     

 WRITE (6,901) (X(L), L=1,2) 
901 FORMAT("THE SOLUTION IS ", //,2(F12.5,/)) 
 WRITE (6,902) F 
902 FORMAT ("THE FUNCTION VALUE F:",F12.5) 
 END 
 
C *********************DEFINE FUNCTION********************** 
 SUBROUTINE FCN(J,N,X,TF) 
 INTEGER N,I,J 
            PARAMETER (NT=2) 
 REAL*8 VALUES(2), X(2),TF(NT) 
 TF(1)=SQRT(2.0)*(X(1)-2.0*X(2)) 
 TF(2)=1-X(1) 
 RETURN 
 END  
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B.3 Quasi-Newton Algorithm 
 
USE NUMERICAL_LIBRARIES  
 INTEGER N,I,NT 
 PARAMETER (N=2,NT=2) 
 INTEGER IPARAM(7),L, NOUT 
 REAL*8 F,FSCALE, RPARAM(7),X(2),XSCALE(2),Y(2) 
 EXTERNAL DIFFSQUARES  
 
 DO I=1,2 
    Y(I) = 2.0 
    XSCALE(I) =50.0 
 ENDDO     
 IPARAM(1) = 1 
 IPARAM(3) = 2000 
 IPARAM(4) = 2000 
 IPARAM(5) = 2000 
 IPARAM(6) = 1 
 FSCALE =0.5 
 
 CALL DIFFSQUARES(N,Y,F) 
 CALL DUMINF(DIFFSQUARES,N,Y, XSCALE, FSCALE,IPARAM, 
RPARAM,X,F) 
 RPARAM(1)=2.0*RPARAM(1) 
 CALL UMACH (2, NOUT) 
 WRITE (6,901) (X(L), L=1,2) 
901 FORMAT("THE SOLUTION IS ", //,2(F12.5,/)) 
 WRITE (6,902) F 
902 FORMAT ("THE FUNCTION VALUE F:",F12.5) 
 F=2.0*(X(1)-2.0*X(2))**2+(1.0-X(1))**2 
 END 
 
C ******************** DEFINE FUNCTION ******************** 
 SUBROUTINE DIFFSQUARES(N,X,F) 
 INTEGER N       
 REAL*8 X(2),F  
 
 F=2.0*(X(1)-2.0*X(2))**2+(1.0-X(1))**2 
 RETURN 
 END 
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B.4 Ridge Regression Algorithm 
 
clear all; 
format short e 
% *** Define the initial guessed values ********  
for i=1:2 
    x0(i)=2.0; 
end 
x=x0'; 
[f,J]=LMfun13noiseRATIO(x); 
[f,J]=LMfun13noiseRATIO(x);     
    for i=1:2         
        delta_y(1,1)=1.0; 
        delta_y(2,1)=0.0; 
    end 
%  regularization method  ************************** 
 %[delta_x,rss,delta_x_ss,dof,h,G]=ridge(delta_y,J); 
h=0.0; 
[delta_x,rss,delta_x_ss,dof]=ridge(delta_y,J,h); 
for i=1:2 
    x(i)=delta_x(i); 
end 
%  ********* end of Ridge Regression **************** 
    [f,J]=LMfun13noiseRATIO(x);     
  
function [f,J]=LMfun13noiseRATIO(x) 
  
f=2.0*(x(1)-2.0*x(2))^2+(1.0-x(1))^2; 
%  ********* Jacobian matrix J(i,np)  ********* 
J(1,1)=3.0; 
J(1,2)=-4.0; 
J(2,1)=1.0; 
J(2,2)=-2.0; 
 
Note: The function “ridge” is the same as that in Appendix A.4 
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APPENDIX C 
 

EXPERIMENTAL DATA 
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Saturation Mode Pulse Mode 

Time Counts Time Counts Time Counts Time Counts Time Counts Time Counts

0.468 997 1.393 825 2.318 715 0.475 1133 1.4 760 2.325 555 
0.493 1001 1.418 808 2.343 660 0.5 1083 1.425 749 2.35 586 

0.518 973 1.443 808 2.368 693 0.525 1092 1.45 783 2.375 552 

0.543 982 1.468 776 2.393 692 0.55 1115 1.475 771 2.4 557 

0.568 925 1.493 800 2.418 682 0.575 1107 1.5 748 2.425 570 

0.593 986 1.518 775 2.443 687 0.6 1103 1.525 699 2.45 517 

0.618 955 1.543 812 2.468 704 0.625 1075 1.55 727 2.475 533 

0.643 904 1.568 770 2.493 661 0.65 1061 1.575 674 2.5 513 

0.668 975 1.593 786 2.518 701 0.675 1064 1.6 700 2.525 509 

0.693 960 1.618 799 2.543 703 0.7 1031 1.625 682 2.55 493 

0.718 924 1.643 735 2.568 645 0.725 1041 1.65 733 2.575 513 

0.743 936 1.668 739 2.593 661 0.75 978 1.675 680 2.6 548 

0.768 909 1.693 762 2.618 653 0.775 965 1.7 691 2.625 526 

0.793 916 1.718 760 2.643 709 0.8 977 1.725 726 2.65 511 

0.818 934 1.743 761 2.668 658 0.825 957 1.75 630 2.675 505 

0.843 950 1.768 750 2.693 690 0.85 1001 1.775 681 2.7 517 

0.868 951 1.793 746 2.718 653 0.875 966 1.8 629 2.725 481 

0.893 877 1.818 782 2.743 711 0.9 915 1.825 634 2.75 468 

0.918 935 1.843 741 2.768 661 0.925 899 1.85 614 2.775 481 

0.943 892 1.868 749 2.793 657 0.95 872 1.875 666 2.8 470 

0.968 962 1.893 745 2.818 639 0.975 865 1.9 616 2.825 481 

0.993 959 1.918 725 2.843 671 1 854 1.925 641 2.85 504 

1.018 887 1.943 768 2.868 672 1.025 866 1.95 629 2.875 503 

1.043 899 1.968 733 2.893 642 1.05 813 1.975 610 2.9 466 

1.068 917 1.993 685 2.918 631 1.075 833 2 626 2.925 442 

1.093 804 2.018 721 2.943 642 1.1 877 2.025 590 2.95 498 

1.118 924 2.043 732 2.968 654 1.125 855 2.05 628 2.975 474 

1.143 846 2.068 718 2.993 619 1.15 784 2.075 574 3 454 

1.168 855 2.093 735 3.018 636 1.175 779 2.1 581 3.025 435 

1.193 854 2.118 743 3.043 658 1.2 797 2.125 594 3.05 461 

1.218 854 2.143 701 3.068 606 1.225 783 2.15 584 3.075 462 

1.243 858 2.168 742 3.093 654 1.25 815 2.175 572 3.1 448 

1.268 840 2.193 704 3.118 627 1.275 783 2.2 594 3.125 442 

1.293 828 2.218 701 3.143 600 1.3 766 2.225 582 3.15 450 

1.318 765 2.243 734 3.168 634 1.325 759 2.25 543 3.175 436 

1.343 798 2.268 735 3.193 624 1.35 761 2.275 560 3.2 452 

1.368 807 2.293 725 3.218 618 1.375 742 2.3 537 3.225 433 
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Saturation Mode Pulse Mode 

Time Counts Time Counts Time Counts  Time Counts Time Counts Time Counts

3.243 627 4.193 577 5.143 523  3.25 443 4.2 319 5.15 268 
3.268 611 4.218 543 5.168 464  3.275 443 4.225 372 5.175 270 

3.293 634 4.243 589 5.193 458  3.3 418 4.25 329 5.2 293 

3.318 624 4.268 566 5.218 502  3.325 449 4.275 350 5.225 287 

3.343 647 4.293 553 5.243 452  3.35 439 4.3 341 5.25 280 

3.368 613 4.318 545 5.268 469  3.375 386 4.325 330 5.275 285 

3.393 615 4.343 532 5.293 518  3.4 407 4.35 362 5.3 277 

3.418 611 4.368 519 5.318 507  3.425 441 4.375 324 5.325 262 

3.443 601 4.393 533 5.343 510  3.45 416 4.4 332 5.35 261 

3.468 619 4.418 567 5.368 500  3.475 392 4.425 301 5.375 261 

3.493 565 4.443 516 5.393 486  3.5 400 4.45 332 5.4 250 

3.518 623 4.468 548 5.418 468  3.525 416 4.475 352 5.425 260 

3.543 579 4.493 537 5.443 512  3.55 411 4.5 340 5.45 268 

3.568 580 4.518 534 5.468 501  3.575 401 4.525 300 5.475 267 

3.593 585 4.543 516 5.493 451  3.6 398 4.55 320 5.5 267 

3.618 589 4.568 478 5.518 484  3.625 411 4.575 315 5.525 282 

3.643 595 4.593 538 5.543 479  3.65 420 4.6 307 5.55 266 

3.668 586 4.618 507 5.568 469  3.675 385 4.625 315 5.575 253 

3.693 617 4.643 538 5.593 439  3.7 380 4.65 284 5.6 246 

3.718 583 4.668 556 5.618 497  3.725 344 4.675 329 5.625 245 

3.743 570 4.693 507 5.643 458  3.75 373 4.7 323 5.65 256 

3.768 560 4.718 526 5.668 479  3.775 374 4.725 298 5.675 257 

3.793 552 4.743 499 5.693 469  3.8 385 4.75 328 5.7 236 

3.818 565 4.768 469 5.718 462  3.825 392 4.775 300 5.725 266 

3.843 574 4.793 513 5.743 465  3.85 397 4.8 314 5.75 248 

3.868 558 4.818 506 5.768 447  3.875 370 4.825 318 5.775 244 

3.893 550 4.843 525 5.793 433  3.9 357 4.85 327 5.8 261 

3.918 557 4.868 543 5.818 475  3.925 393 4.875 289 5.825 242 

3.943 565 4.893 509 5.843 491  3.95 347 4.9 286 5.85 241 

3.968 568 4.918 464 5.868 438  3.975 354 4.925 316 5.875 265 

3.993 576 4.943 501 5.893 457  4 369 4.95 285 5.9 226 

4.018 570 4.968 501 5.918 465  4.025 347 4.975 272 5.925 255 

4.043 595 4.993 497 5.943 481  4.05 383 5 317 5.95 242 

4.068 539 5.018 496 5.968 496  4.075 356 5.025 274 5.975 220 

4.093 534 5.043 492 5.993 444  4.1 346 5.05 297 6 234 

4.118 597 5.068 497 6.018 445  4.125 350 5.075 268 6.025 230 

4.143 563 5.093 540 6.043 414  4.15 347 5.1 285 6.05 224 

4.168 548 5.118 499 6.068 429  4.175 346 5.125 302 6.075 236 
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Saturation Mode Pulse Mode 

Time Counts Time Counts Time Counts Time Counts Time Counts Time Counts

6.093 468 7.043 410 7.993 400 6.1 226 7.05 215 8 166 
6.118 447 7.068 433 8.018 381 6.125 233 7.075 189 8.025 140 

6.143 401 7.093 424 8.043 373 6.15 228 7.1 179 8.05 166 

6.168 434 7.118 393 8.068 382 6.175 247 7.125 199 8.075 161 

6.193 416 7.143 429 8.093 371 6.2 231 7.15 191 8.1 143 

6.218 436 7.168 365 8.118 393 6.225 225 7.175 176 8.125 158 

6.243 494 7.193 422 8.143 366 6.25 200 7.2 206 8.15 161 

6.268 469 7.218 439 8.168 368 6.275 231 7.225 181 8.175 157 

6.293 437 7.243 431 8.193 400 6.3 204 7.25 182 8.2 182 

6.318 446 7.268 383 8.218 382 6.325 229 7.275 205 8.225 165 

6.343 454 7.293 386 8.243 372 6.35 215 7.3 178 8.25 177 

6.368 453 7.318 411 8.268 384 6.375 218 7.325 179 8.275 170 

6.393 461 7.343 396 8.293 392 6.4 225 7.35 187 8.3 162 

6.418 446 7.368 397 8.318 337 6.425 214 7.375 178 8.325 160 

6.443 422 7.393 432 8.343 385 6.45 217 7.4 188 8.35 173 

6.468 411 7.418 415 8.368 364 6.475 203 7.425 163 8.375 139 

6.493 430 7.443 415 8.393 376 6.5 231 7.45 188 8.4 151 

6.518 449 7.468 406 8.418 346 6.525 206 7.475 204 8.425 147 

6.543 425 7.493 393 8.443 387 6.55 209 7.5 168 8.45 166 

6.568 405 7.518 377 8.468 388 6.575 221 7.525 205 8.475 148 

6.593 390 7.543 404 8.493 386 6.6 229 7.55 161 8.5 154 

6.618 419 7.568 374 8.518 375 6.625 216 7.575 159 8.525 166 

6.643 400 7.593 398 8.543 354 6.65 216 7.6 189 8.55 143 

6.668 440 7.618 378 8.568 334 6.675 206 7.625 184 8.575 140 

6.693 429 7.643 382 8.593 353 6.7 226 7.65 192 8.6 146 

6.718 405 7.668 353 8.618 377 6.725 206 7.675 182 8.625 170 

6.743 440 7.693 402 8.643 357 6.75 199 7.7 189 8.65 135 

6.768 420 7.718 402 8.668 358 6.775 211 7.725 161 8.675 136 

6.793 441 7.743 410 8.693 361 6.8 219 7.75 177 8.7 155 

6.818 396 7.768 361 8.718 328 6.825 227 7.775 173 8.725 143 

6.843 384 7.793 383 8.743 339 6.85 207 7.8 186 8.75 144 

6.868 398 7.818 355 8.768 347 6.875 198 7.825 171 8.775 148 

6.893 425 7.843 426 8.793 354 6.9 223 7.85 175 8.8 114 

6.918 420 7.868 400 8.818 367 6.925 208 7.875 151 8.825 140 

6.943 390 7.893 354 8.843 386 6.95 200 7.9 173 8.85 154 

6.968 391 7.918 376 8.868 350 6.975 202 7.925 178 8.875 151 

6.993 424 7.943 399 8.893 359 7 207 7.95 172 8.9 128 

7.018 409 7.968 410 8.918 352 7.025 216 7.975 150 8.925 130 
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Saturation Mode Pulse Mode 

Time Counts Time Counts Time Counts Time Counts Time Counts Time Counts

8.943 346 9.893 346 18.443 4302 8.95 127 9.9 125 18.45 1060
8.968 360 9.918 390 18.943 4182 8.975 149 9.925 112 18.95 1004

8.993 366 9.943 340 19.443 4168 9 132 9.95 115 19.45 913 

9.018 357 9.968 328 19.943 4089 9.025 136 9.975 131 19.95 907 

9.043 347 9.993 342 20.443 3904 9.05 128 10 113 20.45 865 

9.068 357 10.018 338 20.943 3978 9.075 155 10.025 115 20.95 811 

9.093 303 10.043 332 21.443 3871 9.1 144 10.05 110 21.45 865 

9.118 375 10.068 334 21.943 3898 9.125 160 10.075 125 21.95 826 

9.143 355 10.093 316 22.443 3754 9.15 132 10.1 126 22.45 827 

9.168 375 10.118 330 22.943 3612 9.175 121 10.125 116 22.95 735 

9.193 370 10.143 326 23.443 3561 9.2 126 10.15 146 23.45 777 

9.218 337 10.168 315 23.943 3495 9.225 128 10.175 130 23.95 732 

9.243 357 10.193 345 24.443 3455 9.25 129 10.2 109 24.45 749 

9.268 352 10.218 327 24.943 3380 9.275 138 10.225 111 24.95 699 

9.293 358 10.243 314 25.443 3282 9.3 141 10.25 112 25.45 643 

9.318 354 10.268 306 25.943 3266 9.325 143 10.275 116 25.95 677 

9.343 343 10.293 331 26.443 3187 9.35 126 10.3 118 26.45 623 

9.368 340 10.318 314 26.943 3214 9.375 135 10.325 113 26.95 586 

9.393 353 10.343 305 27.443 3081 9.4 131 10.35 113 27.45 610 

9.418 334 10.368 324 27.943 3017 9.425 130 10.375 104 27.95 590 

9.443 355 10.393 360 28.443 2981 9.45 131 10.4 116 28.45 568 

9.468 330 10.418 308 28.943 2906 9.475 138 10.425 114 28.95 570 

9.493 344 10.443 300 29.443 2856 9.5 138 10.45 119 29.45 534 

9.518 372 10.943 6358 29.943 2808 9.525 138 10.95 2206 29.95 520 

9.543 345 11.443 6073 30.443 2862 9.55 119 11.45 2077 30.45 477 

9.568 335 11.943 5985 30.943 2814 9.575 120 11.95 1940 30.95 506 

9.593 328 12.443 5828 31.443 2658 9.6 127 12.45 1810 31.45 492 

9.618 354 12.943 5636 31.943 2660 9.625 128 12.95 1680 31.95 466 

9.643 312 13.443 5480 32.443 2712 9.65 128 13.45 1557 32.45 461 

9.668 340 13.943 5430 32.943 2642 9.675 131 13.95 1477 32.95 479 

9.693 333 14.443 5104 33.443 2541 9.7 116 14.45 1510 33.45 437 

9.718 344 14.943 5017 33.943 2512 9.725 123 14.95 1410 33.95 418 

9.743 309 15.443 4978 34.443 2452 9.75 131 15.45 1381 34.45 412 

9.768 327 15.943 4822 34.943 2461 9.775 128 15.95 1302 34.95 471 

9.793 343 16.443 4680 35.443 2375 9.8 132 16.45 1238 35.45 420 

9.818 344 16.943 4513 35.943 2333 9.825 112 16.95 1244 35.95 441 

9.843 337 17.443 4564 36.443 2357 9.85 136 17.45 1120 36.45 416 

9.868 331 17.943 4278 36.943 2343 9.875 119 17.95 1015 36.95 383 
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Saturation Mode Pulse Mode 

Time Counts Time Counts Time Counts Time Counts Time Counts Time Counts

37.443 2323 56.443 1392 75.443 791 37.45 408 56.45 205 75.45 115 
37.943 2222 56.943 1392 75.943 860 37.95 377 56.95 218 75.95 117 

38.443 2181 57.443 1263 76.443 846 38.45 336 57.45 214 76.45 94 

38.943 2220 57.943 1260 76.943 782 38.95 365 57.95 188 76.95 121 

39.443 2074 58.443 1281 77.443 763 39.45 324 58.45 224 77.45 112 

39.943 2087 58.943 1199 77.943 801 39.95 311 58.95 187 77.95 103 

40.443 2120 59.443 1252 78.443 786 40.45 321 59.45 199 78.45 79 

40.943 2050 59.943 1179 78.943 771 40.95 318 59.95 182 78.95 115 

41.443 1992 60.443 1183 79.443 744 41.45 333 60.45 182 79.45 173 

41.943 2004 60.943 1217 79.943 764 41.95 368 60.95 171 79.95 101 

42.443 1933 61.443 1140 80.443 721 42.45 350 61.45 162 80.45 97 

42.943 1967 61.943 1247 80.943 743 42.95 352 61.95 171 80.95 98 

43.443 1910 62.443 1206 81.443 752 43.45 323 62.45 163 81.45 93 

43.943 1918 62.943 1166 81.943 737 43.95 327 62.95 191 81.95 98 

44.443 1869 63.443 1101 82.443 720 44.45 314 63.45 185 82.45 84 

44.943 1824 63.943 1087 82.943 783 44.95 280 63.95 150 82.95 91 

45.443 1831 64.443 1061 83.443 711 45.45 304 64.45 191 83.45 95 

45.943 1743 64.943 1105 83.943 707 45.95 260 64.95 166 83.95 87 

46.443 1668 65.443 1064 84.443 644 46.45 292 65.45 147 84.45 94 

46.943 1726 65.943 1009 84.943 658 46.95 283 65.95 140 84.95 78 

47.443 1744 66.443 988 85.443 628 47.45 306 66.45 166 85.45 77 

47.943 1730 66.943 1051 85.943 645 47.95 248 66.95 149 85.95 100 

48.443 1686 67.443 984 86.443 635 48.45 254 67.45 151 86.45 97 

48.943 1676 67.943 1015 86.943 603 48.95 236 67.95 171 86.95 89 

49.443 1641 68.443 1015 87.443 567 49.45 263 68.45 130 87.45 74 

49.943 1682 68.943 952 87.943 636 49.95 274 68.95 159 87.95 96 

50.443 1611 69.443 988 88.443 621 50.45 268 69.45 139 88.45 77 

50.943 1603 69.943 964 88.943 634 50.95 246 69.95 138 88.95 75 

51.443 1572 70.443 941 89.443 619 51.45 267 70.45 140 89.45 83 

51.943 1476 70.943 874 89.943 579 51.95 261 70.95 136 89.95 68 

52.443 1452 71.443 875 90.443 528 52.45 223 71.45 144 90.45 86 

52.943 1449 71.943 875 90.943 570 52.95 225 71.95 130 90.95 70 

53.443 1437 72.443 905 91.443 565 53.45 207 72.45 122 91.45 93 

53.943 1456 72.943 840 91.943 593 53.95 235 72.95 115 91.95 88 

54.443 1417 73.443 831 92.443 567 54.45 230 73.45 128 92.45 74 

54.943 1359 73.943 825 92.943 546 54.95 203 73.95 121 92.95 72 

55.443 1395 74.443 848 93.443 579 55.45 234 74.45 125 93.45 73 

55.943 1278 74.943 890 93.943 547 55.95 205 74.95 99 93.95 80 
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Saturation Mode Pulse Mode 

Time Counts Time Counts   Time Counts Time Counts   

94.443 552 230.443 473   94.45 48 230.45 44   

94.943 528 235.443 482   94.95 71 235.45 44   

95.443 517 240.443 439   95.45 75 240.45 36   

95.943 510 245.443 420   95.95 72 245.45 28   

96.443 529 250.443 397   96.45 66 250.45 23   

96.943 488 255.443 387   96.95 49 255.45 43   

97.443 476 260.443 297   97.45 68 260.45 19   

97.943 484 265.443 288   97.95 62 265.45 20   

98.443 472 270.443 284   98.45 68 270.45 22   

98.943 499 275.443 263   98.95 66 275.45 28   

99.443 474 280.443 243   99.45 62 280.45 23   

99.943 496 285.443 224   99.95 52 285.45 17   

100.443 453 290.443 222   100.45 54 290.45 25   

105.443 4329 295.443 216   105.45 550 295.45 13   

110.443 3819 300.443 199   110.45 476 300.45 19   

115.443 3486     115.45 407     

120.443 3227     120.45 354     

125.443 2847     125.45 308     

130.443 2584     130.45 321     

135.443 2282     135.45 280     

140.443 2122     140.45 234     

145.443 2040     145.45 227     

150.443 1875     150.45 184     

155.443 1620     155.45 186     

160.443 1526     160.45 155     

165.443 1412     165.45 133     

170.443 1228     170.45 115     

175.443 1127     175.45 95     

180.443 1055     180.45 90     

185.443 1016     185.45 98     

190.443 873     190.45 81     

195.443 892     195.45 80     

200.443 802     200.45 82     

205.443 747     205.45 63     

210.443 669     210.45 54     

215.443 664     215.45 59     

220.443 593     220.45 52     

225.443 555     225.45 44     
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