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Summary. A (di)graph without parallel edges can simply be represented
by a binary relation of the vertices and on the other hand, any binary relation can
be expressed as such a graph. In this article, this correspondence is formalized in
the Mizar system [2], based on the formalization of graphs in [6] and relations in
[11], [12]. Notably, a new definition of createGraph will be given, taking only a
non empty set V and a binary relation E ⊆ V ×V to create a (di)graph without
parallel edges, which will provide to be very useful in future articles.
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0. Introduction

Digraphs without multiple edges can be represented by binary relations (cf.
[4]) and this is in fact the way they are usually defined in textbooks which are
primarly concerned about graphs without multiple edges (cf. [10], [3], [8]). While
a mathematician can switch between these representations without problems,
due to its pedantic nature the Mizar system [2] needs a formalization of this
change of viewpoint, which is provided by this article. In the Mizar Mathemati-
cal Library [1] this problem hasn’t been adressed yet, although the undirected
analogon can be found as an alternative definition for simple graphs in [9] (which
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isn’t used anywhere else) and the friendship theorem was formalized in [7] using
only relations.

In the first section the dominance and adjacency relation of a graph G are
rigorously introduced. G isn’t required to be without parallel edges for this,
therefore the relations of G and the graph given by removing parallel edges
(directed parallel for the dominance) as defined in [5] are the same.

The second section introduces the new functor definition for createGraph,
taking a non empty set V and a relation E ⊆ V × V and returning a graph
representing this relation. It is shown that the graph created this way from
a dominance relation of a graph G without directed parallel edges is directed
isomorphic to G itself.

Since undirected graphs are sometimes viewed as symmetric digraphs (cf. [3],
[4], [8], the last section introduces a mode getting a graph without parallel edges
of any kind by simply removing them from the functor result of the previous
section. Similar to before, it is shown that the graph created this way from an
adjacency relation of a graph G without parallel edges is isomorphic to G itself.

1. The Adjacency Relation

From now on G denotes a graph.
Let us consider G. The functor VertDomRel(G) yielding a binary relation

on the vertices of G is defined by the term

(Def. 1) (the source of G qua binary relation)` · (the target of G).

Let us consider objects v, w. Now we state the propositions:

(1) 〈〈v, w〉〉 ∈ VertDomRel(G) if and only if there exists an object e such that
e joins v to w in G.

(2) 〈〈v, w〉〉 ∈ (VertDomRel(G))` if and only if there exists an object e such
that e joins w to v in G. The theorem is a consequence of (1).

(3) G is loopless if and only if VertDomRel(G) is irreflexive.

Let G be a loopless graph. One can verify that VertDomRel(G) is irreflexive.
Let G be a non loopless graph. One can verify that VertDomRel(G) is non

irreflexive.
Let G be a non-multi graph. One can verify that VertDomRel(G) is anti-

symmetric.
Let G be a simple graph. One can check that VertDomRel(G) is asymmetric.
Now we state the proposition:

(4) Let us consider a graph G. Suppose there exist objects e1, e2, x, y such
that e1 joins x to y in G and e2 joins y to x in G. Then VertDomRel(G)
is not asymmetric.
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Proof: Set R = VertDomRel(G). There exist objects x, y such that x,
y ∈ fieldR and 〈〈x, y〉〉, 〈〈y, x〉〉 ∈ R. �

Let G be a non non-multi, non-directed-multi graph.
Note that VertDomRel(G) is non asymmetric.
Now we state the propositions:

(5) Let us consider a loopless graph G. Suppose field VertDomRel(G) =
the vertices of G. Then every component of G is not trivial. The theorem
is a consequence of (1).

(6) Let us consider a graph G. Suppose every component of G is not trivial.
Then field VertDomRel(G) = the vertices of G. The theorem is a consequ-
ence of (1).

(7) Let us consider a non trivial, connected graph G. Then field VertDomRel
(G) = the vertices of G. The theorem is a consequence of (6).

LetG be a complete graph. One can verify that VertDomRel(G) is connected.

(8) G is edgeless if and only if VertDomRel(G) is empty. The theorem is
a consequence of (1).

Let G be an edgeless graph. Let us observe that VertDomRel(G) is empty.
Let G be a non edgeless graph. One can verify that VertDomRel(G) is non

empty.
Now we state the proposition:

(9) G is loopfull if and only if VertDomRel(G) is total and reflexive.

Let G be a loopfull graph. Note that VertDomRel(G) is reflexive and total.
Let G be a vertex-finite graph. Let us observe that VertDomRel(G) is finite.

(10) VertDomRel(G) = Classes DEdgeParEqRel(G).
Proof: Set R = VertDomRel(G). Define P[object, object] ≡ there exists
an object e such that e joins ($1)1 to ($1)2 inG and $2 = [e]DEdgeParEqRel(G).
For every objects x, y1, y2 such that x ∈ R and P[x, y1] and P[x, y2] holds
y1 = y2. For every object x such that x ∈ R there exists an object y such
that P[x, y]. Consider f being a function such that dom f = R and for
every object x such that x ∈ R holds P[x, f(x)]. For every objects x1, x2
such that x1, x2 ∈ dom f and f(x1) = f(x2) holds x1 = x2. �

(11) VertDomRel(G) ⊆ G.size(). The theorem is a consequence of (10).

(12) Let us consider a non-directed-multi graph G. Then G.size() =

VertDomRel(G). The theorem is a consequence of (10).

Let us consider a vertex v of G. Now we state the propositions:

(13) (VertDomRel(G))◦v = v.outNeighbors(). The theorem is a consequence
of (1).
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(14) Coim(VertDomRel(G), v) = v.inNeighbors(). The theorem is a consequ-
ence of (1).

(15) Let us consider a subgraph H of G. Then VertDomRel(H) ⊆
VertDomRel(G). The theorem is a consequence of (1).

(16) Let us consider a subgraph H of G with directed-parallel edges removed.
Then VertDomRel(H) = VertDomRel(G). The theorem is a consequence
of (15) and (1).

(17) Let us consider a subgraphH ofG with loops removed. Then VertDomRel
(H) = (VertDomRel(G))\(idα), where α is the vertices of G. The theorem
is a consequence of (1) and (15).

(18) Let us consider a directed-simple graph H of G. Then VertDomRel(H) =
(VertDomRel(G)) \ (idα), where α is the vertices of G. The theorem is
a consequence of (17) and (16).

(19) Let us consider graphs G1, G2. If G1 ≈ G2, then VertDomRel(G1) =
VertDomRel(G2). The theorem is a consequence of (1).

(20) Let us consider a graph H given by reversing directions of the edges of
G. Then VertDomRel(H) = (VertDomRel(G))`. The theorem is a conse-
quence of (1).

(21) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then VertDomRel(H) = VertDomRel(G) ∩ (V ×
V ). The theorem is a consequence of (1) and (15).

(22) Let us consider a set V , and a subgraph H of G with vertices V removed.
Suppose V ⊂ the vertices ofG. Then VertDomRel(H) = (VertDomRel(G))\
(V × (the vertices of G)∪ (the vertices of G)× V ). The theorem is a con-
sequence of (15) and (1).

Let us consider a non trivial graph G, a vertex v of G, and a subgraph H of
G with vertex v removed. Now we state the propositions:

(23) VertDomRel(H) = (VertDomRel(G)) \ ({v} × (the vertices of G)∪
(the vertices of G)× {v}). The theorem is a consequence of (22).

(24) If v is isolated, then VertDomRel(H) = VertDomRel(G).
Proof: Set V1 = {v}× (the vertices of G). Set V2 = (the vertices of G)×
{v}. (V1 ∪ V2) ∩VertDomRel(G) = ∅. �

(25) Let us consider a set V , and a supergraph H of G extended by the
vertices from V . Then VertDomRel(H) = VertDomRel(G). The theorem
is a consequence of (15) and (1).

(26) Let us consider objects v, e, w, and a supergraph H of G extended by e
between vertices v and w. Suppose there exists an object e0 such that e0
joins v to w in G. Then VertDomRel(H) = VertDomRel(G). The theorem
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is a consequence of (15), (1), and (19).

(27) Let us consider vertices v, w of G, an object e, and a supergraph H of
G extended by e between vertices v and w. Suppose e /∈ the edges of
G. Then VertDomRel(H) = VertDomRel(G) ∪ {〈〈v, w〉〉}. The theorem is
a consequence of (1) and (15).

(28) Let us consider a vertex v of G, objects e, w, and a supergraph H of G
extended by v, w and e between them. Suppose e /∈ the edges of G and
w /∈ the vertices of G. Then VertDomRel(H) = VertDomRel(G) ∪ {〈〈v,
w〉〉}. The theorem is a consequence of (27) and (25).

(29) Let us consider objects v, e, a vertex w of G, and a supergraph H of
G extended by v, w and e between them. Suppose e /∈ the edges of G
and v /∈ the vertices of G. Then VertDomRel(H) = VertDomRel(G)∪{〈〈v,
w〉〉}. The theorem is a consequence of (27) and (25).

(30) Let us consider a subset V of the vertices ofG, and a graphH by adding a
loop to each vertex of G in V . Then VertDomRel(H) = VertDomRel(G)∪
idV . The theorem is a consequence of (1) and (15).

(31) Let us consider a directed graph complement H of G with loops. Then
VertDomRel(H) = ((the vertices ofG)×(the vertices ofG))\(VertDomRel
(G)). The theorem is a consequence of (1).

Let us consider G. The functor VertAdjSymRel(G) yielding a binary relation
on the vertices of G is defined by the term

(Def. 2) VertDomRel(G) ∪ (VertDomRel(G))`.

Now we state the propositions:

(32) Let us consider objects v, w. Then 〈〈v, w〉〉 ∈ VertAdjSymRel(G) if and
only if there exists an object e such that e joins v and w in G. The theorem
is a consequence of (1) and (2).

(33) Let us consider vertices v, w of G. Then 〈〈v, w〉〉 ∈ VertAdjSymRel(G) if
and only if v and w are adjacent. The theorem is a consequence of (32).

(34) VertDomRel(G) ⊆ VertAdjSymRel(G).

(35) VertAdjSymRel(G) = (the source ofG qua binary relation)`·(the target
of G) ∪ (the target of G qua binary relation)` · (the source of G).

Let us consider G. One can check that VertAdjSymRel(G) is symmetric.
Now we state the proposition:

(36) G is loopless if and only if VertAdjSymRel(G) is irreflexive.

Let G be a loopless graph. One can verify that VertAdjSymRel(G) is irre-
flexive.

Let G be a non loopless graph. One can check that VertAdjSymRel(G) is
non irreflexive.
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Now we state the propositions:

(37) Let us consider a loopless graph G. Suppose VertAdjSymRel(G) is total.
Then every component of G is not trivial. The theorem is a consequence
of (5).

(38) Let us consider a graph G. Suppose every component of G is not trivial.
Then VertAdjSymRel(G) is total. The theorem is a consequence of (6).

Let G be a non trivial, connected graph. Note that VertAdjSymRel(G) is
total.

LetG be a complete graph. Let us note that VertAdjSymRel(G) is connected.
Now we state the proposition:

(39) G is edgeless if and only if VertAdjSymRel(G) is empty.

Let G be an edgeless graph. One can check that VertAdjSymRel(G) is empty.
Let G be a non edgeless graph. Note that VertAdjSymRel(G) is non empty.

(40) G is loopfull if and only if VertAdjSymRel(G) is total and reflexive.

Let G be a loopfull graph. Let us observe that VertAdjSymRel(G) is reflexive
and total.

Let G be a vertex-finite graph. Note that VertAdjSymRel(G) is finite.
Now we state the propositions:

(41) Classes DEdgeParEqRel(G) ⊆ VertAdjSymRel(G). The theorem is a con-
sequence of (34) and (10).

(42) Classes EdgeParEqRel(G) ⊆ VertAdjSymRel(G).
Proof: Set R = VertAdjSymRel(G). Define P[object, object] ≡ the-
re exists an object e such that e joins ($1)1 and ($1)2 in G and $2 =
[e]EdgeParEqRel(G). For every objects x, y1, y2 such that x ∈ R and P[x, y1]
and P[x, y2] holds y1 = y2. For every object x such that x ∈ R there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = R and for every object x such that x ∈ R holds P[x, f(x)]. �

(43) Let us consider a non-directed-multi graph G. Then G.size() ⊆
VertAdjSymRel(G). The theorem is a consequence of (10), (12), and (41).

(44) Let us consider a vertex v of G. Then (VertAdjSymRel(G))◦v =
v.allNeighbors(). The theorem is a consequence of (32).

(45) Let us consider a subgraph H of G. Then VertAdjSymRel(H) ⊆
VertAdjSymRel(G). The theorem is a consequence of (15).

(46) Let us consider a subgraph H of G with parallel edges removed. Then
VertAdjSymRel(H) = VertAdjSymRel(G). The theorem is a consequence
of (45) and (32).

(47) Let us consider a subgraph H of G with loops removed.
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Then VertAdjSymRel(H) = (VertAdjSymRel(G))\(idα), where α is the ver-
tices of G. The theorem is a consequence of (17).

(48) Let us consider a simple graph H of G. Then VertAdjSymRel(H) =
(VertAdjSymRel(G)) \ (idα), where α is the vertices of G. The theorem is
a consequence of (47) and (46).

(49) Let us consider graphs G1, G2. Suppose G1 ≈ G2. Then VertAdjSymRel
(G1) = VertAdjSymRel(G2). The theorem is a consequence of (19).

(50) Let us consider a set E, and a graph H given by reversing directions of
the edges E of G. Then VertAdjSymRel(H) = VertAdjSymRel(G). The
theorem is a consequence of (32).

(51) Let us consider a non empty subset V of the vertices ofG, and a subgraph
H of G induced by V . Then VertAdjSymRel(H) = VertAdjSymRel(G) ∩
(V × V ). The theorem is a consequence of (21).

(52) Let us consider a set V , and a subgraph H of G with vertices V removed.
Suppose V ⊂ the vertices of G. Then VertAdjSymRel(H) =
(VertAdjSymRel(G)) \ (V × (the vertices of G)∪ (the vertices of G)× V ).
The theorem is a consequence of (22).

Let us consider a non trivial graph G, a vertex v of G, and a subgraph H of
G with vertex v removed. Now we state the propositions:

(53) VertAdjSymRel(H) = (VertAdjSymRel(G)) \ ({v} × (the vertices of
G) ∪ (the vertices of G)× {v}). The theorem is a consequence of (52).

(54) If v is isolated, then VertAdjSymRel(H) = VertAdjSymRel(G). The
theorem is a consequence of (24).

(55) Let us consider a set V , and a supergraphH ofG extended by the vertices
from V . Then VertAdjSymRel(H) = VertAdjSymRel(G). The theorem is
a consequence of (25).

Let us consider vertices v, w of G, an object e, and a supergraph H of G
extended by e between vertices v and w. Now we state the propositions:

(56) If v and w are adjacent, then VertAdjSymRel(H) = VertAdjSymRel(G).
The theorem is a consequence of (26), (1), (27), and (49).

(57) Suppose e /∈ the edges ofG. Then VertAdjSymRel(H) = VertAdjSymRel
(G) ∪ {〈〈v, w〉〉, 〈〈w, v〉〉}. The theorem is a consequence of (27).

(58) Let us consider a vertex v of G, objects e, w, and a supergraph H of G
extended by v, w and e between them. Suppose e /∈ the edges of G and w /∈
the vertices of G. Then VertAdjSymRel(H) = VertAdjSymRel(G) ∪ {〈〈v,
w〉〉, 〈〈w, v〉〉}. The theorem is a consequence of (57) and (55).

(59) Let us consider objects v, e, a vertex w of G, and a supergraph H of G
extended by v, w and e between them. Suppose e /∈ the edges of G and v /∈
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the vertices of G. Then VertAdjSymRel(H) = VertAdjSymRel(G) ∪ {〈〈v,
w〉〉, 〈〈w, v〉〉}. The theorem is a consequence of (57) and (55).

(60) Let us consider an object v, a subset V of the vertices of G, and a super-
graph H of G extended by vertex v and edges between v and V of G. Sup-
pose v /∈ the vertices of G. Then VertAdjSymRel(H) = (VertAdjSymRel
(G)∪ {v}× V )∪ V ×{v}. The theorem is a consequence of (32) and (45).

(61) Let us consider a subset V of the vertices of G, and a graph H by
adding a loop to each vertex of G in V . Then VertAdjSymRel(H) =
VertAdjSymRel(G) ∪ idV . The theorem is a consequence of (30).

(62) Let us consider an undirected graph complement H of G with loops.
Then VertAdjSymRel(H) = ((the vertices of G) × (the vertices of G)) \
(VertAdjSymRel(G)). The theorem is a consequence of (32).

2. Create non-Directed-Multi Graphs from Relations

In the sequel V denotes a non empty set and E denotes a binary relation on
V .

Let us consider V and E. The functor createGraph(V,E) yielding a graph
is defined by the term

(Def. 3) createGraph(V,E, π1(V � V )�E, π2(V � V )�E).

Let us note that the edges of createGraph(V,E) is relation-like.
Now we state the propositions:

(63) Let us consider objects v, w. Then 〈〈v, w〉〉 ∈ E if and only if 〈〈v, w〉〉 joins
v to w in createGraph(V,E).

(64) Let us consider objects e, v, w. Suppose e joins v to w in createGraph(V,E).
Then e = 〈〈v, w〉〉. The theorem is a consequence of (63).

(65) VertDomRel(createGraph(V,E)) = E. The theorem is a consequence of
(1) and (63).

Let us consider V and E. One can verify that createGraph(V,E) is plain
and non-directed-multi.

Now we state the proposition:

(66) V is trivial if and only if createGraph(V,E) is trivial.

Let V be a trivial, non empty set and E be a binary relation on V . One can
check that createGraph(V,E) is trivial.

Let V be a non trivial set. Let us observe that createGraph(V,E) is non
trivial.

Now we state the proposition:
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(67) E is irreflexive if and only if createGraph(V,E) is loopless. The theorem
is a consequence of (65).

Let us consider V . Let E be an irreflexive binary relation on V . Let us note
that createGraph(V,E) is loopless.

Let E be a non irreflexive binary relation on V . Observe that createGraph(V,
E) is non loopless.
Now we state the proposition:

(68) E is antisymmetric if and only if createGraph(V,E) is non-multi. The
theorem is a consequence of (64) and (65).

Let us consider V . Let E be an antisymmetric binary relation on V . One
can check that createGraph(V,E) is non-multi.

Let V be a non trivial set and E be a non antisymmetric binary relation on
V . Note that createGraph(V,E) is non non-multi.

Let us consider V . Let E be an asymmetric binary relation on V . One can
verify that createGraph(V,E) is simple.

Now we state the proposition:

(69) If createGraph(V,E) is complete, then E is connected. The theorem is
a consequence of (65).

Let V be a non trivial set and E be a non connected binary relation on V .
Note that createGraph(V,E) is non complete.

Now we state the proposition:

(70) E is empty if and only if createGraph(V,E) is edgeless. The theorem is
a consequence of (65).

Let us consider V . Let E be an empty binary relation on V . One can verify
that createGraph(V,E) is edgeless.

Let E be a non empty binary relation on V . Note that createGraph(V,E) is
non edgeless.

Now we state the proposition:

(71) E is total and reflexive if and only if createGraph(V,E) is loopfull. The
theorem is a consequence of (65).

Let us consider V . Let E be a total, reflexive binary relation on V . Let us
note that createGraph(V,E) is loopfull.

Let E be a non total binary relation on V . Observe that createGraph(V,E)
is non loopfull.

Let V be a finite, non empty set and E be a binary relation on V . One can
check that createGraph(V,E) is finite.

Let us consider V . Let E be a finite binary relation on V . One can check
that createGraph(V,E) is edge-finite.
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Let us consider a vertex v of createGraph(V,E). Now we state the proposi-
tions:

(72) E◦v = v.outNeighbors(). The theorem is a consequence of (63) and (64).

(73) Coim(E, v) = v.inNeighbors(). The theorem is a consequence of (63) and
(64).

(74) Let us consider a set X. Then E�X = (createGraph(V,E)).edgesOutOf
(X). The theorem is a consequence of (63) and (64).

(75) Let us consider a set Y. Then Y �E = (createGraph(V,E)).edgesInto(Y ).
The theorem is a consequence of (63) and (64).

Let us consider sets X, Y. Now we state the propositions:

(76) (Y �E)�X = (createGraph(V,E)).edgesDBetween(X,Y ). The theorem is
a consequence of (75) and (74).

(77) (Y �E)�X ∪ (X�E)�Y = (createGraph(V,E)).edgesBetween(X,Y ). The
theorem is a consequence of (76).

Let us consider a vertex v of createGraph(V,E). Now we state the proposi-
tions:

(78) E�{v} = v.edgesOut(). The theorem is a consequence of (74).

(79) {v}�E = v.edgesIn(). The theorem is a consequence of (75).

(80) Let us consider a set X. Then E�X ∪X�E = (createGraph(V,E))
.edgesInOut(X). The theorem is a consequence of (74) and (75).

(81) domE = rng(the source of createGraph(V,E)). The theorem is a con-
sequence of (63) and (64).

(82) rngE = rng(the target of createGraph(V,E)). The theorem is a conse-
quence of (63) and (64).

(83) Let us consider a vertex v of createGraph(V,E). Then v is isolated if
and only if v /∈ fieldE. The theorem is a consequence of (63) and (64).

(84) E is symmetric if and only if VertAdjSymRel(createGraph(V,E)) = E.
The theorem is a consequence of (65).

(85) Let us consider a non empty set V1, a non empty subset V2 of V1, a binary
relation E1 on V1, and a binary relation E2 on V2. Suppose E2 ⊆ E1. Then
createGraph(V2, E2) is a subgraph of createGraph(V1, E1) induced by V2
and E2.

Let us consider a non-directed-multi graph G. Now we state the propositions:

(86) There exists a partial graph mapping F fromG to createGraph(the vertices
of G,VertDomRel(G)) such that

(i) F is directed-isomorphism, and

(ii) FV = idα, and
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(iii) for every object e such that e ∈ the edges of G holds (FE)(e) =
〈〈(the source of G)(e), (the target of G)(e)〉〉,

where α is the vertices of G.

(87) createGraph(the vertices ofG,VertDomRel(G)) isG-directed-isomorphic.
The theorem is a consequence of (86).

3. Create non-Multi Graphs from Symmetric Relations

In the sequel E denotes a symmetric binary relation on V .
Let us consider V and E.
A graph created from the symmetric relation V on E is a subgraph of

createGraph(V,E) with parallel edges removed. From now on G denotes a graph
created from the symmetric relation V on E.

Now we state the propositions:

(88) Let us consider objects v, w. Then 〈〈v, w〉〉 ∈ E if and only if 〈〈v, w〉〉 joins
v to w in G or 〈〈w, v〉〉 joins w to v in G. The theorem is a consequence of
(63).

(89) Let us consider vertices v, w of G. Then 〈〈v, w〉〉 ∈ E if and only if v and
w are adjacent. The theorem is a consequence of (88) and (63).

Let us consider V and E. Let us observe that every graph created from the
symmetric relation V on E is non-multi.

Now we state the proposition:

(90) The edges of G ⊆ E.

Let us consider graphs G1, G2 created from the symmetric relation V on E.
Now we state the propositions:

(91) The vertices of G1 = the vertices of G2.

(92) G2 is G1-isomorphic.

(93) V is trivial if and only if G is trivial.

Let V be a trivial, non empty set and E be a symmetric binary relation on
V . Observe that every graph created from the symmetric relation V on E is
trivial.

Let V be a non trivial set. Let us note that every graph created from the
symmetric relation V on E is non trivial.

Now we state the proposition:

(94) E is irreflexive if and only if G is loopless.

Let us consider V . Let E be a symmetric, irreflexive binary relation on V .
One can verify that every graph created from the symmetric relation V on E is
loopless.
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Let E be a symmetric, non irreflexive binary relation on V . Observe that
every graph created from the symmetric relation V on E is non loopless.

Now we state the proposition:

(95) If G is complete, then E is connected. The theorem is a consequence of
(69).

Let V be a non trivial set and E be a symmetric, non connected binary
relation on V . Note that every graph created from the symmetric relation V on
E is non complete.

Now we state the proposition:

(96) E is empty if and only if G is edgeless.

Let us consider V . Let E be an empty binary relation on V . Let us note that
every graph created from the symmetric relation V on E is edgeless.

Let E be a symmetric, non empty binary relation on V . One can check that
every graph created from the symmetric relation V on E is non edgeless.

Now we state the proposition:

(97) E is total and reflexive if and only if G is loopfull. The theorem is
a consequence of (71).

Let us consider V . Let E be a total, reflexive, symmetric binary relation
on V . Observe that every graph created from the symmetric relation V on E is
loopfull.

Let E be a symmetric, non total binary relation on V . Note that every graph
created from the symmetric relation V on E is non loopfull.

Let V be a finite, non empty set and E be a symmetric binary relation on
V . One can verify that every graph created from the symmetric relation V on
E is finite.

Now we state the propositions:

(98) Let us consider a vertex v of G. Then E◦v = v.allNeighbors(). The
theorem is a consequence of (72) and (73).

(99) Let us consider a set X. Then G.edgesInOut(X) ⊆ E�X ∪ X�E. The
theorem is a consequence of (80).

(100) Let us consider sets X, Y. Then G.edgesBetween(X,Y ) ⊆ (Y �E)�X ∪
(X�E)�Y. The theorem is a consequence of (77).

Let us consider a vertex v of G. Now we state the propositions:

(101) v.edgesOut() ⊆ E�{v}. The theorem is a consequence of (78).

(102) v.edgesIn() ⊆ {v}�E. The theorem is a consequence of (79).

(103) v is isolated if and only if v /∈ fieldE. The theorem is a consequence of
(83).
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(104) Let us consider a graph G created from the symmetric relation V on E.
Then VertAdjSymRel(G) = E. The theorem is a consequence of (33) and
(89).

(105) Let us consider a non empty set V1, a non empty subset V2 of V1, a sym-
metric binary relation E1 on V1, a symmetric binary relation E2 on V2,
a graph G1 created from the symmetric relation V1 on E1, and a graph G2
created from the symmetric relation V2 on E2. Suppose E2 ⊆ E1. Then
there exists a partial graph mapping F from G2 to G1 such that

(i) F is weak subgraph embedding, and

(ii) FV = idV2 , and

(iii) for every objects v, w such that 〈〈v, w〉〉 ∈ the edges of G2 holds
(FE)(〈〈v, w〉〉) = 〈〈v, w〉〉 or (FE)(〈〈v, w〉〉) = 〈〈w, v〉〉.

Proof: Define P[object, object] ≡ there exist objects v, w such that $1 =
〈〈v, w〉〉 and $2 ∈ the edges of G1 and ($2 = 〈〈v, w〉〉 or $2 = 〈〈w, v〉〉). For
every objects x, y1, y2 such that x ∈ the edges of G2 and P[x, y1] and
P[x, y2] holds y1 = y2. For every object x such that x ∈ the edges of
G2 there exists an object y such that P[x, y]. Consider g being a function
such that dom g = the edges of G2 and for every object x such that x ∈
the edges of G2 holds P[x, g(x)]. For every objects x1, x2 such that x1,
x2 ∈ dom g and g(x1) = g(x2) holds x1 = x2. Consider v0, w0 being
objects such that 〈〈v, w〉〉 = 〈〈v0, w0〉〉 and g(〈〈v, w〉〉) ∈ the edges of G1 and
g(〈〈v, w〉〉) = 〈〈v0, w0〉〉 or g(〈〈v, w〉〉) = 〈〈w0, v0〉〉. �

(106) Let us consider a non-multi graph G1, and a graph G2 created from the
symmetric relation the vertices of G1 on VertAdjSymRel(G1). Then there
exists a partial graph mapping F from G1 to G2 such that

(i) F is isomorphism, and

(ii) FV = idα, and

(iii) for every object e such that e ∈ the edges of G1 holds (FE)(e) =
〈〈(the source ofG1)(e), (the target ofG1)(e)〉〉 or (FE)(e) = 〈〈(the target
of G1)(e), (the source of G1)(e)〉〉,

where α is the vertices of G1.
Proof: Set E0 = VertAdjSymRel(G). Set G0 = createGraph(the vertices
of G,E0). Consider E′ being a representative selection of the parallel edges
of G0 such that G′ is a subgraph of G0 induced by the vertices of G0
and E′. Define P[object, object] ≡ $2 ∈ E′ and ($2 = 〈〈(the source of
G)($1), (the target of G)($1)〉〉 or $2 = 〈〈(the target of G)($1), (the source
of G)($1)〉〉). For every objects x, y1, y2 such that x ∈ the edges of G
and P[x, y1] and P[x, y2] holds y1 = y2. For every object x such that
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x ∈ the edges of G there exists an object y such that P[x, y]. Consider g
being a function such that dom g = the edges of G and for every object x
such that x ∈ the edges of G holds P[x, g(x)]. �

(107) Let us consider a non-multi graph G1. Then every graph created from
the symmetric relation the vertices of G1 on VertAdjSymRel(G1) is G1-
isomorphic. The theorem is a consequence of (106).
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