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Abstract

We present three examples of topological semantics for intuitionistic modal logic

with one modal operator �. We show that it is possible to treat neighborhood

models, introduced earlier, as topological or multi-topological. From the neigh-

borhood point of view, our method is based on differences between properties of

minimal and maximal neighborhoods. Also we propose transformation of multi-

topological spaces into the neighborhood structures.
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1. Introduction

Neighborhood semantics for intuitionistic propositional logic has been pre-
sented by Moniri and Maleki in [9]. Not surprisingly, it turned to be quite
similar to the neighborhood semantics for classical modal logic S4 . More-
over, the above-mentioned authors proved that their structures correspond
to the well-known relational (Kripke) models for intuitionism. It seems
that later they became interested rather in neighborhood semantics for
subintuitionistic systems (see [7] and [8]).

Nonetheless, even in the context of relatively strong logic like intu-
itionism, neighborhoods still can provoke certain intuitions. For instance,
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Moniri and Maleki spoke about minimal neighborhoods (which can be iden-
tified with upper closed sets in Kripke frames). Hence, it is quite natural
to ask also about maximal neighborhoods, i.e. to deny superset axiom.
Informally speaking, in this way a place is created for modality. We can
assume that necessity means satisfiability in maximal neighborhood.

This assumption led us (see [14]) to the intuitionistic logic with one
modal operator �, axiomatized by the rule of necessity and two axioms
(K and T ). Such system has been investigated by Božic and Došen in [1]
but with reference to the bi-relational frames. As we have shown, there
is a strict correspondence between their setting and our neighborhood ap-
proach.

It is well-known (see [10] for more detailed survey) that neighborhood
frames for S4 logic behave just like topological structures. This adequacy is
true also for intuitionistic neighborhood frames, as it was proved in [9]. For
this reason, it is reasonable to look for analogous results for modal logics
based on intuitionism. Even if our frames can be presented as bi-relational,
we still believe that neighborhoods give us better topological intuitions. In
addition, they can be useful when speaking about certain generalizations
of topology for weak modal logics (see [13] for details).

Topological semantics for (normal) intuitionistic modal logics has been
investigated by Davoren in [4], [5] and Davoren et al. in [6]. Those authors
referred to the bi-relational structures with Fischer-Servi conditions (which
are not satisfied in our framework). They use specific binary relations
between points of topological space. Our idea is different: we do not use any
special relation. We limit ourselves to some basic notions like topological
neighborhood or open set.

Another concept has been developed by Collinson et al. in [3]. It is
based on the notion of topological p-morphism. These authors started from
the relational structures and they used some methods of category theory.
As for the topological p-morphism, we do not use this tool in the present
work. However, we adapted it to the case of generalized topologies in [13].

In [11] we can find some considerations about neighborhood, topological
and relational frames for intuitionistic systems with modality. Sotirov as-
sumed that his topological spaces should be equipped with two operations.
One of them behaves like interior and is responsible for the intuitionistic
features of the logic in question. The second is used to model necessity.

In this research we present different approach. Our first intuition was
that neighborhood systems assigned to the particular worlds (i.e. sys-
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tems consisting of minimal and maximal neighborhood) behave like distinct
topological spaces in a kind of “meta-universe”. We show initial conclu-
sions of this observation. However, in some cases it is better to assume that
all these systems are in fact subspaces of one topological space. Hence, we
can use the notion of induced topology.

We concentrate only on the basic features of structures mentioned
above. In particular, we do not obtain topological completeness because our
translations between neighborhood structures (for which we have complete-
ness) and topological spaces (which are defined in three slightly different
ways) are one-way. Thus, this paper can be considered as a first step in
further studies.

2. Alphabet and language

Our basic system is named IKT� . It has rather standard syntax (i.e.
alphabet and language). We use the following notations:

1. PV is a fixed denumerable set of propositional variables p, q, r, s, ...

2. Logical connectives and operators are ∧, ∨, →, ⊥, �.

3. The only derived connective is ¬ (which means that ¬ϕ is a shortcut
for ϕ→ ⊥).

Formulas are generated recursively in a standard manner: if ϕ, ψ are
wff’s then also ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ and �ϕ. Semantic interpretation
of propositional variables and all the connectives introduced above will be
presented in the next section. Attention: ⇐,⇒ and ⇔ are used only on
the level of (classical) meta-language.

3. Neighborhood semantics

3.1. The definition of structure

Our basic structure is an intuitionistic neighborhood modal frame (n2 -
frame) defined as it follows:

Definition 3.1. n2 -frame is an ordered pair 〈W,N〉 where:

1. W is a non-empty set (of worlds, states or points)

2. N is a function from W into P (P (W )) such that:



190 Tomasz Witczak

(a) w ∈
⋂
Nw

(b)
⋂
Nw ∈ Nw

(c) u ∈
⋂
Nw ⇒

⋂
Nu ⊆

⋂
Nw (→-condition)

(d) X ⊆
⋃
Nw and

⋂
Nw ⊆ X ⇒ X ∈ Nw (relativized superset

axiom)

(e) u ∈
⋂
Nw ⇒

⋃
Nu ⊆

⋃
Nw (�-condition)

(f) v ∈
⋃
Nw ⇒

⋂
Nv ⊆

⋃
Nw (t-condition)

The first three conditions are in fact taken from pure intuitionism and
refer to the features of partial order in relational frames. For instance,
→-condition guarantees that forcing of implication is monotone. As for
the relativized superset axiom, it creates place for modality. �-condition
is necessary to assure that forcing of modal formulas is also monotone.
Significance of the last restriction will be pointed out later.

3.2. Valuation and model

Definition 3.2. Neighborhood n2 -model is a triple FN = 〈W,N , VN 〉,
where 〈W,N〉 is an n2 -frame and VN is a function from PV into P (W )
satisfying the following condition: if w ∈ VN (q) then

⋂
Nw ⊆ VN (q).

Definition 3.3. For every n2 -model MN = 〈W,N , VN 〉, forcing of for-
mulas in a world w ∈W is defined inductively:

1. w 1 ⊥
2. w  q ⇔ w ∈ VN (q) for any q ∈ PV
3. w  ϕ ∨ ψ ⇔ w  ϕ or w  ψ

4. w  ϕ ∧ ψ ⇔ w  ϕ and w  ψ

5. w  ϕ→ ψ ⇔
⋂
Nw ⊆ {v ∈W ; v 1 ϕ or v  ψ}

6. w  �ϕ ⇔
⋃
Nw ⊆ {v ∈W ; v  ϕ}.

As we said, ¬ϕ is a shortcut for ϕ → ⊥. Thus, w  ¬ϕ ⇔
⋂
Nw ⊆

{v ∈W ; v 1 ϕ}.
As usual, we say that formula ϕ is satisfied in a modelMN =〈W,N , VN 〉

when w  ϕ for every w ∈W . It is true (tautology) when it is satisfied in
each n2 -model.
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4. Neigborhood completeness

In [14] we have shown (using slightly different symbols) that n2 -frames are
sound and complete semantics for the logic IKT� defined as the following
set of formulas and rules: IPC ∪ {K ,T ,RN ,MP }, where:

1. IPC is the set of all intuitionistic axiom schemes

2. K is the axiom scheme �(ϕ→ ψ)→ (�ϕ→ �ψ)

3. T is the axiom scheme �ϕ→ ϕ

4. RN is the rule of necessity: ϕ ` �ϕ

5. MP is modus ponens: ϕ,ϕ→ ψ ` ψ

Completeness result has been established in two ways. First, directly
– by means of prime theories and canonical model. Second, indirectly –
by the transformation into certain class of bi-relational frames, introduced
by Božić and Došen in [1] who proved its completeness. Basically, they
used different set of axioms.

5. Multi-topological frames

5.1. The definition of structure and model

In this section we introduce the notion of multi-topological frame (model).
Such structure can be roughly described as a collection of topological spaces
with one valuation based on open sets. Each space has its distinguished
open set which plays crucial role in the proof of translation between neigh-
borhood and multi-topological settings.

Definition 5.1. mtD -model with distinguished sets is an ordered triple
Mt = 〈W,W, Vt〉 where:

1. W 6= ∅.
2. W = {〈T, τ,Dτ 〉 : T ⊆W , τ is a topology on T , Dτ ∈ τ,Dτ 6= ∅}
3. W =

⋃
T , where T = {T : 〈T, τ,Dτ 〉 ∈W}.

4. Vt is a function from PV into P (W ) satisfying the following condition:
Vt(q) =

⋃
X where X ⊆ {X ⊆ W ; there is 〈T, τ,Dτ 〉 ∈W for which

X ∈ τ}.
The third condition can be formulated also as follows: for each w ∈W

there is 〈T, τ,Dτ 〉 ∈ W such that w ∈ T . Hence, each point of W is at
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least in one topological space. We can consider the whole structure as a
universe with many generalized topologies1.

For convenience, we shall often identify each 〈T, τ,Dτ 〉 simply with τ .
As for the valuation of complex formulas, it is based on the valuation of
propositional variables and defined inductively:

Definition 5.2. For every mtD -model Mt = 〈W,W, Vt〉, valuation of
formulas is defined as such:

1. Vt(ϕ ∧ ψ) = Vt(ϕ) ∩ Vt(ψ)

2. Vt(ϕ ∨ ψ) = Vt(ϕ) ∪ Vt(ψ)

3. Vt(ϕ→ ψ) =
⋃
τ Intτ (−Vt(ϕ) ∪ Vt(ψ))

4. Vt(�ϕ) =
⋃
X where X = {X ⊆ W such that X = Dτ for at least

one τ in W such that T ⊆ Vt(ϕ)}.
A few words of comment should be made. We assume that Vt(q) is a

union of sets which are open at least in one topology. Concerning value of
implication, we look for −Vt(ϕ)∪Vt(ψ) and then we sum up all τ -interiors
of this set. The last important thing is modality: we check which universes
are wholly contained in Vt(ϕ) and then we take union of their distinguished
sets. We say that formula ϕ is true iff in each mtD -modelMt = 〈W,W, Vt〉
we have Vt(ϕ) = W .

This class of models is based on the observation described above: that
we have multiverse of spaces. However, our definition of forcing appears
to be too weak (even if we assumed that valuation is based on unions of
τ -open sets). Hence, mtD -structures in their most general form are not
sound with respect to intuitionism. We did not develop detailed hypothesis
about the logic determined by this class of frames. Certainly, some very
basic axioms hold. Among them there are: ϕ→ ϕ, ϕ∧ ψ → ψ, ϕ→ ϕ∨ ψ
and ψ → ϕ∨ψ. Also ϕ→ (ψ → ψ) is true. Let us check this fact. Assume
that there is a model with a world w such that w 1 ϕ → (ψ → ψ). It
means that for each τ , w /∈ Intτ (−Vt(ϕ) ∪ (−Vt(ψ) ∪ Vt(ϕ))). However,
the whole expression in brackets is just W ∪ −Vt(ψ) = W . When we take
τ -interior of W , we obtain subset T . Hence, w is beyond any T . But this
is contradiction.

On the other hand, it is possible that x 1 (ϕ→ ψ∧ψ → γ)→ (ϕ→ γ),
i.e. for each τ , x /∈ Intτ (−(−Vt(ϕ)∪Vt(ψ))∩ (−Vt(ψ)∪Vt(γ)))∪ (−Vt(ϕ)∪

1Generalized in the sense of Császár (see [2]) but with closure under finite intersec-
tions.



Topological and Multi-Topological Frames in the Context of IML 193

Vt(γ)). After some computations the whole expression can be written as
−W ∪ (−Vt(ϕ) ∪ Vt(γ)) = −Vt(ϕ) ∪ Vt(γ). Now take W = {w, v, u, z},
τ1 = {∅, {w, v}}, τ2 = {∅, {u, z}}, Vt(ϕ) = {w, v}, distinguished sets are
arbitrary, Vt(ϕ) = {u, z}, Vt(ψ) = Vt(γ) = ∅. Now v does not force the for-
mula in question. Let us check it: Intτ1(−Vt(ϕ)∪Vt(γ)) = Intτ1({u, z}) =
∅ 63 v. Moreover, Intτ2(−Vt(ϕ) ∪ Vt(γ)) = {u, z} 63 v.

Also we can easily build a counter-model where Vt(ϕ ∧ ψ) * Vt(> →
ϕ ∧ ψ)2.

As for the modal formulas: we can easily prove that axiom T (i.e.
�ϕ → ϕ) is always true. Assume that there is a model with w such that
w 1 T . Hence, for any τ , w /∈ Intτ (−Vt(�ϕ) ∪ Vt(ϕ)) = Intτ (−

⋃
X ∪

Vt(ϕ)), where X = {X ⊆W such that X = Dτ for at least one τ in W such
that T ⊆ Vt(ϕ)}. Clearly,

⋃
X ⊆ Vt(ϕ). Hence, −Vt(ϕ) ⊆ −

⋃
X which

gives us that −
⋃
X ∪ Vt(ϕ) = W . Again, we obtain impossible result that

w /∈ T for any 〈T, τ,Dτ 〉 ∈W.
On the other hand, axiom 4 (i.e. �ϕ → ��ϕ) can be falsified. Take

W = {w, v, u}, τ1 = {∅, {w, v}, {w, v, u}}, Dτ1 = {w, v}, τ2 = {∅, {v}},
Dτ2 = {v}, Vt(ϕ) = W . Now Vt(�ϕ) = Dτ1 ∪ Dτ2 = {w, v}, V (��ϕ) =
Dτ2 = {v}, −Vt(�ϕ) ∪ Vt(��ϕ) = {u, v}. Hence, Intτ1({u, v}) = ∅,
Intτ2({u, v}) = {v}. Clearly, u is beyond those interiors, so u 1 4 .

We see that the logic of mtD -frames is a kind of unknown subintuition-
istic modal logic. We conjecture that it may be fruitful to study general
multi-topological structures and to look for any regularities depending on
mutual location of spaces or their topological properties. We signalize this
possibility but it is beyond the scope of present paper. And so, overall
here, we shall work only with a certain subclass of these structures, namely
i-mtD -frames.

Definition 5.3. We say that mtD -frame is i-mtD iff there is an Alexan-
drov topology µ on W such that for each τ ∈W, τ is a subspace topology
induced by µ.

If we speak about Alexandrov topology, it means that arbitrary inter-
sections of open sets are also open. If τ on T is induced by µ, then each
U ∈ τ can be presented as T ∩ A for certain A ∈ µ. On the other hand, if
A ∈ µ, then T ∩ A ∈ τ . This subclass of models is sound with respect to

2We are grateful to the anonymous reviewer for this example and some other impor-
tant comments.
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intuitionism what can be manually checked. It is well-known fact that sub-
spaces of Alexandrov space also have Alexandrov property (see Theorem 7
in [12]).

6. From neighborhood frames to multi-topological
structures

6.1. Basic notions

In this section we show that it is possible to treat neighborhood models as
multi-topological. First, let us introduce the notion of w-open sets.

Definition 6.1. We say that set X ⊆ W is w-open in n2 -frame iff X ⊆⋃
Nw and for every v ∈ X we have

⋂
Nv ⊆ X. We define Ow as {X ⊆

W : X are w-open} and call it w-topology.

Let us check that this definition is useful for our needs.

Theorem 6.2. Assume that we have n2 -frame FN = 〈W,N〉. Then Ow
is a topological space for every w ∈W .

Proof: Let us check standard properties of topology.

1. Take empty set. We can say that ∅ ∈ Ow because ∅ ⊆
⋃
Nw and

there are no any v in ∅.
2. Consider

⋃
Nw. Clearly this set is contained in itself and because of

T -condition we have that for every v ∈
⋃
Nw the second condition

holds:
⋂
Nv ⊆

⋃
Nw.

3. Consider X ⊆ Ow. We show that
⋂

X ∈ Ow. The first condition
is simple: every element of X belongs to Ow so it is contained in⋃
Nw. The same holds of course for intersection of all such elements.

Now let v ∈
⋂

X . By the definition we have that
⋂
Nv ⊆ X for

every X ∈X . Then
⋂
Nv ⊆

⋂
X .

4. In the last case we deal with arbitrary unions. Suppose that X ⊆ Ow
and consider

⋃
X . Surely this union is contained in

⋃
Nw. Now let

us take an arbitrary v ∈
⋃

X . We know that
⋂
Nv ⊆ X for some

X ∈X (in fact, it holds for every X which contains v). Then clearly⋂
Nv ⊆

⋃
X . �

One thing should be noted. Clearly, we used t-condition to assure that
the whole maximal w-neighborhood is w-open. Basically, in [14], we worked



Topological and Multi-Topological Frames in the Context of IML 195

with structures without t-condition (we may call them n1 -frames). Com-
pleteness theorem holds also for them – but it would be at least problematic
to treat those frames as multi-topological.

⋃
Nw

w
⋂
Nw

⋂
Nw

X

Y

Fig. 1. Topology Ow. X, Y are w-open.

Theorem 6.3. Assume that we have MN = 〈W,N , VN 〉 and we define
topology µ on W in the following way: if A ⊆ W , then A ∈ µ ⇔ for any
v ∈ A,

⋂
Nv ⊆ A. Then, for any w ∈ W , Ow is induced by µ (i.e. Ow is

subspace topology).

Proof: Let us take w ∈ W . We shall prove that Ow consists strictly of
intersections of

⋃
Nw and τ -open sets.

If U ∈ Ow then U ∈ µ (this is clear) and U = U ∩
⋃
Nw. Assume now

that A is µ-open and consider Z = A ∩
⋃
Nw. Let us check that this set

belongs to Ow. Of course it is contained in
⋃
Nw. Suppose that there is

z ∈ Z such that
⋂
Nz * Z. But

⋂
Nz ⊆ A (because A is τ -open) and⋂

Nz ⊆
⋃
Nw (because of t-condition). This is contradiction.

Additionally, one can easily check that µ is Alexandrov. �

6.2. Transformation

Theorem 6.4. For each n2 -model MN = 〈W,N , VN 〉 there exists i-mtD -
model Mt = 〈W,W, Vt〉 which is pointwise equivalent to MN , i.e. w  ϕ⇔
w ∈ Vt(ϕ).

Proof: Assume that we have MN = 〈W,N , VN 〉. Now let us consider the
following structure: Mt = 〈W,W, Vt〉 where:

1. W = {〈
⋃
Nw,Ow,

⋂
Nw〉;w ∈W}

2. for each q ∈ PV , Vt(q) = VN (q)
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We shall identify each 〈
⋃
Nw,Ow,

⋂
Nw〉 just with Ow. It is easy to

check that this is well-defined i-mtD -frame. For each w ∈W we can treat⋃
Nw as a universe of topological subspace. Thus

⋂
Nw can be treated as

distinguished set in this particular subspace.

Fig. 2. From neighborhoods to multi-topological space with distinguished
sets.

Now let us prove pointwise equivalency. Here we use induction by the
complexity of formulas.

1. →:
(⇒) Suppose that w  ϕ→ ψ. We want to show there exists certain
〈
⋃
Nx,Ox,

⋂
Nx〉 ∈W such that w ∈ Intx((−Vt(ϕ) ∪ Vt(ψ)).

We can say that w ∈
⋂
Nw ⊆ {x ∈ W ;x 1 ϕ or x  ψ}. By

induction hypothesis, this set can be written as {x ∈ W ;x /∈ Vt(ϕ)
or x ∈ Vt(ψ)} = −Vt(ϕ)∪ Vt(ψ). Recall the fact that

⋂
Nw ⊆

⋃
Nw.

Thus w ∈
⋂
Nw ⊆ (−Vt(ϕ)∪Vt(ψ))∩

⋃
Nw. But

⋂
Nw is w-open so

it is contained in Intw(−Vt(ϕ) ∪ Vt(ψ)). We see that we could treat
w as our x.
(⇐) Now we assume that w ∈ Vt(ϕ → ψ). Thus we have certain
Ox such that w ∈ Intx((−Vt(ϕ) ∩ Vt(ψ)). By induction hypothesis,
w ∈ Intx({z ∈W ; z 1 ϕ or z  ψ}). Hence, w belongs to the biggest
x-open set X such that X ⊆ {z ∈ W ; z 1 ϕ or z  ψ}. But if X is
x-open then

⋂
Nw ⊆ X. Thus w  ϕ→ ψ.

2. �:
(⇒) Assume that w  �ϕ. We want to show that w ∈ Vt(�ϕ), i.e.
that there is X ⊆ W such that w ∈ X and for certain Ox we have:
X =

⋂
Nx,

⋃
Nx ⊆ Vt(ϕ).
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Surely, we can take x = w. Now, if w  �ϕ, then
⋃
Nw ⊆ VN (ϕ).

By induction hypothesis,
⋃
Nw ⊆ Vt(ϕ).

(⇐) Suppose that w ∈ Vt(�ϕ). Thus w ∈ X ⊆ W such that for
certain Ox we can say that X =

⋂
Nx and

⋃
Nx ⊆ Vt(ϕ).

If
⋃
Ns ⊆ Vt(ϕ), then (by induction hypothesis)

⋃
Nx ⊆ VN (ϕ).

Thus x  �ϕ. But w ∈
⋂
Nx. Thus, by the monotonicity of intu-

itionistic forcing, w  �ϕ. �

7. From multi-topological structures to neighborhood
structures

In the former section we used multi-topological structures with distin-
guished open sets Dτ . Those sets are equivalents of minimal w-neighbor-
hoods (while subspaces played the role of maximal w-neighborhoods). We
used such unconventional approach mainly because our topology Ow does
not “recognize” minimal neighborhoods. Thus, if we have

⋃
Nw, then from

the neighborhood point of view
⋂
Nw is specific – but as w-open set it is

not distinguished in any way from other w-open sets. But we need such
distinction to establish correspondence between VN and Vt.

Now we are on the other side: we start from topological structures but
defined in slightly different way. Here we do not have Dτ sets. We have
the following definition (of frame):

Definition 7.1. t2 -frame is an ordered pair 〈W,W〉 where:

1. W 6= ∅
2. W = {〈T, τ〉 : T ⊆W , τ is an Alexandrov topology on T}.
3. W =

⋃
T , where T = {T ; 〈T, τ〉 ∈W}

Each 〈T, τ〉 is an Alexandrov space, so each w ∈ T has its minimal
τ -open neighborhood. If we denote the family of τ -open w-neighborhoods
as Owτ , then we can introduce the following notation:

⋂
Owτ = minOwτ .

Our definition of frame is very similar to Def. 5.1 but now we deny
distinguished sets. However, in the definition of model there are bigger
differences. In fact, we shall define forcing after introducing specific kind
of neighborhoods in our topological environment.

Now let us think about intersection of all minimal τ -open w-neighbor-
hoods. It will be denoted as

⋂
〈T,τ〉∈T w{minOwτ } or shortly by⋂

τ∈T w{minOwτ }, where T w = {〈T, τ〉 ∈ W : w ∈ T} . Below we de-
fine neighborhoods in the sense mentioned above.
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Definition 7.2. Assume that we have t2 -frame 〈W,W〉. Then for each
w ∈W we define:

1.
⋂
N t
w =

⋂
τ∈T w{minOwτ }

2.
⋃
N t
w =

⋂
T w

3. X ∈ N t
w ⊆ P (P (W ))⇔

⋂
N t
w ⊆ X ⊆

⋃
N t
w

Theorem 7.3. Assume that we have t2 -frame 〈W,W〉 with N t
w defined as

in Def. 7.2. We state that for each w ∈ U , N t
w has all the properties of

neighborhood family in n2 -frame.

Proof: We must check five conditions:

1. w ∈
⋂
N t
w. This is simple because

⋂
N t
w is defined as an intersection

of all τ -open w-neighborhoods (for every τ in T w) and certainly w is
in each such neighborhood.

2.
⋂
N t
w ∈ N t

w. This is obvious by the very definition of N t
w.

3. v ∈
⋂
N t
w ⇒

⋂
N t
v ⊆

⋂
N t
w. Let us note two facts. First, v is at least

in all those spaces, in which w is (because it is in the intersection
of all minimal w-neighborhoods). Thus, we can say that

⋂
N t
v =⋂

τ∈T v{minOvτ} ⊆
⋂
τ∈T w{minOvτ}.

Second, suppose for a moment that we work with one particular
Alexandrov topological space ρ. Assume that v belongs to the min-
imal ρ-open neighborhood of w. Of course v has its own minimal
ρ-open neighborhood – but let us suppose that minOvρ * minOwρ .
Now – from the basic properties of topology and the fact that at least
v belongs to minOwρ – we state that minOvρ ∩minOwρ is ρ-open. Of
course, this intersection is contained in minOwρ . Thus, we have con-
tradiction with the assumption that minimal ρ-open v-neighborhood
is not contained in minOwρ .
Now let us go back to the main part of the proof. The second fact
allows us to say that

⋂
τ∈T w{minOvτ} ⊆

⋂
τ∈T w{minOwτ } =

⋂
N t
w.

4. v ∈
⋂
N t
w ⇒

⋃
N t
v ⊆

⋃
N t
w. As earlier, we say that v is at least in

each space which belongs to T w. Thus
⋃
N t
v =

⋂
T v =

⋂
{〈T, τ〉 ∈

W : v ∈ T} ⊆
⋂
{〈T, τ〉 ∈W : w ∈ T} =

⋃
N t
w.

5. v ∈
⋃
N t
w ⇒

⋂
N t
v ⊆

⋃
N t
w. Suppose that v ∈

⋃
N t
w defined as in

Def. 7.2. Thus v ∈
⋂
T w which means in particular that v is in all

those universes, in which w is. Now it is clear that
⋂
N t
v – defined

as an intersection of all τ -open minimal v-neighborhoods – must be
contained at least in each element of T w, i.e. in

⋃
N t
w. �
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Fig. 3. Maximal and minimal neighborhoods in multi-topological space.

We have transformed our initial multi-topological structure into the
neighborhood frame. Note that it is possible that for certain (and even
for each) τ the set

⋂
N t
w is not τ -open. We do not expect this. It is

just intersection of all minimal w-neighborhoods. Now we shall introduce
valuation and rules of forcing – thus obtaining logical model.

Definition 7.4. Assume that we have t2 -frame 〈W,W〉. Suppose that
for each w ∈ W we defined N t

w as in Def. 7.2. We define valuation Vt
as a function from PV into P (W ) satisfying the following condition: if
w ∈ Vt(q) then

⋂
N t
w ⊆ Vt(q). The whole triple 〈W,W, Vt〉 is called t2 -

model.

Definition 7.5. For every t2 -model Mt = 〈W,W, Vt〉, valuation of for-
mulas is defined as such:

1. Vt(ϕ ∧ ψ) = Vt(ϕ) ∩ Vt(ψ)

2. Vt(ϕ ∨ ψ) = Vt(ϕ) ∪ Vt(ψ)

3. Vt(ϕ → ψ) =
⋃
x∈I {

⋂
N t
x} where I = {x ∈ W :

⋂
N t
x ⊆ −Vt(ϕ) ∪

Vt(ψ)}
4. Vt(�ϕ) =

⋃
x∈M{

⋂
N t
x} where M = {x ∈W :

⋃
N t
x ⊆ Vt(ϕ)}

We say that formula ϕ is true iff in each t2 -model Mt = 〈W,W, Vt〉
we have Vt(ϕ) = W .

The next theorem is crucial for our considerations.

Theorem 7.6. For each t2 -model Mt = 〈W,W, Vt〉 there exists n2 -model
MN = 〈W,N , VN 〉 which is pointwise equivalent to Mt, i.e. w  ϕ⇔ w ∈
Vt(ϕ).

Proof: Let us take Mt and introduce N t
w for each w ∈ W just like in

Def. 7.2. We define VN : PV → P (W ) in the following way: VN = Vt.
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Now the structure MN = 〈W,N t, VN 〉 is a proper neighborhood model. In
fact, we have already shown that it is n2 -frame. By the definition of Vt we
know that it is monotone in n2 -frame. Let us check pointwise equivalency
between both structures.

1. →
(⇒) Suppose that w  ϕ → ψ. Thus

⋂
N t
w ⊆ {v ∈ W ; v 1 ϕ or

v  ψ} = −VN (ϕ)∪VN (ψ). By induction this last set can be written
as −Vt(ϕ)∪ Vt(ψ). Thus, we can say that w belongs to I defined as
in Def. 7.2. Of course w ∈

⋂
N t
w. Hence, w ∈ Vt(ϕ→ ψ).

(⇐) Assume that w ∈ Vt(ϕ → ψ). This means that there is at least
one point x ∈ I such that w ∈

⋂
N t
x. But if

⋂
N t
x ⊆ −Vt(ϕ)∪Vt(ψ)

then we can say that
⋂
N t
x ⊆ −VN (ϕ)∪VN (ψ) (by induction). Hence,

x  ϕ→ ψ. The same can be said about w (because w ∈
⋂
N t
x).

2. �
(⇒) Suppose that w  �ϕ. Thus

⋃
Nw ⊆ VN (ϕ) = Vt(ϕ). The

last equivalence is a result of induction hypothesis. Now we see that
w ∈M . Of course w ∈

⋂
N t
w. Then w ∈ Vt(�ϕ).

(⇐) Assume that w ∈ Vt(�ϕ). Hence, there is at least one world
x ∈M such that w ∈

⋂
N t
x. But if

⋃
N t
x ⊆ Vt(ϕ), then by induction⋃

N t
x ⊆ VN (ϕ). This means that x  �ϕ. By monotonicity of forcing

in
⋂
N t
x we can say that w  �ϕ. �

8. Alternative approach

Let us go to back to the n2 -frames. We shall define topology in a slightly
different way than in Def. 6.1. Now we assume that

⋂
Nw is always

contained in each w-open set.

Definition 8.1. Suppose that we have n2 -frame MN = 〈W,N〉. We say
that X ⊆ W is wmin-open in n2 -structure iff X = ∅ or X ⊆

⋃
Nw,⋂

Nw ⊆ X and for every v ∈ X we have
⋂
Nv ⊆ X. We denote Qw =

{X ⊆W : X are wmin-open } ∪ ∅ and call it wmin-topology.

Theorem 8.2. Assume that we have n2 -frame FN = 〈W,N〉. Then
〈
⋃
Nw,Qw〉 is a topological space (for every w ∈W ).

Proof: It is easy to check conditions of well-defined topology – just as in
Th. 6.2. We leave details to the reader. �
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Y

X

w

⋂
Nw

Fig. 4. Topology Qw. X, Y are w-open.

8.1. From neighborhood frames to multi-topological structures
once again

Let us introduce the new type of multi-topological structures. In fact, they
are t2 -frames but with valuation defined in a different way. Recall that
Owτ denotes the family of all τ -open w-neighborhoods and minOwτ is an
intersection of such family.

Definition 8.3. t3 -model is an ordered triple Mt = 〈W,W, V 〉 where
〈W,W〉 is a t2 -frame and Vt is a function from PV into P (W ) satisfying the
following condition: Vt(q) =

⋃
X where X ⊆ {X ⊆W ; there is 〈T, τ〉 ∈W

and w ∈ T such that X = minOwτ }.
Definition 8.4. For every t3 -model Mt = 〈W,W, Vt〉, valuation of for-
mulas is defined as such:

1. Vt(ϕ ∧ ψ) = Vt(ϕ) ∩ Vt(ψ)

2. Vt(ϕ ∨ ψ) = Vt(ϕ) ∪ Vt(ψ)

3. Vt(ϕ → ψ) =
⋃
X , where X = {X ⊆ W such that X ⊆ −Vt(ϕ) ∪

Vt(ψ) and there are 〈T, τ〉 ∈W, x ∈ T for which X = minOxτ }.
4. Vt(�ϕ) =

⋃
X , where X = {X ⊆W such that there are 〈T, τ〉 ∈ W,

x ∈ T for which X = minOxτ and T ⊆ Vt(ϕ)}.

We say that formula ϕ is true iff in each t3 -model Mt = 〈W,W, Vt〉
we have Vt(ϕ) = W .
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that from section 5. The main difference is that we can work with minimal
τ -open sets, i.e. with minOwτ .

Theorem 8.5. For each n2 -model MN = 〈W,N , VN 〉 there exists t3 -
model Mt = 〈W,W, Vt〉 which is pointwise equivalent to MN , i.e. w  ϕ⇔
w ∈ Vt(ϕ).

Proof: Assume that we have MN = 〈W,N , VN 〉. Now let us consider the
following structure: Mt = 〈W,W, Vt〉 where:

1. W = {〈
⋃
Nw,Qw〉 : w ∈W}

2. for each q ∈ PV , Vt(q) = VN (q)

It is easy to check that 〈W,W〉 is a well-defined t2 -frame. Let us prove
pointwise equivalency by means of induction.

→
(⇒) Suppose that w  ϕ → ψ. Thus

⋂
Nw ⊆ {v ∈ W ; v 1 ϕ or

v  ψ}. The last set – by induction hypothesis – is equal to −Vt(ϕ)∪Vt(ψ).
Moreover,

⋂
Nw is an intersection of all wmin-open sets (recall Def. 8.1)

and w ∈
⋂
Nw ⊆

⋃
Nw. Thus w ∈ Vt(ϕ→ ψ).

(⇐) Assume that w ∈ Vt(ϕ → ψ). First, there is X ⊆ W such that
w ∈ X andX ⊆ −Vt(ϕ)∪Vt(ψ). Second, there is 〈

⋃
Nx,Qx〉 ∈W such that

X is minimal Qx-open x-neighborhood. In fact, it means that X =
⋂
Nx.

So
⋂
Nx ⊆ −Vt(ϕ) ∪ Vt(ψ) =[ind. hyp.]−VN (ϕ) ∪ VN (ψ) = {z ∈W ; z 1 ϕ

or z  ψ}. Then, in particular, x  ϕ → ψ and also w  ϕ → ψ (because
w ∈

⋂
Nx and we have intuitionistic monotonicity of forcing).

�
(⇒) Suppose that w  �ϕ. Thus

⋃
Nw ⊆ {v ∈ W ; v  ϕ}. The

last set is – by induction hypothesis – equal to Vt(ϕ). We can say that
conditions from Def. 8.4 are satisfied: our X is

⋂
Nw and our topological

space is 〈
⋃
Nw,Qw〉. Thus w ∈ Vt(�ϕ).

(⇐) Assume that w ∈ Vt(�ϕ). Thus, we have X ⊆W such that w ∈ X
and there are x ∈ W , 〈

⋃
Nx,Qx〉 ∈W such that X is

⋂
Nx (i.e. minimal

Qx-open x-neighborhood) and
⋃
Nx ⊆ Vt(ϕ). By induction hypothesis⋃

Nx ⊆ VN (ϕ). Thus, x  �ϕ. By monotonicity of forcing, w  ϕ. �

One can see that in some sense we composed earlier definitions of multi-
topological frames, valuations and models. Now our situation is similar to
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we used the notion of neighborhood in three ways. First, we spoke about
the class of all neighborhood structures (n2 -frames). Second, we made
references to neighborhoods in the standard topological sense. Third, we
used those topological neighborhoods to transform multi-topological frame
into certain specific n2 -frame. Hence, we shall repeat the most important
things and sum up our considerations.

In section 3 we have described neighborhood semantics for intuitionistic
modal logic. It is based on the notions of minimal (“intuitionistic”) and
maximal (“modal”) neighborhoods.

In section 5 we have introduced mtD -frames (models). They are col-
lections of topological spaces. These spaces can intersect or form unions.
We assumed that each space 〈T, τ〉 has certain distinguished open set Dτ .
Then we have shown how it is possible to treat n2 -frames as mtD -frames.
Shortly speaking, the main idea is to make connection between maximal
(resp. minimal) neighborhoods and universes T (resp. distinguished sets).

In section 7 we spoke about t2 -frames (models). They are similar to
the class of mtD but each topology is Alexandrov and we do not intro-
duce distinguished sets anymore. We have shown how to transform those
structures into neighborhood models. Let us repeat main steps of this rea-
soning. Assume that W is the whole universe of a given t2 -frame. Now
let us take an arbitrary w ∈ W . For each topology τ we have minimal
τ -open w-neighborhood (because of Alexandrov property). We take inter-
section of all such minimal neighborhoods and treat it as

⋂
Nw (as the

minimal w-neighborhood in the sense of n2 -frames). Then we take inter-
section of all topological spaces to which w belongs and this is our maximal
neighborhood.

In section 8.1 we came back to n2 -frames but we introduced another
topology in those structures (different than in section 5). It is possible to
transform n2 -models with this topology into t3 -multi-topological models –
which are based on t2 -frames but with different valuation than in section 7.

9. Summary

In this paper we used a lot of notions and symbols. We have introduced
three different concepts of multi-topological frames (models). Moreover,
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