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ABSTRACT 

 

Characterization of Light Weight Composite Proppants. (December 2008) 

Mandar Chaitanya Kulkarni, B.E., Sardar Patel University, India 

Chair of Advisory committee: Dr. Ozden Ochoa   

 

The research objectives are to develop experimental and computational 

techniques to characterize and to study the influence of polymer coating on the 

mechanical response of walnut shell particles to be used as proppants.   

E3-ESEM and Zeiss Axiophot LM are used to study the cellular microstructure 

and feasibility of polymer infiltration and uniform coating. Three main testing 

procedures; single particle compression, heating tests on coated and uncoated walnut 

shell particles and 3-point flexure tests are undertaken. In in-situ ESEM observations on 

both the coated and uncoated particles showed signs of charring at about 175 – 200 ºC. 

Single particle compression test are conducted with random geometry particles and 

subsequently with four distinct shape categories to minimize the statistical scatter; flat 

top, round top, cone top, and high aspect ratio. Single particle tests on uniformly cut 

cuboid particles from walnut shell flakes are used to capture the nonlinear material 

response. Furthermore cyclic compression loads are imposed on flat top particles which 

reveal that significant permanent deformation set in even at low load levels.   

Computational models include Hertzian representation, 2D and 3D finite element 

models to simulate single coated and uncoated particles under compression.  The elastic 

material with geometric nonlinear representation is not able to simulate the compression 

response observed during testing. The inelastic material representation is able to 

significantly improve the compression response and address the influence of geometric 

shape on particle response.  A single uniform layer of polymer coat is introduced on the 

3D models with nonlinear material definition.  Coating provides a marginal 

improvement in load vs displacement response of the particles while increasing the 

ability of the particle to withstand higher loads. 
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1   INTRODUCTION 

 

1.1 Overview 

 
Proppants are small particles which are mixed with the fracturing fluid in the 

hydraulic fracturing treatments during oil well drilling.  Hydraulic fracturing is a process 

where a highly pressurized fluid is pumped in a well at a sufficiently high rate to create 

fractures.  These fractures provide high conductive flow paths for oil and orient radially 

away from the well bores (Figure 1) [1].  Proppants are delivered to these fractures to 

ensure that the flow paths remain open while resisting the rock pressure.  The proppants 

settle in the rock fissures either as a closed pack arrangement or as a single layer and 

prop the fissures open while ensuring sufficient permeability to enable continued oil 

production.  A schematic of proppant supporting a fracture is shown in Figure 2 [2]. 

Historically sand is the most commonly used proppant material.  However as the 

well depth increases, the stresses exerted by the rock faces, known as closure stresses 

increase and crush the sand particles generating free fines (fragmented pieces of sand 

particles) which reduce permeability.  Resin coated sand and ceramic particles are 

capable of withstanding high closure stresses up to 20000 psi, but their high density 

hinders the proppant transport and placement.  On the other hand light weight proppants 

remove this constraint [3].  Two recently proposed light weight materials are hollow 

ceramic particles and resin coated and infiltrated walnut shell particles. 

Walnut shell is widely used in the industry as an abrasive due to its high 

toughness and elastic modulus and its ability to clean surfaces of metals, alloys or 

plastics without leaving scratches [4].  Its other uses include as a means for extracting 

active carbon through chemical activation [5] this extracted carbon obtained through 

carbonization can be used as a carbon molecular sieve for air separation [6].   

________________________ 

This thesis follows the style and format of Journal of Composite Materials. 
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Figure 1. Schematic of a hydraulic fracture showing the fracture flow paths radially 

oriented away from the wellbore [1] 

 
 

 

 
Figure 2. Spherical proppants supporting an open hydraulically induced fracture [2] 
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Use of uncoated walnut shells as proppants have yielded failure in the past but 

the newly developed resin coated and infiltrated walnut shell particles have been 

reported to resist increased closure stresses [3].  

In this study experimental and computational techniques are employed to 

characterize the mechanical response of the resin coated walnut shell proppants.  Figure 

3a shows the larger flakes from which the walnut shell proppants shown in Figure 3b are 

obtained by grinding and later coating with polymer.  Microscopy techniques are used to 

study the microstructure (Figure 4) and estimate the degree of polymer deposition and 

infiltration into the particles.  Single particle compression tests under an optical 

microscope are carried out and subsequently FEA models are developed to numerically 

simulate these compression tests enabling virtual parametric test bed capability.   

 

 

           

         
(a)                                                                          (b) 

 

Figure 3. (a)Image of walnut shell flakes and (b) Image of coated walnut shell proppants 
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Figure 4. Microstructure of a walnut shell 
 

 

1.2  Literature Review  

 

As stated by Mader [2], the “purpose of proppants is to support the hydraulic 

fractures and keep them open against the application of closure stresses to ensure 

conduction of oil and gas to the borehole”.  An extensive list of proppant types, 

significance of material choices, and the effect of shape and size on fracture conductivity 

are also discussed.  It is also noted that sand at greater depths fractures and generates 

fines, inhibiting the flow.  Sinclair presented results [7] according to which resin coated 

sands sustained closure stresses at a depth 16000 ft.  The advantages of a coating are 

reported as crush resistance, flow back prevention, embedment minimization and 

reduction in the formation of free fines.  Cutler and Swanson [8] studied the crush 
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resistance of ceramic proppants, and concluded that they provided sufficient crush 

resistance even at closure stresses of 20,000 psi (140 MPa). 

A full proppant monolayer is created when a propped fracture has a width equal 

to one particle diameter without any space for additional particles.  Darin and Huitt [9] 

theoretically demonstrated that a higher conductivity can be achieved with a proppant 

concentration below that of a full monolayer.  A partial monolayer fracture utilizes less 

proppants since it allows vacant areas in between particles leading to increase in 

conductivity.  However initial efforts to attain partial monolayer in the field resulted in 

failure.  Veatch [10] stated that in vertical fractures, proppants tend to fall to lower parts 

of the fracture and hence creating a partial monolayer may be extremely difficult.  

Brannon et al [11] showed that when ultra light weight (ULW) proppants were placed as 

a partial monolayer in propped fractures an order of magnitude increase in production 

was realized in comparison with similarly sized sand particles at the same concentration.  

Resin coated and infiltrated ground walnut shells and hollow ceramic spheres were two 

examples of ULW proppants.   

Rickards et al [3] reported that the specific gravity for walnut shells at 1.25 is the 

lowest when compared to Ottawa sand (2.65) and Bauxite (3.65).  The lower density 

directly affects the settling velocity which is (4.3 ft/min) for coated walnut shell 

proppants against 16.6 ft/min for Ottawa sand and 23.2 ft/min for Bauxite.  The lower 

specific gravity and low settling velocities result in near neutral buoyancy during 

proppant transport and provide high propped fracture volume and higher fracture 

conductivity as well as significant increase in resistance to closure stresses. 

The classical relationships of cellular solids are presented by Gibson and Ashby 

[12].  In their approach the effective modulus of wood along axial, radial and tangential 

directions is a function of the density ratio of wood to the cell wall and the modulus of 

the cell wall, which is furthermore dependent on the modulus of its constituents as well 

as the fraction of each individual constituent.  Demirbas [13] estimated the structural 

composition of wood and non-wood biomass samples and reported that the composition 

of walnut shells are 22.20 wt% Hemicellulose, 25.50 wt% of Cellulose and 52.30 wt% 
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of Lignin.  Bodig and Jane [14] describe in detail the different layers of a wood cell wall 

and their properties.  Bergander and Salmen [15] calculated the cell wall properties 

based on the properties and orientation of cellulose fibers by using two analytical models 

noting that along the axial direction properties are dependent on cellulose orientation 

from 0º to 50º.  Huang et al [16] reported similar variation in properties and developed a 

method to obtain the wood properties based on acoustics.  W. Gindl et al [17] 

determined the cellulose microfibril angle by small-angle X-ray scattering (SAXS) and 

used nanoindentation to understand the effect of microfibril orientation on the effective 

property of the spruce wood cell walls.  They reported an elastic modulus of 17.1 GPa at 

0º orientation compared to the values of 80 GPa calculated by Bergander and Salmen in 

[15], this was attributed to the fact that the nanoindentation elastic modulus for an 

anisotropic body is a mixture of moduli along all axes leading to a prediction of lower 

modulus.  The degree of anisotropy and angle enclosed between the faces of the 

nanoindenter and the load direction significantly impacts the results. 

C.H.Wang in [18, 19] carried out C ring compression tests to estimate the elastic 

modulus of Macadamia nut, hazel nut, walnut and coconut shells.  He reported the 

elastic modulus of walnut shells as 4.9 GPa.  Kulkarni et al [20] assessed the mechanical 

properties of pecan shells using the ring compression tests and estimated the elastic 

modulus to be 3.7 GPa.  The simulations carried out supported the assumption of pecan 

shells to be isotropic.  Esau [21] described the cells of nutshells as sclereids which are 

relatively short and isodiametric.  Their secondary walls vary in thickness and are 

lignified.  The lumina are almost filled with wall deposits and secondary cell wall shows 

pits.  An example of a sclereid cell from podocarpus leaf is shown in Figure 5 [22].  The 

secondary wall appears concentrically lamellated in ordinary and polarized light which 

may be due to an alternation of isotropic layers with those composed of cellulose. 
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Figure 5. An image of a sclereid from podocarpus leaf under light microscopy with 

polarized filters [22] 

 

 

Beekman et al [23] determined the failure mechanism for industrial enzyme 

granules using repeated compression tests; presented the advantages and disadvantages 

of constant strain rate tests, controlled force tests and double spring compression fixture.  

These granules are composed of e.g. ethoxylated c18 fatty acid some others are layered 

with salt or sugar cores having inhomogeneous structure and differing composition  

Granules were tested and based on the study of the fracture surface and force-

displacement curve their failure mechanism was studied.  Cheong et al [24] estimated 

the mechanical properties of dry binderless polystyrene granules by diametric 

compression at a constant platen velocity using the power law relation described by 

Hertz contact expression between a rigid platen and a sphere.  The plastic material 

properties were determined using the relationship for load and total crosshead 

displacement as described in Johnson [25].  Antonyuk et al [26] described the 

deformation and breaking behavior of industrial granules like synthetic zeolite, sodium 

benzoate etc under single particle compression tests.  They also developed an elastic 

plastic contact model to describe the deformation of granules.  The response of the 
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granules was classified into categories like elastic, elastic-plastic and plastic.  Effects of 

granule size, loading rate and contact stiffness were studied. 

Spatz H.-CH et al [27] studied the strengthening tissue of young axes of 

Aristolochia macrophylla and distinguished the elastic, viscoelastic and plastic 

deformations by carrying out load-unload cycles under tensile loading.  The changes in 

microstructure notably the change in cellulose fibril orientations due to loading were 

considered as the main reasons for plasticity.  Cell wall structure and its relation to the 

mechanical characteristics in different plant tissues were studied by Lothar Kohler and 

Hanns-Christof Spatz [28].  Mainly the region beyond the linear elastic range was 

studied.  A model was proposed which explained the phenomenon of the biphasic stress-

strain curves and demonstrated the micromechanical processes which occur during 

viscoelastic and plastic yield in plant tissues. 

 

 

1.3  Research Objectives 

 

The principal objective of the research is to explore the mechanical response of 

coated and/or infiltrated ground walnut shell particles under compression.  Study the 

single particle compression response and develop computational models to simulate the 

experimental response to enable the development of virtual parametric test bed 

capability. 
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2   BIO-CELLULAR MATERIAL COMPOSITION AND 

MICROSCOPY OBSERVATIONS 

 
 

In order to estimate material properties of walnut particles, microscopy studies of 

the bio-cellular microstructure are undertaken.  The cell walls of the ground shells are 

considered to be composite where the cellulose is considered a fiber and the matrix is 

composed of hemicellulose and lignin.  A schematic of the constituents are displayed in 

Figure 6.  The cell wall of wood has multiple layers with varying properties; these layers 

include the primary cell wall and the secondary cell wall.  The secondary cell wall is 

further divided into layers differing in composition and cellulose microfibril orientation 

[16].  The effective property calculation of this composite gives us the cell wall property.  

A walnut shell has also been defined as equivalent to a wood structure [18].   

Herein, the details of cellular microstructure of walnut shell are presented.  The 

relationships of the effective elastic properties of the walnut shell as a whole and of its 

cell walls are discussed.  Polymer coated particles are studied to determine the coat 

thickness and/ or the depth of polymer infiltration into the particles. 

 

 

 
 

Figure 6. Schematic diagram to illustrate general structure of a wood cell wall [16] 
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2.1 Walnut Shell Microstructure 

 
The study of the walnut shell microstructure is carried out to estimate a) the 

material properties based on its cellular structure and b) detect the polymer coat on the 

coated particles and determine the presence or absence of infiltration.  Two different 

microscopes were used to study the microstructure a) E3 - ESEM and b) Zeiss Axiophot 

Light microscope. 

 

2.1.1 E3- ESEM Images of Walnut Shell Fracture Surfaces 

 

Three different walnut shell particle sizes were used for microscopy studies; 

large uncoated flakes (4X6 mesh), 20X30 mesh coated particles and 20X30 mesh 

uncoated particles.  The mesh numbers indicate the number of openings over a distance 

of one inch on a screen [29].  Accordingly for a 4X6 mesh the size of an opening in a 

screen is (4.76 – 3.76 mm) and for 20X30 meshes (0.841 – 0.595 mm).  The specimens 

were observed under the E-3 ESEM (environmental scanning electron microscope) at the 

Microscopy and Imaging Centre, Texas A&M University. Specimens for microscopy 

observation were prepared by fracturing under a sharp blade.  ESEM images were 

acquired on the fracture surface of the flakes from the external edge to the internal edge 

along the shell thickness to capture the variation in cellular structure.  The advantage 

with flakes is that before we capture the images we exactly know the surface which we 

want to study hence the images which we capture can be related to a specific region and 

any variation in the cell structure in the walnut shell can be studied.  The ground 

particles aid in addressing the presence of isotropy since the grinding procedure may 

have resulted in random orientation of cell walls. 

A schematic of the flake defining the surfaces for ESEM image capture is shown 

in Figure 7.  The ESEM images Figure 8-9 are captured along the thickness of the shell 

on the fracture surface from the external edge towards the internal edge to display any 

variation in cell structure.  ESEM image on the external surface is shown in Figure 10.  

A high magnification image of the fracture surface to study the cell structure in detail is 
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depicted in Figure 11.  The images on the fracture surfaces of coated particle and 

uncoated particle are shown in Figures 12 and 13. 

 

 
 

Figure 7. Schematic of an uncoated walnut shell flake 

 
 

           
Figure 8. ESEM image on fracture surface near the external edge  
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Figure 9. ESEM image on fracture surface near the internal edge 

 

 

 
Figure 10. ESEM image on the external surface of the walnut shell flake 

Internal edge on shell fracture 

surface 

External surface 
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Figure 11. A high magnification ESEM image on a fracture surface  

 
 

 
Figure 12. Image of a fracture surface of coated particle 
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Figure 13. Image of a fracture surface of uncoated particle 

 

 

The walnut shell has a porous soft layer near its inner edge.  This layer can be 

considered to be as a foamy layer and equivalent to the foam on the interior of a crash 

helmet.  Its outer surface is a layer of suberin with little porosity.  This layer provides a 

barrier for moisture and other chemical attacks and protects the nut.  Figure 11 is a high 

magnification image of the fracture surface near the outer edge and describes the cell 

structure of the walnut shell in detail.  The cells in this region display a small lumen with 

a thick cell wall.  These cells are sclereids [21].  Almost 90% of cell volume is attributed 

to the cell walls with high strength and stiffness.  The small visible holes of about 1 μm 

are referred to as pits which connect cells through the cell wall providing a passage for 

water and nutrients.  The fracture surfaces in these images consist of troughs and crests 

which are attributed to peeling of cell walls.  Figure 12 and 13 show the fracture surfaces 

of coated and uncoated particles. The images show a similarity in the presence of 

troughs and crests and cell orientation which appears to be random indicating an 

isotropic structure of the shells.  Also sclereid cells are isodiametric and don’t possess an 
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anisotropic property attribute like fibers in case of woods.  The polymer is clearly 

embedded onto the fracture surface of the coated particle in figure 12. However, it is our 

conjecture that due to the high polymer viscosity it has not penetrated into the pits.  

2.1.2 Thick Section Images from Zeiss Axiophot Light Microscope 

 

In addition to the ESEM images of the fracture surfaces of walnut shell flakes 

and coated and uncoated particles, images were also captured from the Zeiss Axiophot 

light microscope at the Microscopy and Imaging Centre, Texas A&M University.  The 

basic objectives of this exercise were to study the cell structure and identify the presence 

of polymer coat on the particles.  Only the coated walnut shell particles were studied. 

Briefly the sample preparation procedure is discussed.   

 Particles were placed in 5% Acrolein for 24 hours.  Acrolin is a fixative – fixation is  

 carried out to preserve the cell structure. 

 Acrolein is replaced with the HEPES buffer.   

 Replace HEPES with Osmium tetroxide (OsO4) to enhance contrast during image 

acquisition.  Particles are stored for 24 hours in refrigerator at 4 °C. 

 Dehydration of the samples is carried out to remove all traces of moisture from the 

samples. 

 Prepare resin for particle embedment.  In the present case Quetal 651 – 11.58% wt, 

ERL 4221 – 10.94% wt and Araldite 502 – 11.87% wt are combined to form the 

resin, curing agent NSA – 65% wt is added to this blend. 

 Particles are placed in moulds and resin blend is poured into the mould and then 

allowed to cure. 

 Thick sections ~ 2 μm are cut from the embedded particles on the ultramicrotome. 

 The sections are placed on slides, allowed to dry and then lightly stained with 

toluidine blue for 30 seconds for contrast. 

 The sections are covered with cover slips and then observed under inverted light on 

the Zeiss Axiophot light microscope. 
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Figure 14. Image of coated walnut particle section at 10X magnification 
 
 
 
 
 

 
 

Figure 15. Image of coated walnut particle section at 20X magnification 
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Figure 16. Image of coated walnut particle 2 μm sections at 40X magnification  
 
 

The images of these sections at a magnification of 10X, 20X and 40X are 

presented in Figures 14-16 capturing relevant details from a single cell ~ 20 μm to the 

entire shell section ~ 500 μm in size.  

The image in Figure 10 displays that the porosities which are scattered in the 

section occupy about ~ 10% of surface area.  If we consider that this section is 

representative of a particle, then it may be stated that the porosity of a particle is ~ 10%.  

Porosities are located at the cell lumina though in some cases these are also the 

intercellular spaces.   Also note that a thin layer is detected on the external edge of the 

particle section, it is assumed that this layer is the polymer coat.  The images at 20X and 

40X (Figures 15-16) provide greater insight into the cell structure and the polymer coat.  

From the 20X images it can be stated that the cells are rounded in shape and show a 

scatter in their dimensions, assuming the cells to be circular the diameters range from ~ 

20 μm to 60 μm.  Majority of the cells show the lumen completely covered by the cell 

wall growth.  At 40X the polymer coat is clearly visible.  Measurements of this outer 

layer indicate thickness ranging from ~ 5 μm to 15 μm.  Resin impregnation through the 

thickness has not been detected. 

Pits in cell walls 

Polymer coat 

Cells with filled lumen 
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The ESEM and the LM image study observations lead to the conclusion that the 

walnut shell cells are sclereids with ~ 10% porosity.  From the images it appears that the 

cells have a random orientation and hence isotropic material property description is 

acceptable.  It is assumed that due to the small diameter of the pits and high polymer 

viscosity infiltration is not possible. 

 

2.2 Effective Elastic Modulus Estimate 

 
 
The elastic modulus of walnut shells depend on primarily the ratio of walnut shell 

density and the density of its cell wall.  The density of the cell wall for different wood 

species is specified as 1500 kg/m3 [12].  From the experimental data the density of raw 

(uncoated) walnut shell particle is 1290 kg/m3 [30], leading to a density ratio of about 0.86.  

This is also corroborated by the ESEM and LM images of the microstructure and cell type 

of walnut shells as sclereids which indicate a very low porosity ~ 10% in the structure.   

The cell wall of the ground walnut shells can be treated as a laminated composite 

where cellulose is the reinforcing fiber and hemicelluloses and lignin form the matrix as 

idealized in Figure 1 [16].   Demirbas [13] stated that the composition of walnut shells is 

22.2 % by weight hemicellulose, 25.5 % by weight cellulose and 52.30 % by weight lignin.  

The elastic modulus of cellulose as presented by Bergander and Salmen [15] is 135 GPa 

while that for lignin is 2 GPa and hemicellulose is 7 GPa.  Based on the density ratio and 

the effective properties of the cell wall, the axial and transverse elastic modulus for walnut 

shell is then estimated from expressions (1a, 1b) [12].  The details of the derivations are 

presented in Appendix A.  
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                                                                    (2) 

 

 

The values obtained are observed to be in the range of 8.6 – 30.1 GPa for axial 

modulus and 3.5 – 10 GPa for transverse modulus.   

  We further assume that due to random grinding to produce small mesh particles 

and from the ESEM and LM image study of the microstructure the elastic modulus will be 

isotropic. 

 

2.3 Coated Walnut Shells 

 

The mechanical properties of a polymer coated particle depends on two factors a) 

the polymer properties and b) the level of polymer infiltration/ deposition on the surface 

of the particle.  For any particle belonging to a specific batch the polymer remains 

constant and hence the properties of the coated particle depend on the level of polymer 

infiltration and/ or polymer deposition on the particle.  Two approaches can be adopted 

in estimating the level of polymer presence on the particle.  The first approach is based 

on analytical expression of surface roughness of a ground particle while the second is 

direct experimental approach where the particle section images are used to measure the 

polymer coat thickness and/ or level of polymer impregnation into the particle. 

 

Analytical Approach – Integrating Surface Porosity: 

 

 The previous discussion on walnut shell particle microstructure has established 

the porosity to be ~ 10%.  It has been assumed that the polymer is not able to infiltrate 

into the shell but settles on the outside surface which is generated by the shell fracture 

due to grinding.  The amount of polymer on this surface can be obtained by assuming 

that it covers all the trough regions on the surface which we define as the (surface 

porosity).  The volume fraction of the trough region can be calculated by estimating the 
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depth of the troughs.  The preferred mode of fracture for wood structures is through cell 

wall peeling [12] and hence the depth of troughs can be assumed as equal to the radius of 

the cell.  Knowing the surface porosity we can calculate the amount of polymer on the 

surface and hence based on the calculations of the 3-phase model for micromechanical 

modeling of spherical inclusions in a matrix (Appendix B) we can obtain the effective 

property of the surface region of the shell.  It is to be noted here that all the particle faces 

have been assumed to possess the same characteristics.  The study of walnut shell 

section under ESEM concluded that differences in the structure exist as we move from 

the inner surface which contacts the fruit to the outside surface, Figures 8 and 9 

displayed the two regions.  The outside surface exposed to the environment has a 

suberine coat which has a smoother surface and possesses barrier properties.  Thus it can 

be assumed that when the polymer is applied on this surface it only encounters a very 

small surface porosity and most of polymer will be placed as a layer of neat epoxy on the 

surface.  In our calculations we neglect the presence of a suberin layer and consider all 

the surfaces to be formed from the fracture of shell as is observed in Figures 8, 12 and 13. 

The primary challenge then is in determining the surface porosity from the 

ESEM images.  We use image processing techniques for this effort.   

The ESEM image was processed using GIMP software [31].  The procedure for 

the same is discussed below through the images in Figure 17 (a, b and c).  The original 

image in Figure 17(a) is cropped to concentrate only on the trough surface Figure 17(b).  

The histogram threshold which modifies the contrast of the image is modified such that 

the dark spots on the image representing the cavities are differentiated from the troughs 

which appear brighter.  The final modified image is shown in Figure 17(c).   
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Figure 17. ESEM image processing procedure 
 
 

 
Black colored pixels in the processed image define the surface porosity which is 

about 56.6% for this image. 

Based on the surface porosity and cell dimensions, the volume of polymer 

deposited on the particle that occupied the troughs can be calculated.  This 

representation can be described as a 3 layered particle, the inner core of walnut shell 

properties; the middle layer as a composite which is formed with the crests of cell walls 

(a) Original image 

(b) Cropped image 

(c) Final modified image 
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acting as matrix and the polymer deposited into the troughs as inclusions.  The external 

layer of neat polymer which extends over the crests forms the third layer.  A 

representation is displayed by a schematic in Figure 18.  The mechanical properties of 

the walnut shell have been estimated in section 2.2, the properties of the neat polymer 

can be determined from experimental study or through literature, the properties of the 

middle layer composite can be determined from micromechanical calculations based on 

the volume fraction and the properties of the crests (cell wall properties) and polymer 

inclusions (neat polymer properties).   

 

 

 
Figure 18. Schematic of composite coated particle system 

 

  

 

Experimental Approach

 

The level of polymer deposition on the particle can be determined through study 

of thick sections ~ 2 μm of the particles.  The LM image study of such particles indicates 

polymer presence on the surface.  The thickness of polymer coat is estimated to range 

from ~ 5 μm to 15 μm.  But no direct evidence of polymer infiltration is noted.  Thus the 

model selected for the coated particles is a two layer system with the inner core of 

walnut shell properties and outer polymer coat with thickness as determined from the 

images.   

 
 

Crest &Trough filled with polymer 
forming a composite 

Neat polymer layer 

Core with walnut shell properties 
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It has been confirmed from the polymer manufacturer that the polymer contains 

sulfur as a catalyst [32].  It is known that walnut shell being an organic material has 

carbon as a majority element.  As the atomic number of sulfur is 16 and carbon is 6, 

backscatter electron imaging on the JEOL 6400 SEM at the Microscopy and Imaging 

centre, Texas A&M University is used to detect sulfur and hence the polymer on the 

section of the coated particle. 

Backscatter is capable of distinguishing between elements with atomic number 

difference of 3.  This is represented by a contrast in the image with the higher atomic 

number element appearing as a bright field [33].   

The coated particle of walnut shell is embedded into a resin (procedure same as 

discussed previously for specimen preparation for LM observations), thick sections ~ 2 

μm are cut on ultra microtome.  These sections are placed in the SEM chamber and 

observed through the backscatter mode.  Bright fields are detected on the external edge 

of this sample as noted in Figure 19.  The image shows a thin layer of ~ 5 μm over most 

of the edge and a thicker segment of ~ 15 μm.    

 

 

 

 
 

Figure 19. Backscatter image of a section of coated walnut shell 

Coating as bright 
regions 
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In summary, walnut shell sections are studied using different microscopy tools 

like ESEM, Light microscopy and the SEM with back scatter.  The cells of walnut shell 

are defined as sclereids and ~ 10% of a particle displays porosity.    Micromechanics and 

cellular solid concepts are used to estimate the elastic properties of an uncoated walnut 

shell particle.  The particle is assumed to possess isotropic material properties.  

Attempts are made to identify the presence of a polymer coat on the particle 

surface using LM and SEM backscatter imaging techniques.  Preliminary studies 

indicate no polymer infiltration while the coating thickness is estimated to range from ~ 

5 μm to15 μm.   
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3   EXPERIMENTAL APPROACH 

 
Experiments are conducted to study the mechanical response of the particles to 

compressive and thermal loads as well as to develop screening techniques to assess 

polymers for coatings.  Thus three main tests, single particle compression, particle 

heating and 3-point flexure tests on coated and uncoated walnut shells are undertaken.  

The single particle compression tests are selected to study the mechanical response 

under compressive loading to identify the effect of particle shape and coating.  To 

understand the influence of temperature on the particles and to identify the coating 

resistance the particles are placed in the heating chamber of E-3 ESEM.  The 3-point 

bend test is studied as a screening test for the qualitative analysis of different polymer 

coats and their impact on the overall stiffness of a multiple particle interaction 

application. 

 

3.1 Single Particle Compression Testing 

 
 

Single particle compression tests are carried out utilizing the horizontal test bed 

(No. 18246 tensile testing substage by Fullam Inc.) equipped with a 1000 lb load cell 

(Figure 20). This is coupled with software MTESTWindows
TM (ADMET, Inc.) which 

interfaces with the user and regulates the test.  Loading is controlled through servo 

control.  Direction of loading is controlled through a toggle switch on the control box.  

For compressive loading the toggle switch is set to C.  The primary output requested is 

the load vs displacement data.  Test is conducted by mounting the test stage onto an 

optical microscope (Olympus SZX 16) (Figure 21) to observe particles during loading.  

A general description for compressive loading is described below. 

Set the toggle switch on the controller to C for compressive loading.  Move the 

loading crosshead to contact the specimen.  From the test setup window, define the 

geometry of the specimen by inputting the values of the specimen dimensions (L, W and 
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t), Required output to be calculated - we only request for the peak load for single particle 

compression tests, select appropriate load cell (1000 lb Tensile), select the control for 

loading (displacement control/ Force control), appropriate loading rate – 0.01 mm/sec 

with displacement control in our case.  Start the test.  Based on the above mentioned 

inputs the controller provides the drive to the loading crosshead.  A transducer measures 

the displacement of the crosshead.  The primary output is the force-displacement curve. 

Figure 20 also shows the compression fixtures and the mounted test particle.  The 

fixture consists of two anvils, one acting as a specimen mount and other for load 

application.  The length of the protruding sections is 8 mm.  The dimensions of the 

square section of the mount are 3.20 mm X 3.20 mm.  These dimensions are sufficient to 

support the specimen while ensuring that it does not interfere with the view from optical 

microscope.  The specimen/ particles are mounted on the fixture face by gluing with 

silicon grease. 

 

 
 

 
   
 

Figure 20. Compression fixture and mounted specimen 

SPECIMEN MOUNTED ON FIXTURE SUPPORT FACE 
SILICON GREESE USED TO GLUE THE SPECIMEN ON THE FACE 

LOADING DIRECTION 

LOADING ANVIL 

SUPPORTING ANVIL 
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Figure 21. Testing under optical microscope (Olympus SZX 16) 
 

 

3.1.1 Randomly Selected Coated and Uncoated Particles 

 
 

Tests are carried out on 6 randomly selected particles each of coated and 

uncoated particles.  The load is applied till the load vs displacement curve shows a steep 

rising profile indicating almost complete crushing of the particles.  The images of the 

uncoated and coated particles respectively are presented in Figures 22 and 23; the 

images give an indication of the geometric variation of the test particles.   

 

The test procedure followed is briefly stated below 

• 6 samples of each (raw (uncoated) shells and coated shells) tested.  Particles selected 

randomly from their lot. 

• Displacement controlled loading 
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• Loading rate – 0.01 mm/sec  

Experiments dealing with compression testing of spherical industrial granules 

like solidified droplets of ethoxylated C18 fatty acids, dry binderless polystyrene 

granules, synthetic zeolite etc are described in [23, 24, and 26]; these experimental 

procedures are taken as reference for the test procedure described above.  The load vs 

displacement response for the uncoated and coated particles is presented respectively in 

Figures 24 and 25. 

  

 

 

 
 

Figure 22. Images UC (1-6) are the uncoated randomly selected particles for 

compression tests 
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Figure 23. Images C (1-6) are the randomly selected coated particles for testing 
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Figure 24. Load vs displacement curve for uncoated particles 
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Figure 25. Load vs displacement curve for coated particles 

 

 

As can be noted in Figures 24 and 25 there is a considerable scatter in the data 

which can be attributed to the geometry variation of each particle.  The curves show a 

rising profile with increasing stiffness, which is due to increase in contact area with 

loading.  The sudden change in slopes with sharp drop in loads is due to a sudden failure 

in the particle, these slope changes are highlighted in the figures.  It is observed that for 

the coated particles the response is fairly clustered up to a load of ~ 30 N, followed by a 

wide scatter depending on the initiation of failures in the particles.  There is a much 

higher scatter in the uncoated particles even at low loads.  A comparison of coated and 

uncoated particles response is shown in Figure 26.  It is observed that there is an overlap 

in the load vs displacement response of the coated and uncoated particles, at the same 

time coated particles dominate the space with stiffer response (highlighted) while the 

uncoated particles have a higher presence at the lower end of the stiffness response.  It 

can be noted that some of the particles undergo a cross-head displacement of ~ 0.7 mm 

under an action of ~ 100 N load, hence large straining of particles take place at this load.  
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The final stages of the curve show an upwards rising trend thus indicating to complete 

particle crush with the final response being from the steel anvil. 
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Figure 26. Comparison of coated and uncoated particle load vs displacement response 

 

 

3.1.2 Geometric Classification of Particles 

 

In order to reduce and/or eliminate scatter the particles are classified into four 

broad geometric groups.  Herein, they will be referred to as flat-top, round-top, cone-top 

and large aspect ratio particles as displayed in Figure 27(a-d).  Initial classification was 

carried out for the coated particles.  Note that the round-top particles have a fairly curved 

profile; the cone-top has a seemingly sharp profile angle and the flat-top particles 

resemble cuboids.  The large aspect ratio particles have one dimension significantly 

larger than the other two.  In Figure 27(c) large aspect ratio, the cross section bounded 

by the two smaller dimensions is displayed. These particles are loaded normal to their 

largest dimension.   

Stiffer coated particle 
response 

Low stiffness response of 
uncoated particles 
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Figure 27. Segregation of particles in groups (coated particles) 

 

 

5 Particles per class were tested under the displacement controlled loading at the 

rate of 0.01 mm/sec as in case with the previously tested randomly selected uncoated and 

coated particles.  Initial preload was applied and held constant at 10 N and tests were 

terminated at a peak load of 150 N. 

The results from force vs displacement responses are summarized in Figures 

28(a-d), note that the flat top particles tend to give the stiffest response with the least 

scatter in the data.  The significant variation in the response of the particles subjected to 

compression can be attributed to the shape effect since the shell structure for these small 

grounded particulates is assumed to be independent of material orientation as discussed 

in the section on cellular microstructure of walnut shells. 
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Figure 28(a). Force vs displacement for flat top particle group 
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Figure 28(b). Force vs displacement for cone top particle group 
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Figure 28(c). Force vs displacement for large aspect ratio particle group  
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Figure 28(d). Force vs displacement for rounded top particle group 

 

 

 

 

 



 35 

Tests on the flat top class of uncoated particles follow the same procedure as 

discussed for the classified coated particles earlier.  Figure 29 compares the force vs 

displacement response of the coated and the uncoated flat top particles.  It is revealed 

that even though, the coated particles display a higher stiffness the difference is minor.  

It also appears that a closer banding is observed in the coated particles compared to 

uncoated particles.  
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Figure 29. Comparison between coated and uncoated flat top particles 
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3.1.3 Loading and Unloading Cycles on Coated Particles 

 
 

In addition to tests when the particle is loaded until crushing load is revealed, 

loading and unloading cycles are used to point out the onset of permanent deformation..  

Two randomly selected coated particles are subjected to a single loading and unloading 

cycle.  Both the cycles are displacement controlled and limited to 0.1 mm maximum 

displacement.  The images of one of the particles before and after the cycle are presented 

in Figure 30.  The results from these two particles are presented with three other curves 

obtained from BJ Services Inc in Figure 31.  It is observed that the initial curve of the 

unloading cycle is almost vertical highlighted by the bubble in Figure 31 indicating a 

low strain and hence a corresponding low stress at the initiation of plastic deformation.  

The tests at BJ Services Inc. and by us at TAMU both show similar behavior with a low 

plastic strain initiation point.  

In an unloading cycle the initial response would be the elastic or the recoverable 

displacement of the deformed particle.  The almost vertical response of this curve 

indicates to a very little recoverable deformation in the particles and hence an early 

initiation of non-linear behavior.  The curves obtained at BJ Services Inc, show a 

number of cycles with incremental loads and a non-recoverable deformation is observed 

at a displacement of ~ 0.02 mm and a load of ~ 5 N loads this is corroborated by the 

almost vertical response from the unloading curves obtained by experiments at TAMU. 

 

 

 
   (a) Particle before loading              (b) Particle after unloading cycle 

 

Figure 30. Particle before and after the loading and unloading cycle 
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Figure 31. Load vs displacement for load unloading cycle TAMU and BJ data 
 
 
 

3.1.4 Determination of Inelastic Material Properties 

 
 

Single particle compression tests are designed to estimate the inelastic material 

response.  The data generated from these tests is used as an input for the finite element 

models generated to simulate the single particle compression response.   Uniformly 

shaped cuboids with dimensions ~ 2 mm X 2 mm X 1 mm are obtained from the 4X6 

mesh size flakes of walnut shells supplied by BJ services.  A jeweler’s knife was used to 

cut the cuboids.  An image of one such cuboid is presented in Figure 32.  Uniformly 

shaped cuboids ensure a uniform compressive stress distribution thus enabling the 

conversion of load vs displacement response into a stress vs strain response.  Cuboids 

also ensure consistency in test samples thus avoiding the scatter as observed in single 

particle tests on randomly selected uncoated particles.  The loading direction is along the 

1mm direction as shown by the arrow in Figure 33.  In total 6 particles were tested and 

Initial steep 
response from the 
unloading cycle 
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loading was continued till the particles were completely crushed.  The loading rate was 

maintained at 0.025 mm/sec as per the specifications in ASTM standard D695 – 02a [34].  

The load vs displacement response for the test is presented in Figure 34. 

 

 

     
 

Figure 32. Two different views of uniformly cut cuboid particle  
 
 
 
 

 
 

Figure 33. Uniformly cut cuboid particle before loading 
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Figure 34. Load vs displacement response for uniformly cut walnut shell flakes 

 
 
 

It is observed that on an average the particles crushed at 550 – 600 N at an axial 

displacement of ~ 0.8 mm of the cross-head.  Of all the test data generated, Test 3 up to 

0.8 mm displacement was selected to specify the non-linear constitutive relationship for 

the FEA model.  As the particles completely crush beyond 0.8 mm displacement, the 

data beyond 0.8 mm cannot be used to model the particle response.  The load 

displacement data was converted to the true stress vs strain data using the following 

expressions [35].  Here ζnom is the nominal stress, F is the instantaneous force, A0 is the 

original cross sectional area, εnom is the nominal strain, ζtrue is the true stress, εtrue is the 

true strain and E is the elastic modulus of the material which here is 3700 MPa.  The 

nominal stress vs nominal strain and true stress vs true strain plot is presented in Figure 

35. 
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Figure 35. Nominal and true stress strain curve for Test 3 data 

 
 

3.2 Temperature Capacity of Particles 

 
 

Since the polymer coated proppants are subject to temperature range of 82 – 

160 °C in the fissures [36], the thermal degradation potential is very realistic.  In this 

study the coated and uncoated particles are subject to incremental heating over a 
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temperature range of 125 - 250 ºC in the environmental chamber of the E-3 ESEM to 

observe the initiation of damage to the walnut shell particles.  The particles are placed in 

a crucible which is placed on a heating coil in the chamber. A continued cooling water 

supply is provided to prevent overheating of the coil.  The chamber is then closed and 

operated under a vacuum.  Signs of thermal degradation at about 175 – 200 ºC were 

identified as charring.  Similarly Yuan HR [37] reported that the main pyrolysis took 

place in the walnut shells at 150 – 400 ºC.  A similar exercise is also carried out with the 

neat epoxy polymer used for the coating.  The epoxy did not show any degradation at 

this temperature range.  The uncoated, coated and neat polymer images at different peak 

temperatures are presented in Figures 36-38. 

 

 

 

 
 

Figure 36(a). OM image of uncoated walnut shells at 175 ºC  
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Figure 36(b). OM image of uncoated walnut shells at 200 °C  

 

 

 

 
 

Figure 36(c). OM image of uncoated walnut shells at 250 ºC  
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Figure 37(a). OM image of coated walnut shells at 175 °C  

 
 
 

 
 

 
Figure 37(b). OM image of coated walnut shells at 200 ºC  
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Figure 37(c). OM image of coated walnut shells at 250 °C  
 

 

 

 

 

Figure 38(a). OM image of coating polymer at 225 ºC  
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Figure 38(b). OM image of coating polymer at 250 °C  

 
 

Herein it can only be concluded that charring of the particles at 80 – 160 ◦C has 

not occurred.  In order to comment on the load carrying capacity coupled 

thermomechanical tests must be designed. 

 

3.3 Flexure Testing 

 

There is a need to develop a screening test to quickly establish the suitability of 

the selected specific polymer as a coating.  A composite beam sample is proposed where 

a select volume fraction of coated particles are used with a polymer matrix to cast small 

3-point bending beam samples.  It is proposed that the effective property of this 

composite can provide a qualitative measure for comparing the effectiveness of a select 

specific polymer coat.  In all the comparative beam samples the only parameter that is 

varied is the particle polymer coating. Through standardizing the test procedures and 
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specimen preparation procedures we propose an initial screening tool to qualitatively 

assess a given coated proppant system.  

The testing specifications of ASTM-D790-02 [38] are used to ensure consistent 

dimensions and loading rates in each test.  Force vs displacement plots are obtained as 

the primary output from which the effective elastic modulus of the specimens are 

calculated.   

 

3.3.1 Specimen Preparation 

 
A brief discussion on specimen preparation is presented below. 

 

• Resin – DER 331, Curing agent – Ancamine – 1618 the optimum ratio for the two is 

100:60 for DER 331 and Ancamine – 1618 this has been verified from the 

manufacturer of Ancamine – 1618. 

• Coated particles – 10% by weight (resin + curing agent) used as fillers.   

• Mixing and Degassing of resin and particles in above mentioned concentrations in 

Rotovapor (Water bath – 60 °C) 

• Pour in mould and allow curing.  The mould consists of two glass plates coated with 

mould release and separated by spacers and sealed to ensure no leakage of the liquid 

resin through the spacers.  The spacer thickness is maintained at 3.00 mm to obtain 3 

mm thick particles.   

• Specimen is cured at room temperature for 7 days.  Correspondence with the curing 

agent manufacturer indicated that a typical cure schedule is to cure at room 

temperature and then wait for 5-7 days for full property development.  To accelerate 

the schedule we need to post cure by applying heat while remaining below 60C. 

From the cured samples (Figure 39) specimen were cut according to the ASTM 

standards (test configuration is shown in Figure 40).  It could be observed that we had 

two broadly distinct regions of concentration of walnut shell particles in the sample.  The 

region at the bottom had a higher volume fraction and concentration of the particles. The 

top region of the sample had a lower concentration.  We cut 3 samples each from both 
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these layers for samples with polymer coated particles and uncoated particles as 

reinforcements.  The Figure 41 shows the images of two particle concentrations for 

coated and uncoated particles test specimen. 

 

 

 

 
Figure 39. Trial samples 

 

 

 

 

 

Figure 40. ASTM 3 point flexure test configuration 

Uncoated particle reinforcement Coated particle reinforcements  

L = 16.8 mm 

W = 6.0 mm 

T = 3.0 mm 
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Figure 41. Concentration of coated and uncoated particles in samples from two regions 

 

 

3.3.2 Test Procedure 

 

The test bed and test setup are described below. 

 

Horizontal Test bed (No. 18246 Tensile testing substage, Fullam Inc.) coupled 

with software MTESTWindows
TM (ADMET, Inc.) which interfaces with the user and 

regulates the test.  1000 lb Tensile load cell for load application.  Loading is controlled 

through servo control.  Direction of loading controlled through a toggle switch on the 

High concentration uncoated 

Low concentration uncoated 

High concentration coated 

Low concentration coated 
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control box.  For 3 point bend test set the toggle switch to C.  This setting ensures 

compressive loading on the sample.  Specimen size is limited by test bed and bending 

fixture dimensions and based on the ASTM standards.  The Figure 42 below displays the 

test setup and the loading direction. 

 

 

 
 

     Figure 42. Test setup for 3-point bend tests 

 

 

Specimen mounting and specimen sizes follow the ASTM – D790-02 standards.  

Set the toggle switch on the controller to C for compressive loading.  Move the loading 

crosshead to contact the specimen.  From the test setup window, define the geometry of 

the specimen by inputting the values of the specimen dimensions (L, W and t), specify 

required output to be calculated, in our case we request for the peak load and elastic 

modulus, select appropriate load cell (1000 lb Tensile), select the control for loading 

(displacement control/Force control), appropriate loading rate – 0.01 mm/sec with 

displacement control in our case.  Start the test.  Based on the above mentioned inputs 

Bending Fixtures 

Load Cell 

3-point bend 
Specimen 

Transduce
r 

Direction of loading 
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the controller provides the drive to the loading crosshead.  The Transducer measures the 

displacement of the crosshead.  The primary output is the Force-deflection curve.  Based 

on this curve and the geometry of the specimen the output calculations for peak stress 

and elastic modulus are carried out using flexure equations as in ASTM – D790-02 and 

displayed below as equations (7 & 8).   

 

 

ζf = 3PL/2bd2
                                                                                (7)      

                 
Where, 

ζ  = Stress in the outer fibers at midpoint, MPa (psi), 

P  =  Load at a given point on the load – deflection curve, N (lbf), 

L  =  Support span, mm (in.), 

b  =  Width of beam tested, mm (in.), 

d   =  depth of beam tested, mm (in.). 

 

 

EB = L3m/4bd3             
        (8) 

                                                                   
Where, 

EB  =  modulus of elasticity in bending, MPa (psi), 

L    =  suppor span, mm (in) 

b    =  Width of beam tested, mm (in.), 

d  = depth of beam tested, mm (in.),  

m         = Slope of the tangent to the initial straight-line portion of the load-       

                       deflection curve, N/mm (lbf/in.) of deflection 
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Figure 43 shows an image of a typical output from the test bed software for 

uncoated low concentration specimen.  It could be observed that the sample shows a 

non-linear behavior prior to failure.  Failure occurs at a peak load of 110.6 N and the 

calculated elastic modulus is 1588 MPa.     

 

 

 
 
 
 

Figure 43. Image of a typical response from the 3-point flexure specimens 

 
 

3.3.3 Results and Discussion 

 

The elastic moduli of the composite specimen and the peak loads are summarized 

in Tables 1-2.  The method of calculation has been discussed previously.  Table – 1 
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below shows the elastic modulus for each of the specimen.  Table – 2 shows the peak 

loads for each of the specimen. 

 

Table 1. Elastic modulus in bending for the composite specimens 
 

  
Euncoat_c (MPa) Ecoated_c (MPa) 

Low concentration 

1588 1482 

1607 1460 

1686 1481 

High concentration 

1877 1757 

1867 1619 

1668 1325 

 

 

 

Table 2. Peak load in bending for the composite specimens 
 

  
Funcoat_c (N) Fcoated_c (N) 

Low concentration 

110.6 75.68 

80.16 96.70 

129.0 93.36 

High concentration 

85.85 74.53 

81.07 48.60 

88.65 72.08 
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It is observed that the uncoated particles give a higher elastic modulus than the 

coated particles.  This may be because the resin infiltrates the uncoated particles and 

yields an even stiffer particle.  Thus it was felt that rather than comparing the uncoated 

and coated system we need to compare between two different polymer coating systems. 

To conclude, consistent distribution of particles must be attained for proper 

comparison.  So far only a graded distribution has been obtained.  Possible 

improvements can be made by shaking the mould after the resin injection and the use of 

a less viscous polymer. 

.   
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4   COMPUTATIONAL MODELS RESULTS AND DISCUSSION 

 

The response of the walnut shell particles under compression are simulated using 

finite element analysis.  Initially the Hertz model for contact between a rigid plate and a 

sphere is discussed.  A coated particle system is introduced next adhering to the 

spherical idealization.  The effect of particle shape on the response is introduced by 

considering ellipsoid models.  The major axis to the minor axis radius ratio is modified 

to obtain a variable elliptical profile. Two and three dimensional irregularly shaped 

particles based on images obtained during experimentation are simulated.  The irregular 

shaped particles are modeled to simulate the flat top, round top and cone top particle 

geometries as studied in the previous section of experimental studies.  Both elastic and 

plastic responses are incorporated.  The coating is introduced on the three dimensional 

non-uniformly shaped particle models and impact of coating on particle response is 

studied.   

 

4.1 Hertz Contact Response 

 

The Hertz Contact Theory provides the solution for two spheres in contact 

subjected to the normal compressive load [39].  When one of the spheres is assumed to 

have an infinite radius then the contact problem between a platen and a sphere as shown 

in Figure 44 [40] is defined.  This is an acceptable first model for a spherical particle 

(proppant) compressed between rock faces. 

The analytical solution assuming linear elastic material and small displacements 

is presented as below, 
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Figure 44. A deformable sphere pressed by a rigid flat [40] 
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Where, 
 
P(r)   Hertzian pressure distribution over contact surface 

P    Maximum pressure occuring at contact centre 

a  Contact patch radius 

E  Young’s modulus of the sphere 

ν   Poisson’s ratio of the solid sphere 

ω  Displacement of the sphere tip 

F  Contact Force 

R  Radius of the sphere 
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4.2 Spherical FEA Models – Hertz Contact Simulation 

 

The compression of a spherical particle with a rigid plate is simulated through a 

commercial FEA package ABAQUS® - 6.4.5 CAE.  Previous efforts for simulation of 

Hertz contact involve modeling the problem as an axis symmetric problem with load 

transferred from the rigid plate to the sphere through contact interaction [40-41].  A 

similar approach has been followed in the current FEA model.   

The model uses small displacement theory and linear elastic constitutive material 

behavior.  Axis symmetric 8 node rectangular biquadratic elements with reduced 

integration (CAX8R) are used to model the sphere.  Total number of elements is 1632 

nodes are 5053 with 2 active degrees of freedom (2 displacements) at each node.  The 

platen is modeled as a rigid surface.   A graded mesh with larger element density near 

the contact point is created (Figure 45).  Contact interaction is defined between the rigid 

surface and the spherical surface to simulate the incremental loading and contact 

between the two surfaces.  The platen is defined as the master surface and the spherical 

surface is defined as the slave.  In ABAQUS the slave surface nodes are constrained to 

follow the master surface nodes.  Thus a given displacement of the master surface 

produces an equal displacement of the slave surface node in contact with the master 

surface [35].  The diameter of the sphere is 0.9 mm is in accordance with the proppant 

dimensions which range from 0.1 to 2 mm.  The elastic modulus assigned to the sphere 

is 1170 MPa based on the value of elastic modulus of walnut shell as mentioned in [42].  

The rigid platen is assigned a modulus of 1e9 MPa.  Axis symmetric boundary 

conditions are implemented as shown in Figure 45.  The vertical face is constrained from 

horizontal motion and the horizontal face is constrained in the vertical direction.  A load 

of 15 N, equivalent to ~ 6000 psi is applied through the rigid plate onto the sphere.       
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                                                    Figure 45. Mesh and boundary conditions 

 

 
 

 
Results and Discussion 

 

 

Displacement, Von Mises stress and the stresses in radial direction 1 and vertical 

2 as per the reference co-ordinate system are presented as contour plots in Figure 46.  

Note that that the maximum stresses in 1-1 and 2-2 directions occur at the point of 

contact (here we call it as P and is highlighted in Figure 45) and are compressive in 

nature (Figure 46 (c, d)).  The maximum Von Mises stress is observed to occur at a point 

below the surface (b).  It is observed in some cases for the failure to initiate from within 

the solids and it can be attributed to the maximum Von Mises stress.  The maximum 

vertical displacement is observed at the point of contact (a).  Note that the sphere is 

U1 = 0 

U2 = 0 

1 

2 
Contact interaction 

Analytically rigid surface 15 N load 

Point of contact (P) 
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flattened in the region where the platen gets in contact with the sphere surface.  This 

flattened surface is known as the contact patch, and the radius of this patch is known as 

the contact patch radius.  As the sphere gets flattened a larger area contacts the rigid 

platen and resists further deformation. 

 

 

 
 
 

 
 

 
Figure 46. Contour plots for Hertz FEA model 

 
 

The FEA and the Hertz results are compared on the node at the point P the point 

of contact in Figure 47.   

 

(a) Vertical (U2) DISPLACEMENTS  (b) VON MISES STRESS 

176 MPa 0.0484 mm 

(c) S2 STRESS (vertical direction) (d) S1 STRESS (radial direction) 

184 MPa 
MPa 

290 MPa 
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Figure 47. Comparison of FEA and Hertz solution on the node at the first point of 

contact on the sphere with load variation  

 

 

The results of displacement U2 and stress in radial direction S11 match well in 

the range of lower forces ~ 2N whereas they diverge at the higher loads.  The stress S22 

is observed to match well at all loads. 

The variation of the stresses S11, S22 and Von Mises in the particle on a straight 

line as a function of longitudinal (loading) axis is presented in Figure 48.  Note that the 

S11 and S22 stresses are highest at the surface where the initial contact occurs while the 

maximum Von Mises stress occurs at a point below the surface.  The S11 stress changes 

from compression to tension with increasing depth into the particle.  This characteristic 



 60 

is used to establish testing procedures to determine the tensile strength of brittle 

materials like concrete, asphalt, rock and ceramics [43]. 

 

 

 
Figure 48. Variation of Von Mises, S11 and S22 on the radius of sphere from external 

surface to centre along loading direction (2-2) 

 

 

The Hertz results and the FEA results match well at the lower range of applied 

forces ~ 2N.  It is to be noted that at the higher range of applied loads the Hertz 

assumptions are violated, specifically the assumption of a high ratio of radius of circle to 

contact patch radius.  At larger displacements as the area of contact increases the higher 

patch circle radius implies that a lower ratio of radius of circle to patch radius.  Ideally 

this ratio should be in the range of 20 or above, whereas in this model it is 3 for a load of 

15 N. 
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4.2.1 Young’s Modulus Estimate From Test Data 

 

Load vs displacement particle response data was delivered for particles in 5 

groups [44].  Groups 1 to 4 were for coated particles where each group within had a 

different resin coat.  Group 5 was for the uncoated particles.  In each group 5 particles 

were tested.  To begin with the data for group 5 was plotted in the range of 0-5% strain, 

0-20% strain and 0-40% strain.  The data showed a high degree of scatter and hence 

eventually two particles data with the lowest stiffness were chosen for further study. 

The following procedure for the data analysis was adopted. 

 The results were calculated for nuts with diameter D = 0.0355 in and D = 0.036 in 

 The data focus on strain ranges:   0 – 5%, 0 – 20%, and 0 – 40% 

 Trend line obtained for the data of nuts D = 0.0355 in and D = 0.036 in 

 Slope of  force Vs (displacement)3/2  curve as the estimate of E  

From the plot of force Vs (displacement)3/2 the value of elastic modulus based on 

the Hertz theory is obtained.  These equations (13 and 14) are presented below.  Here we 

are assuming that the particles are all spherical and undergo linear response.  Poisson’s 

ratio is assumed as 0.29.   

 

2/3*2/1

3

2
ERP                (13) 

 

Where, 

P  =  Force applied 

R  =  Radius of the nut 

E* =  Effective modulus 

δ          =  Crosshead displacement 
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 2* 1 vEE                             (14) 

 

Where, 

E = Young’s modulus of the granule 

v = Poisson’s ratio of the granule 

 

The load vs displacement curve for all the group 5 nuts at 0-5% strain range is 

shown in Figure 49 to demonstrate the scatter observed.  A plot for load vs displacement 

for particles with D=0.9017 mm and D=0.9144 mm at 40 % strain is presented in Figure 

50.   The force Vs (displacement)3/2  plot for the two nuts with the data for the two nuts 

plotted as a single set is shown in Figure 51. This enables us to obtain a single 

representative curve fit for the data of the two nuts.  The slope of the curve fit in figure 8 

gives the representative elastic modulus of the two particles with D=0.9017 and 

D=0.9144 and is calculated as 3792 MPa.   
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Figure 49. Force vs displacement for uncoated particles 0-5% strain range 
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Figure 50. Force vs displacement 0-40% strain range 
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Figure 51. Force vs (displacement)3/2 for 0-40% strain range 
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4.2.2 FEA Analysis Uncoated Particle – Non Linear Geometry 

 

The geometric model for this analysis is the same as used in section 4.1.  

Similarly CAX8R elements (Axissymmetric quadratic 8 node elements with reduced 

integration and 2 displacement degrees of freedom at each node) are used.   The full 

model has 975 elements and 3073 nodes.  The test data clearly indicated that large 

displacements are taking place compared to the particle dimensions (~ 40% strain) hence 

non-linear geometry option as discussed in Appendix C is introduced.  

The material and loads applied on the model are present below,  

E = 3792 MPa (calculated value section 4.2.1) for uncoated particle 

V = 0.29          (assumed value) 

F = 308.55 N (value producing 40% strain during tests)           

*NLGEOM, ON (Large displacement analysis) 

Elastic material and non-linear geometry options are chosen. 

The Force vs displacement response of this model is compared with the BJ 

Services test results [44] in Figure 52.  
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Figure 52. Force vs displacement comparison of FEA and test data 
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It is observed that the FEA response matches with the test result only in the range 

of small displacements and loads, after the load of ~100 N the FEA result starts to 

diverge (highlighted in Figure 52).   

 

4.2.4 Radial Inhomogeneous Material Properties 

 
An important goal of this research is to characterize the influence of a polymer 

coating on the particle response which introduces radial material inhomogeneity in the 

particle.  Essentially three material layers emerge which include the outer most layer of 

polymer coat, a layer with a resin infiltration and the core of walnut shell.  The layers 

and their properties are depicted in Figure 53.   

Following factors are considered while developing this model 

 Volume fraction of cavities infiltrated by the polymer – 0.25 (Assumption) 

 Depth of polymer infiltration – 10% of particle dimension (Assumption) 

 The effective property of infiltration space calculated by rule of mixture 

Einfiltration = Ewalnut C + Eresin (1-C)      …….. (C – Volume fraction of polymer) 

 Einfiltration, calculated from above, Ewalnut from single particle test data for raw walnuts 

calculated previously 

The properties of the raw walnut layer are as presented in section 4.2.1.  The 

properties of the pure polymer were obtained from the website of Plenco, plastics 

manufacturing company [45].  Thus based on the assumed volume fraction of cavities 

the effective property of the polymer infiltrated layer is estimated using the rule of 

mixtures.  The following elastic moduli of the individual material layers are adapted in 

the FEA model. 

Raw Walnut = 6200 MPa  

Pure polymer = 13000 MPa  

Infiltration layer = 7900 MPa 
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Figure 53. FEA model for the coated particle with the polymer coat modeled separately 

 

 

The value of 6200 MPa is estimated from the test data of uncoated particles 

provided by BJ services [44].   

The details of the present model are as followed and displayed in Figure 53. 

Load =    100 N  

Diameter of sphere =  1mm total 

Infiltration distance =   0.05 mm 

Linear elastic material behavior with geometric nonlinearity 

Axis-symmetric 4 node quadrilateral elements CAX4R (ABAQUS®, CAE) are 

used for modeling.  75 elements model the pure resin region, 300 elements model the 

region of polymer impregnation and 2006 elements model the walnut core.  Total nodes 

Cload = 100 N in 2 
direction. 

Constrained in 
translation along 
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in the model are 2470.  The CAX4R elements possess 2 displacement degrees of 

freedom at each node.   

The displacement, Von Mises stress, and the stresses in radial direction 1 and 

vertical direction 2, S11 and S22 are displayed in the contour plots in Figure 54. 

The position of maximum stress and displacement remain as was the case of 

basic Hertz model (section 4.2.1).  The comparison of the response of the inhomogenous 

FEA model with the single particle test on coated particle is shown in Figure 55. 

 

 

 
 

Figure 54. Contour plots for FEA model with separately modeled material layers 
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Figure 55. Force vs displacement comparison of coated FEA model with BJ test data 

 
 

From the comparison of the response of the 3-layer model with the coated 

particle tests [44] we can back calculate the effective elastic modulus of the entire sphere 

as if it were a homogenous solid.  Which is found to be E = 7759 MPa.  From a similar 

exercise on the single particle, test data of the coated particles the effective elastic 

modulus of the particle for diameter D = 1.05 mm was calculated as 8450 MPa.  Thus 

the inhomogeneous spherical FEA model is not able to simulate the compression 

response of a coated particle.    

The fact that there are multitudes of different irregular shapes and variation in 

cellular micro structure leads to the conclusion that these effects must be considered. 
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4.3 Non-spherical Particles 

 

In the previous FEA models we considered the particles to be perfectly spherical.  

But as can be observed in the optical microscopy images in Figure 56 and from the 

single particle tests conducted under optical microscope particles vary greatly in shape 

and are not spheres.     

In order to account for the shape, iterations are carried out with an ellipsoid 

geometry.  The major axis radius of the elliptical section is varied keeping the minor axis 

radius constant resulting in modification of the section from a circle to an ellipse.  The 

3D ellipsoid is modeled as an axis-symmetric section using CAX4R axis-symmetric 

elements.   This is followed by modeling particles based on the optical images (i.e. 

irregular geometry) both elastic and inelastic material property definitions are 

incorporated.  Finally coating is introduced on these irregular shape models to study 

their compression response. 

 

 

 
Figure 56. Images of coated particle under optical microscope 
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4.3.1 Ellipsoid Profile – Axisymmetric Model 

 

The basic model for the elliptical profile with the assigned material properties 

and co-ordinate system is displayed in Figure 57.  In the parametric studies, boundary 

conditions and applied loads and material properties remain identical, however the ratio 

of the radii (b/a) is varied to closely observe the effect of the geometry variation.  The 

ratio is varied from 0.5 to 1 (for sphere). 

Linear quadrilateral elements (CAX4R) with, 4 nodes and reduced integration 

with 2 displacement degrees of freedom at each node in ABAQUS 6.4.5 CAE package 

are selected.  The number of elements depend on the (b/a) ratio and range from 402 

elements to 761 elements.  Again in this case also nonlinear geometry analysis option is 

incorporated with linear elastic constitutive material model. 

The load vs. displacement response of the studies with varying (b/a) ratio is 

represented in Figure 58.  It can be observed that the response tends to stiffen with 

variation of ratio from 1 to 0.5.  This is attributed to the increase in initial surface area of 

contact with the geometry variation from sphere to ellipse thus adding added resistance 

to deformation.  The results signify the effect of profile on the particle response 

validating our premise that the scatter in compression test data may indeed be due to a 

scatter in the particle profiles. 
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Figure 57. Materials and boundary conditions for ellipsoid model iterations 
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Figure 58. Force vs displacement comparison for ellipsoid iterations 
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4.3.2 2D and 3D Irregular Shape Particle Models 

 
 
Since the OM and ESEM images confirmed that these particles are far from any 

idealized shape, realistic shapes guided by the images are selected to be represented by 

3D tetrahedral C3D4 elements with 3 displacement degrees of freedom at each node.  

Static analysis with nonlinear geometry and linear material option is selected to study the 

displacement, strain and stresses generated under compression.  The elastic moduli for 

the uncoated walnut and the platens were assigned as 3700 MPa and 100 GPa 

respectively.  The platens are modeled as rigid surfaces.  Contact interaction is defined 

between the platens and the walnut shell particle models to transmit the incremental 

compressive load to the particle.  The platen is defined as the master surface while the 

particle surface is the slave.  In ABAQUS the contact definition implies that the master 

node constrains the slave node to undergo an equal displacement in the direction of the 

master surface displacement [35].    

The three 3D FEA models are displayed in Figures 59 - 61, FT1 is based on the 

flat top particle and CT1 is based on the cone top particle type while model RT1 is based 

on the round top type.  Differences in the profile are highlighted through the two 

different views.  The dimensions of the models based on the test particles are ~ 1.5 mm 

X 1.2 mm X 1 mm.   A fine mesh is maintained in the region of initial contact with the 

platens and graded outwards to economize computational resources. The contact region 

is highlighted in the Figures 59 - 61.  The horizontal lines represent the platens and the 

arrow indicates the loading direction.  The details of the three models are presented in 

Table 3.  100 N load is applied on the particles and results observed at this load.   
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Table 3. Details of 3D FEA models 
 

Model Element type Total elements Nodal DOF* Total nodes 

FT1 C3D4 21521 U1, U2, U3 9941 

RT1 C3D4 32591 U1, U2, U3 9415 

CT1 C3D4 23723 U1, U2, U3 10419 

*DOF: Degrees of freedom at each node 

 

 

            
 

Figure 59. 3D model FT1 (flat top representation) 

 

  
 

                                                                               
Figure 60. 3D model RT1 (round top representation)  
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Figure 61. 3D model CT1 (cone top representation) 

 
   

The vertical platen displacements measured at the load application point on the 

rigid platen surface at 100 N load are 0.0731, 0.09 mm and 0.106 mm for models FT1, 

RT1 and CT1 respectively as is highlighted in Figure 62. The maximum platen 

displacement is observed in the cone top representation and the least in the flat top 

representation.  This is in accordance with the experimental results of single particle 

compression tests with geometrical classification of the particles, though it is to be noted 

that the differences are minor compared to the experimental results.  It is also to be noted 

that the maximum displacements predicted are less compared to the experimental results 

and the elastic material model gives a highly stiff response.  It can also be said that even 

at a load of 100 N the small value of maximum displacement does not enable the full 

impact of shape variation on the particle response to be captured in the elastic FEA 

model.  The comparison of the 3D elastic FEA results with the single particle 

compression test on uncoated particles is presented in the figure on page 77.  

The maximum Von Mises stress is observed at an element in the interior of the 

model along the loading direction and the values are 556 MPa, 794 MPa and 1192 MPa 

for the FT1, RT1 and CT1 models respectively.  These values are large and it can be 

assumed that the particles at this load will definitely undergo plastic deformation.   
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Figure 62. Contour plot for maximum vertical displacement at 100 N load for 3D models 

FT1, RT1 and CT1 

 

 

 
 

Figure 63. 2D plane strain FEA models for different particle cross-sections  

Loading direction 
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Face Constrained 
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2D Representation 

 

Plane strain assumption which translates to two dimensional representations was 

studied with the models of Figure 63.  Advantage of a 2D model is simplicity of 

modeling and economy of computational resources, with the disadvantage of the loss of 

details in the third dimension.  Model -1 comprises of 460 nodes and 464 CPE4R (4 

node linear quadrilateral 2D solid plane strain element with reduced integration and 2 

active displacement degrees of freedom).  Model -2 comprises of 475 nodes and 440 

CPE4R elements.  The models are based on the images of the test particles.  The 

dimensions of each of the models are ~ 1.4 mm X 1 mm X 0.8 mm.  The material 

properties and loads on the models remain the same as in the case of 3D models.  The 

analysis is defined as nonlinear geometry with linear elastic material model.  The 

contour plots for vertical displacement for the two models are displayed in Figure 64. 

Model -1 has a maximum displacement of 0.06967 mm at 100 N loading while model – 

2 has 0.06496 mm.  The comparison plot for the response of 2D elastic FEA model with 

the single particle compression tests on the randomly selected uncoated particles is 

presented in Figure 65.  It is observed that the 2D elastic FEA model gives a much stiffer 

response compared to the single particle compression test response.  Also the difference 

in the response of the two 2D models is very less; hence the 2D elastic models are also 

not able to capture the effects of shape variation effectively. 

 

  

Figure 64. Contour plot for vertical displacement 2D plane strain elements 

Model - 1 Model - 2 

0.06967 mm 0.06496 mm 
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Figure 65. Comparison of load vs displacement response of the elastic 2D and 3D FEA 

models with the single particle compression tests on uncoated particles 

 

 

It is observed that both the 3D and 2D models with elastic material and nonlinear 

geometry are considerably stiffer in comparison to the experiments and thus requires 

further assessment and definition of nonlinear behavior.  Note that the 2D and 3D 

response have not been compared with each other but are compared with the 

experimental results only.  A comparison between 2D and 3D is possible only when both 

of these have the same section dimensions and shape which is not the case with the 

current analysis.  The two classes of FEA models can be compared with the 

experimental results since a wide range of shape variation among the test particles 

occurs routinely. 
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4.3.3 Inelastic Material Response 

 
 

By referring to the experiments in section 3.1.4 we determined the true stress vs 

strain curve for the non-linear material response of walnut shell.  The nonlinear response 

is assumed to be elastic – plastic with isotropic hardening.  In ABAQUS this response is 

modeled as classical metal plasticity (Appendix D), the governing equation (15) for this 

response is presented below.  Here K and n are constants dependent on material and any 

prior treatment (strain hardening, heat treatments etc) carried out on it [46].  The stress 

strain data from the true stress vs true strain curve for the cuboid walnut particles are 

used as input into ABAQUS to model the elastic-plastic isotropic hardening response of 

the uncoated non-uniformly shaped particles. 

 

n
true trueK                       (15) 

 

 

The nominal stress vs nominal strain and true stress vs true strain plot is 

presented in Figure 35 in section 3.1.4.  In the load vs displacement plots of the walnut 

shell cuboid compression (Figure 34 section 3.1.4) it is observed that up to the point of 

failure the plots show linear behavior.  It is assumed that the particles undergo non-

recoverable deformation at a very low stress and the linear behavior observed is a 

hardening response.  Similar conclusions have been drawn for the plastic stress vs strain 

response of plant tissues by Niklas [47].  In our FEA models we trigger the onset of 

plasticity at a very early stage at a low stress of ~ 5 MPa.  3D models FT1, RT1 and CT1 

are solved using the non-linear material data.  Again the analysis is defined as 

geometrically nonlinear to account for the large displacements.  

 The vertical displacement of the platens measured at the load application point 

on the platens are 0.329 mm, 0.477 mm and 0.6823 mm respectively for FT1, RT1 and 

CT1 models at 100 N load.  The contour plots for the maximum displacement are 

presented in Figure 66 (a, b & c).  Note at the significant differences in the maximum 
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displacements for the flat top, round top and cone top models.  The flat top provides the 

stiffest response followed by round top and cone top; this is in accordance with the 

observations from the single particle tests on geometrically classified particles.  It can be 

argued that with the larger displacements of the platens a greater surface area of the 

particle contacts the platen; the area contacting the platens is dependent on the surface 

profile with the maximum area being with flat top particles and least with the cone top 

particles.  A greater surface area in contact would apply a greater resistance to the platen 

displacement and hence a stiffer response of the particle.  The elastic FEA model did not 

undergo significant deformation for the surface profile to exert any influence on the 

compression response and could be a probable reason for the very small differences in 

the displacements for the three elastic models.  The comparison of load vs displacement 

response of the FEA models with the single particle tests on randomly selected uncoated 

particles is presented in Figure 67. 

 
 

   
 
 

Figure 66(a). Vertical displacement contour for 3D plastic model at 100 N - FT1 model 

 
 

U2 = 0.329 
mm 
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Figure 66(b). Vertical displacement contour for 3D plastic model at 100 N - RT1 model 

 
 
 

 
    

 
 
 
 

Figure 66(c). Vertical displacement contour for 3D plastic model at 100 N - CT1 model 

U2 = 0.477 mm 

U2 = 0.6823 mm 
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Figure 67. Comparison of load vs displacement response between 3D plastic FEA 

models FT1, RT1 and CT1 with single particle compression tests on uncoated particles 

 

 

From the contour plots for displacements and the plot in Figure 67, it can be 

concluded that the inelastic material definition is able to simulate the compression 

response much more effectively compared to the elastic material definition.  The 

significance of shape on the particle response is also highlighted through the 

implementation of nonlinear material definition. 

 

4.3.4 Influence of Polymer Coat  

 

Coated particles are simulated by introducing a layer of polymer coat on the 

irregular shaped 3D models (FT1, RT1 and CT1) with inelastic material properties.  We 

assume a polymer coating thickness of ~ 10 μm and no infiltration.  The FEA model FT1 

with the polymer coat is shown in Figure 68.   

Flat top Round top 
Cone top 
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The walnut shell material property is same as in section 3.1.4 and 4.3.3.  The 

polymer is assumed to be a phenolic resin.  The elastic modulus and the tensile strength 

of the polymer are obtained from literature [48].   The polymer coat is also assumed to 

possess nonlinear (plastic isotropic hardening) behavior.  The hardening slope of 

polymer is assumed to be equivalent to the walnut shell cuboid test-3 response and is not 

based on any experimental or literary evidence.  The true stress vs true strain response is 

used to model the nonlinear behavior.  The nominal stress vs nominal strain and true 

stress vs true strain curves for the walnut shell and polymer coating are shown in Figure 

69.    

 

 

 
 

Figure 68. 3D FEA model with polymer coating (FT1 model) 
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Figure 69. Nominal stress vs nominal strain and true stress vs true strain curves for 

walnut shell and coating polymer 

 

 

The boundary conditions remain same as with the elastic models with irregular 

shape.  The analysis is nonlinear geometry with inelastic material properties.  The 

comparison of the load vs displacement curves of the three coated FEA models (CFT1 

(coated flat top), CRT1 (coated round top) and CCT1 (coated cone top)) with the single 

particle compression tests on coated particles are presented in Figure 70.  The 

displacements are measured at the load application point on the rigid platens.   It is 

observed that the response from CRT1 and CCT1 models at lower loads ~ 25 N diverges 

away from the experimental results.  The CFT1 model is able to give a close 

approximation of the experimental results. 
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Figure 70. Comparison of load vs displacement response from the coated FEA models 

CFT1, CRT1 and CCT1 with the single particle tests on coated particles 

 
 

To study the effectiveness of the resin coat in improving the stiffness of the 

particles displacements in the walnut core of the coated particles were measured at a 

point just underneath the first contact point on the coating and on the coat walnut 

interface.  The comparison of the response of walnut shell particles with and without 

coating is presented in Figure 71.  It is observed that addition of resin coat introduces 

stiffening in the response of the walnut shell, but the increase is marginal.  The values of 

maximum displacements at 100 N are compared in Table 4. 

 

CRT1 and CCT1 diverge from 
experimental results 
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Figure 71. Comparison of load vs displacement response of walnut particle when coated 

and uncoated 

 
 

 
Table 4. Comparison of maximum displacements (mm) in coated and uncoated walnut 

shell particles at 100N load 
 

 Flat top Round top Cone top 

Uncoated particle 0.329 0.477 0.6823 

Coated particle 0.315 0.462 0.67 

 
 
 

 
The contour plots comparing the Von Mises, vertical displacement, LE11, LE22 

and LE33 for the walnut region of the coated flat top particle and the uncoated 

plastically deformed flat top particle (CFT1 and FT1) are presented in Figures 72-76. 

 

 



 86 

         
 

Figure 72. Comparison of Von Mises stress distribution in walnut region of coated and 

uncoated flat top particle at 100 N load 

 
 

 

 

 
Figure 73. Comparison of displacement contour on the walnut region of coated and 

uncoated flat top particle at 100 N load 
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Figure 74. Comparison of true strain in (1-1) direction contour on the walnut region of 

coated and uncoated flat top particle at 100 N load 

 

 

 

 

 

 

 
Figure 75. Comparison of true strain in (2-2) direction contour on the walnut region of 

coated and uncoated flat top particle at 100 N load  
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Figure 76. Comparison of true strain in (3-3) direction contour on the walnut region of 

coated and uncoated flat top particle at 100 N load  

 

 

It is observed from the Figure 72 that the coated walnut shell particle is subjected 

to a lower value of Von Mises stress distribution at the same load when compared to the 

uncoated particle.  In both cases, the particle is plastically deformed but the extent of 

plastic deformation is less in case of the coated particle.  Even though the location of the 

maximum displacement is the same the coated particle as a whole experienced less 

displacement then the uncoated.  The same observations are repeated for the strain in 1-1, 

2-2 and 3-3 directions.  The addition of coating ensures lesser strain distribution in the 

coated particle.  At the applied load of 100 N the uncoated particle undergoes maximum 

strains and Von Mises stress over a larger area.  

Similarly figures 77-81 show the contour plots showing the comparison of Von 

Mises stress, vertical displacement, LE11, LE22 and LE33 for the walnut region of the 

coated round top and the uncoated round top particles (CRT1 and RT1). 

 

 

Coated particle Uncoated particle 
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Figure 77. Comparison of Von Mises stress distribution in walnut region of coated and 

uncoated round top particle at 100 N load 

 

 

 

 

 
Figure 78. Comparison of displacement contour on the walnut region of coated and 

uncoated round top particle at 100 N load 
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Figure 79. Comparison of true strain in (1-1) direction contour on the walnut region of 

coated and uncoated round top particle at 100 N load 

 

 

 

 
Figure 80. Comparison of true strain in (2-2) direction contour on the walnut region of 

coated and uncoated round top particle at 100 N load 
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Figure 81. Comparison of true strain in (3-3) direction contour on the walnut region of 

coated and uncoated round top particle at 100 N load 

 
 
 

Once again, it can be concluded that the spread of maximum stress in the 

uncoated particle is larger in comparison to the coated particle.  Thus at the same load of 

100 N, the coated particle is subjected to a lower overall stress and strain compared to 

the uncoated particle.   

Similarly Figures 82-86 show the comparison of Von Mises stress, vertical 

displacement and LE22, LE11 and LE33 strain for the walnut region of the coated cone 

top and uncoated cone top models. 

 

 

 

Coated particle Uncoated particle 
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Figure 82. Comparison of Von Mises stress distribution in walnut region of coated and 

uncoated cone top particle at 100 N load 

 

 

 

 

 

 

 
Figure 83. Comparison of displacement contour on the walnut region of coated and 

uncoated cone top particle at 100 N load 
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Figure 84. Comparison of true strain in (2-2) direction contour on the walnut region of 

coated and uncoated round top particle at 100 N load 

 

 

 

 
Figure 85. Comparison of true strain in (1-1) direction contour on the walnut region of 

coated and uncoated round top particle at 100 N load 
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Figure 86. Comparison of true strain in (3-3) direction contour on the walnut region of 

coated and uncoated round top particle at 100 N load 

 

In summary, although the polymer coat induces only a marginal improvement in 

the load vs displacement response of the walnut particle it improves its ability to carry 

the higher loads.  However, the coating is assumed to be applied uniformly on the 

surface which is not the case in practice, the effects of non-uniform polymer coat needs 

to be studied.  The correct polymer properties need to be determined and implemented 

into the model.   
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5   CONCLUSION AND FUTURE RESEARCH 

 

5.1  Conclusion 

 
Walnut shells offer realistic potential to be adopted as proppants.  Polymer 

coated walnut shells have displayed significant improvement in resisting high closure 

stresses at the down-hole conditions in industrial laboratory tests.  In this study, the 

focus was on evaluating the response of coated and uncoated ground walnut shell 

particles.   Experimental and computational techniques have been employed to this end.   

 The study of the walnut shell cellular microstructure has been carried out to 

estimate its material properties based on its cellular structure as well as to detect the 

presence of polymer coat and further infiltration.  The study of microstructure clearly 

identified that it varied along the shell thickness.  The outermost layer of the walnut shell 

is covered with a layer of suberin which provides barrier properties.  On the innermost 

layer the cell structure is porous and soft, while the rest of the shell is composed of 

sclereids with small lumina.  The porosity in the particles based on ESEM and LM 

imaging is approximated to 10%.  This value is corroborated by the calculation of 

relative density of the particles as 0.86 indicating 14% porosity.  The chief constituents 

of the cell wall are cellulose, hemicellulose and lignin.  Thickness of polymer coat on the 

coated particles is observed to range from 5 μm to 15 μm.  Presence of polymer 

infiltration is not detected.  A two layer composite particle has been assumed with the 

coat thickness ranging from ~ 5 μm to 15 μm and the core of walnut shell.  

Three main testing procedures; single particle compression, heating tests on 

coated and uncoated walnut shell particles and 3-point flexure have been developed. 

Single particle compression test were conducted with random geometry particles.  A 

large scatter in the data was observed.  To reduce this statistical scatter, particles were 

divided into four distinct geometrical shape categories: flat top, round top, cone top, and 

high aspect ratio.  The flat top particle gave the stiffest response while the cone top gave 

the least stiff response highlighting the significance of geometrical shape.  Comparison 
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of the flat top uncoated and coated particle response indicated that coating induced a 

minor improvement in load vs displacement response.  Cyclic compression loads were 

imposed on flat top particles which revealed a significant permanent deformation even at 

low load levels.  Single particle tests on uniformly cut cuboid particles from walnut shell 

flakes were conducted to determine the nonlinear material properties of the walnut shells.  

The non-linear response is assumed to be elastic-plastic with isotropic hardening.  Based 

on the compression tests plasticity is assumed to be triggered at a low stress of ~ 5 MPa.  

In-situ ESEM observations on both the coated and uncoated particles showed signs of 

charring at about 175 – 200 ºC.  It was concluded that at the downhole temperature 

conditions the particle will be able to sustain the thermal loads.  To comment on its 

ability to sustain compression loading at downhole temperatures would require 

development of coupled thermomechanical tests. 

Computational models have been developed to simulate the single particle 

compression tests.  The Hertz contact problem was solved as a problem of a contact 

between a sphere and a rigid plate.  In this analysis the particles were idealized to be 

spherical.  From the single particle tests it was realized that particles undergo large 

deformations and hence geometric nonlinearity was incorporated into the analysis.  The 

influence of particle shape was studied by modeling 3D and 2D irregular shaped 

particles based on the actual images of test particles.  These models simulated the 

compression of flat top, round top and cone top particles.  The elastic material 

representation with nonlinear geometry was not able to simulate the compression 

response observed during testing.  The inelastic material representation was able to bring 

about significant improvement in simulating the compression response.  A single 

uniform layer of coating was introduced on the 3D models with inelastic material 

definition.  Coating was observed to induce a marginal improvement in load vs 

displacement response of the particles while increasing its ability to withstand a larger 

load. 
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5.2  Future Research 

 
 

In the current research the compression response of the walnut shell particles has 

been studied by assuming a homogenized material property of the walnut shell.  

Research can be carried out to simulate the influence of the microstructure, specifically 

the effect of cell shape and the effect of relatively weak bonding between two cells on 

the particle response.  While simulating the nonlinear uncoated particles the damage 

initiation in the particles has not been considered which can be incorporated.   

A comparative study of a number of nutshells like walnut, pistachio, pecan etc 

can be carried out to determine the most suitability of these nutshells to be used for 

hydraulic fracturing applications as proppants.  Combining the experimental and 

computational analysis techniques a screening methodology can be developed to analyze 

the suitability of a given proppant material and coating.  Such a screening technique can 

provide a virtual parametric test capability by simulating the single particle compression, 

multiple particle interaction and particle flow capability.  This screening technique can 

be developed as an alternative for the current industrial practice of carrying out long 

term conductivity tests on a newly developed proppant material.  
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APPENDIX A 

 

Gibson and Ashby [12] have treated the wood cellular structure as equivalent to a 

honeycomb structure which is an array of two dimensional hexagonal cells.  The wood 

elastic properties in the transverse direction are taken to be equivalent to the in plane 

elastic properties of a honeycomb.  The schematic of a hexagonal cell is shown in Figure 

87.  The axial elastic properties of wood are equivalent to the out of plane elastic 

properties of a honeycomb.  The derivation of the in plane and out of plane elastic 

modulus of a honeycomb is discussed below. 

 

Transverse (In Plane) Elastic Modulus: 

 

 

 
 

Figure 87. Schematic of an undeformed honeycomb cell 

 
 
 

The thickness of each cell wall is t.  The ratio of the honeycomb cell wall 

thickness to the cell ligament length (t/l) is assumed to be small.  With transverse 

loading (X1 or X2 direction) the deformation takes place due to bending of the cell wall 

at angle θ to X1 direction.  As an example a stress ζ1 in X1 direction (Figure 88) causes 
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the wall of length - l (ones which are at an angle θ to the loading direction) to bend.  The 

displacements of the two halves of the diagonal wall are in opposite directions and 

symmetric about the centre.  Each half is then assumed to be a cantilever beam of length 

l/2.  The beams are fixed at the vertical faces and loaded at the centre with the load Psinθ 

[49].  The resulting bending moment M is calculated as below.   Here the cell wall is 

treated as a beam with thickness t, depth b with Young’s modulus as Ewall.  P is the load 

acting due to the stress ζ1 in X1 direction.  The stress acts on the projected area (h + 

lsinθ)b, which is the projected area consisting of the two halves of the vertical ligaments 

(each of height h/2) connected to the ligament at angle θ and the vertical projection of 

the ligament of length l at angle θ to X1 (lsinθ).  The depth of the section is b in the X3 

direction.  A schematic showing the loading on the ligament due to the stress ζ1 is shown 

in Figure 88.  The system consists of three ligaments the two halves of vertical ligaments 

each of length h/2 and the ligament of length l at angle θ to X1.  The honeycomb is 

formed by repeating arrangement of these three ligaments.  A single honeycomb cell is 

formed by symmetrical positioning of these three ligaments.   Figure (a) shows the load 

P acting on the ligament and the resulting moments.  Figure (b) shows the deformed 

configuration of the ligament due the load P.     
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Based on the standard beam bending theory the wall deflection is given as 
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Figure 88. Loads acting on ligament of length l which is at an angle θ to X1 direction 

 

 

Here I is the second moment of inertia of the cell wall (I = bt3/12) for a wall of 

thickness t and depth d.  A component δsinθ is parallel to X1, leads to a strain of  
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The elastic modulus parallel to X1 is Etransverse = ζ1/ε1.  This is the transverse elastic 

modulus of the honeycomb.   
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Now according to [12] the relation between density ratio of a cellular solid material 

and the cell wall is specified as 

 

1
material

wall

t
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l




  

 

Replacing the thickness to length ratio with the density ratio we get the expression 

relating the in-plane elastic modulus of the honeycomb to the density ratio.  The constant is 

dependent on the details of cell shape.  This relation for wood is depicted below. 

 

 

 

 

 

 

Axial Elastic Modulus (Out of Plane): 

 

The elastic modulus in the direction X3 (out of plane represented by X1 – X2) 

represents the modulus of the section scaled with the area of the section which bears the 

load (Area of the ligaments on the section).  This is essentially based on rule of mixtures.  If 

Eaxial, Ewall and Epore represent the out of plane elastic modulus of the honeycomb, cell wall 

and porosity respectively and Aaxial, Awall and Apore represent the areas of the honeycomb 

section, ligaments and pore space respectively then according to rule of mixtures. 
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Now the porosity does not contribute towards the axial elastic stiffness.  Thus the above 

expression is reduced to 

 

axial axial wall wallE A E A  

 

Thus the axial elastic modulus is represented as below, based on the geometry of 

the cross section.  This expression gives the expression for the axial elastic modulus of 

wood presented in section 2.2. 
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APPENDIX B 

 
 

The three phase solution has been developed by Christensen [50].  In this model 

we consider an equivalent homogeneous media as in Figure 89.  We also consider that 

the infinite region is subjected to homogenous deformation conditions at large distances 

from the origin.  The outer layer of the material (infinite medium) has its properties as 

the unknown effective properties of μ (shear modulus) and k (bulk modulus).  The above 

configuration is considered equivalent to a completely homogeneous material by 

requiring that both the phases store the same strain energy, under conditions of identical 

average strain. 

 

 

 
 
 

Figure 89. 3-Phase model 

 
 
 

The proper solution of this three phase problem along with proper averaging 

techniques yields the complete solution for the effective properties of μ and k of the 

composite medium of an isotropic matrix phase into which is embedded the isotropic 

inclusion phase. 

The following is the solution for determining the effective shear and bulk 

modulus for composite with spherical inclusions.  The solution of the quadratic equation 

presented below gives us the effective shear modulus. 
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A(μ/μm)2 + 2B(μ/μm) + C = 0                    (16) 
 

 

Where, 
 
A = 8((μi/μm) – 1)(4 - 5νm)η1c10/3 – 2[63((μi/μm) – 1)η2 + 2(η1)(η3)]c7/3  

       + 252((μi/μm) – 1)η2 c5/3 - 50((μi/μm) – 1)(7- 12νm + 8νm2)η2c  

       + 4(7 - 10νm)(η2)(η3)  

 
B = -2((μi/μm) – 1)(1 - 5νm)η1c10/3 + 2[63((μi/μm) – 1)η2 + 2(η1)(η3)]c7/3  

       - 252((μi/μm) – 1)η2 c5/3 + 75((μi/μm) – 1)(3 - νm)η2cνm   

       + (3/2)(15νm - 7)(η2)(η3)  

 

C = 4((μi/μm) – 1)(5νm - 7)η1c10/3 – 2[63((μi/μm) – 1)η2 + 2(η1)(η3)]c7/3  

       + 252((μi/μm) – 1)η2 c5/3 + 25((μi/μm) – 1)(νm2 - 7)η2c  

       - 4(7 + 5νm)(η2)(η3)  

 

η1 = ((μi/μm) – 1)(7 - 10νm)(7 + 5νi) + 105(νi – νm) 

η2 = ((μi/μm) – 1)(7 + 5νi) + 35(1 – νi) 

η3 = ((μi/μm) – 1)(8 - 10νm) + 15(1 – νm) 
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The effective bulk modulus is calculated using the following equation. 
 
 
 

 

 

                                                                         

               (17) 
 

 

 
 
Where, 
 
μ  Effective shear modulus 

μm  Shear modulus of the matrix material 

μi  Shear modulus of the Inclusion material 

νm  Poisson’s ratio of the matrix material 

νi  Poisson’s ratio of the inclusion material 

k Effective bulk modulus 

km  Bulk modulus of matrix material 

ki  Bulk modulus of inclusion material 
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APPENDIX C 

 
 

Non-linear geometry condition is related to the change in the stiffness response 

of a model following its deformation in an analysis.  This occurs when magnitudes of 

displacement are large enough to affect the structural response.  The three main causes 

of Geometric nonlinearity as discussed in the ABAQUS/ Standard User’s Manual [35] 

are: 

 Large deflections or rotations. 

 Snap through. 

 Initial stresses or load stiffening. 

An example of Geometric nonlinearity is that of a fishing rod undergoing large 

deflections, buckling of a column or the snap through of a large panel.  In general as per 

ABAQUS/ Standar User’s Manual [35] whenever the strains exceed a value of ~ 5% 

non-linear geometry needs to be incorporated into the analysis.  The Figure 90 below 

shows an example of effect of large deflection on a cantilever beam. 

 

 

 
 

Figure 90. Large deflection in a cantilever beam 
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In this case the tip of the cantilever beam undergoes a considerable axial 

deflection in addition to its transverse deflection.  Thus the effective moment arm of the 

force is reduced (a < L) and hence the beam tends to give a stiffer response to additional 

deflection.  This non-linear response because of change in model geometry under 

loading is an example of Geometric nonlinearity. 

Geometric nonlinearity can be incorporated in an ABAQUS analysis by 

including the NLGEOM parameter with the *STEP option.  This option takes into 

account the higher-order terms in the strain-displacement relations shown below.  With 

this option incorporated the loading is incremental and the element stiffness matrix is 

updated at all the iterations.  All the elements in ABAQUS have the ability to use a non-

linear formulation.  The element output is true stress and logarithmic strain. 
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APPENDIX D 

 
 

Material nonlinearity arises when the stress/ strain response follows a non-linear 

curve.  In this case the stress response is dependent on strain and does not follow a linear 

relationship.  Nonlinear material properties can be both elastic and plastic.  As discussed 

in ABAQUS/ Standar User’s Manual [35] the non-linear elastic properties include 

hyperelasticity, viscoelasticity, hypoelasticity etc.  The inelastic properties include 

classical metal plasticity, rate dependent yield, anisotropic yield and creep, porous metal 

plasticity, cast iron plasticity, extended Drucker-Prager plasticity and creep, clay 

plasticity, crushable foam plasticity, concrete etc.   

The classical metal plasticity is used to describe the yield and inelastic flow of 

metals at low temperatures where the creep effects are not important and loading is 

monotonic.  The Mises or Hill yield surfaces associated with plastic flow are used in 

ABAQUS.  Two definitions for work hardening are available, perfect plasticity and 

isotropic hardening both of these are described in Figure 91 (a and b). 

 

 
(a) Elastic Perfectly Plastic                   (b) Elastic Plastic Hardening 

 

Figure 91. Stress strain relationship for elastic perfectly plastic and plastic with 

hardening 

Stress 
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Perfect plasticity implies that the yield stress is invariant with strain.  With 

isotropic hardening the size of the yield surface changes uniformly in all directions, 

hence the yield stress increases or decreases in all directions uniformly as plastic 

straining takes place.  Isotropic yielding is defined using the Mises yield surface.  

Classical metal plasticity can be incorporated in ABAQUS using the *PLASTIC card 

with the *MATERIAL option.  The data for hardening behavior is incorporated as a true 

stress, and plastic strain data in a tabular format or by defining the yield stress in a user 

subroutine UHARD.   

ABAQUS interpolates linearly between the input data points to obtain the 

material response and assumes that beyond the final data point the response is constant.  

Thus with an elastic perfectly plastic definition, stress in any element cannot exceed the 

yield stress and straining at a constant stress value takes place beyond this point.  PEEQ 

(equivalent plastic strain) which is a scalar variable is used to represent a material’s 

inelastic deformation.  A PEEQ value greater than zero indicates material has yielded.  

PEEQ is defined by the following equation [35]. 
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 Here 
0

pl

  is the initial equivalent plastic strain defined by the *INITIAL 

CONDITIONS option. 

 

 
 
 



 115 

VITA 

 

 

Name: Mandar Chaitanya Kulkarni 
 
Address: Department of Mechanical Engineering, 3123 TAMU, College Station, TX 

77843, USA 

Email Address: mandar.kulkarni@tamu.edu 
 
Education: B.E, Mechanical Engineering, Sardar Patel University, India, 2004 
 

M.S, Mechanical Engineering, Texas A&M University, College 
 

Station, Texas, 2008 

 


