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Abstract 
 
 
The degradation of rangeland grass is currently one of the most serious environmental problems 

in South Africa. Increaser and decreaser grass species have been used as indicators to evaluate 

rangeland condition. Therefore, classifying these species and monitoring their relative abundance 

is an important step for sustainable rangelands management. Traditional methods (e.g. wheel 

point technique) have been used in classifying increaser and decreaser species over small 

geographic areas. These methods are regarded as being costly and time-consuming, because 

grasslands usually cover large expanses that are situated in isolated and inaccessible areas. In this 

regard, remote sensing techniques offer a practical and economical means for quantifying 

rangeland degradation over large areas. Remote sensing is capable of providing rapid, relatively 

inexpensive, and near-real-time data that could be used for classifying and monitoring species. 

This study advocates the development of techniques based on remote sensing to classify four 

dominant increaser species associated with rangeland degradation namely: Hyparrhenia hirta, 

Eragrostis curvula, Sporobolus africanus and Aristida diffusa in Okhombe communal rangeland, 

KwaZulu-Natal, South Africa. To our knowledge, no attempt has yet been made to discriminate 

and characterize the landscape using these species as indicators of the different levels of 

rangeland degradation using remote sensing.  

The first part of the thesis reviewed the problem of rangeland degradation in South Africa, the 

use of remote sensing (multispectral and hyperspectral) and their challenges and opportunities in 

mapping rangeland degradation using different indicators. The concept of decreaser and 

increaser species and how it can be used to map rangeland degradation was discussed.  

The second part of this study focused on exploring the relationship between vegetation species 

(increaser and decreaser species) and different levels of rangeland degradation. Results showed 

that, there is significant relationship between the abundance and distribution of different 

vegetation species and rangeland condition.   

The third part of the study aimed to investigate the potential use of hyperspectral remote sensing 

in discriminating between four increaser species using the raw field spectroscopy data and 

discriminant analysis as a classifier. The results indicate that the spectroscopic approach used in 

this study has a strong potential to discriminate among increaser species.  These positive results 
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prompted the need to scale up the method to airborne remote sensing data characteristics for the 

purpose of possible mapping of rangeland species as indicators of degradation. We investigated 

whether canopy reflectance spectra resampled to AISA Eagle resolution and random forest as a 

classification algorithm could discriminate between four increaser species. Results showed that 

hyperspectral data assessed with the random forest algorithm has the potential to accurately 

discriminate species with best overall accuracy. Knowledge on reduced key wavelength regions 

and spectral band combinations for successful discrimination of increaser species was obtained. 

These wavelengths were evaluated using the new WorldView imagery containing unique and 

strategically positioned band settings. The study demonstrated the potential of WorldView-2 

bands in classifying grass at species level with an overall accuracy of 82% which is only 5% less 

than an overall accuracy achieved by AISA Eagle hyperspectral data. 

Overall, the study has demonstrated the potential of remote sensing techniques to classify 

different increaser species representing levels of rangeland degradation. In this regard, we expect 

that the results of this study can be used to support up-to-date monitoring system for sustainable 

rangeland management.  
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CHAPTER ONE 

 

General introduction 
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1.1Background 

Rangeland occupies roughly 51% of the earth‟s total land area and includes savannas, grasslands, 

shrublands and desert (Asner et al., 2004). These areas of rangeland are responsible for the 

employment of more than 38% of the world‟s population (Nalule, 2010). However, a total of 10 

to 20% of rangeland has been identified as being severely degraded (Reynolds et al., 2007). 

Rangeland degradation is a reduction in the quantity and quality of the natural vegetation 

available for grazing and it is a serious problem in arid, semi-arid and sub-humid areas 

(Passmore and Brown, 1991). Rangeland degradation and the development of rehabilitation 

techniques, specifically in arid, semi-arid and sub-humid areas, have become pressing concerns 

in terms of the sustainable management of rangelands (Passmore and Brown, 1991; Snyman and 

Du Preez, 2005).  

South Africa‟s rangelands are ecological ecosystems that provide an environment for fauna and 

flora, which include wildlife animals and vegetation species (Sheona, 2003; Tainton, 1999; 

Wessels et al., 2008). Rangeland occupies more than 70% (1,219,000 km2) of South Africa‟s 

land surface and is used almost exclusively for pastoral production (Snyman, 2003). South 

African rangelands have been classified into two groups, namely communal rangelands and 

commercial rangelands, a classification that is based on the tenure system, the quantity and 

quality of forage production and livestock production techniques (Hoffman et al., 1999; Joubert 

and Ryan, 1999; Shackleton et al., 2003). 

Communal rangeland, which occupies roughly 13% of the total agricultural land in South Africa, 

has been characterised by the South Africa National Land Care (NLC) Programme as one of the 

areas most severely affected by soil and vegetation degradation, and it is arguably a situation that 

is completely out of control (Hoffman and Todd, 2000; Palmer and Ainslie, 2006). These 

communal rangelands are characterised by high human populations, an increased number of 

livestock, increased runoff, poor water infiltration, severe soil erosion, the loss of grass cover 

(particularly palatable grazing species) and poor land use management (Hoffman and Todd, 

2000; Moyo et al., 2008; Reid and Vogel, 2006). A total of 4.8% (5.8 million ha) of communal 

rangeland has been identified as being degraded due to its low vegetation cover when compared 

with surrounding areas (Thompson, 1996). A number of experimental studies show that 
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communal rangeland degradation can be attributed to land cover modification, which is a 

continuous process that – alongside human influences such as long-term extensive grazing – is 

driven by climate, geology, topography and vegetation characteristics (Hoffman et al., 1999; 

Snyman and Du Preez, 2005; Wessels, 2007).  

Okhombe is a communal rangeland situated in the mountainous region of the northern 

Drakensberg, which lies within the province of KwaZulu-Natal, South Africa. Okhombe is a 

degraded rangeland, characterised by soil erosion, rills, gullies, shrub and bush encroachment, 

and the dominance of unpalatable grass species throughout the foot, mid and upper slopes 

(Everson et al., 2007; Von Maltitz, 1998). The land use interventions and communal land tenure 

system that have been applied in Okhombe over the past few decades had negative impacts on 

the condition of the rangeland (Everson et al., 2007) (Figure 1.1). Tau (2005) and Temme et al. 

(2008) argued that the visual indicators of rangeland degradation in Okhombe - such as the 

development of bare soil surfaces, gullies and rills and sedimentation in streams - are the result 

of soil erosion, fuel-wood collection and intensive grazing. Human intervention such as LandCare 

Project played a significant  role in establishing baseline conditions in the Okhombe communal area 

(Everson et al., 2007). The LandCare project, a program based on a community-based 

monitoring system was initiated at Okhombe communal rangeland in 1998 (Mulder and Brent, 

2006; Peden, 2005). The objectives of this project were:  (1) to identify changes that have taken 

place in the degraded areas; (2) to promote sustainable land-use practices so as to improve land 

productivity; and (3) to establish effective rehabilitation techniques for land management in 

communal lands.  
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Figure 1.1: Visual indicators of rangeland degradation as observed in Okhombe: (A) cattle 
access routes, (B) sedimentation in streams, and (C) gullies. 

 

Cathedral Peak is one of the KwaZulu-Natal wildlife conservation areas where several changes 

in vegetation and soil have taken place over the past couple of decades (Granger, 1976). For 

example, Themeda triandra grassland on the south-facing slopes was gradually replaced by a 

number of different woody communities of which Philippia ecansii and Leucosidea sericea are 

the characteristic species (Bosch, 1979). The soils in this area are highly leached, acidic and 

structure-less, having high organic content (6 to 10%) and a mean soil depth of 0.8 m (Everson, 

2001; Schulze, 1975). 

In the past few decades, the mapping and monitoring of rangeland degradation in South Africa 

has primarily focused on commercial rangeland (Palmer and van Rooyen, 1998; Shackleton et 

al., 2005), meaning communal rangeland has not as yet enjoyed the same degree of attention 

(Hoffman and Todd, 2000; Trollope, 2011; Wessels et al., 2004). The continued degradation of 

communal rangeland is a major threat to livestock production, biodiversity and human 

livelihoods (Hoffman et al., 1999). Therefore, several agronomic and ecological techniques have 

been developed over the past two decades to evaluate and monitor rangeland based on the 

relative abundance and distribution of increaser and decreaser species. The techniques include, 

for example, weighted palatability composition methods (Barnes et al., 2007), the benchmark 

method (Foran et al., 1978), the ecological index (Vorster, 1982), the key species method 

(Mentis, 1981), the weighted key species method (Hurt and Hardy, 1989), and the use of 

degradation gradients (Bosch and Gauch, 1991). These methods have achieved differing degrees 
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of success for evaluating and monitoring rangelands over small geographic areas. However, 

these agronomic and ecological techniques require intensive and difficult fieldwork in terms of 

species identification and this exercise is often too expensive and time-consuming because 

grasslands often cover large spatial extents and are, moreover, frequently to be found in isolated, 

inaccessible areas (Tainton et al., 1980; Tainton, 1999; Trollope, 1990). The best method, which 

includes generating real-time, consistent, repeatable and spatially explicit data, is required for 

mapping and evaluating rangeland degradation. In this regard, remote sensing techniques offer a 

practical and economical means for quantifying rangeland degradation over large areas (Wessels, 

2007) because they are capable of providing  rapid, relatively inexpensive, and near-real-time 

data that can be used for the sustainable and effective management of rangelands (Kiguli et al., 

1999; Tanser and Palmer, 1999; Wessels et al., 2004; Wessels, 2007). The application of remote 

sensing in rangeland degradation has been explored by various scientists and has been found to 

be potentially useful for assessing, mapping and monitoring rangeland degradation when using 

different indicators such as soil properties and vegetation (Paudel and Andersen, 2010; Wessels 

et al., 2008; Wessels et al., 2004). 

Some authors, in their work on rangeland degradation assessment using different indicators of 

soil properties and vegetation, have mainly focused on identifying degraded and non-degraded 

areas (Conant and Paustian, 2002; Greenwood and McKenzie, 2001; Hill et al., 2008; Wessels et 

al., 2008). Although these previous studies were able to draw a line between degraded and non-

degraded areas, one of their limitations, however, is that they lack in-depth classification of  the 

different levels of rangeland degradation (i.e. poor, moderate and highly degraded) on large 

spatial extents. Such classifications require the development of indicators that can be easily and 

directly detected and monitored. In South Africa, rangeland species have been classified into two 

groups – increaser and decreaser species – to indicate different conditions of rangeland based on 

changes in the species‟ relative abundance in the presence or absence of grazing (Dobarro et al., 

2010).  

1.2 Increaser and decreaser species  

Increaser and decreaser species provide economic and environmental benefits such as: grazing 

lands for cattle and wildlife, soil protection, medicinal plants and nutrient cycling (Oluwole et 
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al., 2008; Van Oudtshoorn, 1992). Decreaser species are species that dominate in rangeland of 

good condition but greatly decline when the rangeland deteriorates through over- or 

underutilisation (Hardy et al., 1999). Increaser species are species that increase their relative 

abundances through overgrazing and/or underutilisation, and these are therefore indicators of the 

poor condition of a rangeland (Van Oudtshoorn, 1992). Increaser species have been classified 

into the following four types: increaser I, increaser IIa, increase IIb, increaser IIc and increaser 

III (Oluwole and Dube, 2008; Trollope et al., 1990). The relative abundances and  distribution of 

increaser and decreaser species have successfully been used to assess the condition of South 

Africa‟s rangeland (Oluwole and Dube, 2008; Trollope, 1990).This is because increaser and 

decreaser species are well adapted to environmental conditions and their numbers will reduce or 

increase dramatically if these conditions change (Hurt and Hardy, 1989; Trollope et al., 2008). 

Increaser I includes species that increase in abundance with underutilisation, while increaser IIa 

includes species that increase in abundance when the veld is overgrazed. Increaser IIb species are 

those that increase in abundance when the veld is excessively overgrazed, while increaser IIc 

species are those that increase in abundance with extremely severe over-utilisation. Increaser III 

are species that increase their relative abundances in rangeland that is selectively grazed (Hardy 

et al., 1999; Oluwole and Dube, 2008; Trollope, 1990; Van Oudtshoorn, 1992). In the present 

study, the increaser species – namely Hyparrhenia hirta (HH), Eragrostis curvula (EC), 

Sporobolus africanus (SA) and Aristida diffusa (AD) – indicate different levels of rangeland 

degradation (see Table 1.1 and Figure 1.2). Mapping these species allows for the classification of 

rangeland degradation into different levels based on the relative abundances and distribution of 

the increaser species. 
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Table 1.1: Visual indicators of Okhombe rangeland degradation based on different increaser 

species 

Indicator 
species 

Common 
name 

General characteristics Grazing 
value* 

Visual indicators of 
rangeland degradation 

Degradation 
stage 

Increaser 
I (HH) 

Thatching 
grass. 

A relatively dense, perennial 
tufted grass. Spikelets are covered 
with white to grey hairs. Culms 
300-1,500 mm tall. Leaf blade 1-4 
mm wide. Flowers from 
September to March.  

5 Bare soil on cattle 
access routes. 
Accumulations of soil 
around trees and fences. 
Dust storms. Muddy 
water. 

Poor 

Increaser 
II (EC, 
SA) 

EC: 
Weeping 
lovegrass. 
 
SA: 
Ratstail 
dropseed. 

EC: Densely perennial tufted 
grass. Inflorescences are mostly 
an open panicle. Spikelets are 
dark grey to dark olive green. 
Culms 300-1,200 mm tall. Leaf 
blade up to 4 mm wide. Flowers 
from August to June. 
SA: Perennial tufted grass. Long 
panicle with a pointed tip. Culms 
280-1,500 mm tall. Leaf blade 1-4 
mm wide. Flowers from October 
to April.  

3-5 Barren spot. Sandy layer 
on soil surface. Vetiver 
grass. Damaged swales. 
Sedimentation in 
streams. 

Moderate 

Increaser 
III (AD) 

Iron grass. A tufted perennial grass. Leaves 
are hard, narrow and rolled. 
Inflorescences are a spare, 
expanded and open panicle. 
Culms 300-800 mm tall. Leaf 
blade up to 2 mm wide. Flowers 
from November to April. 

0 Bare soil. Eroded 
slopes. Rills and gullies. 
Exposed roots. Dongas. 
Parent material (stones). 

High 

* Van Oudtshoorn (1992) 

 

           A                                        B                                      C                              D 

Figure 1.2: The most common grass species associated with rangeland degradation: (A) 
Hyparrhenia hirta, (B) Eragrostis curvula, (C) Sporobolus africanus, and (D) Aristida diffusa. 
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Generally, traditional techniques for mapping vegetation species are considered to be time-

consuming, economically inefficient, and labour intensive (Feng et al., 2009; Peterson et al., 

2002; Xie et al., 2008). A complementary remote sensing technique has successfully been used 

to provide a fairly accurate, repetitive and unbiased means for classifying and monitoring 

vegetation species. Therefore, techniques that make use of the advantages of remote sensing are 

needed for classifying increaser and decreaser species in order to determine the condition of 

rangelands. 

1.3 Remote sensing of increaser species: Challenges and 
opportunities in degraded areas 

Acquiring accurate information for the sake of classifying and monitoring increaser species 

distribution is an important technical task for sustainable rangeland management (Ramoelo et al., 

2011). Remote sensing is a powerful tool that can obtain accurate information for mapping and 

monitoring vegetation species in different ecosystems (Wessels et al., 2008). Multispectral and 

hyperspectral remote sensing have been used for several decades in discriminating and mapping 

vegetation cover in disturbed areas (Escadafal and Huete, 1991; Okin et al., 2001; Pinet et al., 

2006; Ray, 1995; Sun et al., 2007; Tromp and Epema, 1998; Tueller, 1987). However, remote 

sensing for the mapping and monitoring of changes in the spatial distribution of vegetation 

species in degraded environments faces some challenges (Beck et al., 1990; Okin et al., 2001; 

Tueller, 1987). These challenges are associated with the characteristics of degraded vegetation 

species as well as with sensor technology.  

The challenges facing scientists in terms of the application of remote sensing for discriminating 

between vegetation species in degraded environments are as follows: vegetation species‟ 

phenological changes as a result of climate change, particularly precipitation, which leads to the 

spectral variability of the same species (Ray, 1995); the likelihood of nonlinear mixing due to the 

multiple scattering of light rays, which leads to an overestimation of green vegetation species 

(Ray and Murray, 1996) and vegetation species‟ adaptations to harsh environmental factors, 

which make the spectral reflectance of these species different (Ray, 1995). Multispectral 

imageries (i.e. Landsat and SPOT) are affordable, relatively available, and provide accurate data 

for discriminating between increaser and decreaser communities in degraded areas (Vogel and 
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Strohbach, 2009). However, multispectral data have proved ineffective for classifying vegetation 

at species level due to low spectral and spatial resolution (Harvey and Hill, 2001).   

Currently, hyperspectral remote sensing is considered one of the most advanced techniques for 

species level discrimination due to its detailed features on many, very fine and contiguous 

spectral wavelengths (Vaiphasa et al., 2007). Imageries from sensors, such as Hyperion, HyMAP 

and AISA Eagle, are critical for the mapping and classification of small vegetation units (less 

than 2 m) at species levels (Mutanga and Kumar, 2007). However, in spite of the detailed 

spectral information of hyperspectral data, processing tends to be more difficult due to the 

statistical properties associated with high dimensional data, the high cost of images, and the need 

for an excessive number of field samples (Bajcsy and Groves, 2004; Vaiphasa et al., 2007).  

Recent developments in multispectral sensor technology, such as WorldView-2 satellite provides 

better spectral resolution of eight wavelengths with high spatial resolution data of 0.5 m and 2.0 

m on the panchromatic and multispectral wavelengths respectively (Omar, 2010; Sridharan, 

2010). Therefore, since there is now the availability of relatively high spectral resolution sensors 

such as WorldView-2, it might be useful if the specific spectral wavelengths of this sensor for 

discriminating increaser species were investigated through the visible, red-edge, NIR-1, and 

NIR-2 of the electromagnetic spectrum and compare them to hyperspectral as well as traditional 

multispectral image data sets. 

  



10 
 

1.4 Study objectives  

The main aim of this study was to investigate the potential use of remote sensing to discriminate 

between those increaser vegetation species (namely Hyparrhenia hirta, Eragrostis curvula, 

Sporobolus africanus and Aristida diffusa) that indicate different levels of rangeland degradation 

in the Okhombe communal grazing lands of South Africa. 

The specific objectives in this study were as follows: 

1. To evaluate the abundance and distribution of the increaser species and the different 

levels of rangeland degradation in the Okhombe communal lands and compare it with the 

Cathedral Peak conservation area using a veld condition assessment technique;  

2. To assess the utility of in situ spectroscopic data in discriminating between four different 

increaser species; 

3. To investigate whether or not canopy reflectance spectra, resampled to AISA Eagle 

spectral resolution, could be used to discriminate between the four increaser species; and 

4. To investigate the potential use of the new 8-band WorldView-2 imagery in classifying 

the four increaser species. 

1.5 Scope of the study 

This study evaluated the condition of rangeland in the Okhombe communal grazing lands as well 

as in the Cathedral Peak area of KwaZulu-Natal Province by using the factors of species 

composition, basal cover and soil characteristics. The potential application of remote sensing 

techniques for classifying different levels of rangeland degradation based on the relative 

abundances and distribution of increaser species was also examined. Because increaser species 

are characterised by a low grazing value and because their relative abundances increase through 

overgrazing or underutilisation, these two factors can be used as indicators of the poor condition 

of rangeland. The usefulness of hyperspectral data in classifying increaser species was tested 

through the use of a handheld spectrometer under field conditions. Since the current available 

hyperspectral image sensors lack the fine spectral resolution of the field spectroscopic (ASD) 

data, the ASD data were resampled to AISA Eagle resolution. The utility of multispectral 

datasets for classifying increaser species was also assessed using WorldView-2 satellite imagery. 
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1.6 General description of the study area 

The two different sites of Okhombe communal rangeland (dominated by increaser species) and 

the KZN wildlife conservation area of Cathedral Peak (dominated by decreaser species) were 

selected for detailed investigation. The locations of the study sites are shown in Figure 1.3. The 

reason behind the choice of these two study sites was (1) to evaluate the veld condition based on 

the relative abundances and distribution of the species (increaser and decreaser) on degraded and 

conserved sites, and (2) to investigate the potential use of remote sensing to discriminate 

between those increaser species (namely increaser I, increaser II and increaser III) that indicate 

different levels of rangeland degradation in the Okhombe communal rangeland. 

 
       1.6.1 Okhombe 
 
The study was conducted in the Okhombe communal rangelands (latitude 28o 30' S to 30o 30' S 

and longitude 28o 30' E to 29o 30' E), which have an area of 200 km2. Okhombe is a ward that 

comprises six sub-wards, namely Mpameni, Mahlabathini, Ngubhela, Oqolweni, Sgodiphola and 

Enhlannokhombe. The selected area lies within the foothills of the northern Drakensberg (a 

mountain range) in the province of KwaZulu-Natal (KZN). The average altitude for the site is 

1,200 m. The average air temperature is 11.5 to 16o C in summer (October to March), while in 

winter (June and July) the mean monthly temperature reaches only 5o C, with frost and snow 

occurring almost every winter (Temme et al., 2008). The mean annual rainfall of the area is 

about 800 to 1,000 mm, and about 82% of this rainfall falls in the summer months (Dollar and 

Goudy, 1999). Precipitation has resulted in significant leaching of the major soils in the area as 

well as heavy erosion along the slopes of the foothills. There are occasional cycles of drought 

during the summer, severe to very severe frost in winter, short growing seasons, and hailstorms 

(Camp, 1997).  

The vegetation is predominantly grassland, but there are also patches of forest and shrubland 

(Tainton, 1999). Vegetation communities are associated with the following three distinct 

altitudinal zones (O‟Connor and Bredenkamp, 1997): river valleys (1,250 to 1,800 m), the Little 

Berg (1,800 to 2,500 m), and the summit plateau (2,500 to 3,350 m). The corresponding 

vegetation belts of these zones are: the Montane Belt, the Subalpine Belt, and the Alpine Belt. 

The dominant species within these zones are as follows: the Hyparrhenia species, the Eragrostis 
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species, the Digitaria species, the Diheteropogon species, the Panicum species, Monocymbium 

ceresiiforme, Harpochloa falx, Cymbopogon validus, the Sporobolus species, and Miscanthus 

capense (O‟Connor and Bredenkamp, 1997). The vegetation is influenced by many factors, 

which can be divided into natural factors (namely climate, soil properties and altitude) and man-

induced factors (such as population increase, overgrazing and deforestation) (Critchley and 

Netshikovhela, 1998; Everson and Tainton, 1984; Hoffman and Todd, 2000). The absence of 

effective management strategies with regard to the natural resources of communal rangelands has 

had negative effects on the land‟s productivity (Nsuntsha, 2000; Peden, 2005). Therefore, large 

parts of the study area are severely degraded, which has resulted in the loss of grass cover, 

increased runoff, poor water infiltration, and severe soil erosion (Everson et al., 2007). The 

Okhombe LandCare Project was part of the National LandCare Programme that was initiated to 

rehabilitate the degraded areas in the communal rangelands of Okhombe and it used simple 

erosion control techniques (Everson et al., 2007). This programme was followed by the 

implementation of a community-based monitoring project which aimed to determine the effect of 

rehabilitation on reducing soil erosion and increasing vegetation cover in the degraded areas.  
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Figure 1. 3:  Location of study area in the KwaZulu-Natal (KZN) province of South Africa. 
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     1.6.2 Cathedral Peak 
 
The study was also conducted in the KZN wildlife conservation area of Cathedral Peak 

(longitude 29° 00' E to 29° 30' E and latitude 28° 45' S to 29° 15' S), which is situated in the 

northern part of the uKhahlamba-Drakensberg Park. The uKhahlamba-Drakensberg Park has an 

altitude that varies from about 1,860 to 2,070 m above sea level (Everson, 2001). The climate 

consists of wet, humid summers and dry, cold winters. The study area receives between 1,300 

and 1,400 mm of rain annually. Most of the rain (80%) falls during the summer months, from 

October to March (Nel and Sumner, 2005; Schulze, 1975). Roughly half the precipitation (45 to 

50%) results in stream flow (Bosch, 1979; Scott, 1993). The average maximum monthly 

temperature varies from 18° to 26° C, and the average minimum monthly temperature ranges 

from 3° to 14° C (Smith and Scott, 1992). The soil materials are basalt-derived silty clays in the 

low areas, and shales, sandstone and mudstone on the slopes and plateau (Everson, 2001; 

Govender and Everson, 2005; Watson, 1984). Soils are classified as lateritic red and yellow 

earths, grading into heavy black soils (Granger and Schulze, 1977). Characteristically these soils 

are highly leached, acidic and structure-less, having high organic content (6 to 10%) and a mean 

soil depth of 0.8 m (Everson, 2001; Schulze, 1975). The study area is extensively covered by 

grassland and falls into the Montane Belt. The vegetation falls under the Moist Highland 

Sourveld, KZN Bioresource Group 8 (Mucina and Rutherford, 2006).  

1.7 Outline of the thesis 

Apart from the first and last chapters (i.e. the introduction and the synthesis), the thesis consist of 

a set of research papers that address each of the objectives listed in Section 1.4. Most of these 

papers have been submitted to peer-reviewed international journals: four are currently under 

review whilst the fifth is still in revision. The thesis consists of seven chapters in total.  

Chapter One: This chapter serves as an introduction to the study. 

Chapter Two: This chapter covers the problem of rangeland degradation in South Africa and the 

use of remote sensing (multispectral and hyperspectral) in mapping rangeland degradation by 

way of different indicators.  The concept of decreaser and increaser species and how this concept 
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can be used to map rangeland degradation is discussed. The gap and need for using decreaser and 

increaser species as indicators for rangeland degradation is also discussed.  

Chapter Three: This chapter focuses on exploring the relationship between vegetation species 

(increaser and decreaser species) in determining  rangeland condition by using factors of species 

composition, basal cover, and soil characteristics, the latter of which includes phosphorus, 

potassium, calcium, magnesium, pH, zinc, manganese, copper, organic matter and nitrogen.  

Chapter Four: The focus of this chapter is the potential use of remote sensing in discriminating 

among four increaser species by using raw field spectrometry (ASD) data and discriminant 

analysis as classifiers. The study also determines whether or not there is a significant difference 

(P < 0.05) between the mean reflectance at each measured wavelength (from 350 to 2500 nm) 

and the four increaser species (Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and 

Aristida diffusa) indicative of different levels of rangeland degradation. The crucial wavelengths 

that are most sensitive in discriminating these four species are also identified. 

Chapter Five: This chapter investigates the potential use of hyperspectral remote sensing in 

discriminating among increaser species (n = 4) by resampling the ASD data to AISA Eagle 

resolution and using random forest as a classification algorithm. The models developed are 

linked to the knowledge presented in Chapter 4. 

Chapter Six: In this chapter a new WorldView-2 imagery with unique band settings is evaluated 

in relation to the task of classifying increaser species within a complex rangeland environment. 

Specifically, the study examined the ability of 8bands, of different vegetation indices derived 

from WorldView-2 imagery, and of combined bands and vegetation indices to better improve the 

classification accuracy of increaser species using the random forest algorithm. 

Chapter Seven: This chapter highlights the study‟s main results. Conclusions are also derived 

based on the findings of the preceding chapters. In this chapter the contribution of the thesis to 

collective knowledge on the topic is discussed. Finally, the limitations of the study are discussed, 

and avenues for future studies are recommended.  
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Abstract  

Rangeland degradation is a serious hindrance to sustainable development in degraded areas. 

Mapping and monitoring vegetation species is an increasingly important issue across various 

fields of rangeland management. Remote sensing technology is a tool for mapping and 

monitoring vegetation species and it provides timely and relatively accurate information 

concerning degradation in biological rangeland resources. The objective of this review was to 

provide precise and essential information relating to the application of both multispectral and 

hyperspectral sensors as well as to their limitations with regard to mapping and monitoring 

rangeland degradation based on the abundance and distribution of vegetation species and 

algorithms used to process remotely sensed data when classifying these species. The abundance 

and distribution of the different vegetation species can be used to indicate the gradient level of 

rangeland degradation. It can be concluded that up-to-date spatial information and appropriate 

processing techniques are essential requirements for extracting increaser and decreaser spectral 

information that can be used for sustainable rangeland management.  

 

Keywords: Remote sensing; rangeland degradation; indicator; vegetation indices; increaser and 

decreaser species. 
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2.1 Introduction 

Rangeland is an important natural ecosystem that offers a habitat for wildlife, grazing areas for 

domestic stock, and goods for local communities (Kawanabe et al., 1998). Rangeland grass 

degradation has been identified as being one of the most serious global environmental issues that 

needs to be addressed (Hill et al., 1995; Kassahun et al., 2008).Grassland degradation can be 

defined as a reduction in grassland productivity at a particular site in moist or dry sub-humid 

areas as a result of human activities and natural factors (Liu et al., 2004; Ravi et al., 2010). 

Human causes of grassland degradation are: overstocking, the expansion of cropped areas, 

increased fires, and poor land use management and planning. Natural causes include changes in 

climate elements and soil properties (Eswaran et al., 2001; Hoffman and Todd, 2000). Grassland 

degradation can usefully be considered in terms of types of grass communities and the 

production characteristics of different grasses, particularly their grazing value (Tainton, 1999). 

Grassland plant quality and quantity have been successfully used as indicators for mapping, 

monitoring and classifying rangeland degradation in degraded areas (Van den Berg and Zeng, 

2006). This is because some plant species are well adapted to specific growth conditions and 

their quality and quantity characteristics may change dramatically if these conditions change 

(Van den Berg and Zeng, 2006; Van Oudtshoorn, 1992). 

Grasses are classified into two categories (i.e. increasers and decreasers) based on their grazing 

value and the changes in their relative abundance in the presence or absence of grazing (Dobarro 

et al., 2010). Decreaser species are the dominant species in flourishing rangelands, but they 

diminish when rangeland deteriorates through over- or underutilisation (Hardy et al., 1999). 

Increaser species, by contrast, flourish in rangelands that are overgrazed or underutilised, and the 

abundance of these species is therefore an indicator of the poor condition of rangeland (Dobarro 

et al., 2010; Van Oudtshoorn, 1992). The assessment of rangeland degradation based on the 

abundance and distribution of decreaser and increaser species has been successfully evaluated 

and classified (Tainton, 1988; Trollope et al., 2008; Van Oudtshoorn, 1992). 

Mapping the extensively degraded grasslands requires the use of conventional survey methods 

such as local expert knowledge and field observation to provide accurate information on the 

spatial distribution of grass species. These methods provide significantly better results when it 
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comes to mapping species over small geographic areas. However, these conventional field-based 

methods require visual estimation of species percentage as well as intensive fieldwork, which 

includes the identification of species characteristics. Such undertakings are both costly and time-

consuming, because grasslands usually cover large expanses that are, moreover, situated in 

isolated and inaccessible areas (Feng et al., 2009; Tromp and Epema, 1998). On the other hand, 

the remote sensing techniques to map the spatial distribution of grass species over large 

geographic areas of degraded rangeland have attracted scientific attention, resulting in the 

provision of different spatial resolution imageries that are not only feasible and cost-effective but 

that also provide timely and accurate information (Lees and Ritman, 1991; Shoshany, 2000; 

Tromp and Epema, 1998; Ustin et al., 2009).  

       The advancement in remote sensing comes up with high-resolution hyperspectral data that 

provide a significant enhancement of spectral measurement capabilities for investigating the 

most powerful contiguous and narrow wavelengths (less than 10 nm) throughout the ultraviolet, 

visible and infrared portions of the electromagnetic spectrum (Kumar et al., 2001; Thenkabail et 

al., 2004). These narrow spectral wavelengths allow the identification of characteristic spectral 

attributes for the mapping and monitoring of vegetation at species levels in different ecosystems 

(Thenkabail et al., 2004; Zwiggelaar, 1998). In spite of the great capability of remote sensing to 

provide detailed spectral information, the mapping of vegetation species using hyperspectral 

remote sensing data is challenging due to data dimensionality, data processing, and the fact that 

the images are too prohibitively expensive to use (Metternicht et al., 2010; Okin et al., 2001; 

Pinet et al., 2006; Schmidtlein and Sassin, 2004; Underwood et al., 2003). However, 

multispectral data is relatively available, at a low cost, and does not require complex 

preprocessing and processing techniques. Considering these advantages, the use of multispectral 

data should be operationalised and implemented in order to provide accurate and up-to-date 

information on mapping vegetation species over large areas. However, mapping vegetation in 

degraded areas at species level using multispectral data such as Landsat TM and SPOT imagery 

is challenging because of the low spectral resolution of sensors and spectral overlap between the 

vegetation species (Harvey and Hill, 2001).  

      The development in multispectral sensors, such as WorldView containing key spectral bands, 

has brought about unique opportunities for those wishing to classify vegetation at species level 

(Dlamini, 2010; Omar, 2010). Multispectral and hyperspectral data have been used for several 
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decades in mapping vegetation communities in degraded ecosystems (Schmidtlein and Sassin, 

2004; Tromp and Epema, 1998; Vogel and Strohbach, 2009).    

Previous reviews concerning the application of remote sensing techniques in grassland 

degradation have been done.  Lass et al. (2005) investigated the use of hyperspectral remote 

sensing of invasive species detection. Metternicht et al. (2010) reviewed the potential use of 

remote sensing for assessing and mapping different indicators of land degradation. Shoshany 

(2000) reviewed the utility of spectral, temporal and spatial data for identifying Mediterranean 

grassland regions and the limitations of multispectral applicability. Pinet et al. (2006) reviewed 

the possibilities of using imaging spectroscopy for monitoring land degradation and 

desertification. Hill et al. (1995) discussed the potential use of multispectral remote sensing for 

mapping and monitoring land degradation in Mediterranean environments. Based on the results 

of the above-mentioned studies, the human and physical factors causing rangeland degradation 

are thought to be severe overstocking and climate change respectively. The application of 

multispectral and hyperspectral remote sensing techniques provides accurate and timely 

information for mapping and monitoring vegetation cover. The shortcomings of the above-

mentioned studies are that no specific review has focused on the application of multispectral and 

hyperspectral remote sensing techniques for mapping and classifying the increaser and decreaser 

species as indicators of different levels of rangelands condition.  

This study reviews the research results concerning the application of both multispectral and 

hyperspectral remotely sensed data for vegetation species discrimination. The specific objectives 

of this study were: (1) to review discriminating and mapping vegetation species in degraded 

rangelands; (2) to highlight the advancement in remote sensing technologies in terms of spectral 

bands and critical band settings and their capabilities for classifying vegetation species within a 

complex rangeland environment; and (3) to highlight the major challenges still involved in 

remote sensing and suggest what further research is needed for the successful application of 

remote sensing in mapping vegetation species in degraded areas. 
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2.2 Assessing and monitoring rangeland degradation using different 
traditional field-based methods and approaches 

Rangeland condition is measured to evaluate the rangeland productivity and plan management 

interventions (Passmore and Brown, 1991; Paudel and Andersen, 2010; Peden, 2005). Numerous 

efforts have been made to assess and monitor rangeland degradation using various methods and 

approaches, such as expert opinions, herder knowledge, focus group discussions, land users‟ 

opinions, benchmarks, basal cover, Shannon‟s diversity index, observations and measurement of 

soil properties, and estimates of productivity changes (Moyo et al., 2008; Oba and Kaitira, 2006; 

Oluwole and Dube, 2008; Stringer and Reed, 2007). Oba and Kaitira (2006) used the herder 

knowledge approach to evaluate the communal rangelands in Maasai grazing territory in 

northern Tanzania. The method was based on the relative abundance of increaser and decreaser 

species. Their results showed that herder knowledge approach can be used to classify the 

rangeland into the following different levels: non-degraded, stable and degraded. Moreover, the 

herder knowledge method provides a quick way of understanding the current status of the 

rangelands. Unfortunately due to the herders‟ migratory behaviour, the challenge was how to 

engage them in participatory research.  

In the Eastern Cape of South Africa, Oluwole and Dube (2008) assessed the utility of the 

benchmark method, the basal cover technique, and soil analysis to evaluate rangeland condition. 

Their results demonstrated the feasibility of using the benchmark method, the basal cover 

technique, and soil analysis, as these three methods were able to classify the condition of the 

rangeland into non-degraded, moderately degraded, poorly degraded, and extremely degraded.  

Stringer and Reed (2007) used land users‟ opinions to evaluate soils (erosion, fertility and 

productivity) in Botswana and Swaziland. They concluded that combining local and scientific 

knowledge can enhance rangeland degradation assessments at national and regional levels. The 

expert opinion method (e.g. indicators, questionnaires, interviews and focus groups) was 

developed by Jones et al. (2003) to assess the causes, degree, extent and impact of rangeland 

degradation in Europe. The study produced reasonable results for rangeland degradation 

assessment using the expert opinion method. However, because some respondents did not reply, 

or the replies of others were incomplete, the results were difficult to use when comparing 

regions. However, most of the above-mentioned scientists utilised these methods in the 

assessment of commercial rangeland. The usefulness of such methods for assessing communal 
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rangelands is less well established (Reed and Dougill, 2002). Moreover, such methods tend to be 

economically inefficient, time consuming and labour intensive, and are sometimes impossible to 

accomplish due to the fact that rangelands cover a large spatial extent and are difficult to access 

(Feng et al., 2009; Peterson et al., 2002). The remote sensing technique offers quick and 

repetitive data (including detailed information on vegetation status) and is accurate and 

potentially inexpensive, and could thus successfully evaluate rangeland degradation in a large 

region (Tanser and Palmer, 1999; Wessels et al., 2008). Although the previous studies produced 

reasonable results with regard to mapping rangeland degradation based on vegetation 

communities using conventional field-based methods and remote sensing, more attention needs 

to be given to the issue of how to improve the accuracy of mapping increasers and decreasers at 

species level in order to identify different levels of rangeland degradation. 

2.3 Spectral properties of vegetation species in degraded areas  

In degraded environments that are characterized by sparse vegetation species and the spectral 

effects by soil background, a careful consideration should be given to the spectral properties 

(Hill et al., 1995). Sunlight is the main source of energy for several biological activities taking 

place inside the plant cells (Ustin et al., 2009). When light interacts with the vegetation surface, 

it can be reflected, absorbed, and/or transmitted due to different materials on the earth‟s surface. 

An understanding of the spectral behaviour of increaser and decreaser species is essential for 

interpretation of a remotely sensed image. In general, many efforts have been made to better 

understand the relationship between light solar radiation and plant leaves. The spectral response 

of vegetation depends upon the properties of both the incoming radiation (e.g. angle of 

incidence, conditions of radiation and wavelength) and the vegetation (chlorophyll a and b, α-

carotene, b-carotene, xanthophylls, protein, oil, water, starches, lignin, cellulose, sugar and 

nitrogen) (Asner, 1998; El-Nahry and Hammad, 2009). The spectral reflectance of vegetation 

species in degraded areas is normally subdivided into three domain regions namely; the visible 

(400 - 700 nm), the near-infrared (NIR; 700 - 1300 nm), and the mid-infrared (MIR; 1300 - 2500 

nm) (Figure 2.1) (El-Nahry and Hammad, 2009; Ustin et al., 2009). Vegetation types have low 

reflectance and transmittance in the visible region due to strong absorption by chlorophyll a and 

b, b-carotene,  α-carotene, and xanthophyll (El-Nahry and Hammad, 2009; Ustin et al., 2009). 

They have a high reflectance and transmittance in the NIR region because of their very low 
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absorption of xanthophylls, chlorophyll a and b, b- carotene, and α-carotene. Plant leaves absorb 

only 4% of the radiation and the remaining 96% is reflected and transmitted (Woolley, 1971). In 

the NIR, a plant leaf will typically reflect between 40 and 50%, while the rest is transmitted, with 

only about 5% being absorbed (Govender et al., 2009). The limited absorption in this region is 

aided by dry leaves, primarily cellulose, lignin, and other structural carbohydrates (Asner, 2000; 

Cochrane, 2000). Ustin et al. (2009) and Cochrane (2000) reported that the internal leaf structure 

is the dominant factor controlling the spectral response of plants in the NIR region. Also, 

reflectance in this region is affected by numerous scatterings, including refraction at air-water 

interfaces and the fraction of air spaces (Ustin et al., 2009). Spectral reflectance is characterised 

by being much lower in the MIR than in the NIR due to the strong water absorption by the leaves 

and the minor absorption features of their biochemical content (Hestir et al., 2008). In green 

leaves reflectance and transmittance in the short wave infrared (SWIR) are influenced by water 

absorption (Ustin et al., 2009).   

As there has been no specific research on how increaser and decreaser grass species interact with 

light, detailed investigation into these aspects is needed for a better understanding of the spectral 

response of vegetation species in degraded areas. The results of such studies could help 

researchers to develop accurate models describing, for example, the discrimination of increaser 

and decreaser species, estimations of grazing value in the rangelands based on increaser and 

decreaser species, and increaser and decreaser species‟ biophysical characteristics. Scientists 

working in the environmental conservation field could use these models to develop methods for 

rangeland management. 
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Figure 2. 1: Mean spectral canopy curves for increaser species (Aristida diffusa) and decreaser 
species ( Monocymbium c eresiiforme) in D rakensberg montane grasslands with the dominant 
factors controlling reflectance being displayed. 
 

2.4 Application of multispectral remote sensing in mapping 
vegetation species in degraded areas  

Mapping and mon itoring vegetation species in disturbed a reas require t hat there be  e xtensive 

coverage and that quantitative, timely, accurate and regularly collected information be gathered. 

All these factors have made the use of remote sensing a  powerful tool (Ustin et al., 2009). Since 

the early 1900s, when the first aerial photographs were take n, a erial photography with low 

spatial resolution has been considered the first remote sensing technique, being used as a source 

of infor mation for mapping ve getation cover (Lillesand, 1999 ; Mumby, 1999 ). It can b e 

concluded that aerial photography has considerable advantages over satellite-based data because 

of the former‟s availability, low cost, and because the span of the record covers a longer time 

period (Wentz et al., 2006). However, aerial photography has not been widely used for mapping 

and moni toring vegetation cover be cause of  the high c osts o f colour-infrared film and 

processing, a s well a s the coarse spatia l and low spec tral resolutions, which a ffect the actual 

mapping of  vegetation (Kakembo, 2001; Laliberte et a l., 2004). Recently, mul tispectral remote 

sensing with different properties (spatial and spectral resolution) and a  va riety of  s ensors 

(Landsat TM, Landsat ETM+ a nd S POT) ha ve been used to discriminate ve getation cover in 
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degraded areas (Liu et al., 2004; Sun et al., 2007; Wu, 2008). Wu et al. (2008) evaluated the 

potential of multispectral remote sensing by using Landsat images (MSS and TM) to classify 

vegetation cover in the degraded land of MuUs sandy land in China. The maximum likelihood 

classifier was used. They concluded that Landsat has great potential when it comes to classifying 

vegetation cover as there was an overall accuracy of 98.4% (Kappa 0.947) for Landsat MSS, and 

99.8% (Kappa 0.995) for Landsat TM. 

Savanna rangeland degradation in Namibia was classified by Vogel and Strohbach (2009), who 

used Landsat TM and ETM+ data. The decision tree classifier was also used. Their results show 

that savanna degradation can be classified into the following six classes: vegetation 

densification, vegetation decrease, complete vegetation loss, long-term vegetation patterns, the 

recovery of vegetation on formerly bare soils, and no change with an overall accuracy of 73.4% 

with respect to the class pairs‟ accuracies‟ which ranged from 80% to 100% for producers‟ and 

users‟ accuracies. 

The relative effectiveness of Landsat ™ was tested in terms of mapping the severity of grassland 

degradation near Lake Qinghai in west China, which was divided into the following four classes: 

severe, moderate, slight, and intact, with an overall accuracy of 91.7%  (Liu et al., 2004). 

Feng et al. (2009) attempted to discriminate grassland degradation in Guinan County, China, by 

using data from Landsat MSS, Landsat 5 and Landsat 7 ETM. Visual interpretation and 

digitisation were performed. The results showed that grassland degradation can be classified into 

three classes: high density, medium density, and low density, with an overall accuracy of 

91.07%.  

The results of the above-mentioned studies produced reasonable results for discriminating 

between vegetation communities on a regional scale when using multispectral data. However, 

Landsat and SPOT data have proven insufficient for classifying vegetation at species level 

because of the low spectral resolution of sensors and the spectral overlap between the vegetation 

species. Also, most multispectral remote sensing data do not have the red-edge region that is 

insensitive to atmospheric interference and soil background (Vogel and Strohbach, 2009; Wu, 

2008). Therefore, the developments in multispectral data (WorldView) and hyperspectral data 

can be useful for discriminating rangeland degradation based on the spatial distribution of 

vegetation species (at species level) because of the detailed spectral information that they can 
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provide. More work is needed to improve the classification accuracy of mapping the spatial 

distribution of increaser and decreaser species.  

2.5 Limitations when applying hyperspectral remote sensing to 
vegetation species classification in degraded areas 

In the field of remote sensing, hyperspectral remote sensing – also known as „imaging 

spectrometry‟, „imaging spectroscopy‟, „ultraspectral imaging‟, „hyperspectral spectroscopy‟ and 

„narrow-band imaging‟ – is a relatively new technology that is currently being used in vegetation 

studies (Clark, 1999; Mutanga, 2004). Hyperspectral remote sensing has hundreds of narrow, 

continuous spectral bands between 400 nm and 2500 nm throughout the visible (0.4 to 0.7 nm), 

near-infrared (0.7 to 1 nm) and shortwave-infrared (1 to 2.5 nm) portions of the electromagnetic 

spectrum (Govender et al., 2009). These narrow bands of hyperspectral remote sensing allow for 

in-depth mapping and discrimination of vegetation species, something that would not be possible 

with other multispectral sensors (Okin et al., 2001; Pinet et al., 2006; Wang et al., 2010a). 

Spectral absorptions and reflectance changes in the 400 - 2500 nm range of the reflected 

electromagnetic radiation provide analytical features that can be used to identify vegetation 

species (Pinet et al., 2006). 

Okin et al. (2001) assessed the utility of AVIRIS satellite imagery for accurately discriminating 

among vegetation types in the Mojave Desert, USA. Multiple Endmember Spectral Mixture 

Analysis (MESMA) and Spectral Mixture Analysis (SMA) were performed to estimate the 

proportion of each ground pixel‟s area that fits with different cover types. They concluded that 

AVIRIS show low potential for classifying vegetation types with an overall accuracy of only 

30% due to low vegetation cover. 

Hestir et al. (2008) tested the ability of HyMap data in the visible near-infrared region (VNIR) 

and in SWIR (0.45 - 2.5 μm) for discriminating and mapping two invasive species in the 

California Delta, USA, when using a logistic regression. Their results showed that the HyMap 

data distinguished perennial pepperweed from pseudoabsence with accuracies of 75.8% and 

63.0% respectively.  
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Discriminating and mapping vegetation degradation at Fowlers Gap Arid Zone Research Station 

in western New South Wales, Australia, was also done using random forest by Lewis (2000). In 

this research, perennial vegetation, chenopod shrubs and trees were selected for classification 

using the hyperspectral imaging (CASI). An area of less than 25% was discriminated and 

mapped. He concluded that high-spectral resolution imagery has potential for the discrimination 

of vegetation cover in arid regions. However, some authors have successfully used hyperspectral 

remote sensing for mapping grassland degradation.  Wang et al. (2010) assessed the utility of 

hyperspectral remote sensing for mapping dominant vegetation species (Leymus chinensis, Stipa 

krylovii and Artemisia frigid) in Hulunbeier, China. They concluded that hyperspectral remote 

sensing has considerable potential for the discrimination and mapping of these species with an 

overall accuracy of 95%. Spectral classification of grass quality in African rangeland was also 

done by Mutanga (2005) using the high-resolution GER spectra, which were resampled to the 

HYMAP. In this research, Fisher‟s linear discriminant function was used to discriminate between 

groups of Cenchrus ciliaris grass, which were all grown under different nitrogen treatments. The 

results showed that it is possible to classify samples to their respective groups with an overall 

accuracy of 77.1%. 

In general there are limitations to using hyperspectral remote sensing for vegetation 

discrimination at species level. These limitations are due to the following: (1) the effects of a 

large soil background as a consequence of relatively sparse vegetation (Escadafal and Huete, 

1991); (2) plant adaptations to the harsh environment that make the spectral reflectance of the 

same plants different (Ray, 1995); (3) phenological changes as a result of changes in climatic 

conditions (in particular, rainfall leads to spectral variability of the same species) (Ray, 1995); 

(4) the possibility of nonlinear mixing due to multiple scattering of light rays, which leads to an 

overestimation of green vegetation cover (Ray and Murray, 1996); (5) variations in chlorophyll 

and carotenoid pigments, leaf structure and succulence (Lewis, 2000); and (6) changes in land 

use and the relative impact of vascular tissue (Asner et al., 2000). Moreover, there are some 

limitations related to the hyperspectral data which are extremely large and of high dimensionality 

(Thenkabail et al., 2004). This problem is termed “curse dimensionality” which leads to the 

“peaking phenomenon” or “Hughes phenomenon” (Hsu, 2007). Hughes phenomenon means that 

the field samples are insufficient for the classification requirement which makes the estimation 

of statistical parameters for the classifier performance inaccurate and unreliable  (Hsu, 2007; 
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Jackson and Landgrebe, 2001). Therefore, the analysis of hyperspectral data is complex and 

needs to be simplified by way of selecting the optimum number of bands required for mapping 

and classifying vegetation species.  

Different statistical band reduction techniques for classification of hyperspectral data have been 

developed. These include discriminant analysis, classification trees, principal component 

analysis, support vector machines, artificial neural network, partial least square regressions and 

random forest (Adam and Mutanga, 2009; Bajcsy and Groves, 2004; Filippi and Jensen, 2006; 

Huang et al., 2002; Lawrence et al., 2006; Mutanga, 2005; Thenkabail et al., 2004).  

All the above-mentioned studies have shown the potential of hyperspectral data (as opposed to 

multispectral data) to provide significant improvements in spectral information for 

discriminating vegetation at species level. More studies for mapping and classifying vegetation 

species particularly increaser species are needed to build a spectral library for rangeland in 

degraded areas. 

 2.6 Improving the classification accuracy of vegetation species using 
the advanced multispectral sensors 

As mentioned above, there is a limitation to traditional multispectral sensors (Landsat and SPOT) 

when it comes to increaser and decreaser classification at species level since they can only 

provide limited spectral information. Considerable efforts have been made to improve the 

multispectral data characteristics to work within the species classification field. These efforts 

include advances in sensor technology, the development of spectral vegetation indices, the 

improving of classification techniques and the use of multi-sensor imageries (Cavayas, 2010; Liu 

et al., 2004; Sun et al., 2007). The WorldView-2 satellite sensor is a new generation sensor that 

significantly enhances spectral measurements‟ capabilities over those of traditional multispectral 

sensors (Dlamini, 2010; Kumar and Roy, 2010; Omar, 2010). The 8-bands multispectral 

WorldView-2 is a new satellite imaging that was launched in October 2009 by DigitalGlobe. It 

has a high spatial resolution of 2 m (multispectral) and 0.5 (panchromatic) at nadir. The 8 

multispectral bands include four conventional wavelengths located at visible region: blue (450 

nm - 510 nm), green (510 nm - 580 nm), red (630 nm - 690 nm), and near-infrared region (770 

nm - 895 nm), in addition to four new wavelengths, which are located at the following places: 
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coastal (400 nm - 450 nm), yellow (585 nm - 625 nm), red-edge (705 nm - 745 nm) and near-

infrared 2 region (770 nm - 895 nm). 

In Malaysia, Omar (2010) was able to identify ten of the country‟s tropical vegetation species 

using WorldView-2 imagery. Classification techniques such as maximum likelihood and linear 

discriminant analysis were performed. The findings from this research showed that the most 

potentially useful information can be used to discriminate among tropical vegetation species with 

an overall accuracy of 90%. Better discrimination was achieved in the 903 nm (NIR 2), 831 nm 

(NIR 1), and 724 nm (red-edge) bands. 

Cavayas et al. (2010) evaluated the effectiveness of WorldView-2 data in classifying vegetation 

cover in the city of Laval in Quebec, Canada. The authors showed the potential of WorldView-2 

data for classifying vegetation cover into Crop 1, Crop 2, Crop 3, Crop 4, Crop 5, Crop 6, 

grass/herbaceous, grass/terrain golf, woodlands, woodlands (urban trees), and non-vegetation 

area, using training data and supervised classification (maximum likelihood). They concluded 

that spectral bands in the blue, green, red and NIR 1 regions have strong potential for vegetation 

cover separation.  

In central Swaziland, the new spectral bands of Worldview-2 satellite were tested by Dlamini 

(2010), who was able to classify two invasive alien plants, namely Chromolaena odorata and 

Lantana camara. These results demonstrated that invasive alien plants can be classified using 

traditional bands (blue, green, red and NIR 1) with a classification accuracy of 95%; the greatest 

classification accuracies of 99% were obtained using new bands (Coastal blue, yellow, red-edge 

and NIR 2). Kumar and Roy (2010) used WorldView-2 data to classify the following six 

agricultural crops in Muzaffarnagar, India: early wheat, ratoon, berseen (fodder), late wheat, 

sugarcane, and cauliflower. The results showed that the WorldView-2 data was capable of 

classifying six agricultural crops with accuracies that varied from 93% to 98%. The researchers 

also found the following important bands for identifying and mapping crops: existing bands 5 

(red) and 7 (NIR 1), and new bands 4 (yellow), 6 (red-edge) and 8 (NIR 2). 

Research into the classification of vegetation species by way of WorldView-2 data has achieved 

promising results. However, more research is still needed in terms of the classification of 
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increaser species in disturbed areas. Increaser species classification has inconsistencies due to 

different species‟ responses under different ecosystems, and understanding their 

ecophysiological mechanisms therefore remains unclear. Investigators need to use the capability 

of WorldView-2 satellite sensors to look at the biochemical and biophysical parameters that can 

be used to discriminate and monitor increaser species. 

2.7 Improvement of vegetation species’ classification using spectral 
vegetation indices 

Early remote sensing measurements of vegetation used data collected by different satellite 

sensors that measured wavelengths of absorbed light (red portion) and reflected light (near-

infrared portion) by way of certain pigments in the plant leaves in degraded areas. These portions 

of the electromagnetic spectrum (red and near-infrared) are the most important in vegetation 

indices calculation (Ibrahim, 2008). Spectral vegetation indices (VIs) derived from remotely 

sensed data have become one of the most important information sources for mapping and 

monitoring vegetation species in degraded areas (Sun et al., 2007). VIs are useful in the 

following: (1) reducing variations caused by atmospheric conditions, irradiance, sun view angles, 

canopy geometry, and shading; (2) minimising the effect of soil background on the canopy 

reflectance (Elvidge and Chen, 1995); and (3) enhancing the variability of spectral reflectance of 

vegetation (Liu et al., 2004). VIs are calculated based either on multispectral data or on 

hyperspectral data. The most widely used VIs are the normalised difference vegetation index 

(NDVI) (Rouse, 1974), the simple ratio (SR) (Gitelson and Merzlyak, 1993), and the 

transformed vegetation index (TVI) (Deering et al., 1975), all of which respond to the variation 

in the red and near-infrared portions. Other VIs were developed in order to minimise the effects 

of soil background, atmospheric conditions, canopy geometry, and sun view angles. These VIs 

include the modified chlorophyll absorption in reflectance index (MCARI) (Daughtry et al., 

2000), the transformed chlorophyll absorption in reflectance index (TCARI) (Haboudane et al., 

2002), the visible atmospherically resistant index (VARI) (Gitelson et al., 2002), the visible 

green index (VGI) (Gitelson et al., 2002), the plant senescence reflectance index (PSRI) 

(Merzlyak et al., 1999), the structure-insensitive pigment index (SIPI) (Penuelas et al., 1995), the 

modified normalised difference (MND) (Sims and Gamon, 2002), and the soil-adjusted 

vegetation index (SAVI) (Huete, 1988).  
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Mahboob et al. (2011) assessed the effectiveness of NDVI to classify between coniferous and 

broadleaved species in Ayubia National Park, Pakistan, using SPOT 5 and ALI imageries. 

Supervised classification methods were performed. The authors recorded an overall accuracy of 

91% and 88% for SPOT 5 and ALI imageries respectively.  

Hasmadi et al. (2010) tested seven vegetation indices for mapping five classes of mangrove 

species – namely Avicennia, Avicennia-Sanneratia, Acanthus-Sanneratia, Mixed Sanneratia and 

Mixed Acrostichum – in Kelantan, Malaysia, using Landsat TM data. The results show that SAVI 

performed the best, followed by MSAVI, NDVI, PVI, IPVI, RVI and DVI with accuracies of 

79.17%, 78.89%, 74.44%, 74.44%, 72.22%, 69.17% and 69.17% respectively. 

Although the usefulness of using different vegetation indices in improving the classification 

accuracy has been proved, there are still challenges facing the classification of vegetation species 

in degraded areas where the reflectance is strongly affected by the background of soil as a result 

of relatively sparse vegetation and atmospheric conditions. More work is needed to develop 

different spectral indices that could help reduce the effects of soil background and atmospheric 

circumstances.  

2.8 Overall challenges and opportunities in applying remote sensing 
in degraded environments 

Rangeland degradation in arid, semi-arid and sub-humid areas is one of the problems that lower 

the land‟s productivity in terms of it being able to provide local communities with livelihoods 

through the grazing of domestic stock and planting of crops. Therefore, monitoring the spatial 

extent of rangeland degradation offers a means of understanding the nature and causes of this 

phenomenon. Different indicators have been used to map rangeland degradation by using soil 

properties and vegetation. Vegetation is an important component of ecosystems and it also serves 

as an excellent indicator of early signs of any physical or chemical degradation of the land.   

The mapping and monitoring of vegetation species using traditional field-based methods, which 

allow only a small area to be covered, is costly and time-consuming; it is also sometimes 

impossible to undertake field data collection due to the poor accessibility of the area being 

surveyed (Rocchini et al., 2010). On other hand, remote sensing techniques offer a practical, 
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near-real-time, rapid, relatively inexpensive and accurate data for mapping vegetation species 

over large areas (Ustin et al., 2009). Although considerable progress has been made with regard 

to mapping and monitoring rangeland degradation based on vegetation species using remote 

sensing data such as sensor development and data processing, there are still challenges to be met. 

There are limitations in using multispectral data (i.e. Landsat and SPOT) to map and monitor 

rangeland vegetation at species level, especially in degraded environments (where vegetation is 

sparse and there is spectral influence by soil background), due to the low spectral resolution of 

sensors and spectral overlap between the vegetation species. In addition to this, the vegetation 

species in a degraded environment are different from those elsewhere due to their spatial and 

temporal characteristics. Spatial variables include species diversity, structural attributes, and 

biomass, and are influenced by environmental factors such as soil properties, climate change, 

geology, topography, and the past biogeographic distributions of the species. Temporal variables 

relate to seasonal phenology and growth stage, and are influenced primarily by climate (drought) 

and hydrology (flood). Therefore, spectral discrimination between vegetation types in degraded 

environments is a challenging task because commonly different vegetation types show the same 

spectral reflectance signature.  

In contrast to data from broadband satellite images, narrow bands of hyperspectral remote 

sensing (<10 nm) and contiguous spectral bands between 400 nm and 2500 nm occur throughout 

the ultraviolet, visible and infrared portions of the spectrum (Govender et al., 2009). These 

contiguous and many narrow spectral bands allow for in-depth mapping and monitoring of 

rangeland vegetation at species levels (Asner et al., 2000; Lewis, 2000). However, due to the 

excessive need for sufficient field samples, availability, and the high cost of images in Africa, 

only a few studies have investigated the potential of using hyperspectral data (Rocchini et al., 

2010; Thenkabail et al., 2004). Yet in spite of these shortcomings, there is no doubt that the 

improvements in sensor instruments and analytical methods over the past ten years, combined 

with an increased knowledge of vegetation biophysical and biochemical properties, have 

provided important advances in terms of mapping the spatial distribution of rangeland vegetation 

in degraded areas at species level. More research is needed to enhance our ability to discriminate 

between increaser species for the purpose of identifying rangeland degradation using the 

development of new multispectral sensors such as WorldView-2 data. WorldView-2 data, with 
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its capability of new wavelengths (including coastal, yellow, red-edge and NIR 2) to resolve 

lacking spectral features in the traditional sensors (Landsat TM, Landsat ETM+ and SPOT), 

offers  great possibilities with regard to increaser species classification. 
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In chapter (2) the problem of rangeland degradation in South Africa and the application 

of traditional methods and remote sensing (multispectral and hyperspectral) in 

evaluating and mapping rangeland degradation using different indicators were reviewed.  

The results revealed a dearth in the availability of techniques for quantifying indicators 

of rangeland degradation. The potential use of decreaser and increaser species as 

indicators for rangeland degradation were highlighted. 
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CHAPTER THREE 

 

 

Evaluating rangeland degradation using vegetation species and soil 

properties as indicators across a gradient of management regimes 

 

 

 

 

This chapter is based on: 

 

Manssour, K., Everson, T., and Mutanga, O., (In review). Evaluating rangeland degradation 

using vegetation species and soil properties as indicators across a gradient of management 

regimes. African Journal of Range and Forage Science. 
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Abstract 

An understanding of the response of indicators of rangeland degradation to rehabilitation is 

essential for the successful implementation of Payment for Environmental Services. We 

evaluated the following four potential indicators of rangeland degradation: veld condition, basal 

cover, species diversity and soil fertility. The indicators were measured in a degraded and 

rehabilitated communal rangeland at Okhombe in northern KwaZulu-Natal, South Africa, and 

were compared to a conserved area at Cathedral Peak, KwaZulu-Natal. Two transects were 

established at each site for basal cover and species composition. The species were classified into 

the following ecological categories based on their responses to defoliation: decreaser, increaser I, 

increaser II and increaser III. Soil samples were collected and their elements were analysed for 

each site. The results revealed that the rangeland condition was higher (86.6%) in the conserved 

site when compared with two rehabilitated (46.7% and 42.4%) and two degraded (35.2% and 

36.4%) sites. Species diversity ranged from moderate (2.48 and 2.34) in degraded sites to high 

(3.16) in the conserved site. The rehabilitated sites had a higher veld condition when compared 

with the degraded areas.There were highly significant differences in P, K, pH, Mn, Org. C and N 

compared to Mg, Zn and Cu. Based on these results, we concluded that the LandCare 

Programmes, which try to promote social, economic and environmental development in 

rehabilitated areas, are combating the problems of rangeland degradation. The results also 

indicated the severity of rangeland degradation in communal areas as compared to conserved 

areas. 

  

 
 
 
Keywords: decreaser and increaser; species diversity; soil fertility; veld condition. 
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3.1 Introduction 

 
Land degradation remains a topical issue because of its adverse impact on rangelands. It has been 

defined differently by different agencies and researchers (Eswaran et al., 2001; FAO et al., 1994; 

Stringer and Reed, 2007; UNCCD, 1995; Young, 1994), but all the definitions describe a 

reduced biological productivity of the land. These definitions cover the topics of vegetation 

species composition, soil properties, and the biological productivity of land in arid, semi-arid and 

sub-humid areas. Rangeland degradation has been identified as being one of the most serious 

global environmental issues of the present time (Hoffman and Todd, 2000; Wessels et al., 2007). 

A total of 4.8% (i.e. 5.8 million ha) of South African land has been identified as being degraded 

due to its low vegetation cover when compared with surrounding areas (Thompson, 1996). The 

greatest areas of extensively degraded land coincide with the moderately to severely degraded 

communal rangelands where there is a considerable population of South African livestock 

(Hoffman and Todd, 2000; Reid and Vogel, 2006).   

Several indicators have been suggested for assessing rangeland degradation based on the 

effects of livestock grazing on the spatial distribution of soil and vegetation quality (Conant and 

Paustian, 2002; Greenwood and McKenzie, 2001; Reeder and Schuman, 2002; Zhao et al., 

2007). Intensive livestock grazing has been reported as increasing the following: soil compaction 

(da Silva et al., 2003; Greenwood et al., 1997), the erosion of topsoil (Snyman, 1998), shrub and 

bush encroachment (Roques et al., 2001), and the growth of unpalatable grass species (Hoffman 

and Todd, 2000; Tainton et al., 1980). Intensive livestock grazing has been reported as 

decreasing the following: soil organic carbon and nitrogen (Biondini et al., 1998; Manley et al., 

1995; Shariff et al., 1994), total sulphur concentration (Steffens et al., 2008), soil infiltration 

rates (Proffitt et al., 1993), soil water content (Zhao et al., 2007), basal cover (Hardy and 

Tainton, 2007), the community of soil organisms (which are responsible for nutrient recycling 

and organic matter decomposition) (Bardgett et al., 2001), and growth of palatable grass species 

(Kraaij and Milton, 2006; Todd and Hoffman, 1999). 

To date, the mapping of rangeland degradation in South Africa based on vegetation 

species has mainly focused on commercial rangelands (Palmer and van Rooyen, 1998; 

Shackleton et al., 2005), and communal rangelands have thus not yet received the same level of 
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attention (Hoffman and Todd, 2000; Wessels et al., 2004). Continued land deterioration 

represents a major threat to the socio-economic well-being and biodiversity of communal 

rangelands (Hoffman and Todd, 2000). There is therefore a need for planning strategies that use 

consistent, repeatable and spatially explicit measures to map and monitor land degradation at 

different scales (Prince et al., 2009; Ravi et al., 2010). These planning strategies for sustainable 

land management require techniques that can effectively reveal the spatial extent, magnitude and 

temporal behaviour of the lands (Prince et al., 2009; Ravi et al., 2010; Van Lynden and Mantel, 

2001).  

Vegetation species have been classified into two categories (i.e. increasers and 

decreasers) based on their grazing value and the changes in their relative abundances in the 

presence or absence of grazing (Dobarro et al., 2010). Decreaser and increaser species have been 

successfully used as indicators for assessing and classifying of rangeland degradation (Tainton, 

1988; Trollope et al., 2008; Van Oudtshoorn, 1992). This is because the species are well adapted 

to specific growth conditions and their numbers will reduce or increase dramatically if these 

conditions change (Hardy and Hurt, 1989; Trollope et al., 2008; Van Oudtshoorn, 1992). 

Decreaser species are species that predominate in veld of good condition but greatly decline 

when the veld deteriorates through over- or under-utilisation (Hardy et al., 1999). Increaser 

species are species that increase their relative abundances through over-grazing or under-

utilisation, and these species therefore indicate that a rangeland is in poor condition (Dobarro et 

al., 2010; Van Oudtshoorn, 1992). In South Africa, increaser species have been classified into 

the following four types: increaser I, increaser IIa, increaser IIb and increaser III (Oluwole and 

Dube, 2008; Trollope, 1990). Increaser I includes species that increase in abundance with under-

utilisation, while increaser IIa includes species that increase in abundance when the veld is 

overgrazed. Increaser IIb species are those that increase in abundance when the veld is 

excessively overgrazed, while increaser III are species that increase their relative abundances in 

rangeland that is selectively grazed (Hardy et al., 1999; Oluwole and Dube, 2008; Trollope, 

1990; Van Oudtshoorn, 1992).  

Over the past two decades, different agronomic and ecological techniques have been 

developed for assessing the condition of rangeland in South Africa (Barnes et al., 2007; Bosch 

and Gauch, 1991; Foran et al., 1978; Mentis, 1981; Tainton et al., 1980; Trollope et al., 1990; 

Van Rooyen et al., 1991; Vorster, 1982; Willis and Trollope, 1987). However, the monitoring of 
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the trend, reliability and validity of these different techniques still needs serious and considerable 

attention (Friedel, 1991; Hardy and Hurt, 1989; Jordaan et al., 1997; Mentis et al., 1980; Tainton, 

1988; Trollope et al., 1990). Nevertheless, the benchmark technique, whereby the species 

composition of a site is compared to a benchmark site (rangeland in excellent condition), offers 

an economical and effective solution that produces timely and accurate information for assessing 

South Africa‟s rangelands (Foran et al., 1978; Tainton et al., 1980). This technique can also be 

applied to different ecosystems (Hardy et al., 1999).  

There is increasing interest in predicting the key mechanisms governing the dynamics of 

species. The desire for predictions is being driven by the pressing need to improve vegetation 

composition in the rangelands, which requires a good understanding of the ecological 

mechanisms that cause change (Mapiye et al., 2008; Snyman, 1998). Furthermore, knowledge of 

the major processes operating on natural resources and of their subsequent effects on the rate and 

direction of the changes is vital if one is to determine whether or not management practices such 

as rangeland burning, mowing, plant establishment and veld fertilisation are in fact successful 

tools (Mapiye et al., 2008). The objective of this study was, therefore, to evaluate the condition 

of the rangelands in both the Okhombe communal rangelands and the Cathedral Peak area by 

using factors of species composition, basal cover and soil characteristics, the latter of which 

includes phosphorus, potassium, calcium, magnesium, pH, zinc, manganese, copper, organic 

matter and nitrogen. These two study areas constitute a gradient of rangeland degradation as 

subjected to different management regimes. A secondary objective was to evaluate the success of 

the Landcare project in combating land degradation in the Okhombe communal area. The 

landcare project was introduced in some parts of Okhombe communal area in 1998. The 

objective of this project was to promote ecologically sustainable approaches to land management 

in communal areas (Mulder and Brent, 2006).   

3.2 Material and Methods 

3.2.1 Data collection 

         3.2.1.1 Veld condition assessment 

 

During November and December of 2010, the benchmark method developed by Foran et al. 

(1978) and Tainton et al. (1980) was used to assess the rangeland condition of five study sites, 
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four of which were in the sub-wards of the Okhombe communal rangelands whilst the fifth site 

was within the Cathedral Peak conservation area. These five sites included degraded areas 

(Mpameni and Ngubhela), rehabilitated areas (Mpameni and Ngubhela), and one conserved area 

(Cathedral Peak). The benchmark method involves measuring the composition of the plant 

species and then comparing that measurement to a reference benchmark site which is 

characterised by grassland of excellent condition (Tainton et al., 1980). The benchmark for the 

present study area was the Moist Highland Sourveld Group 8 (Foran et al., 1978; Tainton et al., 

1980). The motivation for using this procedure was to evaluate the rangeland condition based on 

species count (Oluwole and Dube, 2008). The procedure also shows if the rangeland has been 

optimally grazed, under-grazed or overgrazed, and it furthermore reveals the degree of 

degradation (Hardy and Hurt, 1989). The vegetation assessment was conducted on sampling 

areas of conserved, rehabilitated and degraded land using the point sampling method described 

by both Tainton et al. (1980) and Trollope et al. (1990). This method was used to determine the 

composition of grass species to provide a precise measure of relative grass abundances in each 

site. Two transect lines, each 200 m long, were established at each site. The nearest living plant 

to the point of a metal spike was identified and recorded for 200 points. This sample size was 

shown to be sufficient to evaluate the veld (Hardy and Tainton, 2007). At each transect, 

elevation, slope and GPS coordinates were recorded. The observed grass species were classified 

into their species categories (i.e. Decreaser, Increaser I, Increaser II and Increaser III). The 

condition of a sample of veld was calculated by comparing the species composition of the 

particular site with that of the benchmark (Camp, 1997). 

          3.2.1.2 Basal cover 

 

Basal cover for each sample site was determined using paired observations of the mean distance 

and mean basal diameter of the tufts (Hardy and Tainton, 2007; Oluwole and Dube, 2008). All 

the techniques that have been used to monitor grassland quality and quantity in South Africa 

require an estimate of basal cover (Hardy and Tainton, 2007). This is because grass basal cover 

is well adapted to specific growth conditions and will increase or decrease dramatically if these 

conditions change (O'Connor et al., 2001; Snyman and Fouché, 2007). Basal cover data were 

collected by using a measuring tape and a metal spike. The distance from the nearest living plant 

to the point of a metal spike was then measured (D), and the basal diameter of the tuft (d) was 
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identified, measured and recorded for 100 points (Hardy and Tainton, 2007). Basal cover was 

calculated using the following equation, as developed by Hardy and Tainton (2007): 

                                                              

Where BC is basal cover, D is the mean distance (cm) from a point to the nearest tuft, and d is the mean basal 

diameter (cm) of the tuft. 

         3.2.1.3 Species diversity index 

 

Species diversity is the number of different species in a particular place (Beisel and Moreteau, 

1997; Borda-de-Água et al., 2002; Magurran, 1988; Shackleton, 2000). It is used as an indicator 

of rangeland degradation (Metzger et al., 2005; Rutherford and Powrie, 2010). This is because 

both plant quantity and quality decline with heavy grazing (Metzger et al., 2005; Rutherford and 

Powrie, 2010). Shannon‟s diversity index, which was developed by Shannon & Weaver (1963), 

has been widely used within the ecological field. It is a nonparametric statistical technique for 

establishing species diversity, which is the proportion of species relative to (qi) the total number 

of species (Q) (Chao and Shen, 2003; Lande, 1996). The use of Shannon‟s diversity index was 

preferred in this study because it is suited to the comparison of different ecosystems. In this 

study, Shannon‟s diversity index was applied to degraded, rehabilitated and conserved sites at 

Okhombe and Cathedral Peak during November and December of 2010. The nearest plant to 200 

random points along a transect line was identified and recorded. Species diversity was calculated 

by considering the number of species per ecological category (decreaser species, increaser I, 

increaser IIa, increaser IIb, increaser IIc, and increaser III). The equation for computing species 

diversity is as follows (Shannon and Weaver, 1963): 

 

Where H' is the Shannon-Weaver diversity index, qi is the fraction of individuals belonging to the i species, Q is the 

total number of the individual species in the sample, and S is species richness. 

BC =  19.8+0.39( D )-11.87(log e   D )+0.64( d )+2.93(log e   d )          (1) 

(2) 
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Grassland species evenness was measured by Pielou‟s equation (Pielou, 1966), where evenness 

(E) is represented as follows: 

 E =  H/ ln S (3) 

Where H' is the Shannon-Weaver diversity index and S is the number of species within the community. 

 

         3.2.1.4 Soil assessment 

 
Soil samples were collected from 56 sites (18 non-degraded, 19 rehabilitated and 19 degraded). 

Soil samples were collected under dry atmospheric conditions, and care was taken to ensure that 

these sites were representative of their respective ecosystems. Field borders, ditch banks and 

burn sites were therefore avoided (Maitima and Olson, 2001). Soil samples were taken using a 

soil-sampling auger to a depth of 15 cm. A field label was written on each sample bag, which 

included soil sample plot number, species names, elevation, slope, and GPS coordinates. All the 

labelled bags were stored in dry conditions until they were transported to the laboratory for 

analysis. Soil samples were analysed for soil fertility. P was measured using a photometer, while 

K, Ca, Mg, Zn, Mn and Cu were determined using electrothermal flame atomic absorption 

spectrometry. The N and organic carbon were both measured by mid-infrared spectroscopy. Soil 

pH was measured with a pH meter. The soil density was measured using a 10 ml scoop. 

The data were analysed statistically using one-way ANOVA in the GenStat (version 12) 

statistical software package (Payne, 2009) to determine whether or not there were any significant 

differences between the different soil classes. Least significant differences (LSDs) (P < 0.05) 

were calculated to separate the means of the soil properties. 

3.3 Results 

3.3.1 Botanical composition  
 
The veld condition (VC) ranged from 35.2% to 86.6% (Table 3.1). The degraded sites in 

Mpameni and Ngubhela yielded the lowest veld condition of 35.2% and 36.4% respectively. In 
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the rehabilitated areas of Mpameni and Ngubhela, the veld condition indices were slightly higher 

at 42.4% and 46.7% respectively. The results indicate high relative abundances of increaser II 

and increaser III species in Mpameni and Ngubhela. A veld condition of 86.6% was recorded in 

the conserved site at Cathedral Peak. The high veld condition score in this site is largely 

attributed to the dominance of palatable decreaser grasses (e.g. Themeda triandra), which have 

high grazing values when compared with the degraded and rehabilitated sites. 
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Table 3. 1: Percentage species composition, ecological category totals, basal cover and veld 

condition scores for each ecosystem (i.e. conserved, rehabilitated and degraded) 

 
Ecological 
category 

Species Veld condition assessment 

Benchmark Conserved Rehabilitated Degraded 
    Mp. Ng. Mp. Ng. 
Decreaser 
 

Themeda triandra 45 26 0 1 0 0 
Brachiaria serrata 1 1 0 0 0 0 
Diheteropogon amplectens 1 6 0 0 0 0 
Monocymbium ceresiiforme 2 6 0 0 0 0 

Sub-total  49 39 0 1 0 0 
 
 
Increaser I 
 
 

Alloteropsis semialata 2 7 4 5 4 6 
Trachypogon spicatus 2 8 3 5 3 4 
Eulalia villosa 1 1 1 1 0 1 
Tristachya leucothrix 20 9 2 3 2 2 
Koeleria capensis 0 1 0 0 0 0 
Festuca costata 0 4 0 0 0 0 
Digitaria tricholaenoides 0 9 4 4 7 5 

 Hyparrhenia hirta 1 1 3 2 2 1 
Sub-total  26 40 17 20 18 19 
 
Increaser IIa 

Eragrostis capensis 1 1 13 9 12 14 
Heterpogon contortus 4 5 9 11 08 9 
Harpochloa  falx 3 1 3 3 0 2 

Sub-total  8 7 25 23 20 25 
 
 
Increaser IIb 
 
 
 

Eragrostis racemosa 1 1 13 12 13 11 
Eragrostis curvula 1 1 6 3 2 3 
Eragrostis plana 1 1 7 7 3 6 
Eragrostis obtusa 0 0 0 0 0 1 
Digitaria mondactyla 0 1 1 2 1 2 
Sporobolus africanus 0 1 1 1 5 1 

 Loudetia simplex 0 1 1 0 1 0 
Sub-total  3 6 29 25 25 24 
 

Increaser IIc 

Microchloa caffra 1 1 1 2 1 1 
Melinis repens 0 1 8 5 6 7 
Felicia filifolius 0 0 1 1 0 1 
Paspalum dilatatum 0 2 2 3 1 4 
Paspalum  notatum 0 1 3 4 2 2 
Forbs 5 3 1 1 1 0 
Sedges 1 1 1 0 1 0 

Sub-total  7 9 17 17 12 15 
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Continued…  
 

Increaser III 

Diheteropogon filifolius 2 1 2 1 1 1 
Elionurus muticus 5 0 0 1 0 0 
Rendlia altera 0 1 3 2 2 1 
Aristida diffusa 0 0 11 10 18 13 

Sub-total  7 2 16 14 21 15 
VCS  714 619 303 334 251 260 
VC (%)  100 86.6 42.4 46.7 35.2 36.4 
BC (%)   14.83 15.06 16.87 19.65 20.78 

VCS = veld condition score; VC = veld condition; BC = basal cover; Mp. = Mpameni; Ng. = Ngubhela. 
 

 
3.3.2 Changes in basal cover as an indicator of rangeland degradation 
 
The basal cover of the veld in each of the three areas (i.e. conserved, degraded and rehabilitated) 

ranged from good (14.83%) to excellent (20.78%)  (Table 3.1). Unexpectedly, the Mpameni and 

Ngubhela degraded areas yielded a high basal cover (19.65% and 20.78%). Although they were 

in poor condition (< 36.4%), there were no large open spaces between the grass tufts (Figure 

3.1).The distance between the point of the spike and the nearest grass tuft (D) ranged from 0.5 

cm to 8 cm, while the diameter of the tufts (d) ranged from 1.5 cm to 9 cm. In the rehabilitated 

areas of Mpameni and Ngubhela, the basal cover could be characterised as being reasonable 

(15.06% and 16.87%) (Figure 3.2). The distance between the point of the spike and the nearest 

grass tuft ranged from 0.5 cm to 9 cm, while the diameter of the tufts ranged from 3 cm to 12 cm, 

and the rehabilitated areas were dominated by increaser IIa and increaser IIb species. The 

grasslands in the Cathedral Peak area were in good condition with an excellent basal cover of 

14.83%. The distance between the point of the spike and the nearest grass tuft (D) ranged from 

0.5 cm to 4.5 cm, while the diameter of the tufts (d) ranged from 0.5 cm to 11 cm (Figure 3.3).  
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Figure 3. 1:Good basal cover with no large open spaces (dominated by increaser II and increaser 
III species), as seen in the Mpameni site. 

 

 

 

Figure 3. 2: Reasonable basal cover with sparse vegetation cover, as seen in the Mpameni 
rehabilitated site. 
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Figure 3. 3: Excellent basal cover with a high canopy cover (dominated by decreaser species), as 
seen in the Cathedral Peak site. 

 

 

The ANOVA with a Tukey‟s HSD post hoc test was conducted for the plant basal cover 

parameters (diameter and distance) to find out if the differences in the mean parameters between 

the rehabilitated and degraded sites were statistically significant. The result showed that the two 

parameters had highly significant differences (P < 0.001) between the different groups 

(rehabilitated and degraded) (Table 3.2). The results also indicated that there is a significant 

difference between the Ngubhela degraded and the Mpameni rehabilitated sites and the Ngubhela 

rehabilitated and the Mpameni degraded sites in terms of diameter. However, there is no 

significant difference (P < 0.05) between the two sites in terms of distance from tuft. On the 

other hand, there is no significant difference between the Ngubhela rehabilitated and Mpameni 

rehabilitated sites in terms of both parameters (distance and diameter) (Table 3.3).  
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Table 3. 2: Statistical analysis using ANOVA for plant basal cover parameters (distance and 

diameter) and different groups (rehabilitated and degraded sites) with a 95% confidence level (P 

< 0.05) 

 df Mean square F Sig 

Distance – between groups 4 16.518 6.491 0.000 

Diameter – between groups 4 57.097 12.185 0.000 

 
 

Table 3. 3: Statistical analysis using ANOVA with a Tukey‟s HSD post hoc test for plant basal 

cover parameters (distance and diameter) and different locations (rehabilitated and degraded) 

with a 95% confidence level (P < 0.05) 

Location Distance (Sig) Diameter (Sig) 

DNG  vs  RMP 0.237 0.000 

RNG  vs  DMP 0.119 0.000 

RNG  vs  RMP 0.866 0.416 
DNG = Ngubhela degraded; DMP = Mpameni degraded; RNG = Ngubhela rehabilitated; RMP = Mpameni 
rehabilitated. 
 

3.3.3 Variations in species diversity in response to rangeland degradation 
 
A total of 1,000 points was recorded in the study areas. Twenty-six species were recorded in the 

rehabilitated and degraded areas and 28 in the conserved site. There were five grass species that 

were only recorded in the conserved area and seven grass species that were only recorded in the 

rehabilitated and degraded areas. The results of species diversity using Shannon‟s index and 

Evenness for the five sites – i.e. conserved (Cathedral Peak), rehabilitated (Mpameni and 

Ngubhela) and degraded (Mpameni and Ngubhela) – ranged from moderate 2.34 (0.75) to high 

3.16 (0.94) (Table 3.4).   
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Table 3. 4: Shannon‟s diversity index (H') and evenness for the following five sites: conserved 

(Cathedral Peak), rehabilitated (Mpameni and Ngubhela), and degraded (Mpameni and 

Ngubhela) 

 Site Number of 
species (S) 

Shannon-Weaver  
diversity index (H') 

Evenness 

1  Conserved Cathedral Peak 29 3.16 0.94 
2  Rehabilitated Ngubhela 26 2.82 0.87 
3  Rehabilitated Mpameni 25 2.51 0.78 
4  Degraded Ngubhela 23 2.48 0.78 
5  Degraded Mpameni 22 2.34 0.75 

 

Species richness was highest in the conserved site (29) and lowest in the degraded sites (<23). 

This was supported by the higher diversity of the conserved site (3.16) when compared to the 

degraded sites (<2.48). The degraded and rehabilitated sites were dominated by increaser IIb, 

increaser IIc and increaser III species. The dominant species that contributed to Shannon‟s index 

were Eragrostis capensis, Heterpogon contortus, Eragrostis racemosa, Eragrostis plana, 

Paspalum dilatatum, Melinis repens and Aristida diffusa. We assessed the Okhombe LandCare 

Project in the rehabilitated and degraded areas of Mpameni and Ngubhela. The results indicated 

that there was a significant difference between the Ngubhela rehabilitated and the Ngubhela 

degraded sites (t = 9.194, P < 0.05), and between the Mpameni rehabilitated and the Mpameni 

degraded sites (t = 9.91, P < 0.05). In the conserved site of Cathedral Peak, a high number (i.e. 

29) of different grass species was found. The results indicated high species diversity for 

Shannon‟s diversity index and an evenness of 3.16 (0.94). The site was dominated by decreaser 

and increaser I species. Most of the species characterising the Cathedral Peak site were palatable 

species.    

 
3.3.4 Changes in soil properties as an indicator of rangeland degradation 
 
The soils of the conserved, rehabilitated and degraded sites were significantly different for P, K, 

PH, Mn, Org. C and N when a 95% confidence level (P < 0.05) was used (Table 3.5). P, pH, 

Org. C and N were highly significant (< 0.001). High values of P, pH, Org. C and N content 

were obtained in the conserved site (10.93, 4.18, 6.02 and 0.40 respectively) when compared 

with the rehabilitated and degraded sites. However, there were no significant differences (P > 
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0.05) among sites for Ca, Mg, Zn and Cu. The results show that there was a decrease in soil pH 

in the degraded sites (2.71) when compared with the conserved and rehabilitated sites (4.18 and 

4.00). 

 

Table 3. 5: The mean, standard deviation and P values of the soil samples collected from the five 

study sites, namely the conserved (Cathedral Peak), rehabilitated (Mp. and Ng.) and degraded 

(Mp. and Ng.) sites 

Soil properties Conserved Rehabilitated Degraded LSD P value 
P mg/kg 10.93±4.32b 

(5.88 - 22.50) 
4.41 ± 1.63a 
(2.65 - 8.74) 

3.30 ± 2.21a 
(2.61 - 10.10) 

2.16 < 0.002 ** 

K cmol/kg 0.50 ± 0.14b 
(0.30 - 0.71) 

0.30 ± 0.23a 
(0.05 - 0.91) 

0.37 ± 0.28a 
(0.15 - 1.05) 

0.15 0.038 * 

Ca cmol/kg 3.78 ± 1.77b 
(1.83 - 7.48) 

1.78 ± 1.50b 
(0.25 - 5.53) 

3.28 ± 2.14a 
(0.61 - 8.67) 

1.69 0.099 ns 

Mg cmol/kg 0.83 ± 0.30b 
(0.61 - 1.63) 

0.67 ± 0.88b 
(0.08 - 1.93) 

1.55 ± 1.04b 
(0.41 - 4.35) 

0.72 0.164 ns 

pH KCI 4.18 ±0.18a 
(4.03 - 4.61) 

4.00 ± 0.26a 
(3.80 - 4.84) 

2.71 ± 2.37b 
(0.20 - 9.30) 

0.89 < 0.001 ** 

Zn cmol/kg 0.68 ± 0.55b 
(0.00 - 1.83) 

1.37 ± 3.14a 
(0.10 - 12.23) 

1.63 ± 2.14b 
(0.17 - 8.38) 

0.48 0.067 ns 

Mn cmol/kg 6.87 ± 3.48b 
(2.35 - 14.08) 

6.24 ± 4.15b 
(2.02 - 15.00) 

11.50 ± 6.99a 
(3.54 - 21.21) 

3.39 0.042 * 

Cu cmol/kg 2.16 ± 0.34b 
(1.65 - 2.63) 

2.00 ± 2.56a 
(0.00 - 10.10) 

3.32 ± 4.00b 
(0.00 - 14.78) 

1.09 0.082 ns 

Org. C (%) 6.02 ± 0.61b 
(4.90 - 7.00) 

3.66 ± 0.79a 
(0.80 - 4.20) 

2.15 ± 1.00a 
(0.80 - 4.50) 

0.69 < 0.001 ** 

N (%) 0.40 ± 0.05b 
(0.26 - 0.47) 

0.19 ± 0.06a 
(0.05 - 0.25) 

0.16 ± 0.08a 
(0.05 - 0.32) 

0.05 < 0.001 ** 

Mean values of soil properties with different superscript letters (a and b) in the same row were significantly different 
(P < 0.05); * = significant P value; ** = highly significant P value; ns = non-significant P value; LSD = least 
significant difference. Values between two brackets are the minimum and maximum values. 

 

3.4 Discussion  

The aim of this study was to evaluate rangeland using vegetation species and soil properties as 

indicators of degradation across a gradient of different management regimes.  
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3.4.1 Changes in botanical composition and basal cover 

The veld condition was low (35.2%, 36.4%) in the degraded sites of Mpameni and Ngubhela and 

moderate (42.4%, 46.7%) in the rehabilitated sites of Mpameni and Ngubhela when compared to 

the conserved site (86.6%) (Table 3.1). The veld condition assessment successfully indicated a 

distinct difference in species composition between these different environments. In the Mpameni 

and Ngubhela degraded areas, the veld condition can be classified as low (35.2% and 36.4%). 

This can be explained by the fact that these areas were dominated by species such as Digitaria 

tricholaenoides 7% and 5%, Alloteropsis semialata 4% and 6%, Eragrostis capensis 12% and 

14%, Eragrostis racemosa 13% and 11%, Melinis repens 8% and 9%, Aristida diffusa 18% and 

13%, and Eragrostis plana 3% and 6%. These grasses are unpalatable and they thus have a low 

grazing value that ranges from 0 to 6 according to the Moist Highland sourveld benchmark 

(Camp, 1997; Van der Westhuizen et al., 2005; Van Oudtshoorn, 1992). The dominance of these 

species indicated poor veld condition which may be attributed to the low soil organic carbon and 

nitrogen (Table 3.5).  

           A moderate veld condition (42.4% and 46.7%) was recorded in the rehabilitated areas of 

Mpameni and Ngubhela. Both sites had their palatable species reduced to 0% and 1% when 

compared with the degraded sites (0%) and the benchmark of 49%. This indicates their poor 

grazing quality. The proportional abundance of Increaser I decreased to 17% (18%) in Mpameni 

rehabilitated and degraded and to 20% (19%) in Ngubhela rehabilitated and degraded when 

compared with the benchmark of 26%. This decrease in Increaser I is due to over-utilisation 

(Tainton, 1999). The percentage increase in species such as the undesirable increaser IIa 25% 

(20%) and 23% (25%), increaser IIb 30% (25%) and 25% (24%), increaser IIc 17% (12%) and 

17% (15%) and increaser III 16% (21%) and 14% (15%) in Mpameni and Ngubhela rehabilitated 

and degraded respectively when compared with the benchmark of 8%, 3%, 7% and 7% indicated 

poor veld. The high percentage of increaser II values is largely attributed to the dominance of 

Eragrostis capensis, Heterpogon contortus, Eragrostis racemosa and Eragrostis plana. Also, 

both these sites of Mpameni and Ngubhela rehabilitated and degraded had a high abundance of 

Melinis repens (characteristic of disturbed areas) (8% and 6%) and (5% and 7%) as well as 

Aristida diffusa (11% and 18%) and (10% and 13%) a species associated with shallow soils in 

overgrazed veld. These species were absent in the benchmark, and their dominance indicates 
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poor veld condition (Camp, 1997). The rehabilitated sites had a higher veld condition when 

compared with the degraded areas. This may be attributed to the success of the rehabilitation 

techniques used by the community in a LandCare Project that was established in 1998. The 

objective of this project was to promote ecologically sustainable approaches to land management 

in communal areas (Mulder and Brent, 2006). Much success has been achieved through soil 

erosion prevention techniques such as stone lines, stone packs, strips of Kikuyu and Vetiver 

grass, and swales (Peden, 2005). These techniques are considered to be important for 

rehabilitation interventions and rangeland management (Everson et al., 2007; Peden, 2005) 

because they have several advantages, such as being able to stabilise loose soil, decrease 

overland flow and runoff and lead to an increase soil organic and phosphorus.  

A high veld condition was recorded at the conserved site of Cathedral Peak (86.6%). This can be 

explained by the fact that this area is dominated by decreaser species. A decrease was found in 

the proportional abundance of decreaser (39%), increaser IIa (7%) and increaser III (2%) species 

when compared with the benchmark values of 49%, 8% and 7% respectively. According to the 

benchmark, the high percentage of decreaser species and the low percentage of increaser IIa and 

increaser III indicate that the grazing quality in the area is good. The low percentage of increaser 

species is attributed to the limited wildlife, no domestic livestock and a regular burning regime 

(Granger, 1976). This is comparable to the results of Camp (1997) and Snyman (1998) who 

indicate that conserved grasslands are dominated by decreaser species. On the other hand, there 

was an increase in the proportional abundance of increaser I and increaser IIb to 39% and 5% 

respectively when compared with the benchmark of 25% and 4%.  

         The basal cover in each of the five sites – degraded (Mpameni and Ngubhela), rehabilitated 

(Mpameni and Ngubhela) and conserved (Cathedral Peak) – was 19.65% and 20.78%, 15.06% 

and 16.87% and 14.83% (Table 3.1) respectively, which ranged from excellent in poor veld 

condition to reasonable to good respectively. The results of those previous studies that reported 

that the differences in the basal covers may be attributed to the grazing regime, topography and 

rainfall, all of which can influence species distribution and increase the rate of runoff and soil 

loss (Snyman, 2002; Tau, 2005; Vetter et al., 2006). These variations in the basal cover were 

supported by the ANOVA results, which indicate that there is a significant difference in basal 

parameters at these sites (Table 3.2). In the low veld condition sites of Mpameni and Ngubhela, 
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the basal cover was excellent, and this is attributed to the high relative abundance of increaser II 

and increaser III, in addition to the low of soil pH, Org. C and N (Table 3.5). This situation could 

explain the fact that the basal cover decreased linearly along with a deterioration in the veld 

condition (Snyman, 2002). Tuft diameter and distance between tufts are the main factors 

influencing basal cover. Tuft diameter was significantly different (P < 0.05, Table 3.3) between 

the degraded and rehabilitated sites. This indicates that the rehabilitation programmes have been 

successful in improving basal cover of degraded areas. However, there was no significant 

difference (P > 0.05) between these sites in terms of distance from tuft. This may be due to the 

stoloniferous nature of some of the species used in rehabilitation.   

 

3.4.2 Variations in species diversity in response to rangeland degradation 
 
There were differences in the Shannon diversity index of the study‟s five sites, which were: 

degraded (Mpameni and Ngubhela), rehabilitated (Mpameni and Ngubhela) and conserved 

(Cathedral Peak). These indices were 2.34, 2.48, 2.51, 2.82 and 3.16 (Table 3.4) respectively, 

and they ranged from moderate to high respectively. Changes in soil properties may be 

responsible for the variation in species diversity (Stohlgren et al., 1999). The study‟s soil 

analysis, which was done in the rehabilitated and degraded sites show a decline in soil properties 

such as P, Org. C and N. These soil properties are considered to be important in plant growth and 

survival (Oluwole and Dube, 2008). In the degraded sites the species diversity index was 

moderate (2.34 and 2.48) and there was a high evenness index (0.75 and 0.78). These results are 

similar to those of previous studies in degraded grassland  (Anderson and Hoffman, 2007; Frank, 

2005; Hoffmann and Zeller, 2005; Stohlgren et al., 1999; Tanser and Palmer, 1999; Todd and 

Hoffman, 1999), all of which indicate that overgrazing on communal rangeland results in low 

plant species richness, a decreased proportion of palatable grass species, and an increased 

proportion of unpalatable grass species. The results of this study indicate that the rehabilitated 

sites of Mpameni and Ngubhela have a high diversity index and an evenness of 2.51(0.78) and 

2.82(0.87). These sites were dominated by different species, such as Eragrostis racemosa, 

Eragrostis curvula, Eragrostis plana, Hyparrhenia hirta, Sporobolus africanus, Paspalum 

dilatatum and Paspalum notatum. This state of affairs may be due to the planting in the 

rehabilitated sites of different species such as Kikuyu, Vetiver and indigenous and exotic grasses 
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(Everson et al., 2007; Peden, 2005). The results indicate that the conserved site of Cathedral 

Peak has a slightly higher diversity index than do the other sites; this is supported by the 

Shannon diversity index and the evenness results 3.16(0.94). These results are supported by a 

few other studies (Anderson and Hoffman, 2007; Frank, 2005; Hoffmann and Zeller, 2005), all 

of which indicate that South Africa‟s conserved areas are characterised by high plant species 

diversity and high grazing quality. Moreover, there are certain environmental management 

programmes that are in place, and these are there to ensure that the Cathedral Peak area is 

protected from harmful human activities and thereby conserved. 

 
3.4.3 Changes in soil properties as an indicator of rangeland degradation 
 

The results from this study indicate that soil properties contribute a considerable amount of 

information towards our knowledge of grassland status. The results show that levels of P, K, pH, 

Mn, Org. C and N were significantly lower (P < 0.05) in the rehabilitated and degraded sites 

when compared to the conserved site (Table 3.5). These results are comparable to the results of 

previous studies (Islam and Weil, 2000; Oluwole and Dube, 2008; Su and Zhao, 2003) which 

mention that the overgrazing of rangelands has a negative impact on vegetation species and soil 

properties because of reduced vegetation cover, reduced productivity, and litter accumulation. 

These factors reduce soil infiltration, enhance soil erosion vulnerability, and lead to a decline in 

soil fertility. On the other hand, the good veld condition that was measured in the conserved area 

(86.6%) is an indication of good soil fertility. The relative abundance of Org. C and N for 

vegetation growth is considered to be the main cause of high vegetation diversity in the 

conserved site (Du Preez and Snyman, 1993; Oluwole and Dube, 2008). However, the decrease 

in species diversity in the rehabilitated and degraded sites may be associated with poor soil 

fertility (low Org. C and N). The low organic carbon and N are due to the leaching of vital 

nutrients by heavy rainfall, the veld type generally occurs in acid soil that is poor in nutrients 

(Tainton, 1999).    

A considerable variation occurred in the Mn of the soils in the sampled sites; it ranged 

from 6.24 to 14.05. The Mn was significantly higher (11.5±6.9, P < 0.05) in the degraded sites 

due to low vegetation cover when compared with the conserved and rehabilitated sites. There 
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was a decrease in the soil pH in the degraded sites (2.71) when compared with the conserved and 

rehabilitated sites (4.18 and 4.00). These results confirm that the pH in degraded areas decreased 

as a result of overgrazing  (Moolenaar et al., 1998).  

3.5 Conclusions 

 
The aim of this study was to evaluate potential vegetation species and soil properties as 

indicators of rangeland degradation across a gradient of management regimes. Our results have 

shown that: 

1. There is a significant variation in rangeland condition across a gradient of 

management regimes: conserved, rehabilitated and communal areas.  

2. Veld condition assessment based on the benchmark method was successfully used 

to quantify the differences in degraded, rehabilitated and conserved sites at 

Okhombe and Cathedral Peak. 

3. Vegetation indicators based on the relative abundance of decreaser and increaser 

species have a high potential to evaluate different levels of rangeland degradation.  

4. The outcomes of the LandCare Programmes, which try to promote social, 

economic and environmental development in rehabilitated areas, have been 

successful in combatting the problems of rangeland degradation. 

5. The use of soil properties such as P, pH, Org. C and N as indicators of 

degradation were highly significant (< 0.001) and can be used to discriminate 

between conserved and degraded sites. 

6. The different indicators (i.e. veld condition, basal cover, species diversity and soil 

properties) that were used in this study show that the use of a combination of 

indicators for evaluating rangeland degradation is an effective approach to 

environmental studies.  

Overall, the use of vegetation species (decreaser, increaser I, increaser IIa, increaser IIb, 

increaser IIc and increaser II) and soil properties (P, K, Ca, Mn, pH, Zn, Mg, Cu, Org. C and N) 

as indicators is an important step in mapping different levels of rangeland condition.  
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Chapter 3 focused on exploring the relationship between vegetation species (increaser 

and decreaser species) and rangeland condition in the Okhombe communal lands and the 

Cathedral Peak conservation area using a veld condition assessment technique. 

Results showed that Okhombe communal area is subjected to rangeland degradation as 

indicated by low veld condition. The subsequent chapters (4, 5 and 6) therefore, 

advocates the development of techniques based on remote sensing to quantify the veld 

condition.  
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CHAPTER FOUR 

 

 

Spectral discrimination of increaser species as an indicator of 

rangeland degradation using field spectrometry 

 

 

 

 

 

This chapter is based on: 

Manssour, K., Mutanga, O., and Everson, T., (In review). Spectral discrimination of increaser 

species as an indicator of rangeland degradation using field spectrometry. Journal of Spatial 

Science. 
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Abstract 

  

Discriminating increaser species (Species indicative of over- and under-utilization) is important 

for mapping rangeland degradation. The main objectives of this paper were to: (1) determine 

whether four increaser species could be spectrally discriminated from each other and (2) 

determine the key wavelengths that have high discriminatory power.  Field spectrometry data 

were taken from Hyparrhenia hirta; Eragrostis curvula; Sporobolus africanus and Aristida 

diffusa from Okhombe rangeland, KwaZulu-Natal province, South Africa. A total of 1723 

narrow bands in the 350 nm to 2500 nm range were used in the analysis. Three tier hierarchical 

techniques of one-way ANOVA, stepwise discriminant function analysis and canonical function 

analysis were used. The results revealed that there were statistically significant differences in 

spectral reflectance between the four species on 439 wavelengths. The most important 

wavelengths (n=8) that were selected for spectral discrimination were largely located in the 

visible, red-edge and near-infrared regions of the spectrum. The three tiers of analysis yielded 

species discrimination with an overall accuracy of 83.02 % and a KHAT value of 0.77. The use 

of the spectroscopic approach applied in this study indicated that the increaser species were 

spectrally different, a promising result for the ultimate mapping of indicators of rangeland 

degradation.  

 

 

Keywords: rangeland degradation; vegetation species; indicator; field spectrometry. 
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4.1 Introduction 

 

          Rangeland degradation is defined as a reduction in or temporary loss of the vegetation 

species and economic productivity of a rangeland (UNCCD, 1995).  Rangeland occupies roughly 

51% of the earth‟s total land area (Wilcox, 2007). About 73% of rangelands in arid, semi-arid 

and sub humid areas is currently degraded (UNCCD, 1995). Because vegetation species in these 

rangeland areas are well adapted to specific growth circumstances, their quantity and quality will 

be diminished if these circumstances change. As a result of this sensitivity to specific conditions, 

vegetation species make good indicators of rangeland degradation (Van Oudtshoorn, 1992).    

            Previous studies have found that vegetation degradation often appears alongside a 

decrease in plant species‟ diversity, an increase in unpalatable grass species, sharp reductions in 

plant yields, and low grass height and vegetation cover (Foran et al., 1978; Snyman, 2009; Van 

den Berg and Zeng, 2006). Grassland plant quality and quantity have been reported to change in 

accordance with the degree of utilization in degraded grasslands (Snyman, 2009). For example, 

high quality grasses that are preferred by grazing animals tend to disappear or decrease, while 

unpalatable grasses tend to increase (Kawanabe et al., 1998). Consequently, the disappearance of 

key forage species and an increase in species less desired by animals are used as indicators of 

rangeland degradation (Oba and Kaitira, 2006). In South Africa, grassland is a fundamental 

ecosystem for the rural population because of its agricultural, environmental, and economic 

importance. Due to recent increases in the degradation of vegetation cover, there is a pressing 

need for resource conservation (Hoffman and Todd, 2000). Grass species in South Africa are 

classified into two categories, namely decreasers and increasers, based on their grazing value and 

changes in their relative abundances in the presence or absence of grazing (Foran et al., 1978; 

Van Oudtshoorn, 1992). Decreasers refer to grasses that are abundant in good rangeland but 

decrease in number when the rangeland deteriorates. These grasses are the palatable ones such as 

Themeda triandra. Increaser species are those grasses that increase their relative abundances 

with grazing and therefore indicate the poor condition of a rangeland (Oluwole and Dube, 2008). 

In South Africa, increaser species have been classified into three types, namely: increaser I; 

increaser IIa; increaser IIb;  and increaser III (Oluwole and Dube, 2008; Trollope, 1990). 

Increaser I species such as Hyparrhenia hirta  increase in abundance with under-utilization and 

can be found in old cultivated land, while increaser IIa species increase in abundance when the 
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rangeland is overgrazed (e.g. Eragrostis curvula). Increaser IIb species, for example Sporobolus 

africanus, are those that increase in abundance when the rangeland is excessively overgrazed, 

while increaser III, for example Aristida diffusa, are species  that increase their relative  

abundance in rangeland that is selectively grazed (Oluwole and Dube, 2008; Trollope, 1990; Van 

Oudtshoorn, 1992).   

         The continued growth in increaser species‟ habitat represents a significant threat to 

biodiversity conservation in South Africa‟s rangeland (O'Connor, 2005). Environmental factors, 

particularly poor adaptation to rainfall variability, vulnerability to poor soils and the adverse 

changes to traditional patterns of land use, such as the intensified agricultural activities taking 

place in many parts of South Africa, have threatened the existence of highly desirable grasses 

and increased the number of unpalatable grass species (Harrison and Shackleton, 1999). 

       Through intensive fieldwork, in a game reserve in the Eastern Cape, South Africa (Oluwole 

and Dube, 2008), increaser and decreaser species have been successfully used as indicators to 

classify the extent of rangeland degradation according to the categories good, moderately 

degraded, poorly degraded, and extremely degraded. Since different increaser species can 

indicate or represent a certain level of rangeland degradation, it may be possible by 

discriminating and ultimately mapping these increaser species, to obtain a spatially explicit 

gradient of the level of rangeland degradation. 

Traditionally, the mapping of vegetation species in small areas requires intensive fieldwork. This 

includes the identification of species‟ characteristics and the visual estimation of species‟ 

percentage, all of which are costly and time-consuming as grassland can cover large isolated and 

inaccessible areas (Berry et al., 2003; Muchoney and Haack, 1994). Therefore, complementary 

techniques are needed that can provide a fairly accurate, repetitive and rapid means for 

classifying and monitoring change in vegetation species. In this regard, remote sensing is a 

developed technique that has a wide and extensive coverage, regular data availability, offers 

near-real-time data, is potentially inexpensive, contains a large archive of historical data, and 

produces updated maps of inaccessible areas (Tanser and Palmer, 1999; Wessels et al., 2008; 

Wessels et al., 2007). Multispectral and hyperspectral remote sensing techniques have been used 

to discriminate and map vegetation species in disturbed areas for several decades (Palmer and 

van Rooyen, 1998; Tanser and Palmer, 1999; Vogel and Strohbach, 2009; Wessels et al., 2008; 

Wessels et al., 2007). Although considerable progress has been made in developing the potential 
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use of multispectral remote sensing to discriminate and map vegetation species in degraded 

areas, there are still challenges to be met. Multispectral sensors generally gather data in three to 

six spectral channels from the visible to middle infrared region of the electromagnetic spectra. 

These few spectral bands are the primary limiting factors of multispectral sensor systems. Some 

researchers (Harvey and Hill, 2001; Liu et al., 2004) were able to identify challenges of 

multispectral sensors due to their inability to provide sufficient spectral detail, spectral overlap 

between the vegetation species, and the spatial resolution of the multispectral data. However, 

recent developments in sensor technology have overcome these limitations of earth observation 

systems. 

            Hyperspectral remote sensing (such as MSMI76, HyMap, Hyperion, and AVIRIS, etc.) 

has been successful in mapping vegetation species, because of its ability to provide many, 

narrow, and contiguous spectral bands throughout the visible, near-infrared, mid-infrared, and 

thermal infrared portions of the electromagnetic spectrum and to provide highly accurate images. 

These properties make it possible and more effective to discriminate and map vegetation species 

in comparison with multispectral remote sensing (Govender et al., 2009; Martínez and Gilabert, 

2009; Mutanga et al., 2009). Multispectral and hyperspectral data have been used for several 

decades in classifying and mapping vegetation species in disturbed areas (Escadafal and Huete, 

1991; Okin et al., 2001; Pinet et al., 2006; Ray, 1995). According to the ecological literature, 

spectral discrimination of the different levels of increaser species such as Hyparrhenia hirta, 

Eragrostis curvula, Sporobolus africanus and Aristida diffusa has been largely ignored in the 

field of scientific research, despite the fact that it has been proven to be a simple and 

straightforward method of assessing rangeland conditions compared to intensive laboratory 

analysis of plant biochemical content. To our knowledge, no attempt has yet been made to 

spectrally discriminate and characterize the landscape using these species as indicators of the 

different levels of rangeland degradation. In the last few decades, field spectrometry has been 

playing essential roles in describing the reflectance spectra of grass species in situ, and providing 

a means of scaling up measurement at field and laboratory levels (Kumar et al., 2001). 

Therefore, hyperspectral remote sensing was investigated at field level using a portable 

spectrometer data in order to identify indicators of rangeland degradation in communal areas of 

KwaZulu-Natal. The specific research objectives of this study were as follows: (1) to determine 

whether there is a significant difference between the mean reflectance at each measured 
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wavelength (from 350 nm to 2500 nm) for four increaser species (Hyparrhenia hirta, Eragrostis 

curvula, Sporobolus africanus and Aristida diffusa) that indicate different levels of rangeland 

degradation, and (2) to identify crucial wavelengths that are the most sensitive in discriminating 

these four species. In order to achieve these objectives, three tier hierarchical techniques were 

proposed based on three integrated analysis tiers namely, one-way ANOVA, stepwise 

discriminant analysis, and canonical function analysis to spectrally discriminate among the four 

increaser species in Okhombe rangeland,  South Africa. It would have been ideal to discriminate 

between all the vegetation indicators of rangeland degradation, from   decreaser up to increaser 

III species. However, as the rangeland in the study area was severely degraded, the relative 

abundance of decreaser species (which are typically abundant in veld in good condition) was too 

low to be used in this study.  As a result, four different of increaser species (Hyparrhenia hirta 

(HH) representing increaser I level, Eragrostis curvula (EC) representing increaser IIa level, 

Sporobolus africanus (SA) representing increaser IIb and Aristida diffusa (AD) representing 

increaser III were studied. 

 

4.2 Material and methods      
 
4.2.1 Field data collection 

 

4.2.1.1 The identification of vegetation species 

 

       Four common species associated with rangeland degradation were selected in the Okhombe 

ward of the Upper Thukela region in the KwaZulu-Natal Drakensberg mountains. The main 

features of these species are as follows (Oluwole and Dube, 2008; Van Oudtshoorn, 1992): (1) 

Hyparrhenia hirta (Thatching grass), Increaser I: this is a perennial grass that is fairly dense and 

tufted. Its spikelets are white or grey and each raceme has four to seven brown and hairy awns. 

Flowers from September to March (2) Eragrostis curvula (Weeping love grass), Increaser IIa: 

this is a perennial grass that is dense and tufted and flowers from August to June.  Inflorescences 

are usually open and spikelets are dark olive or grey (3) Sporobolus africanus (Ratstail 

Dropseed), Increaser IIb: this is a perennial grass that is tufted and has straight culms and flowers 

from October to April.  Inflorescences are dense with pointed tips, and the leaves are strong (4) 
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Aristida diffusa (Iron grass) is an increaser III perennial grass species that flowers from 

November to April and it has strong, narrow, and rolled leaves. Inflorescences are usually sparse, 

expanded, with an open panicle. These four species were identified and then spectral 

measurements were taken from different plots.   

 

4.2.1.2 Canopy spectral measurements  

 

        Field measurements were taken with the Analytical Spectral Devices (ASD) FieldSpec® 3 

to measure the spectral reflectance at canopy level from the following four species:  Hyparrhenia 

hirta (HH), Eragrostis curvula (EC), Sporobolus africanus (SA) and Aristida diffusa (AD). The 

ASD spectrometer has a wavelength ranging from 350 nm to 2 500 nm with a sampling interval 

of 1.4 nm for the spectral region 350 nm to1000 nm, and 2.0 nm for the spectral region 1000 nm 

to 2 500 nm, and a spectral resolution of 3 nm to 10 nm (ASD. Analytical Spectral Devices, 

2005). Random points were generated using Hawth‟s Analysis Tool (HAT) in ArcGIS 9.3 and an 

existing land cover map of the study area developed by the research group (Bangamwabo, 2009). 

A vegetation plot was defined as covering 3 m × 3 m, where the target species (n = 4) were more 

homogenous and were representative of more than 80% of the target species in each plot. A total 

of 53 plots were measured for each grass species (HH, EC, SA and AD). A total of 20 to 25 

spectral measurements were then taken randomly in each plot at nadir from 1.5 m using a 5º field 

of view (Table 4.1).  This yielded a ground field of view of about 13 cm above the leaves on a 

clear sunny day on the 21st of November 2010 between 11:00 am and 2:30 pm local time 

(Greenwich Mean Time: GMT+2). The spectral measurements from each plot (n = 20 to 25) 

were then averaged to represent the spectral reflectance of the vegetation plot (n = 212). Data in 

the spectral range of 1351 to 1439 nm, 1791 to 1989 nm, and 2361 to 2500 nm were affected by 

atmospheric absorption (ASD. Analytical Spectral Devices, 2005; El-Nahry and Hammad, 

2009). Hence, the data in these wavelength regions were removed from all analyses. The 

remaining data were allocated between 350 to 1350 nm, 1440 to 1790 nm, and 1990 and 2360 

nm that comprised a total of 1723 wavelengths which were then used in further analyses (Figure 

4.1).   
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Table 4. 1: Species name, number of sample plots and the total number of measurements 

 
Species name                             Type code No. of 

subplots 
Total number of spectral  

measurements 
Hyparrhenia hirta                          

Eragrostis curvula                         

Sporobolus africanus     
 Aristida diffusa             

HH 
EC 
SA 
AD 

53 
53 
53 
53 

1325 
1166 
1060 
1113 

 

 

 

 

Figure 4. 1: Mean reflectance spectrum data for Hyparrhenia hirta (HH), Eragrostis curvula   

(EC), Sporobolus africanus (SA) and Aristida diffusa (AD). 

 

4.3 Data analysis 

 

       Hyperspectral data require data reduction before applying standard statistical classification 

techniques (Schmidt and Skidmore, 2003). This study investigated three methods of data 

reduction and classification. These three methods included: (1) One-way analysis of variance 

(ANOVA), (2) Stepwise discriminant analysis (SDA), (3) Canonical function analysis (CFA).  
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4.3.1 One-way ANOVA 
 

         One-way ANOVA was used with 95% confidence levels (P < 0.05) to test the research 

hypothesis as to whether there were significant differences in means of reflectance between four 

increaser species (HH, EC, SA and AD) in communal rangeland among the wavelengths ranging 

from 350 nm to 2500 nm. We tested the research null hypothesis H0: μ1= μ2 = μ3 = μ4 versus 

the alternative hypothesis H1: μ1 # μ2 # μ3 # μ4, where μ1, μ2, μ3 and μ4 are the mean 

reflectance values for Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and  Aristida 

diffusa respectively.  

 

4.3.2 Band selection using discriminant analysis 
 

      Discriminant function analysis is a technique used to determine which variables discriminate 

between two or more groups (Fisher, 1936). The Fisher Discriminant Analysis (FDA) has been 

extensively used as a technique to reduce dimensionality in pattern recognition. FDA provides an 

optimal lower dimension for discriminating among classes of data (Zhou et al., 2006). Two 

approaches of discriminant function analysis have been used in this study: 

 

4.3.2.1 Stepwise discriminant function analysis (SDA) 

 

       SDA is the most common technique of discriminant analysis used to determine the variables 

that discriminate between different groups. To achieve this task, independent variables 

(wavelengths) are added to the model one by one until it is found that adding extra variables does 

not significantly improve the discrimination. There are various criteria that can be used for 

deciding which variables to include in the analysis and which to exclude (Duarte Silva and Stam, 

1995; Zhou et al., 2006). In this study three criteria were used: (1) Wilks' Lambda: this is a 

general test statistic used in multivariate analysis of variance to test whether there are differences 

between the means of more than two groups. Wilks‟ Lambda is a ratio of the within-class sum of 

squares to the total sum of squares, and it varies from 0 to 1. Lower values indicate larger mean 

differences, thus indicating stronger group separation (Duarte Silva and Stam, 1995);  (2) 

Significance level: this is indicated by the overall F of the model. All the variables can be 
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entered if the significance level of the F value is 0.05 or less, which means that the result has a 

95% chance of being true, and then the model is considered to be significant; (3) F to enter and F 

to remove: this determines which variable makes a unique contribution to the prediction of group 

membership and it depends on the F value. The variables with large enough F values should be 

kept in the analysis; the other variables do not significantly contribute to group separation and 

should be omitted (Duarte Silva and Stam, 1995). The default setting is the optimum values for F 

to enter and F to remove and was used in this study as reported in other literature (Duarte Silva 

and Stam, 1995). The minimum partial F to enter was 3.84 and the maximum partial F to remove 

was 2.71.  

 

4.3.2.2 Canonical function analysis (CFA) 

 

Canonical function analysis (CFA) is a multivariate analysis technique to determine functions of 

the variables that can be used to discriminate among the groups (Manly, 2005). The simplest 

approach involves taking a linear combination of the X variables. 

 
Where:  
Z= dependent variables 
X= independent variables 
a= parameters  
e= error‟s term  

 
The first canonical function implies the maximum possible F ratio on a one-way analysis of 

variance for the variations within and between groups. If there is more than one function, then 

the second one gives the maximum possible F ratio on a one-way analysis of variance subject to 

the condition that there is no correlation between Z1 and Z2 within groups. 

 
From this background, we used stepwise discriminant function analysis and canonical function 

analysis to achieve the following two objectives: (1) to identify the optimal number of 

wavelengths to discriminate between four groups of species (HH, EC, SA and AD), or to 

Z= a X + e  .................... (1) 

Z = a1  X1 + a2  X2 +…+ ap  Xp ....................(2) 

Z1 = a11  X1i + a12  X2i + ... + a1p  Xpi  ………………..(3) 

Z2 = a21  X1i + a22  X2i + …+ a2p  X pi ………………..(4) 
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recognize which wavelengths are most related to the separation of groups and (2) to predict the 

group membership for samples of undefined origin based on the measured values of the 

discriminating variables.  

 

4.3 Classification accuracy assessment 

 

      To examine the effectiveness of hyperspectral data to discriminate among four increaser 

species, the optimal wavelengths selected by stepwise discriminant function analysis were used 

to test the classification accuracy. Two methods of accuracy assessment were adopted. The first 

method assessed the overall accuracy which was calculated by dividing the total number of 

correctly classified samples by the total number of sample units in the matrix (Fung et al., 2003). 

The second method, Kappa analysis, is a discrete multivariate technique used in accuracy 

assessment that was developed by Cohen (1960). The result of the Kappa analysis is the KHAT 

statistic, which is calculated in order to determine if one error matrix is significantly different 

from another (Cohen, 1960). This statistical method helps as an indicator of the extent to which 

the percentage of correct values of an error matrix are due to the actual agreement in the error 

matrix and the chance agreement that is indicated by the row and column totals (Mutanga, 2005). 

If the KHAT coefficients are one, or close to one, then there is perfect agreement. 

 

4.5 Results  

 
  4.5.1 One-way ANOVA test 
 

         The results of the one-way ANOVA test indicate that there was a statistically significant 

difference in the spectral reflectance among the four increaser species: Hyparrhenia hirta, 

Eragrostis curvula, Sporobolus africanus and Aristida diffusa. The significant wavelengths (439) 

are located in the three different regions of the electromagnetic spectrum, namely the visible (18 

wavelengths), red-edge (71 wavelengths) and near-infrared (350 wavelengths). Results of 
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frequency analysis show that in the mid-infrared region (1300 – 2500 nm) there is no wavelength 

that can be used to discriminate between all the class pairs (n = 4). See Figure 4.2 below. 

 

 

 

Figure 4. 2: Frequency of statistical differences using ANOVA with 95% confidence level (P< 
0.05) between the mean reflectance of four species (Hyparrhenia hirta, Eragrostis curvula, 
Sporobolus africanus and Aristida diffusa). The maximum grey shading shows the wavelengths 
where all four species can be discriminated. Spectral features between 1351nm and 1439 nm, 
1791 nm and 1989 nm, and 2361 nm and 2500 nm were removed due to excessive noise.  

 

 

4.5.2 Stepwise discriminant function analysis results  
 

     Table 4.2 below shows the wavelengths selected by the stepwise discriminant function 

analysis according to Wilks‟ Lambda value (0.115 to 0.512), F statistic (32.556 to 75.119), and 

significance level (P < 0.001).  The wavelengths in the analysis with the highest value F to enter 

are 665 nm, 729 nm, 848 nm, 895 nm, 1039 nm, 998 nm, 681 nm and 972 nm. It revealed that 

the important wavelengths that can be used to discriminate among the four species (HH, EC, SA 

and AD) were found in the visible, red-edge and near-infrared regions. 
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Table 4. 2: Variables entered/ removed using stepwise discriminant function analysis 

 

 
 

 

4.5.3 Canonical function analysis  
 
      Discriminant functions are explained by means of standardized coefficients and the factor 

structure matrix. Table 4.3 shows the function values and standardized canonical discriminant 

function coefficients that were given to every variable (wavelength). Standardized canonical 

discriminant function coefficients represent the correlation between the variables and the 

canonical functions. The larger the standardized coefficient, the greater is the contribution of the 

variable (wavelength) to the discrimination among the four species. The largest contribution is 

contained in the first canonical function which includes the wavelengths 895 nm (the coefficient 

is 0.957), followed by 998 nm, 681 nm, 745 nm, 998 nm and a low standardized coefficient 

includes 665, the coefficient is (-0.053), followed by 1039 nm, 848 nm and 972 nm. The second 
canonical function also shows that the largest contribution is contained in the 685nm band with 

the highest coefficient (18.343), followed by 665 nm, 848 nm, 729 nm and the low coefficient 

located at 681 nm, 972 nm, 1039 nm and 895 nm. It can be noted that the wavelengths 895 nm 

and 998 nm have been selected by the first and second canonical functions which reflect the 

importance of this wavelength in discrimination.  

 
  

Step
Variables 
entered Lambda Statistic Sig.

1 665 0.512 44.849 0.000
2 729 0.302 75.119 0.000
3 848 0.189 66.916 0.000
4 895 0.173 53.205 0.000
5 1039 0.156 48.146 0.000
6 998 0.131 40.974 0.000
7 681 0.123 36.728 0.000
8 972 0.115 32.556 0.000
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Table 4. 3: Standardized c anonical discriminant function c oefficients representing th e 

correlation between wavelengths and canonical functions 

 
Wavelengths Function 1 Function 2 

 972 -0.238 -0.165 
998 0.942 0.512 
681 0.745 0.115 
848 0.146 0.591 
895 0.957 -0.303 
1039 0.124 -0.186 
729 -0.665 -0.519 
665 -0.053 -0.697 

 
 
Many s cientists use the struc ture mat rix c orrelations because the y are c onsidered to be mor e 

accurate than the  standa rdized canonical discriminant func tion coefficients (Mardia e t al., 1979). 

Table 4.4 shows the correlation between the wavelengths and the canonical functions. The highest 

factor structure c oefficients are re presenting the wavelengths with high discriminatory po wer 

(Manly, 2005). The most wavelengths that have a positive correlation with canonical function are 

located in the visi ble, red-edge and near-infrared re gions. The 665 nm  wa velength is the most 

important in discrimination, followed by the 1039 nm, 729 nm, 848 nm and 895 nm wavelengths. 

 

Table4.4: Factor structure matrix  re presenting the  c orrelation between the  sig nificant 

wavelengths and the canonical functions 
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Table 4.5 shows the mean of  canonical variables required to determine the nature of  the  

discrimination for e ach canonical function. The  results show that the first canonical function 

discriminates mostly b etween HH a nd other  inc reaser species; followed b y AD and SA. Th e 

second canonical function seems to distinguish mostly between EC and other increaser species; 

however, the magnitude of the discrimination is much smaller for the second canonical function 

than the first canonical function, because of the weak association with the discriminant function. 

 
 

Table 4. 5: Means of canonical variables to determine the nature of the discrimination for each 

function and significant wavelengths 

 

 
 

 
Classification of  the four spec ies was applied using  the canonical functions.  C ross validation 

was done to assess the classification accuracy (Table 4.6). In cross validation, each variable is 

classified b y the functions derived fr om all the variables. Of the original g rouped species, 

83.02% we re correctly classified, a nd 77.36%  of the cross-validated grouped species w ere 

correctly classified. The  re sults also show that HH  c an be  suc cessfully c lassified with an 

accuracy of  89%, with an accuracy of  AD 87%, with an accuracy of EC 79% and SA with an 

accuracy of 77%. We noted that some of the EC (15%) was classified as SA and 13% of the SA 

was c lassified as EC. This may be a ttributed t o the similarity in structure be tween the two 

species. 
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Table 4. 6: A confusion matrix to estimate the accuracy of the classification technique 

 

 
 

A confusion matrix  wa s c onstructed for se lected wa velengths and it  shows  the c lassification 

error obtained for  all the species (HH, EC, SA and AD). The confusion matrix shows that we 

could classify these species into their respective groups with an overall accuracy of 83.02% and a 

KHAT value of 0.77. Producers‟ accuracy and users‟ accuracy were also calculated (Table 4.7). 

 

Table 4. 7: Confusion matrix for selected wavelengths showing the classification error obtained 

for the species (HH, EC, SA and AD) 

 
Selected wavelength Overall accuracy KHAT Users‟ accuracy 

Presence  absence 
Producers‟ accuracy 
Presence  absence 

8 wavelengths 83.02 0.77 88.68 79.25 88.68 79.25 
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4.6 Discussion 

 
       The advantages of hyperspectral remote sensing are the abundance of the spectral 

information that is available and its power in distinguishing objects. This does not mean that the 

more wavelengths that are used in classification, the higher the precision will be. On the 

contrary, if all wavelengths are used, precision will decrease (Jusoff and Pathan, 2009). 

Therefore, different techniques were used: one-way ANOVA, stepwise discriminant analysis 

(SDA) and canonical function analysis for data reduction and classification. 

 

4.6.1 One-way ANOVA 
 

         The results of the one-way ANOVA test indicated that there were significant differences in 

the mean reflectance among the increaser species Hyparrhenia hirta, Eragrostis curvula, 

Sporobolus africanus and Aristida diffusa when a 95% confidence level (p < 0.05) was used (439 

wavelengths). The significant wavelengths (n = 439) were located in three different regions of 

the electromagnetic spectrum: the visible region from 662 nm to 679 nm (n = 18); the red-edge 

region from 680 nm to 750 nm (n = 71); and the near-infrared region from 751 nm to 1100 nm (n 

= 350). The results demonstrated that there was no wavelength selected in the mid-infrared 

region. The significant wavelengths were highlighted using a histogram for four species (Figure 

4.2). The grey shaded areas show the wavelengths where the four species can be discriminated.  

Similar results in previous studies (Ustin et al., 2009), found that high discriminatory power is 

contained in the visible, red-edge, and near-infrared regions. The differences between the four 

species in the visible region, specifically in the red (600 nm - 700 nm) region, are due to the 

absorption of light by photosynthetic pigments which dominate green leaf characteristics such as 

chlorophyll a, chlorophyll b, xanthophylls, α-carotene, b-carotene, and anthocyanins (El-Nahry 

and Hammad, 2009; Ustin et al., 2009). The significant wavelengths in the red-edge (680 nm -

750 nm) and near-infrared (700 nm -1300 nm) regions are due to variations among the four 

species in leaf internal structure and water content (El-Nahry and Hammad, 2009; Ustin et al., 

2009). Differences in organic matter, neutral detergent fibre, acid detergent fibre, acid detergent 

lignin, crude protein and in vitro dry matter digestibility amongst increaser species during the 

growing season, are responsible for the spectral variations (Majuva-Masafu and Linington, 2006; 
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Teklu et al., 2010; Theron, 1966). For instance, both EC and SA when observed at the close of 

the season appeared as green and as moist as they were at the beginning of the season. On the 

other hand, HH senesced at the close of the season, so that the leaves had completely desiccated 

by comparison with those of EC and SA (Theron, 1966). 

 

4.6.2 Band selection using stepwise discriminant function analysis (SDA) 
 

          The SDA was applied to reduce dimensionality in the significant wavelengths (n = 439) 

obtained from ANOVA as well as to select the most important wavelengths to discriminate 

among the four increaser species. The SDA has successfully described and explored the relative 

importance of each individual wavelength and reduced the wavelengths to 8, located at 665 nm, 

729 nm, 848 nm, 895 nm, 1039 nm, 998 nm, 681 nm and 972 nm (Table 4.2). These wavelengths 

are within + 12 nm from the known wavelengths that have been selected for discriminating 

species in previous studies. These are 689 nm (Martin et al., 1998), 670 nm (Daughtry and 

Walthall, 1998), 670.37 nm, 695.69 nm, 728.14 nm (Fung et al., 2003), 690 nm, 684 nm, and 

740 nm (Bajwa et al., 2004).These significant wavelengths are located in the visible, red-edge 

and near-infrared regions. These results are comparable to those arising from the studies of 

others (Curran, 1989; Van Aardt and Wynne, 2001) who have reported that the visible, red-edge, 

and near-infrared regions have great potential for species discrimination. Wavelengths selected 

in the visible region are directly related to the physio-chemical characteristics of species, such as 

different leaf pigments and different sensitivity levels to the visible light source, that help 

discrimination among species (Elvidge, 1990; Jiang et al., 2004; Thenkabail et al., 2004; Ustin et 

al., 2009; Vaiphasa et al., 2007). The wavelength in the red-edge region could discriminate 

among species that contained different morphological and anatomical properties (Elvidge, 1990; 

Mutanga and Skidmore, 2007; Schmidt and Skidmore, 2003).  

 

4.6.3 Canonical function analysis 
 

         Canonical function analysis helped to reduce dimensionality in the hyperspectral data set as 

well as to describe and explore the relative importance of individual wavelengths in explaining 

the discrimination among the four species. The technique also provided an insight into the 

relationships between variables and the potential of hyperspectral remote sensing in 
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discriminating between groups (Mutanga, 2005). The canonical function analysis showed that 

there were correlations between the wavelengths and the canonical functions. The highest factor 

structure coefficients representing the wavelengths with high discriminatory power were found 

in the red-edge and near-infrared regions (Table 4.4). As shown by the first function, the 

magnitude of canonical discrimination of the wavelengths 895 nm followed by 998 nm, 681 nm, 

745 nm and 998 nm were greater compared to those of the second function, thereby indicating 

the importance of the significant wavelengths in the red-edge and near-infrared regions for 

discriminating among the  three species.  This is explained mainly by the difference in pigments 

and other optical characteristics of the leaves of the different species (Kumar et al., 2001; Ustin 

et al., 2009; Van Aardt and Wynne, 2001).  

This separation has helped to discriminate and characterize the landscape using these 

species as indicators of the different levels of land degradation.  Based on these results, the SDA 

could select optimal wavelengths for discriminating increaser species, with high and acceptable 

levels of overall accuracy (83.02%), using spectrometry data. 

 

4.7 Conclusions 

 

         The aim of this study was to discriminate between four increaser species namely, 

Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa in degraded 

rangeland in the Okhombe region using field spectrometry data. Our results have shown that: 

1. The analytical spectral devices (ASD) FieldSpec®3 spectrometer measurements at 

canopy level can be used to discriminate among four species (HH, EC, SA and AD). This 

indicates that the mean reflectance of each of these species is different. 

2. Stepwise discriminant techniques effectively reduced data dimensionality and selected 

the most important wavelengths for discriminating among the four increaser species with 

a high accuracy of 83.02%. 

3. The use of SDA has revealed that the high discriminatory power for identifying increaser 

species (HH, EC, SA and AD) is located in the visible, red-edge and near-infrared 

regions specifically at 665 nm, 729 nm, 848 nm, 895 nm, 1039 nm, 998 nm, 681 nm and 

972 nm.  
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4. Canonical function has explored the relative importance of individual wavelengths in 

explaining the discrimination among four species. The canonical structure matrix has 

revealed that greater discriminatory power is contained in the visible, red-edge and near-

infrared regions including the 665 nm wavelength which is most important in 

discrimination, followed by the 1039 nm, 729 nm, 848 nm and 895 nm wavelengths.  

In addition, the results demonstrated the possibility of discriminating between increaser species 

using hyperspectral data. This allows for the upscaling of methods to airborne sensors, such as 

AISA Eagle, for mapping increaser species in degraded rangelands. 
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Chapter 4 has shown that increaser species are spectrally distinct using field 

spectrometry at canopy level. The next step is to use the knowledge of spectral bands and 

curves identified for discriminating the species to upscale to airborne sensors. 

The following chapter (5) therefore, aimed to investigate the potential use of 

hyperspectral RS in discriminating among increaser species by resampling the field 

spectrometry data to AISA Eagle resolution and tested the random forest as a 

classification algorithm. 
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CHAPTER FIVE 

 

 

Discriminating indicator grass species for rangeland degradation 

assessment using hyperspectral data resampled to AISA Eagle 

resolution 
 

 

 

 

 

 

 

 

This chapter is based on: 

 

Manssour, K., Mutanga, O., Everson, T., and Adam, E., (In revision). Discriminating indicator 

grass species for rangeland degradation assessment using hyperspectral data resampled to AISA 

Eagle resolution. ISPRS Journal of Photogrammetry and Remote Sensing. 
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Abstract  

 

The development of techniques to estimate and map increaser grass species is critical for better 

understanding the condition of the rangeland and levels of rangeland degradation. This paper 

investigates whether canopy reflectance spectra, resampled to AISA Eagle resolution can 

discriminate among four increaser species representing different levels of rangeland degradation. 

Canopy spectral measurements were taken from the four indicator species: Hyparrhenia hirta 

(HH), Eragrostis curvula (EC), Sporobolus africanus (SA) and Aristida diffusa (AD). The 

random forest algorithm and a forward variable selection technique were used to identify optimal 

wavelengths for discriminating the species. The results revealed that the optimal number of 

wavelengths (n = 10) that yielded the lowest OOB error (13.68%) in discriminating among the 

four increaser species are located in 966.7 nm, 877.6 nm, 674.1 nm, 854.8 nm, 703 nm, 732 nm, 

718.7 nm, 691.9 nm, 741 nm and 902.7 nm. These wavelengths are located in the visible, red-

edge and near-infrared regions of the electromagnetic spectrum. The random forest algorithm 

can accurately discriminate species with an overall accuracy of 87.50 % and a KHAT value of 

0.83. The study demonstrated the possibility to upscale the method to airborne sensors such as 

AISA Eagle for mapping indicator species of rangeland degradation. 

 
 
 
 
Keywords: rangeland degradation; random forest; increaser grass species; field spectrometer 

measurements. 
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5.1 Introduction 

 

Rangeland degradation is defined as the reduction or temporary loss of the biological and 

economic productivity of grasslands (UNCCD, 1995). Currently, rangeland degradation has been 

identified as one of the most serious global environmental issues (Wessels et al., 2007). 

Approximately over 250 million people in over 100 countries are directly affected by rangeland 

degradation (Adger, 2000; Wessels et al., 2007). In South Africa, rangeland degradation is 

believed to be one of the most severe and widespread environmental problems facing the country 

(Hoffman and Todd, 2000; Wessels et al., 2004). A total of 4.8% (5.8 million ha) of South 

African land has been identified as degraded as indicated by its lower vegetation cover when 

compared with the surrounding areas (Thompson, 1996; Wessels et al., 2004). The greatest areas 

of extensively degraded land coincide with communal lands and rangelands where a considerable 

population of South Africa and livestock live (Hoffman and Todd, 2000; Reid and Vogel, 2006).  

Many South African studies on rangeland degradation have been concentrated on commercial 

areas (Palmer and van Rooyen, 1998; Shackleton et al., 2005). However, the communal areas 

have not yet received the same level of attention that has been apparent in the commercial areas 

(Hoffman and Todd, 2000; Wessels et al., 2004). The continued rangeland degradation 

represents a significant threat to the livestock and biodiversity (Hoffman et al., 1995).Therefore, 

there is a need for planning strategies to map and monitor rangeland degradation at different 

scales through use of consistent, repeatable and spatially explicit measures (Prince et al., 2009; 

Ravi et al., 2010). These planning strategies for sustainable land management require techniques 

that can effectively reveal the spatial extent, magnitude, and temporal behaviour of the lands 

(Prince et al., 2009; Ravi et al., 2010; Van Lynden and Mantel, 2001). Remote sensing 

techniques provide an efficient cost-effective means for assessing and mapping rangeland 

degradation (Ustin et al., 2009). However the use of remote sensing techniques in mapping 

rangeland degradation requires simple indicators that allow combining ground-based methods 

with remotely sensed data (Pyke et al., 2002). Several indicators have been suggested for 

mapping rangeland degradation such as soil organic matter (Wang et al., 2010b), vegetation 

production (Wessels et al., 2008), and natural and semi-natural vegetation communities (Hill et 

al., 2008). The limitation of these studies is that they have mainly been focused on binary maps 

that identify the degraded and non-degraded areas. Although these methods can allow drawing 
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the line between the two classes, they do not allow identifying different levels of rangeland 

degradation using indicators that can easily and directly be detected and monitored. Such 

indicators could be vegetation species. This is because certain vegetation species are well 

adapted to specific growth conditions and their quality and quantity reduce or increase according 

to change in the growth conditions (Nordberg and Allard, 2002; Van Oudtshoorn, 1992). 

         In South Africa, grassland species have been classified into two groups of increaser and 

decreaser species based on changes in their relative abundances in the presence or absence of 

grazing, and these changes indicate the condition of the rangeland (Dobarro et al., 2010). 

Increaser species are species that increase their relative abundances through grazing or under-

utilization, and  therefore indicate the poor condition of the rangeland (Dobarro et al., 2010; Van 

Oudtshoorn, 1992). Increaser species have been classified into three types, namely, increaser I, 

increaser II, and increaser III (du Toit, 2009; Oluwole and Dube, 2008; Trollope, 1990). 

Increaser I species such as Hyparrhenia hirta increase in abundance with under-utilization and 

can be found in areas with low grazing capacity (e.g. conserved areas), while increaser II species 

increase in abundance when the rangeland is over-utilized (e.g. Eragrostis curvula and 

Sporobolus africanus), and increaser III species (e.g. Aristida diffusa) increase in relative 

abundance in rangeland that is selectively grazed (du Toit, 2009; Oluwole and Dube, 2008; 

Trollope, 1990; Van Oudtshoorn, 1992). A gradient of degradation has been classified to range 

from severe with a high relative abundance of increaser I, increaser II and increaser III species to 

non-degraded rangeland with a high abundance of decreaser species. Therefore, the relative 

abundance and distribution of the different increaser species can be used to classify rangeland 

condition into moderate (increaser I), poor (increaser II), and highly degraded (increaser III), 

thereby indicating the gradient of rangeland degradation.  

Up-to-date spatial information about increaser species is essential for classifying rangeland 

condition. To our knowledge, no attempt has yet been made to discriminate increaser species 

with remote sensing as indicators of the different levels of rangeland degradation. 

      Traditionally, mapping vegetation species generally requires intensive fieldwork, including 

the identification of species characteristics and the visual estimation of species percentage all of 

which are costly and time-consuming and sometimes impossible to accomplish due to the poor 

accessibility of the areas (Adam et al., 2009; Muchoney and Haack, 1994). On the other hand, 
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remote sensing techniques offer an economic and effective technique, producing timely and 

accurate information for mapping vegetation species (Ustin et al., 2009).    

           Hyperspectral remote sensing, in particular, is developing as a more in-depth means of 

investigating spatial, temporal, and spectral discrimination of vegetation species quantity and 

quality (Ustin et al., 2009). This is due to its use of many narrow and contiguous spectral bands 

of less than10 nm. These bands allow the detection of vegetation at species levels which are 

otherwise masked by broad bands of multispectral satellites such as SPOT (Kumar et al., 2001; 

Mutanga and Skidmore, 2004; Mutanga et al., 2005). Hyperspectral remote sensing data are 

acquired using spaceborne, airborne sensors and a hand-held spectrometer (Adam et al., 2009). 

At the moment, hyperspectral remote sensing has not reached operational level at a wider scale 

due to the high costs of the images and the small areal extent covered by airborne images. 

However, research on the behavior of indicator vegetation species using field spectroscopic data 

is an important step towards understanding the critical bands, absorption features and curves that 

can be targeted for building operational sensors so as to reveal the behavioral patterns of 

rangeland degradation. The processing of hyperspectral remote sensing data is challenging due to 

the high dimensionality, overfitting when applying statistical methods, an excessive demand for 

sufficient field samples, and high cost (Bajcsy and Groves, 2004; Vaiphasa et al., 2007). 

Therefore, identifying the optimal and most powerful wavelengths using variable selection 

methods  without losing any important  information is a pre-requisite in hyperspectral remote 

sensing application (Adam and Mutanga, 2009; Bajcsy and Groves, 2004; Vaiphasa et al., 2007). 

This method is utilised, not only to reduce the number of variables so as to simplify the model, 

but also to determine which explanatory variables are most suitable in classifying increaser 

species. Different statistical techniques such as discriminant analysis, canonical variate analysis, 

classification trees, support vector machines; and principal component analysis have been used 

to identify the optimal wavelengths (Adam and Mutanga, 2009; Cochrane, 2000; Mutanga and 

Skidmore, 2004).  

Recently, the random forest algorithm which was developed by Breiman (2001), has been 

successfully used as a variable selection and classification algorithm for hyperspectral data 

(Adam et al., 2009; Ismail, 2009; Lawrence et al., 2006). Random forest is a tree ensemble 

algorithm that uses a bagging, i.e., bootstrap aggregation, ensemble procedure to build multiple 

individual decision trees that are provided to be diverse by the use of random samples derived 
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from the training data set (Breiman, 2001). The training data is sampled to create an in-bag 

partition to construct the tree (2/3 of the training data), and a smaller out-of-bag partition (1/3 of 

the training data set) to validate the performance of each constructed tree (Özçift, 2011).  The 

multiple trees then vote by majority on correct classification.    

          The objectives of this study were to investigate the use of the random forest algorithm to 

identify the crucial wavelengths that are the most sensitive in discriminating between the four 

indicator species (Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida 

diffusa) for different levels of rangeland degradation in the Okhombe communal area, South 

Africa. We also sought to investigate whether or not, when using random forest algorithm, 

canopy reflectance spectra resampled to AISA Eagle spectral resolution could be used to 

discriminate among these four species. 

 
5.2 Material and methods 

 
        5.2.1 Field data collection 
 

5.2.1.1The identification of increaser grass species 

 
        Intensive field work was conducted to identify the grass species that are associated with 

rangeland degradation in the study area (Figure 5.1). Four indicator grass species were then 

selected based on their high relative abundances. These species were Hyparrhenia hirta (HH), 

Eragrostis curvula (EC), Sporobolus africanus (SA) and Aristida diffusa (DA). These species 

represent the increaser I, increaser II and increaser III categories.  
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Figure 5. 1: Visual indicators of rangeland degradation observed in Okhombe: (A) cattle access 
routes, (B) sedimentation in streams and (C) gullies. 

 

5.2.1.2 Canopy spectral measurements 

 

       Spectral measurements at canopy level were taken from the four increaser species 

(Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus, and Aristida diffusa) using the 

Analytical Spectral Devices (ASD) FieldSpec® 3(ASD). The spectral range of the ASD is 350 

nm to 2 500 nm with a resolution of 1.4 nm in the 350 nm to1000 nm range and 2.0 nm for the 

spectral region 1000 nm to 2 500 nm (ASD. Analytical Spectral Devices, 2005). Random points 

were generated using Hawth‟s Analysis Tool (HAT) in ArcGIS 9.3 (Adam and Mutanga, 2009) 

and an existing land cover map of the study area developed by the research group (Bangamwabo, 

2009). A species plot was defined to cover 3 m × 3 m, where the target species (n = 4) were more 

homogenous with high relative abundances of more than 80% of the target species in each plot. 

A total of 75 plots were generated for each grass species (HH, EC, SA and AD). A total of 20 to 

25 spectral measurements were then taken randomly in each plot at nadir from 1.5 m using a 5º 

field of view (Table 5.1).  This yielded a ground field of view of about 13 cm above the leaves 

on a clear sunny day of 21st of November 2010 between 11:00 am and 2:30 pm local time 

(Greenwich Mean Time: GMT+2). These spectral measurements from each plot (n= 20 to 25) 

were then averaged so as to represent the spectral reflectance of the vegetation plot (n = 308). 

The spectral measurements were then resampled to the AISA Eagle spectral resolution using 

ENVI 4.3 image processing software (Mutanga, 2005) (Figure 5. 2). AISA Eagle data has a 2 m 
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spatial resolution and a spectral range from 393.2 nm to 994.1 nm (272 wavelengths) at 2.04 nm 

to 2.29 nm spectral resolutions. The resampled AISA Eagle spectra were then used for 

subsequent analysis. The data set for each target species was then split randomly into 70/30 

training data set (n = 53) and test data set (n = 22) respectively (Ismail and Mutanga, 2010). 

 
 

Table 5. 1: Species name, number of sample plots, and the total number of spectral 

measurements 

Species name Type code No. of plots Spectral measurements 
Hyparrhenia hirta HH 75 1730 
Eragrostis curvula EC 75 1700 
Sporobolus africanus SA 75 1715 
Aristida diffusa AD 75 1780 

 
 
 
 
 

 
 

Figure 5. 2: Mean reflectance spectrum data for Hyparrhenia hirta (HH), Eragrostis curvula   

(EC), Sporobolus africanus (SA) and Aristida diffusa (AD).  
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5.3 Data analysis 

 

5.3.1 Measuring variable importance using the random forest algorithm (RF) 
 
 The random forest algorithm is a forest-based method developed by Breiman (2001) to 

overcome the instability of traditional tree-based methods. Breiman (2001) defined the random 

forest algorithm as follows: random forest consists of a collection of multiple decision tree 

classifiers that are defined as (h(x, Θ k), k =1,...).where Θ k represents identically distributed 

random vectors and each tree casts a unit vote for the most popular class at input X.  

Each decision tree in the forest is constructed by the following steps: 

1. The number of trees (T) to be grown is selected. 

2. The number of variables (f) to split each node is chosen. If the variables of the input data are 

denoted by F, then f < F must be satisfied. The subset of features f is kept constant during the 

formation of the forest. 

3. T number of trees (ntree) is grown with the following criteria: 

a) A bootstrap sample of size n is constructed with a replacement and samples of Sn are selected 

to grow a tree. 

b) To grow a tree at each node, m features are selected randomly and they are used to find the 

best split.  

c) Each tree is grown to maximum size without pruning. 

In order to classify a sample X (in our case the increaser species) a majority voting scheme is 

used to evaluate votes from each tree in the forest.   

The RF algorithm provides three independent variable importance measures, specifically, 

the permutation accuracy importance measure, the Gini importance, and the number of times 

each variable is selected (Breiman, 2001). The permutation accuracy importance measure, is 

considered to be the best measure in random forests because of its capability in assessing the 

variable importance that relies on mean decreases in accuracy as measured using the out-of-bag 

(OOB) samples (Breiman, 2001). The OOB is referring to the element not included in bootstrap 

iteration. The OOB error produces a measure of the importance of the variables by comparing 

how much the OOB error of estimate increases when a variable is permutated, whilst all other 

variables are left unchanged (Archer and Kimes, 2008; Peters et al., 2007).  
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            In this study, the permutation of variables (mean decrease in accuracy) to measure the 

importance of AISA Eagle wavelengths in discriminating between the increaser species was used 

(Breiman, 2001) as a ranking index to measure of the importance of the variable and thereafter 

identifying the wavelengths with relatively large importance in the classification process (Archer 

and Kimes, 2008; Díaz-Uriarte and de Andrés, 2006).     

          In order to obtain the highest accuracy, the RF model was optimized based on OOB 

estimate of error rate  (Adam et al., 2009; Breiman, 2001; Ismail, 2009; Svetnik et al., 2003), 

using different number of trees  (ntree) from 500 to 10000 with intervals of 500, while mtry was 

optimized using the values between 1 and 20. The “randomForest” package (Liaw and Wiener, 

2002) developed in R environment software (R Development Core Team, 2008) was 

implemented. 

 

5.3.2 Forward variable selection 
 
      The shortcoming of the random forest algorithm in measuring variables importance is that it 

does not automatically select the optimal number of variables that produce the best classification 

accuracy (Adam et al., 2009). Therefore, forward variable selection (FVS) was used to determine 

the optimal number of wavelengths based on the random forest measurement of variables 

importance (Adam et al., 2009; Ismail and Mutanga, 2010). Forward variable selection 

iteratively builds multiple random forests (n = 54). At each iteration, five wavelengths are added 

to the variable selection model, and the error was calculated using the OOB estimate method. 

Initially, the top five wavelengths were selected for the first iteration, and thereafter the next top 

five wavelengths were selected. This process was repeated until no more explanatory variables 

could be included into the final model (Adam et al., 2009). 

      

5.3.3 Classification accuracy assessment 
 

To test the prediction performance of any algorithm, the use of an independent test data set that 

has not been used in training is recommended (Congalton and Green, 1999). In random forest 

algorithms, it has been reported that the OOB error is considered to be a type of cross-validation 

that provides an unbiased estimate of error (Archer and Kimes, 2008; Breiman, 2001; Lawrence 
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et al., 2006; Peters et al., 2007). However, some studies have recommended that the reliability of 

the OOB estimate of error has to be further tested (Ismail and Mutanga, 2010; Lawrence et al., 

2006). In this study the OOB error was used to estimate the classification accuracy. 

Nevertheless, we further tested the reliability of the OOB error (Lawrence et al., 2006). Two 

methods were used: an independent test data set (n = 22) and the .632+ Bootstrap error for 

variables selection and classification. The .632+ Bootstrap error is a statistical approach 

developed by (Efron, 1979) and (Efron and Tibshirani, 1997), and it has been widely used for 

obtaining a nonparametric estimate of error. The .632+ bootstrap error was used with a 

replication of 50 times to estimate the prediction error at each iteration in forward variables 

selection.  The optimal number of wavelengths that yielded the smallest error rate as determined 

by the three methods (OOB, independent test data set and the .632+ bootstrap) were then used to 

classify the increaser species. A confusion matrix was constructed so as to compare the true class 

with the class assigned by the classifier and to calculate the overall accuracy as well as the 

producer‟s and user‟s accuracies. The producer‟s accuracy is computed by splitting the number 

of correctly classified trees in each crown condition class by the number of data sets used for that 

class (column total in the confusion matrix). User‟s accuracy is calculated by dividing the 

number of correctly classified trees by the total number of trees that were classified in that crown 

condition class (row total in the confusion matrix) (Ismail, 2009). In addition, a discrete 

multivariate technique, called Kappa, was used in accuracy assessment. The result of the Kappa 

analysis is the KHAT statistic which was calculated in order to determine if one error matrix is 

significantly different from another (Cohen, 1960). If the Kappa (K) coefficients are one or close 

to one then there is perfect agreement between the training and test data.  

 
5.4 Results  

 
5.4.1 Optimization of ntree and mtry  
 

Following the experiment, the optimization of the number of trees (ntree) and the number of 

variables at each split yielded an mtry value of 16 (which is the default setting) and an ntree of 

6500 (Figures  5.3 and 5.4) resulting in the  lowest and most stable value of the OOB error rate 

(14.25%).  This optimization result was then used for subsequent analyses. 
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Figure 5. 3: Optimizing the number of trees (ntree) based on the default setting of mtry (16) 
using the OOB estimate of error rate. The ntree with the lowest and most stable OOB error rate 
is shown by an arrow.  

 

 
 

 
 

Figure 5. 4: Optimizing the number of variables at each split (mtry) based on 6500 ntree 
(optimal ntree) using the OOB estimate of error rate. The mtry that yielded the lowest OOB error 
rate (14.25%)   is shown by an arrow.   
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4.5.2 Variables importance using the random forest algorithm 
 

      The random forest algorithm effectively explored and described the relative importance of 

each individual wavelength in discriminating among the increaser species. The most important 

wavelengths with the highest mean decrease in accuracy when they are permutated are located at 

651.9 nm to 691.9 nm, 700.8 nm to 741 nm and 854.8 nm to 966.7 nm (Figure 5.5). 

 

 
 

Figure 5. 5: Identifying the variables (wavelengths) importance by the way of random forest 
algorithm. Wavelengths with the highest mean decrease in accuracy (shown by arrows) represent 
the most important wavelengths. 
 

 
5.3.3 Forward variable selection 
 

         Based on the random forest ranking, the forward variable selection method for the full 

resampled AISA Eagle wavelengths (nwl =272) was then used to identify the optimal number of 

wavelengths required to discriminate among the species (nsps = 4). The top 10 wavelengths 

yielded the lowest OOB error are using the training dataset (9.65 %), the test dataset (12.53 %), 

and the .632+ bootstrap error (11.93%) (Figure 5.6), compared with the use of the entire 

wavelengths (n = 272), which yielded 14.25% (training dataset), 16.05% (test dataset), and 

15.95% (.632+ bootstrap error). A t-test was used to test if there was any significant difference 
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among the training data (OOB), test data (OOB) and .632+ bootstrap error. The results show that 

there is no significant difference between training data (OOB) and test data (OOB) (t = 2.347, P 

> 0.05) and between training data (OOB) and .632+ bootstrap error. (t = 1.581, P > 0.14). The 

optimal number of wavelengths that yielded the lowest OOB error rate (9.65%) and 

misclassification error based on the .632+ bootstrap error measure (15.95%) were selected to 

classify the species.  These wavelengths (n = 10) are located at 966.7 nm, 877.6 nm, 674.1 nm, 

854.8 nm, 703 nm, 732 nm, 718.7 nm, 691.9 nm, 741 nm and 902.7 nm of the electromagnetic 

spectrum. These important wavelengths are similar to those wavelengths selected by the test data 

set except for one wavelength (651.9 nm). 

 

 

Figure 5. 6: FVS for the test data set, training data set using OOB, and the bootstrap error rate. 
The optimal number of wavelengths, which yielded the lowest OOB and bootstrap error is shown 
by an arrow. 

 

5.4.4 Classification accuracy    
 
        Selected optimal wavelengths (n = 10) were used to test the classification accuracy using 

the confusion matrix derived from the OOB error estimation. The confusion matrix includes 

overall accuracy (ACC), KHAT, user‟s accuracy (UA), and producer‟s accuracy (PA) as shown 

in Table 5.2.  The random forest algorithm using resampled AISA Eagle data successfully 

distinguished among increaser species (HH, EC, SA and AD) with an overall accuracy of 
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87.50% and a KHAT value of 0.83 for the test data set. An independent test data set was used to 

test the reliability of the OOB error for the classification accuracy. The difference in overall 

accuracy between the training data and independent test data was less than 3 %.  

 

Table 5. 2: Confusion matrix for 10 wavelengths from the test data set showing the classification 

error obtained for the species (HH, EC, SA and AD). The confusion matrix includes overall 

accuracy, KHAT, user‟s accuracy, and producer‟s accuracy for class pair (n = 6) and over all 

classes 

Classes ACC 
% 

KHAT PA % 
Presence Absence 

UA % 
Presence Absence 

HH vs EC 97.50 0.95 100.00 95.00 95.24 100.00 
HH vs SA 95.00 0.90 95.24 94.74 95.24 94.74 
HH vs AD 97.56 0.95 100.00 95.24 95.24 100.00 
EC vs SA 92.50 0.85 95.00 90.00 90.48 94.74 
EC vs AD 97.50 0.95 95.00 100.00 100.00 95.24 
SA vs AD 92.68 0.85 90.00 95.24 94.74 90.91 
All classes 87.50 0.83 95.24 86.36 86.96 90.48 

 

5.5 Discussion 

 
          This study aimed at discriminating increaser species as indicators of rangeland degradation 

using field spectrometry. The motivation of the study was to investigate whether there is a 

possibility to map the different levels of rangeland condition based on the spatial different 

distribution of increaser species using their reflectance spectra. To achieve this, the utility of 

spectra resampled to AISA Eagle resolution (272 wavelengths) in discriminating among four 

increaser species was tested. 

 

5.5.1 Optimization of ntree and mtry 

 
        Previous studies have shown that RF is sensitive to ntree and mtry parameters (Adam et al., 

2009; Ismail, 2009; Lawrence et al., 2006). Our result in this study confirmed that the high ntree 
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and default setting of mtry (mtry = √variables) yielded the lowest of OOB error rate (14.25%). 

This result is similar to previous studies (Adam et al., 2009; Breiman, 2001; Ismail, 2009; Menze 

et al., 2009; Svetnik et al., 2003) and can be  explained by the fact that the highest number of 

trees allows most of the variables (AISA Eagle bands) to be tested in discriminating the species 

(Breiman, 2001).  

 
5.5.2 Variables importance using the random forest algorithm 
 

            The random forest algorithm and forward variable selection have successfully explored 

and described the relative importance of each individual wavelength and selected the optimal 

number of wavelengths (n = 10) in discriminating increaser species using the OOB method. This 

optimal number of wavelengths (n = 10) yielded the lowest OOB error (9.65%) when compared 

with the entire wavelengths (n = 272), which yielded a 14.25% OOB error rate. This can be 

explained by the fact that in a model-based analysis, redundancy in data can cause convergence 

instability of models due to noise in information that has no relation to the increaser species 

being classified (Adam et al., 2009; Bajcsy and Groves, 2004; Ismail and Mutanga, 2010).  

These 10 wavelengths are located at 966.7 nm, 877.6 nm, 674.1nm, 854.8 nm, 703 nm, 732 nm, 

718.7 nm, 691.9 nm, 741 nm and 902.7 nm   and are  within + 12 nm from known wavelengths 

that have been  reported in previous studies on species discrimination. These known wavelengths 

are 695 nm, 711 nm (Chan and Paelinckx, 2008a), 689 nm (Martin et al., 1998), 670 nm 

(Daughtry and Walthall, 1998), 675 nm (Thenkabail et al., 2004),  676 nm, 713 nm, 723 nm 

(Warner and Shank, 1997), 668 nm, 682 nm, 696 nm, 720 nm (Thenkabail et al., 2000),  670.37 

nm, 695.69 nm, 728.14 nm (Fung et al., 2003), 692 nm (Van Aardt and Wynne, 2007) and 720 

nm (Vaiphasa et al., 2005).  

       It can be noted that, all these wavelengths (n = 10) are located in three different regions of 

the spectrum which include the visible portion (n= 1), the red-edge portion (n= 5) and near-

infrared portion (n = 4) (Figure 5.5).  This confirms the results of previous studies that found that 

green leaves have the greatest variation in the visible, red-edge and near-infrared regions (Asner, 

1998; Schmidt and Skidmore, 2003; Thenkabail et al., 2004; Vaiphasa et al., 2005). Although no 

leaf biochemical characteristics were directly measured in our study, it is likely that the 

occurrence of selected wavelengths in the visible region (400 nm to 700 nm) could be due to 

variation among the increaser species in term of their chlorophyll a and b, b-carotene, a-carotene, 
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and xanthophylls (El-Nahry and Hammad, 2009; Ustin et al., 2009). The variations between 

increaser species in the red-edge region (680 nm to 750 nm) may be due to the chlorophyll 

concentration, nitrogen concentration and water content (Ustin et al., 2009). The differences 

among species in the near-infrared region (700 nm to 1300 nm) can be the result of internal leaf 

structure and water content (El-Nahry and Hammad, 2009; Ustin et al., 2009). 

The evaluation of the reliability of the OOB method as an internal estimate of error rate in 

measuring the importance of the wavelengths using the .632+ bootstrap and test dataset has 

shown that this method is reliable. The estimate of error rates from the test datasets and .632+ 

bootstrap is nearly identical with a slight difference of less than 3% to the OOB method. This 

confirms the findings of previous studies and supports the assertion that, with random forest, it is 

not necessary to have an independent test data set (Lawrence et al., 2006). 

 
5.5.3 Classification accuracy 
 

The optimal wavelengths (n = 10) yielded an overall accuracy of 90 % and a KHAT value of 

0.87 and 92.45 % (90.57) and 92.45% (88.89%) for both the producer and user accuracies, 

respectively. The results offer the possibility of classifying and mapping rangeland degradation 

with a high classification accuracy (90%) based on the distribution of the increaser species. 

      The reliability of the OOB error for the classification accuracy was tested using an 

independent test data set which yielded an overall accuracy of 87.50% and a KHAT value of 

0.83. The difference in overall accuracy between the training data set  and the independent test 

data was less than 3% (Table 5.2), which confirms the stability and reliability of the OOB error 

(Lawrence et al., 2006). The use of the internal error measure could save field data collection 

time by reducing the number of the samples to be collected for validating the performance of RF 

(Lawrence et al., 2006). 

        In summary, the results presented in this study confirm that the RF algorithm is a robust and 

accurate method for the combined purposes of variables selection and the classification of 

hyperspectral data. Overall, this study has demonstrated the possibility of discriminating 

increaser species using resampled data. This finding allows the upscaling of methods to airborne 

sensors such as AISA Eagle for mapping rangeland degradation using increaser species as 

indicators.  
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5.6 Conclusions 

 

The aim of this study was to discriminate between four increaser species: Hyparrhenia hirta, 

Eragrostis curvula, Sporobolus africanus and Aristida diffusa using field spectrometry data, 

resampled to AISA Eagle resolution. Our results have shown that: 

1. These increaser species have a strong potential to be classified accurately when using 

spectrometry data. 

2. The random forest algorithm has several advantages, such as being able to provide better 

performance, reasonable accuracies, and ease of use. 

3. The random forest algorithm, using hyperspectral data, discriminated among four 

increaser species with a high accuracy of 87.50% (KHAT of 0.83). 

4. The random forest algorithm has revealed that greater discrimination power is contained 

in the visible, red-edge and near-infrared regions of the spectrum. The optimal number of 

wavelengths that yielded the lowest OOB error rate are at 966.7 nm, 877.6 nm, 674.1 nm, 

854.8 nm, 703 nm, 732 nm, 718.7 nm, 691.9 nm, 741 nm and 902.7 nm.    

 

The results demonstrated the possibility of discriminating increaser species using hyperspectral 

data, resampled to an airborne sensor. This permits the possibility of upscaling the methods to 

airborne sensors such as AISA Eagle for mapping increaser species areas as an indicator of 

rangeland condition. 
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Chapter (5) has shown the possibility of airborne hyperspectral data (AISA Eagle) to 

discriminate increaser species by identifying specific bands located in the visible, red-

edge, and near-infrared region of the electromagnetic spectrum.  

However, hyperspectral data comes with difficulties in terms of cost and high 

dimensionality. Therefore, in chapter 6, we investigated the potential use of advanced 

multispectral remote sensing such as WorldView data and tested the random forest as a 

classification algorithm, as an alternative, particularly for low income countries. 
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CHAPTER SIX 

 

 

Classifying increaser species as an indicator of different levels of 

rangeland degradation using WorldView-2 imagery 

 

 

 

 

This chapter is based on: 

 

Manssour, K. and Mutanga, O., (In revision). Classifying increaser species as an indicator of 

different levels of rangeland degradation using WorldView-2 imagery. Journal of Applied 

Remote Sensing. 
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Abstract  

The development of new multispectral sensors with unique band settings is critical for mapping 

the spatial distribution of increaser vegetation species in disturbed areas. The objective of this 

study was to evaluate the potential of WorldView-2 imagery for spectral classification of four 

increaser species, namely Hyparrhenia hirta (HH), Eragrostis curvula (EC), Sporobolus 

africanus (SA) and Aristida diffusa (AD) in the Okhombe communal rangelands of South Africa. 

The 8-bands were extracted from the WorldView-2 image and 24 of the most widely used 

vegetation indices in estimating grassland biophysical parameters were calculated. The random 

forest algorithm and forward variable method were applied in order to identify the optimal 

variables (wavelengths and spectral vegetation indices) for classifying the species. Using 6 

wavelengths and a sub set of spectral vegetation indices (n = 9), the random forest algorithm 

could classify species with an overall accuracy of 82% and 90% and a KHAT value of 0.76 and 

0.87 respectively. Three wavelengths selected were located at the new WorldView-2 spectral 

regions of coastal blue, yellow, and the red-edge. There was no significant improvement in 

increaser species classification by using a combination of the raw WorldView-2 bands and the 

spectral vegetation indices. Overall, the study demonstrated the potential of the WorldView-2 

data for improving increaser separability at species level. 

 

Keywords: WorldView-2, increaser species, rangeland degradation, random forest algorithm. 
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6.1 Introduction 

 

Rangeland degradation has been identified as one of the most serious global environmental 

issues (Wessels et al., 2007).Communal rangeland, which occupies roughly 13% of the total 

agricultural land in South Africa, has been characterised by rangeland scientists as being one of 

the areas most severely affected by degradation and arguably, one that is completely out of 

control (Palmer and Ainslie, 2006). This degradation of South African communal rangelands has 

resulted in poor grassland plant quality and quantity when compared with surrounding areas 

(Thompson, 1996; Wessels et al., 2004).  

From an ecological perspective, grassland species have been classified into two categories (i.e. 

increasers and decreasers) based on their grazing value and changes in their relative abundance 

in the presence or absence of grazing (Dobarro et al., 2010). Increaser species are species that 

increase their relative abundance with grazing and therefore indicating that the condition of the 

veld is poor (Dobarro et al., 2010; Van Oudtshoorn, 1992). In South Africa, increaser species 

have been classified into three types, namely Increaser I, Increaser II, and Increaser III (Oluwole 

et al., 2008; Trollope et al., 1990) based on the level of degradation. The spatial distribution of 

the different increaser species can be used to indicate the gradient of rangeland degradation and 

their mapping can direct resource managers to critical areas in need of conservation measures. 

Mapping the general spatial distribution of increaser species over large areas using traditional 

methods is a complex task and requires intensive fieldwork, including the identification of 

species‟ characteristics and the visual estimation of species‟ percentage, all of which are costly 

and time-consuming and are sometimes impossible to accomplish due to the poor accessibility of 

the area (Adam et al., 2009; Muchoney and Haack, 1994). On the other hand, remote sensing 

offers a technologically appropriate technique that is both economic and effective, and is able to 

produce timely and accurate information for use when mapping the spatial distribution of 

increaser species (Ustin et al., 2009). 

Multispectral images have been used for several decades in classifying and mapping vegetation 

(Frank, 1984; Hanafi and Jauffret, 2008; Li et al., 2005; May et al., 1997; Turner et al., 1999). 

However, mapping vegetation in disturbed areas at increaser species level using multispectral 
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data (i.e. Landsat and SPOT) is challenging because of the low spectral resolution of sensors as 

well as spectral overlap between the vegetation species (Harvey and Hill, 2001). Recently, 

hyperspectral remote sensing has been considered as one of the most advanced methods for 

species level classification  as it captures subtle variations  due to many narrow wavelengths of 

less than 10 nm (Thenkabail et al., 2000; Vaiphasa et al., 2007; Van Aardt and Wynne, 2007). 

Imageries from these sensors, such as Hyperion, HyMAP, and AISA Eagle, allow for the 

mapping of vegetation at species levels (Kumar et al., 2001; Mutanga and Skidmore, 2004). 

However, in spite of their ability to provide detailed spectral information, processing 

hyperspectral remote sensing data is challenging due to over fitting when applying statistical 

methods, the excessive need for sufficient field samples, and the high cost of the images (Bajcsy 

and Groves, 2004; Vaiphasa et al., 2007). Furthermore, many hyperspectral wavelengths are 

redundant when it comes to vegetation species studies (Adam et al., 2009; Mutanga and Kumar, 

2007; Mutanga and Skidmore, 2004).  

The development in multispectral sensors, such as WorldView-2 containing key spectral bands, 

has brought about unique opportunities for those wishing to classify vegetation at species level. 

It does this by offering more spectral wavelengths than the traditional broadband satellite images 

while reducing unnecessary redundancy as contained in hyperspectral data (Omar, 2010). The 

WorldView-2 satellite provides better spectral resolution of eight wavelengths, with high spatial 

resolution data of 0.5 m and 2.0 m on the panchromatic and multispectral wavelengths 

respectively (Omar, 2010; Sridharan, 2010). Recently, different studies assessed the utility of 

WorldView-2 data (400-1040 nm) in classifying vegetation species. The results demonstrated the 

feasibility of WorldView-2 data with regard to classifying vegetation species, with overall 

accuracies of above 85% (Dlamini, 2010; Kumar and Roy, 2010; Omar, 2010; Sridharan, 

2010).To our knowledge, no attempt has yet been made to use WorldView-2 images in 

classifying increaser species as indicators of the different levels of land degradation.  

In this study, it is hypothesised that WorldView-2 data offers possibilities with regard to 

increaser species classification. With its capability of new bands (including coastal, yellow, red 

edge, and NIR 2) to resolve lacking spectral features in the traditional sensors (Landsat TM, 

Landsat ETM+ and SPOT), WorldView-2 data can classify increaser species accurately. 
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Previous studies have shown that different statistical methods such as principal component 

analysis, discriminant analysis, and the support vector machine have been successfully applied in 

order to classify plant species (Adam and Mutanga, 2009; Cochrane, 2000; Thenkabail et al., 

2004). A random forest algorithm (RF), developed by Breiman (2001) has recently been used to 

predict or classify features of interest (Adam et al., 2009; Ismail, 2009; Pal, 2005).The random 

forest algorithm is a bagging operation where multiple classification trees are constructed based 

on a random subset of the training data set (ntree) (Breiman, 2001). Each tree is grown to its 

maximum size based on a bootstrap sample from the training data set (approximately 70%) 

without pruning and with a randomised subset of predictors (mtry) so as to determine the best 

split at each node of the tree (Breiman, 2001).The multiple trees then vote by majority on correct 

classification (Lawrence et al., 2006).The random forest algorithm has several advantages when 

compared with other conventional classification trees, such as being able to provide better 

performance, having reasonable accuracies, being relatively easy to implement as well as its 

capability in ranking important prediction variables (Archer and Kimes, 2008; Díaz-Uriarte and 

de Andrés, 2006). We hypothesise that, the integration of the random forest algorithm with 

WorldView-2 data could successfully classify the level of rangeland degradation using increaser 

species as indicators as well as providing an insight on important classification bands from the 

WorldView imagery. 

The objective of this study was therefore to investigate the potential use of Digital Globe 

WorldView-2 imagery and the random forest algorithm in distinguishing between four increaser 

species (Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa) in the 

Okhombe communal rangeland of South Africa. The specific objectives of this paper were: (1) to 

determine if four increaser species could be distinguished from each other using the WorldView-

2 bands; (2) to investigate whether spectral vegetation indices computed from WorldView-2 

imagery can improve  classification accuracy; (3) to determine whether a combination of the raw 

bands and the vegetation indices improve the increaser species classification and, (4) to ascertain 

and rank the importance of bands and indices extracted from WorldView-2 imagery using the 

random forest algorithm. 
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6.2 Material and methods 

6.2.1 Image acquisition and pre-processing 
 

In this study, the WorldView-2 high resolution satellite with 8-multispectral bands at 2.0 m 

resolution, as provided by DigitalGlobe® and covering the Okhombe communal rangeland, was 

used to classify increaser species (Table 6.1). The image was acquired on 24 February 2011 at 

08:20:39 GMT. The image acquisition period was found to be the best acquisition time because 

the vegetation was green. The WorldView-2 is a sunsynchronous orbital satellite located at 770 

km altitude. The image scenes were atmospherically corrected using quick atmospheric 

correction procedure in ENVI 4.7.  

 

Table 6. 1: Spectral wavelengths‟ properties for WorldView-2 multispectral imagery 

 
WV-2  Band Region name  Centre band (nm) 

1 Coastal blue (400-450 nm) 427 

2 Blue (450-510 nm) 478 

3 Green (510-580 nm) 546 

4 Yellow (585-625 nm) 608 

5 Red (630-690 nm) 659 

6 Red-edge (705-745 nm) 724 

7 NIR 1(770-895) 831 

8 NIR 2 (860-1040 nm) 903 

 
 
6.2.2 Field data collection 
 

Field data collection was carried out in February 2011 in the Okhombe communal rangeland. 

This was done so as to collect the ground control points of four increaser species, namely HH, 

EC, SA and AD. The Leica GS20 sub-meter GPS yielding an accuracy of between 0 m to 0.246 

m after the post-processing differential correction was used. A vegetation polygon was defined 
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as covering 10 m × 10 m (Figure 6.1), where the target species (n = 4) were more homogenous 

and were representative of more than 80% of the target species in each plot. In order to obtain 

accurate reference data, the central point of each geographic position plot was also recorded. 

This method resulted in 50 to 56 polygons for each target species (n = 4). The polygons 

measurements were then used as reference data for generating areas of interest. The polygons 

were then overlaid on the true colour composite WorldView-2 image to extract the pixels‟ 

spectra (2 m × 2 m) using Environment for Visualising Images (ENVI) software (ENVI, 2006). 

In this study, only pixels that fell completely within the measured polygons were used in the 

reference dataset so as to minimise variability and exclude mixed pixel effects of other grass 

species (Adam, 2010; Peckham et al., 2008). The field data for each polygon was thus averaged 

to represent one sample, and was then used for analysis (Figure 6.2).  

 

 

Figure 6. 1: Vegetation plot of 10 m × 10 m demarcated using a measuring tape and the centre 
point recorded using the Leica GS20 sub-meter GPS. 
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Figure 6. 2: Mean r eflectance sp ectrum data for Hyparrhenia hirt a (HH), Eragrostis c urvula 
(EC), Sporobolus africanus (SA) and Aristida diffusa (AD) using WorldView-2 imagery. 
 

 

6.2.3 Spectral vegetation indices 
 
Spectral vegetation indices based on absorbance and reflectance in the visible and NIR regions 

have been widely used for species classification (Blackburn, 1998; Gitelson et al., 2005).In this 

study, 24 dif ferent vegetation indices were calculated fr om the spec tral values extracted from 

WorldView-2 im agery for the three diff erent regions (visible, r ed-edge, and near-infrared) in  

order to enhance the classification a ccuracy. Th ese indi ces were se lected be cause it  ha s been 

proved that the y a re sensitive to biophysical parameters such a s chlorophyll content, leaf area 

index, photos ynthetic activity, and biom ass, all of  which va ry pe r spec ies (Blackburn, 1998 ; 

Gitelson et a l., 2002 ; Penuelas et a l., 1995 ).Vegetation index names, abbreviations, equations, 

and the references for each index are listed in Table 6.2 below. 

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6V-4VH8Y5J-1&_user=3002350&_coverDate=04%2F15%2F2009&_alid=1713537593&_rdoc=27&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5824&_sort=r&_st=0&_docanchor=&_ct=10859&_acct=C000058881&_version=1&_urlVersion=0&_userid=3002350&md5=f845b119f8f8b2107550b4296bb2d0ac&searchtype=a#tbl3
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Table 6. 2: Summary of WorldView-2-derived vegetation indices used in this study 

 
No Vegetation index name Abbreviation Equation Reference 

 
1 Simple Ratio SR Rnir1/Rred (Gitelson and Merzlyak, 

1993) 
2 Modified Simple Ratio MSR (Rnir1 − Rblue)/(Rred − Rblue) (Sims and Gamon, 2002) 
3 Normalised Difference 

Vegetation Index 
NDVI Rnir – Rred/Rnir + Rred (Rouse, 1974) 

4 Transformed Vegetation Index TVI √Rnir1 – Rred/Rnir1+Rred +0.5 (Deering et al., 1975) 
5 Normalised Difference Index NDI (Rnir1 – Rred)/ (Rnir1 + Rred) (Sims and Gamon, 2002) 
6 Modified Chlorophyll 

Absorption inReflectance 
Index 

MCARI [(Rred-edge–Rred)–0.2(Rred-edge– 
Rgreen)](Rred-edge/Rred) 

(Daughtry et al., 2000) 

7 Transformed Chlorophyll 
Absorption inReflectance 
Index 

TCARI 3[(Rred-edge–Rred)–0.2(Rred-edge– 
Rgreen)(Rred-edge/Rred)] 

(Haboudane et al., 2002) 

8 Visible Atmospherically 
Resistant Index 

VARI (Rgreen-red)/(Rgreen+Rred-Rblue) (Gitelson et al., 2002) 

9 Visible Green Index  VGI (Rgreen-Rred)/(Rgreen+Rred) (Gitelson et al., 2002) 
10 Green Normalised Difference 

Vegetation Index 
GNDVI (Rnir1-Rgreen)/(Rnir1+Rgreen) (Gitelson and Merzlyak, 

1996) 
11 Structure-Insensitive Pigment 

Index 
SIPI (Rnir1–Rblue)/(Rnir1–Rred-edge) (Penuelas et al., 1995) 

12 Pigment Specific Simple Ratio 
(Chlorophyll a) 

PSSRa Rnir1/Rred-edge (Blackburn, 1998) 

13 Pigment Specific Simple 
Ratio(Chlorophyll b) 

PSSRb Rnir1/Rred (Blackburn, 1998) 

14 ModifiedNormalised 
Difference 

MND (Rnir1–Rblue)/(Rnir1+Rred-edge–2Rblue) (Sims and Gamon, 2002) 

15 Plant Senescence Reflectance 
Index 

PSRI (Rred-edge–Rblue)/Rnir1 (Merzlyak et al., 1999) 

16 Renormalised Difference Index  RDI (Rnir1-Rred)/(Rnir1+Rred)½ (Roujean and Breon, 1995) 
17 Green Index GI (Rnir1/Rred) - 1 (Gitelson et al., 2005) 
18 Enhanced Vegetation Index EVI 2.5 *((Rnir1 − Rred)/ 

(Rnir1+ 6* Rred −7.5* Rblue + 1)) 
(Huete et al., 1999) 

19 Red Index RI (Rnir1/Rred) -1 (Gitelson et al., 2005) 
20 Modified Simple Ratio* MSR* (Rnir1/Rred-1)/((Rnir1/Rred)½+1 (Chen, 1996) 
21 Non-Linear Index NLI Rnir²-Rred)/(Rnir²+Rred) (Goel and Quin, 1994) 
22 Atmospherically Resistant 

Vegetation Index 
ARVI (Rnir2-(2*Rred-Rblue))/(Rnir2+(2*Rred-

Rblue) 
(Kaufman and Tanre, 1992) 

23 Carotenoid Reflectance Index CRI (1/Rblue)-(1/red-edge) (Gitelson et al., 2002) 
24 Ratio Vegetation Index RVI Rred/Rnir1 (Richardson and Wiegand, 

1977) 
R= Reflectance 
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6.2.4 Statistical analysis 
 

6.2.4.1 The random forest algorithm (RF) 

 
The random forest algorithm was used to measure the importance of every WorldView-2 band 

and index in classifying the increaser species and also to select the optimal number of bands for 

better classification accuracy (Adam et al., 2009). Random forest is a machine learning algorithm 

and forest-based method developed by Breiman (2001) to overcome the instability of traditional 

tree-based methods. The algorithm generates multiple bootstrap samples from the original 

training data set with a replacement to create multiple classification trees (ntree). Each tree is 

grown to its maximum size (without being pruned) and uses a randomised subset of predictors 

(mtry) to determine the best split at each node of the tree (Breiman, 2001). The classification 

trees in the ensemble then vote by plurality on the correct classification. The functional details of 

the random forest algorithm can be found in (Breiman, 2001; Ismail, 2009; Lawrence et al., 

2006; Pal, 2005). 

The RF algorithm provides three independent variable importance measures: the permutation 

accuracy importance measure, the Gini importance measure, and the number of times that each 

variable is selected (Breiman, 2001). The permutation accuracy importance measure is 

considered to be the best measure in random forests because of its ability to assess the variable 

importance, which relies on mean decreases in accuracy as measured using the out-of-bag (OOB) 

samples (Breiman, 2001). The OOB error produces a measure of the importance of the variables 

by comparing how much the OOB error of estimate increases when a variable is permutated 

whilst all other variables are left unchanged (Archer and Kimes, 2008). In this study, the 

importance of each WorldView-2 band in classifying the increaser species is determined using 

OOB estimates of classification error. Each tree is built based on a bootstrap sample of 

reflectance of WorldView-2 band and about 1/3 of the original data are left out of the sample in 

the tree construction (OOB) (Breiman, 2001). These modified OOB data are then passed down 

each tree so as to obtain a new estimation of the classification error for that bootstrap sample. 

The difference between the misclassification rate for the modified and original OOB data over all 

the trees that are grown in the forest was then averaged to measure the importance of the 
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variables (WorldView-2 bands). The variable importance measurement was then used as a 

ranking index (mean decrease in accuracy) to identify the bands that are able to better classify 

the increaser species (Archer and Kimes, 2008; Díaz-Uriarte and de Andrés, 2006). 

The R software package was used to carry out the random forest algorithm (R  Development  

Core Team, 2008). The two RF parameters –mtry and ntree– were optimised based on the OOB 

estimate of error rate in order to obtain the highest classification accuracy  (Breiman, 2001). The 

ntree values were tested from a default setting of 500 to 10,000 trees with intervals of 500 

(Adam et al., 2009), while the mtry values were optimised by creating random forest ensembles 

using all possible mtry values (2), (3), and (5) for WorldView-2 bands (n = 8), vegetation indices 

(n = 24) and combined vegetation indices and bands (n = 32) respectively. 

6.2.4.2 Forward variable selection 

  

A limitation of the random forest algorithm, when it comes to measuring importance of 

variables, is that it does not automatically select the optimal number of variables that produce the 

best classification accuracy (Adam et al., 2009). The technique of forward variable selection 

(FVS) (Guyon and Elisseeff, 2003) was thus implemented so as to determine the best 

wavelengths and the least number of vegetation indices based on the random forest measurement 

of variables‟ importance (Ismail, 2009). Forward variable selection builds randomly numerous 

random forests with repetitions on all the ranked bands (n = 8), vegetation indices published in 

the literature (n = 24), and combined vegetation indices and bands (n = 32). At each iteration, 

one variable (band and vegetation index) was added, and the error was calculated using the OOB 

estimate method. 

6.2.4.3 Image classification  

 

The bands that yielded the lowest OOB error were used as input variables in the random forest 

algorithm developed in the R package for classifying increaser species. Studies have indicated 

that the OOB error is a suitable measure of accuracy since it provides an unbiased estimate of 

error (Archer and Kimes, 2008; Breiman, 2001; Lawrence et al., 2006; Peters et al., 2007). A 

confusion matrix was constructed so as to compare the true class with the class assigned by the 
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classifier and to calculate the overall accuracy as well as the producer‟s and user‟s accuracies. 

The producer‟s accuracy is computed by splitting the number of correctly classified trees in each 

crown condition class by the number of data sets used for that class (column total in the 

confusion matrix). User‟s accuracy is calculated by dividing the number of correctly classified 

trees by the total number of trees that were classified in that crown condition class (row total in 

the confusion matrix) (Ismail, 2009). In addition, a discrete multivariate technique, called Kappa, 

was used in accuracy assessment. The result of the Kappa analysis is the KHAT statistic, which 

was calculated in order to determine if one error matrix is significantly different from another 

(Cohen, 1960). If the Kappa (K) coefficients are one or close to one, then there is perfect 

agreement for the training. 

6.3 Results  

6.3.1 Model optimisation 
 

The results of optimising random forest parameters (ntree and mtry) at each split has shown that, 

the default setting of mtry (2, 5, and 5) and a large number of ntree (4000, 4500, and 5000) 

yielded the lowest and most stable OOB error rates (20.53%, 12.06%, 14.89%) for WorldView-2 

bands, vegetation indices published in the literature and combined bands and vegetation indices 

respectively (Table 6.3).The results show that changes in ntree and mtry parameters influence the 

OOB error. This optimisation was thus adopted for the classification of the study‟s four increaser 

species.  

 

Table 6. 3: Random forest parameter (ntree) optimisation based on the default setting of mtry 

using the OOB estimate of error rate 

 
 Variables Number of 

variables 
Model optimisation 
ntree             mtry 

OOB estimate of 
error rate (%) 

1 WorldView-2 band 8 4000 2 20.53 
2 VIs published in literature 24 4500 5 12.06 
3 Combined bands and 

vegetation indices. 
32 5000 5 14.89 
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6.3.2 Variables importance using the random forest algorithm 

 

The random forest algorithm was applied in order to measure the relative importance of each 

band (n = 8) as well as the vegetation indices published in the literature (n = 24) for classifying 

the increaser species. These variables (bands and vegetation indices published in the literature) 

yielded an OOB error rate of 20.53% and 12.06% respectively. The mean decrease in accuracy 

was then applied to rank the bands and vegetation indices. The results indicated that the most 

important bands (n = 6) and vegetation indices (n = 9) were those with the highest mean decrease 

in accuracy. These bands were located in the coastal blue, blue, green, yellow, red and red-edge 

portions of the electromagnetic spectrum. In order to obtain better classification accuracy, we 

combined both vegetation indices and individual bands (n = 32). The combined bands and 

vegetation indices (n = 32) yielded an OOB error rate of 14.89%.The most important variables 

(bands, vegetation indices and combined bands and vegetation indices) were those with the 

highest mean decrease in accuracy (Figure 6.3). 
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(A) 

 
(B) 

 
(C) 

 
 
 

Figure 6. 3: The important variables bands (A), vegetation indices (B), and combined bands and 
vegetation indices (C) in classifying increaser species as selected by the random forest algorithm. 
The important variables have the highest mean decrease in accuracy. 
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6.3.3 Variable selection using the OOB method 

 

Based on the random forest ranking, the FVS method was performed for the full WorldView-2 

bands (n = 8), spectral vegetation indices (n = 24) and combined bands and vegetation indices (n 

= 32) in classifying the four increaser species (HH, EC, SA and AD).The 6 most important bands 

ranked by the OOB error yielded the lowest OOB error (17.36%) (Figure 6.4-A), as compared to 

the use of the entire bands (n = 8), which yielded 20.53%. These bands were located in the 

coastal blue (400 nm to 450 nm), blue (450 nm to 510 nm), green (510 to 580 nm), yellow (585 

nm to 625 nm), red (630 nm to 690 nm) and red-edge (705 nm to 745 nm) regions of the 

electromagnetic spectrum. A subset of 9 spectral vegetation indices published in the literature as 

shown in Figure 6. 4-B resulted in the lowest OOB error (9.93%), as compared to the use of the 

entire vegetation indices (n = 24) (12.06%). These indices include VGI, VARI, MSR-1, MND, 

SIPI, TCARI, SR, PSRI and MCARI. Combined bands and vegetation indices produced an OOB 

error of 14.89%. Therefore, the FVS method was implemented on these combined bands and 

vegetation indices (n = 32) to select the optimal subset of indices. Ten vegetation indices were 

selected with the smallest OOB error (10.64%)  as shown in Figure 6.4-C. Nine of these 

vegetation indices are similar to those vegetation indices published in the literature and selected 

in the first step (VGI, VARI, MSR-1, MND, SIPI, TCARI, SR, PSRI, MCARI and GI).The 

results indicated that  most of the vegetation indices that could distinguish between increaser 

species, were calculated from the bands located at the blue, green, red, and red-edge portions. 

The optimal variables of bands (n = 6), vegetation indices (n = 9) and combined bands and 

vegetation indices (n = 10) were then used for further classification.  
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(A) 

 
(B) 

 
(C) 

 
 
 

Figure 6. 4: A subset of variables (bands (A), vegetation indices (B), and combined vegetation 
indices with bands (C)) selected by forward variable selection according to their OOB estimate 
of error. The black arrows show the most important variables used for classification accuracy. 
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6.3.4 Classification accuracy   

 

Table 6.4 illustrates the confusion matrix derived from the OOB error estimation for 

WorldView-2 bands (n = 8), spectral vegetation indices (n = 24) and combined bands and 

vegetation indices (n = 32).This matrix includes overall accuracy (ACC), KHAT, user‟s accuracy 

(UA) and producer‟s accuracy (PA). When all the generated WorldView-2 bands (n = 8) were 

used to test the classification accuracy, the random forest algorithm, which used WorldView-2 

data, successfully distinguished the four increaser species (HH, EC, SA and AD) with an overall 

accuracy of 79.50% and a KHAT value of 0.73. On the other hand, when utilising the top 6 

wavelengths, the random forest algorithm explained 82% of the overall accuracy and gave a 

KHAT value of 0.76. Table 6.4 shows results of the random forest algorithm for all vegetation 

indices (n = 24) and the most important vegetation indices (n = 9). When all generated vegetation 

indices (n = 24) were used, the random forest algorithm accounted for 87.50% of the overall 

accuracy and 0.83 of the KHAT value. On the other hand, when utilising the subset of 9 

vegetation indices, the random forest algorithm explained 90% of the overall accuracy and 0.87 

of the KHAT value.  The top 10, derived from the combined bands and vegetation indices, 

accounted for an accuracy of about 89.36% with the KHAT value of 0.86. Utilizing all the 

combined bands and vegetation indices (n = 32) produced an overall accuracy of 85.11% with a 

KHAT value of 0.80 (Table 6.4). 

Table 6. 4: Confusion matrix for different variables showing the classification error obtained for 

the species HH, EC, SA and AD. The confusion matrix includes overall accuracy (ACC), 

KHAT, producer‟s accuracy (PA), and user‟s accuracy (UA) 

 
Accuracy assessment Band Published VIs Combined bands+ 

VIs 
Top 6 Full dataset Top 9 Full dataset Top 10 Full dataset 

ACC (%) 82.00 79.50 90.00 87.50 89.36 85.11 
KHAT 0.76 0.73 0.87 0.83 0.86 0.80 
PA (%) 92.00 84.00 91.00 88.00 96.00 90.00 
UA (%) 92.00 84.00 90.00 87.00 96.00 90.00 

 



115 
 

6.4 Discussion 

 

This study aimed at classifying four vegetation species associated with rangeland degradation, 

namely Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa in the 

Okhombe communal grazing lands. The motivation for the study was to investigate the ability of 

the new 8-band imagery in classifying the four increaser species when using the random forest 

algorithm. 

 

6.4.1 Variables importance using the random forest algorithm 
 

The importance of the variables (bands and spectral vegetation indices) in increaser species 

classification as measured by the random forest algorithm was ranked, and forward variable 

selection was carried out in order to reduce the number of variables that could discriminate 

increaser species for the sake of better classification. The results show that the random forest and 

forward variable selection successfully selected the optimal number of bands (n = 6) based on 

the OOB method. This optimal number of bands (n = 6) yielded a lower OOB error (17.36%) 

than did all the wavelengths (n = 8), which yielded a 20.53% OOB error rate. These bands (n = 

6) are located at the visible portion in the coastal blue, blue, green, yellow, red, and red-edge 

position. Three bands are located at conventional regions of blue, green and red, while the other 

three bands are located at the new WorldView-2 regions of coastal blue, yellow and red-edge. 

Most of the optimal bands (n = 5) are located in the visible portion (450 nm to 690 nm).This is 

due to variations amongst the increaser species on chlorophyll a and b, b-carotene, a-carotene, 

and xanthophylls (Ustin et al., 2009). The variation in spectral reflectance of these species in the 

red-edge portion (705 nm to 745 nm) may be due to significant variations in internal leaf 

structure and water content (El-Nahry and Hammad, 2009; Ustin et al., 2009). These results are 

comparable to those of Dlamini (2010) and Omar (2010), who stated that the potential usefulness 

of the WorldView-2 visible and red-edge portions can distinguish amongst different vegetation 

species. The results (as shown in Figure 6.4-B and 6.4-C) show a subset of 9 and 10 spectral 

vegetation indices, which were selected in order to classify the four increaser species with the 

lowest OOB error (9.93%) and (10.64%), in comparison with the use of all the vegetation indices 
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(n = 24) (12.06%) and all combined bands and vegetation indices (n = 32) (14.89%). These 

vegetation indices included VGI, VARI, MSR-1, MND, SIPI, TCARI, SR, PSRI, MCARI and 

GI. These results are comparable to those from previous studies, which showed that the subset of 

a few variables (bands and vegetation indices) based on random forest selection produced a high 

degree of accuracy when compared with those based on the full data set (Adam et al., 2009; 

Ismail, 2009). Most of the significant differences in vegetation indices published in the literature, 

were computed using a combination of bands located at green, yellow, red-edge and NIR2. 

These optimal spectral vegetation indices (n = 9) that yielded the highest classification accuracy 

could be due to the relatively high variance of plant biochemical and biophysical properties such 

as chlorophyll content and green biomass (Daughtry et al., 2000; Gitelson and Merzlyak, 1993; 

Gitelson et al., 2002; Green et al., 1997; Merzlyak et al., 1999). 

In this study, the random forest algorithm was used as a variable selection method for reducing 

the number of the WorldView-2 bands that are used for better classification. The successful use 

of this algorithm for the classification of increaser species with only a few bands confirmed its 

utility as a variable selection method (Lawrence et al., 2006). As shown in Table 6.4, the 

increaser species have a greater potential for being distinguished from others (82%, 89.36% and 

90% of overall accuracy) when using a random forest classifier. This result confirms the 

assertions of previous studies (Chan and Paelinckx, 2008b; Lawrence et al., 2006; Pal, 2005) that 

have reported that the random forest algorithm has been applied in remote sensing image 

classifications with much better performance. 

Specifically, the most important 9 vegetation indices indicate the best classification of increaser 

species. Therefore, these results are consistent with the previous studies that have found that 

WorldView-2 imagery, with its high spatial resolution and new bands of coastal, yellow, red 

edge and NIR 2, has great potential in terms of classifying and mapping vegetation species 

(Borel, 2010; Dlamini, 2010; Omar, 2010; Wolf, 2010).  

 
6.4.2 Classification assessment 
 

Estimated overall accuracy based on OOB estimate of error rate for the optimal bands (n = 6), 

optimal vegetation indices reported in the literature (n = 9), and optimal combined bands and 

vegetation indices (n = 10) yielded overall accuracies of 82% (KHAT= 0.76), 90% (KHAT= 

0.87), 89.36% (KHAT= 0.86) and from 84% to 92% for both producer and user accuracies 
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respectively (Table 6.4). These results were particularly remarkable when compared with the use 

of a full data set of bands (n = 8), vegetation indices (n = 24) and optimal combined bands and 

vegetation indices (n = 32) which yielded overall accuracies of 79.50% (KHAT = 0.73), 87.50% 

(KHAT = 0.83), 85.11% (KHAT = 0.80) and from 84% to 90% for both producer and user 

accuracies respectively (Table 6.4). There was no improvement in increaser species classification 

by using combined bands and vegetation indices (89.36%).  Increasing the number of redundant 

variables introduces noise to the model and thereby decreases the model‟s stability and accuracy 

(Bajcsy and Groves, 2004; Price et al., 2002). The successful use of the random forest algorithm 

for classifying increaser species, with a subset of only a few wavelengths and vegetation indices, 

confirmed its utility as a feature selection method (Lawrence et al., 2006). 

In summary, the results from the present study demonstrate the possibility of classifying 

increaser species using WorldView-2 data and also confirm that the random forest algorithm is a 

robust, effective and accurate method for both variables‟ selection and classification application. 

 

6.5 Conclusions  

In this study a multispectral WorldView-2 satellite image was used to classify the four increaser 

species in the Okhombe communal rangelands of South Africa. The study indicates the 

feasibility of using WorldView-2 data since it yielded an accuracy of 82%, 90% and 89.36% for 

raw bands (n = 8), vegetation indices (n = 24) and combined bands and vegetation indices (n = 

32) respectively. The following conclusions can be drawn from this study: 

1. The high spatial resolution that is offered by multispectral WorldView-2 satellite imagery 

can be used to identify the relatively huge variability in plant species, especially in a 

small area. 

2. The new WorldView-2 bands are potentially useful and applicable in increaser species 

classification. 

3. Selected spectral vegetation indices yielded better classification accuracy when compared 

with individual WorldView-2 bands and the combined dataset. 

Overall, the classification of increaser species represents different levels of rangeland 

degradation. In this regard, we expect that the results of this study can be used to support 

precision rangeland analysis with regard to, for example, the separability of increaser species, the 
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estimation of grazing value, and the measuring of biophysical characteristics. These applications 

can be further enhanced by developing methods to map the spatial distribution of rangeland 

degradation in disturbed areas. 
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In this chapter (6), new worldview imagery, with unique band settings was evaluated to 

discriminate increaser species. The results showed that the optimal bands (n = 6) for 

discriminating increaser species are located in the visible portion, and red-edge portion 

of the electromagnetic spectrum. Three of these bands are located at the new WorldView-

2 regions of coastal blue, yellow and red-edge. The results also showed the reliability 

and robustness of the random forest algorithm as a variable selection and classification 

algorithm in discriminating increaser species. 
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CHAPTER SEVEN 

 

 

The application of earth observation techniques for identifying 

different levels of rangeland degradation based on increaser species: 

A synthesis 
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7.1 Introduction 

 
South Africa‟s rangelands are an ecological ecosystem which provides habitats for wildlife 

animals and grazing ground for domestic livestock (Sheona, 2003; Tainton, 1999; Wessels et al., 

2008). Communal rangelands, which occupy roughly 13% of the total agricultural land in South 

Africa, have been characterised by rangeland scientists as one of the areas most severely affected 

by degradation and arguably as being completely out of control (Palmer and Ainslie, 2006). A 

total of 4.8% of South African land (i.e. 5.8 million ha) has been identified as being degraded 

due to its low vegetation cover when compared with surrounding areas (Thompson, 1996). The 

greatest areas of extensively degraded land coincide with the moderately to severely degraded 

communal rangelands where there is a considerable population of South African livestock 

(Hoffman and Todd, 2000; Reid and Vogel, 2006).   

Several South African studies have focused on rangeland degradation assessment using different 

indicators such as soil properties and vegetation quality (Conant and Paustian, 2002; Greenwood 

and McKenzie, 2001; Reeder and Schuman, 2002; Zhao et al., 2007). Although these studies 

achieved differing degrees of success for rangeland degradation assessment, one of the 

drawbacks and limitations of these studies is that they mainly focused on identifying degraded 

and non-degraded areas (Hill et al., 2008; Wang et al., 2010b; Wessels et al., 2008). Although 

these studies were able to draw the line between the two classes, they do not allow the 

classification of different levels of rangeland degradation using indicators that can easily and 

directly be detected and monitored. Such a classifying and monitoring system allows rapid 

assessment and also proactively adopts the most appropriate course of intervention where 

necessary. Vegetation species are sensitive and well adapted to specific growth conditions, and 

their quality and quantity reduce or increase according to changes in the growth conditions, 

therefore it can be used as an indicator of an ecosystem‟s functions and characteristics (Nordberg 

and Allard, 2002; Van Oudtshoorn, 1992). Recently, the development of earth observation 

techniques allows for the detection of small vegetation units (less than 2 m). These techniques 

have the potential for identifying different levels of degradation based on vegetation species that 

are indicators of rangeland degradation (e.g. increaser species).    

.    
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In South Africa, grassland species have been classified into two categories – increasers and 

decreasers – so as to assess rangeland degradation based on the grazing value and relative 

abundance of the species in the presence or absence of grazing (Dobarro et al., 2010). Rangeland 

increaser species increase their relative abundance with overgrazing and therefore their 

dominance indicates that the rangeland is in poor condition (Dobarro et al., 2010; Van 

Oudtshoorn, 1992). Increaser species have been classified into three types, namely increaser I, 

increaser II, and increaser III (Oluwole et al., 2008; Trollope, 1990). The relative abundance and 

distribution of the different increaser species can be used to indicate the gradient of rangeland 

degradation (Oluwole et al., 2008; Trollope, 1990; Van Oudtshoorn, 1992) (Table 7.1). 

It can therefore be seen that up-to-date spatial information about increaser species is essential for 

classifying rangeland condition into the categories of poor, moderate and high degradation. To 

our knowledge, no attempt has yet been made to use remote sensing to map increaser species as 

indicators of the different levels of rangeland degradation. 

Mapping the general spatial distribution of vegetation species over large areas using traditional 

methods is costly and time-consuming and is also sometimes impossible to accomplish due to the 

inaccessibility of certain areas (Adam et al., 2009; Muchoney and Haack, 1994). On the other 

hand, remote sensing offers a technologically appropriate technique that is both economical and 

effective and is moreover able to produce timely and accurate information for use when mapping 

the spatial distribution of vegetation species (Ustin et al., 2009). The aim of this study was to 

investigate the potential use of remote sensing for mapping those increaser species – namely 

Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa – that indicate 

different levels of rangeland degradation in the communal rangelands of South Africa.  
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Table 7. 1: Visual indicators of Okhombe rangeland degradation based on different increaser 

species 

Indicator 
species 

Common 
name 

General characteristics Grazing 
value* 

Visual indicators of 
rangeland degradation 

Degradation 
stage 

Increaser 
I (HH) 

Thatching 
grass 

A relatively dense, perennial 
tufted grass. Spikelets are covered 
with white to grey hairs. Culms 
300-1,500 mm tall. Leaf blade 1-4 
mm wide. Flowers from 
September to March.  

5 Bare soil on cattle 
access routes, 
accumulations of soil 
around trees and fences, 
dust storm, and muddy 
waters. 

Poor 

Increaser 
II (EC, 
SA) 

EC: 
Weeping 
lovegrass 

 

SA: 
Ratstail 
Dropseed 

EC: Densely perennial tufted 
grass. Inflorescences are mostly an 
open panicle. Spikelets are dark 
grey to dark olive green. Culms 
300-1,200 mm tall. Leaf blade up 
to 4 mm wide. Flowers from 
August to June. 

SA: Perennial tufted grass. Long 
panicle with a pointed tip. Culms 
280-1,500 mm tall. Leaf blade 1-4 
mm wide. Flowers from October 
to April.  

3-5 Barren spot, sandy layer 
on soil surface, Vetiver 
grass, damaged swales, 
and sedimentation in 
streams. 

Moderate 

Increaser 
III (AD) 

Iron grass A tufted perennial grass. Leaves 
are hard, narrow and rolled. 
Inflorescences are a spare, 
expanded and open panicle. Culms 
300-800 mm tall. Leaf blade up to 
2 mm wide. Flowers from 
November to April. 

0 Bare soil, eroded slope, 
rills, gullies, exposed 
roots, Dongas, and 
parent material (stones). 

High 

* Van Oudtshoorn (1992) 

The specific objectives in this study were as follows: 

1. To evaluate the abundance and distribution of the increaser species and 

different levels of rangeland degradation in the Okhombe communal lands 

and compare it with the Cathedral Peak conservation area using a veld 

condition assessment technique;  

2. To assess the utility of in situ spectroscopic data in discriminating between 

four different increaser species; 

3. To investigate whether or not canopy reflectance spectra, resampled to 

AISA Eagle spectral resolution, could be used to discriminate between the 

four increaser species; and 
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4. To investigate the potential use of the new 8-band WorldView-2 imagery 

in classifying the four increaser species. 

7.2 Rangeland condition assessment using vegetation abundance and 
composition 

An improved understanding of the indicators of rangeland degradation as well as the best 

response to disturbance is essential for the creation of effective management plans and 

conservation policies. We evaluated rangeland condition using indicators of vegetation species 

(decreaser, increaser I, increaser IIa, increaser IIb, increaser IIc and increaser III) and soil 

properties (phosphorus, potassium, calcium, magnesium, pH, zinc, manganese, copper, organic 

matter and nitrogen) to discriminate between degraded and non-degraded rangeland within the 

Okhombe rangeland (dominated by increaser species) and the conserved area of Cathedral Peak 

(dominated by decreaser species) (Chapter 3). Four indicators of rangeland condition were 

tested: veld condition, basal cover, species diversity, and soil properties. The results revealed that 

the condition of the rangeland was good (86.6%) in the conserved site and poor (35.2% and 

36.4%) in the degraded sites. The basal cover scores indicated that the degraded sites of the 

Mpameni and Ngubhela yielded a high basal cover (19.65% and 20.78%) but they were in poor 

condition (< 36.4%) and the conserved site was well covered (14.83%). Species diversity ranged 

from high in conserved sites (3.16) to slightly moderate in degraded sites (2.48 and 2.34) (Table 

7.2).  

Table 7. 2: Veld condition score, veld condition, basal cover, Shannon‟s diversity index (H') and 

Evenness (E) for each ecosystem (i.e. conserved, rehabilitated and degraded) 

 
Technique  Conserved 

Cathedral Peak 
Rehabilitated Degraded 
Mpameni Ngubhela Mpameni Ngubhela 

Veld condition (%)  86.6 42.4 46.7 35.2 36.4 
Basal cover (%)  14.83 15.06 16.87 19.65 20.78 
Shannon‟s index (H')  3.16 2.82 2.51 2.48 2.34 
Evenness (E)  0.94 0.87 0.78 0.78 0.75 

 

The results of the soil analysis showed that there was a significant difference (P < 0.05) between 

degraded and non-degraded rangeland in terms of the soil properties of P, K, pH, Mn, Org. C and 
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N.  However, there were no significant differences in Mg, Zn and Cu between the degraded, 

rehabilitated and conserved sites. We therefore concluded, making use of our knowledge of 

species composition, that a veld condition assessment based on the relative abundance of 

decreaser and increaser (I, II and III) grass species may be useful in terms of mapping different 

levels of rangeland degradation. However, the use of the benchmark technique to evaluate veld 

condition is considered to be time consuming. We therefore investigated the potential usefulness 

of remote sensing data to classify different types of increaser species in order to identify different 

levels of rangeland degradation. 

7. 3 Are increaser species spectrally different?  

To answer this question, reflectance measurements were collected from four increaser species – 

namely Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa – at 

canopy level using the Analytical Spectral Devices (ASD) FieldSpec® 3 wavelength ranging 

from 350 nm to 2500 nm (Chapter 4). Conventional statistical techniques such as one-way 

ANOVA, stepwise discriminant function analysis and canonical function analysis were 

implemented to discriminate between the various species. The results of one-way ANOVA 

showed that there was a significant difference (P < 0.05) in the spectral reflectance between the 

four increaser species (n = 439). The significant wavelengths (439) are located in the three 

different regions of the electromagnetic spectrum, namely the visible (18 wavelengths), red-edge 

(71 wavelengths) and near-infrared (350 wavelengths) regions (Figure 7.1).  
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Figure 7. 1: Frequency of statistical differences using ANOVA with a 95% confidence level (P 
< 0.05) between the mean reflectance of four species (Hyparrhenia hirta, Eragrostis curvula, 
Sporobolus africanus and Aristida diffusa). The maximum grey shading shows the wavelengths 
where all four species can be discriminated. Spectral features between 1351 nm and 1439 nm, 
1791 nm and 1989 nm, and 2361 nm and 2500 nm were removed due to excessive noise. 

 

The results of the frequency analysis of statistical differences showed that in the mid-infrared 

region, there was no wavelength that could be used to discriminate between all the class pairs (n 

= 4) (Figure 7. 1). The significant wavelengths (n = 439) were used in a subsequent analysis to 

select the optimal wavelengths in increaser species discrimination using stepwise discriminant 

function analysis.  In accordance with Wilks‟s lambda value, the F statistic and a significance 

level (P < 0.000), and 8 wavelengths were selected (Table 7.3). 
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Table 7. 3: Variables entered/removed using stepwise discriminant function analysis 

 

These wavelengths were located in the visible, red-edge and near-infrared regions. Canonical 

function analysis was used to determine the functions of the variables (wavelengths) that could 

be used to discriminate among the species. Standardised canonical discriminant function 

coefficients represent the contribution of the variable (wavelength) to the discrimination among 

the four species. The largest contribution was contained in the first canonical function, which 

includes the wavelengths 895 nm (the coefficient is 0.957), followed by 998 nm, 681 nm, 745 

nm, and 998 nm, and a low standardised coefficient which includes 665 (the coefficient is -

0.053) followed by 1039 nm, 848 nm and 972 nm. The three tiers of analysis yielded increaser 

species discrimination with an overall accuracy of 83.02% and a KHAT value of 0.77 (Table 

7.4). The use of the spectroscopic approach applied in this study indicated that the increaser 

species were spectrally different, and as such these results encouraged us to further investigate 

the possibility of mapping increaser species as indicators of different levels of rangeland 

degradation using different types of remotely sensed data (hyperspectral and multispectral). 

Table 7. 4: Confusion matrix for selected wavelengths showing the classification error obtained 

for the species (HH, EC, SA and AD) 

Selected wavelength Overall accuracy KHAT Users‟ accuracy 
Presence  absence 

Producers‟ accuracy 
Presence  absence 

8 wavelengths 83.02 0.77 88.68 79.25 88.68 79.25 
 
 

 

Step
Variables 
entered Lambda Statistic Sig.

1 665 0.512 44.849 0.000
2 729 0.302 75.119 0.000
3 848 0.189 66.916 0.000
4 895 0.173 53.205 0.000
5 1039 0.156 48.146 0.000
6 998 0.131 40.974 0.000
7 681 0.123 36.728 0.000
8 972 0.115 32.556 0.000
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7.4 The potential use of hyperspectral remote sensing for increaser 

species  

 

Hyperspectral remote sensing data were acquired using a hand-held spectrometer as a means of 

spectrally discriminating the four increaser species. However, current operational airborne 

sensors such as AISA Eagle do not reach a fine spectral resolution of spectrometers such as 

Analytical Spectral Devices (ASD) FieldSpec® 3, which has a spectral range of 350 nm to 2500 

nm (Mutanga, 2005). The hand-held spectrometer spectral measurements were therefore 

resampled to AISA Eagle spectral resolution using ENVI 4.3 image processing software 

(Mutanga, 2005). AISA Eagle data were collected with a 2 m spatial resolution, a spectral range 

of 393.2 nm to 994.1 nm (272 wavelengths), and 2.04 nm to 2.29 nm spectral resolutions. 

Hyperspectral AISA Eagle was evaluated to discriminate between four increaser species 

(Hyparrhenia hirta, Eragrostis curvula, Sporobolus africanus and Aristida diffusa) and thereby 

identify the different levels of rangeland degradation (Chapter 5). The random forest algorithm 

and a forward variable selection technique were used to identify optimal wavelengths for 

discriminating the species. The results showed that the optimal number of wavelengths (n = 10) 

that yielded the lowest OOB error (12.53%) in discriminating among the four increaser species 

are located at 966.7 nm, 877.6 nm, 674.1 nm, 854.8 nm, 703 nm, 732 nm, 718.7 nm, 691.9 nm, 

741 nm and 902.7 nm (Figure 7.2).   
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Figure 7. 2: Identifying the variables (wavelengths) importance by way of the random forest 
algorithm. Wavelengths with the highest mean decrease in accuracy (as shown by arrows) 
represent the most important wavelengths. 

 

These wavelengths were located in the visible, red-edge and near-infrared regions of the 

electromagnetic spectrum. The random forest algorithm could accurately discriminate species 

with an overall accuracy of 87.50 % and a KHAT value of 0.83 (Table 7.5). The results 

demonstrated the potential of hyperspectral data to discriminate between increaser species. This 

makes it possible to upscale the methods to airborne sensors such as AISA Eagle for mapping 

increaser species areas as an indicator of rangeland degradation. However, the use of 

hyperspectral data comes with its own difficulties in terms of cost, availability, processing and 

high dimensionality. Therefore, we investigated the potential use of advanced multispectral 

remote sensing such as WorldView data. 
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Table 7. 5: Confusion matrix for 10 wavelengths from the test data set showing the classification 

error obtained for the species (HH, EC, SA and AD). The confusion matrix includes overall 

accuracy, KHAT, user‟s accuracy, and producer‟s accuracy for class pair (n = 6) and over all 

classes 

Classes ACC 
% 

KHAT PA % 
Presence Absence 

UA % 
Presence Absence 

HH vs EC 97.50 0.95 100.00 95.00 95.24 100.00 
HH vs SA 95.00 0.90 95.24 94.74 95.24 94.74 
HH vs AD 97.56 0.95 100.00 95.24 95.24 100.00 
EC vs SA 92.50 0.85 95.00 90.00 90.48 94.74 
EC vs AD 97.50 0.95 95.00 100.00 100.00 95.24 
SA vs AD 92.68 0.85 90.00 95.24 94.74 90.91 
All classes 87.50 0.83 95.24 86.36 86.96 90.48 

 

7.5 Evaluating the capability of WorldView-2 high resolution data in 
classifying the increaser species  

Mapping vegetation species using multispectral data such as SPOT and Landsat TM is 

challenging in general because of their lack of spectral and spatial resolution, which causes the 

problem of spectral overlap and mixed pixels between the different vegetation species (Harvey 

and Hill, 2001). However, the development in multispectral sensors, such as WorldView-2 

containing key spectral bands such as red-edge make mapping vegetation at species level 

possible (Dlamini, 2010; Omar, 2010). In this study WorldView-2 was tested in mapping the 

increaser species (Chapter 6). The random forest algorithm and forward variable technique were 

able to identify the optimal wavelengths (coastal blue, yellow, red-edge, blue, green and red) for 

classifying the four increaser species with an overall accuracy of 82% and a KHAT value of 0.76 

(Table 7.6). In order to improve the classification accuracy, the vegetation indices derived from 

WorldView-2 were tested. From the results, both classification accuracy and the KHAT value 

improved by 8% and 0.11 respectively (Table 7.6).  
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Table 7. 6: Confusion matrix for different variables showing the classification error obtained for 

the species HH, EC, SA and AD. The confusion matrix includes overall accuracy (ACC), 

KHAT, producer‟s accuracy (PA) and user‟s accuracy (UA) 

 
Accuracy assessment Band Published VIs Combined bands+ 

VIs 
Top 6 Full dataset Top 9 Full dataset Top 10 Full dataset 

ACC (%) 82.00 79.50 90.00 87.50 89.36 85.11 
KHAT 0.76 0.73 0.87 0.83 0.86 0.80 
PA (%) 92.00 84.00 91.00 88.00 96.00 90.00 
UA (%) 92.00 84.00 90.00 87.00 96.00 90.00 

Overall, the relatively high classification accuracy that was achieved by the raw bands and 

vegetation indices in the study demonstrated the potential of WorldView-2 data for increaser 

species separability. The results demonstrated the potential of WorldView-2 bands in classifying 

increaser grass at species level with an overall accuracy of 82%, which is only 5% less than the 

overall accuracy achieved by AISA Eagle. The use of WorldView-2 data was better than AISA 

Eagle data in terms of cost, data accessibility and processing. 

7.6 Conclusions 

The main aim of this study was to examine the potential use of remote sensing to discriminate 

between increaser vegetation species – namely Hyparrhenia hirta, Eragrostis curvula, 

Sporobolus africanus and Aristida diffusa – to help identify different levels of rangeland 

degradation in the Okhombe area of South Africa. The research carried out in this study showed 

that there is potential for using hyperspectral and multispectral data to discriminate between the 

four increaser species. However, the use of multispectral data (WorldView-2) was better than 

that of hyperspectral data (ASIA Eagle) in terms of the cost and availability.    

The final concluding remarks were based on the following results from the different objectives 

addressed in this study: 

1. The use of soil properties such as P, pH, Org. C and N as indicators of 

degradation were highly significant (P < 0.001) and can be used to 

discriminate between conserved and degraded sites. 
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2. The outcomes of the LandCare Programmes, which try to promote social, 

economic and environmental development in rehabilitated areas, have been 

successful in combatting the problems of rangeland degradation. 

3. The application of remote sensing techniques has a high potential for 

identifying different levels of degradation based on Increaser species. 

4. The field spectrometry measurements and the statistical analysis showed that 

the increaser species (n = 4) were spectrally different in the visible (400 nm -

700 nm), the red-edge (680 nm -750 nm) and the near-infrared (700 nm -

1300 nm) regions.  

5. There is potential to use hyperspectral and multispectral data to discriminate 

increaser species. However, the use of the multispectral data (WorldView-2) 

was better than that of the hyperspectral data (ASIA Eagle) in terms of the 

cost and accessibility. 

6. The use of selected spectral vegetation indices as calculated from the 

multispectral WorldView-2 satellite imagery improved the overall 

classification accuracy from 82% (raw bands) to 90% (of vegetation indices) 

of rangeland vegetation at increaser species level. 

7. The results presented in this study confirm that the random forest algorithm is 

a robust and accurate method for both variables selection and the 

classification of hyperspectral and multispectral data. 

 

7.7 Recommendations 

The classification of increaser species represents different levels of rangeland degradation. There 

is a need for accurate, precise, and up-to-date spatial information on the current status of 

rangeland degradation vegetation as a prerequisite for the sustainable management of rangeland 

systems. In this regard, we expect that the results of this study could be used to support precision 

rangeland analysis and develop effective and sustainable rangeland management. In this vein, we 

make the following recommendations for future research work: 
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1. This study concentrated on determining the possibility of the spectral discrimination of 

increaser species (n = 4) in serving as an indicator of different levels of rangeland 

degradation. In order for remote sensing methods to become operational for mapping 

these different levels, future research is needed to investigate the optimal spatial 

resolution and pixel size that could better map the different levels of rangeland 

degradation when using increaser species as indicators.  

2. Further research should investigate and measure the biophysical and biochemical 

characteristics of increaser species in relation to the degradation stages of rangeland.   

3. Multispectral data do not require complex processing techniques and are available and 

relatively inexpensive. In this regard, the capability of multispectral sensors other than 

WorldView (e.g. Sumbandilasat, QuickBird, RapidEye and IKONOS) in classifying 

increaser species should be tested.  
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