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ABSTRACT

Dynamic Resource Allocation for

Energy Management in Data Centers. (December 2008)

Cesar Augusto Rincon Mateus , B.Sc. Mathematics, Universidad de los Andes;

Ms.Sc. Mathematics, Universidad de los Andes

Chair of Advisory Committee: Dr. Natarajan Gautam

In this dissertation we study the problem of allocating computational resources and

managing applications in a data center to serve incoming requests in such a way that the

energy usage, reliability and quality of service considerations are balanced. The problem is

motivated by the growing energy consumption by data centers in the world and their overall

inefficiency. This work is focused on designing flexible and robust strategies to manage the

resources in such a way that the system is able to meet the service agreements even when

the load conditions change. As a first step, we study the control of a Markovian queue-

ing system with controllable number of servers and service rates (M/Mt/kt) to minimize

effort and holding costs. We present structural properties of the optimal policy and sug-

gest an algorithm to find good performance policies even for large cases. Then we present

a reactive/proactive approach, and a tailor-made wavelet-based forecasting procedure to

determine the resource allocation in a single application setting; the method is tested by

simulation with real web traces. The main feature of this method is its robustness and flex-

ibility to meet QoS goals even when the traffic behavior changes. The system was tested

by simulating a system with a time service factor QoS agreement. Finally, we consider

the multi-application setting and develop a novel load consolidation strategy (of combin-

ing applications that are traditionally hosted on different servers) to reduce the server-load

variability and the number of booting cycles in order to obtain a better capacity allocation.
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CHAPTER I

INTRODUCTION

The developments of the computing and networking technologies during the last three

decades have triggered a large and increasing desire for obtaining, processing and sharing

data. Nowadays, it is customary to rely on computer systems and the internet for business

and entertainment. At the same time, the availability of new applications and faster and

more compact equipment have created new opportunities and challenges. For instance,

large and successful corporations such as Yahoo and Google are based on business models

entirely devoted to collect, host and organize data; and traditional industries such as retail

and transportation rely on data analysis, e-commerce and web advertising to improve their

operations. However, providing the enormous amount of electric energy to power the hard-

ware and auxiliary equipment needed to host the increasing number of applications and the

growing demand is becoming a challenge from the economic, environmental and energy

policy (Koomey [1]) perspective.

Due to economies of scale and management complexities, many firms have outsourced

the hosting of their internet and data processing servers to specialized companies that own

and manage large data centers or ”server farms” (as the one shown in Figure 1). Today’s

data center industry is the result of more than two decades of increasing computational

resources use, and outsourcing strategies intended to reduce logistics and personnel costs

and to increase efficiency. The existence of large facilities with numerous and relatively

affordable resources has created an unprecedented demand for computing services, such as

in-demand computing and web hosting due to their convenience and resulting competitive

advantage. The huge amount of computing power condensed inside a modern data center

The journal model is IEEE Transactions on Automatic Control.
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facility consumes a large amount of energy used not only for powering the servers, but also

to cool down the facilities in order to prevent hardware damages.

Fig. 1. A typical data center.

According to Chase et.al [2], Lefurgy et.al. [3] and Kumar [4], data centers can

consume several megawatts for powering the equipment and cooling systems that protect

the machines (Patel et.al. [5]). This has created a serious concern among interest groups

and the companies that manage such facilities regarding the industry’s impact on the en-

vironment, and the national electricity generation capacity in the USA. In fact, informa-

tion technology electricity consumption is almost 0.5% of world production, and global IT

electricity consumption generates more carbon emissions than entire countries such as Ar-

gentina or the Netherlands (See Garnet Report [6]). Thus, reducing energy consumption

is a high priority in the data center industry, not only because high energy expenditures

reduce their profitability, but for the public relations concerns that appear as a consequence

of their environmental impact.
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Contracts between a web-hosting services provider and its clients are usually based on

a Service Level Agreement (SLA) that specifies a range of acceptable values of a quality

of service (QoS). Higher QoS requirements produce higher revenues, so it is crucial for

the data center administration to be able to provide enough computing capacity to meet the

different contractual requirements. In many cases, traffic load received by the data center is

not only irregular but also very sensitive to external environmental conditions. Because of

those traffic characteristics and the imperious need of meeting the SLA, most data centers

over-provision computing capacity to ensure providing an acceptable service even to the

detriment of the facility’s energy efficiency. This practice has a negative impact on energy

usage and profitability, and produces a negative environmental impact. Furthermore, ex-

cessive capacity allocation, the high cost of real estate and the requirements of empty space

needed for cooling some of the most powerful servers in the market can limit the growth of

the data center industry (Kumar [4]).

Given the importance of data processing on today’s economy and the increasing cost

of energy, there has been some recent interest in improving the energy efficiency of the

data center industry. Several studies claim that data center industry use of energy, hard-

ware resources and physical space is quite inefficient. For instance, computational capacity

and facilities are underutilized, and cooling systems are inefficient (Kumar [4]). Energy

efficiency improvements can be obtained by means of strategic (building and design), tac-

tical (hardware selection and assignments of tasks to servers) or operational (real time task

management) decisions. In this dissertation we focus on the real time operational and some

tactical decision-making processes. In other words, we propose to study the problem of

operating a data center in the most efficient manner given that the facility, auxiliary sys-

tems and hardware are already in place. We refer to this problem as the Dynamic Resource

Allocation for Energy Management in data centers Problem.

During the past decade, several solutions to this problem have been proposed. How-
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ever, most practitioners have been reluctant to implement them, fearing that reducing the

capacity may increase the risk of not meeting the SLA. In order to create a strategy that

is more likely to be used in practice, we should provide an allocation scheme that is suf-

ficiently simple to implement, effective enough to justify its costs, and flexible enough to

adapt to load condition changes.

Besides resource allocation, other factors that may reduce energy consumption in data

centers are: efficient cooling equipment, well designed facilities and the location of com-

puter farms in regions with cool year-round temperatures. Additionally, hardware manu-

facturing companies have been developing web servers that are more energy efficient and

more compact than their predecessors. However, even with efficient equipment and facili-

ties, a scientific strategy to allocate the existing resources may save a significant amount of

energy and money by reducing the amount of unused capacity.

In this dissertation we will present robust techniques based on dynamic program-

ming, queueing theory, forecasting methods and variability reduction to improve energy

efficiency and increase data centers’ profitability without significantly reducing the quality

of service. The proposed dynamic allocation techniques are suited to working with the

current hardware and will have a significant potential to reduce the amount of energy used

by the data center industry.

A. Problem Definition

In this dissertation, we consider a data center as the one in Figure 1, equipped with a

fixed number of identical servers. Modern servers allow the user to select the processor

service speed from a finite set of frequencies by using a dynamic voltage scaling (DVS)

mechanism. Each server is used to process one or more types of requests, and it is assumed

to be DVS capable. For this study, we assume that each request needs to visit only one
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machine to be served. Since the data center resources are fixed and the arrival process can

not be controlled, we focus our attention in managing the data center resources in the most

efficient manner by dynamically changing the server processor’s frequency and the number

of active servers.

The data center receives processing requests from the outside world, and it should

process them according to a previously determined Serviced Level Agreement (SLA) and

in the most economical way. When a request arrives at the data center, it goes to a free

server if there is one available, but if all servers are busy, the incoming request is queued.

Fig. 2. Data center model.

We model the data center as the queueing system in Figure 2. We denote the total

fixed number of servers by K, the number of request classes by M, the buffer capacity by
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N and the set of possible processor frequencies by Γ. Both the arrival times and the sizes

of the requests are unknown and are modeled as stochastic point processes. The processing

time of the requests is proportional to the size of the file measured in bytes and inversely

proportional to the server frequency. Additionally, we assume that a server cannot process

more than one request at a time (however, the methodology would not be significantly

affected if other work conserving disciplines such as processor sharing are used).

We will divide the overall analysis of the data center Operation Energy Management

problem into three stages. Each stage emphasizes a different aspect of the allocation pro-

cess, and the proposed solution of each of them is used in the analysis of the subsequent

more general stage. First, we will study a theoretical problem to understand the control

policy, thereby using the lessons in the more practical case using real traces. We consider

a queueing control problem extension of the one found in George and Harrison [7]. This

model represents a single request class data center with constant arrival rate under the as-

sumption of exponential arrival and service times (see Figure 3). In this stage, we look

for strategies to minimize the operational cost by adjusting the service rate and the num-

ber of servers. Every time a request arrives or leaves the system, the system manager can

change the server frequencies and/or turn a new server on/off. Although the assumption

of exponential arrival and service times is an approximation of the real distribution, its

mathematical tractability allows us to obtain an elegant policy structure. Secondly, we are

going to present a methodology suitable to be used with actual internet arrival information.

We will propose a method to allocate capacity in a facility running each application inde-

pendently. This method includes a problem-specific forecasting procedure, and a capacity

selection rule that is adaptable enough to meet the QoS requirements even if the system

behavior changes. Finally, we eliminate the assumption of requiring each application to

run in different machines, and present a technique to exploit the economies of scale that

arise due to the interaction between multiple request classes. This technique is based on
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selecting which groups of applications should be allocated to the same servers.

Fig. 3. Queueing system.

For the remainder of this document, we will refer to the three stages listed above as the

Queueing Control, Independent Provisioning and Consolidated Provisioning sub-problems

respectively.

B. Objectives and Expected Significance

This dissertation has the following objectives:

1. To propose simple and efficient dynamic capacity allocation policies for controlling

multi-server Markovian queueing systems where the cost structure is non-submodular

(see Figure 3). This is a mathematical simplification of the energy aware data flow
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control in the data centers problem in Chen et al. [8]. This allows us to find effi-

cient policy structures for the Markovian case that may be adapted and implemented

into more realistic settings. These results are interesting from a pure queueing theory

perspective.

2. To find suitable methods to forecast the traffic stream of arrivals to a data center

in such a way that the resource allocation may be done more efficiently. The de-

velopment of a quality forecasting method will allow us to allocate resources more

efficiently and to reduce costs.

3. To develop suitable techniques to allocate capacity to single applications in such a

way that the QoS requirements consigned in the SLA are met.

4. To propose schemes to assign applications to servers in such a way that the energy

used by the entire data center and the number of booting cycles are reduced.

1. Importance

Everyday a large number of companies rely on the internet to advertise and sell products

or services, customer service support and many other forms of interaction with the general

public and employees; also, several industries rely on data processing and analysis to im-

prove their business processes. As with other products and services, many firms contract

specialized companies for managing and supporting a hardware and software structure that

allows them to use the web properly; therefore, any operating cost reduction methodology

is not only key for the success of the data managing companies, but also generates savings

that may be passed to the overall national economy.

Generally, the contracts between a service provider and its clients include a service

level agreement (SLA). Those agreements specify service quality and determine the rev-

enue a web hosting provider will receive. In order to meet the contractual agreements



9

most data center have over provisioned their computing capacity for all the running appli-

cations, so the SLA is met even if the load conditions change. While this strategy most

likely would guarantee the desired quality of service, it is clearly inefficient in both energy

usage and overall operating cost. However, data center managers will implement scientific

allocation techniques only if these are able to perform acceptably even if the system condi-

tions change rapidly. Therefore, it is very important that managers can be confident about

continuing providing acceptable QoS in a dynamic load environment.

High energy consumption by the data centers also produces a negative impact on the

environment. The recent growing interest for reducing contaminating carbon emissions

highlights the importance of finding ways to reduce electricity expenditures without a sig-

nificant reduction in the computing and data-processing capacity.

In fact, it has been estimated that energy consumption by data centers has doubled be-

tween 2000 and 2006, and today’s IT energy consumption is around 0.5% of the worlwide

energy production. Moreover, IT industry carbon emissions are comparable to those of

Argentina and the Netherlands, and the United States will need 10 more electricity plants

by 2010 if the industry sustains its rapid growth (See Garnet Report [6]).

Many SLA in the practice are based on bounding the fraction of requests that spend

more than a certain amount of time in the system. This QoS constraint differs greatly

from the classical average-time in the system constraint. This is one of the first studies to

consider capacity allocation with this type of constraint.

Given that service demand is not constant, dynamic capacity provisioning, if done

correctly, can reduce the amount of energy consumed with negligible lost of performance

because the system reacts to changes in the load. In other words, provisioning capacity

in such a way that the agreement will be met using less resources, when considering both

energy and hardware costs, may save money and increase the profitability of the data center

industry.
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2. Challenges

The problem of providing capacity dynamically for a data center presents a set of chal-

lenges inherent to the nature of the data traffic, the information technology industry and the

computational equipment. Data traffic over the internet is widely recognized as of fractal

nature and is rapidly changing. Provisioning to serve this type of traffic should be done in

such a way that the system is able to react to such sudden traffic variations. Additionally,

from the business point of view, any provisioning strategy should not jeopardize achieving

the contracted QoS requirements, because otherwise the energy savings may be overshad-

owed by loss of goodwill costs. Finally, from the practical point of view, any policy that

mandates turning servers off should take into account the wear and tear on the data center

hardware, and the energy and time consumed by this operation. Besides using time and

energy, the routing tables would have to be updated, causing an even larger disruption to

the system and running the risk of an unsuccessful boot. Furthermore, those costs and risks

depend directly on the hardware technology the data center is using, as it may be possible

that equipment in the future will have faster and possibly more reliable booting processes.

In the following subsections, we are going to describe the problems and challenges specific

to each one of the subproblems described above.

a. Queueing Control

The data center system may be represented as a multi-server, multi-frequency, queueing

system (see Figure 3) where the frequencies and the number of active servers are to be

determined, and which incurs in effort, holding and switching costs similar to the ones

in Lu and Serfozo [9]. Although this problem extends the well known single server with

adjustable service rate, and the multiple servers with constant service rate problems, it has

not been addressed in the previous literature. It has been shown that for a single server with
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variable frequency and submodular costs, the optimal policy is monotone hysteretic, but no

result is known for general switching costs mainly because non-submodular costs present

several technical difficulties. The costs in the data center problem are not submodular,

so there is not a known structure for the optimal policy. Additionally, for small cases

the computation of the optimal policy can be done by an iterative procedure [10], but for

large cases this may be computationally prohibitive. Since large data centers can contain

thousands of computers, computing such a policy by iterative methods is not practical. We

will find simple structure policies that, although possibly suboptimal, perform well in these

systems and in many cases may be optimal.

b. Independent Provisioning

Given the self-similar characteristics of the internet traffic (Crovella [11]), forecasting of

the load conditions is challenging. The arrival process of the requests to the data center

is bursty and time varying. The distribution of the inter-arrival times and request sizes is

heavy-tailed and has a high autocorrelation. These characteristics make capacity provi-

sioning a difficult task because a sudden burst in the arrival traffic may cause a long delay

for a large set of requests. To be able to make good proactive decisions, we need a fore-

caster that performs well in process of these characteristics and which provides us with

high quality data to feed the allocation models. Among the several techniques of smooth-

ing and forecasting, see for instance Basu [12] and Wang [13], it is necessary to find if

those methodologies are accurate and appropriate for this problem.

Allocating capacity presents a challenge because the information on the system is not

always complete. Details about the requests in the buffer are usually unknown until the

requests arrive at a server. As a consequence, the scheduler only can observe the number of

requests in the buffer, so it is not easy to estimate bounds to the approximate serving time

of the requests in the queue.



12

c. Consolidated Provisioning

As the arrival rate per unit time is not constant, and different applications can have different

arrival peak times, the data center may realize savings by running a set of applications in

the same server in such a way that having to turn off that machine is less likely. Doing so

may reduce the booting energy and hardware costs, and reliability risks, so as to improve

the overall operational profit. Here we consider not only the decision as to how many

servers we assign to each application, but also which applications should run on each server.

Making such assignments effectively requires information about the arrival process and the

interaction between them. Moreover, those assignments can be dynamically changed, but

the changes may as well be costly and risky, so we will keep those assignments unchanged

for considerable periods of time.

Although the problem of assigning tasks to servers has been studied in the scheduling

literature, the Dynamic Capacity Allocation in data center problem presents some new

challenges. First, we have a great uncertainty about the request arriving process. Secondly,

we are charged a penalty cost for shutting down a server, but there is not a set up cost

for changing the class of the request served by it, as long as that application was installed

beforehand. As we are going to describe in Chapter V, this new problem structure has not

been studied in the literature but presents some technical characteristics similar to the ones

found in the portfolio optimization literature.

C. Organization of the Dissertation

This dissertation is composed of five chapters. Chapter II contains a concise review of

the literature in the energy aware capacity allocation problem as well as the three sub-

problems we are going to consider; we have also included a short State of the Practice

section in which we describe the way most contemporary data centers allocate operational



13

resources. Chapter III deals with the Queueing Theory portion of the dissertation; it in-

cludes theoretical results and numerical experiments. Chapter IV is about the Individual

Allocation problem, and presents the forecasting and allocations techniques developed to

serve independent applications, and experiments that use real internet traces. Chapter V

contains details about the Consolidated Allocation sub-problem; it offers details on ap-

plication load consolidation techniques as well as numerical experiments with simulated

arrival data. Chapter VI contains concluding remarks and future research directions.
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CHAPTER II

LITERATURE REVIEW AND STATE OF THE PRACTICE

A. Literature Review

Given the popularity of data center utilization and the existence of Service Level Agree-

ments between the data center management and contractors, there have been several stud-

ies on QoS aware planning and provisioning (see Zhang [14], Ardagna [15], Shen [16]).

Clearly, over-provisioning resources may result in significantly higher costs which will re-

duce the data center profit and which will have a negative environmental effect because of

high energy consumption. However, the system should be able to perform when temporary

overload situations occur and still reduce costs by decreasing performance when low loads

are in effect. For these reasons dynamic capacity provisioning is necessary and advanta-

geous. Moreover, (see Clark [17]) the arrival rate peaks are relatively frequent, and the

ratio between the average load and the peak load may be very high. Several research stud-

ies have been performed on handling those peaks while meeting the SLA and maximizing

the revenue, but most of them have not addressed the power consumption issue (Chen et

al.[8]).

During recent years power management in data centers has gained attention (Carrera

[18], Chase et al.[19], Elozahi et al.[20], Lefurgy et al. [3], Pinheiro et al. [21]) due

to the large amount of energy consumed by the data center industry as a whole, steadily

increasing energy prices and growing environmental awareness (Chase et al. [2]). One of

the proposed alternatives was to turn off some of the servers following some predetermined

strategy (Chase et al. [2], Pinheiro et al. [21]). Another mechanism for controlling the total

energy consumption consists in modulating the CPU frequencies (Elnozahi et al. [20],

Sharma et al.[22]) using a dynamic voltage scaling mechanism (DVS). The rationale for
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this approach is that a slower CPU consumes less energy, and the CPU is the largest energy

expenditure of the server (Bohrer [23]).

Although DVS and shutting down servers provide improvements on energy consump-

tion, several of the individual studies have not used both strategies at the same time or have

not addressed the costs associated with the wear and tear on hardware because of repeated

booting. A recent work by Chen et al. [8] estimates the booting cost and performs both a

queueing and control analysis for multiple servers and multiple applications settings.

As seen in Chen et al. [8] with their hybrid scheme, the combination of DVS and

shutting down servers produces opportunities for significant savings. On this work, they

use S-ARMA prediction method and mention that it may be significantly improved. It is

worth noting that queueing systems representing a data center with the mentioned energy

savings mechanisms have not been studied in the queueing theory literature, and there is no

a study on allocating applications to servers in such a way that it might represent economies

in the system operation with the costs described above.

Uniprocessor Systems: Related dynamic resource allocation for energy efficiency

has been done in the context of individual machines. For example, mobile devices, such as

laptops or satellites, may become more energy efficient and have longer battery life if the

performance of some of the components, such as the disk (Hembold et al. [24]), is reduced

when there is no user activity or the current tasks do not require much processing. Other

critical equipment, such as sensors or satellites, also require the implementation of energy

management mechanisms to be able to complete longer missions. Several works have

been centered on the development of software solutions for reducing power consumption

of uniprocessor systems (See for instance Aydin et al. [25], Chandrakasan et al. [26] and

Hsu et al. [27], Gurumurthi et al. [28], Lorch and Smith [29] and Yao et al. [30]).

Parallel Processors Systems: Similarly, parallel processing systems, such as multiple

processor machines, may achieve significant energy efficiency by dynamically varying the
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processors speed and/or making them active or inactive (See Zhu et al. [31] and Merkel and

Bellosa [32]). This type of power management may be done in distributed systems (See

Mishra et al. 2003 [33]) as well as in individual chips with multiple processors (Juang et

al. [34]). Those systems present similar characteristics to the data center models presented

in this dissertation, but the negligible cost and time of activating a processor presents an

important difference with the data center problem. Gruian [35] proposed two system level

designs for architectures with variable voltage processors usable when the applications

are fixed and the execution time is predictable. Yang et al. [36] proposed a two-phase

scheme that minimizes electricity consumption under time constraints. Zhu et al. [31]

used the concept of slack sharing to propose two algorithms that reclaim the time unused

by other tasks to reduce the execution time of future tasks. Mishra et al. build schedules to

process real time tasks with precedence constraints and propose static and dynamic power

management schemes [33].

Bandwidth Allocation: Another IT area where dynamic provisioning is widely used

is the bandwidth allocation problem on network switches. The objective is to provide band-

width to different applications with different QoS constraints (See McGarry et al. [37]).

According to McGarry et al. [37], traffic may be divided between bandwidth guaranteed

traffic (such as multimedia) and best effort traffic, and the problem consists of allocating the

amount of bandwidth dynamically to satisfy the service constraints. For instance Guerini

at al. [38] and Assi et al. [39] present allcoation methods to satisfy QoS constraints,

and Qiu et al. [40] present a price based approach to allocate the bandwidth to different

applications. This problem differs from the data center energy problem in the absence of

switching costs and times, as well as in the type of QoS constraints considered. Moreover,

the problem setting generally did not require minimizing the total amount of bandwidth

allocated.



17

1. Queueing Control

Queueing design and control has been extensively studied in the literature during several

decades of the twentieth century and it is still active nowadays. The problem type con-

sists of minimizing the costs incurred by a queueing system (or maximizing its profits) by

choosing a given set of parameters either statically or dynamically. The static problems are

known as design optimization, whereas the models where the parameters can be changed

over time are referred to as dynamic control models. The problem studied in Chapter III is

an example of a dynamic control model. Queue behavior may be manipulated, for instance,

by admission control, service process control and control of the queue discipline (Crabill

et al. [41]).

In Chapter III, we center our attention on the service process control that includes

varying the number of servers and varying the service rate in order to minimize the oper-

ational cost of a system. The existing queueing literature contains several articles on two

special cases of the system we are studying. Namely, several authors performed research

on finding efficient strategies to vary the number of servers as it is found in the call cen-

ter problem literature that has obvious applications in practice. In addition, a significant

amount of research has provided results on the single server with variable rate problem,

perhaps because of its mathematical tractability under the assumptions of exponential ser-

vice and inter-arrival times. However, to our knowledge, no work has so far been done

on the control of systems where both the rate of service and the number of servers can be

chosen dynamically maybe because of the combined mathematical complexity and the lack

of potential applications.

Single Server Queues: A compilation of relevant works before 1977 on single server

queues can be found in (Crabill et al. [41]). Relevant recent literature includes Stidham

[42], George and Harrison [7], Lu and Serfozo [9], and Kitaev and Serfozo [43]. George
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and Harrison [7] proposed a very efficient method for computing the optimal policy for

an M/Mt/1 queue with adjustable service rate and infinite queue capacity, and Stidham

[44] established that optimal policy for such queueing systems is monotone and threshold

type when there are no switching costs. For the optimal control of M/Mt/1 queues with

switching costs, it has been shown in Lu and Serfozo [9] and Kitaev and Serfozo [45] that

the optimal policy is hysteretic monotone if the operational costs and switching costs are

submodular.

Call Center Problem: The call center literature is rich and extensive. This literature

studies the special case of our problem where the number of servers is controlled and no

switching costs are incurred but the service rate is fixed. Some general surveys on the

matter are Gans et al. [46], and Koole and Mandelbaum [47]. Some papers consider more

complicated queueing disciplines involving inpatient customers and customer’s observable

information has been published as well (see Garnet et al. [48]). In addition, queueing

control in multi-server queues have been studied in Crabill et al. [41] and Winston [49].

2. Independent Provisioning

There has been a considerable amount of work in resource provisioning in data centers.

Several papers focus on either resource provisioning to meet stringent service level agree-

ments or energy management but not both. Works of the first type are, for instance Appleby

et al. [50], Ranjan et al. [51], Zhang et al. [52] and Zhou et al. [53]. Some of the works

focused mostly in energy management are Pinheiro et al. [21], Sharma et al. [22], El-

nozahi et al. [54] and Bianchini and Rajamony [55].

There are some research works that incorporate the Service Level Agreement con-

straints into the energy efficiency driven resource provisioning. Chase et al. [2], considers

a data center that handles multiple applications with multiple servers and use turning on

and off servers as the resource provisioning tool; this research work, acknowledges the fact
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that rebooting a computer requires a non-negligible amount of time, but it does not asso-

ciate an energy or monetary cost to this operation. In Chen et al. [8], DVS, and turning

servers on and off are used to handle a system with multiple applications, booting costs and

with service level requirements in terms of the average response time. This work uses three

different approaches: first, it presents a proactive approach to the decision-making based on

steady state behavior (that will not be always reached in fine time granularities); second, it

presents a reactive feedback control algorithm; and third, it proposes a hybrid approach that

uses forecasting to determine the number of servers and the reactive decision-making pro-

cess to decide the frequencies. Wang et.al [56] proposes a control methodology to manage

the power consumption under QoS constraint of the maximum response time. Xue et al.

[57] present an adaptive pool-based resource management mechanism to provide capacity

on demand, and validate their results using simulated data with exponential inter-arrival

times. Bertini et al. [58] measures the quality of service as the average ratio between the

actual response time and the response time deadline, and uses a reactive control mecha-

nism to make capacity provisioning decisions. Khargharia et al. [59] proposes the use of

control methodologies on different components to reduce the power consumption such as

the processor, memory and I/O. Our work in Chapter IV differs from previous papers in the

type of SLA considered and the combination of proactive and reactive mechanisms at the

same time.

Wavelet Based Forecasting: Forecasting data traffic has been regarded as a challeng-

ing task by time series researchers. Ethernet traffic was recognized to be self-similar and

exhibit fractal-type behavior (Leland et al. [60], and Crovella and Bestavros [11]), which

means that it is very bursty and does not becomes smoother quickly with the aggregation of

sources and/or change of scales. Given the similar fractal-like characteristics of the wavelet

decomposition, wavelet based tools have been proposed to estimate different parameter of

self-similar time series (Abry and Veitch [61], Aussem and Murtagh [62] and Fryzlewicz
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et al. [63]). A good compilation on wavelet based time series forecasting may be found

in Percival and Walden [64] and Renaud et al. [65]. In Chapter IV we will use wavelet

mechanisms for the demand forecasting.

Wavelet-based Anomaly Detection: Wavelet applications to internet related time

series go beyond forecasting. (Barrford et al. [66]). Standard signal processing data, such

as wavelet filters, provide means to identify the presence of anomalies and their type; for

instance, Barford et al. [67] present a signal analysis of four classes of network anomalies.

Kwon et al. [68] present wavelet based methods to detect network anomalies effectively

based on change point detection and test the procedure with simulated attack data, and

Kim and Reddy [69] proposed a traffic anomaly detector that monitor packet headers and

is based on IP address correlation.

3. Consolidated Provisioning

The allocation of tasks to servers has received interest in the operations research literature.

For instance, in manufacturing, given a deterministic arrival stream of jobs, the problem of

assigning those jobs to operators or machines have been extensively studied using integer

(Pinedo [70]) and dynamic programming techniques (Bellman [71]). This problem has

been studied in the context of real time scheduling and considers the possibility of unreli-

able machines (Maimon and Gershwin [72]). However, the kind of jobs each operator can

perform is given in the problem and the decision maker can not modify that. In contrast, is

the data center setting, the manager can install applications on the different servers.

In the queueing literature (Gomoluch and Schroeder [73]), similar problems have been

discussed from the perspective of manipulating queue discipline and the assignment of jobs

to specialized or well trained servers (see for instance Becker et al. [74]). Those studies

have been centered in keeping the system balanced in order to not overflow any particular

set of servers (Gardner and Liu [75]) and the issue of fairness (Park et al. [76]). However,
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it is worth noting that the concept of load balance and fairness should be treated differently

in the data center context, because the concern of an unbalanced work load is valid only

when it produces significant wear on the servers or disturbs the work environment. Clearly,

because of the nature of the equipment, this is not the case. In our context, we are interested

in load balancing only if it yields to savings. Moreover, most of the research studies in the

area deal with homogeneous arrival processes.

Variance Reduction in Portfolio Analysis: We will allocate the tasks in such a way

that the aggregated number of servers that should be shut down is reduced. In other words,

besides avoiding a system overflow, we want to minimize the number of large changes on

the aggregated arrival flows to each server to avoid paying the booting cost B0. The problem

may be described as allocating a finite amount of resources to a set of tasks. We want the

total load of the classes allocated to a server to exhibit very little variance. Analogous

work is done in the portfolio management literature when the concept of negative historic

covariance is used to minimize the risks of large capital loss (see for instance Levy and

Sarnat [77] and Markowitz [78]). There has been an immense amount of work on portfolio

optimization since then. A different type of analysis is done in the so called portfolio

analysis and market taxonomy. In this context, the correlation coefficient of all possible

pairs of stocks is computed, and graph techniques such as minimum spanning trees are

used to find strong positive correlation in stocks, and to partition the market into sectors

(See Onnella [79]). Those techniques allow analysts to determine if a portfolio is well

diversified and to detect strong market behavior disruptions such as recessions or crashes.

Our task differs from the previously mentioned problems in two ways. First, we cannot

choose to serve only a fraction of the requests, nor can we create more requests. Secondly,

we do not consider the return of investment, but we are interested solely in the variability

reduction.
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B. State of the Practice

The number of data centers in the world has grown immensely in recent times. Energy

consumption by data centers has doubled between 2000 and 2006, and today’s IT energy

consumption is around 0.5% of the worldwide energy production. However, not only the

number, but the computational capacity of the data centers has been increasing. A modern

average data center consumes the energy equivalent to the consumption of 25,000 house-

holds. If this rapid growth continues, the United States will require between now and 2012

the equivalent of 10 additional power plants (Gartner Report [6]).

This huge energy consumption has a negative economic impact as well. Data center

building and operation is a quarter of the total expenditures on today’s IT, and the true

costs of operating a server over 10 years is 4 to 5 times the cost of the hardware (Uptime

Institute [80]).

Problems created by this rapid increase of the number of server farms include growing

capital and operation spending, and a significant amount of greenhouse emissions. More-

over, all those energy resources are not being used efficiently. Several sources have es-

tablished that the available computing power and sophisticated facilities are being severely

underutilized. In particular, the average utilization of the servers is about 6%, and the facil-

ity utilization is about 56% (Gartner Report [6]). The inefficient resource usage is caused

by poor capacity planning and application design, inefficient cooling systems, inefficient

resource allocation and inappropriate hardware (Kumar [4]).

Facility underutilization is a consequence of poor capacity planning. It wastes real

estate and induces unnecessary work on the cooling infrastructure. Low quality computer

code produces software applications that should perform excessive computations to per-

form the desired tasks; these applications introduce non-essential load into the computer

systems. Inefficient cooling systems require more energy than properly designed ones
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to achieve comparable across-facility temperatures. Finally, poor capacity provisioning

makes a large number of active servers idle or running at higher frequencies than required

to meet the performance criteria. The main reason for excessive capacity provisioning is

the imperious necessity of meeting the SLA contracted with the data center customers.

As we just mentioned, there are several strategies to build more energy efficient and

more economical data centers. However there exist the necessity and the possibility to

take action to improve the operations of the facilities already in place. Implementing those

techniques appears to be a viable solution to reduce the energy consumption in the IT

industry in the short term.
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CHAPTER III

QUEUEING CONTROL

Queueing control has been applied to a diverse number of real-life problems, such as opti-

mizing manufacturing systems, call centers, banking operations, transportation, healthcare

and computer networks. The general problem consists of making decisions regarding a set

of eligible variables in order to minimize (maximize) the operational costs (rewards) under

some pre-determined arrival process of the jobs to be processed. Different versions of this

problem may be characterized by a particular choice of the number of servers, the arrival

process, the service process, the factors under managers’ controls and the costs incurred.

In this chapter, we study a generalization of two classical problem settings in the

Markovian queueing control literature: unique server with adjustable service rate (M/Mt/

1 where µt , the service rate is controlled), and the call-center problem with multiple fixed

service rate servers that may be turned on or off (M/M/kt where kt is controlled). In both

cases, the server operation cost is a non-decreasing function of the service rate, and the

penalty for having jobs waiting in the system is a holding cost that is a non-decreasing

function of the number of jobs in the queue. To the best of our knowledge there are no

queueing system studies that combine both the dynamic selection of the number of servers

as well as the service rate (i.e. M/Mt/kt where µt , the service time parameter, and kt are

controlled).

Our problem of controlling a queue of jobs serviced by a fixed-size set of homoge-

neous servers that can run at a discrete set of service rates or that can be turned on and/or

be off in order to minimize the operational cost per unit time has been motivated by applica-

tions in computer systems. The system incurs operating and holding costs (corresponding

to energy and performance costs respectively) analogous to the ones in the previous queue-

ing literature (see for example George and Harrison [7]), but an additional instantaneous
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cost is charged every time a server is activated corresponding to energy consumption and

reliability costs. The study of those systems is rejuvenated by the recent interest in solving

control problems in data center operations in which the servers can be both turned off and

slowed down by means of Dynamic Voltage Scaling (DVS see Chen et al. [8]) to increase

energy efficiency and reduce the operating costs of such facilities. If we assume that a pre-

determined set of servers is devoted to a fixed request type, we can construct a simplified

model of a data center. This would be a set of independent single class queues with a FCFS

(first come first served) queueing discipline, and homogeneous exponential arrivals being

served by up to K servers with exponential service times than can run at variable service

rates and can be turned on (incurred a booting cost B0) or off.

In order to compute the optimal static policy, the problem may be modeled as a semi-

Markov decision process (SMDP) to use uniformization and value iteration techniques

when explicit model parameters are given and the queueing buffer is finite. However,

those techniques are computationally very expensive and can be used only for cases much

smaller than the ones found in practice (with several hundreds of servers). In this chap-

ter, we show that for this system the optimal policy is hysteretic and show some structural

results. In addition, we use those results to develop a computationally efficient heuristic

approach allowing us to find policies that provide significant savings compared to systems

with a constant number of servers running at a variable service rate, and a variable number

of servers with constant service speed. In other words, we explore the potential savings of

this new setting against the call center model as well as the single server with adjustable rate

case. For smaller problem instances we compare the heuristic performance with the exact

optimal policy, but for larger cases we limit the study to the savings against the traditional

approaches.

There is a set of relevant challenging characteristics inherent to the structure of the

problem. First, the SMDP has multi-dimensional state and action space. Secondly, since
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the running costs associated with our motivating problem are not sub-modular (Chen et

al. [8]), we do not restrict our attention to the sub-modular case as in Lu and Serfozo

[9], but we have to consider the more general case of non-decreasing holding and service

costs. Third, the problem involves some non-linear and integer functions to optimize, and

the realistic problem sizes are quite large (100 or more servers).

A. Problem Description

The queueing control problem has applications across several industries: banking services,

call centers, manufacturing and port operations to name a few. However, this research has

been motivated by an application in computer systems, namely, data centers. The general

problem consists in deciding the value of a set of parameters (i.e. control variables) ac-

cording to the state of the system, described by the state variables, in order to minimize the

expected operational cost under some predetermined characteristics of the arrival process

and the service times. Depending on the model, the costs, state and control variables are

selected. In this chapter, we study a system with a set of K identical servers with variable

service rate and the ability to be turned on (incurring a cost B0) and off. We consider expo-

nentially distributed inter-arrival and service times, and assume that the administrator, via

software, has control over the service rates and the number of active servers.

The main challenges, in addition to those described in section 1, are the non-submodularity

of the cost structure, the presence of an instantaneous cost of activating a server and the in-

teraction between the chosen frequency and the number of servers. It is worth noting that

the problem is multi-dimensional in both, the action and state spaces.
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Fig. 4. Queueing system model.

1. Problem Description

Consider an M/Mt/kt queueing system where jobs arrive at a fixed arrival rate λ per unit

time, and at time t there are kt , 0 ≤ ky ≤ K , active servers, each running at rate µt . The

values kt and µt are under our control. Let n(t) be the number of jobs in the system at time

t. The main objective of this chapter is to develop a control policy to optimally select µ∗t

and k∗t based on the state of the system an instant before, (n(t−),µt−,kt−), such that the

average cost per unit time is minimized.

We assume that for all t, µt ∈ Γ = {γ1,γ2, ...,γS}, i.e., there are K available servers that

can run at a variable frequency, performing at a service rate picked from a finite set. The

operating or effort cost function in terms of the number of active servers k and the frequency

µ, c(k,µ) per unit time, is assumed to be non decreasing, but no further assumptions such

as convexity are made. The system incurs holding cost h(n) per unit time when there are n
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jobs in the system. The function h(n) is assumed to be non-decreasing. Moreover, there is

a fixed instantaneous cost B0 every time a server is turned on, and the decision of turning

a server on, leaving as it is, turning it off is represented by an integer b0 ∈ {−1,0,1}.

Since inter-arrival and service times are assumed to be exponential, we can assume that the

decisions about the control variables are going to be made only whenever a job arrives or

leaves the system. In other words, by using the memoryless properties of the exponential

distribution, we modify the continuous control problem into a discrete control problem with

actions taken only during system state changes.

We assume that a period starts every time a job arrives or leaves the system; therefore,

at each period the system state is constant. Thus, whenever a period starts if the service

rate is γi, the number of servers is k, the number of jobs in the system is n and the booting

decision is b0, the incurred costs are given by:

r(i,n,b0) = (c(k,γi)+h(n))x+B0(b+
0 )

where x is the period length.

For our numerical experiments, we are going to use

c(k,γi) = k(Ff ix +Fvarγ
3
i ) (3.1)

where Ff ix and Fvar represent the fixed cost and a coefficient for the variable cost. We picked

this cost structure following the considerations in Chen et al. [8] regarding data center

energy costs. Observe that the energy cost structure implies that increasing the service

speed has a tremendous cost on the energy consumption, and there is a fixed cost regardless

of the server frequency. The booting cost B0 is essentially a measure of both the energy

spent in booting as well as the reliability costs, because the lifetime of a server depends on

the number of boots. The holding cost h(n) ensures that the jobs receive reasonable quality

of service in terms of response time for requests.
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B. Problem Formulation

Consider a queueing system where inter-arrival and service times are exponential, the max-

imum number of jobs in the system is N (the analysis of the special case of N = ∞ may be

performed by considering large values of N), and the arrival rate is constant. Servers may

be turned on and off and operate at a variable service rate. The system state is described

by kt , µt and n(t) that represent the number of servers, the individual frequency and the

number of jobs in the system at time t. Note that we assume that all servers run at the

same frequency µt as we will justify in Proposition 1. As mentioned in section 2.1, we

can restrict our decision epochs to the times when the system changes its state, and we can

define time periods where the service frequency and number of servers are constant.

For a given period, the continuous costs are divided into holding costs per unit time

h(n) that is incurred when n jobs are in the system at any given time, and operating costs

per unit time c(k,µ) that represent the effort cost of running the system with k servers at a

service rate of µ. We assume that both, h(n), and c(k,µ) are non-decreasing functions, so

there is an extra price for serving the jobs at a faster rate or by having a longer queue. We

assume that in particular, c(k,µ) = k (A+g(µ)), i.e., the sum of the fixed cost for operating

k servers and a non-decreasing variable cost g(µ) (a special case was displayed in equation

( 3.1)). Additionally, switching a server from inactive to active state costs a fixed amount

B0. The decision epochs appear when a job arrives or leaves the system, and at every

decision epoch, a frequency rate is chosen and the decision to activate one, deactivate one

or keeping the same number of servers is taken.

Since there is not a cost associated with changing the service rate, it does not have

to be included in the state space; however, the service rate is a factor in determining the

transition probabilities when we model this problem as a SMDP. In our model, the state is

described by a two-dimensional state variable (k,n) ∈ S = {0,1, ...,K}×{0,1, ...,N} and
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action space A = Γ×{−1,0,1} (see Figure 2) where Γ is defined as in section 2.1. This

is a two dimensional decision problem in which both dimensions are potentially very large

because as N grows, the optimal policy of the finite system converges to the optimal policy

of the infinite buffer size problem.

Fig. 5. State space.

Given the nature of the problem, there are two decisions at each epoch. First, we

decide whether to turn on or off a server, which will determine a vertical movement on the

state space and will limit the set of future states, and secondly, we pick a frequency that

will determine the transition rates. A policy is defined by a function ν : S→ A, that given

the system state determines the action to take. In other words, for every state (k,n) we want

to make a decision ν((k,n)) = (µ,b). For a given ν, the associated average expected cost

is:
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C̄(ν) = lim
Z→∞

∑
Z
z=1
(
c(kz,µz)tz +h(nz)tz +B0(b+

z0)
)

∑
Z
z=1 tz

,

where tz is the length of the z− th period and bz0 and µz are booting and frequency actions

at the beginning of the z− th period. We say that a stationary policy ν∗ is optimal if

C̄(ν∗)≤ C̄(ν) for any ν in the class of stationary policies.

We denote the probability of going from state (k,n) to state (l,m) if the decision is

(k,µ) as P(n,k,m, l)(k,µ). The policy ν∗ is optimal if it satisfies the Bellman equation

corresponding to the average cost criterion (see Bertsekas [81]):

ν
∗(n,k) = min

Γ×{1,...,K}

{
B0(b0,nk)+−ρ

∗t̄(k,γi)+∑
m,l

P(n,k,m, l)(k,γi)ν∗(m, l)

}
.

As we are going to explain in section 4.1, we need to find first the optimal policy

structure for the discounted criterion case to find the average cost criterion optimal policy

as the limit as the discount factor approaches 1. The Bellman equation for the discounted

cost requires the definition of the value functions at each state analogous to the ν terms in

the previous equation. Following the ideas in Serfozo [82], for the discounted factor β, we

can write the value function V (n,k) of the discounted criterion queueing decision process

as:

V (n,k)= argmin(k,γi)∈A

{
B0((b0,nk)+)+

c(k,γi)+h(i)
λ+Kγ|Γ|

+β ∑
(m,l)∈S

P(n,k,m, l)(k,γi)V (m, l)

}
,

(3.2)

Remark B.1 When dealing with a finite buffer, most queuing control papers consider an

additional cost for rejecting a job. This cost is incurred when a job arrives to the system

and the buffer is full. Since we consider convex holding costs, we can define an adjusted
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holding cost

h̃(n) =

 h(n) i f n < N,

h(n)+λa i f n = N,
.

where a is the rejection cost. Notice that the convex cost structure is not going to be

affected.

C. Solution Structure

In this section, we show that the optimal policy for the queueing system described above is

hysteretic and we describe a set of special cases in which the solution structure is known.

The following is a generalization of the definition of hysteretic policy given in Hipp and

Holzbaur [83]:

Definition C.1 For a Semi-Markov Decision Process with action space A = {1,2, ...,K}×

Γ and state space S = {1,2, ...,K}×{1,2, ...,N}, a policy f is a hysteretic policy if f (k,n,µi)=

(k̄, µ̄) for some k,n, i implies f (k̄,n, µ̄) = (k̄, µ̄).

1. Structure of the Optimal Policy

The solution for an SMDP that incurs a switching cost is often a hysteretic policy. The

following is the proof of this fact. The strategy is the following: we will first show the

result for the discounted cost criterion and then consider the average cost as the limit when

the discount criterion tends to 1. Let us define a linear order in the action space using

the lexicographic order of the coordinates, i.e.,, (k1,γ1)≤ (k2,γ2) if and only if k1 < k2 or

k1 = k2 and γ1 ≤ γ2.

Theorem C.2 If the costs are bounded by a polynomial, the optimal policy for the ad-

justable number of servers, adjustable frequency system with average reward criterion is

hysteretic.
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Proof C.3 By Lemma 1 (below), we know that the optimal policy in the discounted case

is hysteretic. We need to show that the conditions in Theorem C.2 are met. Let V (β,e)

represent the value function for the discounted factor β and initial state e = (k, i). From

the cost structure, it is evident that V (β,k, i) ≥ V (β,k, i− 1). Then it is clear that the

minimum is achieved at some e = (k,0). Since the set of such states is finite, there exist a

state e = (k0,0) and a subsequence βnk → 1 with V (βnk ,k0,0) = mini∈E V (βnk ,k, i). Now,

consider the policy f (k1, i) = (K,µ|Γ|) if i > 0, and f (K,1) = (k0,µ|Γ|) . Since we assumed

K×|Γ| < λ it is clear that the conditions in the theorem are met. Since all the policies in

the sequence are hysteretic, the limit policy is hysteretic as well.

Lemma C.4 Let β ∈ (0,1). The optimal policy for the multi-server adjustable frequency

system with discounted reward criterion and discounted factor β is hysteretic.

Proof C.5 By using standard regularization procedures, see equation (3.2) in section 3,

we can write the problem as (see Lu and Serfozo [9]) v(i,a1) = min(s(a1,a2)+ w(s,a2))

where the a j represent an action and s represents the state. Following the argument given

in theorem 1 of Hipp and Holzbaur [83]. Let s(k1,µ1,k2,µ2) be the switching cost.

Observe that the switching costs of our problem satisfy the inequality s(k1,µ1,k3,µ3) ≤

s(k1,µ1,k2,µ2)+ s(k2,µ2,k3,µ3). Using the linear order defined above, we can follow the

same argument of Hipp and Holzbaur [83] to conclude that the policy is hysteretic.

The following theorem appears in Weber [84] and Sennott [85] and state conditions

under which the optimal policy for the average rewards criterion can be found as a limit of

the optimal policies for the discounted cost criterion.

Theorem C.6 Suppose there exist discount factors βn → 1 and a state e ∈ S such that

V (βn,e) = mini∈SV (βn, i). Also, suppose there exists a stationary policy under which the

expected time to go from i to e and the expected cost incurred during this passage are
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both finite for each i ∈ S. Then there exists a subsequence βnk → 1 such that the limits:

g = limk→∞(1−βnk)V (βnk ,e) v(i) = limk→∞[V (βnk , i)−V (βnk ,e)] exists and satisfies the

the optimality inequality: g+ v(i)≥mina∈A
{

C(i,a)+∑i∈E Pi, j(a)v( j)
}

.

Moreover, g is the optimal average cost and any minimizer of the right side deter-

mines an average-cost optimal policy. This expression is an equality when the process can

immediately move only to finitely many states from each i.

Remark C.7 Due to the structure of the problem and the numerical experimentation, we

believe that the optimal policy is monotone hysteretic to determine the number of servers

and monotone threshold type to determine the frequency space (see Figure 3). We have not,

however, proved this fact about monotonicity to be true due to the multi-dimensionality of

the state and action spaces as well as the cost structure.

2. Some Structural Results

In this section we want to list a set of results concerning the structure of the optimal policy

under some additional assumptions. In particular we consider the case when the set of

possible frequencies is continuous and when the booting cost is zero.

One of the assumptions made in this chapter is that all the servers run at the same

frequency. The motivation for this assumption is explained next.

Proposition C.8 Assume the effort cost function that depends on the frequency g(µ) is an

increasing convex function in µ and the set of possible frequencies is connected. Then, it is

optimal to run all active servers at the same frequency. In other words, if
k

∑
i=1

µi = µ then

the minimum cost is reached when µi =
µ
k

for all i.

Proof C.9 In order to obtain a contradiction, assume that there are two indexes i and j

such that µi < µ j. By definition of a convex function g(x + ∆x)− g(x) is increasing in x;
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therefore, g(µ j)−g
(

µi+µ j
2

)
≥ g

(
µi+µ j

2

)
−g(µ j) and

2g
(

µi +µ j

2

)
≤ g(µi)+g(µ j).

Since the other terms do not change, this new frequency assignment has lower cost. There-

fore it is optimum to run all servers at the same frequency.

The opposite result is true when the function is concave. In that case it is better to have

servers running at the highest possible frequency even if one server has to run at a different

lower pace.

Proposition C.10 Assume that the cost function c(k,µ) is increasing and convex. If there

are no booting costs, i.e., B0 = 0, then for every number of active servers k, there are two

bounds µlow,µhigh ∈ [0,∞] such that if µ≤ µlow we should turn off a server, and if µ≥ µhigh

then the instantaneous cost will be lower if we turn on a server. In particular, for the cost

structure in equation (3.1) those bounds can be computed explicitly.

Proof C.11 Let us assume that there is some aggregated frequency µ0 such that c(k,µ0) <

c(k + 1,µ0). We want to show that there exist µhigh such that µ > µhigh implies c(k,µ) >

c(k +1,µ). In order to do this, it is enough to show that the function c(k +1, µ
k+1)−c(k, µ

k )

is non-increasing. In order to do that, observe that for any non-decreasing convex function

f (x), a > b > 0, ∆ = a−b, and t > 1 we have

t( f (a)− f (b))≤ f (ta)− f (tb).

Because

f (ta)− f (tb) =
btc−1

∑
i=0

( f (at− i∆)− f (at− (i+1)∆))+ f (at− (t−btc)∆)− f (bt)

≥
btc−1

∑
i=0

( f (a)− f (b))+(t−btc)( f (a)− f (b)) = t( f (a)− f (b)).
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We need to show now that if µ > ω, and c(k,ω) = kg(ω)

(c(k +1,µ)− c(k,µ))− (c(k +1,ω)− c(k,ω))≤ 0.

Or equivalently (k + 1)
(

g
(

µ
k +1

)
−g
(

ω

k +1

))
− k
(

g
(µ

k

)
−g
(

ω

k

))
≤ 0. Dividing

by k we obtain:

k +1
k

(
g
(

µ
k +1

)
−g
(

ω

k +1

))
−
(

g
(µ

k

)
−g
(

ω

k

))
.

But by our previous observation, making t = k+1
k this is less than or equal to

g
(µ

k

)
−g
(

ω

k

)
−g
(µ

k

)
−g
(

ω

k

)
= 0.

An analogous analysis applies for µlow.

Proposition 2 implies that there are frequency strips that define the optimal number of

machines that should be active.

3. Special Cases

As mentioned before, the problem studied in this chapter is a generalization of several

previous works in the queueing literature. Many of these problems result in optimal policies

that are monotone threshold type or monotone hysteretic. To formalize those concepts we

introduce the following definitions.

Definition C.12 A policy is monotone threshold type if for the finite linearly ordered action

space A, and finite linearly ordered action space S, there exist thresholds 0 = T0 < T1 <

T2 < ... < T|A| = ∞ such that the action ai is taken if and only if the system is on state s,

such that Ti−1 ≤ s < Ti

Definition C.13 A policy is monotone hysteretic if for the finite linearly ordered action

space A, and finite linearly ordered action space S, there exist thresholds 0 = L0 < L1 <
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L2 < ... < L|A| = ∞ and 0 = U0 < U1 < U2 < ... < U|A| = ∞ such that the action ai is taken

if and only if the system is on state s, such that Li−1 ≤ s < Ui

The following are special cases worth noting:

• If K=1, this is the classical single server with adjustable service rate problem. In this

case, the solution structure is a threshold monotonic policy described in George and

Harrison [7].

• If K=1, the frequency switching costs are positive (although in our problem they are

0) and the cost functions are sub-modular, we have the case studied in Serfozo and

Lu [9]. In this case the optimal policy is monotone hysteretic.

• If |Γ|= 1 and B0 = 0, this is the call center control problem. In this case, the solution

structure is a threshold monotonic policy.

• If |Γ| > 1 and K > 1, and the costs associated with the system are sub-modular, we

conjecture that the optimal policy is hysteretic monotone for the number of servers

and monotone threshold for the frequency.

Notice that in this chapter we assume |Γ|> 1, K > 1 and the costs are not sub-modular.

D. Policy Computation

We are interested in not only the structure of the optimal policy but also in finding an ef-

ficient method to compute it. In this section, we describe the methodology we use to find

efficient policies for the multi-server with an adjustable service rate system. For small

cases, it is possible to compute the optimal policy explicitly by means of a value or policy

iteration procedure. However, real life data center problems routinely involve a very large

number of servers, and the value iteration becomes a computationally infeasible approach.
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Motivated by the solution structure of the special cases mentioned in section 4.2, we pro-

pose a simulated annealing based heuristic to determine hysteresis curves for the number

of servers combined with a simultaneous local search for determining the thresholds for the

frequencies. Finally, we compare the performance of our solution with the optimal solution

for small cases and with other policies for larger cases.

1. Computation of Efficient Policies

It is well known that the optimal policy for a single server queueing control problem with

variable service rate and without switching costs has a monotonic threshold structure. In

fact, this algorithm to compute the thresholds and hysteresis curves can also be used to

compute the policies mentioned in section 4.5. Additionally, in the presence of switching

costs, if the holding and running costs are sub-modular the optimal policy is monotonic

hysteretic Serfozo and Lu [9]. Moreover, for the case of a fixed running frequency system

with dynamic number of servers and zero server set up cost, the optimal policy without a

switching cost is also threshold type.

As the system combines both features, we consider policies that are monotone thresh-

old type to determine the frequencies and monotone hysteretic for choosing the number of

servers. A policy ν (see Figure 6) is completely determined by two vectors L and U, and

one matrix T. The vectors L = {l1, l2, ..., lK} ∈RK li ≤ li+1, and U = {u1,u2, ...,uK} ∈RK ,

ui ≤ ui+1; li ≤ ui are of size K and represent the lower and upper bounds in the number of

jobs in the queue for which we are going to turn off and on the servers respectively. The

matrix T = {t1, t2, ..., t|Γ|} ∈ R(|Γ|−1)×K , ti j ≤ ti, j+1 is of size |Γ| ×K and represents the

thresholds in which each frequency will be used.

By using the memoryless property, we may limit ourselves to taking decisions only

when the state changes, i.e., when a job leaves or arrives at the system. At any decision

epoch, if there are k active servers and n jobs in the system, a server is turned on (off) if
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Fig. 6. Policy diagram for |Γ|= 3 and K = 3.

n > uk(< lk) and the frequency is set to µs if tk,s−1 < n < tk,s. Therefore the policy ν is

determined by L, U and T.

As an example, consider the case in which there are K = 2 servers available and each

server can run at |Γ|= 3 service rates {µ1,µ2,µ3} and N = 10. If L = (0,3) and U=(5,10)

it means that if there is one server running, we will turn the other server on if the number

of jobs in the system n is larger than 5 (the second component is 10 meaning that no more

servers will be turned on) and if there are two servers running we are going to turn off a

server if n < 3. Additionally, consider the matrix T given by:

T =

 2 3

4 6

 .

This means that, for instance, having one active server, the system will use the first fre-

quency (µ1) with 2 or fewer jobs in the system, the second frequency (µ2) for more than
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two, and the third (µ3) for more than 3 jobs in the system. If there are two active servers,

the first frequency is going to be used when there are 4 or fewer jobs in the system, the

second frequency when there are 5 or six jobs, and the third frequency when there are more

than 6 jobs. The individual running frequencies of the system, with the number of jobs in

the columns and the number of active servers in the rows, will be given by

n(t)

kt = 1 µ1 µ1 µ2 µ3 µ3 µ3 µ3 µ3 µ3 µ3

kt = 2 µ1 µ1 µ1 µ1 µ2 µ2 µ3 µ3 µ3 µ3

2. Queueing Control Methods

In order to evaluate the quality of our solution, we compute the performance of other so-

lution schemes selected because of their simplicity or because those are extensions of well

studied special cases. Additionally, we implement a value iteration procedure to find the

exact optimal policy for small cases under the assumption of a finite buffer. In order to do

that, we transform the Semi-Markov Decision Process into an equivalent Markov Decision

Process using the uniformization techniques in Beutler and Ross [86].

The methodologies used are the following:

Maximum number of servers[All servers] Here we compute the cost of operating the

system having all the servers available turned on all the time (i.e.,, kt = K for all t) and

varying only the service rates. This policy is sometimes used in practice and does not take

advantage of the dynamic number of servers. Here the frequencies in T are determined by

the George and Harrison [7] algorithm under the assumption of a unique server with the

aggregated service rate, and L and U are fixed. We expect this policy to be outperformed

by a policy that adjusts the number of servers dynamically.

Just enough servers[Min.Serv.] Here we compute the operating costs using a fixed

number of servers that is chosen to be the minimum number necessary to have a stable
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system if the buffer were infinite (kt = L ≤ K for all t) and the frequencies were γ|Γ|. This

approach does not use the dynamic number of servers as well but may be effective if the

fixed cost of operating a server is large compared to the variable cost of operating the

system. Here the frequencies in T are determined by the George and Harrison [7] algorithm

under the assumption of a unique server with the aggregated service rate, and L and U are

fixed.

Naive George and Harrison extension[NGH] In this approach we compute the optimal

frequency given by George and Harrison algorithm for any fixed number of servers and use

Simulated Annealing to find the bounds at which the servers are turned on and off. This

approach uses both the dynamic frequencies and the dynamic number of servers but does

not take advantage of the interaction between both parameters since it “optimizes” the

frequencies first and then finds a good set of bounds to turn the servers off and on. Here T

is determined by the George and Harrison [7] algorithm and L and U are found afterward

by simulated annealing.

Simultaneous optimization[Sim.Opt.] We propose this heuristic procedure that per-

forms a simultaneous search of both the frequency bound matrix T optimizing the com-

plete policy, and taking advantage of both adjustments and the interaction between them.

Here T, L and U are found by a heuristic procedure described in Section D.3 that takes into

account the combined effects of the three policy parameters U,L,T. This procedure finds

a hysteretic policy and makes use of the conjecture that the optimal policy is monotone

hysteretic to determine the number of servers and monotone threshold type to determine

the frequencies.

3. Simultaneous Optimization Algorithm

Our objective is to find the best policy that is monotone hysteretic to determine the num-

ber of servers and monotone threshold type to determine the frequencies, and to compare



42

its performance with the policies used in practice or the ones with a constant number of

servers. We use a Simulated Annealing (SA) procedure on the number of servers combined

with a neighborhood sampling for the vector T domain so all three vectors are adjusted at

the same time. The neighborhood functions are built so that at each iteration, one of the

components of the vectors is increased or decreased by one.

The intuition behind the procedure is as follows. Given L and U, there is an optimal

T to make the average cost minimal. On the other hand, given T, there is a pair of vectors

L and U that minimize the cost. Since on each iteration of the SA procedure the bounds of

the hysteretic policy are changed in only one component by at most one unit, it would be

reasonable to expect that the optimal frequencies for the neighbor are similar to the ones

on the original policy; therefore, sampling the frequencies at each iteration allows us to

improve the chosen frequencies. Moreover, given that as the variable temperature in the

SA procedure decreases, the transition from one solution to the next is less likely, it is clear

that as the temperature becomes small the neighborhood of frequencies will be sampled

more extensively.

A scheme of the algorithm is:

s t a r t

G e n e r a t e random v e c t o r s L , U, T

c u r r e n t c o s t = c o s t ( L , U, T )

t = I n i t i a l t e m p e r a t u r e

i =0

w h i l e t >0

{

g e n e r a t e random n e i g h b o r ( L ,U)

newCost= c o s t ( neighL , neighU , T )
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f o r i =1 : sample s i z e

{

G e n e r a t e random n e i g h b o r ( T )

neighNewCost= c o s t ( neighL , neighU , neighT )

i f ( neighNewCost < newCost )

{

T = neighT

newCost = neighNewCost

}

}

i f ( newCost < c u r r e n t C o s t )

{

c u r r e n t C o s t =newCost

( L , U, T ) = ( neighL , neighU , T )

}

e l s e

{

i f ( c r i t e r i o n ( c u r r e n t C o s t−newCost )== t r u e )

{

c u r r e n t C o s t =newCost

( L , U, T ) = ( neighL , neighU , T )

}

}

i f ( i mod p a r a m e t e r ==0)

t = t−D e l t a t
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}

end

The function criterion(currentCost-newCost) is a randomized function that decides

whether the algorithm should move to the new solution when this new solution is not bet-

ter than the current one. As in the standard implementation of the Simulated Annealing

meta-heuristic, the probability of obtaining a true value decreases with the temperature and

increases with the value of currentCost-newCost.

Remark D.1 The algorithm was implemented in Matlab 2007b. The function that com-

putes the cost includes the solution of the steady state equations of a Markov chain. It is

worth noting that an appropriate manipulation of the very large system of equations solved

repeatedly in the algorithm is necessary. Matlab sparse equation solver was very efficient

due, at least in part, to the almost band diagonal structure of the matrix. Moreover, a clever

initial choice of the T , L and U proved to be useful. The neighborhood functions picked

random values for T , L and U that differ from each component by at most one unit.

E. Numerical Results

In this section, several numerical experiments are performed in order to determine the

accuracy of the proposed heuristic. For a set of small cases with different booting costs,

buffer sizes, arrival rates and fixed costs, we present the value of the exact solution, the

value obtained after running our simultaneous optimization procedure twice, and the value

obtained by the other three methods. For larger cases, we present the value obtained by

our simultaneous optimization procedure compared with what can be obtained by running

a fixed number of servers. In the data tables, K corresponds to the total number of available

servers, N is the buffer size, λ is the arrival rate and the minimum cost is calculated by
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Table I. Results for c(k,µ) = k(10+µ3)/8; h(n) = n2; Γ = (2,3,4,5).

K N B0 λ Exact NGH Sim.Opt. All Min.Serv.

3 8 0 6 43.5342 52.9263 45.2321 58.1916 55.7968

3 8 0 8 59.145 68.0813 61.3232 69.0514 76.1616

3 8 0 10 78.2077 84.4089 80.0515 82.5612 98.5937

3 8 50 6 53.1451 62.5225 53.1451 58.1916 55.7968

3 8 50 8 65.7002 115.9786 65.7002 69.0514 76.1616

3 8 50 10 82.6939 114.5833 82.6939 82.5612 98.5937

3 8 100 6 55.7327 62.5225 55.7327 58.1916 55.7968

3 8 100 8 65.7002 88.2315 65.7002 69.0514 76.1616

3 8 100 10 82.6939 84.788 82.6939 82.5612 98.5937

3 13 0 6 43.6453 57.5814 43.6453 58.3248 58.9227

3 13 0 8 60.2498 70.7001 60.2498 70.3489 100.2718

3 13 0 10 85.0477 91.871 86.5307 89.6231 175

3 13 50 6 53.2506 64.2549 53.2506 58.3248 58.9227

3 13 50 8 66.8907 70.7001 66.8907 70.3489 100.2718

3 13 50 10 88.7711 196.25 88.7711 89.6231 175

3 13 100 6 53.2506 58.2071 53.2506 58.3248 58.9227

3 13 100 8 66.8907 217.0246 66.8907 70.3489 100.2718

3 13 100 10 88.7711 292.3178 88.7711 89.6231 175

3 18 0 6 43.6476 52.0059 43.6476 58.3277 59.4647

3 18 0 8 60.3468 109.0131 60.3468 70.4716 116.8011

3 18 0 10 86.8897 94.1907 90.4258 91.6551 283.9583

3 18 50 6 53.2527 58.2089 57.9172 58.3277 59.4647

3 18 50 8 66.9965 113.9257 66.9965 70.4716 116.8011

3 18 50 10 90.4258 94.1907 90.4258 91.6551 283.9583

3 18 100 6 53.2527 65.0493 53.2527 58.3277 59.4647

3 18 100 8 66.9965 70.7821 66.9965 70.4716 116.8011

3 18 100 10 90.4258 295.2985 90.4258 91.6551 283.9583



46

means of an exact value iteration procedure, the naı̈ve George and Harrison [7] extension,

the proposed heuristic and using a fixed number of servers. The heuristic finds a solution

really close to the optimal in a considerably shorter time.

Table 1 was computed with a low fixed cost for running a server; this encourages the

use of several servers running at low frequencies. In contrast, Table 2 corresponds to a large

fixed cost of running the servers; this cost structure encourages the use of fewer servers

running at higher frequencies. As seen in tables 1 and 2, the average error obtained by

the simultaneous optimization algorithm compared to the optimal policy is 3.8% while the

NGH method gives a much larger error (around 30%). The cost of the other two methods

may be significantly higher depending on the cost structure. In Tables 1 and 2, the average

error for using all the servers is around 10% if the fixed operating cost is low, but it increases

to three times the optimal if the fixed operating cost is relatively high. It is worth noting that

when the exact solution coincides with the solution found on the simultaneous optimization

algorithm, the exact solution is of the type described in Figure 2. This happened in more

than half of our experiments. However, for the other cases, the solution found by the

simultaneous optimization algorithm is very close to optimal.

Tables 3 and 4 consider a more realistic number of servers where a exact solution is

computationally infeasible. Hence we compare the average cost obtained by the simul-

taneous optimization method against the costs obtained by having all servers running or

only enough servers to make the system stable. We can observe that as the arrival rate

increases, the cost obtained by having all servers active is closer to the cost obtained by

the simultaneous optimization algorithm. Similarly, as the arrival rate decreases, running

the minimum number of servers becomes more attractive. The average savings of using

the policy obtained by simultaneous optimization against using a fixed number of servers

is more than 60% for the cost structure inTablee 3 and around 40% for the cost structure in

Table 4. Moreover, the savings obtained by controlling the frequencies and the number of
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Table II. Results for c(k,µ) = k(90+µ3/8); h(n) = n2; Γ = (2,3,4,5).

K N B0 λ Exact NGH Sim.Opt. All Min.Ser.

3 8 0 6 164.7232 168.8039 165.6511 298.1916 215.7968

3 8 0 8 207.1682 214.8897 207.1682 309.0514 236.1616

3 8 0 10 236.9143 237.8716 237.843 322.5612 258.5938

3 8 50 6 188.255 193.2978 188.255 897.6014 215.7968

3 8 50 8 223.4461 223.5757 223.4461 1104.439 236.1616

3 8 50 10 236.9143 237.8716 237.843 1302.26 258.5938

3 8 100 6 192.5947 193.2978 192.5947 1497.011 215.7968

3 8 100 8 223.4461 223.5757 223.4461 1899.826 236.1616

3 8 100 10 236.9143 237.8716 237.843 2281.959 258.5938

3 13 0 6 165.0179 169.398 167.0621 298.3248 218.9227

3 13 0 8 208.7663 212.1422 208.7663 310.3489 260.2718

3 13 0 10 261.3777 265.8561 263.096 329.6231 335

3 13 50 6 193.3958 196.837 194.6091 898.3187 218.9227

3 13 50 8 253.2312 392.8818 253.278 1110.151 260.2718

3 13 50 10 304.0764 447.6455 304.0764 1327.041 335

3 13 100 6 207.6338 210.2212 207.9962 1498.313 218.9227

3 13 100 8 257.4377 264.4077 257.4377 1909.953 260.2718

3 13 100 10 315.0271 407.9029 315.0271 2324.458 335

3 18 0 6 165.0255 173.4747 165.0255 298.3277 219.4647

3 18 0 8 208.927 248.0801 208.927 310.4716 276.8011

3 18 0 10 263.9956 267.9813 263.9956 331.6551 443.9583

3 18 50 6 193.4407 197.3434 193.4407 898.3277 219.4647

3 18 50 8 253.6424 256.617 253.6424 1110.463 276.8011

3 18 50 10 307.7404 647.6207 307.7404 1331.317 443.9583

3 18 100 6 207.7837 210.669 208.7475 1498.328 219.4647

3 18 100 8 258.0483 284.0655 265.8442 1910.455 276.8011

3 18 100 10 319.5356 396.0882 319.5356 2330.978 443.9583
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Table III. Results for c(k,µ) = k(10+µ3); h(n) = n; Γ = (2,3,4,5).

K N B0 λ Sim.Opt. All Min.Serv.

50 70 0 150 609.33 4412.5 4034.1

50 70 0 200 789.33 5585 5367.2

50 70 20 150 609.33 10412 4034.1

50 70 20 200 789.33 13585 5367.2

50 120 0 150 1018 4412.5 4080.5

50 120 0 200 1019 5585 5420.7

50 120 20 150 659.33 10412 4080.5

50 120 20 200 839.33 13585 5420.7

100 150 0 150 1804 5311.4 4101.4

100 150 0 200 1887.7 6481.7 5443.6

100 150 20 150 689.33 11311 4101.4

100 150 20 200 869.33 14482 5443.6

100 200 0 150 1797.6 5311.4 4132.4

100 200 0 200 1887.7 6481.7 5476.5

100 200 10 375 9567.5 18079 10181

100 200 10 425 10141 20252 11525

100 200 20 150 4108.5 11311 4132.4

100 200 20 200 5442.5 14482 5476.5
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servers decrease as the booting cost B0 increases.

Table IV. Results for c(k,µ) = k(10+µ3); h(n) = n2; Γ = (2,3,4,5).

K N B0 λ Sim.Opt. All Min.Serv.

200 349 0 700 11603 19999 59628

200 349 0 800 16005 22365 62321

200 349 20 700 36578 47999 59628

200 349 20 800 41922 54365 62321

500 699 0 2100 44540 58212 219850

500 699 0 2300 56426 63120 225240

500 699 20 2100 111960 142210 219850

500 699 20 2300 148430 155120 225240

Remarks: The solutions given by the different algorithms provide some insight on

the influence of the cost parameters on the solution structure. In the following paragraphs,

we are going to comment on the effect of changing the values of the input constants.

Arrival Rate: As the arrival rate increases, the solution that keeps all the servers on

all the times becomes closer to optimal. Analogously, as λ becomes smaller, a solution

with a fixed smaller number of servers is closer to optimal since with a low arrival rate,

the likelihood of large holding costs is reduced and the optimal solution will use a large

number of servers less often.

Booting cost: A large booting cost B0 makes unattractive the decision of turning on

machines. As the policy is static, it makes the decision of turning off machines unattractive

as well. Therefore, the larger B0 is, the more separation we find between Li and Ui on the

policy parameters making turning on the servers less likely.

Fixed running cost per server: A large fixed running cost will make unattractive to

have a large number of machines turned on. Since in the experimental case the variable
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running cost is a cubic expression, then running several machines at a low frequency is

cheaper than running one server at a high frequency. If the fixed cost is large enough, the

solution will require running fewer servers at large frequencies.

Holding cost: As expected, the larger the holding cost, the higher the running fre-

quencies in the optimal solution.

Optimal solution structure: Although we do not have a formal proof, we expected

the solution structure to be monotone hysteretic for booting bounds and monotone threshold

for the frequency bounds. The numerical experiments support this hypothesis.

F. Conclusions

We consider the M/Mt/kt queueing control problem where the system manager controls

the number of servers and the operating service rate. We showed that the optimal control

policy for this system is hysteretic for both, the discounted and average criteria. We pro-

posed a numerical method to compute a near optimal policy that is monotone hysteretic

to determine the number of servers and monotone threshold type to determine the running

frequencies. Our experiments suggest that the optimal policy has this structure in almost

all instances.

As it is evidenced by our numerical results, the possibility of varying both the service

rates and the number of servers can produce significant savings. We proposed a numerical

algorithm to find solutions to the M/Mt/kt that represent advantages with respect to widely

used policies. Additionally we found that a policy that takes into account the interaction

between those two factors performs better than using sequential optimization.
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CHAPTER IV

INDEPENDENT PROVISIONING

Powering down servers and dynamic voltage/frequency scaling (DVS) provide two very

important power management strategies. Powering down a server reduces the energy it

consumes to zero, but in order to make the server available again, the system not only

spends power in rebooting the server but this action wears the machine down and needs

some time to be completed. DVS mechanisms reduce the total amount of energy consumed

by the server by slowing down the speed of the processor, but all the other server compo-

nents keep consuming the same amount of energy; in this state, the server may still process

data at a slower pace, and speeding the processor up is quickly achieved with negligible

cost.

Although considerable work has been done on using these capacity allocation tech-

niques, these have not been widely implemented in the industry partly because practitioners

fear that their use may increase the risk of not meeting the QoS requirements. Bad results

may be a consequence of one or more of the following factors:

• Proactive capacity provisioning schemes that provide lower-than-needed capacity

during a specific period, and do not have mechanisms to react to unexpectedly high

loads.

• Purely reactive mechanisms that only consider the current state of the system and do

not use the potentially useful historic information about the requests stream.

• Low quality load forecasts.

• No real time decision-making.

As a consequence, practitioners have been reluctant to implement resource allocation
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schemes that reduce the allocated capacity, preferring to assume the additional electricity

and goodwill costs. However, it will be optimal to serve the arriving requests using the

least amount of resources and meeting the requirements in the SLA.

In this chapter, we present a methodology that allows us to take capacity decisions in

real time based on a combination of demand forecasting and system status. The methodol-

ogy is flexible enough to adapt to sudden behavioral changes or forecasting errors without

failing to meet SLA requirements. The proposed scheme of Adaptive Resource Alloca-

tion (ARA), includes a novel decomposition of the system load time series, along with a

wavelet based forecasting methodology that estimates the near future system load and relies

on the fact that the demand to a data center is ordinarily nearly cyclical. The controller we

developed takes into account the forecasted system load and the current buffer conditions

to make decisions regarding the system capacity. The combination of these reactive and

proactive control techniques forms an efficient scheme to reduce the energy expenditures

without compromising meeting the SLA. To the best of our knowledge, this is both the first

study combining feedback control and proactive decision-making at each decision epoch,

and the first study that does data center dynamic provisioning using TSF constraints and

real data.

The main contribution of this chapter is the introduction of a scheme that is efficient

enough to save a significant amount of power, but flexible and adaptable enough to meet

the service level conditions even when the system has sudden behavior changes. More-

over, the scheme factors in the reliability consequences of changing the service capacity. In

summary, we propose an effective novel wavelet based forecasting methodology that uses

the nearly cyclical behavior of the load to the data center. We combine reactive and proac-

tive mechanisms at the same decision epoch in order to make decisions regarding both the

number of servers and the frequency to be used.



53

Fig. 7. Data center model.

A. Problem Description

Let us consider an abstract data center as the one in Figure 7, where a fixed number

of servers and associated equipment are entirely devoted to host a particular application

that serves requests from the outside world. In the data center in Figure 7, clear circles

represent inactive (turned-off) servers and shaded circles represent active servers devoted

to the corresponding application. Moreover, the running frequency of each application may

be different. For instance, the first application has six servers available but at this particular

point of time only four are active and running at a (potentially) different frequency than

the five active servers running application two. In this model, we do the system control

independently, so we can analyze the general problem as the aggregation of several single

application facilities (illustrated in Figure 8). In this context, a single application may

be an aggregation of several individual applications to be served at the same time in the
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servers. For instance, if a set of servers runs two applications, we consider the aggregation

as a single meta-application for the purposes of this chapter. This aggregation may be

designed in order to obtain additional energy and reliability savings as will be shown in

Chapter V. Assume moreover, that the data center management does not have knowledge

of the future load except the information regarding load history. Given the competitive

environment in the data center industry, the objective of the data center administration is

twofold: first, given the facility and equipment, it should reliably serve customer’s requests

using the lowest possible amount of energy to reduce costs and environmental impact, and

secondly, it should provide the customers with a service that meets the quality standards

consigned in the SLA.

We model this problem as a queueing system with K homogeneous servers that have

the capacity of being turned on and off as well as the ability to run at any of a finite pre-

determined set of frequencies Γ = {γ1,γ2, ...,γ|Γ|}. The costs incurred by the data center

are represented by the energy required to run the servers, and an energy, reliability and risk

cost associated to turning on and off the machines. According to Elnozahi et al. [54] and

Chen et.al. [8], the relation between the energy consumption and the frequency is of the

form P(γ) = Pf ix + Pf γ3, where Pf ix and Pf are equipment specific constants, and the cost

of turning a server on is assumed to be a constant B0.

The request arrival process, as well as the requests processing time is assumed to be

arbitrary and time varying. In particular, as described in Crovella and Bestavros [11], in

practice the arrival process is self-similar and the time needed to process each job is highly

variable. The main objective is to operate this queueing system using the lowest possible

amount of energy by controlling the number of active servers and their frequencies.

In order to control the queue efficiently, we divide the problem into two parts. First,

we need to forecast the arrival process in order to make good proactive capacity allocation

decisions; secondly, we should design a decision-making scheme that takes advantage of



55

the forecasting data and the information about the state of the system.

B. Problem Formulation

Let us consider a First Come First Served queueing system as the one in Figure 8, with

K identical available servers. At any given time t, each server may be in on (active) state

or off (inactive) state; moreover, when a server is on, it can run at any frequency γ ∈

Γ = {γ1,γ2, ...,γ|Γ|}, but all active servers should run at the same frequency. Given the

convexity of the cost functions, it can be shown that if the set of eligible frequencies is

an interval, it is optimum to run all the servers at the same frequency. Although it is

possible to handle non-identical servers and different running frequencies, for this chapter

we make this assumption for convenience in terms of the presentation of the algorithms.

Let us denote by k(t) the number of active servers at time t, so k(t) ∈ {1,2, ...,K}, and by

F(t) ∈ Γ the frequency of the active servers.

Requests arrive at the system according to an arbitrary process. Let An be the arrival

time of the n−th request, and Sn the amount of work required to serve it. We assume that Sn

is not observable until the service starts, so all the information available about the arrivals

to the system at time t is the number of requests in the buffer n(t). This assumption may

be relaxed without having to make significant changes in our capacity allocation algorithm.

The objective is to select k(t) and F(t) dynamically based on the observed n(t) so that the

long-run average energy consumed is minimized, subject to satisfying a Quality of Service

constraint and ensuring system reliability. The number of active servers and the running

frequency determines the service time for each request, so the departure time of the n− th

request Dn is a function of the capacity allocation decisions.

Since our objective is balancing energy efficiency, reliability and QoS, we will convert

both energy and reliability into dollar costs. Later in the chapter we will convert the QoS

to a monetary term by adding an appropriate factor.
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Fig. 8. Single application data center model.

Assume that powering up a server requires Tboot seconds, and has a fixed cost B0

caused by the wear and tear on internal components due to the booting process and the

energy expended in booting the machine up. Operating k servers at frequency γ, costs c(k,γ)

per unit time, and the function c(k,γ) is assumed to be non-decreasing in both components.

Moreover, the system manager is required to meet a previously specified SLA that bounds

the fraction of the requests that may stay in the system longer than (previously determined)

R seconds.

Powering up a server not only spends energy, but induces a significant hardware wear

and tear, and risks possible failures such as unsuccessful boots or routing tables errors;

therefore, is undesirable to keep powering servers up and down arbitrarily frequently. In

order to avoid that, we define fixed time intervals of length t0 in which we are going to make

decisions regarding frequency and number of server changes. Therefore, every t0 seconds,

the system administrator will fix values of n(t) and k(t), that will remain constant during

the next t0 seconds, with the objective of minimizing the energy consumption in the overall

system without violating the quality of service constraint.

Using this notation, and using z as an index for the time periods, the optimization

problem may be written as:



57

min
Z

∑
z=1

(
c(kz,γz)t0 +B0(bz0)+

)
s.t. ∀n(P(Dn−An > R) < α) ,

where t0 is the time length of the periods, and bz0 = (k(zt0)− k((z− 1)t0)) represents the

number of servers to be turned on/off in z− th period, and α is a constant previously de-

signed in the SLA.

This system may be described as a dynamic system, where the state is determined by

the number of jobs in the queue n(t), and the number of active servers k(t). If at time t

a new request arrives at the system, and there are fewer than k(t) requests being served

(i.e. there is an empty active server), then the request goes directly to service, otherwise

it goes to the last place in the queue. When a service is completed, the first request in

the queue starts service with a completion time
Sn

βγ(t)
where β is a constant that represents

the proportion between the amount of work performed and the running frequency. At an

arbitrary time t, the system state will change to k(t) and n(t)+1 if the next request comes

to the system before a completion is achieved. Otherwise, the system will go to state k(t)

and n(t)−1, after a time period equal to the minimum completion time. Whenever a server

should be turned off, it is allowed to finish the service of the request present at the time of

decision before becoming inactive.

As described earlier, the system dynamics depends, on the values of n(t), F(t) and

k(t) as well as on the arrival process. As will be explained in section 4.1, large values of

n(t) increase the likelihood of some requests’ time in the system being larger than R, but

higher values of k(t) and γ(t) may decrease the value of n(t). However, increasing the

number of servers and/or the frequency, implies larger energy expenditure of the overall

system. Hence, our objective is to optimize the trade off between the energy expenditures

and the QoS constraint by controlling this highly variable system.
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C. Methodology

As mentioned in the literature review, most data center dynamic capacity provision schemes

are based on either reactive mechanisms or proactive mechanisms. A purely reactive

scheme makes the same provisioning decision without using any knowledge of the fu-

ture system behavior; in contrast, a purely proactive mechanism uses, usually imperfectly,

information about the future or past behavior of the system but does not have the capacity

to adapt when the forecasting fails. We intend to overcome these difficulties by combining

three complementary techniques. First, we modify the formulation in order to obtain an

approximate, more tractable optimization problem; second, we propose a problem-specific

forecasting method to make proactive decisions; and third, we add a reactive mechanism to

allow the system to recover from unforeseen fluctuations in demand.

Given that request sizes and inter-arrival times are uncertain and non-stationary, solv-

ing this stochastic optimization problem is not feasible. We can, however, proceed in a

Lagrangian-relaxation fashion and define an appropriate term that will be added to the ob-

jective function in order to obtain a closely related unconstrained problem. Therefore, we

will define below an appropriate non-decreasing holding cost h(n,k) per unit time when

there are n jobs in the system and k active servers. Decisions regarding the frequency and

the number of servers will be taken every t0 seconds.

The new problem may be stated as:

min
Z

∑
z=1

(
c(kz,γz)t0 +B0(bz0)+ +Hz

)
(4.1)

where tz and bz0 remain the same as above, and Hz is the cumulative holding cost realized

during the z-th period.
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1. Selection of the Holding Cost

Quality of Service (QoS) refers to the ability to devote necessary resources to serve a data

flow generated by a group of users in order to guarantee a certain level of performance. The

performance is measured in terms of, for example, bit rate, delay, jitter or packet dropping.

In this chapter, we assume that the statistical QoS constrained is defined in such a way that

the probability of having a delay longer than a certain time is bounded, i.e.,

P(Dn−An > R) < α.

This type of constraint provides a bound on the proportion of requests receiving un-

satisfactory service, and contrasts with the average delay or standard deviation constraints

found in other studies. Among the features of this type of constraint, we can mention that

the system will be indifferent between two different values of R−(Dn−An) as long as those

have the same sign, except for the obvious fact that a large response time in the system for

a specific request will likely imply delays for the subsequent arrivals. This, in particular,

reflects a concern about providing the individual users with a good experience most of the

times an individual sends a request, and not only about the average long run response time.

As mentioned in the formulation, the energy management data center problem with

QoS constraints is then given by:

min
Z

∑
z=1

(
c(kz,γz)t0 +B0(bz0)+

)
s.t. ∀n(P(Dn−An > R) < α) ,

Let us consider the expression P(Dn−An > R). Let us denote the mean and standard

deviation of the service time of the last element in the buffer by µ and σ. Given that we

expect α to be a small proportion of the total arrival stream, we can write R = µ+A where

A is a positive constant that may be expressed as A = kσ. Under these assumptions, we can
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write:

P(Dn−An > R) = P(Dn−An > µ+ kσ) = P(Dn−An−µ > kσ) .

The last expression is very close to the left hand side of the one sided Chebyshev’s

inequality (Cantelli’s inequality), P(X−µ > kσ) <
1

k2 +1
[87].

Defining k =
√

1
α
−1, we obtain:

P

(
Dn−An−µ >

√
1
α
−1σ

)
< α.

In order to obtain a decision-making rule regarding k(t) and γ(t), we need to rewrite

this expression in terms of the decision variables, and the state of the system at time t. To do

that, let us denote the average request size by µs and the requests’ sizes standard deviation

as σs. Define a positive constant β that represents the proportional relation between the

frequency with the amount of work processed by the server. The expected waiting time for

the last job in the buffer given n(t) will be equal to the expected waiting time in the buffer

W = (n(t)−1)µs
k(t)βγ(t) , plus the expected service time S = µs

βγ(t) . Therefore,

µ = S +W =
(n(t)−1)µs

k(t)βγ(t)
+

µs

βγ(t)

The variance of the time in the system will be the variance of the waiting time in the

buffer plus the variance of the service time:

σ
2 =

(n(t)−1)σ2
s

(k(t)βγ(t))2 +
σ2

s
(γ(t)β)2 .

The holding cost will be defined as follows:

h(n(t),k(t)) =

 0 i f µ+
√

1
α
−1σ < R,

ηn/k i f µ+
√

1
α
−1σ > R,

where η is a constant larger than the cost of operating one server at its maximum frequency
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between two decision epochs. This holding cost penalizes larger loads and decreases in

the number of active servers as illustrated in Figure 1. The unconstrained problem is as

follows:

min
Z

∑
z=1

(
c(kz,γz)t0 +Hz +B0(bz0)+

)
. (4.2)

Notice that, for a given time period, given a decision on k(t) and γ(t), the operating

and booting costs until the next decision time are immediately determined. However, the

holding cost still needs to be estimated. In order to assess Hz for the immediately following

period, we need some information about the arrival process. To obtain that, we propose to

use the wavelet based forecasting procedure described below.

Fig. 9. Holding cost.
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2. Forecasting

Individual application traffic is usually approximately periodical in terms of number of ar-

rivals per unit time, with period size varying depending on the specific application. For

instance, even if traffic to a business application such as stock trading is not perfectly iden-

tical during two consecutive days, there are some behavioral patterns that remain constant.

For example, a decrease in traffic during the night, and predictable peak hours are usually

encountered. Therefore it is reasonable to assume that we have a system that processes

an arrival stream that exhibits nearly periodic behavior, but may be highly variable and

self-similar. As the frequency and the number of servers may be adjusted every previously

determined amount of time t0, let us denote by t = 0 the beginning of the process, and let

ti = it0 be the decision epoch for the k(t) and F(t) adjustments. Assume that the arrival

process is nearly periodical with period Nt0. Moreover, let us call λi the sum of the sizes of

the requests between ti and ti+1. Our objective is to forecast λi in order to feed a decision-

making scheme that provides capacity dynamically using the forecasting information and

observations of the system load.

The idea is to divide the forecasting into two parts. First, a global, long term prediction

that is computed every Nt0 seconds, and is left unchanged during that time. The vector of

global forecasts ĝ provides information about global trends (for instance, a rate drop every

night or a rate increase every Monday). Since this behavior tends to be relatively stable

over time, it may be predicted by averaging the last few periods or by some other type

of smoothing forecasting such as moving averages or ARMA. Secondly, we are going

to compute a local, short term forecast that will be updated every t0 seconds and contain

information only about the following few periods. This local term, α̂, represents a deviation

from the global trend (for instance, a period of increasing popularity of a certain website or

service).
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The main idea of the forecasting method is to divide the arrival process into periodic

and a non-periodic factors, i.e., for the i− th arrival during a specific period, let us denote

our estimator:

λ̂i = ĝiα̂i.

The justification to decompose the arrival rate using factors instead of additive terms

comes from the fact that the variation in the traffic of a server most of the time features some

type of cyclic behavior. For instance, even in the presence of a sudden increase in traffic

for a web-based news site because of an important event, it is very likely that traffic late at

night will be much smaller than traffic around 8:00 p.m.. In this scenario, the percentage

of traffic increase is likely to be more stable, thus easier to predict, than the difference

between the average and the actual rate. Forecasting a factor has the inconvenience of the

possibility of obtaining negative meaningless values; in order to avoid such inconvenience,

we propose to analyze the time series log(αi) instead, with the additional advantage that

the forecasting will be equally sensitive to a reduction of a factor of the traffic than to

an increase of the same factor of the traffic. Finally, even if for long enough periods, the

likelihood of a negative infinity term (when the αi is zero) is very small, we add an artificial

lower bound to our forecasts and observations.

Let us assume that for the i− th epoch during the j− th period, we have observed

the system and want to predict α for the next few periods i + 1, ..., i + k. According to

Renaud et al. [65] the use of wavelet based forecasters for self-similar or long range

dependent phenomena produce better results than the traditional time series forecasting

methods. Therefore, we implement a Haar wavelet based forecaster (described in section

4.2.1) to obtain information about α by forecasting each frequency separately. Given the

presence of noise in the αi time series, we add a safety factor obtained from the data that



64

will keep the system from being overloaded during the time slot. Figure 10 illustrates

the forecasting procedure for a sample trace. The top graph is the actual arrival rate to a

real life server during the third week of data. The second graph is the plot of ĝ, the global

forecasting that in this case is the denoised (see section 4.2.2) average of the first two weeks

of data. The third graph is the forecasted arrival rate, obtained by the procedure described

in detail in section 4.2.1, and the last graph is the difference between the forecasted and the

actual values. As seen in Figure 10, the forecasting error is small compared to the total

load of the system. For instance, the 90− th percentile of the error is a small fraction of the

average load of the system.

Fig. 10. NASA Trace Forecast. 90th perc.=3000 95th Perc.=4250.
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a. Forecasting with the Haar Wavelet

Given a vector X that represents the arrival rate in the previous M time segments, where

M = 2J , for some j. The redundant wavelet transform, decomposes the signal X as:

Xi = cJ,i +
J

∑
j=1

w j,i,

where cJ is a coarse or smooth version of the original signal, and w j represents the details

at scale j. If we denote c0 = X, then the Haar wavelet approximations at each level are

given by:

c j+1,i =
1
2
(c j,i−2 j + c j,i),

and

w j+1,i =
1
2
(c j,i−2 j − c j,i).

Notice that at any i, the algorithm uses only the information of previous entries in order to

compute the decomposition.

The key idea in this method of forecasting is that we will forecast the smooth ap-

proximation as well as the details at each level separately and combine that information to

obtain a prediction of the original time series. This forecasting method is particularly well

suited for self-similar processes such as data arrival at data centers because the frequency

decomposed streams are smoother than the complete time series.

Figure 11, presents the decomposition of the first week of the NASA Trace. The top

graph is the actual arrival rate per period. The coarse approximation, labeled A5 (stand-

ing for approximation at the fifth level), presents the coefficients found in c5 and is much

smoother than the original time series. Subsequent graphs present the details contained in

the different levels (wi, i = 1, ...,5), and provide more information about the behavior of the

process in shorter periods of time. It can be seen that the details in levels 3, 4 and 5, labeled

D3, D4 and D5, have a smooth behavior as well. In contrast, the high frequency levels
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Fig. 11. NASA trace coefficient decomposition.

(labeled D1,D2) do not have a clear trend, but most of the information contained in them is

noise that will be removed by a denoising procedure described in the next subsection.

b. Signal Denoising Using Wavelets

Given a signal X, we are interested in distinguishing real trend changing behavior against

random uncorrelated variability. This process is known as signal denoising (a detailed

exposition on this matter may be found in Percival [64]). The main idea is that the noise

in a signal produce a large amount of small details coefficients contained in the vectors wi,

i = 1, ...,J. Therefore, the method eliminates small coefficients from the decomposition to

obtain a smother signal. Wavelet researchers have developed thresholds that will determine

how small are the coefficient that should be suppressed at each scale in order to obtain a

signal that reflects the trend more accurately as seen in Figure 12 [88]. In this Figure,

we have the original signal information in the left column and the denoised version in the
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right column. The lower graphs represent the signal decomposition into approximation and

details, as in Figure 5, but in the left coefficient graph, we see dashed horizontal lines that

represent the established thresholds. On the right side, all values between the horizontal

lines have been eliminated, and the reconstructed signal presents a much clearer trend. The

central graph is the difference between the original and denoised signals. It is worth noting

that the mean of the difference is approximately zero, and its value, at least seems to be

independent of time.

It is to be determined, however, how this threshold should be established. There are

some standard methodologies that are more or less effective depending on the type of time

series. In particular, there are two basic types of thresholding: the hard non-smooth thresh-

olding that eliminates all the coefficients below a certain level and the, smooth but biased,

soft thresholding that eliminates the small coefficients, but which also reduces the larger

ones by the amount given by the threshold. In our experiments we use hard level indepen-

dent thresholding.

3. Control Algorithm

The solution we present here for the dynamic capacity allocation problem is a myopic

stochastic-dynamic programming algorithm, which outputs the number of servers and fre-

quencies that should be used in the next two periods by finding the optimal decision that

minimizes the expected cost over the next three periods. The algorithm uses the information

about the state of the system (number of requests in the buffer), the predicted load arrival

rates and the number of active servers. Thus, for any period z0, we define the following

reduced version of the problem in equation 4.2:

Cl∗
z0i = min

z0+l

∑
z=z0+i

(
c(kz,γz)t0 +Hz +B0(bz0)+

)
,
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Fig. 12. NASA Trace. Denoised signal.

where i≤ l is a positive integer. Clearly, Cl∗
z0i = min{c(kz0+i,γz0+i)t0+Hz0+i+B0(bz0+i0)++

Cl∗
z0i+1}, which provides us with the familiar dynamic programming formulation, and, as ex-

plained at the end of this section, allows us to estimate Cl∗
z0i for consecutive time intervals.

As mentioned in the introduction, we are going to assume that the behavior of the

requests arrival stream is nearly cyclical with a period equaling one week. This is a nat-

ural assumption since in many cases the expected behavior changes on different days of

the week but the weekly pattern is reasonably close. As we mentioned in the problem

statement, the difference in behavior between weeks because of an increasing (decreasing)

trend and/or sudden spikes should be reflected in the local forecast term. The forecasting

macro-algorithm is as follows:
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f o r week number =1:N {

U p d a t e G l o b a l F o r e c a s t i n g ( ) ;

f o r i =1 : N u m b e r o f p e r i o d s p e r w e e k {

Update Loca l F o r e c a s t ( G l ob a l F o r e c a s t , Obs Rate , i ) ;

Observe l o a d of t h e sys tem ( ) ;

Make Dec is ion ( l o a d ) ;

}

}

The following is the description of the proposed local forecasting algorithm:

Update Loca l F o r e c a s t ( G l o b a l F o r e c a s t , Obs Rate , i ) {

Compute o b s e r v e d a l p h a = O b s e r v e d R a t e / g l o b a l ;

i f i <2ˆ{ F o r e c a s t i n g l e v e l } ){

Extend a l p h a l e f t t o 2ˆ{ F o r e c a s t l e v e l } ;

}

i f ( i >=2ˆ{ F o r e c a s t i n g l e v e l } ) ){

Take t h e l a s t 2 ˆ{N} t e r m s ;

}

Decompose l o g ( a l p h a ) a t t h e s e l e c t e d l e v e l ;

L i n e a r r e g r e s s i o n a t each l e v e l f o r t h e l a s t 3 t e r m s ;

R e c o n s t r u c t l o g ( a l p h a ) ;

Take t h e l a s t t e rm ;

Re tu rn g l o b a l ∗ a l p h a ;

}
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The decision-making rule is given by:

Make Dec is ion ( ) {

f o r ( f r e q u e n c y , b ) i n (Gamma x Number Serve r s ) ˆ p{

ComputeMinimumCost ( P , l o a d ) ;

}

}

The function ComputeMinimumCost(P) estimates the minimum expected operating

cost for P periods in the future given a sequence of decisions. For each period and decision,

the cost is computed as the sum of the booting cost, the operating cost, and estimate of the

holding cost. This estimate is constructed as follows. First we computed the holding cost

from the beginning of the period until the load becomes zero for the first time. This is

estimated as:

∫ T

0
h(n0 +(λ− kγ)t)+dt.

Secondly, if T >
n0

kγ−λ
, we add the holding cost of the average number of requests in

the system times the remaining time after the load reaches zero, i.e., for
T −n0

kγ−λ
seconds.

This number of requests is computed as:

E[n(t)] = W
φ

βγ
=
(

φ

βγ
+

αmφ

βγ

(
1

1−ρ

)(
C2

a +C2
s

2m

))
φ

βγ
,

where αm = ρ
m+1

2 , ρ = λφ

mβγ
, φ is the mean request size (see Bolch et.al. [89]), and C2

a and

C2
s are the observed squared coefficient of variation of the inter-arrival times and service

times respectively. After estimating the minimum cost of any sequence of three decisions,

the controller picks the minimum cost decision and determines the proper frequency and

number of servers.
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D. Numerical Evaluation

The numerical evaluation was made with the available web requests traces in the Internet

Traffic Archive [90] that are longer than two weeks. Unfortunately, the number of available

traces of this length is very low since most publicly available traces are only a few hours

long. For each of the traces, the first week was used as training data for the algorithm.

From the first week data, the mean and standard deviation of the request size and inter-

arrival times were computed. Additionally, a denoised version of the first week data was

taken as the global forecast. The experiments were performed using the second week data

and several allocation strategies were evaluated. For each of the traces, we computed the

energy expenditures of having a different number of servers turned on all the time, our

algorithm performance using only global forecasting, and our algorithm using the forecast

methodology proposed in this chapter. The eligible decisions made at each decision epoch

are increasing k(t) any value between 0 and K− k(t), but decreasing its value at most one

unit. The frequencies can be chosen arbitrarily.

For each experiment we report the total energy cost as well as the proportion of re-

quests served in the target time. Table V contains the parameters used for the numerical

experiments.

In the Table VI, K stands for the total number of available servers. The costs pre-

sented here are average amount of dollars per second. For analyzing the α time series, we

used hard thresholding, with the Heursure procedure described in the Donoho-Johnstone

methods [64].

As we claimed earlier, after the numeric experimentation, we can see that our capacity

provisioning scheme addresses two major points in capacity provisioning for data centers.

First, it reduces the energy consumption by utilizing the well known mechanisms of DVS

and powering down the servers; second, it has the capacity to adapt to sudden changes
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Table V. Settings of the numerical experiment.

Parameter Value

Available Frequencies (1.4,1.57,1.74,1.91,2.08,2.25,2.42,2.6)

Power (60,63,66.8,71.3,76.8,83.2,90.7,100)

Cost (cents/KWH) 10

B0 (cents/Boot) 0.525

Tboot 90 sec

Decision Period (t0) 900 sec

in traffic behavior and forecasting mistakes. We would like to emphasize that any energy

saving scheme that is not highly adaptable is not likely to be adopted in practice because

data center managers do not want to risk failing to meet the contractual terms with their

customers.

We compare the performance of our scheme against fixed capacity schemes in terms

of consumed energy and observe that for the first trace, the consumed energy is more than

40% lower than the minimum of the acceptable fixed capacity schemes. In this case we

want to highlight that the energy savings are significant without compromising on the cus-

tomers’ perception of the system operation. We divide the energy used by each method by

the energy used to operate all the servers during the whole experiment, and substract this

quantity from 1 to obtain the energy savings. Therefore, using the total available capacity

will lead to zero energy savings, and reducing capacity will increase the energy usage, but

if the reduction is high enough, the QoS constraint will not be met as in rows three and

four.

For the second trace, the difference in energy consumed is very low compared to

the energy used by 4 servers. However, we can note that even if for this experiment we



73

Table VI. Numerical results.

Trace Week K Method Energy Savings QoS met

NASA [90] 2 12 6 Servers 0 TRUE

2 12 5 Servers 0.166546 TRUE

2 12 4 Servers 0.332103 FALSE

2 12 3 Servers 0.49584 FALSE

2 12 ARA 0.36613 TRUE

2 12 Global Forecasting 0.38382 FALSE

ClarkNet-HTTP [90] 1 12 6 Servers 0 TRUE

1 12 5 Servers 0.166667 TRUE

1 12 4 Servers 0.317556 TRUE

1 12 3 Servers 0.489062 FALSE

1 12 ARA 0.374921 TRUE

1 12 Global Forecasting 0.252702 TRUE
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Fig. 13. Allocated capacity.

can obtain acceptable results with a tight fixed capacity, a system manager would not risk

operating the system with a tight capacity because a sudden traffic change would potentially

not allow the data center to meet the SLA.

The global forecasting schemes performance, in the first case, fails to meet the QoS

constraint, and in the second case, the desired performance is met, but the energy consumed

is considerably higher than in ARA. This is caused by poor quality forecasting that leads

the scheduler to make bad decisions.

Figure 13 illustrates how the system behaves during the experiment with the NASA

trace. The first part of the first figure shows the number of servers during each decision

period. The second represents the individual frequencies. The third picture is the aggre-

gated capacity allocated and is calculated as the number of servers times the frequency.

The last graph is the load of the system. It is clear from the picture that the behavior of the

allocated capacity resembles the system load; therefore, the allocation scheme increases

capacity when the load increases and vice versa.



75

One more interesting fact is the impact of the forecast quality in the overall provision-

ing performance. In the experiments, we compared the performance of our scheme against

a similar decision-making rule but with a lower quality, long term forecast. While in the

first trace, the spent energy is lower for the global forecast methodology, it does not satisfy

the SLA. Similarly, in the second trace the SLA is met, but the energy is higher than the

cost of the algorithm we proposed.

E. Conclusions

With the methodology presented in this chapter we addressed two significant problems in

the data center industry by presenting a sensitive resource provisioning strategy. The strat-

egy reduces the energy consumption in the operation, and is safe enough to be implemented

without the concern of application collapses when requests arrival patterns present sudden

changes. This problem is particularly challenging because the system behavior is highly

variable, and the QoS constraints are TSF type. The scheme is the result of the combination

of three techniques: wavelet data analysis, proactive resource provisioning, and feedback

control.

We considered and analyzed the advantages and drawbacks of alternative provisioning

policies. Static policies may provide acceptable results for specific cases, but by their very

nature, those polices fail to adapt to system changes or load variations. Purely proactive

policies do not react well to overloads of the system caused by forecasting errors, and purely

reactive policies fail to provide capacity for potentially foreseeable load changes. We tested

the performance of our decision-making scheme being fed by purely global forecasting

data, and observed that the lack of immediate behavior information has a negative effect on

performance and energy expenditures.

As seen in the numerical experimentation, the combination of reactive and proactive
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decision-making may produce significant savings in the operation of data centers providing

acceptable performance and reliability. Moreover, the implementation of quality forecast-

ing techniques into the decision-making process yield additional savings. In this chapter we

presented a novel forecasting techniques tailored specifically for (potentially self-similar)

processes that are not cyclical but exhibit some type of cyclic behavior even when there

are pattern deviations. This makes the decision scheme very adaptable to arrival stream

behavior changes and/or disruptions.
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CHAPTER V

CONSOLIDATED PROVISIONING

Chapters III and IV focus on real time provisioning strategies to solve the single application

energy aware capacity allocation problem in data centers from a theoretical and practical

perspective. Besides the operational decision-making, we may consider two more ways

to further improve the system’s energy efficiency. First, there are decisions, such as data

center maximum capacity, hardware selection, and cooling equipment purchase that are

made mainly when the facility is built. Secondly, there are decisions, such as the ones we

analyze in this chapter, that should not be made in an hour to hour or day to day basis, but

that once implemented, will not usually be changed for a considerable period of time, such

as weeks or months.

In this chapter, we allow several applications to be run in each of the servers. We are

going to focus on selecting the applications that are going to be available to run in each

of the servers. This is not considered as an operational decision because enabling a server

to run a new application may require a long installation procedure. For allocating applica-

tions, we partition the application set and identify the elements of the partition as a single

composed application, or meta-application. This portion of the dissertation is the one that

makes direct use of the potential economies of scale, resulting of having all the different

applications being hosted in the same facility. This may allow us, for instance, instead

of having three different applications running in three separate servers (as is the common

practice in the industry), we may have all the applications running in all three servers. This

would mean that in the original case all three servers have to be powered up all the time,

but in the latter case we only need to power up as many servers as necessary, thus creating

immediate energy savings. In addition, this strategy would reduce the computational ca-

pacity in times of low combined demand, thus saving energy. As in the previous chapter,
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we assume that the data center should meet a stringent SLA that may be homogeneous

or heterogeneous across the different applications, and we propose techniques that make

use of and complement the algorithms developed in Chapter IV. Similarly, our ultimate

objective is to reduce the data center energy consumption, but in this case we achieve that

objective by solving a different type of optimization problem: reducing the aggregated load

variance by properly partitioning the set of applications.

Fig. 14. Data center model.

A. Problem Description

Let us consider a data center that serves a certain fixed number of applications, as the one in

Figure 14. Assume that the servers in the data center are identical, and may be deactivated

or activated to run at a finite set of eligible frequencies. Suppose, without lost of generality,

that any subset of the applications may be hosted in the same machine (otherwise, we can

divide the problem into facilities that include only applications that may run with each
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other and analyze them separately). Assume moreover, that the data center management

does not have knowledge of the future load except observed load history. The objective

of the data center administrators is: first, given the facility and equipment, it should serve

requests balancing energy usage and hardware reliability for reducing the facility costs and

environmental impact, and secondly, it should meet the service standards consigned in the

SLA.

We model this problem as a queueing system with K homogeneous servers able to

host any number of applications, able to being turned on and off, as well as the ability to

run any of the hosted applications at any of a finite predetermined set of frequencies Γ =

{γ1,γ2, ...,γ|Γ|}. The costs incurred by the data center are represented by the energy required

to power the servers, and an energy, reliability and risk cost associated with booting the

machines. According to Elnozahi et al. [54] and Chen et al. [8], the energy consumption

as a function of the frequency has the form P(γ) = Pf ix + Pf γ3, where Pf ix and Pf are

equipment specific constants, and the cost of turning a server on is assumed to be a constant

B0.

It is well known (see for instance Chen et al. [8] and Chapter IV) that dynamic capac-

ity allocation, using powering servers up and down and DVS for individual applications,

has the potential of reducing significantly the energy consumption of the overall system.

However the frequent changes in capacity may increase the likelihood of not meeting the

SLA and causes wear and tear on the equipment due to the repeated booting cycles. Both

phenomena share a common cause: the high variability of the inter-arrival times and re-

quests sizes that come into the system. Our objective is to properly combine subsets of

applications in such a way that the variability of the aggregated load is reduced, and the

capacity allocated to serve those applications will become more stable. This way, the dy-

namic capacity allocation scheme will reduce the number and size of capacity adjustments,

and reduce the risk of not meeting the service constraints as a consequence of capacity
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allocation errors or sudden load changes. In other words, we attempt to achieve an im-

provement in the operation cost by solving an auxiliary problem that determines how to

cluster applications in such a way that the aggregated variability is reduced.

B. Problem Formulation

Let us consider a set of M single class First Come First Served queueing system as the one

in Figure 14, where each of the classes represents a specific application. The system has

K identical available servers able to process any of the requests classes. At any given time

t, each server may be in on (active) state or off (inactive) state; moreover, when a server is

on, it can run at any frequency γ ∈ Γ = {γ1,γ2, ...,γ|Γ|}, but all active servers devoted to the

same group of applications should run at the same frequency. This assumption, analogous

to the one made on Chapter IV, is used for mathematical tractability and presentation conve-

nience. Let us denote by km(t) the number of active servers dedicated to (meta-)application

m at time t, so km(t) ∈ {1,2, ...,K} and
M

∑
m=1

km(t) ≤ K, and by Fm(t) ∈ Γ the frequency of

the active servers running the application m.

Requests arrive at the system according to an arbitrary process. Let An be the arrival

time of the n− th request, Sn the amount of work required to serve it, and Cn ∈ {1,2, ...,M}

its class. Let us divide the time horizon into contiguous time intervals of length t0, and

define the load the system receives from the m− th application during the z− th time

interval as

Lm(z) = ∑
n

Sn1{n:(z−1)t0<An<zt0}1{n:Cn=m}.

This produces M time series that reflect the amount of work the system receives from

each application during the different time slots. We define the covariance of the time series

Lm1 and Lm2 as (see Onnella et al. [79]):
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cov(Lm1,Lm2) =< Lm1 ·Lm2 >−< Lm1 >< Lm2 >,

where the operator < ·> returns the expected value of the argument.

We are interested in aggregating several applications, i.e., several time series, in order

to reduce the variability of the system. In the rest of this Chapter we define the variance of

the system as the sum of the variances of the meta-applications formed when the individual

applications are grouped. Formally, for the subset S = {m1,m2, ...,m|S|}, we define the

variance of the aggregated time series
|S|

∑
i=1

Lmi as:

var(S) =
|S|

∑
i=1

|S|

∑
j=1

cov(Lmi,Lm j),

and the variance of the system will be the sum of the variance of the element of the partition.

If all the applications are served separately, the total variance of the system is simply

the sum of the variances of the individual applications. However, given that some covari-

ances may be negative, it is possible that var(S) is lower than the sum of the variances of

the individual applications. For instance, suppose there are eight applications hosted in a

particular data center with ten servers {a,b,c, ..., j}. We can assign four applications, say

{1,2,3,4}, to servers {a,b,c}, two applications, say {5,6}, to servers {d,e, f ,g}, and four

applications, {7,8,9,10} to servers {h, i,k}. This way, it will not be necessary to have

at least 8 servers running all the time, and if we can make the load over each group of

servers as stable as possible, we can provision energy more efficiently. In order to deter-

mine if this grouping or any other is appropriate, we need to find the optimal partition of

the applications such that the total variance of the system is minimized:

min
P∈P ∑

S∈P
var(S),

where P is a partition in the set P of all possible partitions of the set {1,2, ...,K}.
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We assume that Sn is not observable until the service starts, so all the information

available about the arrivals at the system at time t is the number of requests of each class m

in the buffer nm(t). Let us suppose that there is a rule (as the one in Chapter IV) to select

individual class km(t) and Fm(t) dynamically based on the observed nm(t) and load history,

so that the long-run average energy consumed is minimized subject to satisfying a Quality

of Service constraint for individual applications.

Fig. 15. Some applications are grouped.

Assume that powering up a server needs Tboot seconds, and has a fixed cost B0 caused

by the wear on physical components, such as the hard drives, due to the booting process

and the energy required to boot the server up. Running k servers at frequency γ, costs c(k,γ)

per unit time, where the function c(k,γ) is assumed to be increasing in both components.

Moreover, the system manager is required to meet a previously specified SLA that bounds

the fraction of the requests of type m that may stay in the system longer than (previously

determined) Rm seconds.
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Powering up a server requires energy, produces significant hardware wear and tear,

and risks possible failures such as unsuccessful boots or machine failures; therefore, it is

undesirable to allow the algorithm to turn servers on and off arbitrarily often. In order to

avoid that, for the remaining of this chapter (as we did in Chapter IV), we assume that both

the booting and frequency decisions are going to be made and executed every t0 seconds.

Therefore, every t0 seconds, the system administrator chooses the values of nm(t) and km(t),

and those remain constant during the next t0 seconds.

As we mentioned earlier, we are assuming that for each period z, and each value

of nm(t) and possible predictions of the future load, there is a decision km(t), Fm(t) that

is intended to minimize the individual application energy consumption. Therefore, for all

applications {m1,m2, ...,m|S|} contained in a given element of a partition S∈P , let us define

the aggregated frequency dedicated to that group as FS =
|S|

∑
i=1

kmiFmi , and the proportion of

the aggregated frequency allocated to application m as pm =
kmFm

FS
. Those proportions

represent the fraction of the overall system effort used to serve the requests belonging

to each individual type, and are going to be used by the algorithm described in Chapter

IV, section C.4, where we will allocate the aggregated frequency to a group of kS servers

running at identical frequencies FS.

We intend to find a partition such that the energy expenditures of running the grouped

applications described by (see Chapter IV)

∑
S∈P

Z

∑
z=1

(
c(kzS,γzS)t0 +B0(bzS0)+

)
s.t. ∀n∀m(Cn = m⇒ P(Dn−An > Rm) < α) ,

is lower than the one for applications being served in independent servers, written as:
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min
M

∑
m=1

Z

∑
z=1

(
cm(kzm,γzm)t0 +B0(bzm0)+

)
s.t. ∀n∀m(Cn = m⇒ P(Dn−An > Rm) < α) ,

where t0 is the time length of the periods, bzm0 = (km(zt0)− km((z− 1)t0)) represents the

number of servers to be turned on/off in z− th period, α is a constant previously designed

in the SLA, and P is the fraction of the requests that meet the condition in parenthesis. The

furthest left sum on the first equation is indexed by S ∈ P , the subsets of the partition, so

the frequency and number of server allocations are made subset-wise. In contrast, in the

second equation, the index is m, the application number, so here both frequency and number

of servers are allocated individually. Although we used the quality of service constraint of

the types described in Chapter IV, the same equations with different types of constraints

are valid.

We will restrict our attention to a specific group of applications {m1,m2, ...,m|S|}, and

assuming there is a rule to select kS and FS. This queueing system may be described as a

dynamic system, where the state is described by the number of jobs of each class in the

queue nmi(t), and the number of active servers kS(t). If at time t a new request arrives at the

system, and there are fewer than kS(t) requests being served (i.e., there is an empty active

server), then the request goes directly to be served. Otherwise it goes to the last place in

the queue. When a service is completed, the first request in the queue starts service with

a completion time
Sn

βFS(t)
where β is a constant that represents the proportion between the

amount of work performed and the running frequency. At an arbitrary time t, the system

state will change to kS(t) and nm(t)+ 1 if the next request is of class m and comes to the

system before a completion is achieved. Otherwise, the system will go to state kS(t) and

nm(t)−1, after a time period equal to the minimum completion time.

As described, the system dynamics depends on the values of nm(t), FS(t) and kS(t) as
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well as the arrival process. As explained in Chapter IV Section B, large values of nm(t) in-

crease the likelihood of some request’s time in the system being larger, making more likely

The violation of the QoS constraint, and higher values of kS(t) and FS(t) may decrease the

value of nm(t). However, increasing the number of servers and/or the frequency implies

greater energy expenditure of the overall system. Hence, our objective is to balance the

trade off among the energy expenditure, reliability and the QoS constraints by controlling

this highly variable system.

C. Methodology

We propose an algorithm that allows us to find an optimal or near optimal partition of the

applications arriving at the data center. In order to do so, we propose two approaches. The

first one applies whenever the quality of service constraints are homogeneous among all the

applications; the second one applies when the quality of service requirement varies from

one application to the other. Since requests arrival at a data center present some type of

cyclic behavior (see Rincon Mateus and Gautam [91]) with period size T , we will assume

that we have a training period of length T used to obtain information regarding the load

time series behavior and interactions.

1. Computation of the Observed Covariances

Given the training data, the observed covariance during the training period is computed as:

cov(mi,m j) =< Lmi ·Lm j >−< Lmi >< Lm j >,

if the quality of service constraints is homogeneous. Otherwise, we proceed in the fol-

lowing way: assuming that the individual application capacity allocation method receives

perfect information about future system loads (we do this using the training data, so the
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information on the previous time slots is perfect), we obtain the allocated aggregated fre-

quency for each period z and each individual application m. With this information, we

can form M new time series Fm = kmFm, m = 1, ...,M, with which we will compute the

variances in a similar fashion:

cov(mi,m j) =< Fmi,Fm j >−< Fmi >< Fm j > .

Computing the covariances of the aggregated capacities, instead of computing the co-

variances of the loads, allows us to compare applications with heterogeneous requirements.

In other words, even if the loads are equal, one application with a very high quality of ser-

vice requirement will have a different capacity allocation than one with lower service level;

as a consequence, a direct load comparison will not necessarily reflect well the relation be-

tween the capacity allocated to both applications, and we are interested in obtaining stable

allocated capacity. Clearly, we could apply the second algorithm when the QoS constraint

are homogeneous across the different applications, but computing the variance of the arrival

rates is much less computationally expensive. This methodology training data analysis has

a much longer run time because it must determine the capacity allocated to each time slot

in the training period.

2. Design of the Data Structures

Let us consider the regular variance covariance matrix obtained by either procedure de-

scribed in subsection C.1:

Σ =



Var(1,1) Cov(1,2) · · · Cov(1,m)

Cov(2,1) Var(2,2) · · · Cov(1,m)
... . . . · · · ...

Cov(m,1) Cov(m,2) · · · Var(m,m)


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If the applications are served separately, the total variance of the system, denoted by

Var(D), is simply the trace of the matrix:

Var(D) = Tr(Σ) = Var(1,1)+Var(2,2)+ ...+Var(M,M).

If the applications were grouped, for instance, as {1,2} ,{3} and {4,5}, then the total

system variance would be given by the sum of the elements on the diagonal block entries

of the following matrix:

Σ =



Var(1,1) Cov(1,2) Cov(1,3) Cov(1,4) Cov(1,5)

Cov(2,1) Var(2,2) Cov(2,3) Cov(2,4) Cov(2,5)

Cov(3,1) Cov(3,2) Var(3,3) Cov(3,4) Cov(3,5)

Cov(4,1) Cov(4,2) Cov(4,3) Var(4,ChapterIV ) Cov(4,5)

Cov(5,1) Cov(5,2) Cov(5,3) Cov(5,4) Var(5,5)


,

which equals to Var(1,1) +Var(2,2) +Var(3,3) +Var(4,4) +Var(5,5) + 2Cov(1,2) +

2Cov(4,5).

In order to obtain different partitions we define a sorted boundary vector of length m,

b = (b1,b2, ...,bM), where b1,b2, ...,bM, that defines the placement of the horizontal and

vertical lines of the matrix. For instance, the first set in the partition is {1,2, ...,b1} and the

second is {b1 +1, ...,b2}. In the previous example b = (3,4,4,4,4), but this representation

is not unique. Additionally, we define a permutation of the rows and columns of the matrix,

represented by a permutation matrix Q, and implemented as QtΣQ. This permutation allows

us to change the order of the rows and columns so we can obtain subsets of non-consecutive

elements. Using this notation, each possible grouping of the arriving applications may be
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represented (not uniquely) by a matrix P and a vector b. If for instance

Q =



0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0


,

and b = (3,4,4,4,4), then the resulting grouping will be:

Σ =



Var(5,5) Cov(5,2) Cov(5,3) Cov(5,4) Var(5,1)

Cov(2,5) Var(2,2) Cov(2,3) Cov(2,4) Cov(2,1)

Cov(3,5) Cov(3,2) Var(3,3) Cov(3,4) Cov(3,1)

Cov(4,5) Cov(4,2) Cov(4,3) Var(4,4) Cov(4,1)

Var(1,5) Cov(1,2) Cov(1,3) Cov(1,4) Var(1,1)


.

With this notation the problem of finding an optimal partition to minimize the variance

may be stated as:

min
Q,b

Var(D),

where Var(D) represents the sum of the variance of elements of the partition, and is calcu-

lated by adding the elements of the diagonal blocks resulting from process just described.

3. Optimization Procedure

The optimization is performed using a standard simulated annealing algorithm, searching

in the space of boundary vectors and permutation matrices. The procedure searches in the

space of all possible representations of partitions in order to find the one that minimizes

total system variance. Once it is found, it returns the partition elements that represent the

applications that should be installed on each machine. The neighborhood function for the
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Fig. 16. Arrival data.

boundaries vector simply picks a random entry and adds or subtracts one to it. The resulting

vector is sorted again in ascending order.

Neighb ( b ){

r =random number between 1 and M;

s=random number i n {1 ,−1} ;

b ( r )= b ( r )+ s ;

s o r t ( b ) ;

}

The neighborhood function for the permutation matrices picks two different indexes in

{1, ...,M} and switches the rows and columns of the identity matrix. The resulting matrix

is multiplied by the original Q to obtain the output matrix.

Neighb (Q){

r =random number between 1 and M;
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s=random number between 1 and M;

N= Permute rows r and s o f t h e m by m i d e n t i t y m a t r i x ;

Q=NQ

}

The simulated annealing macro-algorithm is a standard SA procedure that generates

partitions, evaluates their variability and decides if the algorithm should move to the new

element based on a dynamic criterion:

G e n e r a t e random v e c t o r b

G e n e r a t e random m a t r i x P

Compute Cov ( S ) ;

c u r r e n t V a r =Var

t = I n i t i a l t e m p e r a t u r e

w h i l e ( t >0) {

g e n e r a t e random n e i g h b o r ( P , b )

newVar=Var ( n e i g h ( S ) )

i f ( newVar < c u r r e n t V a r ){

c u r r e n t V a r =newVar ;

Update P , b ;

}

e l s e {

i f ( c r i t e r i o n ( c u r r e n t V a r−newVar )== t r u e ){

c u r r e n t V a r =newVar ;

Update P , b ;
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}

}

i f ( i mod p a r a m e t e r ==0)

t = t−D e l t a t

}

Fig. 17. Consolidated arrival data.

Figure 17 shows the resulting consolidated time series after the procedure just de-

scribed. For this 5 application example, the algorithm returned three separate groups. Two

of the groups contain only one application, and the third is the sum of the three remaining

applications. The original data is plotted in Figure 16. The resulting partition has two

one-element subsets and one three-element consolidated time series.
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4. Application Load Consolidation

It remains to decide how to allocate and distribute the capacity among the applications

allocated to the same group of machines. After feeding the individual capacity allocation

with the values of nm(z) and the individual load history, the system receives a set of m

couples Fm(z) and km(z). Now we compute the aggregated frequency F = ∑
m∈S

Fm(z)km(z),

and find the lowest possible number of machines k(z) and lowest frequency F(z) (in that

order) such that k(z)F(z) ≥ F . Then we execute a local search for minimal cost kS(z)

and FS(z) without having a capacity lower than F . With the values of Fm(z) and km(z),

it is possible to compute pm as defined in section 2. Then whenever a server is free, the

machine will serve the first request in the queue of application m with probability pm. The

macro-algorithm are the following:

F i n d k F ( k m , F m , AggFreq ){

Find min k ( min F ( k∗F>AggFreq ) ) ;

F ind min {k , F : k∗F>AggFreq} ( Cos t ( k , F ) ) ;

Compute p m ;

}

Choose A p p l i c a t i o n t o be Served ( b u f f e r , p ){

f l a g =0

w h i l e f l a g ==0 {

G e n e r a t e m i n { 1 , . . . , | S | } wi th prob . p 1 , . . . , p s

i f n m ( t )>0{

f l a g =1;

}

}

}
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D. Numerical Evaluation

In order to evaluate the effectiveness of the algorithm, we generate M individual application

load time series, Lm, in such a way that the behavior on the second half of the sequences

resembles the behavior on the first part, but incorporates some randomly placed disruptions

and white noise. The first half of the arrival information is used as training data in order to

prepare the individual application capacity allocator, and to compute the correlation of the

load or aggregated capacity time series. Once the information is processed, the Simulated

Annealing algorithm will return a partition of the applications set indicating which applica-

tions should be installed together. We will take the elements of the partition with cardinality

larger than one, and simulate the system for both the newly created meta-application, and

for the individual applications to compare the amount of energy used in each case. The ob-

jective of this numerical experimentation is to show that a proper application grouping will

result in energy savings for the applications on that specific subgroup; therefore there is no

additional information on running experiments with a much larger number of applications

because the final comparison will take place on the elements of the partition. For the exper-

iments, we assume that there are 60 servers in the facility, and allocation to each group will

be proportional to the combined average load. It is worth noting that the algorithm never

used all the available servers.

1. Data Generation

For each time slot, the total load of the system is divided by a constant Y and then a Poisson

random variable with mean Lm(z)
Y determines the number of arrivals. The individual arrival

times are obtained by a uniform sampling of an interval of length t0, and the file sizes are

sampled from a Pareto distribution with squared coefficient of variance between 10 and

100.
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Table VII. Data generation parameters.

Load Trend asind(bz+ c)+ eZ + f

Disruptions max(ud,−0.25)coe f · sech( z−loc
scl )

Noise Uni f (0,1)Z

Number of arrivals Load
Y

Arrival Times Uniform Sampling

Arrival Sizes Pareto

Table VII contains detailed information about the parameter generation procedure.

The load trend is an arbitrary integer power of a general sine function. The disruptions are

modeled as scaled and shifted hyperbolic secants, and the noise is generated by independent

normal sampling.

The generated data will look like the Figure 16, where there is some resemblance

between the first and second half of the data, but clearly there is not an exact repetition.

Those disruptions in the data reflect the changes in behavior that are natural in data center

operations.

2. Numerical Results

We present several experiments to illustrate the effectiveness of the proposed methodology.

We performed 15 simulations with data corresponding to 5 applications and homogeneous

QoS constraints, and 10 corresponding to heterogeneous constraints. We assume that the

load cycle is 80 periods, so we generated 160 periods of experimental data, where the peri-

ods 81 to 160 reflect the behavior of the first half of data, but independent noise and random

disruptions are added (See Table VII). Notice that the hypothesis we are testing are that the

serving grouped applications consume less energy than serving them individually; there-

fore, designing experiments with a large number of applications will not provide additional
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Table VIII. Running time for the grouping algorithm.

Number of Applications Running Time

M seconds

5 2.37

10 2.45

100 32.81

1000 850.42

information. Larger sets of applications would result in larger and/or more groups with re-

sults similar to the small experiments performed here. We should notice that the algorithm

is computationally simple enough to handle a data center with thousands of applications.

As a point of comparison, the more complex optimization algorithm in Chapter II solved

linear systems with more than a million variables on each iteration and run in a few hours;

in contrast, the procedure in this Chapter will only perform sums on an M×M matrix, so

it is much less complex. For reference, Table VIII contains the running times for different

values of M in a Windows Vista computer with 1.83 GHz. Intel Core Duo 2 processor and

2Gb RAM.

For each one of the experiments we report the total cost of running all the applications

independently, the cost of running the system with the partitions we proposed, and the

fraction of requests that required longer than Rm time units to be served. Here, as in Chapter

IV, we use a TSF constraint, where the requirement gives a bound on the fraction of the

requests of each class that lasts more than Rm seconds in the system.

Observing the results in Table X, we can conclude that there are savings produced by

the consolidation of the capacity allocated to the selected applications. It is important to

notice that the comparisons in the tables are against hosting individual applications using

the methodology presented in Chapter IV, so the savings are on top of the ones obtained
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Table IX. Settings of the numerical experiment.

Parameter Value

Available Frequencies (1.4,1.57,1.74,1.91,2.08,2.25,2.42,2.6)

Power (60,63,66.8,71.3,76.8,83.2,90.7,100)

Cost (cents/KWH) 10

B0 (cents/Boot) 0.525

Tboot 90 sec

Decision Period (t0) 900 sec

Heterogeneous conditions (Table XI) 90+8∗ rand()

there. So, if the system may save around 35% by using individual capacity allocation and

13% by consolidating applications, then the total amount of savings will be around 45%.

Table X contains the results of 15 experiments serving 5 applications. We assume

a TSF QoS constraint with R = 0.05, and the last two columns represent the maximum

fraction of requests across the applications that violate the maximum time in the system

constraint for both the individual and grouped cases. The average savings in Table X

is 13%, and the maximum amount of savings obtained is 29.7%. The variability on the

amount of energy saved is due to the correlation between the arrival time series. Since the

parameters of the arrival process are randomly generated, it is possible to obtain settings in

which the grouping will lead to low savings, or even worse, as in the experiment number

4 in Table X, where the performance is worse for a very small margin. The reduction in

the energy cost has two causes. First, obtaining an optimal value for k(z) and F(z) globally

outperform the aggregation of individual capacity optimization. Secondly, the stabilization

of the load reduces the number of boots in the system, lowering both the energy expenditure

and reliability cost. The proposed algorithm meets the QoS specifications in all the cases

when the individual algorithm is able to do so.
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Table X. Homogeneous QoS allocation results.

Data # Gr. Max.Size Cost/s I. Cost/s G. Savings Max Fr. I. Max Fr. G.

1 4 2 0.0126 0.0104 17.1601% 0.0323 0.0313

2 2 4 0.0065 0.0054 16.9093% 0.0487 0.0174

3 3 3 0.0078 0.0069 12.5096% 0.0467 0.0265

4 3 3 0.0066 0.0066 -0.7135% 0.0991 0.0189

5 3 3 0.0115 0.0095 17.0115% 0.0461 0.0427

6 3 3 0.0156 0.0112 28.1852% 0.0490 0.0453

7 3 2 0.0106 0.0083 21.8762% 0.0477 0.0472

8 4 2 0.0054 0.0053 2.9763% 0.0647 0.0066

9 3 3 0.0120 0.0084 29.6990% 0.0477 0.0401

10 2 4 0.0063 0.0057 9.4447% 0.0848 0.0363

11 2 3 0.0067 0.0056 16.6270% 0.0379 0.0353

12 3 2 0.0079 0.0074 5.8151% 0.0207 0.0508

13 2 4 0.0070 0.0063 10.3833% 0.0425 0.0295

14 4 2 0.0080 0.0078 1.9371% 0.0477 0.0219

15 4 2 0.0108 0.0101 6.6499% 0.0283 0.0283

Max Sav. 29.7% Ave Sav. 13.1% Min Sav. -0.7%

Table XI contains 10 experiments with heterogeneous TSF quality constraints. The

changes between quality constraints are in the fraction of the requests that should be in the

system for fewer than 30 units of time. The table contains the requirements for each one

of the application classes. We also report the operation cost per second if the applications

are hosted individually, and the cost per second if the applications are grouped according

to our algorithm. The last two columns show whether the system met the quality of service

constraint for all the applications. Average savings were 7.4%, and the maximum savings

were 22.6%. Only in one case (experiment number 7) was the operating cost larger for

the grouped applications. This may happen when the disruptions are so large that the
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Table XI. Heterogeneous QoS allocation results.

#Gr. Max.Sz. Cost/s I. Cost/s G. Savings Requirement I. G.

1 3 3 0.024877 0.021305 14.3586% 93 95 95 96 93 T T

2 3 3 0.023651 0.019336 18.2445% 96 93 93 94 97 T T

3 3 3 0.021853 0.019133 12.4468% 92 95 92 93 96 T T

4 3 3 0.020922 0.020536 1.8449% 95 92 93 93 96 T T

5 2 4 0.022464 0.017384 22.6140% 92 97 94 93 95 T T

6 3 3 0.02172 0.020203 6.9843% 93 96 94 93 96 T T

7 4 2 0.008031 0.01003 -24.8910% 94 93 92 95 94 T T

8 4 2 0.026951 0.022913 14.9827% 96 95 94 96 94 F T

9 3 3 0.026343 0.022472 14.6946% 95 97 92 95 94 T T

10 3 3 0.030614 0.032603 -6.4970% 96 97 96 93 95 T T

Max. S. 22.6% Ave. S. 7.4% Min. S. -24.8%

correlation structure is severely affected. It is worth noting that in experiment number 8 the

system did not meet the QoS constraint when the applications were run individually, but it

did when the applications were grouped. This is an illustration of the fact that more stable

loads increase the likelihood of providing capacity properly.

We observed that there are moments in which no grouping is desirable. For instance

if all the applications are positively correlated, grouping applications may cause the vari-

ability of the system to increase, and as a consequence more servers should be turned on

and off, and the risks of miscalculating the necessary capacity grows. Our algorithm is

capable of identifying most of those cases and suggests a partition where all the elements

are unitary sets. We present here only the instances for which the algorithm found grouping

applications to be beneficial. It happened in around 75% of the times we generated data.

It is worth noting that even if the algorithm suggests that grouping applications is

beneficial, the random disruptions introduced, if large enough, may alter the correlation

structure significantly. These changes in behavior may produce a performance decrease or



99

even, as in experiment number 4 in Table X or experiment number 7 in Table XI, a setting

in which grouping the applications will not produce any benefit at all.

Finally, we observed that grouping the applications did not cause a significant perfor-

mance decrease. For a large majority of the cases, the maximum fraction of the requests

staying in the system for longer than the amount of time consigned in the SLA is not in-

creased by using the proposed methodology (See last two columns in Table X).

E. Conclusions

In this chapter we proposed the implementation of tactical decisions to complement the

real time allocation strategies presented in Chapter IV. We developed and implemented

an optimization procedure to find groups of applications that should be run in the same

machines in order to reduce energy and reliability costs. These savings are a consequence

of a reduction in the overall system effort variability and the consolidation of the effort

across the different applications. Moreover, the consolidation strategy still operates the

system in such a way that it meets the QoS agreements. The proposed solution is versatile

enough to handle applications with heterogeneous QoS service constraints.

We can conclude that a scientific applications allocation to machines has the potential

to increase the savings obtained by the single-application methods of Chapter II. Moreover,

these variance reduction techniques address further the main concern of industry practition-

ers because it reduces the risk of a drastic performance reduction due to miscalculations of

the capacity.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This dissertation presents a study of the Dynamic Resource Allocation for Energy Manage-

ment in Data Centers from the operational and tactical point of view. This study responds to

increasing economical and environmental concerns about data centers gigantic energy con-

sumption by practitioners and interest groups. We assumed that a facility layout, auxiliary

equipment and hardware are given and found strategies to increase the energy efficiency

and hardware reliability. The strategies presented were designed to reduce the energy us-

age without jeopardizing the achievement of the QoS requirements. The solution strategy

developed here is robust and simple enough to be implemented without major disruptions

in the facility operations.

A. Conclusions

Given the immense energy expenditure and its economic and environmental consequences,

data center energy consumption has been a subject of study for the past decade. During our

study we found that implementing sophisticated methodologies to allocate capacity dynam-

ically will result in significant energy savings and will not cause significant performance

degradation.

We performed a study of this problem divided into three steps. First, we presented a

mathematical abstraction of the data center system that is a generalization of two classic

queueing control problems, the single server with variable rate setting, and the call center

setting. We showed that if the inter-arrival and service times are exponential, and the aver-

age arrival rate is constant, then the optimal policy is hysteretic. We designed an algorithm

to find explicit hysteresis curves to obtain the optimal monotonic hysteretic policy. After

numerical experimentation, we conjectured that the optimal policy is monotone hysteretic
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in the number of servers and threshold type in the frequency. This research resulted in an

article submitted for publication (Rincon Mateus and Gautam [92]).

We presented an allocation method for a single application system with TSF QoS

agreement. To the best of our knowledge, there is not a previous published capacity provi-

sioning strategy that deals with TSF constraints. Our interest in this type of contract comes

from its popularity among practitioners. The allocation method is composed of reactive and

proactive components. The reactive portion of the algorithm is a function of the number of

requests in the buffer; to make proactive decisions, we rely on a wavelet based forecasting

algorithm that takes advantage of the nearly cyclic nature of the requests arrival process.

This forecasting procedure combines long and short term data to obtain results reflecting

the periodicity and sudden load changes or disruptions. Our methodology not only reduces

the amount of energy used by the system, but provides the system manager with a high

degree of certainty that the QoS requirements will be met. In Chapter IV, we simulated the

system with real internet data, and in Chapter V, we used artificially generated data that

includes random traffic disruptions. These results are contained in an article submitted for

publication (Rincon Mateus and Gautam [93]).

Finally, we developed an analytic methodology to group applications in such a way

that the variance of the system is reduced. We based our allocation rule on finding negative

correlations between the arrival load time series. This way of allocating applications has

two important benefits: it reduces the number of booting cycles, and reduces the risk of not

meeting the QoS constraint when the forecasting is incorrect. We coupled this methodol-

ogy with the single application allocation algorithm and found that the load consolidation

reduces the energy consumption compared to our method of independent resource alloca-

tion. This material is contained in an article currently in preparation (Rincon Mateus and

Gautam [94]).
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B. Future Research

Future directions of research include:

• A deeper study of structure of the optimal policy of the M/Mt/kt queueing control

system to confirm or disprove the conjecture regarding the optimal policy monotonic-

ity.

• A study of policies of the M/Mt/kt queueing control system that may observes and

make changes to the number of active servers and frequencies only every p > 1

number of periods.

• A study of structured policies to more realistic data center models with non exponen-

tial arrival processes.

• A detailed study of the theoretical properties of the decomposition in the forecasting

methodology presented in Chapter V.

• Development of dynamic allocation techniques that allow the system to exploit dif-

ferent correlation structures at different stages within the periods.

• Allowing the possibility of splitting application arrival streams to divide the load

between two or more sets of servers to achieve further variance reductions.

• A study on optimal capacity data center design.
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