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ABSTRACT 

 

Development and Numerical Implementation of Nonlinear Viscoelastic-Viscoplastic 

Model for Asphalt Materials (December 2008) 

Chien-Wei Huang, B.S., I-Shou University; 

M.S., National Cheng-Kung University 

Chair of Advisory Committee: Dr. Eyad Masad 

 

 Hot mix asphalt (HMA) is a composite material which consists of aggregates, air 

voids and asphalt materials.  The HMA response is typically described to be 

viscoelastic-viscoplastic, and its response is a function of temperature, stress/strain rate, 

and stress/strain level.  Many researches have shown that the viscoelastic response of 

asphalt mixtures can be nonlinear once the stress/strain value exceeds a certain threshold 

level.  This study presents a nonlinear viscoelastic-viscoplastic model for describing the 

behavior of asphalt materials under various conditions.  A new method is developed in 

this study for separating the viscoelastic response from the viscoplastic response.  

 The first part of this study focuses on the implementation of Schapery nonlinear 

viscoelastic model in finite element (FE) using a user-defined material subroutine 

(UMAT) within the ABAQUS commercial software.  The FE implementation employs 

the recursive-iterative integration algorithm, which can improve the convergence and 

save the calculating time.  The verification of the nonlinear viscoelastic model is 

achieved by analyzing (1) the response of asphalt mixtures tested in the Simple Shear 
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Test (SST) at several temperatures and stress levels, (2) the response of unaged and aged 

asphalt binders tested in the Dynamic Shear Rheometer (DSR), and (3) the response of 

asphalt binders in the multiple stress creep recovery test (MSCR). 

In the second part of this study, the nonlinear viscoelastic-viscoplastic 

constitutive relationship is implemented using UMAT.  The viscoplastic component of 

the model employs Perzyna’s theory with Extended Drucker-Prager yield surface which 

is modified to account for the difference in material response under compression and 

extension stress states.  The study includes parametric analysis to illustrate the effect of 

nonlinear viscoelastic parameters and viscoplastic parameters on the asphalt mix 

response.  The capability of the model in describing the fatigue and permanent 

deformation distresses of asphalt pavements is illustrated using finite element 

simulations. 

The constitutive model developed in this study can describe the behavior of 

asphalt materials (asphalt binder, asphalt mastic and mixtures) under various testing 

conditions.  This study also achieved the FE implementation of a nonlinear viscoelastic-

viscoplastic constitutive model that can simulate the fatigue and permanent deformation 

distresses of asphalt pavement structures.   
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CHAPTER I 

INTRODUCTION 

BACKGROUND 

 There has been emphasis in recent years in developing a mechanistic model for 

predicting the performance of asphalt mixtures.  The primary challenge in developing 

such a mechanistic model has been in formulating a constitutive relationship that 

accounts for the dependency of asphalt mixture response on temperature, loading rate, 

stress/strain levels and stress state (Perl et al., 1983, Sides et al., 1985, Collop et al., 

2003, and Masad et al., 2002).  

Several studies have focused on developing constitutive relationships for asphalt 

mixtures.  However, most of these relationships focused on predicting a certain 

pavement distress (permanent deformation, fatigue, low temperature cracking) that is 

associated with certain ranges of temperatures and loading rates.  Sides et al. (1985) 

proposed a one-dimensional mathematical relationship to describe the elastic, 

viscoelastic, plastic, and viscoplastic components of asphalt mix response submitted to 

uniaxial loading.  These relationships were empirical and could not be extended to the 

three-dimensional case that is necessary for numerical implementation and performance 

prediction.  Chehab et al. (2003) developed what was referred to as an elasto-viscoplastic 

continuum model to characterize asphalt mixes subjected to uniaxial loading.  The 

viscoelastic behavior was modeled using Schapery’s theory, while an empirical strain 

hardening model was used to characterize the viscoplastic behavior.     

_______ ____ 
This dissertation follows the style of Journal of Engineering Mechanics (ASCE). 
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Sousa et al. (1993) developed a nonlinear elastic, viscous model with damage to 

predict permanent deformation of HMA.  This model employed nine parameters 1C  ~ 

9C  to represent the nonlinear elastic response.  This study conducted a Simple Shear 

Test, an Uniaxial Strain Test, and a Volumetric Test to obtain the nonlinear elastic 

parameters; the viscous component was modeled by several sets of Maxwell model with 

spring and dashpot.  The damage effect was accounted for in changing the viscous or 

dashpot parameter as a function of shear strain.  Sousa and Weissman (1994) improved 

the nonlinear elastic, viscous model by incorporating an elastoplastic component to 

account for yielding and development of permanent strain.  The model employed the 

Von Mises yield surface with kinematic hardening.  However, the irrecoverable 

component is time-independent in this model.  Seibi et al. (2001) developed the elasto-

viscoplastic constitutive model for HMA that was implemented in the finite element 

package ABAQUS.  The model used the Perzyna’s theory of viscoplasticity with the 

Drucker-Prager yield surface.  The isotropic hardening and associate flow rule were used 

to describe the material response once the material reached the yield surface.  However, 

this model considered the recoverable component as elastic.  Collop et al. (2003) 

developed a three-dimensional, elasto-viscoplastic constitutive model with damage that 

includes elastic, delayed elastic and viscoplastic components.  This model used the 

power law function of stress to model the viscoplastic strain rate.  Lu and Wright (1998) 

proposed a visco-elastoplastic model in which Hooke’s law was used to model the 

elastic strain component, a power law function of stress and time was used to present the 

viscoelastic strain component.  The viscoplastic strain component was modeled using 
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Perzyna’s theory of viscoplasticity.  Oeser and Moller (2004) developed a three-

dimensional constitutive model that uses a Hook-Kelvin-Newton element to present the 

elastic, viscoelastic, and viscoplastic components, respectively.  The Von Mises yield 

surface function was used in the tension zone, while the Drucker-Prager function was 

employed in the compression zone.  The model also considered the temperature effect, 

healing and damage effect.  Erkens et al. (2002) developed a three-dimensional 

constitutive model to account for the strain rate sensitive, temperature-, and loading 

history-dependent on HMA.  This model used Desai et al. (1986) flow surface to 

represent the plastic behavior of the mixture.  Nevertheless, these models do not include 

the nonassociated behavior in material constitutive model and do not consider the 

nonlinearity of recoverable component.  

At Texas A&M University, Tashman (2003) developed a nonassociated elasto-

viscoplastic model for HMA. This model considered the anisotropy, damage effects and 

work hardening.  Tashman (2003) considered the recoverable response to be elastic.  

Dessouky (2005) extended the work by Tashman (2003) by modifying the yield surface 

in order to account for the difference in the mixture response under extension and 

compression stress states.  Dessouky (2005) also considered the recoverable response to 

be time-independent.  Saadeh (2005) conducted extensive experiments in order to 

characterize recoverable and irrecoverable responses of the mixture.  Saadeh (2005) 

found that the recoverable response is nonlinear and it experiences damage at the test 

temperatures (59oC).  He developed an experimental method for separating the nonlinear 

recoverable and irrecoverable components. 
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PROBLEM STATEMENT 

 The behavior of asphalt materials (binders, mastics and full mixtures) is complex 

and it is influenced by temperature, stress/strain level, and stress/strain rate.  

Furthermore, the total response of asphalt materials subjected to an applied stress 

contains recoverable (viscoelastic) and irrecoverable (viscoplastic) strain components 

that could occur simultaneously. The viscoelastic component of the response becomes 

more dominant as temperature decreases and loading rate increases. 

The relationship between stress and the recoverable strain component can be 

nonlinear depending on the applied stress/strain limits and temperature.  Damage can be 

manifested in changes in the mixture recoverable response.  The viscoplastic response is 

also complex and it becomes more dominant as temperature increases and the rate of 

loading decreases.    

It is necessary to separate the recoverable and irrecoverable strain in order to 

develop the constitutive relationships for describing these components and determine the 

model’s parameters associated with each component.  Consequently, there is a need to 

develop a mechanistic model that incorporates both the viscoelastic and viscoplastic 

components of mixture response.  The mechanistic model needs to be implemented in 

finite element in order to predict performance under realistic boundary conditions 

representing the laboratory and the field.  
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OBJECTIVE 

 This primary objective of this study is to develop a mechanistic model for asphalt 

materials that accounts for both the nonlinear viscoelastic and viscoplastic components 

of the response of asphalt mixtures.  This objective is achieved through the following 

tasks: 

1. Implement the Schapery nonlinear viscoelastic model in finite element.  

2. Verify the suitability of the nonlinear viscoelastic model in describing the behavior 

of asphalt material by analyzing: 

a. the results of testing asphalt mixtures using the Simple Shear Test (SST) at 

several temperatures and stress levels,   

b. the response of unaged and aged asphalt binders tested in the Dynamic 

Shear Rheometer (DSR), and 

c. the response of asphalt binders in the multiple stress creep recovery test 

(MSCR). 

3. Develop a method for separating the nonlinear viscoelastic and viscoplastic 

components of asphalt mixture response. 

4. Implement the nonlinear viscoelastic-viscoplastic model in finite element and 

conduct parametric analysis in order to demonstrate the capabilities of the model in 

describing mixture performance at various loading conditions. 
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ORGANIZATION OF THE DISSERTATION 

 This dissertation is organized following the research paper format.  Chapters II, 

III, IV, and V are research papers that have been or will be submitted as refereed journal 

papers. 

 Chapter I includes the introduction which contains background on modeling 

asphalt mixture response and performance, problem statement, objectives and the outline 

of this dissertation. 

 Chapter II is the paper from the Journal of Time Dependent Materials.  This 

chapter includes the finite element implementation of Schapery nonlinear viscoelastic 

model in finite element and the use of this model in describing the behavior of asphalt 

mixtures subjected to shear loading at different temperatures, loading frequencies and 

strain levels. 

Chapter III is a paper that was published in the Journal of the Construction and 

Building Materials.  This chapter includes the nonlinear viscoelastic analysis of aged and 

unaged asphalt binders.  It demonstrates the capability of the model in accounting for the 

effect of aging on asphalt response. 

Chapter IV is a paper that utilizes the nonlinear viscoelastic model to describe the 

response of asphalt binders subjected to multiple creep and recovery loading cycles.  In 

this chapter, a method is developed for separating the nonlinear viscoelastic response 

from the plastic response.  Consequently, the plastic strain is used to derive a parameter 

for characterizing the resistance of asphalt binders to permanent deformation. 
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Chapter V is a paper that includes the nonlinear viscoelastic-viscoplastic model 

and numerical implementation.  In this chapter, the parametric analysis was conducted to 

illustrate the effect of viscoplastic parameters, and a FE model was developed to 

simulate a pavement section under intermediate and high temperature. 

Chapter VI is conclusions that combine the results from all chapters. 
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CHAPTER II 

NONLINEAR VISCOELASTIC ANALYSIS OF ASPHALT MIXES SUBJECTED 

TO SHEAR LOADING* 

 

OVERVIEW 

This study presents the characterization of the nonlinear viscoelastic behavior of 

hot mix asphalt (HMA) at different temperatures and strain levels using the Schapery 

nonlinear viscoelastic model.  A recursive-iterative numerical algorithm is generated for 

the nonlinear viscoelastic response and implemented in a displacement-based finite 

element (FE) code.  Then, this model is employed to describe experimental frequency 

sweep measurements of two asphalt mixes with fine and coarse gradations under several 

combined temperatures and shear strain levels.  The frequency sweep measurements are 

converted to creep responses in the time domain using a phenomenological model 

(Prony series).  The master curve is created for each strain level using the time 

temperature superposition principle (TTSP) with a reference temperature of 40ºC.  The 

linear time-dependent parameters of the Prony series are first determined by fitting a 

master curve created at the lowest strain level, which in this case is 0.01%.  The 

measurements at strain levels higher than 0.01% are analyzed and used to determine the 

nonlinear viscoelastic parameters.  These parameters are shown to increase with 

increasing strain levels, while the time-temperature shift function is found to be 

                                                 
* Full text reprinted with permission from “Nonlinear viscoelastic analysis of asphalt mixes subjected to 
shear loading” by Chien-Wei Huang, Eyad Masad, Anastasia H. Muliana and Hussain Bahia, 2007. 
Mechanics of Time Dependent Materials, Vol. 11, pp. 91-110, Copyright [2008] by Springer Science + 
Business Media. 
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independent of strain levels.  The FE model with the calibrated time-dependent and 

nonlinear material parameters is used to simulate the creep experimental tests, and 

reasonable predictions are shown. 

 

INTRODUCTION 

 Hot mix asphalt (HMA) is a composite material that consists of aggregates, 

asphalt binder, and air voids.  HMA exhibits time-dependent behavior, which can be 

linear or nonlinear depending on the combination of stress or strain level, temperature, 

and loading rate.  The linear behavior indicates that the material properties are functions 

of time and temperature, and the response obeys the homogeneity and superposition 

principles (Ferry, 1961). 

The nonlinear behavior of HMA can be caused by the rotation and slippage of 

aggregates and the localized high strains in the binder phase (Kose et al., 2000).  

Experimental studies by Collop et al. (2002) and Airey et al. (2004) established stress 

and strain limits after which the nonlinear behavior of asphalt binders become evident.  

Masad and Somadevan (2002) used the Dynamic Shear Rheometer to measure the linear 

and nonlinear viscoelastic properties of asphalt binders and mixtures at different 

temperatures, frequencies, and stain levels.  They also used finite element (FE) analysis 

and image correlation techniques to determine the strain distribution within the HMA 

microstructure.  The results showed that the strain in some part of the binder phase of the 

mixture is high enough to induce nonlinear response.  Abbas (2004) and Abbas et al. 
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(2004) developed an incremental viscoelastic model to simulate the nonlinear behavior 

of asphalt binders within the asphalt mix microstructure using FE analysis. 

In spite of the overwhelming experimental evidence showing the nonlinear 

response of asphalt mixes, there has not been a systematic approach to model this 

response.  The Schapery single integral model is one of the most popular models and has 

been applied to characterize the influence of stress and strain level on the nonlinear 

constitutive behavior of engineering materials (Christensen, 1968; Schapery, 1969; 

Schapery, 2000).  Lou and Schapery (1971) simulated the glass fiber–epoxy nonlinear 

time-dependent behavior, while Shields et al. (1998) used the Schapery theory to analyze 

the nonlinear behavior of asphalt mixtures.  The Schapery single integral model is 

relatively easy to implement in a numerical scheme.  Touati and Cederbaum (1997) 

presented a numerical scheme of the Schapery theory to predict the nonlinear stress 

relaxation via the Runge-Kutta method.  They transferred the nonlinear convolution 

integral into a set of first-order nonlinear equations, which are solved to predict 

nonlinear stress relaxation response.  In the follow-up study, Touati and Cederbaum 

(1998) extended this method to analyze the orthotropic laminated plane.  Haj-Ali and 

Muliana (2004) developed a recursive-iterative integration algorithm to analyze the 

three-dimensional nonlinear viscoelastic behavior of polymeric materials.  Sadd et al. 

(2004) developed a recursive scheme of the Schapery theory and implemented it in 

ABAQUS finite element package to represent the micromechanical model of asphalt 

mixes. 
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The main objectives of this study are to implement a numerical representation of 

the Schapery nonlinear viscoelastic model and to analyze the nonlinear behavior of 

asphalt mixtures at different temperatures and strain levels.  This study employs the 

recursive-iterative integration numerical algorithm in the implementation of the 

Schapery nonlinear viscoelastic model.  This algorithm improves convergence since it 

uses the predictor-corrector method at both the material and structure levels. 

Model verification was achieved by comparing the model results with shear test 

measurements at different combinations of strain levels, temperatures, and time.  The 

master curves of the experimental data and the time-temperature shift coefficients were 

first determined for each strain level.  The linear viscoelastic Prony coefficients were 

calculated at the lowest strain level used in these tests.  Then, the nonlinear parameters 

were obtained by shifting the master curves vertically.  In order to obtain the long-term 

viscoelastic behavior, the temperature-strain master curve was formed by shifting the 

respective temperature master curve at higher strain levels to the temperature master 

curve at the lowest strain level. 

 

NUMERICAL IMPLEMENTATION OF THE SCHAPERY NONLINEAR 

VISCOELASTIC MATERIAL MODEL 

Consider the Schapery (1969) strain response due to a stress τσ , which is 

expressed as: 

( ) ( ) ( )
τ

τ
σ

ψψσε
τ

τ d
d
gd

DgDgt
t

tt ∫ −∆+=
0

2
100     (2-1) 
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where 0D is the instantaneous elastic compliance, D∆  is the transient compliance, and 

tψ  is the reduced time.  It is given by: 

∫=
t

sT

t

aa
d

0

ξψ          (2-2) 

0g , 1g , and 2g are the nonlinear parameters related to stress or strain status, Ta is the 

temperature shift factor, and sa  is the strain or stress shift factor.  The parameter 0g  is 

related to the nonlinear instantaneous compliance, 1g  is associated with the nonlinear 

transient compliance, and 2g  is related to the loading rate effect on nonlinear response.  

Eq. (2-1) reduces to the Boltzmann superposition integral for linear materials, with 0g , 

1g , and 2g  being equal to unity.  The Prony series is used to represent the transient 

compliance D∆  as follows: 

( )( )
1

1 exp
t

N
t

n n
n

D Dψ λ ψ
=

∆ = − −∑       (2-3) 

where nD is the nth coefficient of the Prony series and nλ is the nth retardation time. 

Numerical analyses give approximations of the exact solutions.  A recursive 

method is used to solve the nonlinear viscoelastic integral equations with a finite number 

of incremental time steps, e.g., Lai and Bakker (1996), and Poon and Ahmad (1999).  

Lai and Bakker (1996) presented an integration algorithm for a nonlinear stress-based 

viscoelastic model assuming that the nonlinear parameters are constant over the time 

increment.  However, this is not the case, and an iterative scheme should be included in 

order to minimize this error, especially when the nonlinear viscoelastic integral is used 
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to express the strains in terms of stress-based variables.  Poon and Ahmad (1999) 

proposed an integration scheme for stress relaxation with strain-based nonlinear 

functions that is compatible with a displacement-based FE method.  The choice of the 

state variables resulted in conversion of the hereditary integral to a set of linear 

differential equations.  The iterations for stress correction were not required due to the 

use of strain-based nonlinear parameters.  Though iterative stress correction can be 

avoided by use of strain-based parameters, it is often more difficult to conduct 

experimental tests for characterizing the strain-based material parameters. 

In a nonlinear analysis, using a very tight incremental time is computationally 

expensive and often leads to divergence after a certain number of steps.  The divergence 

is due to the accumulated residual errors.  To overcome this problem, an iterative 

method is added within each incremental time step at the material level.  This method 

uses the recurrence formula that does not require storing entire strain histories at the 

material level.  The linear strain formulation is used within the recursive approach to 

give the trial solutions, and then the stress corrector scheme is added at the material level 

to minimize errors arising from the linearization and to consequently enhance 

convergence.  Haj-Ali and Muliana (2004) and Muliana and Kim (2007) demonstrated 

that neglecting the iteration at the material level could result in more than 50% strain 

errors.  In this study, the recursive-iterative integration approach developed by Haj-Ali 

and Muliana (2004) is used to implement the Schapery nonlinear viscoelastic model. 

The strain response for isotropic materials can be decoupled into deviatoric and 

volumetric parts.  It can be presented as: 
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where G  and K  are shear modulus and bulk modulus, respectively.  J  and B  are shear 

compliance and bulk compliance, respectively.  ijS  is the deviatoric stress, and kkσ  is 

the volumetric stress.  Applying the Schapery integral constitutive model, the deviatoric 

and volumetric strain can be expressed as: 

τ
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t
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where ije  is the deviatoric strain and kkε  is the volumetric strain.  0J  and 0B  are 

instantaneous elastic shear compliance and instantaneous elastic bulk compliance, 

respectively.  J∆  and B∆  are transient shear compliance and transient bulk compliance, 

respectively. 

 Motivated by experimental measurements showing the Poisson’s ratio υ to vary 

only slightly for wide ranges of temperatures and loading rates (ASTM, 1995; Benedetto 

et al., 2007), υ is assumed to be time-independent leading to the following expression of 

the compliances: 

)()21(3)()()1(2)(
)21(3)1(2 0000

ψυψψυψ
υυ

DBDJ
DBDJ

∆−=∆∆+=∆
−=+=

   (2-7) 

After substituting Eqs. (2-3) and (2-7) into (2-5) and (2-6), the deviatoric and volumetric 

can be written in terms of hereditary integral formulation and as follows: 
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For implementation in the finite element method, the incremental shear and bulk strains 

are derived and shown as: 
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where 
t

J  and 
t

B  can be expressed as: 
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The variables tt
nijq ∆−

,  and tt
nkkq ∆−

,  are the shear and volumetric hereditary integrals, 

respectively, for every Prony series term n at previous time tt ∆− .  The hereditary 

integrals are updated at the end of every converged time increment, which will be used 

for the next time increment.  The formulation of shear and volumetric hereditary 

integrals are: 

t
n

t
ntt

ij
ttt

ij
ttt

nij
t

n
t

nij SgSgqq
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ψλ
ψλ

∆
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)()exp( 22,,   (2-15) 

The shear and volumetric strain increments can be determined from Eqs. (2-10) 

and (2-11) provided that the stresses are given.  This algorithm will be implemented in 

the displacement-based FE framework, in which strains are the given variables.  The 

current shear and volumetric stresses and the current nonlinear parameters cannot be 

determined directly because the nonlinear parameters are dependent on the current stress 

and vice versa.  Hence, the iterative algorithm is added to solve for the current stress 

state, in which the nonlinear parameters are assumed at the beginning of each time 

increment tttttt gg ∆−∆− ∆=∆== ψψααα and2,1,0; . Then, the trial stresses can 

be determined as follows: 
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where 
trt

J
,

and 
trt

B
,

have the same forms as Eqs. (2-12) and (2-13), respectively, but the 

nonlinear parameters are assumed to be functions of the last converged stress state. 

In this study, the iterative scheme is used to calculate the correct stress state from 

the current strain increment.  As discussed earlier, this scheme allows using relatively 

large time increments, reduces accumulated residual error, and enhances convergence.  

In this iterative scheme, the residual strain should be defined and can be determined by 

calculating the current strain.  The residual strain equation can be shown as: 

t
ijij

t
kk

t
ij

t
ij eR εδε ∆−∆+∆=

3
1        (2-18) 

where t
ijε∆  is provided from the structural level.  The Newton-Raphson typed iterative 

algorithm is used to minimize the strain residual in Eq. (2-18).  This requires defining 

the Jacobian matrix, which in this case is the consistent tangent compliance and is 

determined as: 
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The flowchart of this algorithm is shown in Figure 2.1. 
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Figure 2.1 The Flowchart of the Recursive-Iterative Algorithm. 

 

In this study, the nonlinear viscoelastic constitutive model is implemented in the 

ABAQUS FE package.  Iterative equation solutions are performed both at the structural 

and material levels simultaneously.  Two convergence criteria are used in the ABAQUS 

iterative linear solver: force residual and displacement correction.  The force residual 

vector is defined by a difference between the external force P and the internal force Ku, 
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where K is the structure’s stiffness matrix and u is the displacement solution.  The 

displacement correction is defined by a ratio of the displacement correction and 

incremental displacement.  Convergence at the structural level is achieved when the 

residual force is less than 0.05% of the applied force and the displacement correction is 

less than 0.01%.  At the material level, the residual strain is defined in terms of strain 

(see Eq.(2-18)), and the given tolerances allow the maximum strain error to be 

1 microstrain.  Tolerances should be defined properly in every problem within numerical 

values of interest.  Relaxing the tolerance at any level will accumulate errors as time 

increases, which leads to divergence.  Further discussion regarding the effects of residual 

values on the overall viscoelastic material responses is presented by Haj-Ali and 

Muliana (2004). 

 

EXPERIMENTAL MEASUREMENTS 

The Simple Shear Test (SST) was used to conduct the experimental 

measurements according to the American Association of State Highway and 

Transportation Officials (AASHTO) TP7 procedure (AASHTO 1995).  The test 

specimen has a diameter of 150 mm and a height of 50 mm.  A specimen was glued to 

SST platens using a device that ensured proper alignment and parallel faces.  A 

thermocouple was inserted between the platens and the specimen to monitor the actual 

temperature of the specimen during testing.  A linear variable differential transducer 

(LVDT) was used to measure the horizontal deformation, and the engineering shear 
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strain was calculated from the horizontal displacement and specimen height.  A picture 

of an instrumented specimen inside the testing chamber is shown in Figure 2.2. 

 

 

Figure 2.2 A Photograph of the Testing Chamber. 

 

The test was conducted at multiple frequencies and temperatures starting from 

the lowest temperature to the highest.  At a given temperature, the test was conducted 

from the highest to the lowest frequency.  One hundred cycles were applied for each 

frequency.  The temperatures, frequencies, and strain levels were as follows: 

 Temperature: 52, 46, 40, 27ºC 

 Frequency: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 30.0 Hz 

 Strain: 0.01, 0.04, 0.07, 0.1% 
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Two HMA mixes with different aggregate size distributions were tested in this 

study.  The first one will be referred to as a fine mix, while the other one will be referred 

to as a coarse mix (Masad and Somadevan, 2002). 

 

DATA ANALYSIS 

The dynamic compliance *J  (stress amplitude/strain amplitude) and phase 

angle δ (the lag between the stress and strain functions) are determined as functions of 

frequency for each of the strain and temperature combinations.  Then, the storage 

compliance δcos*JJ =′  and loss compliance δsin*JJ =′′  are calculated.  The Prony 

series shown in Eq. (2-20) is used to fit each of these functions.  The error function 

shown in Eq. (2-21) is minimized to fit the data. 
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Once the Prony series coefficients are determined in the frequency domain, the 

series is formulated in terms of compliance as a function of time as in Eq. (2-22).  All 

the analysis discussed hereafter applies to the compliance functions in the time domain. 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+=

N

n n
n

tJJtJ
1

0 exp1)(
τ

      (2-22) 



 23

The time-temperature shifting is used to obtain the master curve for each strain 

level with a reference temperature of 40ºC.  Nonlinear least squares regression was used 

in the time-temperature shifting.  Figures 2.3 and 2.4 show the relationship between 

temperature and time-temperature factor Ta  for the fine and coarse mixes, respectively.  

The graphs show that the temperature shift factors are almost independent of the strain 

level.  Hence, the temperature shift factor will be taken to be the average at each strain 

level.  These average temperature shift factors are shown in Table 2.1. 

 

Table 2.1 The Temperature Shift Factors. 

Time-Temperature Shift Factor Ta  
Temp. 

ºC Fine Mix Coarse Mix 

52 0.1369 0.1254 

46 0.3620 0.3443 

40 1.0000 1.0000 

27 10.6630 12.9997 
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Figure 2.3 The Relationship Between Time-Temperature Shift Factor and Temperature 

for the Fine HMA Mix. 
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Figure 2.4 The Relationship Between Time-Temperature Shift Factor and Temperature 

for the Coarse HMA Mix. 
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The result of the multiplication of the parameters 1g  and 2g , which is denoted as 

1 2g g , is obtained by vertical shifting of the master curves at all strain levels to a 

reference strain level, which in this case is 0.01%.  The 1 2g g  values are shown in Table 

2.2.  Figures 2.5 and 2.6 show the relationship between 1 2g g  and strain levels for the 

fine and coarse mixes, respectively.  As expected, the 1 2g g  value increases with an 

increase in strain level.  It is noted that unloading part of the creep compliance curve is 

needed in order to determine the 1g  and 2g  values separately (Lou and Schapery, 1971).  

However, only the loading part of the creep compliance can be determined from the 

frequency domain measurements, which can be used to calculate the multiplication of 

these two parameters ( 1 2g g ) 

 

Table 2.2 The Nonlinear Parameters 1 2g g  at Different Strain Levels. 

Nonlinear Parameter 21gg  
Strain Level 

Fine Mix Coarse Mix 

0.01% 1.0000 1.0000 

0.04% 1.8486 1.7826 

0.07% 2.3999 2.4328 

0.1% 2.9628 2.9880 
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Figure 2.5 The Relationship Between Nonlinear Parameter and Strain Level for the Fine 

HMA Mix. 
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Figure 2.6 The Relationship Between Nonlinear Parameter and Strain Level for the 

Coarse HMA Mix. 
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The master curves at the different strain levels are also shifted horizontally using 

nonlinear least squares analysis to the reference strain of 0.01% in order to determine the 

time-strain shift factors (as) and obtain the long-term HMA behavior.  The long-term 

linear viscoelastic Prony coefficients are obtained by fitting all the data shifted 

horizontally to the 0.01% strain.  These coefficients are shown in Table 2.3.  The time-

strain shift factors for the fine and coarse mixes are shown as Table 2.4.  Consequently, 

time-temperature shift factors (Table 2.1), nonlinear parameters (Table 2.2), and the 

long-term linear viscoelastic coefficients (Table 2.3) obtained from the experimental test 

will be used as input properties to the material subroutine. 

 

Table 2.3 Linear Viscoelastic Material Coefficients. 

Linear Viscoelastic Material Coefficients 

Fine Mix  Coarse Mix  n 

nJ  λ nJ  λ 

1 1.15E-06 1 2.00E-06 1 

2 1.49E-06 0.1 2.72E-06 0.1 

3 3.17E-06 0.01 6.45E-06 0.01 

4 6.37E-06 0.001 1.20E-05 0.001 

5 2.61E-06 0.0001 3.69E-05 0.0001

6 9.61E-05 0.00001  

0J  6.75E-07  9.85E-07
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MODEL VERIFICATION 

Model verification is conducted in two stages.  The first stage includes a 

comparison between the FE predictions and the closed form solution of the modified 

superposition principle (MSP).  In the second stage, inverse analysis is conducted to 

determine the ability of the parameters obtained in establishing the master curve and 

used in FE analysis to match the experimental measurements at different combinations 

of temperatures and strain levels. 

The two-step loading shown in Figure 2.7 is used in the first-step verification.  

The strain response under this loading can be described as: 
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If bσ  is set to zero as in Figure 2.8, then 1
bg  should be equal to 1, and Eq. (2-24) 

becomes: 
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The nonlinear viscoelastic subroutine implemented in ABAQUS will be used to 

calculate the response of the two-step loading and recovery behavior and then compare 

with the results calculated from Eqs. (2-23) ~ (2-25). 
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Figure 2.7 Diagram of Two-Step Loading. 

 

 

 

 

 

 

 

 

Figure 2.8 Diagram of One-Step Loading. 

 

The first case in Figure 2.7 will be represented by applying a uniaxial stress of 40 

kPa for 1800 sec and then reducing the force to 20 kPa.  The second case is for uniaxial 

stress by applying 40 kPa during 1800 sec and then releasing the force shown in Figure 
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2.8.  The nonlinear parameter 1g  and 2g  are assumed as linear functions of the 

octahedral stress invariant as shown in Eq. (2-26): 

1

2

1 0.00001*
1 0.0001*

oct

oct

g
g

τ
τ

= +
= +

        (2-26) 

The results from the loading in Figures 2.7 and 2.8 are shown in Figures 2.9 and 

2.10, respectively.  The results clearly show that the finite element model (FEM) results 

with the nonlinear material subroutine agree with the results calculated by MSP. 
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Figure 2.9 Model Verification Using Two-Step Loading Shown in Figure 2.7. 
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Figure 2.10 Model Verification Using One-Step Loading Shown in Figure 2.8. 

 

The FE model with the input parameters is used to conduct inverse analysis by 

comparing the numerical results with the experimental measurements at different 

temperature and strain-level combinations.  The results for the fine mixture are shown in 

Figures 2.11 to 2.14, while the results for the coarse mixture are shown in Figures 2.15 

to 2.18.  In general, the numerical results have reasonable agreement with the 

experimental measurements.  The errors in predicting the measured J(t) values are shown 

in Table 2.4.  The error at the reference condition (T = 40ºC and strain level = 0.01%) is 

less than 10%, while it increases when the material condition is not at the reference 

condition.  These errors are primarily due to assuming Ta  to be a function of 
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temperature only irrespective of the strain level.  However, as shown in Figures 2.3 and 

2.4, Ta  varies as a function of strain level which is not accounted for in the analysis. 

 

Table 2.4 Percent Difference Between Model Results and Experimental Measurements. 

Error in Creep Compliance J(t) (%) 

Fine Mix Coarse Mix Strain Level 

52ºC 46ºC 40ºC 27ºC 52ºC 46ºC 40ºC 27ºC 

0.01% 8.86  11.31 2.29 15.67 11.18 12.98  7.43  23.92 
0.04% 18.71  17.72 12.26 17.98 21.64 11.72  11.86  20.63 
0.07% 25.36  17.41 15.94 17.11 29.31 17.37  17.15  21.75 
0.1% 26.70  21.20 20.25 20.04 33.72 22.14  20.50  18.62 
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Figure 2.11 The Verification of Strain Level 0.01% for Fine HMA Mixes. 
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Figure 2.12 The Verification of Strain Level 0.04% for Fine HMA Mixes. 
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Figure 2.13 The Verification of Strain Level 0.07% for Fine HMA Mixes. 
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Figure 2.14 The Verification of Strain Level 0.1% for Fine HMA Mixes. 
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Figure 2.15 The Verification of Strain Level 0.01% for Coarse HMA Mixes. 
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Figure 2.16 The Verification of Strain Level 0.04% for Coarse HMA Mixes. 
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Figure 2.17 The Verification of Strain Level 0.07% for Coarse HMA Mixes. 
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Figure 2.18 The Verification of Strain Level 0.1% for Coarse HMA Mixes. 

 

SUMMARY OF FINDINGS 

The Schapery nonlinear viscoelastic model parameters were obtained by 

analyzing the response of two asphalt mixes tested at different temperatures, frequencies, 

and strain levels.  The time-strain shift factors were obtained by shifting the master 

curves at the different strain levels horizontally to the reference strain 0.01%.  The 

nonlinear parameters were calculated by vertical shifting of the master curves at all 

strain levels to the same reference strain.  The long-term linear viscoelastic coefficients 

were determined by fitting the Prony series to the data shifted horizontally at the 

reference strain.  The time-temperature shift factors varied slightly as a function of strain 
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level.  However, in order to simplify the analysis, the time-temperature shift factors were 

averaged for the different strain levels. 

The material model was verified by comparing the FE predictions to the closed 

form solution for creep loading and recovery.  Inverse analysis was also conducted, and 

the results showed that the FE model had reasonable agreement with the experimental 

measurements at different combinations of temperatures and strain levels.  The strain 

horizontal shifting and nonlinear parameters can be used to predict HMA long-term 

nonlinear viscoelastic behavior by performing experiments at multiple strain levels and 

short time intervals. 

In this study, the asphalt mix is assumed to exhibit isotropic behavior.  The 

current research of the authors focuses on expanding the model to describe the 

anisotropic response under various loading and boundary conditions. 
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CHAPTER III 

NONLINEAR VISCOELASTIC ANALYSIS OF UNAGED AND AGED 

ASPHALT BINDERS* 

 

OVERVIEW 

This study presents analyses of the nonlinear viscoelastic behavior of unaged and 

aged asphalt binders tested using a Dynamic Shear Rheometer (DSR) at several 

temperatures and frequencies.  It was not possible to conduct all DSR tests at the same 

range of stresses, which is necessary for establishing the master curve for nonlinear 

viscoelastic materials.  Therefore, the stress levels for each test, at a given temperature 

and frequency, were normalized by the ultimate stress level of that test.  Consequently, 

all test results were transformed to a common range of normalized stresses that were 

used in establishing the master curve. 

A phenomenological model was used to obtain the creep response of the binders 

in the time domain from the normalized frequency domain measurements.  Then, the 

Schapery single integral equation was used to model the binder nonlinear creep response.  

A master curve at a reference temperature of 30 oC was formed using the time-

temperature superposition principle (TTSP) at selected normalized stress levels.  The 

Schapery’s nonlinear stress dependent parameters ( 21gg ) were determined by vertical 

shifting the master curves at the different normalized stress levels.  An aging shift factor 

                                                 
* Reprinted with permission from “Nonlinear Viscoelastic Analysis of Unaged and Aged Asphalt Binders” 
by Eyad Masad, Chien-Wei Huang, Gordon Airey and Anastasia Muliana, 2008. Construction and 
Building Materials, Vol. 22, pp. 2170-2179, Copyright [2008] by Elsevier.  



 39

was used to obtain the aged binder response from the properties of the unaged binder.  

The aging-time shift factor was found to be a function of temperature, but independent 

of stress level.  The nonlinear viscoelastic model was implemented in the ABAQUS 

finite element (FE) software and used to back calculate the creep response of the unaged 

and aged binders.  The FE results were in very good agreements with the experimental 

measurements. 

 

INTRODUCTION 

Asphalt binders exhibit both linear and nonlinear viscoelastic behavior.  The 

nonlinear viscoelastic properties depend on the stress or strain levels (Ferry, 1961).  

Cheung and Cebon (1997a, b) indicate that asphalt binders behave linearly at low stress 

levels and nonlinearly at higher stress levels.  Airey et al. (2002 and 2004) conducted 

stress sweep tests using a DSR to obtain the linearity limits of various asphalt binders at 

different temperatures.  The results showed that the strain dependent linear viscoelastic 

(LVE) limit is between 2% and 6% at low temperatures and the stress dependent LVE 

limit is between 1.5 and 7 kPa at high temperatures.  

Kose et al. (2000) and Masad and Somadevan (2002) conducted finite element 

analysis of asphalt mix microstructure, which was modeled as a composite of two phases 

(asphalt binder and aggregates).  The analysis aimed at calculating the strain distribution 

within the aggregate and binder phases at different macroscopic strain levels applied to 

the mixture.  It was found that the orders of magnitude difference in stiffness between 

the aggregate and binder phases caused high strain levels to localize within the asphalt 
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binder.  The average binder strain was to be about eight times larger than the 

macroscopic bulk strain of the mixture, and some parts of the binder phase experienced 

strain levels within the nonlinear viscoelastic range. 

The Schapery’s single integral model has been widely used to characterize the 

nonlinear viscoelastic behavior of engineering materials (Christensen, 1968; Schapery, 

1969, and Schapery, 2000). Lou and Schapery (1971) extended the Schapery’s integral 

model to characterize the nonlinear time-dependent behavior of glass fiber reinforced 

epoxy, while Shield et al. (1998) used Schapery’s model to analyze the nonlinear 

behavior of asphalt mixtures. 

Several numerical algorithms that are compatible with finite element analysis 

have been developed for solving the integral form in the Schapery’s viscoelastic model 

(Touati and Cederbaum, 1997, 1998, and Haj-Ali and Muliana, 2004).  Touati and 

Cederbaum (1997, 1998) presented a numerical scheme and used it to predict the 

nonlinear stress relaxation of the orthotropic laminated plate.  Sadd et al. (2004) 

implemented Schapery’s theory in a recursive finite element scheme to represent the 

micromechanical behavior of asphalt mixtures.  Haj-Ali and Muliana (2004) developed a 

recursive-iterative integration algorithm to analyze the nonlinear viscoelastic behavior of 

polymeric materials. 

 

OBJECTIVES AND SCOPE OF THE STUDY 

Previous work has shown that asphalt binders exhibit nonlinear viscoelastic 

behavior especially under high strain levels that binders may experience in the mix.  
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However, most current binder tests, specifications and mathematical models are 

developed assuming linear viscoelastic behavior.  The objective of this study is to 

develop a framework for nonlinear viscoelastic analysis of asphalt binders that take into 

account the possible interactions between stress level, temperature, time of loading (or 

frequency) and aging.  This framework will be useful for researchers and practitioners in 

describing and comparing the behavior of asphalt binders under various temperatures, 

aging and loading conditions.  It can also be useful to mathematically quantify the 

influence of binder modification on the model’s parameters and binder performance.  

This study is organized as follows: 

1. Brief presentation of the Schapery’s nonlinear viscoelastic model. 

2. Description of experimental measurements using DSR on unaged and aged 

asphalt binders at different stress levels, temperatures, and frequencies. 

3. Determination of the parameters of the nonlinear viscoelastic model from 

the experimental measurements.  These parameters include the coefficients 

of the Prony series that describes the LVE behavior of the binder, 

nonlinear stress-dependent parameters, and stress, temperature and aging 

shift factors. 

4. Use of a finite element model to simulate the nonlinear viscoelastic 

behavior of the binders at different temperatures and stress levels. 
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THE SCHAPERY’S NONLINEAR VISCOELASTIC MODEL 

 The strain response of the Schapery’s integral form (1969) due to an applied 

stress τσ  is shown in Eq. (2-1).  The reduced time tψ  in Eq. (2-1) can be given by: 

∫=
t

gsT

t

aaa
d

0

ξψ         (3-1) 

where, Ta  is the temperature shift factor, sa  is the strain or stress shift factor, and ga  is 

the aging shift factor.  The Prony series is used to represent the transient compliance D∆  

shown in Eq. (2-3).  

The three dimensional isotropic constitutive relations can be decoupled into 

deviatoric and volumetric parts and it can be presented in Eq. (2-4).  The deviatoric and 

volumetric viscoelastic strain components can be expressed in Eq. (2-5) and (2-6), 

respectively. 

Assuming the Poisson’s ratio υ to be time-independent and using the recursive 

method, the deviatoric and volumetric strain components can be written in terms of 

hereditary integral formulation shown in Eqs. (2-8) and (2-9), respectively.  The 

incremental shear and bulk strains are also formulated and used in the finite element 

implementation, which are shown in Eqs. (2-10) and (2-11), respectively. 

This study employs the iterative scheme at material level to correct stress state 

from the current strain increment. In the iterative scheme algorithm, the residual strain 

should be defined and the residual strain equation can be shown as Eq. (2-18).  The 

Newton-Raphson typed iterative algorithm is used to minimize the strain residual in Eq. 

(2-18). 
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EXPERIMENTAL MEASUREMENTS AND DATA ANALYSIS 

The DSR test was used to characterize the linear and nonlinear viscoelastic 

parameters of asphalt binders.  The test applies a sinusoidal, oscillatory stress to a thin 

disc of asphalt between two parallel plates.  The plate geometries used in this study were 

8 mm in diameter with 2 mm testing gap at low temperatures (10, 20 and 30 oC) and 25 

mm in diameter with 1 mm testing gap at a high temperature (40 oC).  The binder was 

from a Venezuelan crude source and it was designated as 50 penetration grade according 

to the British standard BS3690 (penetration of 49 dmm and softening point of 52 oC).  

Short-term aging was conducted using the standard rolling thin film oven (RTFO) 

according to the ASTM D 2872 procedure.  The unaged binder was tested at 

temperatures of 10, 20, 30 and 40 oC with frequencies of 0.1, 1, 5 and 10 Hz.  The aged 

binder was tested using temperatures 20, 30, 40 oC and frequencies of 0.1, 1, 5 and 10 Hz.  

Stress sweeps at each temperature/frequency combination were performed from the 

minimum torque limit of the DSR to either the maximum torque value or a 30% 

reduction in complex modulus. 

The magnitude of the dynamic complex compliance *J  and phase angle δ were 

obtained from the test at each temperature and frequency.  Then, the storage compliance 

J ′  and loss compliance J ′′  were calculated ( *J J cosδ′ =  and *J J sinδ′′ = ).  The 

coefficients of the Prony series of the shear compliance ( nJ  and nλ ) were determined by 

minimizing the difference between the shear compliance in the constitutive model and 

the experimental measurements using the error function in Eq. (2-21). 
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The stress sweep test data for the unaged and aged binders are shown in Figures 

3.1 and 3.2, respectively.  These two figures show that the range of stress that can be 

applied on the binder is a function of temperature and frequency.  This is considered a 

limitation for the modeling efforts as the same range of stress levels is needed to 

establish the master curve of a nonlinear viscoelastic material.  In order to overcome this 

limitation, the stress levels of each test at a given temperature and frequency were 

normalized by the ultimate stress level of that test.  This ultimate stress was determined 

following the method proposed in a number of studies to determine the maximum stress 

that an asphalt mix can sustain (Reese 1997, Rowe and Bouldin 2000, Kim 2003).  This 

method relies on plotting the function * *
iniN G / G  versus stress level, where N  is the 

data point number, *G  is the magnitude of the dynamic complex modulus, and *
iniG  is 

the magnitude of the initial dynamic complex modulus for each combination of 

temperature and frequency.  Examples of the data are shown in Figure 3.3.  The ultimate 

stress is selected at the end data point for the cross-annotation data type in Figure 3.3; 

while the ultimate stress is selected at the peak of the data for the square-annotation data 

type in Figure 3.3.  This normalization causes points at the same distance from the 

maximum stress for the different test temperatures and frequencies to be represented by 

the same normalized stress level.  The normalized data of the unaged and aged binders 

are shown as Figures 3.4 and 3.5, respectively. 

The analysis was conducted at four different normalized stress levels (0.01, 0.6, 

0.8 and 1.0) for both the unaged and aged asphalt binders.  In this study, the linear 

viscoelastic behavior is selected at the lowest normalized stress level of 0.01.  The 
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analysis was determined for the unaged binder, and then the behavior of the aged binder 

was represented using an aging shift factor. 
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Figure 3.1 The Stress Sweep Test Data of Unaged Asphalt Binder. 
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Figure 3.2 The Stress Sweep Test Data of Aged Asphalt Binder. 
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Figure 3.3 The Relationship Between * *
iniN G / G  and Stress. 
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Figure 3.4 The Stress Sweep Test Data of Unaged Asphalt Binder After Normalizing by 

the Ultimate Stress. 
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Figure 3.5 The Stress Sweep Test Data of Aged Asphalt Binder After Normalizing by 

the Ultimate Stress. 

 

Time-Temperature Shift 

A temperature 30 oC was used as the reference temperature for the unaged binder.  

The TTSP was used to conduct time-temperature shifting at each normalized stress level.  

Nonlinear regression using least squares analysis was used in the time-temperature 

shifting.  The relationship between the shift factor Ta  and temperature for different 
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stress levels is shown in Figure 3.6.  These results show that Ta  is independent of stress 

level; consequently, the Ta  values were averaged for the different stress levels at each 

temperature as presented in Table 3.1. 

 

Table 3.1 The Temperature Shift Factor for Each Temperature. 

Temp. Ta  

10 225.00 

20 26.50 

30 1.00 

40 0.10 
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Figure 3.6 The Relationship Between Temperature Shift Factor ( Ta ) and Temperature. 
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Nonlinearity Stress Shift 

The nonlinear parameters 21gg  were determined by vertically shifting the higher 

stress master curves to the linear stress level.  The results in Figure 3.7 show increasing 

nonlinear parameters with an increase in stress level; the nonlinear parameters are given 

in Table 3.2.  The experimental data after vertical shifting are shown in Figure 3.8. 

The master curves at different stress levels were shifted horizontally, shown as 

Figure 3.9, in order to predict the long term behavior of the asphalt binder, and the Prony 

series was calibrated to fit the long term response of the binder.  The stress horizontal 

shift factors are shown as Table 3.2, and the Prony coefficients are shown in Table 3.3.  

The Prony series (similar to that in Eq. (3-3)) fitted to the long term response was used 

in representing the linear viscoelastic response of the binder.  The stress horizontal 

shifting is advantageous as it allows prediction of the linear binder response at longer 

time periods by performing experiments at stress levels higher than the linear range but 

at shorter time intervals.  The 21gg  can be further used to predict the nonlinear response 

of the asphalt binders at the long term intervals. 

 

Table 3.2 The Nonlinear Parameters and Stress Shift Factors at Different Stress Levels. 

Normalized Stress 21gg  as 

0.01 1.00 1.00 

0.6 1.08 0.96 

0.8 1.13 0.93 

1.0 1.21 0.84 
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Table 3.3 Linear Viscoelastic Coefficients of the Prony Series. 

n nJ  λn 

0 3.57E-09 - 

1 1.03E-07 18.23 

2 2.13E-06 0.25 

3 2.71E-08 146.01 

4 4.56E-05 0.01 

5 8.21E-07 0.88 

6 3.16E-07 3.54 

7 6.61E-06 0.07 

8 4.90E-01 1.71E-06 
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Figure 3.7 The Relationship Between Nonlinear Parameter and Normalized Stress Level. 
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Figure 3.8 The Master Curve After Stress Vertical Shifting. 
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Figure 3.9 The Master Curve After Stress Horizontal Shifting. 
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Aging Shift 

This study obtained the aging shift factor by horizontal shifting the aged asphalt 

binder data to the unaged asphalt binder data.  The aging shift factor was calculated for 

each temperature and normalized stress levels.  Examples of the experimental data 

before and after aging shifting are shown as Figure 3.10.  By evaluating the average and 

variance in Table 3.4 of the aging shift factor for the different temperatures and stress 

levels, it can be concluded that the aging shift factor is mostly a function of temperature, 

while it is almost independent of normalized stress levels.  Hence, the average aging 

shift factor for all stress levels at each given temperature was calculated and used to 

represent the response of the aged binder.  This finding indicates that the behavior of the 

aged asphalt binder can be obtained by using unaged binder parameters (temperature 

shift factor, nonlinear parameters, Prony series coefficients) and the aging shift factor for 

each temperature. 
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Table 3.4 The Aging Shift Factor for Each Combination of Temperature and 

Normalized Stress Levels. 

Aging Shift Factors  

Normalized Stress   

Temp. °C 

0.01 0.6 0.8 1.0 
Averaged at 

Each 
Temperature 

Variance 
Between 

Stress 
Levels 

20 1.3 1.15 1.05 1.05 1.14 0.0140 

30 2.9 2.6 2.5 2.4 2.60 0.0467 

40 2.7 2.7 2.65 2.6 2.66 0.0023 

Averaged at 
Each Stress 

Level 
2.3 2.15 2.07 2.02   

Variance 
Between 

Temperatures 
0.7600 0.7525 0.7808 0.7108   
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(a) Before applying the aging shift factor. 
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(a) After applying the aging shift factor. 

Figure 3.10  Data Before and After Applying the Aging Shift Factor. 
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FINITE ELEMENT ANALYSIS OF BINDER RESPONSE 

The material parameters of the unaged binder ( Ta , sa , 21gg , Prony series 

coefficients of long term response), and the aging shift factors, were used as the input to 

the finite element subroutine.  The finite element analysis was used to calculate the creep 

response at each of the temperature and normalized stress levels.  The model consisted 

of a three-dimensional element (C3D8R) representing the asphalt specimen subjected to 

shear creep loading.  The deformation and rotation of the nodes in the bottom of the 

element were fixed, while the different stress levels were applied at the upper face of the 

element.  For brevity, only the results of unaged and aged binders at a temperature of 

20oC are shown in Figure 3.11.  The results show that the model gives a very good 

prediction of the experimental measurements.  The results in Figure 3.11b indicate that 

the response of the aged binder can be obtained by simply shifting the data of the unaged 

binder by the aging factor ga . 

The Prony series was fitted to the numerical results, and the coefficients of this 

series were used to determine the binder response in the frequency domain.  

Consequently, the numerical results in the frequency domain were compared with the 

DSR experimental data.  Examples of the unaged and aged comparisons of J ′  and 

J ′′ for linear and nonlinear responses are shown in Figures 3.12 and 3.13.   In general, 

the results show that the numerical results are in very good agreement with the 

experimental measurements for the linear and nonlinear stresses. 
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(b) Aged binder 

Figure 3.11 Verification of the Finite Element Analysis at a Temperature of 20 oC. 
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(a) Storage compliance (J´) 
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(b) Loss compliance (J˝) 

Figure 3.12 Viscoelastic Properties ( J ′  and J ′′ ) for Unaged Binder at 30 oC and Linear 

Stress Level (Normalized Stress of 0.01). 
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(b) Loss compliance (J˝) 

Figure 3.13 Viscoelastic Properties ( J ′  and J ′′ ) for Unaged Binder at 30 oC and 

Nonlinear Stress Level (Normalized Stress of 1). 
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CONCLUSIONS 

This study presents a framework for the analysis of the nonlinear viscoelastic 

behavior of unaged and aged asphalt binders at different temperatures and stresses.  Due 

to the influence of test temperatures on the stress levels that the binder can sustain prior 

to failure, the experimental measurements do not have a common range of stress levels 

that can be used in developing the master curve of nonlinear viscoelastic materials.  This 

limitation was overcome by introducing the normalized stress concept in which the 

stress values of each test at a given temperature and frequency were normalized by the 

ultimate stress of that test.  The response at the actual stress is obtained by dividing the 

actual stress by the ultimate stress and using the normalized stress in the model. 

The data at the different stress levels were shifted horizontally to obtain the long 

term response of the binder.  This means that the long term response of the binder can be 

obtained by conducting short term tests at multiple stress levels.  The nonlinear response 

of the binder is determined by vertical shifting between the nonlinear stresses and the 

linear stress.  The advantages of the analysis approach can be realized in providing a 

mathematical framework for describing the nonlinear response of asphalt binders, and in 

the possibility of describing the behavior of aged binders by using the unaged binder 

parameters ( Ta , sa , 21gg , Prony series coefficients of long term response) and aging shift 

factors. 

 The analysis conducted on this study was limited to only one asphalt binder 

source.  It is necessary to evaluate the applicability of the analysis method for more 

asphalt binders that exhibit different properties from different sources.  Specifically, 
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chemically modified binders need to be examined in order to determine the applicability 

of the aging shifting factors to these binders. 
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CHAPTER IV 

CHARACTERIZATION OF ASPHALT BINDER RESISTANCE TO 

PERMANENT DEFORMATION BASED ON NONLINEAR VISCOELASTIC 

ANALYSIS OF MULTIPLE STRESS CREEP RECOVERY (MSCR) TEST 

 

OVERVIEW 

A significant emphasis has been placed in the asphalt community on 

development of a method to characterize the resistance of asphalt binders to permanent 

deformation.  The multiple stress creep recovery (MSCR) test has been proposed as a 

means of accomplishing this objective.  In this test, an asphalt binder is subjected to 

creep loading at different stress levels with recovery (unloading) periods between 

stresses.  The current analysis method of the MSCR test uses the strain accumulated at 

the end of the test to derive an index describing the resistance of asphalt binders to 

permanent deformation.  However, the accumulated strain is not due only to permanent 

strain; some of this accumulated strain is viscoelastic strain that might not fully recover 

depending on the duration of the unloading period.  In order to ensure that asphalt 

binders are characterized based on the actual permanent strain at the end of the test, a 

method to separate the actual permanent strain (irrecoverable) from the viscoelastic 

strain (recoverable with time) is needed. 

The challenge in separating the recoverable and irrecoverable components is that 

these two components occur simultaneously during loading, and the recoverable 

component can exhibit nonlinear behavior.  This study presents an analytical method to 
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analyze the MSCR test results and determine the actual irrecoverable and nonlinear 

recoverable response. Subsequently, the irrecoverable strain is used to develop an index 

by which to evaluate the resistance of asphalt binders to permanent deformation.  The 

analytical approach is corroborated by analyzing asphalt binders that have been used as 

part of the Accelerated Loading Facility (ALF) experiment of the Federal Highway 

Administration (FHWA).  The new permanent deformation index shows excellent 

correlation with the performance of the asphalt binders in the ALF experiment. 

 

INTRODUCTION 

In this study, the response of an asphalt binder is characterized by three 

components.  The first is the instantaneous elastic component, the second is the 

viscoelastic component (or delayed elastic) that is fully recovered provided that 

sufficient unloading time is allowed, and the third is the permanent or viscous 

component.  These three components can exhibit linear or nonlinear behavior. 

The Superpave method for characterizing the resistance of asphalt binders to 

permanent deformation is based on linear viscoelasticity theory.  In this method, a 

permanent deformation index is derived to quantify the energy dissipation due to 

combined viscoelastic (delayed elastic) and viscous deformation.  Asphalt linear 

viscoelastic properties are measured during small oscillatory stress or strain testing 

modes. However, experimental results have clearly shown that these properties are not 

sufficient to describe the performance of modified asphalt binders (Bahia et al. 2001, 

D’Angelo et al., 2007).  These studies have emphasized the need to characterize asphalt 
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binders based on tests and analysis methods that are capable of capturing permanent 

deformation after cycles of creep and recovery. 

Bahia et al. (2001) recommended the repeated creep recovery test (RCRT) using 

the Dynamic Shear Rheometer (DSR) to test asphalt binders.  This test applies one creep 

stress level for 1.0 second and then removes the stress for 9.0 seconds.  A linear 

viscoelastic model is fit to the data in order to derive a parameter to characterize the 

accumulated strain after applying a certain number of cycles.  This parameter is the 

viscosity of a linear dashpot representation of Newton viscous deformation.   

Recently, D’Angelo et al. (2007) recommended the use of the multiple stress 

creep recovery (MSCR) test to measure the stress dependency of asphalt binder response.  

This test applies several stress levels with 10 loading-recovery cycles for each stress 

level.  The stress is applied for 1.0 second followed by a 9.0 second recovery within each 

cycle.  The analysis method of the MSCR test is based on calculating what is referred to 

as the non-recoverable compliance nrJ , which is equal to the maximum accumulated 

strain at the end of the test divided by the maximum stress level applied to the binder.  

This method does not restrict the analysis to a linear viscoelastic response; however, it 

considers all the accumulated strain at the end of the test to be irrecoverable.  In reality, 

some of this accumulated strain could be recovered depending on the loading and 

unloading time durations. 

The MSCR test provides valuable data regarding the stress dependency of the 

binder.  However, there is a need to analyze the MSCR results using an approach that 

can separate the viscoelastic (recoverable) and permanent (irrecoverable) strain 
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components without imposing the assumption of linear material behavior.  This study 

offers a new method by which to separate of the permanent and nonlinear viscoelastic 

components.  This method uses Schapery’s single integral model to describe the 

nonlinear viscoelastic behavior of asphalt binders (Christensen, 1968; Schapery, 1969, 

and Schapery, 2000). 

 

OBJECTIVES AND TASKS 

 The primary objective of this study was to develop a method to analyze the 

MSCR binder test results and propose an index to characterize the resistance of asphalt 

binders to permanent deformation.  This objective is achieved through the following six 

tasks: 

1. Conduct the MSCR test on binders with similar high temperature performance 

grades (PG) and binders that have been tested as part of mixtures in the Accelerated 

Loading Facility (ALF) experiment of the Federal Highway Administration 

(FHWA). 

2. Develop a method to analyze and model the viscoelastic (recoverable) and 

permanent (irrecoverable) strain components. 

3. Compare the permanent strain of binders that have similar high temperature PG 

grades. 

4. Examine the ability of the viscosity parameter of a linear dashpot viscous to 

describe the permanent deformation of asphalt binders. 
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5. Examine the nonlinear response of binders and its implications in understanding 

their behavior. 

6. Propose a new index based on the actual permanent strain and compare the new 

index to the recorded permanent deformation of ALF mixtures. 

 

EXPERIMENTAL MEASUREMENTS 

The MSCR test involves applying 11 shear stress levels (25, 50, 100, 200, 400, 

800, 1600, 3200, 6400, 12800, and 25600 Pa) using DSR.  Ten loading-unloading cycles 

are applied at each stress level.  The test applies step shear loading where one load cycle 

is comprised of 1.0 second of loading followed by 9.0 seconds of unloading.  No 

additional rest periods are applied between different stress levels. 

 In the first part of this study, four modified binders (PG 70-22, PG 70-28, PG 76-

22, and PG 76-28) were each tested at four temperatures (58 oC, 64 oC, 70 oC, and 76 oC).  

The data were analyzed using the new method described in the following section in 

order to compare the results with the current PG grades determined using the current 

Superpave method. 

The second part of the study involved analyzing the results of testing five ALF 

binders (Air Blown PG 71-28, SBS PG 71-38, ELVALOY PG 76-30, Control PG 73-23, 

and SBSLG PG 74-28) at a temperature of 64 oC.  These ALF binder results were 

compared with permanent deformation data of ALF asphalt mixtures. 

The ALF test is a full-scalar pavement test.  In the ALF test, a super-single tire 

applies a load of 45 kN at a travel speed 19 km/hr over a 10 m tested section.  Testing 
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was conducted at a temperature of 64 oC (D’ Angelo et al., 2007, and Stuart, K. et al., 

1999). 

 

NONLINEAR PLASTO-VISCOELASTIC ANALYSIS PROCEDURE 

The response of asphalt binders subjected to an applied stress includes 

recoverable and irrecoverable strain components, which can be described as shown in Eq. 

(4-1): 

total rec irrecε ε ε= +         (4-1) 

where recε  is the recoverable strain and irrecε  is the irrecoverable strain.  The recoverable 

strain component can be instantaneous (elastic) or time-dependent (viscoelastic). 

 A number of studies have shown that asphalt binders could exhibit nonlinear 

viscoelastic behavior (Airey et al., 2002, 2004; Touati and Cederbaum, 1997, 1998).  

This nonlinear response is caused by the high strains developed in asphalt binders within 

the asphalt mix (Masad and Somadevan, 2002).  Schapery’s nonlinear viscoelastic model 

is employed in this study to represent the nonlinear recoverable strain component 

(Schapery, 1969).  The recoverable strain under a constant applied stress σ  can be 

expressed as in Eq. (2-1). 

 The effects of Schapery nonlinear parameters are shown in Figures 4.1 to 4.3.  

Figure 4.1 shows the effect of 0g , which shifts the creep strain vertically with an 

increase in 0g , but it does not affect the transient behavior nor does it affect the material 

response during unloading.  The nonlinear parameters 1g  and 2g  dominate the 

nonlinearity of the transient portion.  Figures 4.2 and 4.3 represent that the material 
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response during loading is controlled by both 1g  and 2g , while only 2g  determines the 

material behavior during unloading.  The loading and unloading strain increases with an 

increase in the nonlinear parameters 1g  and 2g . 
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Figure 4.1 The Effect of Nonlinear Parameter 0g . 
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Figure 4.2 The Effect of Nonlinear Parameter 1g . 

 

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00E+00 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01

Time (Sec)

St
ra

in

g2=1.0
g2=1.5
g2=2.0

 

Figure 4.3 The Effect of Nonlinear Parameter 2g . 
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In this study, the entire recoverable strain component is assumed to be time-

dependent ( 0D  = 0).  This was motivated by the experimental observation that it is very 

difficult to select the time at which the response could be considered to be instantaneous 

at the high temperatures used in this study.  In addition, the analysis has revealed that the 

transient part of the compliance (the second part on the right of Eq. [2-1]) is sufficient to 

describe the entire recoverable response of asphalt binders. 

In Eq. (2-1), the transient linear compliance D∆  can be represented by a Prony 

series as shown in Eq. (2-2). 

A schematic of binder creep loading and recovery is shown in Figure 4.4.  The 

recoverable strain components during loading and recovery (unloading) in the first cycle 

are given in Eqs. (4-2) and (4-3), respectively: 

( )1 1
1 1 2 1( ) ( )c irrect g g D t tε σ ε= ∆ +       (4-2) 

( ) ( )1 1
1 2 1 2 1( ) ( )r irrec

a at g D t g D t t tε σ σ ε⎡ ⎤= ∆ − ∆ − +⎣ ⎦     (4-3) 

where the superscript of nonlinear parameters is the loading cycle number, and the 

subscript of stress and strain components presents the loading cycle number.  The 

expressions cε  and rε  are the total strain during loading and unloading, respectively.  

The term at  is the loading time as shown in Figure 4.4. 

The first step of this analysis procedure is to obtain the coefficients of the Prony 

series that describe the linear transient compliance (Eq. [2-2]).  These coefficients were 

obtained by analyzing the binder response during the first loading cycle of the lowest 

stress level ( 1
1g  = 1

2g  = 1), which in this study is at a stress level of 25 Pa.  The 
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irrecoverable strain is constant once the load is removed at at t=  as is illustrated in 

Figure 4.4.  Therefore, the recoverable strain 1
1
rε∆  between at  and bt , shown in Figure 

4.4, is used to obtain the coefficients of the linear transient compliance.  The expression 

for 1
1
rε∆  is shown in Eq. (4-4), which can be derived from Eqs. (4-2) and (4-3) and by 

substituting Eq. (2-1) in these two equations.  The Prony series coefficients ( nD  and nλ ) 

are obtained by minimizing the error between the measurements of 1
1
rε∆  and Eq. (4-4). 
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 By applying the modified superposition principle (MSP) of the nonlinear 

response for the second loading cycle, the recoverable strain components during loading 

and unloading are obtained as shown in Eqs. (4-5) and (4-6), respectively: 

( ) ( ) ( ) ( )2 1 1 2
2 1 2 1 2 1 2 2( ) ( )c irrec

a bt g g D t g D t t g D t t tε σ σ σ ε⎡ ⎤= ∆ − ∆ − + ∆ − +⎣ ⎦  (4-5) 
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c
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g D t g D t t
t t
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ε ε

σ σ

⎡ ⎤∆ − ∆ − +
⎢ ⎥= +

∆ − − ∆ −⎢ ⎥⎣ ⎦
   (4-6) 

As discussed earlier, the Prony series D∆  is a function of nD  and nλ , which are 

obtained from the first loading cycle.  Thus, the only unknown viscoelastic parameter in 

Eq. (4-6) is 2
2g .  However, the irrecoverable strain component ( )irrec

ctε  must be 

subtracted from Eq. (4-6) in order to determine 2
2g . Since the irrecoverable strain ceases 

once the load is removed at ct , the term 2
2
rε∆  is the recovered strain from 2t t=  to dt t= .  
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In other words, the irrecoverable strain beyond ct  and before the next cycle is applied 

equal to ( )irrec
ctε .  The expression for 2

2
rε∆  is represented by Eq. (4-7).  Consequently, 

the nonlinear parameter 2
2g  can be obtained by minimizing the error between the 

measurements of 2
2
rε∆  and Eq. (4-7).  In this study, 2t  is selected as the 10th 

measurement during unloading.   
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(4-7) 

Once the nonlinear parameter 2
2g  is obtained, the measurements of 3

2
rε∆ , shown 

in Figure 4.4, are used to obtain the nonlinear parameter 2
1g .  The term 3

2
rε∆  is the 

difference between the creep strain at ct t=  and the unloading strain at 2t t= .  The 

expression for 3
2
rε∆  is shown in Eq. (4-8).  Consequently, the term 2

1g  can be obtained 

by minimizing the error between the measurements of 3
2
rε∆  and Eq. (4-8). 
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Because the response of asphalt binder is hereditary or time-dependent, the 

material response at the current loading cycle is a function of the previous loading cycles.  

Therefore, it is necessary to apply the MSP to each loading cycle.  Similarly to Eqs. (4-5) 

and (4-6), the strain response functions were derived for all loading cycles.  These 

equations were coded in a program using MathematicaTM software to obtain all the 

required model parameters (Prony series coefficients, 1g  and 2g ). 

Once the Prony series coefficients and nonlinear parameters are obtained, the 

recoverable strain can be calculated as a function of time for all cycles.  Consequently, 

the irrecoverable strain as a function of time is obtained by subtracting the recoverable 

strain from the total strain.  The analysis procedure is illustrated in Figure 4.5. 
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Figure 4.4 A Schematic Diagram of Creep and Recovery Loading and Strain Response.   
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Figure 4.5 A Flowchart of the Procedure for the Analysis of Strain Components. 
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Obtain the nonlinear parameter 2
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Obtain the nonlinear parameter 1
ng  by fitting 

measurement of 3r
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Calculate the recoverable strain recε  for each cycle 

Last loading cycle 

Calculate the irrecoverable strain irrecε  by subtracting the 
recoverable strain from total strain 
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ANALYSIS OF RESULTS 

Nonlinear Viscoelastic Parameters 

Examples of the results of decoupling strain components for the PG 70-22 binder 

at 58 oC are shown in Figure 4.6.  This figure shows the first two stress levels (25 and 50 

Pa) only in order to simplify the representation of results.  As expected, the results show 

that the irrecoverable strain component accumulates as the number of load cycles 

increased and as the stress level increases.  In addition, the irrecoverable strain was 

constant when the load was removed; it was a function of time during loading. 

Figure 4.7 compares the maximum irrecoverable strain at each loading cycle for 

the different binders.  The results show that the irrecoverable strain increases with an 

increase in temperature.  Moreover, the PG 76 binder had a smaller irrecoverable strain 

than the PG 70 binder.  However, binders with the same high temperature PG grade (PG 

76 or PG 70) exhibited different accumulated permanent strain levels, indicating that the 

current high temperature grading system does not sufficiently predict the resistance to 

the accumulation of permanent strain. 

Figure 4.8 is an example of the results of the nonlinear viscoelastic parameters 

for all stress levels used in the MSCR test.  These results show that nonlinear parameter 

1g  was almost constant with a value of 1, while 2g  and 1g  * 2g  increased with 

increasing number of cycles at the same stress level (every 10 cycles) during most of the 

loading cycles.  This increase means that the material experienced softening, leading to 

an increase in the resulting recoverable strain.  However, the rate of increase in 2g  and 

1g  * 2g  decreased after 40 cycles (fourth stress level), indicating a reduction in the 
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recoverable strain.  This behavior could be caused by binder hardening due to 

considerable accumulation of permanent strain after 40 cycles. 

An interesting phenomenon in Figure 4.8 is the drop of 1g  * 2g  and 2g  when 

the stress increases from one stress level to the other.  The exact causes of this 

phenomenon are not clear.  However, a possible explanation is that the increase in stress 

level causes a sudden increase in permanent strain (permanent change in binder structure) 

and binder hardening, leading to a reduction in binder recoverable strain.  The reduction 

of  1g  * 2g  and 2g  to values less than one indicates that the accumulation of permanent 

strain causes binder hardening such that the viscoelastic strain decreases to a level below 

that determined from the linear viscoelastic response.  Another example of binder 

response is shown in Figure 4.9.  These results show that this binder did not exhibit a 

significant nonlinear response throughout the test. 

In general, the use of the nonlinear viscoelastic model is important as some of the 

nonlinear response could be mistakenly considered permanent strain if the linear 

viscoelasticity theory is used. 
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Figure 4.6 The Strain Components of PG 70-22 at 58 oC. 
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(a) 58 oC                                                           (b) 64 oC 

0

100

200

300

400

500

600

700

800

900

0 20 40 60 80 100 120

Cycle

Ir
re

co
ve

ra
bl

e 
st

ra
in

PG 70-22
PG70-28
PG 76-22
PG 76-28

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120

Cycle

Ir
re

co
ve

ra
bl

e 
st

ra
in

PG 70-22
PG 70-28
PG 76-22
PG 76-28

 

(c) 70 oC                                                           (d) 76  oC 

Figure 4.7 Comparisons of Irrecoverable Strain for Different Binders at Different 

Temperatures. 
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Figure 4.8 The Nonlinear Parameters of Binder PG 70-22 at 58 oC. 
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Figure 4.9 The Nonlinear Parameters of PG 70-28 Binder at 64 oC. 
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Validity of Using a Linear Model for Describing Permanent Strain 

As discussed previously, some studies use a linear viscous model to represent the 

accumulation of permanent strain in asphalt binders.  The validity of this approach is 

evaluated here by using Eq. (4-9), which represents a linear viscoelastic model with a 

linear viscous representation (referred to as linear dashpot), to analyze the data: 

( )( ) tDD f

N

n

t
nn

t φψλψ +−−=∆ ∑
=1

exp1)(      (4-9) 

where fφ  is the viscosity coefficient of the dashpot.  The Prony series and dashpot 

coefficients in Eq. (4-9) can be obtained by fitting the measurements at the first loading-

recovery cycle using Eqs. (4-2) and (4-3) without irrecε .  Then the coefficients obtained 

are used with f tφ   replacing irrecε  in Eqs. (4-2) and (4-3) along with the superposition 

principle to describe the response during the remaining cycles.  Figures 4.10 and 4.11 are 

the result of using the linear dashpot to analyze the binder PG 70-22 at 58 oC for stress 

levels 1 to 6 (25 to 800 Pa) and stress levels 7 to 9 (1600 to 6400 Pa), respectively. 

These figures show that the linear dashpot approach overestimates the permanent strain 

during one to six stress levels, but underestimates the permanent strain after the eighth 

stress level (time greater than 800 sec). 

 Figure 4.12 is a comparison of the irrecoverable strain obtained using a linear 

dashpot approach and the new method developed in this study.  This figure shows that 

the relationship between the irrecoverable strain increment and stress is a high order 

polynomial and not a straight line as would be predicted by the dashpot approach. 
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Figure 4.10 The Comparison of Experimental Measurements of Permanent Strain and 

Linear Dashpot Analysis Results for Stress Levels 1 to 6. 
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Figure 4.11 The Comparison of Experimental Measurements of Permanent Strain and 

Linear Dashpot Analysis Results for Stress Levels 7 to 9. 
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Figure 4.12 The Comparison of Irrecoverable Strain Using the New Method and the 

Dashpot Approach. 

 

Nonlinearity in ALF Binders 

The nonlinear parameter responses for ALF binders—air blown, SBS, 

ELVALOY, control, and SBSLG—are shown in Figures 4.13 to 4.17, respectively.  The 

results show that air blown and SBSLG binders exhibited nonlinear viscoelastic behavior.  

The 1g  * 2g  is around 1 for air blown binder, indicating that during loading the 

response remained almost linear, but nonlinearity was evident during unloading ( 2g  > 1). 

The SBSLG binder experienced nonlinear response during loading ( 1g  * 2g  > 1) and 

unloading ( 2g  > 1).  The SBS and ELVALOY binders remained linear during loading 
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and unloading throughout most of the test.  The control binder also experienced linear 

behavior during most of the test.  However, it deviated from linearity and exhibited 

hardening behavior ( 2g  < 1 and 1g  * 2g  < 1) earlier than either SBS or ELVALOY.  

These results indicate that asphalt binders vary in their nonlinear response; hence, it was 

necessary to apply the nonlinear viscoelastic model to characterize the asphalt binder in 

order to accurately determine permanent strain. 
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Figure 4.13 The Results of Nonlinear Parameters for the Air Blown Binder. 
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 Figure 4.14 The Results of Nonlinear Parameters for the SBS-Modified Binder. 
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Figure 4.15 The Results of Nonlinear Parameters for the ELVALOY-Modified Binder. 
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Figure 4.16 The Results of Nonlinear Parameters for the Control Binder. 
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Figure 4.17 The Results of Nonlinear Parameters for the SBSLG-Modified Binder. 
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Analysis of ALF Binder Permanent Deformation 

The primary objective of this study was to develop a method for analyzing the 

resistance of asphalt binders to permanent deformation.  The current approach of 

analyzing binder resistance to permanent deformation uses the accumulated strain irγ  at 

the last loading-unloading cycle of maximum stress level (25600 Pa).  This accumulated 

strain is then divided by the maximum stress τ  (25600 Pa) to calculate nrJ , as shown in 

Eq. (4-10) (D’ Angelo et al., 2007): 

ir
nrJ γ

τ
=          (4-10) 

A different approach is proposed in this study to quantify the resistance to 

permanent deformation.  First, the irrecoverable strain was determined at every loading 

cycle following the approach presented in this study and outlined in Figure 4.5.  Then, 

the irrecoverable strain was averaged by the number of cycles within each stress level.  

The average irrecoverable strain at every stress level was then divided by the ultimate 

stress that the material was able to sustain.  This maximum stress was defined as the 

stress that precedes the stress level at which the calculated 2g  dropped by 20 percent.  

The drop of 2g  indicates that the material has lost its ability to recover strain during 

unloading, which could be indicative of damage, rendering any further analysis of 

permanent strain after this point inaccurate. 

The ultimate stresses for all binders are shown in Table 4.1.  The relationship 

between applied stress level and nrJ  at that stress level is shown in Figure 4.18.  This 

figure shows that the rate of increase in nrJ  becomes higher with an increase in stress 
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level.  This result supports the point that the irrecoverable strain response increases with 

an increase in stress level. 

The comparison of the current method used by D’Angelo et al. (2007) for the 

analysis of the MSCR test and the one developed in this study for the analysis of the 

MSCR test is shown in Table 4.2.  This comparison shows that both methods conform to 

the ranking of the ALF rutting reasonably well.  Figures 4.19 and 4.20 present a 

comparison of both methods of analysis with ALF rutting.  Figures 4.19 and 4.20 show 

that the results prove that nrJ  calculated using the method developed in this study 

provides a better correlation with ALF rutting than does the current MSCR analysis 

approach. 

 

Table 4.1  The Ultimate Stress for Each Binder. 

Binder Ultimate Stress (Pa) 

Air Blown 6400 

ALF SBS 25600 

ALF ELVALOY 25600 

ALF Control 12800 

ALF SBSLG 6400 
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Table 4.2  The Results of nrJ  and the Ranking. 

New Method Without Separation ALF Measurements 
Binder 

nrJ  
(1/Pa) 

nrJ  
Ranking

nrJ  
(1/Pa) 

nrJ  
Ranking

Rutting 
(mm) Ranking

Air Blown 1.10E-3 3 0.17 3 1.27 3 

SBS 2.05E-3 5 0.19 4 1.73 5 

ELVALOY 6.69E-4 1 0.08 1 1.12 2 

Control 1.54E-3 4 0.2 5 1.42 4 

SBSLG 8.E-4 2 0.09 2 1.09 1 
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Figure 4.18 The Relationship between Stress and nrJ . 
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Figure 4.19 The Comparison of nrJ  without Separation and ALF Rutting. 
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Figure 4.20 The Comparison of nrJ  with Separation and ALF Rutting. 
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CONCLUSIONS 

A new method was developed in this study to separate recoverable (nonlinear 

viscoelastic) strain from irrecoverable (permanent) strain developed in asphalt binders.  

Schapery’s nonlinear viscoelastic model was used to analyze the recoverable strain.  

This method was utilized to analyze MSCR tests of asphalt binders to determine their 

resistance to permanent deformation.  The primary findings of this study are as follows: 

 Modified binders that had the same high temperature PG grade developed 

different degree of irrecoverable strain.  This result supports previous 

findings indicating that the current Superpave system does not accurately 

rank modified asphalt binders based on their resistance to permanent 

deformation. 

 A linear viscous model (linear dashpot) was not able to accurately describe 

the accumulation of permanent strain in asphalt binders. 

 Asphalt binders varied in their nonlinear viscoelastic response during 

loading and unloading.  The viscoelastic response of some asphalt binders 

remained linear throughout the MSCR test.  Other binders, however, 

exhibited nonlinear response during loading and/or unloading.  The 

recoverable strain decreased after a certain level of accumulation of 

permanent strain.  This decrease was marked by a reduction in the nonlinear 

viscoelastic parameter ( 2g ). 

 The use of a linear viscoelastic model to analyze the recoverable strain 

response leads to errors in separating the nonlinear viscoelastic strain from 
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the irrecoverable strain for the binders evaluated.  As a result, the 

calculation of the irrecoverable strain is not be accurate and leads to errors 

in ranking these binders based on their resistance to permanent deformation. 

 The results of the new method for characterizing resistance of asphalt 

binders to permanent deformation conformed well to asphalt mixture 

permanent deformation measured in the ALF experiment.  The new method 

offers an improvement over the current method used in the analysis of the 

MSCR test results. 
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CHAPTER V 

NUMERICAL IMPLEMENTATION OF NONLINEAR  

VISCOELASTIC-VISCOPLASTIC MODEL 

 

OVERVIEW 

 This chapter includes the development of a general constitutive relationship for 

describing the behavior of asphalt mixtures.  This constitutive relationship includes a 

nonlinear viscoelastic component to model the recoverable response and a viscoplastic 

component to model the irrecoverable response.  The nonlinear viscoelastic component 

is modeled using Schapery model.  The irrecoverable component is represented using 

Perzyna’s viscoplasticity theory with a Drucker-Prager yield surface that is modified to 

capture the influence of stress state on response.   

 This study uses the user-defined material subroutine (UMAT) supported within 

ABAQUS to implement the nonlinear viscoelastic-viscoplastic model.  This chapter 

includes parametric analysis using the finite element (FE) model in order to illustrate the 

effect of each of the model’s parameters on model response.  In addition, this chapter 

includes FE simulations of the response of a pavement structure using different 

parameters of the constitutive relationship.  The purposes of these simulations are to 

demonstrate the capabilities of the FE model in describing the performance of asphalt 

pavements in terms of resistance to permanent deformation and fatigue damage.   
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INTRODUCTION 

Experimental measurements have shown that the response of asphalt mixtures 

contains recoverable and irrecoverable components (Perl et al., 1983, Sides et al., 1985, 

and Collop et al., 2003).  Some of these studies modeled the recoverable response as 

elastic (time-independent) or viscoelastic (time-dependent).  Similarly, the irrecoverable 

response has been modeled as plastic (time-independent) or viscoplastic (time-

dependent).  Moreover, Cheung and Cebon (1997a, b) and Airey et al. (2002 and 2004) 

indicated that the recoverable component can be nonlinear depending on the 

combination of temperature, loading rate and stress/strain level.  Therefore, this study 

employs nonlinear viscoelasticity theory to describe the recoverable component; while 

Perzyna’s viscoplasticity theory is used to model the irrecoverable component. 

The Schapery single integral model is one of the most popular models to 

characterize the nonlinear viscoelastic constitutive behavior of engineering materials 

(Christensen, 1968; Schapery, 1969; Schapery, 2000).  Touati and Cederbaum (1997, 

1998) developed a numerical scheme of the Schapery theory to predict the nonlinear 

stress relaxation using the Runge-Kutta method and to analyze the orthotropic laminated 

plane.  Sadd et al. (2004) employed the Schapery theory to represent the nonlinear 

viscoelastic behavior of asphalt mixes and implemented it in the ABAQUS finite 

element package using a recursive scheme.  This model has been used recently by Haj-

Ali and Muliana (2004) to analyze the three-dimensional nonlinear viscoelastic behavior 

of polymeric materials.   
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In terms of viscoplastic model, Sousa and Weissman (1994) improved the 

nonlinear viscoelastic model developed by Sousa et al. (1993) by incorporating the 

elastoplastic component with Von Mises yield surface, and isotropic and kinematic 

hardening.  However, this model used nonlinear elastic and viscoelastic relationships to 

represent the recoverable component, and the viscoplastic component was not included 

within the model.  Seibi et al. developed an elasto-viscoplastic constitutive model for hot 

mixes asphalt (HMA).  This model used the Perzyna’s theory of viscoplasticity with the 

Drucker-Prager yield surface to model the irrecoverable component; nevertheless this 

model only used the elastic model to represent the recoverable component.   Lu and 

Wright (1998) and Oeser and Moller (2004) developed elasto-viscoplastic models to 

represent the asphalt mixtures behavior.  Lu and Wright (1998) employed Perzyna’s 

theory of viscoplasticity to model the irrecoverable component; while Oeser and Moller 

(2004) used a Hook-Kelvin-Newton element to present the elastic, viscoelastic, and 

viscoplastic components, respectively.  However, these models do not include the 

nonassociated flow rule.  Tashman (2003) developed a microstructural viscoplastic 

model with nonassociated flow rule for HMA.  This model considered material 

anisotropy, damage effect and work hardening.  Dessouky (2005) developed an elasto-

viscoplastic model with Drucker-Prager yield surface and implemented it in a finite 

element program. However, those constitutive models do not consider the nonlinear 

viscoelastic behavior of recoverable component.  Hence, this chapter employs the 

Schapery nonlinear viscoelastic model to represent the recoverable component, while the 

viscoplastic component is modeled by Perzyna’s theory.  Moreover, the Drucker-Prager 
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yield surface modified to account for the influence of stress state on mixture response is 

used as part of Perzyna’s viscoplasticity theory (Dessouky 2005). 

 

OBJECTIVES AND TASKS 

 The objective of the research reported in this chapter is to implement a nonlinear 

viscoelastic-viscoplastic model in finite element (FE) and demonstrate the capabilities of 

this model in describing the performance of asphalt mixtures in terms of resistance to 

permanent deformation and fatigue damage.  The research tasks are as follows: 

1. Implement the nonlinear viscoelastic-viscoplastic model in FE. 

2. Conduct the parametric analysis in order to demonstrate the influence of 

the model’s parameters on mixture response. 

3. Develop a FE model of asphalt pavement structure and study the response 

of this structure using different model’s parameters.   

 

DEVELOPMENT OF NONLINEAR VISCOELASTIC-VISCOPLASTIC MODEL 

  The total response of asphalt material subjected to an applied stress can be 

decomposed into recoverable components (elastic, viscoelastic) and irrecoverable 

components (plastic, and viscoplastic).  This study assumes that the asphalt material 

response contains nonlinear viscoelasticity and viscoplasticity to present the recoverable 

and irrecoverable components, respectively.  The elastic response is included within the 

viscoelastic relationship, while the irrecoverable response is assumed to be all time-

dependent.  The total strain subjected an applied stress can be expressed as: 
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nve vp
ij ij ijε ε ε= +          (5-1) 

where, ijε  is total strain, nve
ijε  is the nonlinear viscoelastic strain representing the 

recoverable component, and vp
ijε  is the viscoplastic strain representing the irrecoverable 

component.   

 

Nonlinear Viscoelastic Model 

This study employs the Schapery nonlinear viscoelasticity theory to model the 

recoverable component.  This model is presented in Chapter II, and a summary is 

presented here for completeness.  The recoverable strain response under an applied stress 

τσ  is expressed as in Eq. (2-1).  The reduced time in Eq. (2-1) can be a function of 

stress/strain shift factor, temperature shift factor, and other environment shift factors as 

shown in Eq. (2-2).  This study uses the Prony series to represent the transient 

compliance D∆  shown in Eq. (2-3). 

 The strain response for isotropic materials can be decoupled into deviatoric and 

volumetric parts as presented in Eq. (2-4).  Applying the Schapery integral constitutive 

model, the deviatoric and volumetric strain can be expressed as Eq. (2-5) and (2-6), 

respectively.  Assuming Poisson’s ratio υ to be time-independent, the shear and bulk 

compliances can be expressed as Eq. (2-7). 
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Viscoplastic Model 

This study uses an Extended Drucker-Prager model with nonassociated flow rule 

to model the viscoplasticity.  From Eq. (5-1), the total strain rate can be represented as in 

Eq. (5-2). 

nve vp
ij ij ijε ε ε= +& & &          (5-2) 

where nve
ijε&  is the viscoelastic strain rate, and vp

ijε&  is the viscoplastic strain rate.  This 

study uses the Perzyna’s model to present the viscoplastic strain rate component as:  

( )
ij

vp
ij

gf
σ

φε
∂
∂

Γ=&         (5-3) 

where,  Γ  is a viscosity parameter which can be a constant or a function of time, g  is 

the viscoplastic potential energy function which is a surface of the actual stress state in 

stress space, and φ  is the overstress function assumed as a function of yield surface f  

with N  power.  In Eq. (5-3), ( )fφΓ  is a positive scalar which determines the 

magnitude of viscoplastic strain rate vp
ijε& , and 

ij

g
σ∂
∂  is a vector which dominants the 

direction of vp
ijε& .  Once the potential energy function coincides with the yield surface 

function ( g f= ), it is called associated flow rule.  On the other hand, the nonassociated 

flow rule is defined as the potential energy function that does not coincide with the yield 

surface function ( g f≠ ).  Several studies have shown that hot mixes asphalt (HMA) 

exhibits nonassociated behavior.  Hence, this study uses nonassociated flow rule to 
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model the viscoplasticity.  In addition, •  in Eq. (5-3) are McCauley brackets which 

imply that  

( ) ( )
( )0

0
0
0

N

y

f
f f f

φ
φ

φ
σ

⎧ ⎫
⎪ ⎪≤⎪ ⎪= ⎛ ⎞⎨ ⎬>⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

     (5-4) 

where, 0
yσ  and N  are material constants.  Eqs. (5-3) and (5-4) indicate that the 

viscoplasticity takes place only when the overstress function exceeds zero.   

 

Yield Surface Function 

The yield surface function determines the possible combinations of stresses that 

separate the recoverable from the irrecoverable response.  In order to consider the effect 

of confinement, shear stress and dilative behavior of HMA, this study employs Extended 

Drucker-Prager yield surface, which is presented in 1I τ−  plane shown in Figure 5.1, 

and the equation is shown as: 

( ) ( ) ( )vp
e

vp
eij IFf εκατεκσ −−=−= 1      (5-5) 

where, α  is material parameter, ( )vp
eεκ  is a hardening function which is a function of 

effective viscoplastic strain vp
eε .  τ  and 1I  are the deviatoric shear stress modified to 

account for the stress state and first invariant stress, respectively, expressed as: 

1

2 3
3
2

1
3

1 11 1
2

iiI

J J
d d J

σ

τ

=

⎡ ⎤⎛ ⎞⎢ ⎥= + + −⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

      (5-6) 
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where, 2J  and 3J  are second and third deviatoric stress invariants, respectively, which 

are defined as: 

kijkij

ijij

SSSJ

SSJ

2
9
2
3

3

2

=

=
        (5-7) 

where, ijS  is deviatoric stress.  In Eq. (5-6), d  is a material parameter which takes care 

of the sensitivity of yield surface to the first invariant stress 1I .  The range of d  is from 

0.778 to 1.  Applying uniaxial compression stress 11σ , the deviatoric shear stress τ  

yields 2 11Jτ σ= = ; while 2 11J
d d

στ = =  for uniaxial tension case.  This indicates that 

at same stress level, the material in tension reaches the yield surface earlier than the 

material in compression.  Hence, the material strength in compression is higher than the 

material strength in tension.  The influence of d  is illustrated in Figure 5.2.  Consider 

the point A under the confinement pressure 3σ . Once increasing the axial stress 1σ  

(compression), both of 1I  and 2J  will increase and follow line AB until reaching 

yield stress point B.  On the other hand, if the axial stress is decreasing (extension), both 

of 1I  and 2J  will decrease and follow the line AC until researching yield stress point 

C.  The yield surface under extension in 1I  - 2J  plane is modified by reducing the 

slope (α′ ) and intercept (κ′ ) multiplying by d . 

 

 



 102

f

κα 

τ 

I1

 

 

 

 

 

 

 

Figure 5.1 The Extended Drucker-Prager Yield Surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The Influence of Stress Path on the 1 2I J−  Plane. 
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Viscoplastic Potential Energy Function 

Many researches indicated that HMA has nonassociated behavior which means 

that the direction of viscoplastic strain increment is not normal to yield surface.  In 

addition, the experimental measurements show that using associated flow rule ( g f= ) 

overestimates the dilation compared with experimental measurements (Masad et al., 

2007).  Hence, this study defines a potential energy function to be the same formula as 

the yield surface function and replaces α  with a smaller parameter β  as shown in Eq. 

(5-8).   

1Ig βτ −=          (5-8) 

where, β  is a material parameter. 

In Eq. (5-3), the differential of potential energy function 
ij

g
σ∂
∂  has to be derived.  

From Eq. (5-8), 
ij

g
σ∂
∂  can be shown as: 

ijijij

Ig
σ

β
σ
τ

σ ∂
∂

−
∂
∂

=
∂
∂ 1         (5-9) 

The differential of 1I  and τ  can be shown as: 
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1

32 2
3

23
3 3 5

2 2 2 2

32 2
2 3

2
22

1
3

3
1 1 11 1 1

24 2

1 1 11 1
2 2

ij
ij

ij ij ij

ij

ij ij ij

I

JJ JJ
JJ

d d dJ J J J

JJ JJ J

d J dJ

δ
σ

σ σ στ
σ

σ σ σ

∂
=

∂

∂∂ ∂⎛ ⎞
⎜ ⎟⎡ ⎤∂ ∂ ∂∂ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥= + + − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎜ ⎟
⎝ ⎠

⎡ ⎤∂∂ ∂⎛ ⎞−⎢ ⎥⎜ ⎟∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟= + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 (5-10) 

where, the differential of 2J and 3J  can be shown as: 

ijkjik
ij

ij
ij

JSS
J

S
J

δ
σ

σ

2
3

2

3
2

27

3

−=
∂
∂

=
∂
∂

       (5-11) 

Substituting Eqs. (5-10) and (5-11) into (5-9), the differential of viscoplastic potential 

energy yields: 

2

2 2 3

2
2

3 11
2

1 27 3 32 1 22 1
3

ij

ik kj ij ij
ij

ij

S
dJ

g
S S J J S J

J d

δσ β δ

⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎢ ⎥∂ ⎛ ⎞⎛ ⎞= ⎢ ⎥− −⎜ ⎟⎜ ⎟∂ ⎛ ⎞⎢ ⎥⎝ ⎠⎜ ⎟ − −⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  (5-12) 

 

Hardening Function 

The evolution of yield surface is defined by a hardening rule.  Many hardening 

rules, such as isotropic hardening, kinematic hardening and combination hardening, are 
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presented to describe the evolution of yield surface.  This study uses the isotropic 

hardening rule to evaluate the hardening behavior.  In this study, the hardening function 

is an exponential function of effective viscoplastic strain based on the work of Dafalias 

(1990).  The hardening function is shown as:    

( )( ){ }0 1 21 exp vp
eκ κ κ κ ε= + − −       (5-13) 

where, 0κ , 1κ  and 2κ  are material parameters, which defines the initial yield stress, the 

ultimate yield stress, and the shape of yield stress evolution, respectively.  vp
eε  is the 

effective viscoplastic strain.   

For practical use, the hardening function must be related to an effective stress or 

an effective viscoplastic strain, which is a function of stress combination, and 

viscoplastic strain combination, respectively.  Then, the hardening function can be 

correlated with any different loading test by plotting the effective stress against the 

effective viscoplastic strain.  In other words, the relation between the effective stress and 

the effective viscoplastic strain should be reduced to a stress-strain curve for uniaxial 

stress test.  Applying an uniaxial compression stress 11σ , the loading function  ( )ijF σ  

shown in Eq. (5-5) becomes a constant C  times effective stress eσ  with power n (Chen 

and Han, 1988), shown as:  

( ) n
eij CIF σατσ =−= 1        (5-14) 

where, 1 11
1
3

I σ=  and 11τ σ=  for uniaxial compression case.  Then, Eq. (5-14) becomes:  
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111
3

n
eCα σ σ⎛ ⎞− =⎜ ⎟

⎝ ⎠
        (5-15) 

Observing Eq. (5-15), the constants C  and n  can be determined as: 

1
3

1

=

⎟
⎠
⎞

⎜
⎝
⎛ −=

n

C α
          (5-16) 

Substituting Eq. (5-16) into (5-14), the effective stress can be derived as: 

( ) ( )
α
ατ

ατσ
−
−

=−=
3

31 1
1

I
I

Ce        (5-17) 

After obtaining the effective stress, this study employs the viscoplastic work rate 

per unit volume to derive the effective viscoplastic strain.  The viscoplastic work rate 

can be presented as: 

( )vp vp
vp ij ij ij e e

ij

gW fσ ε σ φ σ ε
σ
∂

= = Γ =
∂

& & &      (5-18) 

where, vp
eε&  is the effective viscoplastic strain rate.  From Eq. (5-3), ( )fφΓ  can be 

obtained as: 

( )

ijij

vp
ij

vp
ij

gg
f

σσ

εε
φ

∂
∂

∂
∂

=Γ
&&

       (5-19) 

In Eq. (5-19), the  term 
ijij

gg
σσ ∂
∂

∂
∂  subjected to a compression uniaxial stress can be 

derived as: 
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2 2

11

11 2
3 2 3

1
3

ij ij

ij
ij

g g

and
g

β β
σ σ

βσ σ
σ

∂ ∂ ⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠

∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠

      (5-20) 

Substituting Eqs. (5-20) and (5-19) into (5-18), the viscoplastic work rate can be shown 

as: 

11

112 2

1
3

11 2
3 2 3

vp vp vp vp
vp ij ij e e eW

βσ
ε ε σ ε σ ε

β β

⎛ ⎞−⎜ ⎟
⎝ ⎠= = =

⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

& & & & &    (5-21) 

Then, the effective viscoplastic rate can be derived as: 

2 2 2

1
13

1 11 2
3 2 3 2 31 2

1
3

vp vp vp vp vp
e ij ij ij ij

β

ε ε ε ε ε
β β β

β

⎛ ⎞−⎜ ⎟
⎝ ⎠= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ + ⎜ ⎟
⎜ ⎟−
⎝ ⎠

& & & & &   (5-22) 

 

THE NUMERICAL ALGORITHM OF NONLINEAR VISCOELASTIC-

VISCOPLASTIC MODEL 

In the finite element method, the strain rate is presented as time increment 

formulation. For small strain theory, the total strain and incremental strain can be 

decomposed into viscoelastic and viscoplastic components as shown in Eq. (5-23a). 

Moreover, the effective viscoplastic strain can be presented as incremental formulation 
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shown as Eq. (5-23b).  The current stress is equal to previous stress plus current stress 

increment Eq. (5-23c).  

, , , , , ,t nve t vp t t t t nve t t vp t t nve t vp t
ij ij ij ij ij ij ij ij ijε ε ε ε ε ε ε ε ε−∆ −∆ −∆= + = + ∆ = + + ∆ + ∆   (5-23a) 

, , ,vp t vp t t vp t
e e eε ε ε−∆= + ∆         (5-23b) 

t t t t
ij ij ijσ σ σ−∆= + ∆         (5-23c) 

 In terms of nonlinear viscoelastic increment, the viscoelastic bulk and deviatoric 

strain increments can be shown in Eqs. (2-10) and (2-11), respectively.  The variables 

tt
nijq ∆−

,  and tt
nkkq ∆−

,  in Eqs. (2-10) and (2-11) are the shear and volumetric hereditary 

integrals, respectively, for every Prony series term n at previous time tt ∆− .  The 

hereditary integrals are updated at the end of every converged time increment, which 

will be used for the next time increment.  The formulation of shear and volumetric 

hereditary integrals are shown in Eqs. (2-14) and (2-15), respectively. 

For viscoplastic strain increment, this study employs Perzyna’s model to describe 

the viscoplastic increment.  The viscoplastic strain incremental formulation of Perzyna’s 

model is shown as: 

( ), ,vp t vp t
ij

ij ij

g gf tε φ γ
σ σ
∂ ∂

∆ = Γ ∆ = ∆
∂∆ ∂∆

     (5-24) 

In Eq. (5-24), the viscoplastic multiplier can be shown as: 

( ) ( ),
,

0

,
Nt vp t

ij evp t

y

f
t f t

σ ε
γ φ

σ

⎛ ⎞
⎜ ⎟∆ = ∆ Γ = ∆ Γ
⎜ ⎟
⎝ ⎠

     (5-25) 
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Substituting Eqs. (5-22) and (5-24) into (5-23b), the effective viscoplastic strain 

increment can be shown as: 

,
, , , ,

21
2 31 2
1

3

vp t
vp t vp t t vp t vp t t
e e e e

ij ij

g gγε ε ε ε
σ σβ

β

−∆ −∆ ∆ ∂ ∂
= + ∆ = +

∂∆ ∂∆⎛ ⎞+⎜ ⎟
+ ⎜ ⎟

⎜ ⎟−
⎝ ⎠

  (5-26) 

The nonlinear viscoelastic-viscoplastic algorithm starts at a trial stress.  In this 

study, the initial trial stress is assumed as nonlinear viscoelastic only and the trial stress 

is shown in Eqs. (2-16) and (2-17).  Once the trial stress exceeds the yield surface, the 

calculation of viscoplastic strain increment is needed.  On the other hand, the material 

only has viscoelastic strain increment and the viscoplastic strain increment is equal to 0, 

if the trial stress is not beyond the yield surface.   

Alfano et al. (2001) developed an equivalent to the consistency condition for the 

plastic problem.  From Eq. (5-25), the trial yield surface based on the trial stress can be 

shown as: 

1/,
0

Nvp t
tr

yf
t
γσ

⎛ ⎞∆
= ⎜ ⎟∆ Γ⎝ ⎠

        (5-27) 

A dynamic yield surface function χ  can be defined as: 

( )( )
1/,

, 0
1

Nvp t
tr tr vp t

e yI
t
γχ τ α κ ε σ

⎛ ⎞∆
= − − − ⎜ ⎟∆ Γ⎝ ⎠

     (5-28) 

This study uses a numerical scheme Newton-Raphson to calculate ,vp tγ∆ .  Once 

obtaining ,vp tγ∆ , the viscoplastic strain increment can be determined by Eq. (5-24).  In 
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Newton-Raphson scheme, the differential of χ  with vpγ∆  should be derived and it is 

shown as: 

1 10

1
0

vp vp N
ye

vp vp vp
e

vp vp N
ye

vp vp vp
e

t N t

N t

σεχ κ γ
γ ε γ

σεκ γ
ε γ γ

−
⎛ ⎞∂∆∂ ∂ ∆

= − − ⎜ ⎟∂∆ ∂∆ ∂∆ ∆ Γ ∆ Γ⎝ ⎠

⎛ ⎞∂∆∂ ∆
= − − ⎜ ⎟∂∆ ∂∆ ∆ ∆ Γ⎝ ⎠

     (5-29) 

The differential of hardening function κ  with ,vp t
eε∆  can be shown as:  

( )( ){ }

( )( )

, ,
1 2

, ,

, ,
1 2 2

1 exp

exp

vp t t vp t
e e

vp t vp t
e e

vp t t vp t
e e

κ κ ε εκ
ε ε

κ κ κ ε ε

−∆

−∆

⎡ ⎤∂ − − + ∆∂ ⎢ ⎥⎣ ⎦=
∂∆ ∂∆

= − + ∆　

     (5-30) 

The 
vp
e
vp

ε
γ

∂∆
∂∆

 in Eq. (5-29) can be shown as: 

,

, 2

1

1
2 31 2
1

3

vp t
e
vp t

ij ij

g gε
γ σ σβ

β

∂∆ ∂ ∂
=

∂∆ ∂∆ ∂∆⎛ ⎞+⎜ ⎟
+ ⎜ ⎟

⎜ ⎟−
⎝ ⎠

     (5-31) 

Substitute Eqs. (5-30) and (5-31) into (5-29). The vp

χ
γ
∂

∂∆
 can be shown as: 

( ) ( )( )( ) 1, , 0
1 2 2

2

exp

1
2 31 2
1

3

vp t t vp t
vp Ne e y

vp vp
ij ij

g g
N t

κ κ κ ε ε σχ γ
γ σ σ γβ

β

−∆− + ∆ ⎛ ⎞∂ ∂ ∂ ∆
= − − ⎜ ⎟∂∆ ∂ ∂ ∆ ∆ Γ⎝ ⎠⎛ ⎞+⎜ ⎟

+ ⎜ ⎟
⎜ ⎟−
⎝ ⎠

(5-32) 

At the (k+1) iteration, the viscoplastic multiplier is calculated by: 
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( ) ( )
1

1
k

k kvp vp k
vp

χγ γ χ
γ

−
+ ⎡ ⎤⎛ ⎞∂

∆ = ∆ − ⎢ ⎥⎜ ⎟∂∆⎝ ⎠⎢ ⎥⎣ ⎦
     (5-33) 

Because both of the nonlinear viscoelastic and viscoplastic strain increments are 

function of current stress, this study employs the recursive-iteration algorithm with 

Newton-Raphson method by minimizing the residual strain to obtain the current stress.  

This algorithm applies iteration at both of material and structure levels to minimize the 

error; otherwise, very small increments are required.  The residual strain is defined as: 

, , , ,t nve t vp t t nve t vp t t
ij ij ij ij ij ij

ij

gR ε ε ε ε γ ε
σ
∂

= ∆ + ∆ −∆ = ∆ + ∆ −∆
∂∆

   (5-34) 

In Newton-Raphson method, the stress increment at the (k+1) iteration is calculated by: 

( ) ( ) ( )
1

1
kt

k k kijt t t
ij ij klt

kl

R
Rσ σ

σ

−

+ ⎡ ⎤⎛ ⎞∂
⎢ ⎥∆ = ∆ − ⎜ ⎟⎜ ⎟∂∆⎢ ⎥⎝ ⎠⎣ ⎦

     (5-35) 

where, the differential of R  is the consistent tangent compliance and can be derived as:   

, ,t nve t vp t
ij ij ij

kl kl kl

R ε ε
σ σ σ

∂ ∂∆ ∂∆
= +

∂∆ ∂∆ ∂∆
       (5-36) 

where,
nve
ij

kl

ε
σ

∂∆

∂∆
 is the nonlinear viscoelastic tangent compliance which is given in Eq. (2-

19).  The viscoplastic tangent compliance is derived as in Eq. (5-37).   
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N N

y y kl ij y ij kl

g

g g

t N f f g f gt

γ
σε

σ σ

γ γ
σ σ σ σ

σ σ σ σ σ σ σ

−

⎛ ⎞∂
∂ ∆⎜ ⎟⎜ ⎟∂∆∂∆ ⎝ ⎠=

∂∆ ∂∆

∂∆ ∂ ∂
= + ∆
∂∆ ∂∆ ∂∆ ∂∆

⎛ ⎞ ⎛ ⎞∆ Γ ∂ ∂ ∂
= + ∆ Γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂∆ ∂∆ ∂∆ ∂∆⎝ ⎠ ⎝ ⎠

  (5-37) 

If the stress does not exceed the yield surface, the material compliance will only include 

the nonlinear viscoelastic compliance
nve
ij

kl

ε
σ

∂∆

∂∆
; if it does, the material compliance will 

include both the nonlinear viscoelastic compliance 
nve
ij

kl

ε
σ

∂∆

∂∆
 and the viscoplastic 

compliance 
vp
ij

kl

ε
σ

∂∆

∂∆
.  The nonlinear viscoelastic-viscoplastic algorithm is shown as 

Figure 5.3.  The flowchart of viscoplastic strain increment calculation using Newton-

Raphson Method is shown as Figure 5.4. 
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Figure 5.3 The Flowchart of Nonlinear Viscoelastic-Viscoplastic Implementation. 
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Figure 5.4 The Flowchart of Newton-Raphson Method for Viscoplastic Strain 
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VERIFICATION OF FINITE ELEMENT IMPLEMENTATION 

 This section conducts a case with two uniaxial step loading shown in Figure 5.5 

to verify the nonlinear viscoelastic-viscoplastic implementation.  A closed form solution 

of nonlinear viscoelastic (Modified Superposition Principle (MSP)) is employed to 

obtain the solution of viscoelastic component.  A numerical solver using Newton-

Raphson method supported within the math software MathematicaTM is used to find the 

numerical solution of viscoplastic component.  Then, the results of MSP and 

MathematicaTM are added and compared with the total response calculated by the FE 

implementation.  The viscoelastic and viscoplastic material parameters are shown in 

Tables 5.1 and 5.2, respectively.  The MSP solutions for first and second loading step are 

shown as: 

a
a
s

aaa
r a

tDggDg σε ⎥
⎦

⎤
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⎣

⎡
∆+= )(2100    For 0<t<ta     (5-38) 
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a
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b
a

ab
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b
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In terms of viscoplastic component, for uniaxial stress with β =0, the viscoplastic 

strain can be simplified as:  

, , ,
11

11

vp t vp t vp tgε γ γ
σ
∂

∆ = ∆ = ∆
∂∆

       (5-40) 

The effective viscoplastic strain increment with β =0 can also be simplified as:  
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The dynamic yield surface for uniaxial stress with β =0 can be shown as: 

( )( )( )

( )( )( )
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,( ) ,( ) 0
1 0 1 2

1
,

, , 0
1 0 1 2

1 exp

1 exp 0
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⎛ ⎞∆
= − − − − − ∆ + ∆ − ≅⎜ ⎟∆ Γ⎝ ⎠

(5-42) 

Once the viscoplastic multiplier ,vp tγ∆  is obtained by solving Eq. (5-42), the viscoplastic 

strain can be calculated which is equal to ,vp tγ∆ .  This study uses a numerical solver 

supported within MathematicaTM to solve Eq. (5-42) to obtain ,vp tγ∆ . 

The result of comparison is shown in Figure 5.6.  This figure shows that the FE 

can fit the results, calculated by MathematicaTM and MSP, very well.  Figure 5.7 is the 

error between FE results and the calculated results.  This figure shows that the error 

decreases with time. The error increases rapidly when the stress changes, because the FE 

needs more time increment to obtain the accuracy solution.  The maximum error is 

around 0.4%. 
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Table 5.1 Viscoelastic Material Parameters (Lai and Bakker, 1996). 

n nλ  (Sec-1) 6*10nD −  (MPa-1) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

10-1 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

10-8 

23.6358 

5.6602 

14.8405 

18.8848 

28.5848 

40.0569 

60.4235 

79.6477 

162.1790 

0D  270.9*10-6 (MPa-1) 

 

 

 

 

 

 

 

 

 

 



 118

Table 5.2 Viscoplastic Material Parameters. 

Parameter  

N  2.18 

α  0 

β  0 

0κ  20 (Pa) 

1κ  50 (Pa) 

2κ  2 

0
yσ  1 (Pa) 

d  0.778 

Γ  0.5 (Sec-1) 

 

 

 

Figure 5.5 The Schematic Diagram of Loading. 

Stress (N/m2) 

Time (Sec) ta=25 

σa=20 
σb=24 

tb=50 
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Figure 5.6 The Total Strain Comparison Between FE Solution and Calculated Results.  
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Figure 5.7 The Error of Total Strain Between FE Solution and Calculated Results. 
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PARAMETRIC ANALYSIS 

 A uniaxial loading condition is used to conduct parametric analysis in order to 

examine the influence of constitutive model parameters on the material response.  The 

parameters that are considered here are the yield surface parameters α  and d ; 

viscoplastic potential energy parameter  β ; flow function parameters Γ  and N ; and 

hardening function parameters 0κ , 1κ , and 2κ . 

 The yield surface parameter α  controls the slop of yield surface.  Increasing α  

leads to an increase in yield stress at a given confinement stress.  The effect of this 

parameter is shown in Figure 5.8.  This figure shows that decreasing α  will increase the 

strain at same stress level, because the material is easier to reach yield surface and 

contains more viscoplastic strain.  The yield surface parameter d  determines the shape 

of yield surface in the deviatoric plane.  This parameter represents the ratio of yield 

stress in extension versus compression at the same confinement stress.  In the 

compression case, d  does not influence the material behavior; while the effect of d  

shows under tension as a decrease in d  increases the yielding strain at same stress level.  

The effect shows in Figure 5.9. 

 The viscoplastic potential energy parameter β  controls the slope of viscoplastic 

potential energy, which will affect the direction of viscoplastic strain increment.  This 

parameter reflects the dilative potential and influences the portion of volumetric and 

deviatoric strain.  Figure 5.10 shows the effect of β .  This figure shows that at the 

beginning of loading, the volumetric strain of the material tends to be positive because 

the material behavior is viscoelastic; when the loading increases gradually, the material 
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contains viscoplastic strain and dilates, which makes the volumetric strain tends to be 

negative.  This figure demonstrates that an increase in β  causes more volumetric 

dilation.   

 The flow function parameters Γ  controls the magnitude of viscoplastic strain 

increment; while N  dominates the shape of overstress function.  Increasing Γ  will lead 

to more viscoplastic strain increment.  In addition, increasing N  will cause more 

nonlinearity of the overstress function and viscoplastic strain increment.  Figure 5.11 

shows the effect of Γ  and illustrates that increasing Γ  will induce more viscoplastic 

strain increment within same stress increment.  Figure 5.12 shows that increasing N  

will cause more nonlinearity in the viscoplastic strain increment. 

 This study employs the exponential hardening function which is a function of 

effective viscoplastic strain with parameters 0κ , 1κ , and 2κ .  0κ  controls the stress 

which starts to have viscoplastic behavior; 1κ  dominates the ultimate yield stress; and 

2κ  reflects the shape of hardening evolution.  Figures 5.13, 5.14 and 5.15 are the effect 

of 0κ , 1κ , and 2κ , respectively.  Increasing 0κ  will increase the yield stress, in the other 

words, the stress that material start to contain viscoplastic strain is higher with larger 0κ  

value.  Figure 5.13 shows that the viscoplastic strain takes place at a higher stress level 

with larger 0κ , while decreasing 0κ  leads the decreasing of the stress that induces the 

viscoplastic.  The hardening function is related to overstress function which affects the 

magnitude of viscoplastic strain increment.  Increasing 1κ  will increase the hardening 

κ and then decrease the viscoplastic strain increment.  Figure 5.14 also indicates that 
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increasing 1κ  will decrease viscoplastic strain at same stress level.  The hardening 

parameter 2κ  reflects the nonlinearity of hardening and of viscoplastic strain increment.  

Figure 5.15 illustrates that increasing 2κ  will increase the nonlinearity of viscoplastic 

strain increment, and it will also induce more nonlinearity of material behavior. 
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Figure 5.8 The Effect of Yield Surface Parameter α . 
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(a) Uniaxial Compression Case 
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(b) Uniaxial Tension Case 

Figure 5.9 The Effect of Yield Surface Parameter d . 
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Figure 5.10 The Effect of Viscoplastic Potential Energy Parameter β . 
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Figure 5.11 The Effect of Flow Function Parameter Γ . 
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Figure 5.12 The Effect of Flow Function Parameter N . 
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Figure 5.13 The Effect of Hardening Function Parameters 0κ . 
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Figure 5.14 The Effect of Hardening Function Parameters 1κ . 
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Figure 5.15 The Effect of Hardening Function Parameters 2κ . 
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FINITE ELEMENT SIMULATION 

A finite element model of a pavement section is developed in order to 

demonstrate the response of asphalt pavement under loading using different constitutive 

model parameters.  A one lane pavement section with 82 inches width is simulated.  The 

simulated loading is a single axial loading and the distance between two wheels is 30 

inches.  The asphalt mix layer has a thickness of 6 inches; the base layer has a thickness 

of 6 inches, and the subgrade layer has 6 inches.  The FE model is shown in Figure 5.16.  

Because the loading condition is symmetric in the wheel axis direction, the FE model 

includes only half of the pavement section and fixes the boundary condition of y 

direction on left hand side.  The boundary condition on the right hand side is fixed with 

all degrees of freedom.  The finite element domain is 42, 40, and 18 inches in width, 

length and depth, respectively with infinite boundary on depth and driving direction.  

The loading area is 6*8 in2 with tire pressure 100 psi.  The nonlinear viscoelastic-

viscoplastic material is applied for HMA layer, while the base and subgrade layer are 

elastic materials.  The elastic material properties for base and subgrade layer are shown 

in Figure 5.16. 

The analysis includes conducting sensitivity analysis of finite element size in 

order to determine the finite element mesh with accurate solution.  Three meshes with 

different element sizes are shown in Figure 5.17.  The finite element size and total finite 

element number are shown in Table 5.3.  The sensitivity analysis was conducted by 

applying a step loading 100 psi with duration time 25 sec, and compared the calculated 

results of each mesh.  Figures 5.18 and 5.19 are the strain and Von Mises results at the 
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HMA layer surface located in the center of loading for different mesh sizes.  It can be 

seen that there is a very small difference between the results at 420 and 1680 elements.  

Considering the calculating time shown in Table 5.3, the calculating time of 1680 

elements needs around 15 times compared to the calculating time of 420 elements, but 

the difference between these two meshes is not significant.  Hence, this study decides to 

conduct the analysis using a structure model with 420 elements.    

 

Table 5.3 The Element Size, Total FE Number and Calculating Time. 

 Element Size 

(width*length) 
Total FE number

Calculating Time 

(Sec) 

FE Model 1 1*1 1680 38568 

FE Model 2 2*2 420 2682 

FE Model 3 3*4 140 653 
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Figure 5.16 The Sketch of Pavement Section. 
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Figure 5.17 Three Different Meshes for Conducting Sensitivity of FE Size. 
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Figure 5.18 The Strain Comparison of Three Different Meshes. 
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Figure 5.19 The Von Mises Stress Comparison of Three Different Meshes. 
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The FE analysis considers two cases; the first case represents intermediate 

temperature where nonlinear viscoelastic strain is dominant, while the second case 

represents high temperature at which viscoplastic strain and permanent deformation are 

dominant.  The simulation includes applying 25 loading-unloading cycles with a tire 

pressure of 100 psi.  Within each loading-unloading cycle, the loading duration is 0.3 sec, 

and then removes the loading for 0.7 sec.  In essence, fatigue damage is simulated by 

allowing the nonlinear parameters to vary as a function of number of loading cycles.  

This study assumes the nonlinear parameter is distributed by stress level sg  and fatigue 

damage fg  which is function of number of loading cycle.  The relationship between sg  

and fg  is assumed to be additive shown as Eq. (5-43).  The exponential function is 

employed for sg  and fg  shown as Eqs.(5-44) and (5-45). 
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where, 1 2 1 2, ,s s f f
i i i ia a a and a  are nonlinear parameter coefficients. 0σ  and N  are 

the limit start to have nonlinearity of stress and fatigue damage, respectively.  Since the 

asphalt pavement under intermediate temperature contains more nonlinear viscoelastic 

strain and fatigue damage, while more viscoplastic strain is contained under high 

temperature, this study applies different material properties for intermediate and high 

temperature to simulate the pavement response under different temperature condition.  

The nonlinear parameter coefficients and viscoplastic properties for intermediate and 

high temperature are shown in Tables 5.4 and 5.5, respectively. 

In order to show the results clearly, the following contours only demonstrate the 

elements around the loading area.  The results of nonlinear viscoelastic and viscoplastic 

strain at 15th loading cycle are shown in Figure 5.20.  This figure shows that the 

pavement section has more viscoplastic strain under high temperature, while it has more 

viscoelastic strain under intermediate temperature.  Figure 5.21 is the comparison of the 

nonlinear viscoelastic parameters.  The results show that the nonlinear parameters under 

intermediate temperature are larger than that under high temperature.  The results 

indicate that the pavement has more fatigue damage under intermediate temperature, 

while the permanent deformation affects more under high temperature.  Figures 5.22 and 

5.23 are the results of strain and nonlinear parameters, respectively.  The results also 

show that the effects of fatigue damage (nonlinear parameters) at intermediate 

temperature are more than that at high temperature.  The pavement under high 

temperature has more permanent strain (viscoplastic strain) than it under intermediate 

temperature.  Figures 5.24 and 5.25 are the comparison of total strain and nonlinear 
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viscoelastic strain, respectively.  These figures show that at 25th loading cycle, the 

pavement response under intermediate temperature still contains a lot of viscoelastic 

strain.  Most of the remaining strain under high temperature is viscoplastic component.  

This result indicates that the remaining strain at the end of unloading can not be totally 

accounted to irrecoverable component, especially under intermediate temperature.  

Moreover, the nonlinearity of material under intermediate temperature increases with 

number of loading cycles.  The increasing of nonlinearity under high temperature is not 

significant with increasing number of loading cycle.  Figure 5.26 is the viscoplastic 

strain result.  This figure shows that the viscoplastic strain under high temperature is 

much larger than that under intermediate temperature.  Hence, the pavement under 

intermediate temperature has more fatigue damage (nonlinearity), while the permanent 

deformation is a major distress under high temperature.  
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Table 5.4 The Coefficients of Nonlinear Parameter for Intermediate and High 

Temperature. 

Intermediate Temperature High Temperature 

1g  Coefficients  2g Coefficients  1g  Coefficients  2g Coefficients  

1

1sa  1.5 1
2
sa  1.2 

1

1sa  0.5 1
2
sa  0.6 

1

2sa  0.01 
2

2sa  0.05 
1

2sa  0.005 
2

2sa  0.025 

1
1

fa  0.03 1
2

fa  0.04 1
1

fa  0.015 1
2

fa  0.02 

1
1

fa  0.02 1
2

fa  0.01 1
1

fa  0.01 1
2

fa  0.005 

 

 

Table 5.5 The Viscoplastic Parameters for Intermediate and High Temperature. 

Intermediate Temperature High Temperature 

α  0.6 α  0.5 

β  0.35 β  0.35 

d  0.778 d  0.778 

Γ  1.0E-7 Γ  1.0E-6 

N  1.0 N  2.0 

0κ  30 0κ  20 

1κ  40 1κ  30 

2κ  40 2κ  30 
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(a) Viscoelastic Strain under   (b) Viscoelastic Strain under 

Intermediate Temperature                     High Temperature 

 

(c) Viscoplastic Strain under   (d) Viscoplastic Strain under 

Intermediate Temperature                     High Temperature 

Figure 5.20 The Viscoelastic and Viscoplastic Strain Comparison at 15th Loading Cycle. 
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(a) The Nonlinear Parameter 1g    (b) The Nonlinear Parameter 1g  

under Intermediate Temperature                     under High Temperature 

  

(c) The Nonlinear Parameter 2g    (d) The Nonlinear Parameter 2g  

under Intermediate Temperature                     under High Temperature 

Figure 5.21 The Nonlinear Parameters Comparison at 15th Loading Cycle. 
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(a) Viscoelastic Strain under   (b) Viscoelastic Strain under 

Intermediate Temperature                     High Temperature 

  

(c) Viscoplastic Strain under   (d) Viscoplastic Strain under 

Intermediate Temperature                     High Temperature 

Figure 5.22 The Viscoelastic and Viscoplastic Strain Comparison at 25th Loading Cycle. 
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(a) The Nonlinear Parameter 1g    (b) The Nonlinear Parameter 1g  

under Intermediate Temperature                     under High Temperature 

 

(c) The Nonlinear Parameter 2g    (d) The Nonlinear Parameter 2g  

under Intermediate Temperature                     under High Temperature 

Figure 5.23 The Nonlinear Parameters Comparison at 25th Loading Cycle. 
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Figure 5.24 The Comparison of Total Strain Between High and Intermediate 

Temperature. 
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Figure 5.25 The Comparison of Nonlinear Viscoelastic Strain Between High and 

Intermediate Temperature. 
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Figure 5.26 The Viscoplastic Strain Under Intermediate and High Temperature. 
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CONCLUSIONS 

This chapter includes the finite element implementation of nonlinear viscoelastic-

viscoplastic constitutive relationships for asphalt mixtures. Parametric analyses were 

conducted in order to demonstrate the effect of some of the model’s parameters on mix 

response.  All the results confirmed that the model captures the physical phenomena 

such as dilation, confinement dependency, and hardening associated with the behavior of 

asphalt mixtures. 

A finite element model of a pavement structure was constructed and used to 

demonstrate the ability of the model to describe the response and performance of asphalt 

mixtures under different loading conditions.  Fatigue damage is modeled by allowing the 

nonlinear viscoelastic parameters to vary as functions of loading cycles.  Rutting is 

modeled by the accumulation of viscoplastic strain.  The results show that the model can 

capture the fatigue damage under intermediate temperature and permanent distress under 

high temperature.  This model will be extended in the future to explicitly account for the 

effect of temperature on the viscoelastic and viscoplastic responses. 

 

 

 

 

 

 

 



 143

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

SUMMARY AND MAIN CONCLUSIONS 

 This study addresses a need in the asphalt pavement community in developing a 

constitutive relationship that can be used (1) in describing the behavior of asphalt 

materials (asphalt binder, asphalt mastic and mixtures) under various testing conditions, 

and (2) for the analysis of the performance of asphalt pavement structure.  This study 

achieved the implementation of a nonlinear viscoelastic-viscoplastic constitutive 

relationship in finite element.  The nonlinear viscoelastic behavior is modeled using 

Schapery theory; while the viscoplastic behavior is modeled by Perzyna’s theory. 

 Chapters II, III and IV of this dissertation focused on three applications 

demonstrating the use of the model in the characterization of asphalt binders and 

mixtures subjected to various loading conditions.  The main outcome of these 

applications demonstrates the validity of the model in describing the complex response 

of asphalt materials under different temperatures, loading rate, loading frequencies and 

temperatures.  In addition, these applications demonstrate the ability of the model to 

extract indices for ranking asphalt materials based on performance. 

 In this first application reported in Chapter II, the Schapery nonlinear viscoelastic 

model parameters were obtained by analyzing the response of two asphalt mixes tested 

at different temperatures, frequencies, and strain levels.  The time-strain shift factors 

were obtained by shifting the master curves at the different strain levels horizontally to a 
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reference strain level representing linear response.  The nonlinear parameters were 

calculated by vertical shifting of the master curves at all strain levels to the same 

reference strain.  The long-term linear viscoelastic coefficients were determined by 

fitting the Prony series to the data shifted horizontally at the reference strain.  Inverse 

analysis was also conducted, and the results showed that the FE model had reasonable 

agreement with the experimental measurements at different combinations of 

temperatures and strain levels.  The result of this analysis has showed that the strain 

horizontal shifting and nonlinear parameters can be used to predict HMA long-term 

nonlinear viscoelastic behavior by performing experiments at multiple strain levels 

within short time intervals.   

 In the second application, Schapery’s theory was used in the analysis of 

nonlinear viscoelastic behavior of unaged and aged asphalt binders at different 

temperatures and stresses.  Due to the influence of test temperatures on the stress levels 

that the binder can sustain prior to failure, the experimental measurements did not have a 

common range of stress levels that can be used in developing the master curve of 

nonlinear viscoelastic materials.  This limitation was overcome by introducing the 

normalized stress concept in which the stress values of each test, at a given temperature 

and frequency, were normalized by the ultimate stress of that test.  The results of this 

application has demonstrated the advantages of the analysis approach in providing a 

mathematical framework for describing the nonlinear response of asphalt binders, and in 

the possibility of describing the behavior of aged binders by using the unaged binder 

parameters and aging shift factors. 
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 In this third application, the developed constitutive model was used in the 

analysis of asphalt binders subjected to Multiple Stress Creep Recovery test (MSCR) test.  

The objective of this application was to develop a new method to characterize the 

resistance of asphalt binders to permanent deformation.  However, the challenge was in 

separating the nonlinear viscoelastic strain from the plastic strain that results in due to 

loading and unloading.  Consequently, a new method was developed for separating the 

nonlinear viscoelastic response from the plastic response.  The results show that binder 

varies in nonlinear viscoelastic response at common stress level.  Therefore, it is 

necessary to use a nonlinear viscoelasticity theory to accurately determine the plastic 

strain. 

 A new index was developed based on the permanent strain (separated from the 

viscoelastic strain) for the characterization of resistance of asphalt binders to permanent 

deformations.  The results showed excellent correlation between the index nrJ  calculated 

using the actual permanent strain at ultimate stress level and rutting in the ALF mixtures.  

This new method was programmed in order to facilitate the analysis of data of testing 

binders using the MSCR test. 
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The details of the finite element implementation of nonlinear viscoelastic-

viscoplastic constitutive relationships for asphalt mixtures are presented in Chapter V. 

Parametric analyses were conducted in order to demonstrate the effect of some of the 

model’s parameters on mix response.  The results showed that the model can reflect the 

physical phenomena such as dilation, confinement dependency, and hardening 

associated with the behavior of asphalt mixtures.  A finite element model of a pavement 

structure was developed and used to demonstrate the ability of the model to describe the 

response and performance of asphalt mixtures under different conditions.  The FE model 

was used to capture the pavement response under intermediate temperature (fatigue 

damage) and the pavement response under high temperature (rutting).  Fatigue damage is 

modeled by allowing the nonlinear viscoelastic parameters to vary as functions of 

loading cycles; while rutting is modeled by the accumulation of viscoplastic strain.  This 

model will be extended in the future to explicitly account for the effect of temperature on 

the viscoelastic and viscoplastic responses. 
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RECOMMENDATIONS 

 The presented model accounts the nonlinear viscoelastic-viscoplastic behavior 

using Schapery nonlinear viscoelastic and Perzyna’s viscoplastic model.  However, 

HMA is a composite material which contains air voids, mastic and aggregates, and the 

effect of anisotropy distributed by aggregates is significant in HMA response.  Hence, 

the material constitutive model should include the anisotropic effect in the further 

research.  Moreover, the damage parameter should be contained in the constitute model 

to characterize the effect of micro-structure cracking. 

The nonlinear viscoelastic analysis in this study is one dimension, but the HMA 

behavior is related to confinement stress.  Hence, the nonlinear viscoelastic analysis 

should consider the effect of confinement condition.   

 In the future analysis, the comprehensive characterization should be conducted 

which includes the separation of recoverable and irrecoverable component, 

characterization of nonlinear viscoelastic and characterization of viscoplastic.  The 

characterization of nonlinear viscoelastic and viscoplastic should be applied, after 

separation of recoverable and irrecoverable components.  The characterization also 

should include the anisotropy and damage effect.  The viscoplastic parameters used in 

this study are assumed.  In the future, the viscoplastic parameters should be obtained by 

characterizing the experimental measurements.  In addition, the relationship between 

nonlinearity of stress and number of loading cycles (fatigue damage) also should be 

obtained from experimental measurements.   
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