
Universidad de Málaga

ETS Ingeniería Informática

Departamento Lenguajes y ciencias de la computación

Programa de Doctorado de Tecnologías Informáticas

Processing Structured Data Streams
Procesamiento de flujos de datos estructurados

Tesis Doctoral

GALA BARQUERO MORENO

Directores:
Antonio Vallecillo Moreno

Javier Troya Castilla

Málaga, 2020

https://orcid.org/0000-0003-2032-7003

Escuela de Doctorado

Edificio Pabellón de Gobierno. Campus El Ejido.
29071

Tel.: 952 13 10 28 / 952 13 14 61 / 952 13 71 10
E-mail: doctorado@uma.es

-

DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD DE LA TESIS PRESENTADA
PARA OBTENER EL TÍTULO DE DOCTOR

D./Dña GALA BARQUERO MORENO
Estudiante del programa de doctorado TECNOLOGÍAS INFORMÁTICAS de la Universidad de
Málaga, autor/a de la tesis, presentada para la obtención del título de doctor por la Universidad
de Málaga, titulada: PROCESSING STRUCTURED DATA STREAMS

Realizada bajo la tutorización de ANTONIO VALLECILLO MORENO y dirección de ANTONIO
VALLECILLO MORENO Y JAVIER TROYA CASTILLA (si tuviera varios directores deberá hacer
constar el nombre de todos)

DECLARO QUE:

La tesis presentada es una obra original que no infringe los derechos de propiedad intelectual ni
los derechos de propiedad industrial u otros, conforme al ordenamiento jurídico vigente (Real
Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba el texto refundido de la Ley de
Propiedad Intelectual, regularizando, aclarando y armonizando las disposiciones legales vigentes
sobre la materia), modificado por la Ley 2/2019, de 1 de marzo.

Igualmente asumo, ante a la Universidad de Málaga y ante cualquier otra instancia, la
responsabilidad que pudiera derivarse en caso de plagio de contenidos en la tesis presentada,
conforme al ordenamiento jurídico vigente.

En Málaga, a 09 de NOVIEMBRE de 2020

Fdo.: GALA BARQUERO MORENO

A quienes creen en mí

Universidad de Málaga

Universidad de Málaga

ETS Ingeniería Informática

Departamento Lenguajes y ciencias de la computación

El Dr. Antonio Vallecillo Moreno, Catedrático de Universidad en el Departamento

de Lenguages y Ciencias de la Computación de la E.T.S. de Ingeniería Informática

de la Universidad de Málaga, y el Dr. Javier Troya Castilla, Profesor Contratado

Doctor en el Departamento de Lenguajes y Sistemas Informáticos de la E.T.S. de

Ingeniería Informática de la Universidad de Sevilla,

Certifican que Dña. Gala Barquero Moreno, Ingeniera de Telecomunicaciones,

ha realizado en el Departamento de Lenguages y Ciencias de la Computación de la

Universidad de Málaga, bajo su dirección, el trabajo de investigación correspon-

diente a la Tesis Doctoral titulada:

Processing Structured Data Streams

Revisado el presente trabajo, estimamos que puede ser presentado al tribunal

que ha de juzgarlo, y autorizamos la presentación de esta Tesis Doctoral en la

Universidad de Málaga.

Del mismo modo certifican que las publicaciones que avalan dicha Tesis Doctoral

no han sido utilizadas en tesis anteriores.

En Málaga, Noviembre de 2020

Por el presente documento solicitamos la obtención del certificado de posiciones y saldo de los
activos contratados por José María Troya Linero a fecha de su fallecimiento.

Fdo.

 María Rosario Castilla Mora Jose María Troya Castilla

 Javier Troya Castilla Marta Troya Castilla .

Dr. Antonio Vallecillo Moreno Dr. Javier Troya Castilla

Agradecimientos

Tras tres años de duro trabajo finalmente ha llegado el momento de escribir

estas palabras. Tres años en los que en ciertos momentos una o varias personas

han supuesto la clave para llegar al día de hoy. No podía, por tanto, dejar pasar la

oportunidad de darles las gracias.

En primer lugar, a mis directores; Antonio Vallecillo y Javier Troya, ya que sin

ellos esta tesis no habría sido posible. Gracias Antonio por brindarme la oportunidad

de llevarla a cabo. Doctorarme siempre fue una de mis metas desde que acabé la

carrera en 2015 y, finalmente, he podido alcanzarla. Gracias también Javi por toda

tu dedicación como director de tesis y por la ayuda que siempre me has brindado

incluso sin poder estar de forma presencial.

También quiero agradecer a mis compañeros de laboratorio los buenos ratos

que he pasado en el 3.3.3. A pesar de que en el último periodo de esta tesis no he

pasado mucho tiempo allí podré recordar almuerzos y descansos muy agradables.

Sin embargo, quiero hacer un agradecimiento especial a Loli Burgueño, por ser una

gran compañera siempre dispuesta a ayudarme, tanto estando cerca como lejos.

Fuera del ámbito académico quiero dar las gracias a Aurora Cámara por sus

consejos, que me han ayudado a seguir adelante en estos tres años. Gracias a Cristina

Navarro y a mi segunda familia de Comediantes Malagueños. Esta familia ha sido

un ingrediente de desconexión muy necesario en momentos de estrés. Además,

siempre representarán mi verdadera pasión: el Teatro.

Por último, quiero hacer mención especial a varias personas. Esta tesis está

dedicada a quienes creen en mí y estoy segura de que ellas lo han hecho más que

yo misma:

Gracias a Alex Lavado. Por estar siempre ahí cuando lo necesitaba, tanto

técnica como emocionalmente. Sin tu ayuda esta tesis no sería una realidad.

Gracias a Encarna, mi abuela. Por saber valorar y ser una testigo incansable

Agradecimientos

de todos los proyectos en los que me involucro sin importar los años que pasen.

Gracias a Pedro y Sara, mi padre y mi hermana. Porque puedo presumir de

tener un buen padre dispuesto a darlo todo por sus hijas y una hermana de la que

aprendo muchas cosas aun siendo diez años más joven que yo, aunque puede que

sea precisamente esto por lo que puedo aprender de ella. Sara, quiero que esto te

sirva de inspiración para aprender, esta vez tú de mí, a no rendirte ante ninguna

dificultad.

Gracias a Jose Burgos. Por compartir tu vida conmigo, por ser mi gran apoyo

en los malos momentos y no dejarme caer y, también, por disfrutar juntos de los

buenos. Siempre eres esa voz que me dice ‘Hazlo, tú puedes y yo te apoyo’.

Y finalmente gracias a Vicky, mi madre. Por no dudar de mí jamás y ser un

ejemplo de constancia y esfuerzo. Esta tesis es, en primer lugar, dedicada a ti.

Gala Barquero Moreno

xii

Abstract

A large amount of data is daily generated from different sources such as

social networks, recommendation systems or geolocation systems. Moreover, this

information tends to grow exponentially every year. Companies have discovered that

the processing of these data may be important in order to obtain useful conclusions

that serve for decision-making or the detection and resolution of problems in a

more efficient way, for instance, through the study of trends, habits or customs

of the population. The information provided by these sources typically consists

of a non-structured and continuous data flow, where the relations among data

elements conform graph structures. Inevitably, the processing performance of this

information progressively decreases as the size of the data increases. For this reason,

non-structured information is usually handled taking into account only the most

recent data and discarding the rest, since they are considered not relevant when

drawing conclusions. However, this approach is not enough in the case of sources

that provide graph-structured data, since it is necessary to consider spatial features

as well as temporal features. These spatial features refer to the relationships among

the data elements. For example, some cases where it is important to consider

spatial aspects are marketing techniques, which require information on the location

of users and their possible needs, or the detection of diseases, that use data about

genetic relationships among subjects or the geographic scope.

It is worth highlighting three main contributions from this dissertation. First,

we provide a comparative study of seven of the most common processing platforms

to work with huge graphs and the languages that are used to query them. This

study measures the performance of the queries in terms of execution time, and

the syntax complexity of the languages according to three parameters: number of

characters, number of operators and number of internal variables. We elaborate

this study in order to choose the most suitable technology to develop our proposal.

Abstract

Second, we propose three methods to reduce the set of data to be processed by

a query when working with large graphs, namely spatial, temporal and random

approximations. These methods are based on Approximate Query Processing

techniques and consist in discarding the information that is considered not relevant

for the query. The reduction of the data is performed online with the processing

and considers both spatial and temporal aspects of the data. Since discarding

information in the source data may decrease the validity of the results, we also

define the transformation error obtain with these methods in terms of accuracy,

precision and recall.

Finally, we present a preprocessing algorithm, called SDR algorithm, that is

also used to reduce the set of data to be processed, but without compromising

the accuracy of the results. It calculates a subgraph from the source graph that

contains only the relevant information for a given query. Since this technique is

a preprocessing algorithm it is run offline before the actual processing begins. In

addition, an incremental version of the algorithm is developed in order to update

the subgraph as new information arrives to the system.

xiv

Contents

List of Figures xxi

List of Tables xxv

Glossary xxvii

1 Introduction 1

1.1 Motivations and Goals . 3

1.1.1 General Goals . 4

1.1.2 Specific Goals . 4

1.2 Contribution . 5

1.3 Outline . 5

2 Background 9

2.1 Model-Driven Engineering . 9

2.1.1 History . 10

2.1.2 Main concepts . 11

2.2 Data Streaming Applications . 16

2.2.1 Complex Event Processing 18

2.2.2 Approximate Query Processing 21

2.3 Graph-structured information . 22

2.3.1 Models as graphs . 23

2.3.2 Graph processing platforms 23

3 Comparison and Performance Evaluation of Processing Plat-

forms 25

3.1 A running example . 27

xv

CONTENTS

3.2 Processing platforms . 29

3.2.1 Neo4j . 29

3.2.2 JanusGraph . 30

3.2.3 OrientDB . 30

3.2.4 TinkerGraph . 31

3.2.5 Memgraph . 31

3.2.6 CrateDB . 31

3.2.7 Apache Spark. GraphFrames 32

3.3 Query Languages . 33

3.3.1 SQL . 33

3.3.2 Cypher . 40

3.3.3 Gremlin . 46

3.3.4 GraphFrames . 55

3.4 Performance Analysis and Evaluation 60

3.4.1 Research Questions . 60

3.4.2 Case studies . 61

3.4.3 Experimental Setup . 64

3.4.4 Results . 67

3.4.5 Threats to validity . 86

3.5 Related work . 88

3.6 Summary . 90

4 Improving Performance with Online Techniques 91

4.1 A running example . 93

4.2 Approach . 95

4.2.1 Main concepts . 95

4.2.2 Online AQP Techniques . 96

4.2.3 Measures for accuracy . 100

4.3 Performance Analysis and Evaluation 101

4.3.1 Research Questions . 102

4.3.2 Experimental Setup . 102

4.3.3 Results . 106

4.3.4 Discussion . 113

4.3.5 Threats to validity . 115

xvi

CONTENTS

4.4 Related Work . 117

4.5 Summary . 118

5 Improving performance with Offline techniques 121

5.1 A running example . 123

5.2 Classification of queries . 124

5.2.1 Simple filter pattern . 125

5.2.2 Condition pattern . 125

5.2.3 Negation pattern . 126

5.2.4 Conjunctive pattern . 126

5.2.5 Disjunctive pattern . 127

5.2.6 Aggregation pattern . 127

5.3 The SDR algorithm . 128

5.3.1 The main SDR Algorithm 128

5.3.2 Incremental SDR Algorithm 136

5.4 Performance Analysis and Evaluation 139

5.4.1 Research Questions . 140

5.4.2 Case Studies . 140

5.4.3 Experimental Setup . 144

5.4.4 Experiments and data collected 145

5.4.5 Functional Correctness . 150

5.5 Results . 151

5.5.1 RQ1: Graph size reduction 151

5.5.2 RQ2: Performance improvement 152

5.5.3 RQ3: Execution time gains with data streams 152

5.5.4 SDR algorithm and Indexing techniques 156

5.5.5 Threats to Validity . 158

5.6 Related Work . 159

5.7 Summary . 163

6 Conclusions and Future Work 165

6.1 Summary and Conclusions . 165

6.2 Publications . 167

6.2.1 Publications Supporting this Dissertation 168

xvii

CONTENTS

6.2.2 Further Publications . 168

6.3 Future Work . 169

6.3.1 Online techniques . 169

6.3.2 Offine techniques . 170

6.3.3 Mixed techniques . 171

Bibliography 173

A Results and queries for the comparison of Processing Platforms 189

A.1 Queries for processing platforms 189

A.1.1 TwitterFlickr queries with effect 190

A.1.2 TwitterFlickr queries without effect 196

A.1.3 TrainBenchmark queries with effect 204

A.1.4 TrainBenchmark queries without effect 213

A.2 Additional charts and tables displaying TrainBenchmark results . . 222

B Results for Online AQP techniques 229

B.1 Results for Batch A . 229

B.1.1 Q1 - Random approximation 231

B.1.2 Q2 - Random approximation 232

B.1.3 Q3 - Random approximation 233

B.1.4 Q3 - Temporal approximation 234

B.1.5 Q4 - Random approximation 235

B.1.6 Q4 - Spatial approximation 236

B.1.7 Q5 - Spatial approximation 237

B.2 Results for Batch B . 238

B.2.1 Q1 - Random approximation 239

B.2.2 Q2 - Random approximation 240

B.2.3 Q3 - Random approximation 241

B.2.4 Q3 - Temporal approximation 241

B.2.5 Q4 - Random approximation 243

B.2.6 Q4 - Spatial approximation 244

B.2.7 Q5 - Spatial approximation 245

xviii

CONTENTS

C SDR Algorithm Execution 247

C.1 ProductPopularity with SDR algorithm 247

C.2 Traversals with SDR algorithm . 254

C.2.1 Where Step . 255

C.2.2 Not Step . 255

C.2.3 And Step . 256

C.2.4 Or Step . 257

C.3 Results for Experiments with SDR algorithm and streams of infor-

mation . 259

C.4 Additional charts and tables displaying experiments results 263

D Experiments Replicability 267

D.1 Online Techniques experiments . 267

D.2 Offline techniques experiments . 269

D.2.1 Configuration and execution 269

D.2.2 Obtaining a subgraph . 270

D.2.3 Running a query over a graph or a subgraph 271

D.2.4 Running the incremental SDR algorithm 271

E Resumen 273

E.1 Motivación y objetivos . 275

E.1.1 Objetivos generales . 276

E.1.2 Objetivos específicos . 276

E.2 Contribuciones . 277

E.3 Comparación y evaluación del rendimiento de las plataformas de

procesamiento . 278

E.3.1 Plataformas de procesamiento y lenguages de consulta . . . 278

E.3.2 Métodos de medición . 279

E.3.3 Parámetros de estudio . 280

E.4 Mejora del rendimiento empleando técnicas en línea con el procesa-

miento . 287

E.4.1 Técnicas AQP en línea . 289

E.4.2 Medidas de precisión . 291

E.4.3 Evolución del rendimiento y precisión con modelos aproximados292

xix

CONTENTS

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento . 296

E.5.1 Clasificación de las queries 297

E.5.2 Algoritmo SDR . 298

E.5.3 Algoritmo SDR incremental 302

E.5.4 Mejora del rendimiento con algoritmo SDR 304

F Conclusiones y Contribuciones 311

xx

List of Figures

2.1 Four level architecture proposed by the OMG. 13

2.2 Example of UML with the organization in four levels proposed by

the OMG. 13

2.3 CEP stream diagram. 19

2.4 Example of CEP system for fire detection. 19

3.1 Twitter and Flickr joint Metamodel. 28

3.2 GraphTraversalSource and GraphTraversal in Gremlin console . . . 49

3.3 TrainBenchmark metamodel [111] 63

3.4 Execution time results for queries without effect of TwitterFlickr

example with single runs . 68

3.5 Execution time results for queries without effect of TwitterFlickr

example with parallel runs . 69

3.6 Execution time results for queries with effect of TwitterFlickr exam-

ple with single runs . 76

3.7 Execution time results for queries with effect of TwitterFlickr exam-

ple with parallel runs . 77

4.1 The Amazon Example Metamodel. 93

4.2 Accuracy, Precision and Recall with Random Approximations. . . 107

4.3 Comparison between Temporal and Random Approximations with

uniformly distributed data. 108

4.4 Comparison between Temporal and Random Approximation with

temporal focus on the data. 110

4.5 Comparison between Spatial and Random Approximations. 111

4.6 Spatial Approximations with several sources 113

xxi

LIST OF FIGURES

4.7 Memory consumption for Q3 and Q4. 114

5.1 Overall view of queries using the SDR algorithm. 129

5.2 NY Caption Contest metamodel 141

5.3 Youtube Videos metamodel . 143

5.4 Performance results of the SDR algorithm for the Amazon queries. 153

A.1 Execution time results for queries without effect of TrainBenchmark

example with single runs . 223

A.2 Execution time results for queries without effect of TrainBenchmark

example with parallel runs . 224

A.3 Execution time results for queries with effect of TrainBenchmark

example with single runs . 225

A.4 Execution time results for queries with effect of TrainBenchmark

example with parallel runs . 226

B.1 Q1 Batch A. Accuracy and Precision with Random Approximations. 231

B.2 Q2 Batch A. Accuracy and Precision with Random Approximations. 232

B.3 Q3 Batch A. Accuracy and Recall with Random Approximations. . 233

B.4 Q3 Batch A. Accuracy and Recall with Temporal Approximations. 234

B.5 Q4 Batch A. Accuracy and Recall with Random Approximations. . 235

B.6 Q4 Batch A. Accuracy and Recall with Spatial Approximations. . 236

B.7 Q5 Batch A. Accuracy and Precision with Spatial Approximations. 237

B.8 Q1 Batch B. Accuracy and Recall with Random Approximations. . 239

B.9 Q2 Batch B. Accuracy and Precision with Random Approximations. 240

B.10 Q3 Batch B. Accuracy and Recall with Random Approximations. . 241

B.11 Q3 Batch B. Accuracy and Recall with Temporal Approximations. 242

B.12 Q4 Batch B. Accuracy and Recall with Random Approximations. . 243

B.13 Q4 Batch B. Accuracy and Recall with Spatial Approximations. . . 244

B.14 Q5 Batch B. Accuracy and Precision with Spatial Approximations. 245

C.1 Graph 1: example for Amazon case 248

C.2 Performance results for SDR algorithm in Contest example queries. 263

C.3 Performance results for SDR algorithm in YouTube example queries. 264

E.1 Metamodelo conjunto de Twitter y Flickr. 280

xxii

LIST OF FIGURES

E.2 Metamodelo de TrainBenchmark [111] 281

E.3 Metamodelo de ejemplo de Amazon. 290

E.4 Exactitud, Precisión y Exhaustividad con aproximaciones aleatorias. 293

E.5 Comparación entre aproximaciones temporales y aleatorias con datos

uniformemente distribuidos. 294

E.6 Comparación entre aproximaciones temporales y aleatorias con un

foco temporal en los datos. 295

E.7 Comparación entre aproximaciones espaciales y aleatorias. 296

E.8 Overall view of queries using the SDR algorithm. 297

E.9 Metamodelo del NY Caption Contest 305

E.10 Metamodelo del ejemplo de Youtube 306

E.11 Performance results of the SDR algorithm for the Amazon queries. 307

xxiii

List of Tables

3.1 Processing platforms used in the experiments of the performance

study . 29

3.2 TwitterFlickr example with SQL tables 34

3.3 Summary of the models used in the experiments. 65

3.4 Execution time averages (ms) depending on size model 71

3.5 Coefficient of variation (%) of TwitterFlickr queries without effect

and parallel runs. 73

3.6 Execution time averages (ms) depending on model size (with effect

over the graph) . 75

3.7 Overhead of execution time average (%) for updating the graph

depending on model size . 78

3.8 Summary of DSL features for TwitterFlickr case study 83

4.1 Summary of the models used in the experiments. 103

5.1 Summary of the models used in the experiments. 145

5.2 Summary of the queries used in the experiments. 146

5.3 Elements savings ratio when running the SDR algorithm. 148

5.4 Execution times (ms) of queries with the complete graph (Tg), the

subgraph (Tsg), and the corresponding speedups (S). 154

5.5 Gain ratio when using the incremental algorithm in the Amazon

case study. 155

5.6 Number of query executions needed to obtain a positive gain for

each query. 157

xxv

LIST OF TABLES

A.1 Coefficient of variation (%) of TrainBenchmark queries without effect

and parallel runs. 227

A.2 Summary of DSL features for TrainBenchmark case study 228

C.1 Object weights for ProductPopularity query with SDR Algorithm . 255

C.2 Object weights for ProductPopularity query with not step with SDR

Algorithm . 256

C.3 Object weights for subquery example with SDR Algorithm 257

C.4 Object weights for PackagePopularity example with SDR Algorithm 258

C.5 Object weights for SimProductsPopularity example with SDR Algo-

rithm . 258

C.6 Incremental results for Amazon case study (ms). 260

C.7 Incremental results for Contest case study (ms). 261

C.8 Incremental results for Youtube case study (ms). 262

C.9 Ratio Incremental gain results for Contest case study. 265

C.10 Ratio Incremental gain results for Youtube case study. 266

E.1 Plataformas de procesamiento utilizadas en los experimentos del

estudio del rendimiento . 279

E.2 Promedios de tiempo de ejecución (ms) según el tamaño de modelo 283

E.3 Promedios de tiempo de ejecución (ms) según el tamaño del modelo

(con efecto sobre el grafo) . 285

E.4 Resumen de las características de cada DSL para el caso de estudio

de TwitterFlickr . 288

E.5 Ratio de la ganancia de elementos cuando se usa el algoritmo SDR. 308

E.6 Gain ratio when using the incremental algorithm in the Amazon

case study. 309

xxvi

Glossary

ACID Atomicity, Consistency, Isolation and Durability

AMT Approximate Model Transformation

APQ Approximate Query Processing

CASE Computer Aided Software Engineering

CEP Complex Event Processing

DSL Domain Specific Language

EPL Event Processing Languages

FN False Negative

FP False Positive

M2M Model to Model

M2T Model to Text

MDE Model-Driven Engineering

MLM Multi-Leve Modelling

MOF Meta-Object Facility

MT Model Tranformation

OLAP Online Analytics Process

OLTP Online Transaction Process

OMG Object Management Group

RDBMS Relational Database Management System

RDD Resilient Distributed Datasets

RQ Research Question

SDR Source Dataset Reduction

TN True Negative

TP True Positive

UML Unified Modeling Language

xxvii

Chapter 1
Introduction

A large amount of data is currently generated on a daily basis. This information

comes from different sources such as social networks, e-commerce pages or web

search engines, among others. A specific example of these sources is Twitter:

statistics calculate about 6,000 tweets per second [63]. Every year, this information

grows exponentially. In fact, data centers registered 6.5 zettabytes of data in

2016, and it is estimated that this value will reach 44 zettabytes by 2021. The

drastic increase in the amount of information produced by these sources requires

an efficient processing of data flows in real time to make informed decisions and to

detect situations of interest that require instantaneous reactions. An example of the

importance of being able to efficiently process large amounts of information flows

is shown in the analysis carried out by the Spanish bank BBVA on the economic

impact of Barcelona’s 2012 Mobile World Congress [19]. The study required the

online analysis of all credit card transactions during two weeks and they concluded

the event had an economic impact on the city of more than 320 million Euros

at the local level. Another example is the need for real-time analysis of streams

of information in social networks or weblogs in order to detect possible terrorist

1

Chapter 1. Introduction

attacks [97, 130]. Due to their size and complexity, data cannot be processed

by traditional tools, such as relational databases and conventional statistics or

visualization packages. Therefore, it is necessary to use software and hardware

whose processing speed and storage capacity are powerful enough to manage them.

Many proposals that deal with this increasing amount of information are

based on the fact that most of the data that need to be processed for decision

making is not significantly relevant, particularly with large volumes of data. In

this sense, data flow processing systems are becoming popular, such as Apache

Spark [70] or Apache Kafka [68]. Besides, Complex Event Processing (CEP) is also

a useful technology in this context. CEP is able to process and analyse streams of

information represented as a sequence of simple events in order to obtain conclusions

from them, represented as complex events [38, 49, 77, 78]. Several CEP engines

and Event Processing Languages (EPLs) exist, such as the Esper language [48].

These technologies consider that only the most recent data are relevant to obtain

results. In this way, the information processing is not carried out on the complete

set of data, but on a subset that is determined by timestamps. Then, all data that

are considered too old for not providing information of interest are discarded. This

approach is useful with information sources where events are not related among

themselves.

However, in reality, information is commonly conformed by data connected

among them, so that they form graph structures. As an example, in Twitter, tweets

are published by users who, in turn, are followed by other users and they also follow

users. Regarding such graph structures, we can distinguish between persistent and

transient information. The former refers to data stored in the system in a persistent

way (e.g., users, products or shops). Transient information refers to data that

are temporarily stored (e.g., tweets, orders, bank transactions) and are discarded

after some period of time—i.e., transient information expires. The interconnections

between these data need to be processed too, which inevitably implies a decrease in

systems performance [111]. This means that, in the search for mechanisms to select

only part of the information to process so that performance is improved, it is not

enough to consider techniques such as those based merely on the data timestamp

[38, 44, 77]. On the contrary, it is necessary to design mechanisms to select a subset

of the information with respect to several other features, such as connections, status

and topology of the network. Surely, in order to improve performance we need

2

1.1 Motivations and Goals

to discard some of the data, i.e., we must approximate our data. Consequently,

the accuracy of our results might be compromised. Nevertheless, there are many

applications that do not need extremely accurate results, since they manage non-

critical information. Examples are recommendation systems on Facebook, Netflix

or Amazon. Here, the goal is to find the right balance between the performance of

our queries and the accuracy of their results.

Different works in this line can be found in the literature. For instance, in a

previous work [121] the concept of Approximate Model Transformations (AMT)

was introduced to find the right balance between performance and accuracy in the

context of model transformations. Sampling techniques were used in a wireless

sensor network example to show the effects of selecting certain subsets of elements.

However, the information in study was not composed of interconnected data. Other

works apply Approximate Query Processing (AQP) [32, 53, 75, 87], which try to

get an approximate answer but precise enough in order to improve the performance.

However, most of these works do not consider data flows or graph-structured

information. For this reason, the processing of streams of data structured as graphs

is still a research problem that needs to be addressed.

This chapter is structured as follows. In Section 1.1 we present the goals and

the research question that we aim to answer with this work. In Section 1.2 we show

the contributions derived from this dissertation and, finally, Section 1.3 exposes

the structure of this thesis.

1.1 Motivations and Goals

Summarizing what has been explained above, this dissertation aims to address

the problem of improving performance when processing large amounts of information

composed of interconnected data. In order to improve such performance, we need

to reduce the amount of information to process, therefore jeopardizing the accuracy

of the results. In order to target such problem, we consider graph-structured

information, i.e., information composed of data highly interconnected among them.

Besides, information arrival is never-ending, so we refer to “graph-structured data

flows” when talking about this type of information. Thus, the main research

question addressed in this thesis is:

RQ Can we obtain a good (or the optimal) trade-off between performance and

3

Chapter 1. Introduction

accuracy loss when processing very-large amounts of information?

Some goals have been derived from this research question, and are exposed in

the following.

1.1.1 General Goals

In order to respond to this thesis’ research question, three main general goals

were derived with regards to techniques for discarding information and the errors

that may arise.

• First, we aim to design a mechanism that is able to select the relevant data

that is needed for a query. For this purpose, the information has to be

filtered temporarily and spatially.

• In order to obtain valid results, we pretend to define the types of errors that

may arise when selecting only part of the initial information to process and

the meaning of such errors.

• Once errors are defined, we want to calculate and study them according to

several parameters such as the amount of initial information or the amount

of information selected for processing.

1.1.2 Specific Goals

Additionally, the following specific goals were also derived from the research

question of this thesis:

• In order to develop an efficient method for selecting only part of the infor-

mation to process, we need to find a processing platform that meets our

requirements.

• Besides, we need to find or develop a query language with a simple syntax

to perform the queries over the data.

• Once the method is developed we want to test it in different use cases and

different model sizes representing the information.

4

1.2 Contribution

1.2 Contribution

Three main contributions have been obtained throughout the research of this

thesis. They can be summarized as follows:

1. A comparative study among the most common processing platforms and

Domain Specific Languages (DSLs) that are used to handle huge amounts

of data. In this study, we take into account the performance of the queries

and the complexity of their syntax. Performance is measured in terms of

execution time, while syntax complexity is measured in terms of number of

characters, operators and internal variables.

2. Three online methods for discarding information that is not relevant for

a given query. These methods are based on online Approximate Query

Processing (AQP) techniques and select the information according to time

and spatial ranges and random parameters. In order to measure the accuracy

loss derived from these methods, the definition of transformation error is

given in terms of accuracy, recall and precision.

3. An algorithm based on offline AQP techniques that selects a subset of the

source information that is relevant according to the patterns that can be

found in a given query, called SDR algorithm. Our empirical experiments

show that the accuracy of the results is not affected when applying this

algorithm, since it considers all data that are important for the processing.

For this reason, there is no need to calculate the errors produced from the

execution of this algorithm.

1.3 Outline

The contributions described before are explained in detail in the rest of this

document. The chapters are structured as follows:

Chapter 2. Background

We present three main concepts that have been used in this thesis. First,

the MDE methodology and its main terms (models, metamodels, Domain-Specific

5

Chapter 1. Introduction

Languages and model transformations) are presented. Second, we expose an

overview of Data Streaming Applications where two techniques are highlighted

since they are the basis of this thesis (Complex Event Processing and Approximate

Query Processing). Finally, we present the most important concepts about graph

theory in order to apply them to our approach.

Chapter 3. Comparison and Performance Evaluation of Processing Plat-

forms

An analysis of the benefits and limitations of seven processing platforms

commonly used in Big Data applications is presented in this chapter. The platforms

comprise TinkerGraph [118], Neo4j [89], CrateDB [35], Memgraph [83], JanusGraph

[64], OrientDB [29] and GraphFrames [106]. These technologies allow to write

queries by means of different query languages, namely Gremlin [6], Cypher [88],

SQL and the DSL used for GraphFrames [107]. We tested all these technologies

in two case studies in order to measure the performance of the queries, in terms

of execution time, and the complexity of the language, in terms of number of

characters, operators and variables. Furthermore, two types of experiments are

included: (i) queries are run over the data in order to obtain useful information

without implying any side effect in the source information and (ii) queries are run

and their results modify the source graph by adding, removing or updating the

existing information. The purpose of this chapter is to choose the most suitable

technology to develop our proposal. For this reason, a combination of platform and

query language is chosen to implement our approach, according to our requirements.

Chapter 4. Improving Performance with Online Techniques

We explore three different online AQP techniques in this chapter: random,

temporal and spatial approximations. These techniques are analysed under two

circumstances: (i) depending on how the data is organized and (ii) depending on

what information needs to be obtained from the data. Furthermore, we propose a

method that allows to estimate the errors produced when applying approximations.

The goal is to find the right balance between performance gain and accuracy loss

when approximating. To achieve this, accuracy loss is defined in terms of accuracy,

recall and precision. Approximations are tested in a simplified version of the

6

1.3 Outline

Amazon ordering service. Finally, the results of the experiments conclude that it is

possible to improve the performance with these techniques.

Chapter 5. Improving Performance with Offline Techniques

This chapter proposes an algorithm to improve the performance when query-

ing graph-structured information flows, called Source Dataset Reduction (SDR)

algorithm. The solution implemented does not compromise the accuracy of the

results. The algorithm obtains a subgraph of the complete dataset with the relevant

elements for a query given. Furthermore, a classification of six different patterns

that can be found in a query is proposed in order to study how the performance

can be improved depending on the type of query. Finally, an incremental version of

the algorithm is also presented so that the relevant query subgraph is automatically

updated, at a very low cost, when new information arrives or the system data

changes. The algorithm is tested in three case studies and results show that it is

able to achieve speedups of more than 100x for some types of queries.

Chapter 6. Conclusions and Future Work

In this chapter we summarize all conclusions and the contributions presented

in the different chapters. Besides, we report the publications derived from our

research as well as outline several possible lines of future work.

Appendix A. Queries for processing platforms

This appendix shows all the queries for the two case studies that appear in

Chapter 3. The queries are implemented for seven different processing platforms,

that are also presented in that chapter. They comprise two types of implementations:

(i) queries without any side effect and (ii) queries that involve an effect over the

source data by means of adding, removing or updating existing elements. In

addition, some additional tables and figures displaying the experiments results for

one case study are placed in this appendix in order to improve the readability of

Chapter 3.

7

Chapter 1. Introduction

Appendix B. Results for Online AQP techniques

This appendix shows all results for the experiments of the approach presented

in Chapter 4 and summarizes the conclusions obtained from them. Note that

these experiments comprise three online AQP techniques over several queries with

two different data distributions (Batch A and B). These techniques are temporal,

spatial and random approximations.

Appendix C. SDR Algorithm Execution

This appendix presents additional information about the algorithm presented

in Chapter 5. First, an example of the functioning of the SDR algorithm with a

specific query is presented. Second, we explain how the algorithm works depending

on four different operators that may appear in a query. Third, three tables with

execution times in absolute terms are depicted related to the experiments with

information streams. Finally, some additional tables and figures displaying the

experiments results for two case studies are placed in this appendix in order to

improve the readability of Chapter 5.

Appendix D. Experiments Replicability

This appendix explains the experiments’ replicability packages conducted in

the thesis.

Appendix E. Resumen

This appendix summarizes this dissertation in Spanish.

Appendix F. Conclusiones y Contribuciones

This appendix exposes our conclusions and the contributions of this dissertation

in Spanish.

8

Chapter 2
Background

This chapter presents the fundamentals and state of the art of three main

pillars on which this thesis is founded. First, an introduction to the Model-

Driven Engineering methodology is given along with the most common terms used

when working with this field of study. Second, we expose what Data Streaming

Applications are and the most common techniques used to work with these systems.

Finally, an overview of different methods to work with graph-structured information

is given at the end of this chapter.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is a methodology that uses software models

as first-class entities throughout the software engineering life cycle. Its goal is to

increase productivity, maintenance and maximize compatibility among systems [9].

This is achieved by simplifying the process of design, promoting communication

among individuals and teams working on the system.

9

Chapter 2. Background

A model in software engineering is a simplified and generalized representation

of a real-world system or concept created to facilitate its understanding. Therefore,

a model is a simplification of the reality given as a result of an abstraction process.

In this regard, abstraction is a key element for success on software engineering

since it enables understanding and/or analyzing complex domains of concern which

contain a large number of details. Some examples of these domains are programs,

software systems and their application domains.

2.1.1 History

During the last decades, several abstractions have been carried out in software

engineering in order to facilitate programming tasks. These abstractions aim to

focus on software design, omitting complexities and leaving them out from the

underlying computing environment, such as memory or CPU. For instance, third-

generation languages developed in the early 1970s, such as C, raised the level of

abstraction so that programmers could omit low-level details related to memory

position access. This implied an advantage with respect to assembly languages.

In the same line, early operating system platforms, such as OS/360 (published in

1967) or Unix (originally developed in 1969), allowed to avoid the complexities

imposed by programming directly with hardware devices [102].

Some years later, in the 1980s, CASE tools (Computer Aided Software En-

gineering) were considered the first tools to support MDE. They pretended to

simplify the software development providing a graphical means. However, these

tools had two main disadvantages: (i) they lacked standardization and (ii) they

were based on patented modeling languages and inefficient code generators [57].

In the past three decades, the advances in languages and programming platforms

have resulted into a high level of abstraction available for the software development.

Some examples are object-oriented programming languages, such as C++, Java

or C#. These languages offer a higher level of abstraction than general purpose

languages, such as Fortran or C. However, they still had a distinct computing-

oriented focus. This was a problem because of the rapidly growing complexity of

systems, that moved faster than software development technologies can cope with.

Some other problems are still to be faced. One of them is the necessity to

process large volumes of information quickly, generated from diverse source data,

10

2.1 Model-Driven Engineering

that imposes strong requirements to the system, such as memory, processing time,

disk access or network latency. This processing has gained importance with the

emergence of different technologies, such as those related to Big Data [82].

2.1.2 Main concepts

Models

At the beginning of this section, we defined the concept of model as “a

simplified and generalized representation of a real world system or concept created

to facilitate its understanding”. However, many discussions throughout the history

of MDE have proved that it is difficult to find a consensus about the definition of

this concept. For this reason, different definitions can be found in the literature.

To cite some examples:

• In [127] Warmer and Kleppe define a model as a description of a system, or

a part of it, that is written in a well-defined language.

• In [103] Seidewitz defined a model as a set of statements about some system

under study, where statement is some expression (that can be true or false)

about the system.

• The Object Management Group (OMG) gives different definitions:

– In [92] a model is a representation of a part of the functionality,

structure and/or behavior of a system.

– In [93] it is defined as the description or specification of a system and

its environment defined for a concrete purpose.

– In [94] a model captures a view of a physical system, with a concrete

purpose. The purpose determines which aspects of the physical system

are relevant (or not) to be included in the model and at the right level

of abstraction.

Despite the a lack of consensus about what a model is, all definitions seem to

support the common idea that a model is a simplification of a system. Therefore,

we can conclude that the strength of a model lies on its abstraction feature.

11

Chapter 2. Background

Furthermore, the total level of automation possible is elevated thanks to the

combination of the abstraction and the executable semantics.

Nevertheless, there is no consensus yet on which features models should have.

For example, Stachowiak [109] states that a model has three main features: (i)

mapping, since it is a representation of an original system, (ii) reduction, since

not all the properties of the subject are mapped, and (iii) pragmatic, since it

replaces the original with respect to some purpose and it has to be usable enough.

However, Bran Selic, in his presentation entitled Abstraction Patterns in Model-

Based Engineering in the MODPROD 2011 [26], described six features for a model to

be useful: (i) purposefulness, (ii) abstraction, (iii) understandability, (iv) accuracy,

(v) predictiveness and (v) inexpensive. As well as these features, Selic proposes

four main functions that models should carry out: (i) they should understand the

system, (ii) they have to serve as a communication mechanism, (iii) they should

validate the system and its design and (iv) they should guide the implementation.

In conclusion, from a software engineering perspective, models are used to

better understand the useful characteristics of a real system and its environment.

A key difference between a software engineer and other engineers is that the

medium in which models are built is very different. Software engineers share

the same medium which is the computer, while for other engineers it could be

buildings, bridges or aeroplanes. This unique feature of software allows automatic

transformations to be defined capable of generating implementations from higher

level models. This is something which is much more expensive in other disciplines.

Consequently, the purpose of MDE could be summarized as the construction of

systems in the most automated possible manner. This is achieved using models

and model transformations. The latter are explained below.

Metamodels

In order to better understanding what a model is, it is also necessary to define

the concept of metamodel. A metamodel is a model that describes another model,

specifying the concepts of language as well as the relationships among them, the

structural rules that restrict the possible elements in the valid models and those

combinations among elements with regards to the domain semantic rules. Therefore,

a model is described in the language defined by its metamodel, which yields into a

12

2.1 Model-Driven Engineering

M0

M1

M2

M3

conforms to

represented by

conforms to

conforms to

Figure 2.1: Four level architecture proposed by the OMG.

conformance relation between both of them. Besides, since a metamodel is a model

itself, a metamodel is written in the language defined by its meta-metamodel. In

this way, a recursive process is used to define models conformed by other models

and it ends when a model conforms to itself, at a higher level of abstraction.

M0

M1

M2

M3

Figure 2.2: Example of UML with the organization in four levels proposed by the
OMG.

Regarding this recursive process, the OMG supports Meta-Object Facility

(MOF) architecture, organized in four levels, that is pictured in Figure 2.1. The

lower level of this architecture (M0) refers to the system in the real world, that is

13

Chapter 2. Background

represented by the model in the next level (M1). This model conforms to its meta-

model defined at level M2, whereas the metamodel conforms to the meta-metamodel

at level M3, that conforms to itself. A well-known example of modeling language

conforming to MOF is UML (Unified Modeling Language). Its instantiation is

shown in Figure 2.2. However, MDE is currently adopting a modelling proposal that

permits an arbitrary number of meta-levels called Multi-Level Modelling (MLM) or

deep modelling [8, 79]. In a multilevel architecture, the dual type/instance nature

makes some metamodeling facilities available at each meta-level.

Domain-Specific Languages

Another important concept in the field of MDE is Domain-Specific Language

(DSL). According to Deursen [46], the definition of a DSL is the following: “A

Domain-Specific Language is a programming language or executable specifica-

tion language that offers, through appropriate notations and abstractions, expressive

power focused on, and usually restricted to, a particular problem domain”.

These languages usually support a higher level of abstraction than general-

purpose languages since they are closer to the problem domain than to the imple-

mentation domain. In this sense, two main aspects must be taken into consideration

when deciding if it is worth to create or reuse an existing DSL to implement the

solution of a problem: (i) does the language allow to express the problem more

clearly than general purpose languages? and (ii) does the problem appear frequently

enough?

The definition of a DSL is divided into three main parts. These parts are

related to the syntax (abstract and concrete) and the semantic of the language. In

the following we explain them separately:

• Abstract syntax: the concepts of the language, the relationships among them

and the rules that allow to build the programs, instructions, expressions or

models are described in this part. Abstract syntax is usually defined using

metamodels in Model-Driven Engineering.

• Concrete syntax: it defines the notation used for representing the models

that can be described with the language, i.e. it comprises a mapping between

14

2.1 Model-Driven Engineering

the abstract syntax and its representation. This representation can be visual

or textual:

– Visual: this representation describes the models in an intuitive manner

representing the objects and relationships by means of symbols. For

example, using rectangular boxes to represent objects and lines to

represent relationships. An example of visual representation is UML.

– Textual: this representation allows to describe models in a more

expressive way than visual representations. To achieve this, it uses

sentences composed by strings. An example of textual representation

is OCL.

• Semantics: for a better understanding of the significance of the model, the

semantics defines its meaning. Depending on how the semantics is to be

used, it can be defined in denotational, operational or axiomatic manners:

– Denotational: each sentence or model of the language is translated

or transformed in a sentence or model in another language with well-

defined semantics. In this case, the target language is usually a

mathematical formalism known as semantic domain.

– Operational: the behavior of the system models is described in an

explicit way. This is possible using a language based on actions or

defining operations whose behavior is specified.

– Axiomatic: it describes a set of rules, axioms or predicates that models

must meet to check if they are well-formed. The models interpret

them in a logic where it is possible to reason about them.

Some frequent examples of DSL are HTML (for web pages design), Mathematica

and Maxima (for symbolic mathematics) or SQL (for relational database queries).

Model transformations

Since models are the key part in MDE, it is important to provide mechanisms to

modify and create them automatically. In this way, Model Transformations (MTs)

allows a model to be manipulated and transformed using mechanisms to specify

15

Chapter 2. Background

how to produce an output model from an input model. Although there is not a

common definition about Model Transformation, one of the most popular is given

by Kleppe et al. [72]. They expose the following: “A Model Transformation

generates a target model from a source model automatically and according to a

transformation definition”. Both the source and target models conform to their

respective metamodels. The transformation definition is set with respect to those

metamodels and executed on the concrete models. Besides, a MT can have one or

more source and target models and the source and target models can conform to

the same or different metamodels. According to these features, there are several

types of MT depending on different criteria:

• MT language: they can be declarative, imperative and hybrid, which means

a combination of the first two features.

• Directionality: MTs can be Unidirectional or Bidirectional. In the first case,

the transformation rules are executed in one direction, whereas in the second

case the rules can be applied in both directions. Note that unidirectional

transformations clearly differentiate an input and an output model, and

in bidirectional transformations both models behave like input and output

model.

• Metamodels involved: according to this criteria, there are exogenous and

endogenous transformations. For exogenous metamodels, source and target

models conform to their own metamodels. For endogeneous metamodels,

source and target model share the same metamodel.

• Type of target model: in this case, there are Model to Model (M2M) and

Model to Text (M2T) transformations. M2M transformations generate

output models from input models and M2T transformations (also called

injectors) generate text from models.

2.2 Data Streaming Applications

Data streaming applications were conceived to handle data flows generated

from different sources, such as social networks, geolocation systems or ecommerce

pages. These sources generate information at high rates (often gigabytes of data

16

2.2 Data Streaming Applications

per second). For instance, Twitter usage statistics estimate around 6,000 tweets per

second on average, which means over 350,000 tweets per minute and 500 million

tweets per day [63]. The information generated from this kind of sources is a data

stream. Gürcan and Berigel [60] define data stream as follows: “A data stream

is a continuous, real-time, and unbounded series of data items. The process of

streaming divides non-stop flowing input data into distinct units for advanced

processing”. Therefore, the processing of these items is known as stream processing.

For this term, Gürcan and Berigel [60] gives the following definition: “Stream

processing is a low-latency processing approach and analyzing of streaming data.

Stream processing is about real-time processing of nonstop streams of data in a

workflow”.

Regarding these definitions, we highlight three main challenges when processing

the data stream: (i) the information is real-time (since this information can reach

rates of several gigabytes per second, as stated at the beginning of this section, its

processing implies managing a huge amount of data), (ii) the stream processing has

to be carried out on low-latency basis (it is not a simple task since the amount

of information to be processed is very large) and (iii) the information has to be

divided into distinct units for the processing (it is necessary to incorporate

additional mechanisms to make the divisions). Therefore, the pairing of real-time

information and low-latency processing imposes stringent requirements on resources

consumption (execution time and memory). Hence, processing systems usually

divide the information into smaller units in order to obtain a faster response with

lower memory consumption. However, this involves several questions: how to

divide the stream without compromising the accuracy of the results? how much

information should each partition contain to obtain a low-latency? which units

should be analyzed at every moment?

Data-streaming applications usually include mechanisms to overcome the

restrictions imposed for stream processing. In this thesis, we have classified

them in two types:

• Distributed computing: in this approach, the information is divided into

subsets that are processed by different machines (usually called workers)

in parallel. Workers are organized into clusters. This type of solutions

incorporates a communication mechanism between machines for coordinating

17

Chapter 2. Background

the actions. Some popular technologies that use distributed computing are

Apache Kafka [68] and Apache Spark [108].

• Subsets processing: in this case, just a subset of the information is selected

to be queried. This subset contains the most relevant information to obtain

valid results and discards the rest in order to increase the performance of

the processing. Some approaches that use this technique are Complex Event

Processing [38, 49, 77, 78] or Approximate Query Processing [32, 53, 75, 87].

Both mechanisms are not exclusive. In fact, they are generally used together in

order to achieve the best performance. However, this dissertation is mainly focused

on the solutions comprised in the second type, since we are interested in software

solutions for applications that do not need extremely accurate results instead

of hardware solutions that need several machines to process all the data. More

precisely, our approach proposes a solution that incorporates the main features of

both Complex Event Processing and Approximate Query Processing systems. For

this reason, they are explained in more detail in this section.

2.2.1 Complex Event Processing

Complex Event Processing (CEP) is a technique developed in early 90’s for

processing, analyzing and correlating streams of information. Cugola et al. [39]

state that the goal of CEP is to define and detect situations of interest, from

the analysis of low-level event notifications. According to the Event Processing

Technical Society [50], these notifications are called simple events. In this way,

real-time information is represented as sequences of simple events that are pro-

cessed as they arrive, as it is represented in Figure 2.3. Conclusions are obtained

when summarizing, representing or denoting a set of simple events, and they are

represented in the form of complex events. Therefore, complex events are inferred

from simple events, but they could also be added to the streams for enabling more

powerful queries. Furthermore, simple and complex events have a type, a set of

attributes and a timestamp with the instant when they occur. Therefore, events

are atomic and happen instantaneously.

Regarding the definition of complex events, CEP allows to implement rules

that use a pattern to combine simple or complex events. Whenever the pattern is

18

2.2 Data Streaming Applications

Simple	event Simple	event Simple	event Simple	event…

Event Stream

Current window

Figure 2.3: CEP stream diagram.

detected in the stream (i.e., it is satisfied by the events in the stream), the complex

event is created. For example, observe Figure 2.4, where a fire detection system is

represented. The system uses the readings of three sensors to detect a fire danger:

environmental temperature, humidity percentage and CO2 concentration. The

sensors are continuously sending these parameters in the form of simple events.

In order to detect the fire danger as soon as possible, a rule with the following

patterns is defined: (i) A simple event from the temperature sensor higher than 50

degrees, (ii) a simple event from the humidity sensor lower than 40% and (iii) a

simple event from the CO2 sensor higher than 5000 ppm. When these events are

received in a specific period of time (about 2 seconds) a complex event is created

to notify the fire danger.

Figure 2.4: Example of CEP system for fire detection.

CEP rules are implemented by Event Processing Languages (EPLs), such us

Esper language [48]. Although several EPLs exist, they all share the following

representative elements of CEP patterns:

19

Chapter 2. Background

• Windows: They are used to restrict the scope to which the patterns apply

on. Windows could be classified according to two main aspects:

– Time or length: a time window keeps the events that arrive within a

period of time T, whereas a length window keeps a specific number of

N latest events.

– Batch or sliding: a batch window has fixed starting and ending points,

whereas a sliding window moves the interval (i.e. its ending point co-

incides with the current position of the pointer traversing the stream).

Observe how the window presented in Figure 2.3 is a sliding length window

with N = 2.

• Temporal sequencing of events: A key CEP operator is followedBy,

which introduces a temporal ordering between two events. Events related

by this operator do not need to be consecutive, i.e. a pattern that contains

A followedBy B only implies that the rule will search for an event A that

occurs some time before an event B.

• Pattern combination: Same as other DSLs, EPL patterns can be com-

bined in different ways by using logical operators (such as or, and, etc.) and

temporal connectors (such as until, while, etc.), among others. Negation

is also possible, representing the fact that an event has not happened. In

addition, windows can be combined, restricting their scope.

Note that since the stream can be considered infinite, CEP systems restrict the

elements by means of the windows. Therefore, CEP is a technology that use subsets

processing and they are selected according to the window scope. Furthermore,

CEP elements are indeed very close to those of endogenous model transformation

rules (cf. Section 2.1.2), with two main additions: (i) the scope defined by the

windows and (ii) the timestamp, that may turn the stream into a linear sequence

of ordered events. For this reason, our approach is based on CEP architecture but

properly modified to work with graph-structured information [13].

20

2.2 Data Streaming Applications

2.2.2 Approximate Query Processing

As stated in section 2.2, stream processing is about real-time proccessing,

meaning we need to obtain results with a low latency over a huge amount of

data. This requirement is rather costly for conventional systems. To alleviate this

problem, some solutions propose the decreasing of the accuracy of the processing

outcomes in order to improve performance. These solutions are part of the scope of

Approximate Query Processing. Liu [76] gives the following definition for this term:

“Approximate Query Processing (AQP) is an alternative way that returns

approximate answers using information which is similar to the one from which the

query would be answered”.

Then, AQP obtains approximate answers (but precisely enough to get correct

conclusions), querying only a subset of the whole information in order to improve

the performance of the processing. AQP is primarily designed for aggregated

queries (such as count, sum and avg, etc.). However, some works propose AQP

with non-aggregated queries [12, 14, 52]. Since the results are not fully accurate,

the error made with the approximation has to be calculated. The relative error for

aggregated queries is calculated as following [76]:

Error = |x− x
′

x
|

Where x is the accurate answer and x′ is the approximate answer.

Existing AQP techniques are generally classified in two categories [32, 53, 75]:

• Online:

Online AQP selects samples of the complete information at the same instant

of the query run. Then, the query is performed over the samples. Since

the samples are obtained online with the processing, there is no need to

store them for future processing since they are already processed right after

being extracted from the source data. In this way, online techniques avoid

overheads by supressing the need to store samples.

The confidence interval of the results is usually delegated to user control,

who decides the most convenient balance between accuracy and speed of

the queries. Regarding this, online aggregation is very popular. Online

aggregation provides an initial approximate answer quickly to the user and

21

Chapter 2. Background

it is refined as more information is processed over the time. Then, the user

chooses when the confidence level is satisfactory. One example of online

aggregation is used in crowdsourcing techniques [122, 123].

• Offline:

Offline AQP creates synopses that contain samples of the source information.

These synopses are usually stored in memory or cache and they are generated

offline with the processing in a pre-computing process. Then, they are used

to answer the online query.

It is necessary a previous knowledge about the structure, the meaning of the

information and the queries before creating the synopses. This knowledge is

used when deciding the criteria for the inclusion of the data in the samples.

In this way, two methods are used for offline AQP:

– Workload-free synopsis: the information included in the samples is

selected with uniform or stratified samples by analyzing the data. The

first developed workload-free technique was the AQUA system [104],

that selects a sample of all possible combinations of grouping columns.

– Workload-aware synopsis: the information included in the samples

is selected based on the results of previous queries, assuming that

future data will have a similar distribution. Note that this method

generates a synopsis for each query. Some examples of this technique

are Histogram [98], Wavelet [58], and Sketch [27], in addition to our

SDR algorithm developed to work with graph-structured data [15]

In this thesis, both techniques were explored in order to get an acceptable

performance working with streams of graph-structured information [14, 15]

2.3 Graph-structured information

Commonly, the information processed by Data Streaming Applications is

represented as sequences of ordered events without any relation between them.

However, in a real scenario, many of the events generated by different sources are

organized in complex structures, such as graphs or trees. Some examples of these

22

2.3 Graph-structured information

sources are social networks (where users are connected to other users and they

share pictures, posts, etc.) or e-commerce pages (where customers order products

that belong to different departments, and products can be recommended to the

customers in turn, etc.). The scope of this thesis focuses on graph-structured

information flows. For this reason, this section comprises how to work with this

kind of structures.

2.3.1 Models as graphs

A graph can have different definitions depending on the field of study (mathe-

matics, computing, etc.). However, the most general definition is related to graph

theory. Hinterberger [61] states the following: “A graph is a set of nodes (also

called points or vertices) connected by links called lines or edges or arcs. In an

undirected graph, a line from point A to point B is considered to be the same thing

as a line from point B to point A. In a directed graph, the two directions are counted

as being distinct arcs or directed edges”.

Based on this definition, a graph in computer science is a data structure that

represents the information by means of nodes and edges. In this way, graph

structures can be considered as a type of models since they are commonly used

for representing the data of models, and for performing patterns on them. For

this representation, in addition to nodes and edges, graphs are also composed

of properties. Therefore, nodes represent objects in the model, edges represent

relationships among them and properties represent attributes of both.

According to the definition of Hinterberger [61], relationships can be directional

or bidirectional in a model too, and they can also be derived. In the approach

presented in this thesis, a graph is composed of a set of objects and a set of

relationships, and both represent the elements of the graph. Finally, graph patterns

are structures used to manipulate graphs in the form of queries.

2.3.2 Graph processing platforms

Nowadays, graph processing platforms have become very popular to process

large-scale graphs that represents datasets of a huge range of domains, such as

social science, computational biology, telecomunications, etc. They are very efficient

23

Chapter 2. Background

to express and execute graph algorithms that are useful to obtain information of

interest about the dataset (e.g. PageRank [96] or community detection [74]).

Regarding the types of graph processing platforms, different classifications have

been presented in the literature according to different criteria [59, 105]. However,

we mainly distinguish two categories in this dissertation:

• Distributed platforms: the graph is located and processed using several

machines that are coordinated by one of them, called master. This solution

usually allows a high scalability, since it can use multiple workers. How-

ever, it may exhibit a lower performance than single-node solutions due to

distribution and overheads. Some popular examples of distributed graph

processing platforms are Pregel [80] (a graph processing system developed

by Google), PowerGraph abstraction [55] or the library Graphx [56] from

Apache Spark.

• Single-node platforms: the graph is processed and located in a single machine

with limited scalability. However, these solutions make an efficient use of

the resources in order to get a competitive performance when processing

the graph. The most common examples of using a single machine to

process graphs are graph databases [128]. Graph databases are a type of

NoSQL database designed to store, update and perform queries over graph

structures. Several graph databases store the data in disk, such as Neo4j,

while others implement in-memory graph databases, such as Memgraph [83]

or TinkerGraph [118]. They use a graph-query language to perform queries,

that provides an intuitive and fast way to access the information stored in

the database. Some examples of graph-query languages are Gremlin [6],

Cypher [88] and SPARQL [126]. However, even taking into account that

graph databases are a common example of single-node platform, some of

them allows distribution in several machines (e.g. Dgraph [47]).

In order to choose the most suitable technology to achieve the goals of this

thesis, a detailed study of several platforms is presented in Chapter 3.

24

Chapter 3
Comparison and Performance

Evaluation of Processing Platforms

Current companies and organizations increasingly demand the processing of

data streams generated from different sources, such us social networks and streaming

platforms. The main challenge of these applications is to provide efficient-enough

responses when dealing with large amounts of real-time information. As mentioned

in Chapter 1, despite this kind of information is sometimes represented as flows of

single events without any relation among them, it is true that there are cases in

which the information is composed of data related among them. In these cases, the

sources generate data-structured information in the form of graphs, such as in social

networks or geolocation systems domains. Furthermore, data of different nature

that come from heterogeneous sources have to be considered. In this way, two types

of information are normally taken into account in our approach: persistent and

transitory. The former is permanently stored in the system (e.g. users in a social

network or coordinates in a geolocation system), whereas the latter is temporarily

stored and expires after some period of time (e.g. tweets or routes). This means

25

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

that we need to consider heterogeneous nature and structure of the information,

which is indeed a challenge.

The approach presented in this thesis is based on the fact that not all the

information that is stored in the system at the current time is useful to obtain valid

conclusions. Since data-processing applications typically function by performing

queries over the information, the proposal in this thesis is to improve the perfor-

mance of these queries by selecting only relevant data. Then, it is necessary to find

a technology and a language that meet three fundamental requirements: (i) they

must allow to perform queries and update the information as quickly as possible in

order to provide real-time responses, (ii) they must cope with graph-structured

information, and (iii) they must provide a clear syntax in order to be able to study

the type of query to be run over the data.

In this chapter, we analyse the benefits and limitations of several processing

platforms and query languages when working with high volumes of data. The

platforms comprise TinkerGraph [118], Neo4j [89], CrateDB [35], Memgraph [83],

JanusGraph [64], OrientDB [29] and GraphFrames [106], whereas the languages

comprise Gremlin [6], Cypher [88], SQL and the DSL used for GraphFrames [107].

All these technologies are commonly used in Big Data applications [82]. In order

to study their performance, we tested them in two case studies and we measured

the execution time of the queries in two scenarios. First, queries are run over

the data in order to obtain useful information without implying any side effect

in the source information. Second, same queries are run but their results modify

the source graph by adding, removing or updating the existing information. In

addition, the complexity of the languages is measured and compared by counting

the number of characters, operators and internal variables used for each query.

Finally, a combination of platform and query language is chosen to carry out our

proposal, according to our requirements.

The contribution of this chapter is divided into three principal aspects. First,

we evaluate the performance and scalability of the platforms by using two different

case studies in different scenarios that work with graph-structured information.

These scenarios comprise querying the graph in order to obtain information about

the received data as well as modifying the source data as a result of the query over

the graph. The scalability is evaluated by using models of different sizes that reach

more than 10 million elements. Second, syntax complexity and intuitiveness of the

26

3.1 A running example

languages are analysed taking into account the most common operators used to

work with graphs. Finally, we provide a comparative analysis that involves three

kinds of platforms that work with graph-structured information, namely graph and

relational databases and distributed platforms.

The structure of this chapter is as follows. First, in Section 3.1 we present a

running example in the domain of social networks to illustrate our proposal. Then,

Section 3.2 exposes 7 processing platforms that we compared in our study and

their main features, whereas Section 3.3 presents the query languages that are

used for these platforms. Platforms and languages are evaluated and compared in

Section 3.4 in terms of execution time and complexity of the syntax, by using two

case studies where one platform and one language are chosen as the most suitable

combination for our proposal. Finally, in Section 3.5 we discuss related work and

Section 3.6 summarizes the chapter.

3.1 A running example

In order to illustrate the DSL syntax used for each Graph Processing Platform

studied in our proposal, consider a system that works with information provided

by Flickr1 and Twitter2, and analyses them together to identify some situations of

interest [13]. The metamodel is depicted in Figure 3.1, where there is one common

class between the two domains, namely Hashtag. Note that there is no automated

manner to implement a completely reliable relation among the remaining elements

(e.g. automatically relating users based on their Twitter and Flickr identifiers is

impossible).

Given such a metamodel, we are interested in identifying the following situations

of interest:

Q1. HotTopic: A hashtag has been used by both Twitter and Flickr users at

least 100 times in the last hour. We would like to generate a new HotTopic object

that refers to this hashtag.

Q2. PopularTwitterPhoto: The hashtag of a photo is mentioned in a tweet

that receives more than 30 likes in the last hour. A PopularTwitterPhoto element

is created.

1https://www.flickr.com/
2https://twitter.com/

27

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Figure 3.1: Twitter and Flickr joint Metamodel.

Q3. PopularFlickrPhoto: A photo is favored by more than 50 Flickr users

who have more than 50 followers. A PopularFlickrPhoto element is created.

Q4. NiceTwitterPhoto: A user, with an h-index 3 higher than 50, posts

three tweets in a row in the last hour containing a hashtag that describes a photo.

In this case, we generate a NiceTwitterPhoto object.

Q5. ActiveUserTweeted: Considering the 10000 most recent tweets, search

a user that has published one of these tweets, with h-index higher than 30 that

follows more than 5K users. In this case, an ActiveUserTweeted object is generated

pointing to the user.

Note that we have included 5 extra objects (shaded in gray) in the metamodel.

These objects refer to the objects created as a result of the queries. In this way, a

model of this application contains both the information from the sources (Twitter

and Flickr) and also the information we generate during its lifetime, as the system

evolves.

3In Twitter, a user has an h-index of h if she has at least h followers who have
more than h followers each.

28

3.2 Processing platforms

3.2 Processing platforms

As exposed in section 2.2, the information of Data Streamming Applications is

real-time, which requires low-latency in the processing. Thus, we have studied seven

powerful platforms for processing huge amounts of data. These platforms have

been tested in two case studies with graph-structured information (explained in the

following sections), in order to choose the technology with the lowest latency. In

addition to this feature, other aspects have been taken into account when choosing

the most suitable technology for our proposal, such as the DSL complexity or the

possibility of updating the information.

In this section, an overview of the seven platforms is presented. These technolo-

gies include five graph databases (Neo4j, JanusGraph, OrientDB, inkerGraph

andMemgraph), a distributed SQL database (CrateDB) and a package for work-

ing with distributed graphs provided by Apache Spark (GraphFrames). Their

features are summarized in Table 3.1.

Platform Distributed In-memory Disk Updatable Query languages

Neo4j No No Yes Yes Cypher

JanusGraph Yes Yes Yes Yes Gremlin

OrientDB Yes Yes Yes Yes Gremlin, SQL

TinkerGraph No Yes Yes Yes Cypher, Gremlin

Memgraph Yes Yes Yes Yes Cypher

CrateDB Yes No Yes Yes SQL

GraphFrames Yes Yes No No GraphFrames DSL

Table 3.1: Processing platforms used in the experiments of the performance study

3.2.1 Neo4j

Neo4j [89] is an open-source graph database that combines native graph storage

(since the data are stored as a graph and pointers are used to navigate and traverse

its elements), ACID transaction compliance (that implies Atomicity, Consistency,

Isolation and Durability) and a scalable architecture designed to perform queries

quickly. Neo4j stores the data in disk and its features makes it suitable for

production scenarios.

29

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

In order to provide an intuitive way to manipulate the database, Neo4j uses

Cypher [88] as query language. This DSL is explained in Section 3.3.2 in detail.

Some domains where Neo4j is commonly used are financial services, manufac-

turing, technology companies, etc.

3.2.2 JanusGraph

JanusGraph [64] is an open-source scalable graph database designed to be

distributed in a multi-machine cluster. This feature makes it suitable to store and

query large graphs with hundred of billions of elements between edges and nodes.

However, it also allows single-node configuration. JanusGraph can store the data

in memory or in disk by making use of a backend with Apache Cassandra, Apache

HBase, Google Cloud Bigtable, Oracle BerkeleyDB or ScyllaDB.

Among the most important benefits of JanusGraph we find support for global

graph analytics through the Hadoop framework, concurrent transactions and

operational graph processing as well as native support for Apache Tinkerpop [5]

and Gremlin language [6]. This DSL is explained in Section 3.3.3 in detail.

In this technical report, we have implemented JanusGraph with the BerkeleyDB

backend (disk storage).

3.2.3 OrientDB

OrientDB [29] is an open-source multi-model and NoSQL database that is

written in Java and it provides both the power of graphs and the flexibility and

scalability of documents into one high-performance operational database.

Among the benefits of OrientDB we find that it allows to distribute the data

in a multi-machine cluster, it supports ACID transactions, it supports native

management of graphs, HTTP, RESTful protocol, and JSON additional libraries.

Besides, it is also compliant with Apache TinkerPop [5] and Gremlin [6] as well

as SQL language. Both DSLs are thoroughly explained in Section 3.3. OrientDB

supports four storage types: (i) plocal, that persists on disk where the access is

made in the same JVM process; (ii) remote, that uses the network to access a

remote storage; (iii) memory and (iv) local (this one has been deprecated and

replaced by plocal).

30

3.2 Processing platforms

Among the possible options provided by OrientDB, in this technical report, we

have used memory storage and Gremlin language.

3.2.4 TinkerGraph

TinkerGraph [118] is a light in-memory graph database designed to run in

a single machine, but it also includes the option to persist on disk. It provides

Online Transactional Process (OLTP) and Online Analytics Process (OLAP)

functionality. TinkerGraph is developed by Apache TinkerPop [5], an open-source

graph computing framework used to model domains of data as graph structures.

Due to its simplicity, it is commonly used as a reference to understand other

methods of TinkerPop. However, it is also suitable for production.

TinkerGraph allows querying, modifying and updating the database using

Gremlin [6] or Cypher [88] languages. Both DSLs are thoroughly explained in

Section 3.3.

Some examples of use for TinkerGraph are analysis of large in-memory graphs,

analysis of subgraphs extracted from very large graphs that can not be stored in

memory, and modifying and transforming graphs (adding, removing or updating

nodes, edges or properties).

3.2.5 Memgraph

Memgraph [83] is an in-memory graph database that allows ACID transaction

compliance, multi-version concurrency control and asynchronous IO. These features

lead into real-time responses when querying the information. Although it is

implemented in C/C++, it is compatible with many existing languages such as

Java, JavaScript, Ruby and PHP. Regarding graph manipulation, Memgraph uses

Cypher [88] as DSL.

Some examples of use for Memgraph are creating business strategies adapted

to the changing economy, transactional analysis, etc.

3.2.6 CrateDB

CrateDB [35] is a distributed database that integrates SQL language with

certain benefits of NoSQL databases. In this way, it provides intuitiveness when

31

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

writing queries of SQL languages along with the scalability and flexibility of NoSQL.

These features allow to perform queries in real-time over both independent data

and complex data structures. Although CrateDB stores data in disk, it is able to

perform queries at in-memory speed [36].

Some examples where CrateDB is often used are applications that require

real-time data ingestion and backups, identification of special situations (such as

trends or anomalies) by means of time series analysis and querying information for

geospatial systems.

3.2.7 Apache Spark. GraphFrames

Apache Spark [108] is a framework that distributes the processing using a

cluster in order to execute different operations in parallel. Spark divides the

information into collections of elements partitioned and it spreads them through

the cluster. These collections are called resilient distributed datasets (RDDs) and

can be persisted in memory to be reused.

Regarding the graph-structured information processing, Spark provides a

component for graph-parallel computation called Graphx [56]. It is a library that

uses Spark RDDs to perform graph-related operations by introducing a set of basic

operators, such as subgraph, joinVertices or groupEdges, in addition to operators

for graph algorithms or analytic tasks, such as PageRank [96]. However, it does

not provide any domain-specific language, but the code has to be developed with

Scala or Python. This implies an important limitation for many systems, since it

leads to the use of very complex patterns to define information queries [13]. For

this reason, Apache Spark developed a package that overcame this problem, called

GraphFrames [106]. It allows to operate with graphs using the benefits of Graphx

but using Spark DataFrames instead of RDDs. A DataFrame is a distributed

collection of data organized in columns labeled by names. It integrates the benefits

of RDDs, regarding to information distribution, along with Spark SQL writing

queries capabilities. This way, GraphFrames enable users to perform the same

operations as Graphx, but in a more intuitive way because it uses DataFrames for

handling the data.

32

3.3 Query Languages

3.3 Query Languages

Four DSLs have been stated in Section 3.2 in order to manipulate the data with

the processing platforms. Now, this section presents an introduction to the most

important concepts of their syntax. Note that, in our proposal, these languages are

applied to graph-structured information. In the following, we present the different

query languages considered in this comparison analysis and use basic examples of

queries over the metamodel depicted in Figure 3.1 to clarify the concepts.

3.3.1 SQL

SQL is an ANSI/ISO standard declarative query language designed to ma-

nipulate database information. It is based on RDBMS (Relational Database

Management System), that allows to store the data into database objects called

tables. Tables are collections of related data entries that are structured in columns

and rows. In this way, rows are the horizontal entities of the table, that represents

the individual entries, whereas columns are the vertical entities, that represents

the information associated with each entry.

The most important feature of SQL is that it allows a wide variety of operations

and high productivity in coding. SQL command functionalities include specifying

integrity restrictions, specifying the limits of a transaction, accessing rights and

defining relationship schemas and views. As well as other query languages, such

as GraphFrame DSL or Gremlin, it is designed to be embedded into common

programming languages, such as C++, C, Java, PHP or Fortran.

Since SQL is a standard, it is supported by most database systems, such as

MySQL, Oracle or Postgres. In this thesis, we use SQL with CrateDB database

[35] in order to store, query and update graphs. However, SQL does not support

graph-structured information and, for this reason, the graph will be stored into

tables. Therefore, in this section, we expose how graph-structured information is

mapped into the tables in order to be queried and manipulated into a CrateDB

database with SQL language.

33

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Main components

As stated before, relational databases store the data into tables. Therefore,

a CrateDB database may contain one or several tables that are identified by a

name. Since graphs are mainly composed of nodes and edges, a possible solution

for mapping graph structures into this database is to create two types of tables:

• Node tables: this kind of tables represents the nodes of the graph. They

can be called with the label of the nodes they represent, i.e. there will be

one node table for each node label. Besides, they will contain a column for

each property node.

id name location

0 George B. Dublin
1 Mike R. London
2 Mary C. Madrid
3 Cindy M. Rome

(a) TwitterUser table

id text

5 cold
6 winter

(b) Hashtag table

id text date

4 Winter is coming 12/12/2019

(c) Tweet table

src dst

0 1
1 2
2 3
2 0

(d) follows table

src dst

3 4

(e) publishes table

src dst

4 5
4 6

(f) contains table

Table 3.2: TwitterFlickr example with SQL tables

• Edge tables: these kind of tables will have the same name as the label of the

edge that they represent. An edge table will contain at least two columns

that represent the source and destination nodes by means of foreign keys of

the node tables. In addition, they may contain as many columns as edge

properties.

34

3.3 Query Languages

As an example of this solution, Table 3.2 shows six tables that correspond with

TwitterUser, Hashtag and Tweet nodes and follows, publishes and contains

edges of the metamodel depicted in Figure 3.1. Note that edge tables contain two

columns (src and dst) that represent the source and destination. For instance,

first row of Table 3.2d represents an edge follows between TwitterUser called

“George B.” (represented in first row of Table 3.2a) and the TwitterUser called

“Mike C.” (represented in second row of Table 3.2a), which means that the user

George B. follows the user Mike C..

Listing 3.1: SQL queries for graph-structured information

1 // creating tables with SQL
2 CREATE TABLE IF NOT EXISTS Hashtag (id LONG, text STRING) ;
3 // Basic SQL query
4 SELECT location FROM TwitterUser WHERE name="Mary C . " ;
5 // Quering graphs with SQL
6 SELECT tu . ∗ , tu2 . ∗
7 FROM TwitterUser tu , follows f , follows f2 , TwitterUser tu2
8 WHERE tu . id = f . src
9 AND tu2 . id = f . dst

10 AND tu2 . name="Mary C . "
11 AND f2 . src = tu2 . id
12 AND f2 . dst = tu . id ;
13 // inserting data with SQL
14 INSERT INTO Hashtag (id , text) VALUES (7 ," winter ") ;
15 INSERT INTO Tweet (id , text) VALUES (8 ," Winter is coming ") ;
16 INSERT INTO contains (src , dst) VALUES (8 , 7) ;
17 // adding a new property with SQL
18 ALTER TABLE TwitterUser ADDCOLUMN description STRING;
19 // updating a property with SQL
20 UPDATE Hashtag SET text = "invierno" WHERE text = "winter " ;
21 // deleting a row with SQL
22 DELETE FROM Hashtag WHERE text = "invierno " ;
23 // removing a table with SQL
24 DROP TABLE IF EXISTS Hashtag ;

SQL provides the command CREATE TABLE to create a new table in the database.

In our approach, this command is used to create edge and node tables. Line 2

of Listing 3.1 shows an expression example for creating the table Hashtag with

columns id and text. Note that columns must indicate a type of data depending

on the property (LONG, STRING, etc.).

35

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Query basis

SQL queries are generally composed of three main commands:

• SELECT: this command extracts data from the database.

• FROM: it indicates the tables where the information is selected.

• WHERE: it filters the data selected with the SELECT command according to

different conditions.

An example of SQL query is shown in line 4 of Listing 3.1, where the location of

the user named “Mary C.” is returned. However, queries over graphs usually involve

traversing edges and nodes. Since they are represented with tables in a CrateDB

database, it is necessary to join those tables. CrateDB allows inner joins using the

WHERE command. For instance, observe the query of lines 6 to 12 of Listing 3.1.

This query joins tables TwitterUser and follows in order to obtain a user that

follows the user named “Mary C.” and it is also followed by her. Note that the

expression must traverse the edge follows twice (since we are interested in a user

that follows the user Mary C. and Mary C. follows this user too). For this reason,

the query contains four joins (TwitterUser-follows and follows-TwitterUser

twice).

In addition, CrateDB allows to create new data into the database, as well as

delete and update existing information. These functionalities will be exposed in

the following sections.

Inserting data

SQL provides the command INSERT INTO for inserting new data in the database.

In this way, this command may be used to insert new records in edge or node tables.

Lines 14 to 16 of Listing 3.1 show three examples of the use of this command when

new rows are inserted in Hashtag, Tweet and contains tables. These insertions

imply the creation of a new tweet with text “Winter is coming” that contains the

hashtag “winter”.

In addition, it is possible to create a new property for nodes or edge with SQL

by means of creating a new column in the table. For this purpose, SQL provides the

36

3.3 Query Languages

command ALTER TABLE. CrateDB allows to use this command with the keywords

ADD COLUMN in order to add a new column to a table. However, this is only possible

is the table is empty. In this way, considering that the TwitterUser table is empty,

line 18 of Listing 3.1 adds the property description to this table.

Updating data

In order to update the rows of a table, SQL provides the command UPDATE.

This command allows to change the value of a property node or edge, by modifying

the value of the corresponding column of its table. Line 20 of Listing 3.1 shows an

expression to update the hashtag “winter” with the new text “invierno”. Note that

the syntax of this expression is:

UPDATE table_name SET column_name = new_value WHERE condition

Where new_value is the new value of the property and condition is a condition

used to filter the properties to update.

Deleting data

SQL provides two main commands to delete data in the database: DELETE

FROM and DROP. The former is used to delete rows in a table whereas the latter

is used to remove tables or columns in the database. Note that when removing

columns from a table it is necessary to use the DROP command within the command

ALTER TABLE. However, CrateDB does not support this expression. Therefore, it

is only possible to delete tables and rows in a CrateDB database, which means to

delete edge or node objects in the graph. As an example, expressions of lines 22

and 24 of Listing 3.1 are used to delete the hashtag “invierno” and table Hashtag,

respectively.

Filters and subqueries

As stated in the previous sections, we distinguish two types of filters when

querying graph information. In this section, we explain how CrateDB treats these

filters with SQL language:

Listing 3.2: SQL filters and aggregation operations for graph-structured information

37

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

1 // Filtering by property
2 SELECT ∗ FROM Hashtag WHERE text="winter " ;
3 SELECT ∗ FROM Hashtag ;
4 // Filtering by subquery
5 SELECT t . ∗
6 FROM Tweet t ,
7 (SELECT c . src
8 FROM contains c , hashtag h
9 WHERE c . dst = h . id AND h . text = "winter ") sq

10 WHERE t . id = sq . src ;
11 // Filtering by subquery with negation
12 SELECT t . ∗
13 FROM Tweet t ,
14 (SELECT c . src
15 FROM contains c , hashtag h
16 WHEREAND c . dst = h . id AND h . text = "summer ") sq
17 WHERENOT t . id = ANY(sq . src) ;
18 // Filtering by subquery with conjunction
19 SELECT DISTINCT t . ∗
20 FROM Tweet t ,
21 (SELECT c . src
22 FROM contains c , hashtag h
23 WHEREAND c . dst = h . id AND h . text = "cold ") sq1 ,
24 (SELECT c . src
25 FROM contains c , hashtag h
26 WHEREAND c . dst = h . id AND h . text = "winter ") sq2
27 WHERE sq1 . src = t . id AND sq2 . src = t . id ;
28 // Filtering by subquery with disjunction
29 SELECT DISTINCT t . ∗
30 FROM Tweet t ,
31 (SELECT c . src
32 FROM contains c , hashtag h
33 WHEREAND c . dst = h . id AND h . text = "spring ") sq1 ,
34 (SELECT c . src
35 FROM contains c , hashtag h
36 WHEREAND c . dst = h . id AND h . text = "winter ") sq2
37 WHERE sq1 . src = t . id OR sq2 . src = t . id ;
38 // Aggregation operations
39 SELECT COUNT(∗) FROM Tweet ;
40 SELECT t . ∗
41 FROM Tweet t ,
42 (SELECT c . src , count (c . src) countSRC
43 FROM contains c , Hashtag h
44 WHERE h . id = c . dst
45 GROUP BY c . src) sq
46 WHERE t . id = sq . src AND sq . countSRC >=3;

• Filtering by property: since edges and nodes are represented by tables, basic

SQL queries can be used for this purpose. Some examples are lines 2 and

38

3.3 Query Languages

3 of Listing 3.2, where the hashtag “winter” and all hashtags are returned,

respectively.

• Filtering by subquery: in this case, data is filtered according to different

graph subqueries. CrateDB also allows SQL subqueries in order to filter

the information. These subqueries are placed in the FROM clause and are

treated as an independent table. As an example, observe lines 5 to 10 of

Listing 3.2. The subquery contained in this query selects the source ids of

all edges contains that have the hashtag “winter” as destination (lines 7 to

9). Then, it selects the tweets that match with these ids (line 10). However,

several subqueries can be combined in order to filter the information. New

combinations can be created by using the following operators:

– NOT: it implies the negation of a subquery to select the data. An

example is shown in lines 12 and 17 of Listing 3.2, where it selects all

tweets that do not contain the hashtag “summer”. Note that the ANY

clause indicates that there is no value that checks the condition.

– AND: it implies the conjunction of two or more subqueries to select

the data, i.e. the query must satisfy all conditions linked with this

operator. An example is shown in lines 19 and 27 of Listing 3.2, where

it selects all tweets that contain the hashtag “winter” and the hashtag

“cold”.

– OR: it implies the disjunction of two or more subqueries to select the

data, i.e. the query must satisfy at least one of the conditions linked

with this operator. An example is shown in lines 29 and 37 of Listing

3.2, where it selects all tweets that contain the hashtag “winter” or

the hashtag “spring”.

Aggregation Operations

Finally, CrateDB also allows aggregation operations with SQL language. Ac-

cording to our approach, this kind of operation is applied in two manners when

querying graphs. In this section, we expose how SQL manages queries over graphs

with aggregation operations:

39

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

• Aggregation as results: SQL provides several functions to obtain aggregated

results (such as count(), sum(), max(), etc.). An example of query that

uses count() operator is shown in line 39 of Listing 3.2, where the number

of tweets of table Tweet are returned.

• Aggregation as filters: in this case, an aggregated result is used to filter the

information. An example of this use is shown in lines 40 to 46 of Listing

3.2, that returns the tweets that contain at least 3 hashtags. Note that the

aggregated result is obtained using the GROUP BY command, that groups the

information according to one or more properties of the tables. In this case,

data is grouped according to the src column of the contains table. Since

this column corresponds with a tweet id value, it is possible to obtain the

number of hashtags contained for each tweet, using count() function.

3.3.2 Cypher

Cypher is an open-source and declarative query language that allows to store

and query data from graph databases. Its syntax and learning curve resemble

those of SQL, but optimized for graph structures. Some of the most important

features of this language are: efficiency to represent nodes and edges, constant time

traversals (depth and breadth) in big graphs, flexibility to adapt the graph schema

according to the needs, and availability of different drivers for Java, JavaScript,

Python and other common programming languages.

Cypher is backed by openCypher project [91], that aims to provide an open

language specification along with a technical compatibility kit. The language is

inspired in SQL language and based on ASCII art. It provides an easier visual and

logical syntax understanding and it makes matching patterns in graph easier too.

In this section, we expose the most basic concepts of the syntax. However, many

other operators and functionalities are available for Cypher. For more information

about them, please refer to [88].

Main components

The main components of Cypher language are nodes, edges and properties.

Nodes are represented in the form of (n:Node), where Node is the label of

40

3.3 Query Languages

the node and n is a variable to refer to that node. Note that the parentheses look

similar to a circle, since it is the visual representation generally used for nodes

in a graph. This circumstance brings intuitiveness when implementing queries in

Cypher. Besides, variables are optional and they are used when the node needs to

be referred later, providing more expressiveness to the language. Line 2 of Listing

3.3 shows a node representation example with variable tu and label TwitterUser.

Listing 3.3: Nodes, edges and properties in Cypher
1 // node
2 (tu : TwitterUser)
3 // node with property
4 (t : Tweet {text : 'Winter is coming' })
5 // edge
6 (t : Tweet)−[r : CONTAINS]−>(h : Hashtag)
7 // edge with property
8 (tu : TwitterUser)−[r : LIKES {date : '12/12/2020'}]−>(t : Tweet)

Edges between nodes are represented in the forms of -[e:Edge]-> or

<-[e:Edge]-, depending on the direction of the edge. In this case, Edge is the

label of the edge and e is the variable to refer to it (that can be optional too).

In this case, Cypher is also intuitive since the arrow looks like the lines that

commonly represent edges in a visual graph. Besides, it is possible to represent

undirected edges removing the character ‘>’ or ‘<’, which means that the edge

can be traversed in both directions in the query. Line 6 of Listing 3.3 shows an

example of an edge with label CONTAINS from a node Tweet to a node Hashtag.

This example can be read as follows: selects tweets that contains hashtags.

As stated in Section 2.3.1, edges and nodes can contain properties. In

Cypher, properties are represented as name-value pairs surrounded by curly braces

in the form of {p:‘property’}, where p is the property name and property is its

value. Properties may belong to nodes (represented in the form of (n:Node

{ p:‘property’})) or edges (represented as -[e:Edge { p:‘property’}]->).

Lines 4 and 8 of Listing 3.3 show a node and an edge with a property, respectively.

In some cases, edge or node labels are not relevant for the query. Cypher allows

to specify anonymous edges and nodes in the forms of –, –> or <– (for anonymous

edges), and empty parentheses () (for anonymous nodes).

41

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Query basis

Patterns in Cypher are built as sequences of nodes and edges, that are called

paths. A pattern can have a continuous path or several small patterns separated

by commas. As an example, observe line 8 of Listing 3.3. This pattern represents

a path that searches a twitter user that likes a tweet on December 12th. However,

this pattern does not indicate the action we want to do with this pattern (inserting

it, finding it in the database, etc.). In order to indicate the actions to carry out

with a pattern, several keywords are used in a query. Cypher provides two main

keywords to implement queries:

• MATCH: this keyword is similar to the keyword SELECT in SQL. It is used to

search a pattern in the database. As an example, observe line 2 of Listing

3.4 that indicates that we want to search tweets that contains the hashtag

with text “Winter”.

• RETURN: this keyword indicates the values to be returned by the query. In

line 2 of Listing 3.4, nodes labeled with Tweet are returned by this query.

In addition to search data in the database, Cypher patterns allow to insert,

update and delete data in the graph. Some other keywords are used to achieve this.

We explain the most common cases in the following.

Inserting data

Cypher provides the keyword CREATE to insert elements in the graph. It allows

to insert nodes, edges or patterns into the database. CREATE can be used as main

operation or as a result for a query. For instance, observe line 4 of Listing 3.4.

In this query, a node labeled with TwitterUser that contains the name property

“Mary C.” is created. CREATE is the main operation of the query. In lines 6 to 8, an

edge is inserted between this node and the node labeled with Tweet with the text

property “Winter is coming”. Therefore, CREATE is the consequence of the query

composed by patterns of lines 6 and 7.

42

3.3 Query Languages

Listing 3.4: Cypher basics
1 //Basic pattern
2 MATCH (t : Tweet)−[r : CONTAINS]−>(h : Hashtag {text : 'Winter' }) RETURN t ;
3 // Pattern to create a node
4 CREATE (tu : TwitterUser {name : 'Mary C.' }) RETURN tu ;
5 // Pattern to insert an edge
6 MATCH (tu : TwitterUser {name : 'Mary C.' })
7 MATCH (t : Tweet {text : 'Winter is coming' })
8 CREATE (tu)−[r : PUBLISHES]−>(t) ;
9 // Pattern to update a property

10 MATCH (h : Hashtag {text : 'Winter' })
11 SET h . text = 'Invierno'
12 RETURN h ;
13 // Delete patterns
14 MATCH (h : Hashtag {text : 'Winter' })
15 DELETE h ;
16 MATCH (t : Tweet)−[r : CONTAINS]−>(h : Hashtag {text : 'Winter' })
17 DELETE r ;
18 MATCH (tu : TwitterUser {name : 'Mary C.' })
19 REMOVE tu . location ;
20 MATCH (tu : TwitterUser {name : 'Mary C.' })
21 DETACH DELETE tu ;

Updating data

The keyword used to update an element is SET. It allows to modify a property

of a node or edge. SET is used as a consequence of a MATCH clause, since it is

necessary to search the element to be updated before modifying its property. As an

example of the use of SET, observe lines 10 to 12 of Listing 3.4. In this query, the

hashtag with the property “Winter” is searched in line 10. This node is updated

modifying its property text in line 11 and finally it is returned in line 12.

Deleting data

Cypher provides three keywords to delete data in the graph:

• DELETE: this keyword is used to delete nodes or edges in the graph. For

example, observe in lines 14 and 15 of Listing 3.4 how the node labeled with

Hashtag with the name property “Winter” is deleted. In addition, query

of lines 16 and 17 deletes the edges that connect a tweet with the hashtag

“Winter”.

• REMOVE: it is used to delete a property of a node or an edge. For example,

query depicted in lines 18 and 19 of Listing 3.4 removes the property location

43

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

of the node labeled with TwitterUser and with name property “Mary C.”.

• DETACH: it allows to delete all edges connected to a node and the node itself.

For instance, observe lines 20 and 21 of Listing 3.4. This query deletes the

node labeled with TwitterUser and with name property “Mary C.” and all

edges that are connected to it.

Filters and subqueries

Queries usually contain filters to select, delete, insert or update the information

of the database. In Cypher, the main operator used to filter the data is WHERE

clause. In our approach, we distinguish two main types of filters with this clause:

• Filtering by property: in this case, elements are searched according to a

property value. For example, observe lines 2 to 4 in Listing 3.5. This query

returns the tweets that contains the hashtag “Winter”. Note that this query

obtains the same result from the query depicted in line 2 of Listing 3.4.

Therefore, this type of filter can be usually replaced by a property in the

main MATCH clause.

• Filtering by subquery: in this case, a function exists() appears after the

WHERE clause that contains the subquery used to filter the information. For

instance, observe the query of lines 6 to 8 in Listing 3.5. In this case, the

main MATCH clause (line 6) selects nodes labelled with Tweet, whereas the

WHERE clauses filters the tweets that contain the hashtag “Winter”. Note

that this query has also the same result as the query depicted in line 2 of

Listing 3.4 and query depicted in lines 2 to 4 of Listing 3.5. Therefore, it

is possible to simplify the query replacing the WHERE clause for a property

filter in the main MATCH clause. This simplification is possible when the

query conditions only involve one subquery. However, some queries filter by

two or more subqueries (e.g. obtaining the tweets that contain the hashtag

“Winter” or “Spring”) or they imply the non-existence of a path between two

nodes (e.g. obtaining the tweets that do not contain the hashtag “Summer”).

For these cases, the WHERE clause is combined with the following keywords:

44

3.3 Query Languages

– AND: it implies the conjunction of two or more subqueries. For exam-

ple, observe lines 10 to 13 of Listing 3.5. In this query, the WHERE

clause filters the nodes labelled with Tweet (line 10) that satisfy two

conditions: (i) they contain the hashtag “Winter” (line 11) and (ii)

they contain the hashtag “Cold” (line 12).

– OR: it implies the disjunction of two or more subqueries. For example,

observe lines 15 to 18 of Listing 3.5. In this query, the WHERE clause

filters the nodes labelled with Tweet (line 15) that satisfy at least one

of two conditions: (i) they contain the hashtag “Winter” (line 16) or

(ii) they contain the hashtag “Spring” (line 17).

– NOT: it implies the negation of a subquery. For example, observe the

query depicted in lines 20 to 22 of Listing 3.5. The WHERE clause

filters the nodes labelled with Tweet (line 20) that do not contain the

hashtag “Summer” (line 21).

Aggregation Operations

Some queries contain aggregation operations, such as counts, sums, maximum

or minimum. In our approach, we have classified the use of these operations in two

groups:

• Aggregation operations as results: in this case, the goal of the aggregation

operation is to obtain an aggregated result of some aspects of the database.

As an example of this use, observe line 24 of Listing 3.5. Note how this

query returns a count of all nodes labelled with Tweet in the graph.

• Aggregation operation as filters: in this case, the aggregation operation is

used to filter the information of the database in order to obtain a result that

does not need to contain the result of this operation. For instance, observe

lines 25 to 28 of Listing 3.5. First, this query selects all nodes labelled with

Tweet and the number of hashtags they contain (lines 25 and 26). Second,

the query filters by the number of hashtags contained for each node Tweet

(line 26). Finally, it returns the nodes Tweet that satisfy this condition (line

45

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Listing 3.5: Filtering, subqueries and aggregated patterns in Cypher
1 // Filtering by property
2 MATCH (t : Tweet)−[r : CONTAINS]−>(h : Hashtag)
3 WHERE h . text = 'Winter'
4 RETURN t ;
5 // Filtering by subquery
6 MATCH (t : Tweet)
7 WHERE exists ((t)−[r : CONTAINS]−>(h : Hashtag{text'Winter' }))
8 RETURN t ;
9 // Filtering by subquery with conjunction

10 MATCH (t : Tweet)
11 WHERE exists ((t)−[r : CONTAINS]−>(h : Hashtag{text : 'Winter' }))
12 AND exists ((t)−[r : CONTAINS]−>(h2 : Hashtag{text : 'Cold' }))
13 RETURN t ;
14 // Filtering by subquery with disjunction
15 MATCH (t : Tweet)
16 WHERE exists ((t)−[r : CONTAINS]−>(h : Hashtag{text : 'Winter' }))
17 OR exists ((t)−[r : CONTAINS]−>(h2 : Hashtag{text : 'Spring' }))
18 RETURN t ;
19 // Filtering by subquery with negation
20 MATCH (t : Tweet)
21 WHERENOT exists ((p)−[r : CONTAINs]−>(h : Hashtag{text : 'Summer' }))
22 RETURN t ;
23 // Aggregation patterns
24 MATCH (t : Tweet) RETURN count (∗) ;
25 MATCH (t : Tweet) − [: CONTAINS]−>(h : Hashtag)
26 WITH t , size (collect (h . text)) AS hashtagsList
27 WHERE hashtagsList >= 3
28 RETURN t ;

28). Note how this query uses the aggregation operation as a filter instead

of as a result.

3.3.3 Gremlin

Gremlin [6] is a vendor-agnostic, graph traversal language that enables users

to express complex traversal queries and manipulate graph databases. Gremlin

can be written in imperative, declarative or hybrid manner. This feature provides

flexibility to users when expressing queries and it allows to efficiently evaluate

traversals.

In contrast to other query languages, such as SQL or Cypher, Gremlin was

designed to be embedded in common programming languages. Therefore, it can

be represented using their constructs. Thus, several Gremlin language variants

are available for the most common programming languages, such as Gremlin-Java,

Gremlin-Python or Gremlin-Scala.

46

3.3 Query Languages

Gremlin is distributed by Apache TinkerPop [5], an open-source graph com-

puting framework that allows Online Transactional Process (OLTP) and Online

Analytics Process (OLAP). This way, it provides mechanisms to work with both

transactional in-memory graph databases or multi-machine distributed graph

databases.

Many operations and functionalities are available for Gremlin language [118].

However, we expose the most basic concepts of the Gremlin syntax in the following.

Main components

Gremlin distinguishes two parts in the graph computing: (i) the structure, that

represents the model defined by nodes, edges and properties, and (ii) the process,

that corresponds to the means by which the structure is analyzed (typically called

traversals). Consequently, there are different components depending on the context:

• Components in the structure context. As stated in Section 2.3.1, graphs

are composed by nodes (or vertices), edges and properties. For this reason,

since Gremlin information is graph-structured, the main components of the

structure are the following:

– Graph: it is composed by a set of vertices and edges.

– Element: elements are property collections and a string label that

refers to the element type. Element has two inheriting components:

Vertex and Edge. Vertices maintain a set of (incoming or outgoing)

edges whereas edges maintain a set of (incoming or outgoing) vertices.

– Property<V>: properties are pairs of key-value (being V the value of

the property) and may belong to vertices or edges.

• Components in the process context. As previously mentioned in this section,

Gremlin allows OLAP and OLTP. According to this feature, the process can

have two main components:

– TraversalSource: it is used to generate Traversal instances for a

particular graph. A Traversal instance represents a directed walk

over a graph. In this sense, TraversalSource is OLTP oriented.

47

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Depending on the domain, the graph can be represented using dif-

ferent concepts (e.g. social graphs can be represented by people and

cities). According to this, Gremlin provides GraphTraversalSource

and GraphTraversal, that are a traversal source and traversal DSL

oriented to the semantics of the graph (where concepts are vertices,

edges, etc.), respectively.

– GraphComputer: it is used to process the graph in parallel

and distributed over a multi-machine cluster. In this way,

GraphComputer is OLAP oriented. GraphComputer uses two com-

ponents: VertexProgram and MapReduce. First, GraphComputer ex-

ecutes VertexProgram component over all vertices in the graph in

parallel (with intercommunication via message passing). Second, it

executes a set of MapReduce jobs over the vertices to obtain a single

result.

Query basis

A Gremlin query expression is composed by a traversal (GraphTraversal

in the domain of graphs) and, as said before, traversals are generated from

a traversal source (GraphTraversalSource in graph domain). In this way,

GraphTraversalSource provides two methods to start a GraphTraversal:

• GraphTraversalSource.V(Object... ids): it generates the traversal

starting from the vertices of the graph indicated by the objects ids.

• GraphTraversalSource.E(Object... ids): it generates the traversal

starting from the edges of the graph indicated by the objects ids.

Notice that the objects ids are optional and, therefore, if they are not specified,

the traversal is generated starting from all vertices or edges in the graph. In

order to clarify the process of generating a traversal, observe the fragment of the

Gremlin console shown in Figure 3.2. First, a toy graph example is loaded in the

variable graph. Second, a GraphTraversalSource is obtained from this graph

using the method traversal() and it is stored in variable g. Then, since g is a

GraphTraversalSource, it is able to generate a GraphTraversal using E() or V()

methods.

48

3.3 Query Languages

Figure 3.2: GraphTraversalSource and GraphTraversal in Gremlin console

Once the traversal is generated, it is possible to implement a query.

GraphTraversal supports function composition, which means that it maintains

many methods that return a GraphTraversal in turn. These methods are called

steps and each step modulates the results of the previous one. Depending on the

effect that each step has over the previous step, it can be classified into three main

types:

• Map steps : they transform the resulting objects of the previous step to other

objects. The most common map steps are out() and in() methods, that

are used to get the vertices that are outgoing and incoming adjacent to the

vertices of the previous step.

• Filter steps: they remove objects of the result of the previous step. Some

examples of filter step are has(), and(), or(), where() and not() methods,

that will be explained in the following sections in detail.

• SideEffect steps: they yield some computational side effect in the process.

A common example of sideEffect step is groupCount() method, that will

be thoroughly explained in the following sections.

Finally, the GraphTraversal must be executed to obtain a final result. To

achieve this, Gremlin provides terminal steps. Some examples of terminal steps

49

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

are first(), that returns the first object of the query result, or toList(), that

returns a list with all objects of the query result.

Listing 3.6: Gremlin basis
1 //Basic Query
2 graph . traversal () . V ()
3 . hasLabel (" Tweet ")
4 . in (" contains ")
5 . toList () ;
6 // Traversals for creating vertices
7 v1= g .addV(" Hashtag ") . property (" text " ," winter ") . next () ;
8 v2= g .addV(" Tweet ") . property (" text " ," Winter i s coming ") . next () ;
9 // Traversal for creating an edge

10 g . V (v2) .addE(" contains ") . to (v1) . iterate () ;
11 // Traversal for updating a property
12 v1 . property (" text " ," invierno ") . next () ;
13 // Traversals for deleting
14 g . V () . hasLabel (" Tweet ") .drop () ;
15 g . E () .drop () ;
16 g . V () . properties (" text ") .drop () ;

In summary, a query in Gremlin is mainly composed of three parts:

(i) a GraphTraversalSource, (ii) a GraphTraversal, generated from the

GraphTraversalSource and composed by steps, and (iii) a result. As a basic

example, observe lines 2 to 5 of Listing 3.6. This query generates the traversal

from a traversal source (expression graph.traversal()) starting from the vertices

(line 2). Besides, it filters vertices that have the label Tweet, using a hasLabel()

step (filter step). Then, it gets the vertices that are incoming adjacent to them

(line 4) via contains edge (map step). Finally, the query returns all the results

in a list (line 5) with toList() method (terminal step). In this way, the source

of the traversal is composed by graph.traversal() expression, the traversal is

composed by the expressions of lines 3 and 4, and the result corresponds to line 5.

In addition to obtaining results, queries in Gremlin allow to insert, update and

delete vertices, edges or properties in the graph. We explain these operations in

the following as well as the most common methods to implement queries.

Inserting data

Gremlin allows to add new vertices, edges or properties to the graph by means

of methods. These methods are map/sideEffect steps, since they transform the

50

3.3 Query Languages

object of the previous graph to another object and imply a side effect in the

database. The three main methods to insert data in the database are the following:

• addV(): it allows to create a new vertex in the graph, indicating its label

between the parenthesis. Two examples of the use are shown in lines 7 and

8 of Listing 3.64. First traversal (line 7) adds a vertex labelled as Hashtag

to the database, whereas second traversal (line 8) adds a vertex labelled

as Tweet. Note that properties are not settled with this method. However,

Gremlin provides the method property() to add them to the vertices.

• property(): this method allows to create (or update) a vertex or edge

property. The property is written between the parenthesis of this method as

a key-value pair separated by a comma. In lines 7 and 8 of Listing 3.6, the

property with the key text and the values “winter” and “Winter is coming”

are added for the new hashtag vertex and tweet vertex, respectively.

• addE(): this method is used to add a new edge between two vertices in the

graph. As an example, observe line 10 of Listing 3.6. This pattern creates

an edge labelled as contains from vertex v2 (added in line 8) to vertex v1

(added in line 7).

Note that these methods have to be followed by a terminal step, to execute

the traversal.

Updating elements

Graphs can also be updated by modifying vertices or edges properties. As

stated in the previous section, the property() method allows to create a new

property or update it if its key exists for that vertex or edge already. As an

example, observe line 12 of Listing 3.6, where a property text is settled with the

value “invierno” for vertex v1 (added in line 7). Since this vertex already had that

property, the method will change its value from “winter” to “invierno”. Note how,

in this case, it is also necessary to add a terminal step at the end of the traversal,

in order to execute the property updating.

4We assume that g represents the traversal source from now on.

51

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Deleting elements

In order to delete vertices, edges or properties in the graph, Gremlin provides

the method drop(). This method is a map/sideEffect step, and thus it does not

need a terminal step to execute its side effect. Lines 14 to 16 of Listing 3.6 show an

example for deleting vertices, edges and properties, respectively. Then, the traversal

of line 14 deletes all vertices labelled as Tweet in the database, the traversal of

line 15 deletes all edges from the graph and, finally, the traversal of line 16 deletes

the property with key text for all vertices in the graph. Note that in the example

of like 16 the method used to select the properties is properties() (map step)

instead of property(). The properties() method is used to extract one or more

properties from the object of the previous step, whereas property() method is

used to add or update a property to the object of the previous step.

Filters and subqueries

Queries usually involve filters in order to remove non-relevant information

from the graph. According to our approach, and similarly to the Cypher filters

classification, we differentiate two types of filtering:

• Filtering by property: vertices and edges can be filtered according to their

property values. This way, Gremlin allows several methods and operations

to achieve this purpose. The most common method used to filter information

by a property value is has() method (filter step). This method allows to

filter the objects of the previous step that contain a specific value for a

property. This property is specified as a key-value pair inside the parenthesis

and separated by a comma. As example is shown in line 2 of Listing 3.7.

A query filters all vertices of the graph that have the value “winter” for

the property text. An important variance of has() method is hasLabel(),

that is used to filter objects by their label. An example of this method is

shown in line 3 of Listing 3.7, where vertices with label Hashtag are filtered.

In addition, there are more variances from has() method [114], such as

hasId() or hasKey().

52

3.3 Query Languages

Listing 3.7: Filtering, subqueries and aggregated operations in Gremlin
1 // Filtering by property
2 g . V () . has (" text " ," winter ") . next () ;
3 g . V () . hasLabel (" Hashtag ") . next () ;
4 // Filtering by subquery
5 g . V () . hasLabel (" Tweet ") .where(
6 __ . out (" contains ") . has (" text " ," winter ")) . next () ;
7 // Filtering by subquery with negation
8 g . V () . hasLabel (" Tweet ") . not (
9 __ . out (" contains ") . has (" text " ," summer ")) . next () ;

10 // Filtering by subquery with conjunction
11 g . V () . hasLabel (" Tweet ") .and(
12 __ . out (" contains ") . has (" text " ," winter ") ,
13 __ . out (" contains ") . has (" text " ," cold ")) . next () ;
14 // Filtering by subquery with disjunction
15 g . V () . hasLabel (" Tweet ") . or (
16 __ . out (" contains ") . has (" text " ," winter ") ,
17 __ . out (" contains ") . has (" text " ," spring ")) . next () ;
18 // Aggregation operations
19 g . V () . hasLabel (" Tweet ") . count () ;
20 g . V () . hasLabel (" Hashtag ") . in (" contains ") . hasLabel (" Tweet ")
21 .groupCount () . unfold ()
22 .where(__ . select (values) . i s (P . gte (3))) . next () ;

• Filtering by subquery: in this case, one or more subqueries are used to

filter the objects in the traversal. So, the previous objects of the filter step

must satisfy the conditions imposed by this step. There are many Gremlin

methods that involve filtering by subqueries [118], however, we highlight the

following since they are the most significant for our approach:

– where(): this method checks that the objects of the previous step

follow a specific path (described by a subquery inside the parenthesis)

to be selected in the filtering. As an example, lines 5 and 6 of Listing

3.7 show a query that filters the tweets that contain the hashtag

“winter”. In this way, those vertices must have the path described in

line 6.

– not(): in this case, the method implies the negation of a subquery.

In other words, it checks that the objects of the previous step do not

follow the path contained between the parenthesis to be selected in

the filtering. Lines 8 and 9 of Listing 3.7 show an example of the use

of this method. This query obtains all tweets in the graph that do not

contain the hashtag ‘summer’. In this way, vertices can not have the

53

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

path described in line 9 to be included in the filtering.

– and(): this method has the same behaviour as where() method but

it implies the conjunction of two or more subqueries in the filter. In

this way, the objects of the previous step have to satisfy all subqueries

contained between brackets. For example, the query of lines 11 to 13

of Listing 3.7 filters all tweets that contain the hashtags winter and

cold.

– or(): similar to and() method, this method includes two or more

subqueries in the filtering. However, it implies the disjunction of these

subqueries i.e. the objects of the previous step have to satisfy at least

one subquery contained between brackets. For example, lines 15 to

17 of Listing 3.7 show a query that filters the tweets that contain the

hashtags winter or spring.

Note that these methods are also used to filter by property [113, 115, 116, 117].

However, our approach uses the has() method and its variants.

Aggregation Operations

Aggregation operations are commonly used to implement queries. They imply

a map step that transforms the objects into aggregated results. Some examples

of these operations are counting objects or summing property values. Similar to

Cypher language, we classify the use of aggregation operations in two manners:

• Aggregation as results: Gremlin provides several methods to obtain aggre-

gated results, such as count(), max(), min(), etc. All of them are map

steps. As an example, observe line 18 of Listing 3.7, where the query counts

the number of tweets contained in the database.

• Aggregation as filters: the aggregation is used to filter the information. A

common method for this purpose is groupCount() (map/sideEffect step).

This method counts how many times the previous object appears in the

traversal and returns a list with the objects and the number of appearances

for each object. This list can be filtered in turn, in order to obtain just a

part of the objects that it contains. As an example, observe lines 20 to 22 of

54

3.3 Query Languages

Listing 3.7. This query counts the number of hashtags for each tweet (lines

20 to 21) and it returns only those tweets that contain at least 3 hashtags

(line 22).

3.3.4 GraphFrames

GraphFrames [106] is a package for Apache Spark that allows to work with

graphs using DataFrames. It provides powerful tools to implement and run queries

and algorithms, that are commonly used for graph analytics (e.g. PageRank [96]).

As stated in Section 3.2.7, DataFrames integrates the benefits of Spark RDDs

and Spark SQL. Therefore, GraphFrames syntax is inspired in SQL language,

which means that it provides a logical syntax that is easy to understand. Similar

to Gremlin language, GraphFrames are designed to be embedded in common

programming languages. Consequently, it provides APIs for Scala, Java and

Python.

In this section, we expose the most common functionalities of GraphFrames.

However, many more operators are provided by Apache Spark for this package.

These operators can be found in [107].

Main concepts

GraphFrames are generally created from two DataFrames:

• Vertex DataFrame: this DataFrame contains at least one column called

id, which specifies an unique ID for each vertex in the graph.

• Edge DataFrame: it contains at least two main columns: (i) src column,

that refers to the source vertex ID, and (ii) dst column, which refers to the

destination vertex ID.

In addition, both components can have arbitrary number of other columns,

that represent vertex and edge properties. In this way, GraphFrames are created

by indicating a vertex DataFrame and an edge DataFrame. Listing 3.8 shows

an example that creates a GraphFrame from a vertex DataFrame and an edge

DataFrame with Scala code. This example represents a simplified version of the

TwitterFlickr case study that contains four TwitterUser vertices, one Tweet and

55

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

two Hashtag vertices. From lines 2 to 10 the vertex DataFrame is created from a list

that contains the vertices of the graph. Each vertex has five properties represented

by columns (label, name, location, text and date) and the column id. Note that

some property values are empty strings. This is because these properties do not

belong to the object of that vertex instance, as can be observed in the metamodel

depicted in Figure 3.1. For instance, observe how the object TwitterUser does not

have a property text. However, since DataFrames are collections of data organized

as columns and all vertices of the graph are represented in the same DataFrame,

they have the same structure and the same properties. In this way, the properties

that are not included in the metamodel for a specific object will be represented as

empty strings in its tuples.

Listing 3.8: GraphFrames basic
1 // Vertex DataFrame
2 val v = sqlContext . createDataFrame (List (
3 (0 , "TwitterUser " , "George B . " , "Dublin " ,"" ,"") ,
4 (1 , "TwitterUser " , "Mike R . " , "London " ,"" ,"") ,
5 (2 , "TwitterUser " , "Mary C . " , "Madrid " ,"" ,"") ,
6 (3 , "TwitterUser " , "Cindy M . " , "Rome " ,"" ,"") ,
7 (4 , "Tweet " , "" , "" ," Winter is coming " ,"12/12/2019") ,
8 (5 , "Hashtag " , "" , "" ," cold " ,"") ,
9 (6 , "Hashtag " , "" , "" ," winter " ,"")

10)) .toDF(" id " , "label " , "name " ," location " ," text " ," date ")
11 // Edge DataFrame
12 val e = sqlContext . createDataFrame (List (
13 (0 , 1 , "follows ") ,
14 (1 , 2 , "follows ") ,
15 (2 , 3 , "follows ") ,
16 (2 , 0 , "follows ") ,
17 (3 , 4 , "publishes ") ,
18 (4 , 5 , "contains ") ,
19 (4 , 6 , "contains ")
20)) .toDF(" src " , "dst " , "relationship ")
21 // Create a GraphFrame from vertex and edge DataFrames
22 val g = GraphFrame(v , e)

On the other hand, in lines 12 to 20, the edge DataFrame is created and it

represents the connections among the vertices contained in vertex DataFrame. Edge

DataFrame contains src and dst columns and an additional column to describe

the label of the edge (column relationship). Finally, in line 22, the GraphFrame is

created from v and e values.

56

3.3 Query Languages

Query basis

GraphFrames uses a simple DSL for expressing queries. Since this DSL is SQL

based, it is very similar to Cypher. More specifically, GraphFrame queries are

usually built from two methods:

• find(): this method indicates the path to find in the graph in the form of

small patterns separated by semicolons. Similar to Cypher syntax, nodes

are represented by a label referring to the node inside parenthesis (e.g. (n)),

whereas edges are represented in the form of -[e]->, where e is also a label

referring to the edge.

• filter(): this method filters the information according to the properties

of nodes and edges contained in the pattern of find() method. For this

purpose, it uses the labels settled in find() method to refer to nodes and

edges.

An example of query over a GraphFrame is depicted in lines 2 to 5 of Listing

3.9. This query searches the users that follow the user with name “Mary C.” and

that are also followed by her. It returns a DataFrame with four columns called a,

e, b and e1. Note how the pattern is specified in the find() method separated by

semicolons, whereas the property filters are specified in filter() method separated

by AND operators.

In addition, GraphFrames queries present some other similarities with Cypher

language such as they do not identify distinct elements with different labels, i.e. two

elements with different labels may refer to the same graph element. For example,

in the patterns (a)-[e]->(b) and (b)-[e1]->(c), a and c may refer to the same

node. However, a restriction can be added to the filter() method to avoid this

situation (such as a.id != c.id). Furthermore, GraphFrame queries can also

express anonymous edges or nodes by indicating them with empty brackets or

empty parenthesis, respectively.

However, since GraphFrame does not allows to modify the graph, it does not

provide methods to insert, delete or update the information. Therefore, if an

update of the information is needed, it is necessary to create a new graph and

override the existing one.

57

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Filters and subqueries

Many complex queries can be expressed using filter() and other similar

methods. Within the framework of our proposal, GraphFrame queries represent

two types of filters:

• Filtering by property: nodes and edges can be filtered by their property

values. To achieve this, GraphFrames provide two methods, in addition to

filter() method exposed in the previous section: (i) filterVertices()

and (ii) filterEdges(). These methods allow to filter the graph according

to the property value of nodes or edges respectively. Two examples of these

methods are shown in lines 7 and 8 of Listing 3.9. The query of line 7 selects

the vertices that contain the property text with the value “winter”, whereas

the query of line 8 selects the graph composed by the edges with the value

“follows” for the property relationship.

• Filtering by subquery: in this case, the information is filtered according

to one or several patterns. Unlike other query languages, GraphFrames do

not provide methods to filter by subquery. This type of filtering must be

performed by describing the pattern using AND and OR operations over

properties and edges in filter() method. In order to follow the same line

of work for all query languages exposed in this chapter, lines 10 to 30 show

the GraphFrame version of the queries exposed for where(), not(), and()

and or() operators in Cypher. In this way, lines 10 to 13 show a query that

filters according to a single pattern, whereas lines 15 to 18 show a query

that filters according to the non-existence of a pattern. Furthermore, queries

of lines 20 to 25 and lines 27 to 30 filter the information according to two

different patterns. However, the former implies the conjunction of both

patterns to filter the information, whereas the latest implies the disjunction

of the patterns.

Aggregation Operations

GraphFrames also provides methods to express aggregation operations. Ac-

cording to our approach, these operations can be applied in two manners:

58

3.3 Query Languages

Listing 3.9: GraphFrames queries
1 // Basic query
2 g . find (" (a)−[e]−>(b) ; (b)−[e1]−>(a) ")
3 . f i l t e r (" e . relationship = 'follows '
4 AND "e1 . relationship = 'follows '
5 AND b . name='Mary C.'") ;
6 // Filter by property
7 g . f i l terVertices (" text = 'winter '") ;
8 g . fi lterEdges (" relationship = 'follows '") ;
9 // Filter by subquery

10 g . find (" (a)−[e]−>(b) ")
11 . f i l t e r (" a . label = 'Tweet '
12 AND e . relationship = 'contains '
13 AND b . text = 'winter '") ;
14 // Filter by subquery with negation
15 g . find (" ! (a)−[]−>(b) ")
16 . f i l t e r (" a . label = 'Tweet '
17 AND e . relationship = 'contains '
18 AND b . text = 'summer '") ;
19 // Filter by subquery with conjunction
20 g . find (" (a)−[e]−>(b) ; (a)−[e1]−>(c) ")
21 . f i l t e r (" a . label = 'Tweet '
22 AND e . relationship = 'contains '
23 AND e1 . relationship = 'contains '
24 AND b . text = 'winter '
25 AND c . text = 'cold'") ;
26 // Filter by subquery with disjunction
27 g . find (" (a)−[e]−>(b) ")
28 . f i l t e r (" a . label = 'Tweet '
29 AND e . relationship = 'contains '
30 AND (b . text = 'winter ' OR b . text = 'cold'")) ;
31 // Aggregation operations
32 g . vertices . f i l t e r (" label = 'Tweet '") . count () ;
33 g . find (" (a)−[e]−>(b) ")
34 . f i l t e r (" a . label = 'Tweet '
35 AND e . relationship = 'contains '
36 AND b . label = 'Hashtag '")
37 .groupBy(" a ") . count () . select (" a ") .where("count >= 3") ;

• Aggregation as results: GraphFrames syntax provides several methods to

obtain aggregated results, such as count(), min(), max(), inDegrees (it

counts the number of incoming edges) or outDegrees (it counts the number

of outgoing edges). An example of query that uses a method to obtain an

aggregated result is shown in line 32 of Listing 3.9, where the number of

tweets in the graph is returned.

• Aggregation as filters: same as for Gremlin and Cypher languages, Graph-

Frames syntax allows to filter by aggregation operators. For this purpose,

groupBy() method is used. This method groups the information according

59

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

to a node, edge or property indicated between the parenthesis. An example

of this use is depicted in lines 33 to 37 of Listing 3.9, where the information

is filtered by the tweets that contain at least 3 hashtags. Note that after the

use of groupBy() method, the method count() is used to count the number

of occurrences of a node in the pattern, and where() method selects those

that occur at least three times.

3.4 Performance Analysis and Evaluation

In this section, we discuss the performance of technologies and DSLs proposed

in Section 3.2 and Section 3.3. In order to study the application of queries in

very-large graphs in terms of performance and complexity of the syntax, we have

selected two case studies from the literature [13, 111]. In this approach, performance

is understood as the execution time of the queries and complexity of the syntax

refers to how verbose and difficult to write typical graph queries are, depending on

the DSL.

3.4.1 Research Questions

In order to choose the technology that suits our proposal in a better way, we

are interested in answering the following research questions:

• RQ1: How is the latency of each proposed technology when per-

forming queries over very large graphs? Our hypothesis is that all

technologies allow to get execution times for responses that make them

suitable for real-time processing. However, we are interested in knowing an

approximate average value of the execution times of the queries on very large

models in order to compare all technologies. We consider that a very large

model contains at least 2 million elements between objects and relationships.

In addition, since real-time processing imposes a continuous processing of

the data, we consider that the most suitable technology for these types of

applications will be the one that takes less time to get the results (with a

scale of seconds at most).

• RQ2: Which overhead implies modifying the graph as result of

the query for each proposed technology? Queries in our approach do

60

3.4 Performance Analysis and Evaluation

not simply return nodes in the graph, but they typically have a side effect

on the graph, such as adding, deleting or updating information in the model.

For this reason, we are interested in measuring the execution times of these

side effects over the graph. Our hypothesis is that they do not imply a big

overhead regarding the whole execution time of the query, meaning these

technologies could be used for real-time processing.

• RQ3: How is the syntax complexity for each proposed DSL? Our

hypothesis is that DSLs for graph databases provide less complexity when

querying graphs than the rest of DSLs exposed in this chapter, since they are

designed to manipulate graphs by replacing table joins of relational databases

by mechanisms to traverse relationships between objects. However, we are

interested in studying which language allows to write queries in a simpler

manner.

• RQ4: Which DSL and processing platform provide the best com-

bination regarding complexity of the language and latency of the

query? Since low-latency is one of our most important requirements, we

choose the technology for our proposal according to this parameter. Besides,

an expressive DSL is needed in order to classify and write queries over

graphs. Thus, both features will be compared for all proposed technologies

in order to select the most appropriate.

3.4.2 Case studies

This section describes two examples that have been used to evaluate and

compare the platforms and DSLs exposed in Section 3.2 and Section 3.3. These

examples were chosen to capture different situations that can be interesting in real

scenarios since they deal with very-large graphs. In addition, queries cover the

main concepts of the query languages explained in Section 3.3.

TwitterFlickr case study

The first case study corresponds with the metamodel and queries of the running

example exposed in Section 3.1. This example was proposed in a previous work [13],

61

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

where an extension of a CEP system was presented to work with graph-structured

information.

TrainBenchmark case study

This case study and its queries have been extracted from a work of Szárnyas et

al. [111]. The metamodel of this example is depicted in Figure 3.3, where Figure

3.3a represents the main hierarchy and references and Figure 3.3a represents the

supertype relationships among the objects. This metamodel represents a railway

that is composed of Routes, that require Sensors in order to provide safety. A

Route is considered any logical path of the railway. Sensors monitor the occupancy

of the Track Elements, that can be Segments or Switches. Each route follows

certain Switch positions. A switch position describes the prescribed position of

a switch belonging to the route. Positions can be straight or diverging. Routes

can specify different positions for the same switch too. So, a route is active if all

its switches are in the position prescribed by the switch positions followed by the

route. Finally, there are Semaphores in entry and exit points of the routes that

emit a signal (GO or STOP).

This case study pretends finding different anomalies in the railway and repairing

them by using the following six queries:

• Q1. PosLength. All segments in the graph must have a positive length.

Then, this query selects all segments with a length less than or equal to zero

and updates them with a positive length.

• Q2. SwitchMonitored. Every switch must have at least one sensor

connected to it. In this way, this query selects all switches that do not have

associated sensors. In order to repair this problem, a new sensor is created

and connected to the switch.

• Q3. RouteSensor. In the railway, a sensor associated with a switch that

is located in a route must also be associated to that route. Therefore, this

query obtains all routes that follow a switch position that targets a switch

that is monitored by a sensor but they are not connected to the sensor via

requires relationship (cf. Figure 3.3). In these cases, the query will insert

62

3.4 Performance Analysis and Evaluation

(a) Containtment hierarchy and references

(b) Supertype relationships

Figure 3.3: TrainBenchmark metamodel [111]

a new requires relationship from the route to the sensor, in order to repair

the problem.

• Q4. SwitchSet. A semaphore shows the signal GO when all switches of

the corresponding route are in the position prescribed by the route. This

query selects all routes that have an entry semaphore with GO signal and

their switch positions define a different position than the current position

of their associated switches. Then, it repairs this problem updating the

currentPosition property of the switch to the position described by the

switch position.

63

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

• Q5. ConnectedSegments. Each sensor in the network must have five

segments associated to it at most. Then, this query selects all sensors that

have at least six segments attached to them (called segment1, segment2,

segment3, segment4, segment5 and segment6), deletes segment2 and connect

segment1 and segment3 between them via connectsTo relationship (cf. Figure

3.3).

• Q6. SemaphoreNeighbor. Two or more routes that are connected

through a pair of sensors and a pair of track elements must belong to

the same semaphore. Therefore, this query selects all routes that have an

exit semaphore and a sensor that is connected to a track element, which is

connected to a second track element. In addition, it checks that the second

track element is connected to a second sensor that defines a second route. If

this route does not have the semaphore as its entry, the query connects the

second route with the semaphore via entry relationship (cf. Figure 3.3).

Note that all queries of TwitterFlickr example contain aggregation operations,

among other operators, whereas TrainBenchmark example queries only contain

filters. Then, all possible operators exposed in the previous sections are represented

by these queries.

3.4.3 Experimental Setup

In this section, we expose all the parameters used to perform our experiments.

These parameters refer to the source models, the methods used to measure the

execution times of the queries and the execution environment where they were run.

Source Models

Our experiments have been executed on models of different sizes in order to

analyze the performance of the queries with the platforms and DSLs exposed in

Section 3.2 and Section 3.3. The number of objects and relationships for each model

are shown in Table 3.3. Note that models of the different case studies conform to

different metamodels and, for this reason, the size of the models is quite different

in both examples. Note that the largest models contain between 13 and 14 millions

of elements (adding relationships and objects). The name of the models is assigned

64

3.4 Performance Analysis and Evaluation

Case study Name Objects Relationships

TwitterFlickr

2M 63,561 2,047,431
2M5 71,225 2,351,293
3M 83,212 2,780,912
4M 96,287 3,909,397
6M5 126,009 6,468,907
14M 265,102 13,635,513

TrainBenchmark

3K 741 2,135
8K 2,038 5,898

22K5 5,777 16,786
45K 11,499 33,408
90K 23,233 67,464
200K 50,623 147,076
420K 107,352 312,053
820K 210,789 612,566
1M5 414744 1,182,298
3M 839,057 2,392,113
6M5 1,672,750 4,861,332
13M 3,347,214 9,727,504

Table 3.3: Summary of the models used in the experiments.

according to the approximate sum of the number of objects and relationships

(e.g. model 2M of TwitterFlickr case study contains around 2 millions of elements

and model 2M5 contains 2.5 millions of elements approximately). Note that the

models of the TwitterFlickr case study have been created manually according to

the metamodel depicted in Figure 3.1, whereas the models of the TrainBenchmark

example have been extracted from the sources provided by [111].

Measurement methods

In order to study the latency of the queries for the case studies exposed in

Section 3.4.2, four sets of experiments have been performed. These experiments

have been designed according to two parameters:

• Parallel vs Single executions. For each case study and platform, two

types of executions have been designed for the queries. First, they have

been run in a single execution without any other query running at the same

time. Then, they have been run in parallel with the rest of the queries.

65

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

• Query with and without effect. Since queries presented in both case

studies modify the initial graph as a result (creating, updating or deleting

elements), they can be run in two different manners. First, queries were

run returning the filtered elements without any effect over the graph, i.e.

removing the part of the query that is in charge of modifying the graph.

Second, they were run generating their respective effects over the graph.

This way, the four sets of experiments consist on: (i) single executions of queries

without effect, (ii) single executions of queries with effect, (iii) parallel executions

of queries without effect and (iv) parallel executions of queries with effect over the

graph.

Execution times were measured running the queries and registering their

computation times using the System.currentTimeMillis() Java method. In

order to isolate our results from any transitory load of the machine where tests were

run, all experiments were run up to 6 times each. Average performance values were

extracted from last 3 runs. In addition, the standard deviation and the coefficient

of variation have also been calculated in order to study the variations that occur

among the run measurements.

Execution environment

All experiments have been run on a machine with running operating system

Ubuntu 16.04.5 LTS 64 bits, Linux kernel 4.4.0-151-generic, with 64GB of RAM,

and an Intel Xeon CPU E5-2680 processor with 16 cores of 2.7 GHz. Besides, our

experiments have been run setting 30G for maximum memory allocation pool for

the JVM.

Java version 1.8.0_144 with Oracle JDK vendor was used for all implemen-

tations. For TinkerGraph, OrientDB and JanusGraph implementation we used

Gremlin-java version 2.6.0 and TinkerGraph-gremlin 3.3.4, orientdb-gremlin 3.1.0

and janusgraph-berkeleyje and janusgraph-lucene 0.3.0, respectively. Crate-jdbc

2.3.1 was used for CrateDB implementation. Scala version 2.11.12, Spark version

2.3.2, GraphFrames package version 0.6.0 and Spark-SQL version 2.0.0 were used

for GraphFrames implementation. Finally, neo4j-java driver version 1.4.4 and Neo4j

version 3.1.0 were used for both Memgraph and Neo4j implementations.

66

3.4 Performance Analysis and Evaluation

Finally, recall that Memgraph, TinkerGraph, OrientDB and GraphFrames

implementations run in memory whereas CrateDB, Neo4j and JanusGraph imple-

mentations store the information in disk.

3.4.4 Results

In this section, we answer the four research questions and discuss the results of

the experiments performed to compare the technologies and DSLs described in the

previous sections.

RQ1: Query latency

To answer this research question, let us focus on the charts depicted in Figure 3.4

and Figure 3.5, which display the execution times for queries without effect of

TwitterFlickr example for single and parallel executions respectively. We will also

focus on Figure A.1 and Figure A.2 of Appendix A.2, which display the same

information for TrainBenchmark example. Besides, Table 3.4 shows a summary

of the execution times for each processing platform regarding model size. These

values have been obtained calculating the average of the execution times of all

queries for each model size in both case studies. In this table, rows 3 to 9 and

19 to 25 show the average execution times for TwitterFlickr and TrainBenchmark

examples with single runs, whereas rows 10 to 16 and 26 to 32 show the average

execution times for TwitterFlickr and TrainBenchmark examples with parallel runs,

respectively. Note that some values are not shown in this table. This is because

these experiments caused memory overflow errors because of the source model size.

Finally, we noticed that the experiments with parallel runs showed interference

among queries that affected the execution times and, therefore, they presented high

values for the standard deviation. In order to study the percentage of variation

between the measurements, we calculated the coefficient of variation of both case

studies for parallel executions as follows:

CV =
σ

µ
· 100

Where σ is the standard deviation and µ is the execution time average. Results

are shown in Table 3.5 and TableA.1 of Appendix A.2.

67

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

(a) HotTopic (b) PopularF lickrPhoto

(c) PopularTwitterPhoto (d) NiceTwitterPhoto

(e) ActiveUserTweeted

Figure 3.4: Execution time results for queries without effect of TwitterFlickr
example with single runs

68

3.4 Performance Analysis and Evaluation

(a) HotTopic (b) PopularF lickrPhoto

(c) PopularTwitterPhoto (d) NiceTwitterPhoto

(e) ActiveUserTweeted

Figure 3.5: Execution time results for queries without effect of TwitterFlickr
example with parallel runs

69

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

First, we can see in Figure 3.4 that CrateDB presents the lowest execution

times for almost all single execution queries of TwitterFlickr example. However,

in Figure A.1, it presents the highest execution times for single execution queries

of TrainBenchmark example. The reason is that CrateDB is not designed for

graph computation and, since TrainBenchmark queries are composed by filters and

path traversals, their performance is worse than for TwitterFlickr queries, which

are mainly composed of aggregation operators. In this way, since SQL provides

optimised functions to filter by aggregation operators, CrateDB obtains a high

performance in TwitterFlickr queries. In addition, observe in Table 3.4 how parallel

runs make the execution time worse for CrateDB results to a greater extent than

the rest of platforms. In order to clarify this circumstance, see how the coefficients

of variation of Tables 3.5 and A.1 for CrateDB platform are the highest in all

cases. This is due to the existence of a great interference between query executions

when they run in parallel, since the execution time measurements obtained are

very different from each other.

On the other hand, observe how Memgraph, TinkerGraph and OrientDB

present lower execution times than Neo4j and JanusGraph in the majority of

charts of Figures 3.4 and 3.5. This is because their implementation is in memory,

contrarily to Neo4j and JanusGraph that store the information in disk. How-

ever, observe the execution times results of OrientDB in Figures 3.4b and 3.5b

and Figures 3.4d and 3.5d that show the results for PopularFlickrPhoto and

NiceTwitterPhoto queries, respectively. In these cases, OrientDB presents higher

execution times than Neo4j or JanusGraph. Note that these queries contain two

aggregation operations (cf. Section 3.1). For this reason, we can conclude that

performance in OrientDB gets worse as a higher number of aggregation operations

are used in a query. Regarding TrainBenchmark example, execution time results

of queries ConnectedSegments, RouteSensor and SemaphoreNeighbor (Figures

A.1c, A.2c, A.1e, A.2e, A.1f and A.2f) present similar values for OrientDB, Neo4j

and JanusGraph. In addition, observe in Table 3.4 that the execution time averages

for TwitterFlickr example with OrientDB are higher than execution time averages

of the rest of technologies; whereas average times for TrainBenchmark example

with this technology present a steeper growth curve than the rest of technologies,

excepting for CrateDB. This means the penalty that comes from the slowest queries

implies that even disk implementations outperform OrientDB. Regarding the other

70

3.4 Performance Analysis and Evaluation

Experiment Tech Models

2M 2M5 3M 4M 6M5 14M

TF Single

TinkerGraph 3,061 3,591 5,044 7,193 10,608 22,468
Neo4j 25,422 15,922 21,257 27,667 34,787 263,737

JanusGraph 36,182 40,652 52,754 76,643 122,244 -
OrientDB 133,314 171,452 267,617 478,438 701,625 1,402,423
CrateDB 448 575 645 1,039 1,446 3,050

Memgraph 421 1,232 1,177 2,842 4,623 10,492
GraphFrames 17,233 17,466 18,567 21,881 26,645 39,429

TF Parallel

TinkerGraph 3,499 3,994 4,747 6,910 10,969 22,550
Neo4j 26,595 43,230 20,702 28,393 36,867 373,875

JanusGraph 55,906 58,372 80,972 103,398 189,243 -
OrientDB 169,732 191,531 398,669 - - -
CrateDB 2,316 2,531 3,260 4,755 5,930 11,556

Memgraph 428 1,298 1,231 3,052 5,226 11,572
GraphFrames 71,467 76,936 81,621 92,317 113,373 169,070

Experiment Tech Models

420K 820K 1M5 3M 6M5 13M

TB Single

TinkerGraph 151 316 584 1,270 2,575 4,821
Neo4j 4,930 9,737 4,158 7,885 10,742 21,692

JanusGraph 6,833 12,558 37,598 72,843 142,712 -
OrientDB 3,090 5,383 11,265 34,434 113,140 -
CrateDB 9,507 56,867 196,715 803,027 3,193,544 -

Memgraph 829 1,589 3,212 6,502 13,523 26,886
GraphFrames 6,811 7,824 10,242 66,310 - -

TB Parallel

TinkerGraph 185 375 681 1,741 4,624 8,166
Neo4j 5,943 11,689 5,307 9,663 13,252 25,175

JanusGraph 9,406 20,510 51,213 115,522 277,571 -
OrientDB 3,572 9,245 17,569 52,835 82,502 -
CrateDB 29,840 213,914 1,060,149 3,285,652 14,330,287 -

Memgraph 960 1,893 3,732 7,592 15,572 33,241
GraphFrames 30,417 38,632 52,880 376,672 - -

Table 3.4: Execution time averages (ms) depending on size model

71

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

two in-memory graph database implementations, Memgraph outperforms Tinker-

Graph for TwitterFlickr example, whereas TinkerGraph outperforms Memgraph

for TrainBenchmark example (cf. Table 3.4).

Finally, we can observe in Figures 3.4, 3.5, A.2 and A.1 and Table 3.4 that Neo4j

queries are faster than JanusGraph queries, which means that Neo4j outperforms

JanusGraph. In addition, note how execution times obtained with Neo4j are usually

lower than execution times obtained with GraphFrames for single and parallel runs

(cf. Figures 3.4, 3.5, A.1 and A.2). Therefore, Neo4j outperforms GraphFrames

and JanusGraph in most cases, as it was previously shown in Table 3.4.

With all this information, we can answer RQ1 as follows:

• TinkerGraph and Memgraph present the best performance averages. The

reason is they have in-memory implementations.

• CrateDB obtains a high performance with queries that imply aggregation

operations. However, it presents a low performance for queries that require

traversing edges in a graph.

• CrateDB presents serious interference when running queries in parallel.

• GraphFrames, JanusGraph and Neo4j obtain an intermediate performance

with respect to the rest of technologies when querying graphs. However,

Neo4j usually outperforms GraphFrames and JanusGraph.

• OrientDB presents a similar performance than Neo4j and JanusGraph, even

when it uses in-memory implementation.

• Among disk implementations, Neo4j and JanusGraph outperform CrateDB

in most cases. Furthermore, Neo4j queries are faster than JanusGraph

queries.

RQ2: Update latency

Now, let us focus on the charts depicted in Figures 3.6 and 3.7, which display

the execution times for queries with effect of TwitterFlickr example for single and

parallel executions, respectively; and Figures A.3 and A.4 of Appendix A.2, which

display the same information for TrainBenchmark example. Note that some values

72

3.4 Performance Analysis and Evaluation

Query Name Tech Models

2M 2M5 3M 4M 6M5 14M

HotTopic

TinkerGraph 5.58 1.63 6.00 5.12 1.16 2.34
Neo4j 2.55 6.94 2.41 8.17 3.54 3.24

JanusGraph 26.01 17.75 22.06 16.44 15.02 -
OrientDB 54.63 42.68 26.14 66.00 - -
CrateDB 120.29 120.59 17.49 98.57 93.82 56.14

Memgraph 4.85 3.15 2.18 0.84 5.72 4.39
GraphFrames 28.86 27.42 24.93 44.06 39.82 16.65

PopularFlickrPhoto

TinkerGraph 11.49 6.88 4.05 5.94 3.35 0.94
Neo4j 14.97 5.65 29.58 4.66 6.16 2.87

JanusGraph 7.14 1.85 25.80 3.77 2.72 -
OrientDB 1.67 1.47 19.91 - - -
CrateDB 74.29 37.09 76.64 15.25 19.41 25.27

Memgraph 7.22 9.06 2.00 9.65 2.69 2.97
GraphFrames 10.44 14.94 12.62 10.24 3.82 8.10

PopularTwitterPhoto

TinkerGraph 2.25 5.02 8.66 8.23 5.44 13.99
Neo4j 13.11 5.57 4.43 29.58 40.34 20.26

JanusGraph 25.22 12.23 6.40 5.66 27.93 -
OrientDB 41.71 70.32 26.48 25.30 81.16 -
CrateDB 59.03 73.70 98.57 53.54 85.92 30.50

Memgraph 0.83 6.25 1.88 3.48 6.49 7.51
GraphFrames 13.77 11.68 7.56 9.24 12.19 2.82

NiceTwitterPhoto

TinkerGraph 1.83 6.28 7.47 6.40 14.38 0.214
Neo4j 20.95 16.89 6.73 4.03 3.12 3.87

JanusGraph 6.37 2.45 2.77 3.98 6.25 -
OrientDB 7.58 0.76 2.00 5.01 14.28 -
CrateDB 90.82 34.32 77.39 10.28 39.83 69.25

Memgraph 4.73 0.86 4.67 2.38 4.94 2.26
GraphFrames 12.56 16.65 14.37 9.53 9.71 9.09

ActiveUserTweeted

TinkerGraph 1.01 4.59 15.86 7.24 4.86 14.65
Neo4j 3.77 1.73 2.38 1.10 1.02 0.22

JanusGraph 6.37 2.45 2.77 3.98 6.25 -
OrientDB 7.58 0.76 2.00 5.01 14.28 -
CrateDB 62.36 38.88 13.82 54.75 77.89 27.30

Memgraph 0.51 1.60 2.46 3.77 22.30 9.16
GraphFrames 76.91 81.95 80.46 76.26 72.23 80.70

Table 3.5: Coefficient of variation (%) of TwitterFlickr queries without effect and
parallel runs.

73

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

are not depicted for some model sizes and case studies. This is because parallel

experiments presented concurrency problems when modifying the graph with several

queries running in parallel (e.g. queries for Neo4j and Memgraph experiments). In

addition, we have not run any experiment with OrientDB queries in parallel with

effect over the graph, since multi-threading is not supported when using Gremlin

language as it is expose in its documentation [28]. Regarding queries in single

experiments, some of them take too long and the trend line can already be inferred,

so there is no real need to compute them (e.g. CrateDB, Neo4j and JanusGraph

experiments for TrainBenchmark example). Besides, Table 3.6 shows a summary

of the execution times for each processing platform regarding model size. These

values have been obtained in the same manner as those in Table 3.4. Therefore,

rows 3 to 8 and 17 to 22 show the average execution times for TwitterFlickr and

TrainBenchmark examples with single runs, whereas rows 9 to 14 and 23 to 28

show the average execution times for TwitterFlickr and TrainBenchmark examples

with parallel runs, respectively. Finally, Table 3.7 displays how much execution

time increases when the effect of the query is reflected in the graph—percentages

are shown. These values are calculated in the following manner:

4T = 100 · t̄M − t̄Q
t̄Q

(3.1)

where t̄M is the average of the execution times for queries with effect over the

graph and t̄Q is the average of the execution times for queries without effect over

the graph.

Note that some values are also not shown in these tables, for the same reasons

stated for the graphics. Besides, since GraphFrames do not provide functions to

modify the graph, there are not lines referring to this technology in the graphics.

First, observe how Neo4j and JanusGraph present the highest execution times

for almost all graphics of Figures 3.6 and 3.7 for TwitterFlickr example. The

reason is that they store the graph into disk and accessing disk is more costly

than accessing memory. Regarding TrainBenchmark example, CrateDB presents

the highest execution times, since it is not designed to work with graphs and

TrainBenchmark queries are mainly composed by filters that traverse edges (cf.

RQ1). However, if we consult the results of Table 3.6, we can observe that Neo4j

and OrientDB obtain the highest average execution time in both case studies and

74

3.4 Performance Analysis and Evaluation

Experiment Tech Models

2M 2M5 3M 4M 6M5 14M

TF Single

TinkerGraph 3,186 4,227 4,768 7,260 12,175 25,162
Neo4j 25,870 40,453 20,559 29,667 38,319 370,804

JanusGraph 38,913 49,455 53,177 81,612 117,246 -
OrientDB 135,967 174,957 230,198 448,458 664,727 1,636,927
CrateDB 516 720 773 1,268 1,609 3,443

Memgraph 413 855 1,009 1,904 2,954 7,991

TF Parallel

TinkerGraph 3,378 4,150 4,845 7,201 11,418 25,574
Neo4j 25,768 42,180 22,433 - - -

JanusGraph 51,585 67,487 77,478 135,398 218,998 -
OrientDB - - - - - -
CrateDB 515 710 790 1,232 1,825 3,535

Memgraph 439 957 - - - -

Experiment Tech Models

420K 820K 1M5 3M 6M5 13M

TB Single

TinkerGraph 152 290 615 1,187 2,632 5,253
Neo4j 88,410 397,606 1,637,751 - - -

JanusGraph 7,442 14,074 32,190 61,800 128,325 -
OrientDB 2,684 5,666 14,177 42,713 146,364 1,186,161
CrateDB 13,447 61,167 226,460 936,874 - -

Memgraph 140,121 588,041 - - - -

TB Parallel

TinkerGraph 150 275 685 - 4,566 8,098
Neo4j 99,823 405,467 - - - -

JanusGraph 11,367 17,678 56,544 112,923 272,512 -
OrientDB - - - - - -
CrateDB 35,389 106,603 227,880 954,774 - -

Memgraph - - - - - -

Table 3.6: Execution time averages (ms) depending on model size (with effect over
the graph)

they present concurrency problems when modifying the graph with parallel queries,

as explained before. Furthermore, since OrientDB does not support multi-threading

with Gremlin and taking into account the results obtained in RQ1, we decided

to stop the experiments with this technology. Besides, Memgraph also presents

concurrency problems for both case studies when modifying and updating the

graph in parallel. Finally, TinkerGraph and JanusGraph results show that queries

with effect over the graph behave similarly as queries without effect over the graph

(cf. RQ1). However, execution times of TinkerGraph queries are faster than

JanusGraph queries.

Now, observe results of Table 3.7. Note that some values are negative per-

75

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

(a) HotTopic (b) PopularF lickrPhoto

(c) PopularTwitterPhoto (d) NiceTwitterPhoto

(e) ActiveUserTweeted

Figure 3.6: Execution time results for queries with effect of TwitterFlickr example
with single runs

76

3.4 Performance Analysis and Evaluation

(a) HotTopic (b) PopularF lickrPhoto

(c) PopularTwitterPhoto (d) NiceTwitterPhoto

(e) ActiveUserTweeted

Figure 3.7: Execution time results for queries with effect of TwitterFlickr example
with parallel runs

77

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

Experiment Tech Models

2M 2M5 3M 4M 6M5 14M

TF Single

TinkerGraph 4.05 17.71 -5.48 0.91 14.77 11.99
Neo4j 1.76 154.06 -3.28 7.22 10.15 40.59

JanusGraph 7.54 21.65 0.80 6.48 -4.08 -
OrientDB 1.98 2.04 -13.98 -6.26 -5.25 16.72
CrateDB 14.93 25 19.84 21.99 11.18 12.86

Memgraph -1.91 -30.66 -14.29 -33.02 -36.11 -23.84

TF Parallel

TinkerGraph -3.46 3.88 2.06 4.21 4.08 13.40
Neo4j -3.10 -2.42 8.36 - - -

JanusGraph -7.73 15.61 -4.31 30.94 15.72 -
OrientDB - - - - - -
CrateDB -77.74 -71.95 -75.77 -74.08 -69.22 -69.41

Memgraph 2.31 -26.24 - - - -

Experiment Tech Models

420K 820K 1M5 3M 6M5 13M

TB Single

TinkerGraph 0.44 -8.11 5.19 -6.56 2.20 8.96
Neo4j 1693.02 3983.12 39284.80 - - -

JanusGraph 8.92 12.07 -14.38 -15.15 -10.08 -
OrientDB -13.13 5.25 25.84 24.04 29.36 -
CrateDB 41.43 7.56 15.12 16.66 - -

Memgraph 16799.02 36905.74 - - - -

TB Parallel

TinkerGraph -18.70 -26.59 0.53 - -1.25 -0.83
Neo4j 1579.68 3368.51 - - - -

JanusGraph 20.85 -13.80 10.40 -2.25 -1.82 -
OrientDB - - - - - -
CrateDB 18.59 -50.16 -78.50 -70.94 - -

Memgraph - - - - - -

Table 3.7: Overhead of execution time average (%) for updating the graph depending
on model size

78

3.4 Performance Analysis and Evaluation

centages, which means that queries with effects obtain a better performance than

queries without effect. This is because queries without effect obtain the results and

store them in a list, whereas queries with effect create or update the information

of the source graph. Then, negative percentages mean that storing results in a list

is more costly than updating the graph with the effect specified by the query. In

this way, we can see that the execution time averages of TwitterFlickr example are

much lower than execution times averages of TrainBenchmark example for Neo4j

and Memgraph experiments. The reason is that TwitterFlickr queries only add

new objects and relationships to the graph as a result, whereas TrainBenchmark

queries usually update the information already stored. For this reason, we can state

that Neo4j and Memgraph get better performance when creating new elements

than when updating existing information. Besides, CrateDB, TinkerGraph and

JanusGraph—and also OrientDB queries in single execution—do not present a

high performance decrease when updating the graph with respect to obtaining the

results in a list with queries without effect. However, TinkerGraph obtains lower

execution times for queries, as can be viewed in Table 3.6.

With all this information, we can answer RQ2 as follows:

• Neo4j and Memgraph obtain a higher decrease in the performance when

updating existing information than when creating new elements in the graph.

• CrateDB, TinkerGraph, JanusGraph and OrientDB obtain similar perfor-

mances when modifying the graph and obtaining the results of queries

without effect, i.e., the effects do not greatly increase execution times.

• Memgraph and Neo4j present concurrency problems when modifying the

graph in parallel. In addition, OrientDB does not allow modifying the graph

with parallel queries when using Gremlin.

• TinkerGraph obtains the best performance for almost all cases when modi-

fying the graph with queries with effect.

RQ3: Syntax complexity

In order to answer this question, the number of operators, characters and

internal variables have been calculated for each query and platform. These features

79

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

allow to compare the DSLs exposed in Section 3.3. The parameters have been

calculated as follows:

• Operators: arithmetic, logical and relational operators as well as methods

and functions explained in Section 3.3 have been included in this parameter.

Note that the methods or functions that traverse the edges of the graph (e.g.

in() and out() functions in Gremlin code or the operator -[]-> in Cypher

code) are also considered operators and, therefore, they have been taken into

account to calculate the number of operators. As an example, observe the

HotTopic query of TwitterFlickr example depicted in Listing 3.10 in Cypher

language. This query contains 12 operators (MATCH, -[tagsE:tags]->,

<-[containsE:contains]-, WITH, COUNT, +, COUNT, AS, WHERE, >, CREATE

and -[:EVENT]->).

• Characters: since some DSLs, such as Gremlin, are designed to be embedded

into a general purpose language, and the experiments with the platforms

exposed in Section 3.2 are implemented in one of these languages too, we

have considered the characters involved in the execution of the queries with

the language used for each platform. Therefore, we have counted the number

of characters that are contained in the instructions that run a query, without

including spaces. In Listing 3.10, the number of characters includes all

characters from line 2 to line 7 without including the spaces (222 characters

in total). This parameter provides a measurement of the verbosity of the

DSL, which is useful to understand the complexity of the language when

writing queries for graphs.

• Variables: this parameter includes the number of internal variables used

by the query syntax in order to obtain the result or update the graph,

depending on the effect of the query. The example of Listing 3.10 includes 6

variables (p, tagsE, h, containsE, t, sumHT).

Listing 3.10: HotTopic query for Neo4j

1 // HotTopic
2 StatementResult result = session . run (

80

3.4 Performance Analysis and Evaluation

3 "MATCH (p)−[tagsE : tags]−>(h : Hashtag)<−[containsE : contains]−(t)
4 WITH h , (COUNT(tagsE) + COUNT(containsE))
5 AS sumHT WHERE sumHT>100
6 CREATE (: HotTopic{date : timestamp () }) − [: EVENT]−>(h) ") ;
7 result . consume () ;

All queries exposed in Section 3.4.2 are depicted in Appendix A for each

platform. Furthermore, the results of the number of operators, variables and

characters are depicted in Table 3.8 and Table A.2 of Appendix A.2, that summarize

all syntax features of TwitterFlickr and TrainBenchmark queries, respectively.

These tables are divided into four columns. First column indicates the platform

used for running the query, second column shows the name of the query, third

column represents the features of the queries with effect over the graph and fourth

column represents the features of the queries without effect. Third and fourth

columns are also divided into three subcolumns, that show the number of operators,

characters and internal variables for each query, respectively. In addition, rows

depicted in bold represent the average of these parameters for each platform. Note

that JanusGraph, TinkerGraph and OrientDB queries have the same syntax since

they use Gremlin language. Besides, although Neo4j and Memgraph use Cypher as

DSL, Memgraph does not allow all methods included in Cypher language. For this

reason, the tables expose the results of both technologies separately. From now on,

when we write CypherM and CypherN we refer to the queries implemented with

Memgraph and Neo4j, respectively.

Firstly, let us observe the results of the column Update of Table 3.8. Gremlin

queries and CypherM and CypherN obtain the lowest number of characters per

query which are similar to each other (being CypherM results slightly lower),

whereas SQL average values are higher than previously mentioned languages (over

150 units). Regarding the number of variables, CypherM, CypherN and SQL

show an average from 6 to 7 variables, whereas Gremlin shows half the number

of variables. However, Gremlin queries have 28 units in average, while CypherM,

CypherN and SQL queries have around 8 less operators. Now, we focus on column

Query of Table 3.8. In this case, Gremlin presents the lowest numbers of characters,

operators and variables per query as it decreases these numbers when queries

do not modify the graph: around 150 characters, 10 operators and 2.5 variables

less. CypherM and CypherN decrease the number of characters in around 65 and

SQL decreases them in around 75, whereas the number of operators and variables

81

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

remains almost the same. Besides, GraphFrames DSL shows the highest numbers

for the three parameters with almost 835 characters, 43 operators and 11 variable

as average.

Secondly, see column Update of Table A.2. CypherM and CypherN obtain the

lowest numbers of characters per query following by Gremlin and SQL. Note the

difference between the number of characters for SQL with respect to the rest of

DSLs, which is higher than in Gremlin example. This is because SQL language is not

designed for querying graphs. As stated in the previous sections, TrainBenchmark

example presents queries that mainly involve traversals through the edges of the

graph, whereas TwitterFlickr example involves aggregation operations. For this

reason, the number of characters needed for TrainBenchmark queries with SQL

is higher than the number of characters needed for TwitterFlickr example, since

SQL does not provide methods that traverse edges but uses joins to achieve this

(cf. Section 3.3.1). In addition, SQL also shows the highest number of operators

and variables. However, whereas Gremlin presents almost double the number

of operators than CypherM and CypherN, all these languages present a similar

number of variables. Now, let us focus on column Query. Gremlin significantly

decreases the number of operators and characters, whereas CypherM and CypherN

present almost the same results when the queries do not involve effects over the

graph again. Besides, SQL also presents a significant decrease of operators and

characters (almost 11 operators and 400 characters less). However, the number of

characters for CrateDB is higher than the number of characters of GraphFrames,

presenting both technologies the highest values for the three parameters.

In conclusion, Gremlin significantly reduces the number of operators and

characters when querying the graph with respect to updating the graph as a

result of a query in both examples. However, these numbers do not reduce for

TrainBenchmark example when it is compared with the significant reduced number

of variables involved in TwitterFlickr example. Cypher does not obtain important

changes when querying the graph with respect to updating it and it also presents

similar results for Neo4j and Memgraph platforms. In addition, even taking into

account that GraphFrames DSL is designed to work with graphs, it provides a

more complex syntax than Gremlin and Cypher for both case studies. Besides, this

platform does not allow updating the graph. Since SQL is not designed to work

with graphs, it provides less intuitiveness than Cypher, Gremlin and GraphFrames

82

3.4 Performance Analysis and Evaluation

Tech Query Update No Update

Op Char Var Op Char Var

TinkerGraph,
JanusGraph and

OrientDB
(Gremlin)

HotTopic 15 202 2 8 89 0
PopularTwitterPhoto 24 328 3 13 144 0
PopularFlickrPhoto 21 284 2 14 149 0
NiceTwitterPhoto 46 593 5 35 412 2
ActiveUserTweeted 34 446 3 23 258 0

AVG 28 370.6 3 18.6 210.4 0.4

Neo4j
(Cypher)

HotTopic 12 222 6 11 177 6
PopularTwitterPhoto 15 275 6 14 199 6
PopularFlickrPhoto 16 281 5 15 222 5
NiceTwitterPhoto 28 538 11 27 465 11
ActiveUserTweeted 29 535 8 28 463 8

AVG 20 370.2 7.2 19 305.2 7.2

CrateDB
(SQL)

HotTopic 17 476 8 16 418 8
PopularTwitterPhoto 12 373 3 11 294 3
PopularFlickrPhoto 14 360 3 13 292 3
NiceTwitterPhoto 29 731 8 28 655 8
ActiveUserTweeted 31 651 6 30 563 6

AVG 20.6 518.2 5.6 19.6 444.4 5.6

Memgraph
(Cypher)

HotTopic 12 224 6 11 178 6
PopularTwitterPhoto 15 276 6 14 200 6
PopularFlickrPhoto 16 281 5 15 222 5
NiceTwitterPhoto 28 525 11 27 452 11
ActiveUserTweeted 29 535 8 28 463 8

AVG 20 368.2 7.2 19 303 7.2

GraphFrames

HotTopic - - - 11 151 4
PopularTwitterPhoto - - - 38 745 10
PopularFlickrPhoto - - - 30 480 8
NiceTwitterPhoto - - - 74 1,517 18
ActiveUserTweeted - - - 62 1,273 15

AVG - - - 43 833.2 11

Table 3.8: Summary of DSL features for TwitterFlickr case study

83

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

DSL when the queries involve traversing edges (such us TrainBenchmark example),

but it presents a better result than GraphFrames DSL when the queries contain

aggregation operations (such us TwitterFlickr example). Then, Gremlin and Cypher

represent queries over graph in a simpler manner than SQL or GraphFrames DSL,

since they allow to write queries with a lower number of characters, variables an

operators. DSLs for graph databases provide more intuitiveness and less complexity

than the rest of DSLs.

With all this information, we can answer RQ3 as follows:

• Gremlin significantly reduces the number of operators and characters when

querying the graph compared to updating the graph as a result of a query.

The number of reduced variables will depend on the query.

• The Cypher syntax when querying or updating the graph does not present

significant modifications.

• SQL provides a simpler syntax for queries that imply aggregation operations

than queries that imply the traversing of edges in a graph. However, it is

more complex than query languages for graph databases in all cases.

• GraphFrames DSL provides a more complex syntax than Gremlin, Cypher

or SQL and it does not allow updating the graph.

• Gremlin and Cypher represent queries over graphs in a simpler manner as

SQL or GraphFrames DSL. In this way, DSLs for graph databases provide

more intuitiveness and less complexity than the rest of DSLs. Therefore,

our main hypothesis is confirmed.

• Regarding simplicity and intuitiveness of the syntax, Cypher and Gremlin

present similar results. Therefore, choosing the most suitable DSL for an

application will depend on the nature of the experiments.

RQ4: Best combination of DSL and processing platform

Note that none of the solutions presented along this chapter can be stated as

the best for all cases. The choice will ultimately depend on the requirements of the

application itself. Therefore, in order to answer this question, we have analysed

84

3.4 Performance Analysis and Evaluation

the conclusions presented in the previous questions according to the requirements

defined on the proposal of this thesis.

First, this thesis pretends to design a classification of queries that can be

performed over graph-structured data. For this reason, the query language should

have a clear syntax that enables the easy identification of the appropriate query

patterns. This made us discard SQL due to the complexity of the query expressions,

that presented the highest numbers of characters, operators and internal variables

for almost all cases (cf. Tables 3.8 and A.2), and the absence of a clear syntax

for writing graph patterns. Furthermore, CrateDB platform showed the worst

performance for TwitterFlickr and TrainBenchmark case studies (cf. RQ1 and

RQ2 of this chapter). For this reason, the combination CrateDB-SQL has to be

discarded for our approach.

Second, given that this thesis is focused on systems that are constantly updated

as new information arrives, and whose data can be modified as consequence of the

queries (e.g., to incorporate newly generated complex events into the data stream),

we discard GraphFrame because it does not currently support efficient operations

to update the graph. Besides, our results showed that GraphFrame performance

when querying the graph is worse than the rest of technologies performance (cf.

RQ1 and RQ2 of this chapter), and GraphFrames DSL is more complex than

query languages for graph databases such us Gremlin or Cypher (cf. RQ3 of this

chapter).

On the other hand, as discussed at the beginning of this chapter, one of our main

requirements is the need to process data in real time. The experiments with graph

databases have proven that they are useful to store and query very large amounts

of data. However, the requirement for real-time processing is too restrictive for

solutions that need to access disk, such as Neo4j or JanusGraph. To demonstrate

this, notice how the results of RQ1 and RQ2 show that Neo4j performs worse than

TinkerGraph and Memgraph. For this reason, we conclude that only in-memory

solutions are viable, and hence we decide to discard the combinations Neo4j-Cypher

and JanusGraph-Gremlin since they store the information in disk. In addition,

even when OrientDB was developed with in-memory implementation, we also

decided to discard it as execution time averages were the highest. Considering

these results and understanding that SQL is not suitable for our proposal due to

its complexity, we also concluded that it is not worth to use OrientDB using a

85

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

different implementation with SQL language or disk implementation.

Taking into consideration that both Cypher and Gremlin languages show the

simplest syntax of the proposed languages and they present similar results in

both case studies (cf. RQ3), our highest priority for choosing a technology is

the speed. For this reason, we select the faster and most efficient alternative

between TinkerGraph and Memgraph. Even when both technologies are suitable

for implementing real-time applications, the results showed that TinkerGraph

is usually faster than Memgraph. In addition, Memgraph started showing some

concurrency problems when creating new elements in parallel with models of around

4 million elements ((cf. RQ1 and RQ2). Some studies (e.g., [62])also show that

even if Cypher is usually easier to learn, the implementation of queries that imply

graph vicinity is easier and more efficient with Gremlin. For these reasons, we

choose TinkerGraph-Gremlin combination to implement our approach.

With all this information, we can summarize our conclusions for RQ4 as follows:

• CrateDB-SQL combination is discarded for our proposal since it shows a

lower performance and higher syntax complexity compared to the rest of

solutions.

• GraphFrames are not suitable for our proposal since they do not provide

efficient operations to update the graph.

• OrientDB is discarded because it does not allow multi-threading with Grem-

lin and it presents a low performance compared to the rest of technologies.

• Neo4j and JanusGraph presents lower performance compared to TinkerGraph

and Memgraph graph databases because they store the information in disk.

For this reason, only in-memory solutions are adequate for our proposal.

• The most suitable combination between platform and DSL for our proposal

is TinkerGraph with Gremlin language.

3.4.5 Threats to validity

In this section we discuss the threats that can affect the validity of our proposal

and results. We describe four types of threats according to Wohlin et al. [129].

86

3.4 Performance Analysis and Evaluation

Construct validity threats

These threats are concerned with the relationship between theory and what is

observed. Since the main issue with data streaming applications is the execution

time detriment, we have put a special focus on this measure when evaluating and

comparing the processing platforms presented in Section 3.2. Regarding comparison

among DSLs presented in Section 3.3, we have considered the number of characters,

operators and internal variables in our analysis. Given that we have analyzed the

results from different perspectives, we consider that this threat can be neutralized.

Conclusion validity threats

Conclusion threats are related to the factors that may affect the ability to draw

correct conclusions from the results of the experiments. The main issue that can

affect the validity of our conclusions is the transitory load of the machine where

the experiments were run. To mitigate the effect this can have on the performance

results,we run the experiments 6 times and obtained the average of the 3 last runs.

Internal validity threats

These threats are related to those factors that might affect the results of our

evaluation. To try to mitigate these threats, we have used models of different sizes

as source data for the experiments. Furthermore, since our analysis is focused on

data streaming applications that deal with huge amounts of information, most of

our models have a very-large size. In particular, our models size range from 2,000

to 14 million elements (objects and relationships together). Besides, since models

belong to two different case studies, the topology of the models in the different

case studies is very likely to be different, what allows us to analyze the behavior of

our approach with data of different nature.

Finally, there can be different applications for data streaming applications. For

this reason, our queries and models have been tested with seven different platforms

and in two different manners (queries without effect over the graph and queries

that modify the graph). Therefore, we mitigate this threat by analyzing how our

approach behaves in different scenarios.

87

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

External validity threats

External validity threats have to do with the extent to which it is possible

to generalize the findings of the experiments. The first threat is that the results

of our experiments have been obtained with two case studies, which externally

threatens the generalizability of our results. To mitigate this threat, we have tried

to select case studies from different contexts. The first one is on the domain of

social networks and has been created by us, namely the TwitterFlickr case study

(cf. Section 3.1). In that case study, we have tried to reflect the main parts of the

Twitter and Flickr social networks, and have created models of different sizes in

which connections among objects are similar to the ones we could have in models

containing real data. The other case study is a framework for controlling a railway

(cf. Section 3.4.2), extracted from a work that measures the performance of of

continuous model transformations [111].

3.5 Related work

Many works compare different platforms that can be used for querying graphs

[59, 60, 105, 111]. In [111] Szárnyas et al. present a benchmark for comparing 10

different tools (Neo4j and TinkerGraph among them) from the domains of EMF,

graph databases, RDF and SQL. These tools are compared using three scenarios

(batch, inject and reparation). The authors expose the TrainBenchmark case study

that we use in this paper in order to run the experiments (cf. Section 3.4.2). It

differs from this paper in two main aspects: (i) the experiments are designed for a

single case study and (ii) the authors do not cover the comparison between the

query languages. In [59] Guo et al. compare six platforms (Neo4j among them)

for processing large graphs based on four features (raw performance, resource

utilization, scalability, and overhead) and using five graph algorithms (general

statistics, breadth-first search, connected component, community detection, and

graph evolution). This also differs from our work in two main aspects: (i) they

do not compare the performance of the platforms when querying graphs but only

when running algorithms over them and (ii) they do not consider the comparison

between the query languages. In addition, two overviews [60, 105] identify the

challenges and tasks of real-time big data processing and compares more than

88

3.5 Related work

10 different platforms commonly used for this processing. However, since these

works only expose the state of the art of big data processing, they do not present

experiments to compare the platforms. Besides, these works only consider general

purpose languages instead of DSLs.

Some works analyse and compare the features of different query languages

that can be used for graphs. For instance, Holzschuher and Peinl [62] compare

Gremlin and Cypher in order to find out which one has better performance and a

simpler syntax. Besides, both syntax are also compared with SQL. However, they

consider one case study only with less than half a million elements (between objects

and relationships) whereas our approach uses datasets with several millions of

elements. In addition, Barceló [11] studies the complexity of several general purpose

navigational query languages. In this way, the author considers two semantics

(simple and arbitrary paths). Nevertheless, this approach does not consider the

comparison of the platforms but only the languages and the way of analyzing the

syntax of the language is quite different from our proposal.

Regarding the manipulation of large graphs, NeoEMF [41] provides a multi-

database model persistence framework for very-large models, and [42] defines a

language to perform OCL queries on graph databases that outperforms (in terms

of memory footprints and time) other existing solutions. In addition, [40] defines

a mapping from ATL to Gremlin, which enables model transformations on large

models stored in graph databases. Regarding the use of NoSQL languages in model

transformations, Daniel et al. [40] develops a framework to map from ATL to

Gremlin using graph databases. Another case of using Gremlin to transform large

models is in [43], where authors generate Gremlin scripts and compute queries

with Mogwaï tool, but they consider at most 80,000 elements between nodes and

edges and our implementation uses more than 1 million. In [1] the authors present

an approach to run queries on encrypted graph databases, in order to protect the

data privacy, using Neo4j and Cypher as query language. First, they translate the

graph into encrypted form to be executed on a server without decrypting the data.

Then, the encrypted results are sent back to a client to be decrypted.

Among the papers about performing queries over large graphs, some other works

deal with very large o even infinite models [34] as well as streaming models [37].

These works select only a portion of elements to be available at any given moment

in time. To achieve this, they use the concept of sliding window, that comprises the

89

Chapter 3. Comparison and Performance Evaluation of Processing Platforms

information to be queried at the current instant. In addition, approximate model

transformations [121] or techniques of Approximate Query Processing (AQP) [53,

87] are also used to perform queries over large graphs. These techniques obtain

approximate results but accurate enough to draw valid conclusions, i.e. they

sacrifice accuracy of results in order to improve performance.

Finally, many other graph query languages exist in the model-driven community,

such us GROOVE [54], Henshin [7] and other TGG tools, and VIATRA [44]. These

languages are designed to specify graph patterns that define graph queries. However,

we have analysed the most frequently used query languages in this paper.

3.6 Summary

In this chapter we have presented an overview of the most common platforms

used to work with large volumes of data (TinkerGraph, Neo4j, CrateDB, Memgraph,

JanusGraph, OrientDB and GraphFrames) along with 4 DSLs used to handle the

data (Gremlin, Cypher, SQL and the GraphFrames DSL). Our main goal is to find

the best platform and DSL combination that suits the following requirements in a

better way: (i) it allows to query and update the data in real time, (ii) it allows to

work with graph-structured information, and (iii) it provides a clear syntax that

allows to define a classification of query types over graphs.

Platforms were tested in two case studies that contained graph-structured

information. Experiments were designed to obtain the performance based on the

execution time. Furthermore, queries of each experiment were implemented using

the different DSL proposed and we studied the complexity of each language in

terms of number of characters, operators and internal variables.

Results show that the most efficient technologies to work with graphs are graph

databases. Their DSLs present the simplest syntax too. However, our results

conclude that in-memory graph databases Memgraph and TinkerGraph are the most

suitable for our approach as they are both faster than in-disk implementations.

Finally, comparing both platforms, TinkerGraph and Gremlin language were

chosen as the most adequate combination for our needs, since Memgraph presented

concurrency problems when modifying a graph with more than 4 million elements

in parallel.

90

Chapter 4
Improving Performance with Online

Techniques

The proposal of this thesis is based on the claim that most of the data that

needs to be processed for decision making is not significantly relevant, particularly

with large volumes of data. Therefore, the goal is to select the relevant data subset

that would still yield valid results on the queries performed, i.e. performing AQP

techniques. Applying AQP to our data might result in accuracy loss, since not

all elements and connections will be considered in the approximation. In contrast,

trying to account for all the relevant information may result in an unacceptable

response time, or the need to count on more resources (e.g. memory) than we

currently have. Then, the goal is to find the right balance between the performance

of running the queries and the accuracy of their results. For this we need to

answer two questions: (a) how to select the subset of data that is relevant for a

given query; and (b) how to estimate the error we are making when discarding

some of the input data. This problem is of application in those systems that

deal with large amounts of data and do not need extremely accurate results but

91

Chapter 4. Improving Performance with Online Techniques

require fast response times (e.g. recommendation systems on Facebook, Netflix or

Amazon). Here, discarding some information involves approximating incoming data.

Consequently, the accuracy of our results might be compromised. As presented

in Chapter 2, two types of AQP techniques are used in order to select a subset

of the incoming information generated from different sources, namely online and

offline techniques. The former are performed when processing the data whereas the

latter perform an initial computation before execution and stores this information

to be used in the processing. Recall that our approach considers data in terms of

models. For this reason, the graph is composed of elements, that refer to objects

and relationships together (cf. Section 2.3.1). Then, in this chapter, we apply

online AQP techniques to elements that are related among them in the form of

graphs structures.

We explore different approximation possibilities (random, temporal and spatial

approximations) depending on (i) how the data is organized and (ii) what infor-

mation needs to be obtained from the data. Furthermore, we propose a method

that allows estimating the errors produced when applying approximations, with

the goal of finding the right balance between performance gain and accuracy loss

when approximating data. To illustrate our proposal, we use a simplified version

of the Amazon ordering service. According to the results presented in Chapter 3,

we implemented the solution using TinkerGraph [118] as processing platform and

Gremlin language [6].

The contributions of the current chapter are twofold. First, three online AQP

techniques are proposed, which select a subset of the source data and allow to

reduce processing execution time. Second, we define the error produced by these

techniques using well-known terms, namely accuracy, recall and precision. Both

contributions allow to find a trade-off between accuracy and performance that must

be settled by the user according to her requirements.

The structure of this chapter is as follows. First, in Section 4.1 we present

the running example. Then, Section 4.2 describes some main concepts needed to

understand the proposal as well as three different types of approximations and how

to calculate the error induced by them. Section 4.3 evaluates and discusses the

results of the experiments. Finally, Section 4.4 relates our work to other similar

proposals and Section 4.5 summarizes the chapter.

92

4.1 A running example

4.1 A running example

To illustrate our proposal, let us use a simplified version of the Amazon ordering

service, but complex enough since it considers many of its relevant features. The

metamodel of this example is depicted in Figure 4.1, that defines nine types of

objects and different kinds of relationships among them. Then, in this service

there are Customers that can place Orders. Orders contain one or several Items

and each Item corresponds to a certain Product. In addition, Customers can

write Comments on the Products, and the system may suggest Products to the

Customers by using Offers. The system can also create marketing campaigns

to advertise some Products, called AdCampaigns. Finally, Products belong to

Departments, and each Customer lives in a GeographicalArea.

Figure 4.1: The Amazon Example Metamodel.

Considering this system, we are interested in defining some queries that repre-

sent situations of interest when processing data in this context. According to these

situations, queries modify the source model by adding new elements or provide

some other data such us returning a specific set of products. Then, queries are the

following:

Q1. CreateAdCampaign: if a Product has been ordered more than 1,000

93

Chapter 4. Improving Performance with Online Techniques

times during an advertising campaign period, and a relationship isPublicized

between the Product and the AdCampaign does not exist, then the query creates

it.

Q2. UnpopularStock: this query returns all Products that have been

ordered by less than 3 Customers during last month.

Q3. RelatedProducts: if two Products have been included in at least 100

common Orders during the last month, then the query creates a link isRelatedTo

between the Products.

Q4. OlympicGamesTrending: considering we have a Rio de Janeiro

Olympic Games AdCampaign, the query obtains the Products that were ordered at

least 100 times in Rio de Janeiro since the beginning of August 2016 until the end

of the celebration of the Olympic Games. In this case, the query adds a relationship

isPublicized between the Products and the Olympic Games AdCampaign.

Q5. RecommendsPack: if a Customer has ordered Product1 at least 5

times in different Orders in the last month and this Product is related to Product2

(through a isRelated connection), then an Offer for Product2 is created for the

Customer. Such an Offer has a priority of 1—highest priority. If Product1 is

related to Product3 indirectly through another product, then an Offer for Product3

with priority 2 is created for the Customer. In this case, we say that Product1 is

related with Product3 in two hops. Similarly, if Product1 is related to ProductN

in n hops, the query would create an Offer with priority n. However, we only

consider Offers from priority 1 to 3 in this query.

We can observe two main aspects of these queries that are interesting to evaluate

our proposal. First, they create objects of type Offer and relationships of type

isRelatedTo and isPublicized, that are not critical for the appropriate functioning

of the service. Therefore, it is possible to approximate these elements in order to

improve the performance. Second, they are not static, i.e., their result depend on

when queries are performed. In this way, Q2, Q3 and Q5 consider data of the last

month, Q1 is associated to a specific advertising campaign period and Q4 depends

on when the celebration of the Olympic Games ends.

94

4.2 Approach

4.2 Approach

As we stated in previous chapters, we distinguish between two types of infor-

mation depending on their nature: persistent and transient. The former is stored

persistently in the system, while the latter is discarded after some time. In our pro-

posal, all the information is stored in the source graph. Examples of persistent data

in our running example are GeographicalAreas, Customers or Products, whereas

examples of transient data are Orders, Items and Offers. Since transient data

quickly change and increase or decrease in time, they can be considered infinite and

have to be processed applying temporal windows. Furthermore, taking decisions

from such data can be very time consuming. For this reason, approximating these

data aims to decrease the amount of transient data to be processed. However,

considering a subset of the complete model may lead to a lack of precision in the

results that needs to be measured.

In this section, first we introduce several concepts in order to clarify our

proposal. Then, we propose three techniques to approximate the source model in

order to select just the part that is relevant for the query. These techniques are

online with the processing, i.e. they are performed when the query is launched.

Finally, we expose how to measure the outcome error produced because of these

techniques.

4.2.1 Main concepts

We introduce the following terms for classifying the different kinds of models

that we consider in our approach:

• Source Model. It refers to the complete data model that serves as input

for the queries. It can be so large that it is not possible to be considered in

full.

• Pattern Model. Queries made on this type of systems, such as the queries

presented in our running example (cf. Section 4.1), typically focus on a part

of the model. Specifically, the Pattern Model is limited according to two

features: (i) a time range and (ii) the specific elements that are indicated in

the query. For instance, Q3 described in Section 4.1 focuses on the data

95

Chapter 4. Improving Performance with Online Techniques

placed during the last month and only considers orders and products. Then,

the Pattern Model is the subset of the Source Model that considers the

elements filtered by the time range and element types that participate in

the query.

• Approximate Model. Since the Pattern Model can still be very large

when working with data streaming applications, we want to perform approx-

imations in order to execute queries faster. Then, an Approximate Model is

a subset of the Pattern Model, that it is selected by using AQP techniques

(cf. Section 2.2.2). In our approach, we explored three techniques that we

explain below. Note that there can be as many Approximate Models as

subsets can be selected from the Pattern Model.

• Optimal Model. Optimal Models refer to those Approximate Models that

meet the best trade-off between performance and accuracy. Please note that

several Approximate Models could be considered Optimal Models, and this

decision is ultimately made by the user. She decides so depending on the

extent up to which the performance must be optimized in detriment of the

accuracy.

As a summary, there is only one Source Model for each specific scenario and

there is only one Pattern Model for each query of the scenario. In addition, there

can be many Approximate Models for each Pattern Model, that are obtained

applying different AQP techniques. Finally, one or more Approximate Models can

be considered as Optimal Models.

4.2.2 Online AQP Techniques

In the literature, there are many different AQP techniques that perform online

with the processing [32, 53, 75]. However, we consider the following three in our

proposal:

Spatial Approximations

As we have mentioned along this document, information sources typically pro-

vides data structured as a graph. Please remember that we use models terminology,

96

4.2 Approach

so we use “objects” and “relationships” instead of “nodes” and “arcs”, respectively (cf.

Chapter 2). Therefore, graph-structured data imply that objects are linked among

each other through different types of relationships. In this way, we can navigate a

model by starting in one object and traversing through the existing relationships.

To clarify this, we define the concept of hop. A hop is the navigation from one

object to another by the relationship that links them. For instance, in our running

example and starting from one order (cf. Figure 4.1), we can determine in one

hop the geographical area the order is destined to, by navigating the isDestinedTo

relationship. Also, objects can be connected to other objects of the same type. For

instance, from a geographical area we can reach, in one hop, all its neighboring

geographical areas, through the neighbors relationship. Also, in two hops, we can

reach all geographical areas that are neighbors of its neighbors, and so on. In this

way, we can obtain spatial windows starting from one object and considering other

objects reachable in n hops.

The concept of spatial window, which considers the idea of spatial vicinity,

was presented as an extension of CEP windows [13]. Indeed, there are different

strategies to define the vicinity graph of an element, depending on how we navigate

through the graph structure, and the goal we pursue. Representative examples

of algorithms for creating relevant vicinity graphs of nearby elements are used

for finding related pages in the WWW [45, 71]. These algorithms use different

strategies, e.g., going through the parents and children of a page, and then visiting

the children and parents of those—using a backward-forward and forward-backward

strategy. We could also traverse the graph moving only forward or backward, or

using any other traversal strategy: in-breadth, in-depth, topological, hybrid, etc.

Traversal could be done through any kind of link, or we could navigate the graph

through some selected kinds of relationships.

Listing 4.1: Q4 with Spatial approximation.

1 // Select Olympic Games campaign
2 graph . traversal () . V () . hasLabel (" AdCampaign ")
3 . has (" name " , P . eq (" Olympic Games ")) . as (" campaign ")
4 // Take property "endDate"
5 . values (" endDate ") . as (" end ")
6 // Select Geographical Area with postal code 24495L
7 . V () . hasLabel (" GeographicalArea ") . has (" postcode " , P . eq (24495 L))
8 // Traverse the graph through relationship "neighbors" with vicinity

97

Chapter 4. Improving Performance with Online Techniques

9 . repeat (__ . out (" neighbors "))
10 . times (hops) . emit () . as (" area ") .dedup(" area ") . select (" area ")
11 // Select orders destined to the area
12 // and ordered before "endDate" property
13 . in (" isDestinedTo ") . f i l t e r (__ . values (" date ") .where(P . lte (" end ")))
14 // Select products contained by the orders
15 . out (" contains ") . as (" product ")
16 //Check there is not a previous relationship "isPublicized"
17 // between products and campaign
18 . not (__ . select (" product ")
19 .outE(" isPublicized ") . inV ()
20 .where(P . eq (" campaign ")))
21 //Count the number of matches between products and campaign
22 // and filter when they are at least 100
23 . select (" campaign " ," product ") .groupCount () . unfold ()
24 .where(__ . select (values) . i s (P . gte (100)))
25 // Add new elements to the graph
26 . select (keys) .addE(" isPublicized ")
27 . from(" product ") . to (" campaign ") .dedup () . iterate () ;

In order to illustrate how spatial approximations can be defined in our queries,

Listing 4.1 shows the implementation of Q4 in Gremlin language. In this query,

a spatial window for geographical areas is shown from lines 7 to 10. The window

starts from the area with postal code 24495, which is located in the centre of Rio de

Janeiro in our models, and the repeat-times block indicates the number of hops

to consider from this area in order to cover the complete area of Rio de Janeiro.

In this case, the spatial approximation is indicated by the parameter hops in the

times clause.

Temporal Approximations

Since incoming data are typically tagged with the timestamp when they occur

and data flows can be considered infinite (think for instance of all the information

stored in Facebook during its lifetime), we can build temporal windows filtering

by the data timestamp. A temporal window will be typically determined by the

query, since queries are normally focused on a specific time range. The idea is

to narrow down the Source Model by selecting the subset of the model indicated

by the temporal window. Then, the Pattern Model is obtained. However, we

can be interested in applying a further temporal approximation to the Pattern

Model in order to obtain the Approximate Models. In this way, having a temporal

window (ti, te) of size N where ti is the initial time and te is the end time of the

98

4.2 Approach

Listing 4.2: Q3 for Random and Temporal approximation.
1 // Select Product elements
2 graph . traversal () . V () . hasLabel (" Product ") . as (" product1 ")
3 // Select Orders that contains the Products inside a temporal window
4 . in (" contains ")
5 .where(__ . values (" date ") . i s (P . inside (initTime , endTime)))
6 // Filter Orders by probability with coin step (Random approximation)
7 . coin (prob) . as (" order1 ")
8 // Select products in the same order
9 . out (" contains ") . as (" product2 ") .where(P . neq (" product1 "))

10 //Check there is not a previous relationship "isRelatedTo"
11 // between products
12 . not (__ . select (" product1 ") .outE(" isRelatedTo ") . inV ()
13 .where(P . eq (" product2 ")))
14 //Count the number of matches between products
15 // and filter when they are at least 100
16 . select (" product1 " ," product2 ") .groupCount () . unfold ()
17 .where(__ . select (values) . i s (P . gte (100)))
18 // Add new elements to the graph
19 . select (keys) .addE(" isRelatedTo ")
20 . from(" product1 ") . to (" product2 ") . iterate () ;

window, it is possible to process just a sub-period of time (tai
, tae

) with size n

where (tai , tae) ⊆ (ti, te) and n < N .

To illustrate how temporal approximations are integrated into our queries,

observe Listing 4.2 that shows the code corresponding to Q3 in Gremlin language.

In line 5 a temporal window is implemented inside the where clause. In this case,

the temporal approximation is applied narrowing down the parameters initTime

and endTime, which correspond to the initial and ending time of the temporal

window, respectively.

Random Approximations

Approximate Models can also be obtained by applying random sampling

techniques. This means that the decision on which elements of the Pattern Model

will conform the Approximate Model is randomly made. For instance, we can

assign a probability to each element of the Pattern Model to be included in the

Approximate Model. Also, we can do approximations by element type. For

example, we could determine that only 30% of the orders should be included in the

Approximate Model. Many other random approximation techniques can be applied,

as it is proposed in [121]. This is also a good approach when only transient data

99

Chapter 4. Improving Performance with Online Techniques

needs to be approximated. Of course, random approximations can be combined

with the other two.

To illustrate how random approximations are integrated in our queries, observe

the query shown in Listing 4.2 again. A random approximation has been imple-

mented applying the coin clause offered by Gremlin [6]. This function allows to

run the query on the Approximate Model in which orders are considered depending

on a probability. We can see in line 7 how the coin step is applied so that orders

are processed depending on the probability value set with the parameter prob.

4.2.3 Measures for accuracy

In the following, we describe the metrics that we use in our proposal for

computing the errors of the results, expressed as the differences between the

expected and the resulting query outputs.

Since we are trading accuracy for performance, a very important aspect in

our approach is to be able to measure both. We consider performance in terms of

execution time of the queries. Regarding accuracy, we use the measures of precision,

recall and accuracy [81]. These three measures are defined by formulas that include

the concepts of true positives, false positives, false negatives and true negatives. In

our context, we define and calculate them as follows:

• True Positives (TPs): number of elements created or returned as the result

of a query on both the Approximate Model and the Pattern Model.

• False Positives (FPs): number of elements created or returned as the result

of a query on the Approximate Model but not created or returned when

running it on the Pattern Model.

• False Negatives (FNs): number of elements created or returned as the result

of running a query on the Pattern Model but not created or returned when

running it on the Approximate Model.

• True Negatives (TNs): number of elements that are neither created nor

returned as the result of running a query on both the Approximate Model

and the Pattern Model. While the calculation of the other three values is

straightforward, the calculation of TNs is more complex. First, we need

100

4.3 Performance Analysis and Evaluation

to consider the maximum number of elements the query could create or

return. For instance, in Q2, which returns all products ordered by less than

3 customers, if we have a total of 500 products, the total amount of products

that could be returned in principle is 500. Let us name this amount as Pre

(possibly returned elements). From this number, we need to subtract the

amount of elements that are created or returned when the query is run on

the Approximate Model, which is reflected in (TP +FP). In summary, TNs

are calculated as: TN = Pre − (TP + FP).

Then, the three accuracy measures can be calculated as follow [81]:

• Accuracy: it is the most usual performance measure. In our context, it

describes the effect of FPs and FNs when running queries on the Approximate

Model. It is calculated as follows: Accuracy = (TP + TN)/(TP + TN +

FN + FP).

• Precision: this measure is useful to determine how accurate the model is

when FPs are costly. For example, in email spam detection, a FP may cause

loss of important information when a non-spam email is identified as spam.

It is calculated as follows: Precision = TP/(TP + FP).

• Recall: this measure computes how accurate the model is when FNs are

costly. As an example, a FN on illness detection may cause catastrophic

consequences on the life of the patient. It is calculated as follows: Recall =

TP/(TP + FN).

4.3 Performance Analysis and Evaluation

In this section, we discuss the performance of our approach. In order to

evaluate our proposal, we executed the queries of Section 4.1 several times with the

techniques exposed in Section 4.2.2 and different Source Model sizes. Then, the

accuracy of the results were measured in the terms exposed in Section 4.2.3. Some

charts are depicted in this chapter in order to explain and analyze the performance

of our approach. However, since we have analyzed many different scenarios and

obtained a large number of charts, they are all available in Appendix B.

101

Chapter 4. Improving Performance with Online Techniques

4.3.1 Research Questions

In order to evaluate how the online AQP techniques that we have proposed

behave when working with big graphs, we are interested in answering the following

research questions (RQs):

• RQ1 - How is performance improved when considering Approxi-

mate Models? Running queries on Approximate Models is faster than

running them on the Pattern Model. However, we want to check how much

performance is gained depending on the sizes of the Pattern and Approxi-

mate Models, the type of approximation applied, and the distribution of the

source data.

• RQ2 - Are the 3 accuracy measures enough for identifying the

Optimal Model? Since we want to improve the performance of queries

without compromising their accuracy, we want to discover whether the three

measures presented in Section 4.2.3 are appropriate for measuring such

accuracy.

• RQ3 - Which approximation method provides the best trade-off

between accuracy and performance? Since there are different ways of

approximating the Pattern Model, we want to find out which one is better,

in terms of trade-off between performance and accuracy, depending on the

source data.

4.3.2 Experimental Setup

In this section, we expose the source models and all parameters used to perform

our experiments.

Source Models

Data stored in the models that we handle can be distributed in many forms.

Considering the concept of time described in temporal approximations of Sec-

tion 4.2.2, the data contained in our models can be concentrated in certain periods

of time. For example, people are more likely to order products in their spare time,

so evenings will normally concentrate more data than mornings. In this case, we

102

4.3 Performance Analysis and Evaluation

Distribution Batch Name Nodes Edges

A

31K 286804 2399746
62K 424,368 4,113,948
125K 699,517 7,547,815
250K 1,251,025 14,431,225

B

31K 287,731 2,477,232
62K 425,836 4,201,686
125K 699,945 7,635,425
250K 1,252,316 14,543,380

Table 4.1: Summary of the models used in the experiments.

say that data is focused on evenings. As for the concept of vicinity introduced

in spatial approximations of Section 4.2.2, more orders are likely to be made in

Europe than in Africa, so data will be more concentrated along geographical areas

in Europe. In this case, we say that data is focused in Europe. Now, if we consider

only the data in the evenings or the data in Europe, we may have a more uniform

distribution.

For experimentation purposes, we have manually created (according to the

metamodel depicted in Figure 4.1) models of different sizes that contain information

of the orders of Amazon Brazil in August 2016, and we suppose we are executing

the queries in September 2016—i.e., last month in the queries (cf. Section 4.1)

refers to August 2016. Furthermore, we have grouped source models in two batches,

as we can see in Table 4.1. In batch A, data is uniformly distributed along the

month, while in batch B data is mainly focused on the first week. In the table,

the name of the model is assigned according to the number of Customers (cf.

Figure 4.1). In this way, the smallest models contain 31K customers and around

255K objects linked among them by around 2.4M relationships. The largest models

contain 250K customers and around 1M objects linked among them by around

14.5M relationships.

Being these models of different and considerable sizes and counting on different

data distributions, we want to evaluate how approximating such models improves

performance, and how much this compromises confidence in terms of precision,

recall and accuracy values when executing the different queries.

103

Chapter 4. Improving Performance with Online Techniques

Queries and approximations

In the following we will consider the five queries presented in Section 4.1, which

we think take into account aspects of queries that we could have in the real world.

Regarding the different approximations to be made on the source data, we consider

the three types of approximations defined in Section 4.2: time, spatial and random.

Measurement method

Execution times of queries were measured running them and registering their

computation times using the System.currentTimeMillis() Java method. In

order to isolate our results from any transitory load of the machine where tests

were run, all experiments were run up to 6 times each. Average performance values

were extracted from last 3 runs.

Experiments and data collected

Figures 4.2 to 4.6 show the execution times and accuracy obtained for each

query, using different model sizes. The information displayed in each chart is the

following:

• Data approximation. The type of approximation that is used in each

experiment is displayed in the X axis. For instance, in the charts of Figure 4.2

a random approximation is applied. Thus, the X axis shows how much

of the Pattern Model is being considered (i.e., it indicates the probability

of each element of the Pattern Model to be included in the Approximate

Model). The chart in Figure 4.3c shows a temporal approximation, so the

X axis indicates the elements of the Pattern Model that are considered for

the Approximate Model according to elements timestamps (cf. temporal

approximations of Section 4.2.2). Finally, the chart in Figure 4.5c displays

a spatial approximation, where the X axis indicates the number of hops (cf.

spatial approximations of Section 4.2.2) taken from an initial object.

• Execution time. Whenever the execution time of the query is displayed in a

chart, its values are shown on the left-hand-side Y axis, such as in the chart

of Figure 4.2a. The performance evolution depending on the Approximate

Model used is displayed with a continuous blue line.

104

4.3 Performance Analysis and Evaluation

• Number of elements returned by the query. Depending on the query, they can

create relationships (such asQ1,Q3 andQ4), objects and relationships (Q5)

or return objects (Q2). The quantity of elements (objects and relationships)

that are either returned or created by the queries is shown on the right-

hand-side Y axis of the charts. The evolution of this quantity of elements

depending on the Approximate Model used is displayed with a dashed orange

line, such as in the chart of Figure 4.2a.

• Precision and Recall. When they appear in a chart, their values are shown

in the left-hand-side Y axis (chart in figures 4.2b and 4.2d for instance).

Precision and recall evolutions are shown with a continuous blue line.

• Accuracy. When it appears in a chart, its values are shown on the right-

hand-side Y axis (such as in the chart in Figure 4.2b). Its evolution is

displayed with a dashed gray line in the chart.

The rest of the results of the experiments are placed in Appendix B. In addition,

the implementation of the queries and all the experiments can be accessed on our

Git repository [16].

Pattern Model vs Approximate Model vs Optimal Model

In the charts, as we move along the X axis, we see the results for different

Approximate Models. For instance, let us focus in the chart of Figure 4.2a. When

we see 0.45 in the X axis, it means that we are running Q1 with an Approximate

Model that includes 45% of the elements in the Pattern Model. Therefore, the

right-most value in the X axis (1.0 in this chart) shows the result of the query

when considering the whole Pattern Model. Regarding the Optimal Models, they

are the Approximate Models such that, when running the query on them, obtain

the best result. This means the best balance between performance and accuracy.

Please note that the focus of our approach is not to automatically identify the

Optimal Models, but to provide enough data (i.e., elements generated or retrieved

by the query, and performance and accuracy values) for deciding what the Optimal

Models should be depending on the user’s needs and for knowing when they have

been obtained.

105

Chapter 4. Improving Performance with Online Techniques

Execution environment

All experiments have been run on a MacBook running operating system macOS

Sierra version 10.13.2 64-bit, with 16GB of RAM memory, and an Intel Core

i7-6700HQ processor with 8 cores of 2.6 GHz. We used TinkerGraph-Gremlin

version 3.3.4 [118] in our implementation, Java version 1.8.0_144 and Gremlin-java

version 2.6.0.

Experiments’ replicability for this chapter is presented in Appendix D.1

4.3.3 Results

RQ1. Performance improvement

First of all, let us focus on the performance figures, shown in the charts of

Figures 4.2a, 4.2c, 4.3a, 4.3c, 4.4a, 4.4c, 4.5a and 4.5c. In all of them, the smaller

the Approximate Model considered, the faster the execution time. This means

that the time taken by the Gremlin engine to filter the data that compose our

conceptual Approximate Models pays off, since the engine runs the queries faster

with smaller models.

Now, let us take the type of approximation into consideration. In random

approximations, displayed in Figures 4.2a, 4.2c, 4.3a, 4.4a and 4.5a, the execution

time increases linearly as the size of the Approximate Model grows. This happens

in all cases, no matter how data is distributed in the source models. For instance,

Figures 4.3a and 4.4a show the performance evolution for Q3 applying a random

approximation on the source model 62K. Figure 4.3a shows the result with model

62K −BatchA and Figure 4.4a with model 62K −BatchB. We can see that there

is not much difference in the execution times.

Regarding temporal approximations, shown in Figures 4.3c and 4.4c, we can

see that execution times do not present much variation depending on how source

data is distributed either, and that execution time also grows linearly. In a spatial

approximation, such as the one shown in Figure 4.6a for Q5, we can see that

execution time grows faster than linearly. This is reasonable, since a linear increase

in the number of hops does not mean a linear increase of the data considered for

the Approximate Model, but an exponential one. For instance, in Q5, hops are

taken according to the isRelatedTo relationship among products. Since one product

106

4.3 Performance Analysis and Evaluation

y	=	8482.9x	+	10148

0
200
400
600
800
1,000
1,200
1,400
1,600
1,800

0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000
200,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned Lineal		 (Execution	time)

(a) Performance Evolution for Q1.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	recall	250	K	- Batch	B

Recall Accuracy

(b) Accuracy and Recall for Q1.

0

5,000

10,000

15,000

20,000

25,000

0

5,000

10,000

15,000

20,000

25,000

30,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned

(c) Performance Evolution for Q2.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Pr
ec
isi
on

Accuracy	&	Precision	250	K	- Batch	B

Precision Accuracy

(d) Accuracy and Precision for Q2.

Figure 4.2: Accuracy, Precision and Recall with Random Approximations.

can be linked through this relationship with many others, doing one hop may imply

considering many more elements; and even more if we take 2 hops, since the growth

is exponential.

With all this data, we can answer RQ1 as follows:

• Performance improvement is noticeable when the amount of data considered

for the Approximate Model is smaller than the amount of data in the Pattern

Model.

• The execution time is directly proportional to the approximate model size

considered.

• The time taken by the engine to filter data for obtaining the Approximate

Model is not significant and it pays off.

107

Chapter 4. Improving Performance with Online Techniques

0

1,000

2,000

3,000

4,000

5,000

6,000

0

5,000

10,000

15,000

20,000

25,000
0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 62K	- Batch	A

Execution	time Elements	 returned

(a) Performance Evolution for Q3 with Ran-
dom Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	Recall	62K	- Batch	A

Recall Accuracy

(b) Accuracy and Recall for Q3 with Random
Approximation.

0

1,000

2,000

3,000

4,000

5,000

6,000

0

5,000

10,000

15,000

20,000

25,000

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

days

Performance	Evolution	 62	K	- Batch	A

Execution	time Elements	 returned

(c) Performance Evolution for Q3 with Tem-
poral Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 6 9 12 15 18 21 24 27

Ac
cu
ra
cy

Re
ca
ll

days

Accuracy	&	Recall	62K	- Batch	A

Recall Accuracy

(d) Accuracy and Recall for Q3 with Tem-
poral Approximation.

Figure 4.3: Comparison between Temporal and Random Approximations with
uniformly distributed data.

RQ2. Validity of Accuraccy Measures

Let us now consider Q1 and Q2. Q1 creates an isPublicized relationship when

a product appears at least 1,000 times during an advertising campaign period.

For this query, as the volume of data in Approximate Models decreases, some

elements that should be returned are not, which means we get some FNs and no

FP. Therefore, the precision value is 1 and the deviation from the query result

with the Pattern Model can only be represented by the recall value. In Figure

4.2a we present the performance evolution for this query when run on model

250K −BatchB applying a random approximation. In this figure, probabilities go

from 0.1 to 1 with increments of 0.1. As previously mentioned, execution time has

a lineal increase. Regarding the elements created by the query, their number grows

as the probability value of the horizontal axis increases, until the line eventually

stabilizes and, at this point, we could consider we have reached the amount of

108

4.3 Performance Analysis and Evaluation

data considered for an Optimal Model. In order to double-check this, results for

accuracy and recall values are shown in Figure 4.2b. The value of accuracy is

not significant, since it is always 1. As for recall, it reaches 1 precisely when the

number of elements returned gets stable.

Consider now queryQ2, in which a product is returned if it has been ordered less

than three times in a month. In this case, as the volume of data in the Approximate

Model increases, the number of elements returned decreases. This means that we

will have no FNs and therefore a recall value of 1, and therefore the precision value is

the most significant for calculating accuracy. Performance evolution when running

the query on model 250K −BatchB is depicted in Figure 4.2c, while Figure 4.2d

shows the accuracy and precision values for this query. For this experiment we

have used a random approximation. If we expect a precision of 1 for considering

an amount of data that conforms the Optimal Model, then we can see that we get

it when we approximate half of the data of the Pattern Model.

Note that in most cases accuracy values are very close to 1. This is due to the

influence of TNs in the accuracy equation. Consequently, the accuracy value is not

descriptive enough to represent the deviation of running the query on Approximate

Model versus running it on the Pattern Model. Therefore, we can come to a

response for RQ2 as follows:

• Accuracy is not well suited as a measure for determining the amount of data

to be considered in the Optimal Model.

• Precision and recall are valid measures when we get FPs and FNs, respec-

tively.

RQ3. Trade-off between Accuracy and Performance

Since we have different approximation possibilities for obtaining the data of

Approximate Models, we want to find out which one is more convenient depending

on the situation. First of all, temporal and spatial approximations only make sense

when the query filters according to time, or to some spatial concept, respectively.

Let us focus first on Q3. We have used random and temporal approximations for

running it and have used the two types of source models presented in Section 4.3.2,

109

Chapter 4. Improving Performance with Online Techniques

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

0

5,000

10,000

15,000

20,000

25,000
0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 62K	- Batch	B

Execution	time Elements	 returned

(a) Performance Evolution for Q3 with Ran-
dom Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	Recall	62K	- Batch	B

Recall Accuracy

(b) Accuracy and Recall for Q3 with Random
Approximation.

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

0

5,000

10,000

15,000

20,000

25,000

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

days

Performance	Evolution	 62K	- Batch	B

Execution	time Elements	 returned

(c) Performance Evolution for Q3 with Tem-
poral Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 6 9 12 15 18 21 24 27

Ac
cu
ra
cy

Re
ca
ll

days

Accuracy	vs	Recall	62K	- Batch	B	

Recall Accuracy

(d) Accuracy and Recall for Q3 with Tem-
poral Approximation.

Figure 4.4: Comparison between Temporal and Random Approximation with
temporal focus on the data.

this is, those where data is uniformly distributed along the month (Batch A) and

those where there is a temporal focus on the first week (Batch B). In the random

approximation, Approximate Models start considering 10% of the model, with

increments of 5%, until we consider the Pattern Model (same as in the charts

discussed before). In the temporal approximation, the increments contain the

information of 3 days, i.e. the first Approximate Model considers the first 3 days

in the month, the second one considers 6 days, the third one 9 days, and so on.

Figures 4.3 and 4.4 display execution results for models 62K − BatchA and

62K−BatchB, respectively. Let us focus first on Figure 4.3. Figures 4.3b and 4.3d

display the recall (and accuracy, but, as we said before, we do not take this one

into account) with random and temporal approximations, respectively. We can see

that recall reaches the value 1 first in the random approximation, specifically, when

65% of the Pattern Model is considered in the approximation. In the temporal

approximation, recall does not reach the value 1 until the approximation contains

110

4.3 Performance Analysis and Evaluation

0
50
100
150
200
250
300
350
400
450

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 125	K	- Batch	B

Execution	time Elements	 returned

(a) Performance Evolution for Q4 with Ran-
dom Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	vs	Recall	125K	- Batch	B

Recall Accuracy

(b) Accuracy and Recall for Q4 with Random
Approximation.

0
50
100
150
200
250
300
350
400
450

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

100 200 300 400 500 600 700 800 900

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

hops

Performance	Evolution	 125K	- Batch	B

Execution	time Elements	 returned

(c) Performance Evolution for Q4 with Spa-
tial Approximation.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

100 200 300 400 500 600 700 800 900

Ac
cu
ra
cy

Re
ca
ll

hops

Accuracy	vs	Recall	125K	- Batch	B

Recall Accuracy

(d) Accuracy and Recall for Q4 with Spatial
Approximation.

Figure 4.5: Comparison between Spatial and Random Approximations.

80% of elements of the Pattern Model. Furthermore, in Figures 4.3a and 4.3c,

we see that the execution time is lower in the random approximation when the

number of elements returned stabilizes with respect to when the number of elements

stabilizes in the temporal approximation.

Let us now consider Figure 4.4, which displays the results with model 62K −
BatchB. Recall that data in this model has a temporal focus in the first week.

Figures 4.4c and 4.4d reflect this. Indeed, we can see that recall reaches 1 when

the approximation considers the first 7 days of the month, and we also see that the

number of elements returned by the query stabilizes in this time. In the random

approximation (Figures 4.4a and 4.4b), however, it occurs like in the example

before: query result and recall stabilize when the approximation considers 65% of

the model. In fact, we see that random approximations always behave the same, no

matter how data is distributed in the source models. In temporal approximations,

the accuracy of the query result depends on the temporal distribution of the data

in the model.

111

Chapter 4. Improving Performance with Online Techniques

For comparing random and spatial approximations, we use Q4 (Figure 4.5).

Spatial approximation is made by considering geographical areas. In particular,

we start from postal code 24495 (cf. Listing 4.1), which is located in the centre of

Rio de Janeiro. In every increment in the approximation, we consider those areas

within the next 100 hops (cf. Spatial Approximations in Section 4.2.2). Figure 4.5

shows the results with both approximations for model 125K −BatchB. Note that

when running experiments applying spatial approximation, results do not stabilize.

In fact, we discovered that Gremlin can only process a limited number of hops. In

our case, we could not perform more than 900 hops, so the Approximate Model

does not cover the complete area of Rio de Janeiro.

Apart from this limitation, we can see in Figures 4.5a and 4.5c that the

execution time when considering spatial approximation is higher. This is because

it is more expensive to traverse the model by applying hops (the model is traversed

through objects and relationships among them) instead of filtering by attributes.

We see that, in this case, random approximation is more efficient and accurate.

However, there might be cases where it is not possible to filter by property, such

as in some social networks analysis, where some conclusions can only be taken by

traversing the model, so the use of a spatial window is essential.

Let us now consider Q5 for further studying the performance evolution of

spatial approximations. In this case, the starting point of the spatial window

corresponds to each product which has been ordered at least 5 times by a customer,

i.e. there are more than one object as initial point of the spatial window. Results

for batch A and size 31K are shown in Figure 4.6. Please note that, since execution

time results for this query have a very high value, we have run the experiments only

for models 31K and 62K. As we see in Figure 4.6a, execution time seems to increase

exponentially as the number of hops grows. Indeed, as we see in Figure 4.6b, recall

grows slowly in comparison with the execution time. This implies that spatial

approximations are also too costly when the initial point involve more than one

object.

With all this information, we can answer RQ3 as follows:

• There is no approximation method that always provides the best trade-off

between performance and accuracy.

• Random approximations typically behave the same no matter how data is

112

4.3 Performance Analysis and Evaluation

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1	hop 2	hops 3	hops

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 31	K	- Batch	A

Execution	time Elements	 returned

(a) Performance Evolution for Q5 with Spa-
tial Approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1	hop 2	hops

Ac
cu
ra
cy

Re
ca
ll

Recall	vs	Accuracy	31	K	- Batch	A

Recall Accuracy

(b) Accuracy and Recall for Q5 with Spatial
Approximation

Figure 4.6: Spatial Approximations with several sources

distributed in source models.

• Temporal approximations behave differently depending on how source data

is temporally distributed.

• Approximating using hops (i.e. spatial approximations) is expensive in terms

of runtime, but there might be systems or situations where it is the only

possible approximation.

4.3.4 Discussion

This section discusses some of the issues that we have found during the

specification of the queries and the evaluation of their behavior. First of all, the

concepts defined in Section 4.2 serve for explaining our approach from a conceptual

point of view. However, we do not try to obtain first a Pattern Model and then

Approximate Models. In our implementation, these tasks are implicitly done by

the query, as we have shown in Listings 4.1 and 4.2.

As we have mentioned, the automatic computation of the Optimal Models

is out of the scope of our approach. These Approximate Models offer the best

balance between performance and accuracy. Since this balance can be subjective,

this decision must be ultimately taken by the user.

Although performance is usually defined in terms of execution time and memory

consumption, this chapter is focused on the first feature, since we consider it is

the main concern in data processing applications. However, in order to have a first

113

Chapter 4. Improving Performance with Online Techniques

0

2,000

4,000

6,000

8,000

10,000

12,000

2.0

2.2

2.4

2.6

2.8

3.0

3.2
0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Memory	consumption	 31K	- Batch	B

Memory	consumption	(GB) Elements	 returned

(a) Memory consumption evolution for Q3
with Random Approximation

0

2,000

4,000

6,000

8,000

10,000

12,000

2.0

2.2

2.4

2.6

2.8

3.0

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

days

Memory	consumption	 31K	- Batch	B

Memory	consumption	(GB) Elements	 returned

(b) Memory consumption evolution for Q3
with Temporal Approximation.

0

10

20

30

40

50

2.0

2.2

2.4

2.6

2.8

3.0

3.2

100 200 300 400 500 600 700 800 900

El
em

en
ts
	re

tu
rn
ed

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

hops

Memory	consumption	 31K	- Batch	B

Memory	consumption	(GB) Elements	 returned

(c) Memory consumption evolution for Q4
with Spatial Approximation.

Figure 4.7: Memory consumption for Q3 and Q4.

estimation, we have measured memory consumption in model 31K of batch B forQ3

with Temporal and Random approximations, and Q4 with Spatial approximation.

Results of the experiments are shown in Figure 4.7. As we can observe in Figures

4.7a and 4.7b, memory consumption grows as the Approximate Model increases its

size for Temporal and Random approximations. However, in Figure 4.7c, memory

consumption decreases as more hops are considered in the Spatial approximation.

This may be due to the fact that some parts of the model are discarded as we do

more hops.

The conclusions presented in the previous section can be summarized as follows:

• Random approximations are the best option when a query does not contain

temporal or spatial filtering.

• Results of applying random approximations are similar no matter how the

source data is distributed.

• If a query contains a temporal filter and the data is distributed with a

114

4.3 Performance Analysis and Evaluation

temporal focus, then it is convenient to use a temporal approximation

centered on the focus.

• If a query contains a temporal filter but the source data is uniformly dis-

tributed, then random approximations seem to perform best.

• Spatial approximations by means of hops are very expensive in terms of

runtime. They are only recommended when there is no other option.

4.3.5 Threats to validity

In the following we describe the four types of threats that can affect the validity

of our study, according to Wohlin et al. [129].

Construct validity threats

They are concerned with the relationship between theory and what is observed.

Performance is typically measured in terms of memory consumption and execution

time. In this chapter, we have only used execution time for performance comparison

between different types of approximation techniques, with different queries and

data distribution. Therefore, a possible construct validity threat is the use of

only execution time for performance measurement. However, since one of the

critical points of many data processing applications is to respond to the situations

described by the queries as quickly as possible, we believe that this measure is

descriptive enough for this work.

Conclusion validity threats

Threats to the conclusion validity are concerned with the issues that affect the

ability to draw correct conclusions from the data obtained from the experiments.

In our experiments, the transitory load of the machine where the experiments were

executed can influence the execution time results. Besides, the elements returned

for Random approximation experiments may have small variations depending on

the input data. To mitigate both threats, we have run all experiments 6 times on

the same machine and taken the average execution time and elements returned by

the 3 last runs.

115

Chapter 4. Improving Performance with Online Techniques

Internal validity threats

These threats are related to those factors that might affect the results of

our evaluation. In our experiments, we have considered five queries. Although

they present a certain degree of variability, having considered more queries could

have yielded different results. Furthermore, for classifying such queries, we have

considered the type of window according to the definition of the query, and

conclusions have been drawn according to such type of window. However, other

features could have been considered in the classification, such as number and type

of filters, action resulting from the query (deletion, insertion, update...) or traversal

path. These concepts might also have an influence on the type of approximation

recommended for each query in order to obtain the best trade-off between accuracy

and performance. Finally, the temporal or spatial focuses present in the models

influence the number of elements returned by Temporal and Spatial approximations.

We have considered models with different types of focus. However, if we had consider

a higher variability of these focuses, we could have obtained different results.

We will aim for the mitigation of these threats by considering the different

dimensions mentioned for classifying the queries, as well as by considering more

models with higher variability.

External validity threats

These threats have to do with the extent to which it is possible to generalize the

findings of the experiments. The first threat is that the results of our experiments

have been obtained with one case study, which externally threatens the generaliz-

ability of our results. To mitigate this threat, we have tried to select five queries

that consider different situations with different approximations. Furthermore, the

case study has been selected from a real situation. Second, we have used Gremlin

and TinkerGraph as the technologies for implementing our approach, since we

concluded that they were the most suitable for our proposal (cf. Chapter 3). In

any case, we do believe the same conclusions would have been drawn with similar

technologies, such as Neo4j and Cypher. Finally, the results of the experiments

depend on the size and distribution of the data. To mitigate this threat, all

experiments have been run with different data sizes and distributions.

116

4.4 Related Work

4.4 Related Work

The approach of this chapter was published in [14] and it derived from two

previous works. First, [121] introduces the concept of Approximate Model Trans-

formation (AMT), and the error from applying AMTs is calculated with statistical

formulas. However, data are not related to each other, but they are just a stream

of simple events. Then, [13] provides a prototypical solution based on CEP to

process graph-structured information. The system was implemented with Spark

and the GraphX tool for graph-parallel computation. The concept of spatial win-

dow was introduced using vicinity graphs. This chapter complements these works

by exploring different strategies for selecting the subset of data to perform the

approximations with graph-structured information (including spatial windows for

Spatial approximations) , and by providing mechanisms to estimate the accuracy

of the different options.

Some studies have applied approximations similar to the ones we propose in

this chapter. For instance, some works have used spatial windows when dealing

with streaming models [37] and very large or even infinite models [34], where

a sliding window limits the data to be processed at any given moment in time.

Similarly, the work [67] uses a grid to represent a forest-fire spreading example,

where the spreading is represented with vicinity links between the cells. Although

our approach is in the context of these works, we specially focus on providing the

necessary mechanisms for obtaining the accuracy of the results when applying

different types of approximations. Regarding random approximations, other authors

use sampling-based approaches to improve the execution time in large models [22].

However, their proposal is limited to models with up to 20,853 elements, clearly

insufficient for the kinds of models our proposal targets, with more than 2 millions

of elements.

There are some works that apply crowd-sourcing techniques [122, 123] and

develop statistical tools to find a trade-off between cost/time and completeness

of results. However, while the query result is constructed incrementally (the

query is performed on an initial small dataset and the result is refined as more

source data arrives to the system), in our proposal an initial large dataset is

approximated at once. There are more works that deal with incremental queries

and transformations [20, 65, 66, 99, 110, 124], where the input model changes with

117

Chapter 4. Improving Performance with Online Techniques

time. However, they do not compute the error produced when not considering the

complete model for the transformation, what is of key importance in our approach.

There are some other works peripheral to ours. For instance, in [73] the authors

select only a subset of the information in order to manage information overload, so

they mainly aim for system survival, but sacrificing system reliability.

Some studies have proposed to apply precomputation in the context of AQP

in database systems [32, 75]. This consists of storing a summary of the source

data with interesting information for the query (offline precomputation step) and

then using this summary to approximate the source information and performing

the query. However, there are not many solutions that use these techniques with

complex data structures such as graph-based structures [32, 75].

Finally, technologies such as the distributed streaming platform of Apache

Kafka [68] or the streaming extension of Apache Spark [108] are aimed for processing

information flows. They can generate streams of data as well as handle them. Our

work does not pretend to replace these technologies, but it can rather complement

them. In fact, our main goal is to obtain the best trade-off between execution

time and information loss when processing large amounts of graph-structured

information. An approach for reducing information to improve performance in

complex stream processing scenarios has already been developed for Streaming

Transformations for XML (STX) [33]. It consists of performing transformations to

XML documents, which are provided as sequences of XML events, accessing just a

part of the entire document in order to run the query. The part to be processed

is selected with precomputing tasks. This work differs from our approach in two

aspects: it works with XML-tree-like structures instead of graph structures and

makes use of preprocessing tasks to perform the approximation of the source data.

4.5 Summary

In this chapter we have explored three different online AQP techniques for

queries performed on models containing large amounts of data: (i) temporal,

(ii) spatial and (iii) random approximations. Then, we have proposed a method

for measuring the accuracy of the approximations, so that the user can find the

right balance between accuracy loss and performance gain. The accuracy loss is

calculated in terms of accuracy, recall and precision. We have also analyzed how

118

4.5 Summary

the distribution of the input data affects these approximations.

Approximation techniques were tested in a simplified Amazon ordering service

case study, with different model sizes and two different data distributions.

Our experiments conclude that performance can indeed be improved. In fact,

an optimal accuracy value can be acquired when considering only part of the source

model.

119

Chapter 5
Improving performance with Offline

techniques

As exposed in Section 2.2.2, AQP techniques are used to speed up the processing

of the information of applications that work with huge amounts of data, e.g.

Data Streaming Applications. These techniques select a subset of the dataset

using different criteria, e.g., sampling techniques. The goal is to obtain only

approximate results from the query. Although not necessarily correct, results

should be precise enough to draw valid conclusions from them. One common

feature of these approaches is that they deal with streams of data that represent

sequences of loosely related events. However, this is not the case in many other

applications, in which the information to be processed is structured as a graph of

highly interconnected elements. It is well known that considering the relationships

among the system elements may have a significant impact on the performance of

the queries [111]. Our work focuses on these kinds of graph-structured information

flows. In the literature, these kinds of graphs are commonly referred to as dynamic

graphs [24, 25]. Although there is also the term streaming graphs, it typically

121

Chapter 5. Improving performance with Offline techniques

refers to settings in which there is no initial data and streaming is unbounded, i.e.,

one does not see the entire graph at any given time. Although the difference is

sometimes blurred, we consider that the context of our work is that of dynamic

graphs. Nevertheless, we will still use the term ‘data streaming applications’ to

refer to those applications where new data constantly arrive.

As mentioned along this document, AQP is divided in two techniques, namely

online and offline (cf. Section 2.2.2). In Chapter 4 we proposed three different

online AQP techniques and estimated the accuracy of the results. The current

chapter proposes an offline technique for querying graph-structured information

flows that is able to deal with persistent and transient data at the same time.

This technique aims at improving the performance of the queries by reducing the

dataset to be processed. However, in contrast to conventional AQP techniques, it

reduces the dataset without compromising the accuracy of the results, i.e., being

able to produce fully correct answers. For this, we have developed a new algorithm,

called Source Dataset Reduction (SDR) algorithm, that obtains a subgraph of the

complete dataset (i.e., the model) with the relevant elements for a given query.

In this way we are able to achieve speedups of more than 100x for some types

of queries, even in already-optimized systems. The algorithm is executed before

the query is performed for the first time. After that, an incremental version of

the algorithm has also been developed, so that the relevant query subgraph is

automatically updated, at a very low cost, when new information arrives, or the

system data changes.

Our proposal has been evaluated using three case studies: (i) a simplified

version of the Amazon ordering service; (ii) the New Yorker cartoon caption

contest application, and (iii) a machine learning application for finding objects in

Youtube videos. The first one is already used in Section 4.1 and illustrates our

proposal. Remember that this case study uses synthetic datasets in order to have

control over the possible configurations and sizes of the source data. The datasets

used in the other two case studies are the real ones [100, 131]. Our solution has

been implemented using the TinkerGraph in-memory graph database [118], since

its execution time is lower than other similar solutions, and Gremlin has been used

as a query language because it presents some relevant benefits over other graph

query languages (cf. Chapter 3).

The contributions of this chapter are twofold. First, we develop a precomputing

122

5.1 A running example

algorithm (SDR algorithm) to reduce the source data in very large graphs. Second,

we develop and incremental mechanism to handle graph data streams (Incremental

SDR). Both contributions allow to improve the performance of the processing when

working with Data Streaming Application with graph-structured information.

The structure of this chapter is as follows. Section 5.1 presents a case study

that is used to illustrate our proposal. Section 5.2 describes a classification of query

patterns that we have defined for the development of the algorithm that builds the

subset of the relevant data depending on the query. Then, Section 5.3 presents the

algorithm, which is evaluated in Section 5.4. Finally, Section 5.6 relates our work

to other similar proposals, and Section 5.7 summarizes the chapter.

5.1 A running example

To explain our approach, we use the Amazon ordering service already presented

in Section 4.1. However, in this case, we have designed six queries that represent

different features of interest to our proposal. In this way, queries contain several

operators that allow to study the behavior of our algorithm with six types of

patterns that we found in the queries. These patterns are exposed in Section 5.2.

Q1. ProductPopularity: considering a specific product (e.g., the product

with idProduct = ‘10’), this query returns the customers who have ordered that

product. With this query, we can obtain the popularity of a product within the

Amazon ordering network. It represents a query with a single selection filter or,

alternatively, one with a conditional expression.

Q2. AlternativeCustomer: given a featured event, for example the Olympic

Games, and a list of products that are known to be more frequently ordered than

others during the event, this query obtains the customers who do not have any order

that contains these products at that time. This query can be useful to improve

advertisement campaigns in order to increase their success, recommending their

products to those customers who have not ordered them yet. It represents a query

that contains a negative application condition (NAC), i.e., a negation pattern.

Q3. PackagePopularity: considering two different products, i.e., with dis-

tinct idProduct, this query computes the customers who have ordered both. With

this query, we obtain information about the frequency with which a customer orders

two specific products, something that can be useful to create recommendations to

123

Chapter 5. Improving performance with Offline techniques

customers who have ordered only one of them. This query implements a conjunction

of filters.

Q4. SimProductsPopularity: given two specific products that are known

to be similar (for example two types of sports socks), this query gets the customers

that who ordered at least one of them. This query is useful in order to discover

the popularity of products with common attributes. It represents a pattern that

implements a disjunction of filters.

Q5. PrefCustomer: This query returns the customers who have ordered a

specific popular product more than 3 times. With this query we can create offers to

customers according to the products that they often buy. This query implements

an aggregation of filters.

Q6. PrefCustomerSimProducts: given two specific popular products that

are similar, this query obtains the customers that have ordered one of them at

least three times. This query is similar to Q5, since it is also helpful for suggesting

offers to customers, but it uses an aggregation of selection filters.

Note that these queries only obtain information about the content of the

Amazon ordering service, but they do not alter the system. Once this information

is obtained, we would be able to create, remove or update elements in the system

accordingly. Our approach is focused on optimizing the way information is queried,

i.e., we are interested in optimizing the search for the elements that are retrieved

by a query.

5.2 Classification of queries

In order to reduce the source data set according to the content of a query,

we need to follow a strategy, which will depend on the type of the query. This is

why we have defined a classification of queries that will allow us to decide how

the algorithm should behave. It is not trivial to provide a classification for all

the possible queries that can be defined by a user. Besides, it is important to

decide whether queries are classified syntactically, semantically or both. Providing

a semantic classification of the queries would depend on the case study and the

context in which queries are applied. For this reason, we discard a semantic

classification and focus on a syntactic classification. In this sense, we need to

take into account the operators and clauses that constitute the query. Of course,

124

5.2 Classification of queries

different patterns may appear in the same query. For instance, if we find a where

clause, we talk about conditional pattern. Within the where clause, we can find

other queries that follow other patterns. In the following, we describe the patterns

that are relevant to our algorithm. Each pattern is atomically treated, i.e., they

are described omitting any other pattern that could also be present in the query.

5.2.1 Simple filter pattern

Queries that follow the simple filter pattern sieve the information using only

incoming and outgoing relationships and property filters. By incoming and outgoing

relationship we mean a simple navigation step through an association. A property

filter is used to obtain one or more elements of the graph according to the value of

a property, or the type of object or relationship. Examples of property filters in

the Amazon case study are a filter that obtains all customers older than 25, or one

that obtains all objects of type Product.

Listing 5.1: Implementation of Q1.ProductPopularity.

1 g . V () . as (" customers ") // element type filter
2 . out (" orders ") // relationship step
3 . out (" contains ") // relationship step
4 . has (" idProduct " , "10") // property filter step
5 // returns the customers of the first step:
6 . select (" customers ")

Listing 5.1 shows a possible implementation in Gremlin of query Q1 that

follows this pattern. First, it selects all objects (line 1) and then it navigates

through orders and contains outgoing relationships (lines 2 and 3). After that, it

selects only those products whose idProduct is ‘10’ (property filter, line 4). Note

how the as and select operators (lines 1 and 6) make the query return only those

objects labeled as a variable customers that have ordered the products filtered in

lines 2-4.

5.2.2 Condition pattern

Queries that follow the condition pattern select the information using a where

clause, which specifies a sub-query with the condition that defines the filter.

125

Chapter 5. Improving performance with Offline techniques

Listing 5.2: Q1.ProductPopularity with where operator.

1 g . V () // element type filter - all objects
2 .where(// "where" step starts
3 __ . out (" orders ") // relationship step
4 . out (" contains ") // relationship step
5 . has (" idProduct " ,"10") // property filter step
6) // "where" step ends

Listing 5.2 shows an implementation of query Q1 that follows this pattern. It

filters the objects that have a path indicated within the where clause (line 2). This

path is composed by two relationships (lines 3 and 4) and a property filter (line 5),

like in the previous example.

5.2.3 Negation pattern

Queries that follow the negation pattern sieve the information using a negative

condition, selecting those elements that do not fulfil the condition expressed in

a not clause. Listing 5.3 shows an implementation of query Q2 that follows this

pattern. In this case, the query selects the customers whose orders do not (line 3)

contain any product of a list called idProducts (lines 4 and 5).

Listing 5.3: Implementation of Q2.AlternativeCustomer.

1 g . V () . as (" customers ") // element type filter
2 . out (" orders ") // relationship step
3 . not (// "not" step starts:
4 __ . out (" contains ") // relationship step
5 . has (" idProduct " , P . within (idProducts)) // property filter step
6) // "not" step ends.
7 // returns the customers of the first step:
8 . select (" customers ")

5.2.4 Conjunctive pattern

Queries that follow the conjunctive pattern select the information with an and

clause that contains two or more predicates. The query selects those elements that

satisfy all predicates.

Listing 5.4: Implementation of Q3.PackagePopularity.

126

5.2 Classification of queries

1 g . V () // element type filter
2 .and(// "and" step starts:
3 // PREDICATE 1
4 __ . out (" orders ") // relationship step
5 . out (" contains ") // relationship step
6 . has (" idProduct " , "10") , // property filter step
7 // PREDICATE 2
8 __ . out (" orders ") // relationship step
9 . out (" contains ") // relationship step

10 . has (" idProduct " , "20") // property filter step
11) // "and" step ends

To illustrate an example of a query that follows this pattern, Listing 5.4 shows

an implementation of query Q3. This query is composed of two predicates (lines

4-6 and 8-10). The first one filters customers who have ordered the product with

idProduct = ‘10’ (line 6) and the second one filters those who have ordered the

product with idProduct =‘20’ (line 10).

5.2.5 Disjunctive pattern

Queries that follow the disjunctive pattern select the information with an or

clause that contains two or more predicates. The resulting elements must meet at

least one of these predicates.

Changing the and clause of Listing 5.4 (line 2) by an or clause, we obtain

an implementation for query Q4, which is an example of a query that follows

this pattern. The query selects the customers who have ordered a product with

idProduct=‘10’ or idProduct=‘20’.

5.2.6 Aggregation pattern

Queries that follow the aggregation pattern first group the information with

aggregation operators, and then filter it with relational operators.

Listing 5.5: Implementation of Q5.PrefCustomer.

1 g . V () // element type filter
2 . has (" idProduct " , "10") // property filter step
3 . in (" contains ") // relationship step
4 . in (" orders ") // relationship step
5 .groupCount () . unfold () // aggregation operation
6 .where(// aggregation filter

127

Chapter 5. Improving performance with Offline techniques

7 __ . select (values) . i s (P . gte (3))
8)

An example of a query that follows this pattern is presented in Listing 5.5,

which shows an implementation of Q5 in Gremlin. Note the aggregation operator

used in line 5. It groups the customers by the number of times that they ordered

the product with idProduct =‘10’ (lines 1-5). Then, it selects the customers who

ordered this product at least 3 times (line 7).

5.3 The SDR algorithm

We have developed an algorithm for optimizing the performance of queries over

graph-structured information models, by means of reducing the source dataset to

be used by the query to the subset of the information that is relevant to it. Hence

the name Source DataSet Reduction (SDR) algorithm.

This section describes the two versions of the SDR algorithm that we have

developed. The first one is devised to be executed before the query is run for the

first time, and computes the appropriate subgraph for the query (Section 5.3.1).

The second version incrementally updates that subgraph when new elements arrive

to the system, or the persistent information changes (Section 5.3.2).

An overall view of our proposal and all its components are depicted in Fig. 5.1.

The implementation of the SDR algorithms and all artefacts used in their evaluation

are available from [17].

5.3.1 The main SDR Algorithm

The SDR algorithm for computing the subgraph of the complete information

model that is relevant to a given query is inspired by Google’s PageRank algo-

rithm [96]. Given a set of web pages, the PageRank algorithm obtains a ranking

of the most relevant web pages according to the number of pages that point to

them, and their respective weights. To obtain such a ranking, the algorithm assigns

a weight (a real number between 0 and 1) to each web page. A page’s weight

represents the probability that a person randomly clicking on Web links arrives at

this particular page. For computing the weights, the algorithm performs several

iterations. In the first iteration, it assigns the same probability to all pages: 1

128

5.3 The SDR algorithm

Figure 5.1: Overall view of queries using the SDR algorithm.

divided by the total number of pages. This probability is modified in the next

iterations according to the number of links that the web page receives, and the

weights of its neighbor pages in the previous iteration.

In a similar way, the SDR algorithm analyzes a query in order to assign a

weight to all objects in the graph according to their relevance for the query. The

algorithm returns a subgraph with the objects with a weight greater than 0 and

the relationships among them. This subgraph contains all the elements that are

relevant to the query. Therefore, considering that this thesis relies on MDE, this

algorithm uses the information provided by the metamodel, by analyzing the query,

in order to build the subgraph with the objects and relationships contained in the

model. Note that, since the subgraph is obtained from the objects with a weight

greater than 0, the numerical weight could be replaced by a Boolean value. However,

even taking into account that this value is not relevant to the approach presented

here, its calculation has been designed for future extensions that could integrate

approximate algorithms, so that a further reduction in execution time and memory

consumption could be achieved. This feature makes the current implementation

more flexible.

129

Chapter 5. Improving performance with Offline techniques

A query is composed of different clauses, operations and filters, which in the

context of this work we will call steps. That is, we consider that a step is any kind

of clause, filter or operation that is applied to the elements of a model as specified

by a query. According to the query patterns presented in Section 5.2, we consider

eight types of steps: element type filter, property filter, relationship, and operation,

or operation, not operation, where operation, and aggregation. A step can be, in

turn, divided in sub-steps.

Let us illustrate the steps of a query with the ProductPopularity query of the

Amazon case study, shown in Listing 5.2. It retrieves the users who have ordered

the product with idProduct=‘10’. This query has two main steps, namely an

element-type-filter step and a where step (lines 1 and 2, respectively). In our

proposal, the aim of an element-type-filter step is to make the query focus on either

the objects or the relationships of the graph. In this case, it focuses on the objects

(line 1). Then, the where step selects the relevant objects, using three sub-steps:

the orders and contains relationship steps (lines 3 and 4), which traverse the

graph through the orders and the contains relationships, respectively; and a

property filter step (line 5), which filters products by property idProduct. Our

algorithm traverses all the query steps, starting from the most specific one, in order

to assign a weight to the objects that match each step. We consider that the most

specific step is always the last one (the where step in this example; the contained

subquery, in turn, will be traversed starting from the filter-property step). The

algorithm starts from the last step and traverses backwards the rest of the query

steps.

The algorithm is executed in parallel on every single object. This parallel

computation is possible by making use of Tinkerpop’s VertexProgram [120], which

implements the vertex-centric programming model [69, 80]. This programming

model consists in an iterative process over a user-defined function that stops when

a satisfying threshold is reached, or after executing a certain number of times. This

process is executed in BSP (Bulk Synchronous Parallel) mode, which means the

message passing among the objects is synchronized in order to avoid inconsistencies.

In this way, VertexProgram is an interface for distributed graph computation,

where each object is a “worker” that executes a program in parallel. Then, in each

step of the query, the object sends a message through the relationships relevant to

the step, and counts the number of messages that its neighbors sent to it in the

130

5.3 The SDR algorithm

previous iteration. The weight is computed using the number of received and sent

messages. The complete flow of the SDR algorithm is shown in Algorithm 1, which

is described next. The inputs of the algorithm are the query Q and the graph G ;

the result is the subgraph with the objects that are relevant to Q.

As stated before, the SDR algorithm traverses the steps of the query in several

iterations. To achieve this, the function SDRVertexCentric(Q,v) is run in each

object in parallel. For each step of the query, it checks whether object v satisfies

the conditions to be assigned a weight. Variable guardCondition stores the results

of these checks.

Algorithm 1: The main SDR algorithm
Data: A query Q and a Graph G(V,E)
Result: A subgraph SG(VSG,ESG)
1: v.weight = SDRVertexCentric(Q,v) ∀ v ∈ V
2: ListSGIds add {vw.id, vw.weight} ∀ vw ∈ V where vw.weight 6= 0
3: return SG = G − {vd ∈ V where vd.id /∈ ListSGIds}

Function SDRVertexCentric(Q, v)

1: Obtain the set S of steps of Q
2: iteration = 0, weight = 0
3: while iteration <= S.size do
4: guardCondition = true
5: if iteration == 0 then
6: s = S.get(S.size – 1)
7: weight = WeightInitialisation(s, v)

8: else
9: Select s = S.get(S.size – iteration)
10: if iteration == 1 then
11: weight = InWeightPropagation(s, v, weight)

12: else
13: weight = FurWeightPropagation(s, v, weight)

14: end if
15: end if
16: iteration++
17: end while
18: return weight

131

Chapter 5. Improving performance with Offline techniques

Function WeightInitialisation(s, v)

1: if s is property filter then
2: if v matches the filter then
3: pRel = previous relationship step of s
4: cNeighbors = No. neighbors of v through pRel
5: guardCondition = cNeighbors > 0?
6: else
7: guardCondition = false
8: end if
9: else if s is a relationship then
10: cNeighbors = No. neighbors of v through s
11: guardCondition = cNeighbors > 0?
12: else if s is a TraversalParent filter then
13: Obtain subqueries SQ from s
14: for q : SQ do
15: weightsSQ = SDRVertexCentric(q, v), q ∈ SQ
16: weight = TraversalParentType(weightsSQ)

17: end for
18: end if
19: if guardCondition then
20: weight = weight + cNeighbors
21: end if
22: return weight

Function InWeightPropagation(s, v, weight)

1: if s is relationship and weight > 0 then
2: Send messages through s
3: else if s is property filter or TraversalParent then
4: pRel = previous relationship of s
5: iteration++
6: if weight > 0 then
7: Send messages through pRel
8: end if
9: end if
10: return weight

132

5.3 The SDR algorithm

Function FurWeightPropagation(s, v, weight)

1: cMessages = sum(received messages)
2: if cMessages > 0 then
3: if s is relationship then
4: cNeighbors = No. neighbors of v through s
5: guardCondition = cNeighbors > 0?
6: Send messages through s
7: else if s is a property filter then
8: pRel = previous relationship of s
9: iteration ++
10: if v match the filters then
11: cNeighbors=No. neighbors of v thru pRel
12: guardCondition = cNeighbors > 0?
13: Send messages through pRel
14: else
15: guardCondition = false
16: end if
17: end if
18: end if
19: if guardCondition then
20: weight = weight + cNeighbors + cMessages
21: end if
22: return weight

Similar to Google’s PageRank algorithm, the first two iterations of the SDR

algorithm are slightly different than the rest. PageRank uses an initial iteration,

called iteration 0, to count the number of pages. Then, in iteration 1, this number

N is used to calculate the initial weights of the pages (which is the same for all:

1/N). After this, the pages inform their neighboring pages about their current

weight, so that weights can be updated in the following iterations according to the

links to the page and the weights of the linked pages. In a similar manner, the

SDR algorithm uses the initial iteration (function WeightInitialisation(s, v))

to compute an initial weight of those objects that are relevant to the first step

of the query. To compute this initial weight, the algorithm counts the number of

relationships to the objects that are relevant to the step. Then, in the second itera-

tion (function InWeightPropagation(s, v, weight)), the objects inform, through

133

Chapter 5. Improving performance with Offline techniques

those relationships, their neighboring objects about their current weight. The

remaining iterations (function FurWeightPropagation(s, v, weight)) will compute

the objects’ weights according to their relevance for the query and the relationships

with the other relevant objects. In the following, an overview of the algorithm is

explained by organizing it in three different subsections. A detailed exemplification

of the algorithm with a concrete query is described in Appendix C.1.

Iteration 0 - Weight Initialisation

When the algorithm starts, it calls the function SDRVertexCentric(Q, v) that

will run over all objects in parallel (line 1). Then, this function retrieves (line

6 of SDRVertexCentric) the last step of the query, s, and calls the function

WeightInitialisation(s, v), (line 7 of SDRVertexCentric) that checks the type

of s. Depending on the type of s, WeightInitialisation may proceed in different

ways:

• If s is a property-filter step (line 1), it checks whether v matches the filter

(line 2) or not. If not, guardCondition is set to false (line 7). Otherwise, the

algorithm traverses the query backwards until it finds a relationship step

and counts the number of neighbors of v that can be reached through that

relationship. If this number is 0, guardCondition is set to false (line 5).

• If s is a relationship step (line 9), the function counts the number of

neighbors that the object v reaches through this relationship and checks

whether this number is greater than 0. Otherwise, guardCondition is set to

false (line 11).

• If s is a traversal1 step (line 12), the function makes a recursive call to

the SDRVertexCentric function for each subquery of s and uses the appro-

priate strategy to compute the weight depending on the type of traversal

(lines 13-17). All the different strategies are explained and exemplified in

Appendix C.2.

1A TraversalParent in Gremlin includes steps that imply one or more subqueries,
namely where, and, or and not.

134

5.3 The SDR algorithm

• Steps of types element-type-filter and aggregation are not considered

because they do not affect the weight of v. The first ones are only used to

select the objects or relationships that will serve as starting point of the

query, while the second ones are used for grouping the information obtained

in the previous steps. For this reason, the aggregation steps are removed

from the query before making any call to the SDR algorithm, so that the

algorithm skips this step when analysing the query.

After that, the weight of v is computed if guardCondition is true (line 19

of WeightInitialisation). The weight is calculated as the addition of two pa-

rameters (line 20 of WeightInitialisation): the accumulated weight and the

number of neighbors reachable through the relevant relationship to s (cNeigh-

bors value). After updating the weight, the WeightInitialisation function

concludes and the SDRVertexCentric function starts the next iteration (line 16 of

SDRVertexCentric).

Iteration 1 - Initial Weight Propagation

After WeightInitialisation, all objects have a weight but they

are not aware of their neighbors’ weights. This is the goal of the

InWeightPropagation(s, v, weight) function, which proceeds with the same step

s (lines 9 to 12 of SDRVertexCentric). The behavior of InWeightPropagation

depends on the kind of step, as above:

• If s is a relationship step, and weight is greater than 0 (line 1), it means

that v met the guardCondition in the initial iteration, so it sends a message

through that relationship to its neighbors (line 2).

• If s is a property filter or a traversal step (line 3), there is no relationship

through which object v can send the messages, and therefore the algorithm

searches backwards in the query for the next relationship step, pRel (line 4),

and increments the iteration counter accordingly (line 5). This increment is

needed because two steps are analyzed in this case: s and pRel. Note that

in cases with multiple calls to property filter steps, they are grouped and

considered as a single step. In the same way, a chain of several traversal steps

135

Chapter 5. Improving performance with Offline techniques

is processed as an and step, which is also considered a single TraversalParent.

Then, v sends the messages through pRel if its weight is above 0 (line 7).

After that, the InWeightPropagation function concludes and

the SDRVertexCentric function starts the new iteration (line 16 of

SDRVertexCentric).

Remaining iterations - Further Weight Propagation

For the rest of the iterations, SDRVertexCentric calls the

FurWeightPropagation(s, v, weight) function (line 13), which checks whether the

object v is relevant to the step s (i.e., it received messages in the last iteration) or

not, and proceeds depending on the type of s:

• If s is a relationship step (line 3), and v has neighbors through s, it sends

messages to its neighbors; otherwise guardCondition is set to false (line 5).

• If s is a property filter step (line 7), it finds the preceding relation through

s, pRel, and proceeds as in the InWeightPropagation function.

Then, FurWeightPropagation updates the value of weight by adding param-

eters cNeighbors and cMessages (the number of messages received in the last

iteration), as shown in lines 19 to 21. Once SDRVertexCentric is executed on the

objects of the initial model, the subgraph composed of the non-zero weight objects

and the relationships among them will contain the subgraph that is relevant to

the query. This subgraph is calculated in two steps. First, we create a list that

contains all the ids of the non-zero weight objects and store it in memory (line 2 of

Algorithm 1). We call this list ListSGIds. Second, we obtain the induced subgraph

from the objects that appear in the list (line 3 of Algorithm 1).

Note that computing such a subgraph can be done in parallel, since different

threads can calculate the weights of distinct subsets of objects.

5.3.2 Incremental SDR Algorithm

Our approach is designed for dynamic systems that are constantly updated

with new information. Executing the main SDR algorithm (Section 5.3.1) on all

objects every time the graph changes would be too costly in terms of time and

136

5.3 The SDR algorithm

memory. For this reason, we have developed a so-called Incremental SDR algorithm

that updates the weights of the graph nodes when new elements are added or

existing elements are updated or discarded. This represents the arrival of new

information to the system, changes in the graph persistent data or the removal of

old information. This way, the main SDR algorithm needs to be executed only

once, and then updated every time the graph information changes.

Algorithm 2: The Incremental SDR algorithm
Data: A set of objects Vn, a query Q and a Graph G(V,E)
Result: A subgraph SG(VSG,ESG)
1: Obtain steps S from Q
2: Initialise an empty subgraph SGi(Vi,Ei)
3: for s : S do
4: if s represents a relationship then
5: SGi = SGi ∪ createSubGraph(s, Vn)

6: else if s represents a TraversalParent then
7: Obtain subqueries SQ from s
8: for q : SQ do
9: Obtain steps SSQ from q
10: for sSQ : SSQ do
11: if sSQ represents a relationship then
12: SGi = SGi ∪ createSubGraph(sSQ, Vn)

13: end if
14: end for
15: end for
16: end if
17: end for
18: vi.weight = SDRVertexCentric(Q, vi) ∀ vi ∈ Vi
19: ListWeights = get weight and id from SGi

20: Update ListSGIds with ListWeights
21: return SG = G − {vd ∈ V where vd.id /∈ ListSGIds}

When new elements are added, updated or removed from the graph, we analyze

the query and obtain a list of the neighbors of these objects that can be reached

through the relationships of the query, with the aim of updating their weights.

This is performed by the Incremental SDR algorithm shown in Algorithm 2. Our

approach only updates the weight of the objects that arrive or are modified in the

system, since removed objects do not need to have their weights updated. It also

137

Chapter 5. Improving performance with Offline techniques

updates the weight of the objects that can be affected because of a change in the

graph structure, i.e. the objects that can be reached from the added, updated or

removed objects through the relationships of the query. Note that these changes in

the graph are always at model level. Therefore, the incremental SDR algorithm

analyzes the query again to re-compute the subgraph with the new data of the

model, i.e. it works at metamodel/model level to compute the new subgraph, as

we already explained in Section 5.3.1

Typically, more than one object will be added, discarded or modified in the

graph at the same time, because events usually arrive in batches. Thus, the inputs

of Algorithm 2 are a set of objects Vn, the query Q and the graph G(V,E). The

set Vn contains those objects that are added or updated in the graph, plus the

set of neighbors of the recently removed objects. The Incremental SDR algorithm

traverses the relationship steps of the query (lines 3-17) to find all objects that

are connected through these relationships with the objects of set Vn. With this

information, it creates a subgraph SGi and calls the vertex-centric function of

the SDR algorithm with the objects contained in SGi and Q as inputs (line

18). Once the SDR algorithm finishes, it returns the subgraph SGi with its

corresponding weights. Then, the algorithm extracts from SGi the objects’ ids and

their corresponding weights (line 19). After the execution of the Incremental SDR

algorithm, the resulting ListWeights is analyzed to obtain the updated weights of

the objects of SGi, and the list ListSGIds (cf. Section 5.3.1) is updated with the

new weights of these objects (line 20). Finally, the algorithm returns the updated

subgraph SG to be queried (line 21).

The Incremental SDR algorithm uses the function createSubGraph, whose

pseudo-code is shown in Algorithm 3. It receives as inputs the current relationship

step s of the query and the set of objects Vn, and returns all neighbors of the

objects Vn that can be reached through s in the query. First, the function selects

the step s and its forward and backward relationships (lines 2 and 3) in order to

get the neighbors of Vn that can be reached through them (lines 4–6), and returns

the subgraph composed by the set Vn and their neighbors. Note that forward

and backward relationships do not necessarily imply outgoing and incoming edges,

respectively. They refer to the relationship steps found when we traverse the

query forwards and backwards. For instance, if we start to analyze the query

g.V().hasLabel("Order").in("orders") from the hasLabel step, the next step

138

5.4 Performance Analysis and Evaluation

obtained when we traverse the query in the forward direction is the in step, which

implies an incoming relationship.

Algorithm 3: Function createSubGraph
Data: A step s and an a set of objects Vn
Result: A subgraph SG(VSG,ESG)
1: Initialise an empty subgraph SG(VSG,ESG)
2: nextr = s ∪ forward relationships of s
3: previousr = backward relationships of s
4: for n : nextr ∪ p : previousr do
5: SG = SG ∪ neighbors of Vn through n and p
6: end for
7: return SG

The fact that the Incremental SDR algorithm has to update only the weights

of the neighbors of the newly added, updated or discarded objects from the graph

does not represent a significant performance overhead, since the complexity of

the algorithm is O(v · r · n), where v is the size of Vn (i.e., the number of new,

updated or neighbors of discarded elements), r is the number of relationships of

s, and n is the number of neighbors of Vn through s. Given that these numbers

are normally small, the execution time of this algorithm is not significant when

compared to the execution of the query. Besides, this incremental algorithm is

executed in parallel with the queries, so it does not affect their performance. The

only introduced penalty is due to the final update of the query subgraph after the

execution of the incremental algorithm, since the update procedure uses a lock to

avoid inconsistencies in the subgraph. In this way, if a new modification (addition,

deletion or update) takes place in the source graph while the SDR algorithm is

running, the algorithm finishes its execution on the data that was available when

the execution was launched. Then, the new modification occurs and the SDR

algorithm is launched again in order to calculate the new subgraph.

5.4 Performance Analysis and Evaluation

In this section, we discuss the performance of the SDR algorithm exposed in

Section 5.3. In order to evaluate the algorithm, we tested it with three case studies.

One of them was generated from synthetic data (cf. Section 5.1) and the rest were

139

Chapter 5. Improving performance with Offline techniques

extracted from real datasets [100, 131]. Then, we measured the performance in

terms of execution time and memory consumption.

5.4.1 Research Questions

To evaluate our proposal, we are interested in answering the following research

questions:

• RQ1: How much is the graph reduced by the SDR algorithm?

Given a query and a graph, applying the SDR algorithm returns a subgraph

with the information needed for running the query. Our hypothesis is that

the ratio of size reduction is related to the type of patterns used in the query.

Therefore, we want to know the relation between the query patterns and

the ratio of size reduction.

• RQ2: What is the performance gain when running the query

on the subgraph, instead of running it on the original graph?

Our hypothesis is that running queries on the reduced subgraph is much

faster and consumes less memory than running them on the original graph.

However, depending on the pattern followed by the query the performance

improvement might differ, and be more or less significant. We want to

analyze this.

• RQ3: Considering data streaming applications, what is the break-

even point of our approach? The SDR algorithm implies additional time

and memory costs when initially computing the subgraph. Our hypothesis

is that these initial costs are compensated as soon as the query is executed

several times. We want to analyze the break-even point, i.e., how many

queries are needed to amortize such initial costs, making our approach

worthwhile.

5.4.2 Case Studies

In order to evaluate our proposal and to try to generalize the results, we

have performed our experiments in three case studies, which are explained in the

following.

140

5.4 Performance Analysis and Evaluation

Amazon Ordering Service

The first case study corresponds with the metamodel depicted in Figure 4.1

and queries of the running example exposed in Section 5.1.

NY Caption Contest

This case study is extracted from the New Yorker caption contest dataset [131].

This dataset provides approximately 89 million ratings over 750,000 captions in

155 contests. The contests are part of the “cartoon caption contest”, where users

have to rate cartoons and captions according to how funny they are through two

types of questions:

• Dueling questions: two captions are shown for the same cartoon and users

have to choose the funniest one.

• Cardinal questions: a cartoon with a caption is displayed and users have to

score how funny they are by selecting either ‘unfunny’, ‘somewhat funny’ or

‘funny’.

Figure 5.2: NY Caption Contest metamodel

The metamodel of this case study is depicted in Figure 5.2. It is conformed by

Participants who give two types of Answers: Choices in a Dueling question or

141

Chapter 5. Improving performance with Offline techniques

Ratings in a Cardinal question. In addition, each Question belongs to a Contest

and is generated from an Algorithm. In this case, the following situations of

interest are taking into consideration:

• Q1. RecentPart: considering all Contests in the system, getting the

number of Participants who have answered at least one Question in a

contest in the last month.

• Q2. ContestPart: considering a specific Contest, obtaining all the

Participants who have only answered one Question.

• Q3. UnchosenCap: considering a specific Caption, counting how many

times a caption appeared in a dueling contest question and it was not

eventually chosen.

• Q4. FunniestCaption: getting the highest scored Caption in a cardinal

contest. The highest scored caption is considered as the most voted caption

tagged as ‘funny’.

• Q5. Abandon: obtaining all Participants that answered one Question

only. This query might be useful when deleting participants’ answers con-

sidered as irrelevant.

• Q6. FunniestCaptionU: same as FunniestCaption, obtaining the high-

est scored Caption taking into account all Questions generated by a random

Algorithm only. In this way, the result of this query is unbiased.

Youtube Videos

This case study uses the YouTube-BoundingBoxes dataset [100], which consists

of approximately 380,000 video segments of 15 to 20 seconds extracted from 240,000

Youtube videos. In these segments, the presence or absence of 23 different objects

were annotated by humans. The dataset is aimed at training machine learning

algorithms.

The metamodel of this example is shown in Figure 5.3. It is conformed by

Videos, which are composed of Segments where the Object is searched. Each

142

5.4 Performance Analysis and Evaluation

Figure 5.3: Youtube Videos metamodel

Segment contains one or several Frames where the Object may appear in a specific

Position. In this case, we are interested in the following situations:

• Q1. GetAnimalVideos: obtaining all Videos that contain an animal.

Animal tags in this dataset are the following: “cat”, “dog”, “bird”, “zebra”,

“cow”, “bear”, “horse”, “giraffe” and “elephant”.

• Q2. NotPresent: getting the Segments where the Object is not present

in any of its frames.

• Q3. AnimalPerson: returning all Videos that contain at least an animal

and a person.

• Q4. PresentSoon: obtaining all Videos where the Object is present

during the first 3 seconds.

• Q5. Pets: getting all Frames that contain a cat or a dog.

• Q6. InCast: returning all Videos where the Object is present in at least

10 Segments.

143

Chapter 5. Improving performance with Offline techniques

5.4.3 Experimental Setup

In this section, we expose the source models and all parameters used to perform

our experiments.

Source Models

Our experiments have been run on models of different sizes in order to analyze

the performance of our approach. We have created models for the three case

studies exposed in Section 5.4.2. First, we have used the models of batch B that

were created for the study of Chapter 4 (cf. Section 4.3.2) for the experiments

with Amazon case study. Second, we have parsed to TinkerGraph format and

imported the models from the sources provided in [131] for the Contest case study.

Finally, we have also parsed to TinkerGraph format and imported the models from

the sources provided in [100] for the Youtube case study. The number of objects

and relationships for each model are shown in Table 5.1. Since the models of the

different case studies conform to different metamodels, the size of the models have

been chosen to have a similar growth curve. Note that the smaller models have

between 1.5 and 2.5 million elements (adding objects and relationships), while the

larger models contain between 12 and 16 million elements.

Models are named according to the approximate sum of the number of their

objects and relationships.

Queries

As described in Section 5.2, queries can follow different patterns. To determine

the performance of our proposal we have defined several queries, each one following

a different pattern. The number of steps of the queries ranges between 3 and 11.

The analysis of our approach with queries that combine more than one pattern is

left as part of future work.

Table 5.2 summarizes all the queries we have used. They are fully described

and implemented on our Git repository [17].

Note that the objects of queries that involve a specific object (e.g., a particular

product in ProductPopularity or a particular contest in ContestPart) consider

the worst-case scenario, i.e., they select the object with a higher number of rela-

144

5.4 Performance Analysis and Evaluation

Case study Name Objects Relationships

Amazon

2M 286,804 2,399,746
4M 424,368 4,113,948
8M 699,517 7,547,815
15M 1,251,025 14,431,225

Contest

1M 279,170 929,010
4M 1,162,164 3,591,820
9M 2,240,240 6,789,472
12M 3,096,948 9,333,592
16M 4,010,120 12,048,874

YouTube

2M 944,945 971,781
4M 1,888,351 1,942,056
6M 2,830,563 2,911,132
8M 3,775,098 3,882,562
10M 4,717,843 4,852,181
12M 5,661,552 5,822,785

Table 5.1: Summary of the models used in the experiments.

tionships with the rest of the network. This makes our algorithm build the largest

possible subgraph.

Execution environment

All experiments have been executed on a machine running the Ubuntu operating

system 16.04.5 LTS 64 bits, Linux kernel 4.4.0-151-generic, with 64GB of RAM, and

an Intel Xeon CPU E5-2680 processor with 16 cores of 2.7 GHz. Our implementation

used TinkerGraph-Gremlin version 3.3.4 [118], Java version 1.8.0_144 with Oracle

JDK vendor and Gremlin-Java version 2.6.0. Besides, we set to 30G the memory

allocation pool of the JVM to obtain the maximum size.

Experiments’ replicability for this chapter is presented in Appendix D.2

5.4.4 Experiments and data collected

We have performed two sets of experiments. The first one focuses on querying

static information on large models. The second one queries new information as it

is added to the model, i.e., it deals with streams of information.

Note that we consider additions in these experiments, since they imply an

145

Chapter 5. Improving performance with Offline techniques

Case study Query name Query pattern

Amazon

ProductPopularity Simple
ProductPopularityC Conditional
AlternativeCustomer Negation
PackagePopularity Conjunction

SimProductsPopularity Disjunction
PrefCustomer Aggregation

PrefCustomerSimProducts Aggregation

Contest

RecentPart Simple
ContestPart Conditional
UnchosenCap Conjunction

FunniestCaption Aggregation
Abandon Aggregation

FunniestCaptionU Aggregation and Conjunction

YouTube

GetAnimalVideos Conditional
NotPresent Negation

AnimalPerson Conjunction
PresentSoon Conjunction

Pets Disjunction
InCast Aggregation

Table 5.2: Summary of the queries used in the experiments.

increment in the volume of the graph, i.e., they are the most costly operation

when working with streams. Then, results reflect the behavior of our approach in

the worst-case scenario. This way, we aim to evaluate both our SDR Algorithm

(Section 5.3.1) and its incremental version (Section 5.3.2). Both sets of experiments

are described next.

Experiments with static information

The idea of these experiments is to perform queries on both the original graph

and the subgraph obtained by the SDR algorithm. We want to compare three

aspects, namely (i) execution time, (ii) memory consumption and (iii) number of

elements in the graphs.

For this, we applied the SDR algorithm to all models and queries listed in

Tables 5.1 and 5.2, respectively. Table 5.3 shows the ratio of elements that are

removed from the original graph as a result of running the SDR algorithm in

each specific case study for each particular query. Columns 1, 2 and 3 indicate

146

5.4 Performance Analysis and Evaluation

the case study, the name of the query, and its type, respectively. Columns 4 to

9 show the ratio R of elements that are removed for each model. That ratio is

calculated as R = 1 − #Tsg/#Tg, where #Tg and #Tsg represent the number

of elements (objects and relationships) in the graph and subgraph, respectively.

Hence, R = 0.94 means that the subgraph contains only 6% of the elements of the

original graph.

In addition, Figures 5.4, C.2 and C.3 show the results of memory consumption

and execution time for all queries of the three case studies. The information

displayed in each chart is the following:

• Each chart is labeled with the pattern followed by the query used for the

experiment.

• The model size is displayed on the X axis using the names indicated in

Table 5.1.

• The values of the execution times are displayed on the left-hand-side of the

Y axis in milliseconds. As indicated in the charts captions, the blue solid line

represents the execution time of the query over the subgraph, whereas the

orange dotted line represents the execution time of the query when executed

over the original graph.

• The values for memory consumption are displayed on the right-hand-side

of the Y axis in Gigabytes. The yellow dashed line represents the memory

consumption of the query over the graph, whereas the gray dashed line

represents the memory consumption of the query over the subgraph.

To avoid measurement disruptions due to the warm up phase and transitory

loads, all experiments were executed six times on the same machine, and the

resulting values have been calculated as the average of the last three runs.

Table 5.4 summarizes in tabular format the information displayed in Fig-

ures 5.4, C.2 and C.3 with the times (in ms) of the queries when executed on the

complete graph (Tg), on the reduced subgraph as calculated by the SDR algorithm

(Tsg), and the corresponding speedups (S). Note that we are able to obtain results

below 1 second in most cases, when the queries on the complete graph took much

longer. Recall that the results shown in Figures 5.4, C.2 and C.3 and Table 5.4

147

Chapter 5. Improving performance with Offline techniques

Case study Query Name Pattern Models

Amazon

2M 4M 8M 15M

ProductPopularity Simple 0.9912 0.9949 0.9973 0.9926
ProductPopularityC Cond. 0.9912 0.9949 0.9973 0.9926
AlternativeCustomer Neg. 0.4739 0.5140 0.4423 0.5206
PackagePopularity Conj. 0.9861 0.9921 0.9959 0.9880

SimProductsPopularity Disj. 0.9817 0.9895 0.9945 0.9859
PrefCustomer Aggr. 0.9039 0.8902 0.8815 0.8757

PrefCustomerSimProducts Aggr. 0.8970 0.8858 0.8790 0.8734

Contest

1M 4M 9M 12M 16M

RecentPart Simple 0.9663 0.9806 0.9898 0.9926 0.9942
ContestPart Cond. 0.9226 0.9803 0.9896 0.9924 0.9941
UnchosenCap Conj. 0.9086 0.9668 0.9825 0.9872 0.9901

FunniestCaption Aggr. 0.8427 0.7657 0.7444 0.7429 0.7435
Abandon Aggr. 0.7721 0.7564 0.7525 0.7513 0.7506

FunniestCaptionU Aggr.&Conj. 0.8658 0.9548 0.9584 0.9603 0.8634

YouTube

2M 4M 6M 8M 10M 12M

GetAnimalVideos Cond. 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951
NotPresent Neg. 0.9688 0.9683 0.9683 0.9685 0.9685 0.9685

AnimalPerson Conj. 0.9946 0.9945 0.9945 0.9945 0.9945 0.9945
PresentSoon Conj. 0.9815 0.9817 0.9817 0.9817 0.9817 0.9816

Pets Disj. 0.9588 0.9582 0.9574 0.9573 0.9574 0.9578
InCast Aggr. 0.5456 0.5460 0.5464 0.5462 0.5464 0.5464

Table 5.3: Elements savings ratio when running the SDR algorithm.

are obtained with static experiments, i.e., we consider that the first execution of

the SDR algorithm has already been performed. For this reason, we only compare

the execution times of the query on the subgraph with the execution times of the

query on the entire graph. Dynamic experiments are explained in the following

section, which consider the first run of the SDR algorithm in their results.

Experiments with streams of information

The second set of experiments is devoted to analyze our approach when dealing

with dynamic graphs. For this, we need to mimic the arrival of new information.

In particular, we consider the arrival of new records, where a record is composed of

a set of elements that may be related to already existing information. In each case

study, a record implies a different number of elements, approximately 2, 8 and 5 in

the Amazon, Contest and YouTube applications, respectively.

To evaluate the speedup achieved by the incremental SDR algorithm, we have

performed queries after a certain number of records arrive at the system. For these

experiments, we have followed two approaches:

148

5.4 Performance Analysis and Evaluation

• CG execution: the query is always performed in the complete graph

without running the SDR algorithm, i.e., in the graph that contains the

initial information plus the new records.

• SubG execution: the SDR algorithm is run once at the beginning on the

initial graph, and the query is performed on the resulting subgraph. As new

records arrive to the graph, the incremental version of the SDR algorithm is

run in order to keep the subgraph updated. The time taken by the initial

SDR algorithm is included in the analysis, which means that the results

measured for this type of execution are calculated as the sum of the execution

time of the initial SDR algorithm plus the execution time of the queries in

the subgraph. However, the time taken by the incremental algorithm is not

included in the analysis because it is executed in parallel with the queries.

Note that the incremental SDR algorithm is always listening for a change in

the graph (addition, modification or deletion of elements). Whenever there

is a change, it is executed.

The results of the experiments for the three case studies are shown in Table 5.5

and Tables C.9 and C.10 of Appendix C.4. Queries are executed every time α new

records arrive, i.e., are added to the graph. In order to limit the number of records

that arrive at the system, and to evaluate our approach with the arrival of different

numbers of records, executions are stopped after β new records have arrived. For

instance, if α = 5 and β = 100, it means that the query is executed every time 5

new records arrive, and the experiment finishes after 100 new records are finally

added (and the query finishes).

Each table displays the results of the experiments with a different case study.

The numbers represent the ratio of execution time gain. When it is negative,

it means that our approach (SubG) is slower than CG. The execution times in

absolute terms for all experiments are shown on our project’s website [18] and

Appendix C.3. As we can see in the tables, results are organized by values of

α and β, queries, and size of models. For each value of α and each model, the

results are to be read vertically. Values in bold represent the first value of β where

the execution time of SubG is faster than CG. For instance, consider the values

for the query ProductPopularity in Table 5.5 with α = 5 and model 2M. When

the experiment is executed with β = 50 (50 new records), the value is −0.0274,

149

Chapter 5. Improving performance with Offline techniques

meaning SubG is 2.74% slower than CG. However, as we let more records arrive

to the system, the time gained by running the query on the subgraph starts to

compensate. For instance, if we consider 100 new records (β = 100), SubG saves

11.98% of the time taken by CG. The formula used to represent the time gain is

Tgain = 1− TSubG/TCG, where TSubG and TCG represent, respectively, the times

taken by the query using our subgraph and the complete graph. Recall that TSubG

is calculated as the sum of the time taken by the SDR algorithm to calculate the

initial subgraph plus the times taken by the query in this subgraph, that is updated

with the incremental algorithm.

Note that some numbers are not shown in Table C.9. This is because the

queries performed on CG take too long and the break-even point has already been

reached.

Table 5.6 summarizes the number of times the query needs to be executed for

our algorithm to pay off, i.e., when our approach is worthwhile. In some cases such

a number is 1, meaning that we achieve a better performance from the very first

query. Of course, the larger the model the better our algorithm performs. This

will be discussed in the next section.

As previously, all queries were executed six times on the same machine, and

the results have been calculated as the average of the last three runs.

5.4.5 Functional Correctness

In order to test the proposed algorithms and to check that their behavior is

correct, we have conducted extensive functional tests that try to ensure that all

queries always return the same results for both the original graph and the subgraph.

Since the query is the same for the graph and the subgraph, the only way to

get a wrong answer would be if the subgraph did not contain some elements or

relations of the original graph that were relevant to that query. However, what our

algorithm tries to obtain is precisely the set of elements and relationships that are

relevant to the query, discarding those that are not. In this sense, our algorithm

tries to generate a subgraph that is correct by construction.

Having said that, and despite the functional tests that checked that the

algorithm was correct using different query suites and models, a formal proof of

correctness could be interesting as part of our future work.

150

5.5 Results

5.5 Results

This section answers the three research questions and discusses the results of

the experiments described in the previous section. Threats to the validity of our

study and an overview about the SDR algorithm’s relationship to indexing are also

discussed at the end.

5.5.1 RQ1: Graph size reduction

To answer the first research question, Table 5.3 displays how much the size

of the subgraph obtained by the SDR algorithm is reduced compared to the size

of the original graph. Each row shows the saving of elements for a specific query

and for different graph sizes. The values are practically constant in each row. Also

note that since the SDR algorithm obtains the subgraph according to the query

structure, the saving of elements is independent of the model size.

The influence of the type of query pattern on the graph size reduction is also

of interest. In this regard, queries that follow simple, conditional, conjunctive and

disjunctive patterns achieve a reduction of more than 90% in all cases and nearly

100% in many of them. This suggests that, in these cases, the SDR algorithm

obtains a subgraph that is close to the minimal subgraph required for matching

the query. In contrast, the results are not that good for queries that follow the

aggregation pattern. This is due to the fact that the algorithm does not consider

the aggregation step when obtaining the subgraph (cf. Section 5.3.1). In addition,

the size reduction also depends on the number of elements that pass the query

filters before the aggregation operator, so the more restrictive the filters, the better.

Finally, the reduction achieved in the case of queries that follow a negative

pattern directly depends on the number of elements that match the predicate

of the not clause, because the subgraph will contain the complement of the set

of such elements. This explains the different reduction results obtained for the

two queries that follow a negative pattern (Amazon-AlternativeCustomer and

YouTube-NotPresent).

151

Chapter 5. Improving performance with Offline techniques

5.5.2 RQ2: Performance improvement

Figures 5.4, C.2 and C.3 display the results for memory consumption and

execution time for the three case studies when executing queries that follow different

patterns. In all cases, both the execution times and the memory consumption are

smaller because of the reduction achieved for the graph, as expected.

Charts for queries that follow the simple (Figures 5.4a and C.2a), conditional

(Figures 5.4b, C.2b and C.3a), conjunctive (Figures 5.4d, C.2c, C.3c and C.3d)

and disjunctive (Figures 5.4e and C.3e) patterns show that the execution time and

memory consumption when executing the queries on the original graph increase as

the model size grows. However, for the subgraph, these values are almost constant.

This is because of the high reduction performed by the SDR algorithm on the

original graph, as shown in Table 5.3, which in these cases reduces almost 99% of

the elements. Note that, for these patterns, the query on the subgraph takes only

a few tenths of second, which yields a speedup higher than 15 in most cases.

The performance of queries that follow aggregation patterns is highly dependent

on the time and memory taken for resolving the query aggregation operators and

filters (see lines 5–7 of Listing 5.5 for an example). Figures 5.4f, 5.4g, C.2e and C.3f

show situations where the performance using the graph and subgraph is practically

the same, because these steps are very costly (in Table 5.4, their speedups are

nearly 1). In contrast, the performance of other queries, such as those that return

only one element, is much better (Figures C.2d and C.2f), mainly because the

aggregation filter is solved faster. In these queries, the speedup is above 40 in all

cases (Table 5.4).

Figures 5.4c and C.3b show the results for queries that follow a negative

pattern. Again, the more elements matching the pattern, the better the performance

improvement.

5.5.3 RQ3: Execution time gains with data streams

Tables 5.5, C.9 and C.10 show the results of running the algorithms when

dealing with data streaming applications (cf. Section 5.4.4), where queries are

executed while new data is constantly arriving and being added to the model.

These results are summarized in Table 5.6. Recall that β is the total number of

records added per experiment, while α represents the size of the new records batch

152

5.5 Results

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ProductPopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) SDR results for Q1 (Sim-
ple pattern).

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ProductPopularityC

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) SDR results for Q1 with
where clause (Cond. pat-
tern).

0
5
10
15
20
25

0
1,000
2,000
3,000
4,000
5,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

AlternativeCustomer

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) SDR results for Q2 (Neg.
pattern).

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PackagePopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) SDR results for Q3 (Conj.
pattern).

0
5
10
15
20
25

0
3,000
6,000
9,000
12,000
15,000
18,000
21,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

SimProductsPopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) SDR results for Q4 (Disj.
pattern).

0
5
10
15
20
25

0
100
200
300
400
500
600
700
800
900

1,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PrefCustomer

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) SDR results for Q5 (Aggr.
pattern).

0

5

10

15

20

25

0
100
200
300
400
500
600
700
800
900

1,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B
)

Ex
ec
ut
io
n	
ti
m
e	
(m

s)

PrefCustomerSimProducts

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(g) SDR results for Q6 (Aggr.
pattern).

Figure 5.4: Performance results of the SDR algorithm for the Amazon queries.

153

Chapter 5. Improving performance with Offline techniques

Query Name Pattern Models

2M 4M 8M 15M

Amazon Case Tg Tsg S Tg Tsg S Tg Tsg S Tg Tsg S

ProductPopularity Simple 684 43 15.91 1,121 36 31.14 2,333 37 63.05 11,793 291 40.53
ProductPopularityC Cond. 1,495 40 37.38 1,607 35 45.91 3,855 31 124.35 15,178 327 46.46
AlternativeCustomer Neg. 439 82 5.35 1,182 239 4.95 2,258 1,194 1.89 4,785 3,788 1.26
PackagePopularity Conj. 1,027 75 13.69 1,641 53 30.96 3,152 67 47.04 17,561 505 34.77

SimProductsPopularity Disj. 1,739 105 16.56 2,556 83 30.80 4,985 104 47.93 21,283 625 34.05
PrefCustomer Aggr. 117 81 1.44 175 120 1.46 333 252 1.32 852 674 1.26

PrefCustomerSimProducts Aggr. 131 98 1.34 197 146 1.35 324 247 1.31 958 834 1.15

1M 4M 9M 12M

Contest Case Tg Tsg S Tg Tsg S Tg Tsg S Tg Tsg S

RecentPart Simple 298 96 3.10 1,470 78 18.85 4,047 78 51.88 4,250 74 57.43
ContestPart Cond. 610 88 6.93 2,954 81 36.47 5,642 64 88.16 6,479 86 75.34
UnchosenCap Conj. 497 62 8.02 2,562 123 20.83 4,832 94 51.40 5,613 92 61.01

FunniestCaption Aggr. 56,377 499 112.98 197,117 4,045 48.73 375,390 8,641 43.44 556,320 12,167 45.72
Abandon Aggr. 245 189 1.30 1,695 893 1.90 2,844 1,939 1.47 4,365 2,808 1.55

FunniestCaptionU Aggr. & Conj. 15,535 312 49.79 21,617 314 68.84 39,343 669 58.81 40,790 757 53.88

2M 4M 6M 8M

YouTube Case Tg Tsg S Tg Tsg S Tg Tsg S Tg Tsg S

GetAnimalVideos Cond. 1,485 15 99.00 2,851 21 135.76 3,931 22 178.68 4,283 35 122.37
NotPresent Neg. 280 17 16.47 795 30 26.50 929 49 18.96 1,818 72 25.25

AnimalPerson Conj. 1,400 29 48.29 3,470 39 88.97 3,432 49 70.04 4,513 54 83.57
PresentSoon Conj. 1,200 46 26.09 2,743 87 31.53 3,122 95 32.86 3,849 109 35.31

Pets Disj. 2,166 138 15.70 4,075 256 15.92 8,199 379 21.63 10,696 552 19.38
InCast Aggr. 688 289 2.38 1,817 864 2.10 2,745 1,081 2.54 2,883 1,444 2.00

Table 5.4: Execution times (ms) of queries with the complete graph (Tg), the
subgraph (Tsg), and the corresponding speedups (S).

that have arrived at the system each time the query is run. This means that, for

a constant value of α, the higher the value of β, the higher number of times the

query of each experiment is executed.

To analyze the results for each type of query pattern, recall that, in the tables,

the point at which the time gain becomes positive, which depends on the value of

β, is highlighted in bold. This is what we call the break-even point. In Tables 5.5,

C.9 and C.10, the break-even point is shown as gain ratio, while Table 5.6 displays

the break-even point in number of query executions, i.e., how many executions of

the query are necessary for the gain to be positive.

Our hypothesis is that time gain—in other words, how fast the break-even point

is reached—is directly proportional to the value of β and inversely proportional to

the value of α. Another hypothesis is that time gain also increases with the model

size. Tables 5.5, C.9 and C.10 confirm both hypothesis since, in general, time gains

increase with the increase of (i) model size, (ii) data arrival and (iii) number of

queries execution. This is also the tendency according to Table 5.6. We can see

that for some queries and some model sizes, the break-even point is reached after

only one execution of the query, which is a very good result.

Having a look at the different query patterns, we can observe that, generally,

154

5.5 Results

Query Name Models

α = 5 α = 10

β 2M 4M 8M 15M 2M 4M 8M 15M

ProductPopularity
(Simple)

50 -0.0274 -0.0104 0.0486 0.0155 -0.2043 -0.1492 -0.0649 -0.0986
100 0.1198 0.1834 0.2032 0.1875 -0.0176 -0.0220 0.0760 0.0602
150 0.1874 0.2274 0.2647 0.2718 -0.0101 0.0827 0.1272 0.1585
200 0.2021 0.2771 0.3018 0.3363 0.0656 0.1215 0.1821 0.1920
250 0.2053 0.3302 0.3414 0.3772 0.0721 0.1658 0.2175 0.2469

ProductPopularityC
(Conditional)

50 -0.0334 -0.0244 0.0119 0.0666 -0.2080 -0.1541 -0.1271 -0.0677
100 0.0704 0.1319 0.1468 0.2048 -0.0708 -0.0163 0.0456 0.0572
150 0.1546 0.2095 0.2110 0.2915 0.0347 0.0522 0.1095 0.1537
200 0.1930 0.2479 0.2586 0.3392 0.0232 0.0828 0.1402 0.1910
250 0.2145 0.2913 0.3001 0.3508 0.0588 0.1312 0.1728 0.2315

AlternativeCustomer
(Negative)

50 -0.2713 -0.2519 -0.1435 -0.1760 -0.2514 -0.2908 -0.2229 -0.1628
100 -0.0989 -0.1047 -0.0367 -0.0555 -0.1472 -0.1421 -0.1212 -0.0990
150 -0.0805 -0.0218 0.0006 0.0034 -0.0985 -0.0880 -0.0805 -0.0337
200 -0.0461 0.0186 0.0283 0.0522 -0.0588 -0.0535 -0.0486 -0.0290
250 -0.0280 0.0614 0.0728 0.1121 -0.0581 -0.0192 -0.0311 -0.0116

PackagePopularity
(Conjunctive)

50 -0.0778 -0.0850 -0.0113 -0.0107 -0.3188 -0.2222 -0.1674 -0.0938
100 0.0704 0.1187 0.1596 0.1632 -0.0485 -0.0714 -0.0594 0.0112
150 0.1396 0.2072 0.2123 0.2764 -0.0445 0.0305 0.0692 0.0792
200 0.1730 0.2486 0.2499 0.3607 0.0123 0.0585 0.0910 0.2189
250 0.1849 0.2927 0.2936 0.3875 0.0455 0.1282 0.1289 0.2496

SimProductsPopularity
(Disjunctive)

50 -0.0207 -0.0092 0.1372 0.1514 -0.2326 -0.1121 -0.1092 -0.0574
100 0.1525 0.1721 0.2617 0.2718 -0.0111 0.0096 0.0463 0.1414
150 0.2337 0.3121 0.3335 0.3965 0.0477 0.1059 0.1632 0.2507
200 0.2722 0.3508 0.3838 0.4497 0.0969 0.1861 0.1834 0.2659
250 0.3029 0.3918 0.4038 0.4753 0.0828 0.2052 0.2215 0.3278

PrefCustomer
(Aggregation)

50 -0.3316 -0.3102 -0.3002 -0.3041 -0.3724 -0.3595 -0.3509 -0.3238
100 -0.2860 -0.2479 -0.2088 -0.1554 -0.2951 -0.2926 -0.2500 -0.2115
150 -0.2145 -0.1989 -0.1652 -0.0751 -0.2395 -0.2121 -0.1850 -0.1140
200 -0.2006 -0.1295 -0.1283 -0.0547 -0.2191 -0.1526 -0.1230 -0.0772
250 -0.1826 -0.0999 -0.0932 -0.0185 -0.2061 -0.1125 -0.0984 -0.0440

PrefCustomerSimProducts
(Aggregation)

50 -0.2663 -0.2892 -0.2294 -0.3203 -0.3024 -0.3723 -0.2916 -0.3652
100 -0.2282 -0.2215 -0.1509 -0.1806 -0.2734 -0.2464 -0.2089 -0.2137
150 -0.1746 -0.1753 -0.1190 -0.1055 -0.2083 -0.1865 -0.1715 -0.1146
200 -0.1550 -0.0871 -0.1061 -0.0601 -0.1808 -0.1361 -0.1128 -0.0745
250 -0.1377 -0.0807 -0.0696 -0.0194 -0.1775 -0.1097 -0.0987 -0.0379

Table 5.5: Gain ratio when using the incremental algorithm in the Amazon case
study.

155

Chapter 5. Improving performance with Offline techniques

disjunctive queries achieve the highest gain (see SimProductsPopularity in Table

5.5 and Pets in Table C.10), followed by simple and conditional queries, which

have a similar gain (see ProductPopularity and ProductPopularityC in Table 5.5,

RecentPart and ContestPart in Table C.9 and GetAnimalVideos in Table C.10),

where conditional queries have a slightly higher gain than simple queries. Then,

conjunctive queries (see PackagePopularity in Table 5.5, UnchosenCap in Table

C.9, and AnimalPerson and PresentSoon in Table C.10) have a higher gain than

negative queries (AlternativeCustomer in Table 5.5 and NotPresent in Table C.10).

Regarding aggregation queries, they present very different gain values in the three

case studies. For example, observe how the FunniestCaption query in Table C.9

has a gain higher than 70% for all α and β values, whereas PrefCustomer in Table

5.5 does not present any positive gain for any α and β values.

In summary, we conclude that the query patterns in which the break-even points

are reached faster are, in this order, disjunctive, conditional, simple, conjunctive and

negative. Regarding results for aggregation patterns, they are quite different from

each other. Typically, the break-even point of queries following this pattern depends

on the overload imposed by the aggregation operators and their corresponding filters:

the lighter they are, the sooner the break-even point is reached, and vice-versa.

5.5.4 SDR algorithm and Indexing techniques

Indices are a very popular and efficient technique to improve query performance.

In fact, some of the technologies that we studied to develop our proposal (cf.

Chapter 3) have some support to implement them. Some examples are the indexing

of objects and relationships from TinkerGraph [119], the indexing of labels and

properties from Neo4j [90], or Memgraph label and label-property indices [84].

According to the classification presented in Section 5.2, a valid indexing schema

for our queries needs to provide two fundamental features: (i) efficient lookups to

identify the initial objects of the query, i.e. the objects that match with the last step

of the query, and (ii) it may guide the traversals during query evaluation. However,

although some works provide mechanisms to create graph indexing techniques [85],

this is still an open issue to be addressed [125]. For this reason, in the present

chapter, we have addressed the improvement of query performance on graphs from

a different perspective that does not use indices. Nevertheless, our work does

156

5.5 Results

Case study Query Name Pattern Models

Amazon

2M 4M 8M 15M
ProductPopularity Simple 15 11 6 8

ProductPopularityC Conditional 16 13 9 6
AlternativeCustomer Negative 37 32 30 29
PackagePopularity Conjunctive 19 17 12 10

SimProductsPopularity Disjunctive 13 11 7 5
PrefCustomer Aggregation 68 51 49 37

PrefCustomerSimProducts Aggregation 67 46 50 37

Contest

1M 4M 9M 12M

RecentPart Simple 41 12 1 1
ContestPart Conditional 31 6 2 1
UnchosenCap Conjunctive 38 10 4 1

FunniestCaption Aggregation 1 1 1 1
Abandon Aggregation 38 15 5 3

FunniestCaptionU Aggregation & Conjunctive 1 2 2 2

YouTube

2M 4M 6M 8M

GetAnimalVideos Conditional 49 3 1 1
NotPresent Negative 67 24 4 1

AnimalPerson Conjunctive 47 11 6 1
PresentSoon Conjunctive 43 11 5 3

Pets Disjunctive 5 4 1 1
InCast Aggregation 45 22 15 1

Table 5.6: Number of query executions needed to obtain a positive gain for each
query.

not pretend to replace indexing techniques, but to complement them in order

to achieve further improvements. In this way, a possible approach may use the

efficient indexing searches in order to identify the parameterized objects of our

queries (e.g those that refer to the most specific step of the query, which is the last

step in our approach), together with the dataset reduction obtained from the SDR

algorithm. In addition, since the objects weight calculated with the SDR algorithm

is a numerical value, our approach is designed to be applied in the context of

approximate queries. This application is not contemplated by indexing techniques,

so it may complement them too in order to speed up the queries. However, all

these applications are out of the scope of this thesis, so we consider them as future

work.

157

Chapter 5. Improving performance with Offline techniques

5.5.5 Threats to Validity

In this section we discuss the threats that can affect the validity of our proposal

and results. We describe four types of threats according to Wohlin et al. [129].

Construct validity threats

These threats are concerned with the relationship between theory and what is

observed. A common construct validity threat, known as the mono-method bias, is

related to the use of one single metric in the evaluation. In our experiments, we

have considered different metrics, namely execution time, memory consumption

and source data set reduction. Given that results obtained by the different metrics

are consistent when drawing the conclusions, we consider the mono-method bias

threat neutralized.

Conclusion validity threats

The main issue that can affect the validity of our conclusions is the transient

effects of noise by other components of the system under study. To mitigate this,

we ran the experiment 6 times and took the average of the last 3 runs. Furthermore,

the raw data and scripts for replicating our experiments are available on our

project’s website [17, 18].

Internal validity threats

These threats are related to those factors that might affect the results of our

evaluation. To mitigate them, we have used models of different size. Since our

approach is targeted at optimizing queries when the volume of information is high,

all models were large (with between 1.5 to 16 million objects and relationships).

Besides, we analyze the behavior of our approach with data of different nature,

since they belong to three case studies whose graphs have different topology.

The way we have tried to mimic the arrival of new information to the initial

data set might have also affected the validity of our results. In order to mitigate this

threat, we have analyzed how our approach behaves in different dynamic scenarios,

and combined (i) the amount of information that arrives at every time step, (ii)

158

5.6 Related Work

how often such information arrives and (iii) the use of models of different sizes (cf.

Tables 5.5, C.9 and C.10).

External validity threats

External validity threats have to do with the extent to which it is possible to

generalize the findings of the experiments. The first threat is that the results of our

experiments have been obtained with three case studies, which externally threatens

the generalizability of our results. To mitigate this, we have tried to select case

studies from different and real contexts, where only one has been created by us. In

that case study, we tried to reflect the main parts of the Amazon ordering service,

and created models of different sizes in which connections among objects are similar

to the ones we could have in models containing real data. The other two case

studies have been taken from real data sets, so that this threat is minimized.

Although we checked that all queries returned in all cases the same results

for both the graph and the subgraph, and conducted exhaustive functional tests

on the algorithm, formally proving the correctness of the algorithm could be of

interest, too.

A third threat to the external validity of our solution is related to the language

and technologies used to implement our approach. As described in Chapter 3,

we studied different technologies and selected the ones that we considered most

appropriate, namely TinkerGraph and Gremlin. While we believe our approach can

be implemented with other technologies, doing so might lead to slightly different

performance results.

The final threat to external validity identified is related to the classification of

queries provided. In fact, our SDR algorithm works depending on the type of query,

which in turn depends on the constructs offered by the query language. Should we

have provided a different classification for the queries, the implementation of our

algorithm would have been different and the results might have varied.

5.6 Related Work

This work was published in [15]. It mainly derives from three previous studies.

First, we introduced the concept of Approximate Model Transformations and the

159

Chapter 5. Improving performance with Offline techniques

statistical error calculation for streams of data [121]. However, this work does

not consider graph-structured data but simple events that are not related to each

other. The second study is a previous work [13], in which we propose a prototypical

solution based on CEP and adapted to graph-structured information. It uses the

Graphx tool of Spark for graph-parallel computation. In that work, the queries

are developed using Scala language, what increases the complexity of the query

implementation. Furthermore, the work does not deal with approximations. The

last study, also developed by us [14], exposes the online method described in

Chapter 4. However, as opposed to the approach presented in this chapter, the

online method does not consider the content of the queries in the approximation.

The present work extends all these three works by proposing a solution that applies

a precomputation (i.e. offline AQP technique) that takes into account the syntax

of the query. Result of this precomputation is a subset of the incoming graph-

structured information that is relevant for the query. By executing the query

on this subset, execution time and memory consumption are decreased. Besides,

the approach proposed in Chapter 4 is complementary to this work, since we can

seek greater performance improvement by applying approximations to the subset

obtained.

Two surveys about approximate query processing mention a precomputation

step in order to select important information for the query before it is executed [32,

75]. This information is stored as a summary of the source data and it is used

to perform the query faster. Other works propose precomputation with sampling

techniques in order to select only part of the information with the aim of speeding

up queries [2, 3, 10, 30, 31]. However, these precomputation proposals typically

differ from ours in three aspects, namely (i) they only consider queries that return

an aggregated result, (ii) they are not applied to graph-structured information, and

(iii) the accuracy of the aggregated answer is not optimal, since this aggregation

does not contain all relevant information to the query. Up to our knowledge,

the closest work to ours regarding precomputation has been proposed by Fan et

al. [52], who study how to query a graph with bounded resources. They propose

an algorithm to calculate an approximation that depends on the query and on a

parameter that indicates the limit of resources. The algorithm assigns a weight

to each object according to their importance for the query. The approximation

contains as many objects as the parameter of the limit indicates, taking the most

160

5.6 Related Work

relevant ones and discarding the rest. In this way, they get the minimum possible

error considering the bounded resources. However, differently from the approach

presented in this chapter, they only consider static graphs and not data streaming

applications with information continuously coming in.

Other related proposals do consider the arrival of new information. In a previous

work by Fan et al. [51], they define algorithms for incremental graph pattern

matching when the graph is updated. However, their evaluation considers graph

sizes of 65,000 elements at most (counting objects and relationships). Moreover, our

approach uses the type of pattern followed by the query to improve graph reduction

and query performance, whereas they do not make use of this information.

There are other works that deal with incremental queries using crowdsourcing

techniques [122, 123]. However, these works have a different perspective. Crowd-

sourcing techniques construct the results incrementally starting from an initial

small dataset. At this point, since the source information does not contain enough

relevant data, the results have a low accuracy. As new information arrives to

the system, the results are refined. Our approach, instead, considers all relevant

information to the query from the beginning (typically a large dataset) so that an

accurate result can be obtained at first. We use the incremental SDR algorithm to

maintain the subgraph uptaded.

Some other works that deal with the arrival of new information propose

incremental transformations, where the input model changes over time [20, 65, 66,

99, 110, 124]. They present partial and incremental model transformations using

EMF-IncQuery and EMF-IncQuery-D frameworks [20, 110, 124], an incremental

algorithm for ATL [66], a framework for the instant and incremental transformation

of changes among models [65], and a partial evaluator prototype called QvtMix

[99]. Therefore, these papers are not focused on graph databases. In addition,

they only consider two types of queries: simple (with two elements at most) and

complex (with more than two elements that are linked through one or more joins).

In this way, our proposal uses a more exhaustive query classification schema with

six different types of query patterns.

Bergmann et al. [21] present a solution that supports incremental queries over

models in the VIATRA2 framework. The implementation is based on the RETE

algorithm, which improves speed at the expense of consuming more memory. Their

solution stores the pattern matches, and updates them as new changes occur in

161

Chapter 5. Improving performance with Offline techniques

the model. Evaluation results report an average scale of up to 9% with respect

to normal executions, which implies a speedup of about 11. This approach works

differently from ours because it propagates the changes of the model to the resultset

(so a resultset must always be available), while our approach propagates them to

the dataset that will be queried, which corresponds to the subgraph. Besides, the

SDR algorithm works with graph databases while VIATRA2 works with models.

For these reasons, and since both approaches pursue a similar goal, we believe they

are complementary.

Other projects propose incremental queries with graph databases, such as the

ingraph query engine [112] and OrientDB’s LiveQuery [95]. The first difference is

that the SDR algorithm is implemented for the Gremlin language, whereas ingraph

works with Cypher and LiveQuery uses a SQL dialect. Also, ingraph propagates the

changes of the graph to the resultset, while LiveGraph returns the latest changes

(but not the complete resultset). This is similar to the VIATRA2 approach, as

mentioned earlier.

Two other works classify graph queries according to their structure and calcu-

late their complexity. First, Barceló et al. [11] propose a classification of queries

according to the paths they contain. However, they do not consider the property

filters or the operator types. Angles et al. [4] propose a more complete classification

that considers the operations that can be found in a query. The authors mainly

distinguish between basic and complex graph patterns. The former ones cover the

property filters that can be queried with variables or constants; the latter ones

extend the basic graph patterns with different operations like union, projection or

difference. They describe each type of pattern and illustrate them using three of

the most popular graph query languages, namely Gremlin, SPARQL and Cypher.

This approach is very similar to ours, since it also considers filters. However, our

classification further divides complex graph patterns into six individual subcate-

gories, namely condition, negation, conjunctive, disjunctive, and aggregation. This

refinement is relevant for analysing the behavior and performance of the proposed

algorithm.

Finally, our algorithm was developed considering the rationale behind Google’s

PageRank algorithm [96]. This algorithm calculates a probability for each web

page according to its importance but without considering the context of any search.

In our approach, instead, the relevance of graph objects is influenced by the query

162

5.7 Summary

contents. In a similar way, Richardson and Domingos propose a probabilistic model

for a more intelligent PageRank algorithm [101] that calculates the probability that

a web page contains the terms of a specific search query. However, they do not

consider the structure and operators of the query itself, which we have seen have a

significant impact on the results.

5.7 Summary

In this chapter, we have designed and developed an algorithm that implements

an offline technique to optimize the performance of queries on graph-structured

data streams. This algorithm selects a subgraph of the original model that contains

the relevant data for the query, and on which the query can be more efficiently

executed. Furthermore, as new information arrives and is added to the system,

the subgraph is updated using another algorithm, that we have called Incremental

SDR. In order to study the performance depending on the content of the query,

we have identified and classified six different patterns that can be found in queries

over graph-structured data according to their structure.

Our experiments show that querying the subgraph obtained with the SDR

algorithm instead of the entire source graph achieves a performance improvement

for all query patterns. We have also demonstrated that these improvements increase

with the original graph size, as well as with the number of times the query is run.

However, queries that follow aggregation patterns behave slightly different than the

rest, since they depend on the aggregation filters and operators that they contain.

Therefore, aggregation patterns need to be studied in detail as future work.

163

Chapter 6
Conclusions and Future Work

This chapter summarizes the proposal that has been explained throughout this

dissertation. First, we highlight the main conclusions of our work in Section 6.1.

Second, we expose the publications derived from our contributions in Section 6.2.

Finally, we describe our future work in Section 6.3.

6.1 Summary and Conclusions

As mentioned throughout the lines of this dissertation, one of the main chal-

lenges when working with Data Streaming Applications is to get a low-latency

processing, which implies fast responses. This feature motivated the first contribu-

tion of this thesis, presented in Chapter 3. We presented a comparative study of 7

processing platforms that are commonly used to work with large volumes of data,

namely TinkerGraph, Neo4j, CrateDB, Memgraph, JanusGraph, OrientDB and

GraphFrames. In addition, 4 DSLs to write the queries that process the information

were also compared, namely Gremlin, Cypher, SQL and the GraphFrames DSL. We

165

Chapter 6. Conclusions and Future Work

aimed to get the best combination of DSL and processing platform that suits the fol-

lowing requirements: (i) they allow to perform queries and update the information

as quickly as possible in order to provide real-time responses, (ii) they cope with

graph-structured information, and (iii) the DSL provides a clear syntax in order to

be able to study the type of query to be run over the data. All technologies were

evaluated using two case studies with graph-structured information. Performance,

in terms of execution time, and complexity of the language, in terms of number

of characters, operators and internal variables, were compared in the experiments.

Results showed that graph databases are the most efficient technologies to work

with graphs. Besides, the DSLs used with this kind of databases present the

simplest syntax. We concluded the most suitable combination for our requirements

was TinkerGraph and Gremlin.

The second main contribution was presented in Chapter 4. This contribution

addresses online AQP when working with graph-structured information flows.

Three techniques were proposed for improving the performance when querying large

models, called temporal, spatial and random approximations. Temporal and spatial

approximations select a subset of the source information by means of reducing the

temporal and spatial ranges, respectively, whereas random approximations add a

probability to each element of the graph to be included in the subset. In order to

find the right balance between accuracy loss derived from these approximations

and performance gain, we proposed a method for measuring the accuracy. This

method is based on the terms of accuracy, recall and precision.

Two different data distributions were used in the experiments of Chapter 4, in

order to analyze how this feature affects the approximations. Results concluded

that performance can be improved with approximations and an optimal accuracy

value can be acquired when considering only part of the source model. Nevertheless,

temporal approximations are the most convenient option when the data present a

temporal focus. In addition, random approximations showed a similar performance

regardless data distribution and their experiments showed that they are the best

option when a query does not contain temporal or spatial filtering. Finally, spatial

approximation results showed that they are very expensive in terms of runtime and

they only pay off when there is not other option.

The last contribution was presented in Chapter 5. It addresses offline AQP

in order to improve the performance of Data Streaming Applications. To achieve

166

6.2 Publications

this, we designed and developed the SDR algorithm. This algorithm optimizes the

performance when querying graph-structured data streams by selecting a subgraph

of the source model. This subgraph contains the data that is relevant for the query

and, therefore, the query can be more efficiently executed. Since the elements

contained in the subgraph depend on the query structure, we identified six patterns

that can be found in graph queries, namely simple, conditional, conjunction,

disjunction, negative and aggregation patterns. Since our approach is designed to

work with information flows, we developed an incremental version of the algorithm,

called Incremental SDR. This algorithm updates the subgraph as new information

arrives to the system.

Three case studies were used to validate our proposal. Results showed that

querying the subgraph obtained with the SDR algorithm instead of the entire source

graph achieves a performance improvement for all query patterns. In fact, some

query patterns only need to query a subgraph that contains only 1% of the elements

of the original graph. Specifically, the query patterns in which the time gain is

higher are, in this order, disjunctive, conditional, simple, conjunctive and negative.

However, queries that follow aggregation patterns behave slightly different than the

rest, since they depend on the aggregation filters and operators that they contain.

Furthermore, we also showed that the performance improvements increase with

the original graph size, as well as with the number of times the query is run.

Therefore, our approach has demonstrated that it is possible to obtain the

best trade-off between the correctness of the results and the performance of the

processing. For this reason, we consider that this thesis provides an answer to the

research question proposed in Section 1.1 (Can we obtain a good (or the optimal)

trade-off between performance and accuracy loss when processing very-large amounts

of information?) and it also achieves the expected goals.

6.2 Publications

In this section we expose the publications that support this thesis as well as

other research contributions where the author of this dissertation has participated

over the course of her Ph.D.

167

Chapter 6. Conclusions and Future Work

6.2.1 Publications Supporting this Dissertation

This section shows the publications that are closely related with the approaches

presented in this thesis.

International Conferences

• Gala Barquero, Loli Burgueño, Javier Troya, and Antonio Vallecillo, “Ex-

tending complex event processing to graph-structured information” in Proc.

of Model Driven Engineering Languages and Systems - 21th International

Conference. ACM, pp. 166–175, 2018 [13]. A preliminary version of a

system that manages streams of graph-structured data is published in this

paper. This system is based on CEP and it involves the basis of the approach

presented in Chapters 4 and 5.

International Journals

• Gala Barquero, Javier Troya, and Antonio Vallecillo, “Trading accuracy for

performance in data processing applications”, Journal of Object Technology,

vol. 18, no. 2, pp. 9:1–24, 2019 [14]. This paper supports the contents

presented in Chapter 4. This publication obtained the Best Paper Award

of the European Conference on Modelling Foundations and Applications

(ECMFA2019).

• Gala Barquero, Javier Troya and Antonio Vallecillo, “Improving Query Perfor-

mance on Dynamic Graphs”, Software and System Modeling pp. 1619–1374,

2020 [15]. The algorithm and the approach presented in Chapter 5 is pub-

lished in this paper. In addition, this paper comprises a summary of the

research presented in Chapter 3.

6.2.2 Further Publications

This section shows two further contributions that were published in interna-

tional conferences, although they are not directly related to the lines of research

presented in this dissertation.

168

6.3 Future Work

• Manuel F. Bertoa, Nathalie Moreno, Gala Barquero, Loli Burgueño, Javier

Troya, and Antonio Vallecillo, “Expressing measurement uncertainty in

OCL/UML datatypes”, in Proc. of Modelling Foundations and Applications

- 14th European Conference, Held as Part of STAF 2018. Springer, pp.

46–62, 2018 [23].

• Nathalie Moreno, Manuel F. Bertoa, Gala Barquero, Loli Burgueño, Javier

Troya, Adrián García-López, and Antonio Vallecillo, “Managing uncertain

complex events in web ofthings applications”, in Proc. of Web Engineering -

18th International Conference. Springer, pp. 349–357, 2018 [86].

6.3 Future Work

We consider that the work presented in this thesis is mature enough to give an

answer to a specific problem. However, the approaches presented in this dissertation

may be extended in several directions in order to improve the research.

6.3.1 Online techniques

According to the results presented in Chapter 4, performance can indeed

be improved with the proposed online AQP techniques (temporal, spatial and

random approximations). In fact, an optimal accuracy value can be acquired when

considering only part of the source model. Nevertheless, we plan to conduct further

experiments. To begin with, we are interested in investigating how the presence of

more than one data focus in different time intervals can affect the approximations.

Similarly, we want to investigate spatial data focuses located in different points

of the model and their effects in the approximations. We pretend to bear out the

hypothesis that temporal and spatial focuses do not affect random approximations

but spatial and temporal approximations.

Regarding the algorithm used to traverse the graph for spatial approximations,

Gremlin applies a depth-first approach by default. It is interesting to study

how applying other algorithms affects accuracy of the approximations as well as

execution time, so it is something we plan to explore in future work. In this line,

we also plan to consider what benefits model indexing technologies can bring to

processing performance.

169

Chapter 6. Conclusions and Future Work

Depending on the query of the running example exposed in Chapter 4, temporal,

spatial and random approximations imply FPs or FNs. However, other examples

may imply FPs and FNs in the same query. We plan to study the evolution of

performance in approximations with this kind of examples, and how to obtain the

amount of data for the Optimal Models. In this case, both precision and recall

will be evaluated for the query and the Optimal Model would be chosen regarding

the stabilization of both parameters. In this way, although our current results are

enough to draw conclusions about the effect of using approximations in data flows,

more case studies may be tested to better assess our proposal.

We also plan to address a new problem: how to automatically determine

the Optimal Models. We envision the application of search-based algorithms for

determining the Pareto front of Optimal Models, according to a set of optimization

criteria, such as decreasing execution time and memory consumption, and improving

precision and recall. Although execution time is the most restrictive aspect when

working with Data Streaming Applications (cf. Section 2.2), we plan to do a more

exhaustive evaluation of memory consumption with many more experiments and

study how the different approximation types can affect this feature.

6.3.2 Offine techniques

On the other hand, experiments presented in Chapter 5 show that performance

can be also improved with the SDR algorithm. Recall that although this algorithm

is an offline AQP technique, we achieved a performance improvement without

compromising the accuracy of our results. Nevertheless, queries that follow ag-

gregation patterns behave slightly different than the rest, since they depend on

the aggregation filters and operators that they contain. For this reason, we plan

to study these kinds of queries more deeply. In this way, we pretend to obtain a

subgraph tighter to the query and, therefore, to get a more noticeable performance

improvement for aggregation patterns. We also plan to study how to improve the

performance of negative patterns since improvement for this query pattern is a

bit lower compared to the rest of patterns. For example, we plan to implement a

second scan of the query that would remove unnecessary elements in the subgraph

using data cleansing techniques. In addition, in this approach we have considered

queries that follow mostly one pattern, in order to characterize their behavior. The

170

6.3 Future Work

analysis of more complex queries with more patterns could also be of interest.

6.3.3 Mixed techniques

Taking into account results of the experiments with online and offline AQP

techniques, other interesting line of future work is to include approximation tech-

niques of Chapter 4 in the proposal of Chapter 5. In this way, spatial and temporal

windows as well as random techniques would be applied to the subgraph obtained

with the SDR algorithm in order to get a higher performance in detriment of the

accuracy of the results. Since the results would be approximate, we would need to

measure the trade-off between performance gain and accuracy loss, and study it

depending on the query pattern.

Finally, since temporal, spatial and random approximations and SDR algorithm

are technology-independent, we plan to implement them with the technologies

presented in Chapter 3 and compare the results.

171

Bibliography

[1] Aburawi, N., Lisitsa, A., Coenen, F.: Querying encrypted graph databases.

In: Proc. of the 4th International Conference on Information Systems Security

and Privacy, ICISSP 2018 January 22-24, pp. 447–451 (2018). DOI 10.5220/

0006660004470451

[2] Acharya, S., Gibbons, P.B., Poosala, V.: Congressional samples for approxi-

mate answering of group-by queries. In: Proc. of the 2000 ACM SIGMOD

International Conference on Management of Data, May 16-18, pp. 487–498

(2000). DOI 10.1145/342009.335450

[3] Agarwal, S., Panda, A., Mozafari, B., Iyer, A.P., Madden, S., Stoica, I.:

Blink and it’s done: Interactive queries on very large data. PVLDB 5(12),

1902–1905 (2012). DOI 10.14778/2367502.2367533

[4] Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.:

Foundations of modern query languages for graph databases. ACM Comput.

Surv. 50(5), 68:1–68:40 (2017). DOI 10.1145/3104031

[5] Apache: Apache TinkerPop (accessed March 2019). http://tinkerpop.

apache.org/

[6] Apache TinkerPop: The Gremlin Graph Traversal Machine and Language (ac-

cessed November 2019). https://tinkerpop.apache.org/gremlin.html

[7] Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin:

Advanced concepts and tools for in-place EMF model transformations. In:

Proc. of Model Driven Engineering Languages and Systems, 13th Interna-

tional Conference, MODELS 2010, October 3-8, Part I, LNCS, vol. 6394, pp.

121–135. Springer (2010). DOI 10.1007/978-3-642-16145-2_9

173

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
https://tinkerpop.apache.org/gremlin.html

BIBLIOGRAPHY

[8] Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In:

«UML» 2001 - Proc. of The Unified Modeling Language, Modeling Languages,

Concepts, and Tools, 4th International Conference, October 1-5, pp. 19–33

(2001). DOI 10.1007/3-540-45441-1_3

[9] Avila-García, O., Cabot, J., Muñoz, J., Romero, J.R., Vallecillo, A.: Desar-

rollo de Software Dirigido por Modelos (DSDM, 7ª ed.). RA-MA Editorial

(2010)

[10] Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approxi-

mate query processing. In: Proc. of the 2003 ACM SIGMOD International

Conference on Management of Data, June 9-12, pp. 539–550 (2003). DOI

10.1145/872757.872822

[11] Barceló, P.: Querying graph databases. In: Proc. of the 32nd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS

2013, June 22 - 27, pp. 175–188 (2013). DOI 10.1145/2463664.2465216

[12] Barceló, P., Libkin, L., Romero, M.: Efficient approximations of conjunctive

queries. SIAM J. Comput. 43(3), 1085–1130 (2014). DOI 10.1137/130911731

[13] Barquero, G., Burgueño, L., Troya, J., Vallecillo, A.: Extending complex

event processing to graph-structured information. In: Proc. of the 21th

ACM/IEEE International Conference on Model Driven Engineering Lan-

guages and Systems, MODELS 2018, October 14-19, pp. 166–175. ACM

(2018). DOI 10.1145/3239372.3239402

[14] Barquero, G., Troya, J., Vallecillo, A.: Trading accuracy for performance in

data processing applications. Journal of Object Technology 18(2), 9:1–24

(2019). DOI 10.5381/jot.2019.18.2.a9

[15] Barquero, G., Troya, J., Vallecillo, A.: Improving query performance on

dynamic graphs. Software and System Modeling pp. 1619–1374 (2020).

DOI 10.1007/s10270-020-00832-3

[16] Barquero, G., Troya, J., Vallecillo, A.: Approximate Transformation git repos-

itory (accessed March 2019). https://github.com/atenearesearchgroup/

approximateTransformation.git.

174

https://github.com/atenearesearchgroup/approximateTransformation.git
https://github.com/atenearesearchgroup/approximateTransformation.git

BIBLIOGRAPHY

[17] Barquero, G., Troya, J., Vallecillo, A.: SDR algorithm git repository

(accessed November 2019). https://github.com/atenearesearchgroup/

SDRalgorithm.

[18] Barquero, G., Troya, J., Vallecillo, A.: SDR algorithm website (accessed

November 2019). http://atenea.lcc.uma.es/projects/SDRAlg.html.

[19] BBVA: The impact of the Mobile World Congress in a dynamic visualiza-

tion by BBVA and CartoDB (2013). https://www.bbva.com/en/impact-

mobile-world-congress-dynamic-visualization-bbva-cartodb/. (ac-

cessed March 2019)

[20] Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,

A.: Incremental evaluation of model queries over EMF models. In: Proc.

of Model Driven Engineering Languages and Systems - 13th International

Conference, MODELS 2010, October 3-8, Part I, pp. 76–90 (2010). DOI

10.1007/978-3-642-16145-2_6

[21] Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental

pattern matching in the VIATRA model transformation system. In: Proc.

of the Third International Workshop on Graph and Model Transformations,

GRAMOT’08, pp. 25–32. ACM (2008). DOI 10.1145/1402947.1402953

[22] Bernard, J., Héam, P., Kouchnarenko, O.: An approximation-based approach

for the random exploration of large models. In: Proc. of Tests and Proofs

- 12th International Conference, TAP@STAF 2018, June 27-29, pp. 27–43

(2018). DOI 10.1007/978-3-319-92994-1_2

[23] Bertoa, M.F., Moreno, N., Barquero, G., Burgueño, L., Troya, J., Vallecillo,

A.: Expressing measurement uncertainty in OCL/UML datatypes. In: Proc.

of Modelling Foundations and Applications - 14th European Conference,

ECMFA@STAF 2018, June 26-28, pp. 46–62 (2018). DOI 10.1007/978-3-

319-92997-2_4

[24] Besta, M., Fischer, M., Kalavri, V., Kapralov, M., Hoefler, T.: Practice of

streaming and dynamic graphs: Concepts, models, systems, and parallelism.

CoRR abs/1912.12740 (2019)

175

https://github.com/atenearesearchgroup/SDRalgorithm
https://github.com/atenearesearchgroup/SDRalgorithm
http://atenea.lcc.uma.es/projects/SDRAlg.html
https://www.bbva.com/en/impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/
https://www.bbva.com/en/impact-mobile-world-congress-dynamic-visualization-bbva-cartodb/

BIBLIOGRAPHY

[25] Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Podstawski, M., Barthels,

C., Alonso, G., Hoefler, T.: Demystifying graph databases: Analysis and

taxonomy of data organization, system designs, and graph queries. CoRR

abs/1910.09017 (2019)

[26] Bran Selic: Abstraction Patterns in Model-Based Engineering (accessed

February 2020). https://openmodelica.org/images/docs/modprod2011-

talks-day2/modprod2011-day2-talk1-keynote-Bran-Selic-

Abstraction.pdf

[27] Braverman, V., Ostrovsky, R.: Generalizing the layering method of indyk

and woodruff: Recursive sketches for frequency-based vectors on streams. In:

Proc. of Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques - 16th International Workshop, APPROX 2013,

and 17th International Workshop, RANDOM 2013, August 21-23, pp. 58–70

(2013). DOI 10.1007/978-3-642-40328-6_5

[28] Callidus Software Inc.: OrientDB Documentation. Concurrency. (accessed

July 2020). https://orientdb.org/docs/3.0.x/general/Concurrency.

html

[29] Callidus Software Inc.: OrientDB. The database designed for the modern

world. (accessed June 2020). https://orientdb.com/

[30] Chaudhuri, S., Das, G., Datar, M., Motwani, R., Narasayya, V.R.: Overcom-

ing limitations of sampling for aggregation queries. In: Proc. of the 17th

International Conference on Data Engineering, April 2-6, pp. 534–542 (2001).

DOI 10.1109/ICDE.2001.914867

[31] Chaudhuri, S., Das, G., Narasayya, V.R.: A Robust, Optimization-Based

Approach for Approximate Answering of Aggregate Queries. In: Proc. of the

2001 ACM SIGMOD international conference on Management of data, May

21-24, pp. 295–306 (2001). DOI 10.1145/375663.375694

[32] Chaudhuri, S., Ding, B., Kandula, S.: Approximate query processing: No

silver bullet. In: Proc. of the 2017 ACM International Conference on Man-

176

https://openmodelica.org/images/docs/modprod2011-talks-day2/modprod2011-day2-talk1-keynote-Bran-Selic-Abstraction.pdf
https://openmodelica.org/images/docs/modprod2011-talks-day2/modprod2011-day2-talk1-keynote-Bran-Selic-Abstraction.pdf
https://openmodelica.org/images/docs/modprod2011-talks-day2/modprod2011-day2-talk1-keynote-Bran-Selic-Abstraction.pdf
https://orientdb.org/docs/3.0.x/general/Concurrency.html
https://orientdb.org/docs/3.0.x/general/Concurrency.html
https://orientdb.com/

BIBLIOGRAPHY

agement of Data, SIGMOD Conference 2017, May 14-19, pp. 511–519 (2017).

DOI 10.1145/3035918.3056097

[33] Cimprich, P., Becker, O., Nentwich, C., Jiroušek, H., Batsis, M., Brown,

P., Kay, M.: Streaming Transformations for XML (STX). Working Draft

(accessed May 2019). http://stx.sourceforge.net/documents/

[34] Combemale, B., Thirioux, X., Baudry, B.: Formally Defining and Iterating

Infinite Models. In: Proc. of Model Driven Engineering Languages and

Systems - 15th International Conference, MODELS 2012, September 30-

October 5, LNCS, vol. 7590, pp. 119–133. Springer (2012). DOI 10.1007/978-

3-642-33666-9_9

[35] CrateDB: CrateDB: The distributed SQL database for machine data (accessed

February 2020). https://crate.io/

[36] CrateDB: What is CrateDB? (accessed March 2020). https://crate.io/

products/cratedb/

[37] Cuadrado, J.S., de Lara, J.: Streaming Model Transformations: Scenarios,

Challenges and Initial Solutions. In: Proc. of Theory and Practice of Model

Transformations - 6th International Conference, ICMT@STAF 2013, June

18-19, LNCS, vol. 7909, pp. 1–16. Springer (2013). DOI 10.1007/978-3-642-

38883-5_1

[38] Cugola, G., Margara, A.: Processing flows of information: From data stream

to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012).

DOI 10.1145/2187671.2187677

[39] Cugola, G., Margara, A., Pezzè, M., Pradella, M.: Efficient analysis of event

processing applications. In: Proc. of the 9th ACM International Conference

on Distributed Event-Based Systems, DEBS ’15, June 29 - July 3, pp. 10–21.

ACM (2015). DOI 10.1145/2675743.2771834

[40] Daniel, G., Jouault, F., Sunyé, G., Cabot, J.: Gremlin-ATL: a scalable model

transformation framework. In: Proc. of the 32nd IEEE/ACM International

Conference on Automated Software Engineering, ASE 2017, October 30 -

177

http://stx.sourceforge.net/documents/
https://crate.io/
https://crate.io/products/cratedb/
https://crate.io/products/cratedb/

BIBLIOGRAPHY

November 03, pp. 462–472. IEEE Computer Society (2017). DOI 10.1109/

ASE.2017.8115658

[41] Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez,

A., Cabot, J.: Neoemf: A multi-database model persistence framework

for very large models. Sci. Comput. Program. 149, 9–14 (2017). DOI

10.1016/j.scico.2017.08.002

[42] Daniel, G., Sunyé, G., Cabot, J.: Mogwaï: A framework to handle complex

queries on large models. In: Tenth IEEE International Conference on Research

Challenges in Information Science, RCIS 2016, June 1-3, pp. 1–12 (2016).

DOI 10.1109/RCIS.2016.7549343

[43] Daniel, G., Sunyé, G., Cabot, J.: Scalable Queries and Model Transforma-

tions with the Mogwaï Tool. In: Proc. of Theory and Practice of Model

Transformation - 11th International Conference, ICMT@STAF 2018, June

25-26, pp. 175–183 (2018). DOI 10.1007/978-3-319-93317-7_9

[44] Dávid, I., Ráth, I., Varró, D.: Streaming Model Transformations By Complex

Event Processing. In: Proc. of Model-Driven Engineering Languages and

Systems - 17th International Conference, MODELS 2014, September 28 -

October 3, LNCS, vol. 8767, pp. 68–83. Springer (2014). DOI 10.1007/978-3-

319-11653-2_5

[45] Dean, J., Henzinger, M.R.: Finding related pages in the world wide web.

Comput. Netw. 31(11-16), 1467–1479 (1999). DOI 10.1016/S1389-1286(99)

00022-5

[46] van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An

Annotated Bibliography. SIGPLAN Notices 35(6), 26–36 (2000). DOI

10.1145/352029.352035

[47] DGraph: DGraph (accessed January 2020). https://dgraph.io/

[48] Esper: Esper Tech (accessed March 2019). http://www.espertech.com/

esper/

178

https://dgraph.io/
http://www.espertech.com/esper/
http://www.espertech.com/esper/

BIBLIOGRAPHY

[49] Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications

Company (2010)

[50] Event Processing Technical Society: Event Processing Glossary, Version 2.0

(2011). http://www.complexevents.com/wp-content/uploads/2011/08/

EPTS_Event_Processing_Glossary_v2.pdf

[51] Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph pattern matching:

From intractable to polynomial time. PVLDB 3(1), 264–275 (2010). DOI

10.14778/1920841.1920878

[52] Fan, W., Wang, X., Wu, Y.: Querying big graphs within bounded resources.

In: International Conference on Management of Data, SIGMOD 2014, June

22-27, pp. 301–312 (2014). DOI 10.1145/2588555.2610513

[53] Garofalakis, M.N., Gibbons, P.B.: Approximate query processing: Taming

the terabytes. In: Proc. of 27th International Conference on Very Large Data

Bases, VLDB 2001, September 11-14 (2001)

[54] Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.:

Modelling and analysis using GROOVE. STTT 14(1), 15–40 (2012). DOI

10.1007/s10009-011-0186-x

[55] Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs. In: 10th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI 2012, October 8-10, pp. 17–30 (2012)

[56] Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica,

I.: Graphx: Graph processing in a distributed dataflow framework. In: 11th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI ’14, October 6-8, pp. 599–613 (2014)

[57] Greenfield, J., Short, K.: Software factories: assembling applications with

patterns, models, frameworks and tools. In: Companion of the 18th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2003, October 26-30, pp. 16–27

(2003). DOI 10.1145/949344.949348

179

http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

BIBLIOGRAPHY

[58] Guha, S., Harb, B.: Wavelet synopsis for data streams: minimizing non-

euclidean error. In: Proc. of the Eleventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, August 21-24, pp.

88–97 (2005). DOI 10.1145/1081870.1081884

[59] Guo, Y., Biczak, M., Varbanescu, A.L., Iosup, A., Martella, C., Willke,

T.L.: How Well Do Graph-Processing Platforms Perform? An Empirical

Performance Evaluation and Analysis. In: 2014 IEEE 28th International

Parallel and Distributed Processing Symposium, May 19-23, pp. 395–404

(2014). DOI 10.1109/IPDPS.2014.49

[60] Gurcan, F., Berigel, M.: Real-Time Processing of Big Data Streams: Lifecycle,

Tools, Tasks, and Challenges. In: 2018 2nd International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–6

(2018). DOI 10.1109/ISMSIT.2018.8567061

[61] Hinterberger, H.: Graph, pp. 1260–1261. Springer US, Boston, MA (2009).

DOI 10.1007/978-0-387-39940-9_1374

[62] Holzschuher, F., Peinl, R.: Performance of graph query languages: compari-

son of Cypher, Gremlin and native access in Neo4j. In: Proc. of Workshop

Joint 2013 EDBT/ICDT Conferences, EDBT/ICDT ’13, March 22, pp.

195–204 (2013). DOI 10.1145/2457317.2457351

[63] Internet Live Stats: Twitter Usage Statistics (accessed January 2020). https:

//www.internetlivestats.com/twitter-statistics/

[64] JanusGraph Authors: JanusGraph. Distributed, open source, massively

scalable graph database. (accessed June 2020). https://janusgraph.org/

[65] Johann, S., Egyed, A.: Instant and incremental transformation of models.

In: 19th IEEE International Conference on Automated Software Engineering

(ASE 2004), September 20-25, pp. 362–365 (2004). DOI 10.1109/ASE.2004.

10047

[66] Jouault, F., Tisi, M.: Towards incremental execution of ATL transforma-

tions. In: Proc. of Theory and Practice of Model Transformations, Third

180

https://www.internetlivestats.com/twitter-statistics/
https://www.internetlivestats.com/twitter-statistics/
https://janusgraph.org/

BIBLIOGRAPHY

International Conference, ICMT 2010, June 28-July 2, pp. 123–137 (2010).

DOI 10.1007/978-3-642-13688-7_9

[67] Jukss, M., Verbrugge, C., Elaasar, M., Vangheluwe, H.: Scope in model

transformations. Software and System Modeling 17(4), 1227–1252 (2018)

[68] Kafka, A.: Apache Kafka. A distributed streaming platform (accessed May

2019). https://kafka.apache.org/intro

[69] Kalavri, V., Vlassov, V., Haridi, S.: High-level programming abstractions for

distributed graph processing. IEEE Trans. Knowl. Data Eng. 30(2), 305–324

(2018). DOI 10.1109/TKDE.2017.2762294

[70] Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark. O’Reilly

(2015)

[71] Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.

ACM 46(5), 604–632 (1999). DOI 10.1145/324133.324140

[72] Kleppe, A., Warmer, J., Bast, W.: MDA explained - the Model Driven

Architecture: practice and promise. Addison Wesley object technology se-

ries. Addison-Wesley (2003). URL http://www.informit.com/store/mda-

explained-the-model-driven-architecture-practice-9780321194428

[73] Knight, J.C., Strunk, E.A.: Achieving critical system survivability through

software architectures. In: Architecting Dependable Systems II - [the book is

a result of the ICSE 2003 Workshop on Software Architectures for Dependable

Systems], pp. 51–78 (2003). DOI 10.1007/978-3-540-25939-8_3

[74] Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community

structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Math. 6(1), 29–123 (2009). DOI

10.1080/15427951.2009.10129177

[75] Li, K., Li, G.: Approximate query processing: What is new and where to go?

- A survey on approximate query processing. Data Science and Engineering

3(4), 379–397 (2018). DOI 10.1007/s41019-018-0074-4

181

https://kafka.apache.org/intro
http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428
http://www.informit.com/store/mda-explained-the-model-driven-architecture-practice-9780321194428

BIBLIOGRAPHY

[76] Liu, Q.: Approximate Query Processing, pp. 113–119. Springer US, Boston,

MA (2009). DOI 10.1007/978-0-387-39940-9_534

[77] Luckham, D.C.: The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Addison-Wesley (2002)

[78] Luckham, D.C.: Event Processing for Business: Organizing the Real-Time

Enterprise. Wiley (2012)

[79] Macías, F., Guerra, E., de Lara, J.: Towards Rearchitecting Meta-Models into

Multi-level Models. In: Proc. of Conceptual Modeling - 36th International

Conference, ER 2017, November 6-9, pp. 59–68 (2017). DOI 10.1007/978-3-

319-69904-2_5

[80] Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,

Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proc.

of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2010, June 6-10, pp. 135–146 (2010). DOI 10.1145/1807167.1807184

[81] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information re-

trieval. Cambridge University Press (2008). DOI 10.1017/CBO9780511809071

[82] Marz, N., Warren, J.: Big Data: Principles and best practices of scalable

realtime data systems. Manning Publications Company (2015)

[83] Memgraph Ltd: Memgraph graph database (accessed November 2019).

https://memgraph.com/

[84] Memgraph Ltd: Memgraph Indexing (accessed September 2020). https:

//docs.memgraph.com/memgraph/concepts-overview/indexing

[85] Mhedhbi, A., Gupta, P., Khaliq, S., Salihoglu, S.: A+ indexes: Lightweight

and highly flexible adjacency lists for graph database management systems.

CoRR abs/2004.00130 (2020)

[86] Moreno, N., Bertoa, M.F., Barquero, G., Burgueño, L., Troya, J., García-

López, A., Vallecillo, A.: Managing uncertain complex events in web of things

applications. In: Proc. of Web Engineering - 18th International Conference,

182

https://memgraph.com/
https://docs.memgraph.com/memgraph/concepts-overview/indexing
https://docs.memgraph.com/memgraph/concepts-overview/indexing

BIBLIOGRAPHY

ICWE 2018, June 5-8, pp. 349–357 (2018). DOI 10.1007/978-3-319-91662-

0_28

[87] Mozafari, B., Niu, N.: A handbook for building an approximate query engine.

IEEE Data Eng. Bull. 38(3), 3–29 (2015)

[88] Neo4j: Cypher Query Language (accessed February 2020). https://neo4j.

com/developer/cypher-query-language/

[89] Neo4j: Neo4j Graph Platform (accessed November 2019). https://neo4j.

com/

[90] Neo4j: Neo4j - Indexes for search performance (accessed September 2020).

https://neo4j.com/docs/cypher-manual/current/administration/

indexes-for-search-performance/index.html

[91] Neo4j Inc: The openCypher project (accessed February 2020). https:

//www.opencypher.org/

[92] OMG: Model Driven Architecture - A Technical Perspective (2001). URL

http://www.omg.org/docs/ormsc/01-07-01.pdf

[93] OMG: MDA Guide V.1.0.1 (2003). URL http://www.omg.org/cgi-bin/

doc?omg/03-06-01.pdf

[94] OMG: UML 2.3.1 Superstructure specification (2010). URL http://www.

omg.org/spec/UML/2.3/Superstructure/PDF

[95] OrientDB: LiveQuery (accessed July 2020). https://orientdb.com/nosql/

livequery/

[96] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. Tech. rep., Stanford Digital Library Technologies

Project (1998)

[97] Perliger, A., Pedahzur, A.: Social network analysis in the study of terrorism

and political violence. PS: Political Science and Politics 44(1), 45–50 (2011).

DOI 10.1017/S1049096510001848

183

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-search-performance/index.html
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-search-performance/index.html
https://www.opencypher.org/
https://www.opencypher.org/
http://www.omg.org/docs/ormsc/01-07-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
https://orientdb.com/nosql/livequery/
https://orientdb.com/nosql/livequery/

BIBLIOGRAPHY

[98] Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of

tuples satisfying a condition. In: Proc. of Annual Meeting, SIGMOD’84,

June 18-21, pp. 256–276 (1984). DOI 10.1145/602259.602294

[99] Razavi, A., Kontogiannis, K.: Partial evaluation of model transformations.

In: 34th International Conference on Software Engineering, ICSE 2012, June

2-9, pp. 562–572 (2012). DOI 10.1109/ICSE.2012.6227160

[100] Real, E., Shlens, J., , Pan, S.M.X., Vanhoucke, V.: YouTube-

BoundingBoxes Dataset (accessed October 2019). https://research.

google.com/youtube-bb/

[101] Richardson, M., Domingos, P.M.: The Intelligent surfer: Probabilistic Com-

bination of Link and Content Information in PageRank. In: Advances in

Neural Information Processing Systems 14 [Neural Information Processing

Systems: Natural and Synthetic, NIPS 2001, December 3-8], pp. 1441–1448

(2001)

[102] Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE

Computer 39(2), 25–31 (2006). DOI 10.1109/MC.2006.58

[103] Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2003).

DOI 10.1109/MS.2003.1231147

[104] Sellis, T.K.: Review - the aqua approximate query answering system. ACM

SIGMOD Digital Review 2 (2000)

[105] Shawi, R.E., Batarfi, O., Fayoumi, A.G., Barnawi, A., Sakr, S.: Big Graph

Processing Systems: State-of-the-Art and Open Challenges. In: First IEEE

International Conference on Big Data Computing Service and Applications,

BigDataService 2015, March 30 - April 2, pp. 24–33 (2015). DOI 10.1109/

BigDataService.2015.11

[106] Spark, A.: GraphFrames (accessed February 2020). https://graphframes.

github.io/graphframes/docs/_site/index.html

[107] Spark, A.: GraphFrames User Guide (accessed February 2020). https:

//graphframes.github.io/graphframes/docs/_site/user-guide.html

184

https://research.google.com/youtube-bb/
https://research.google.com/youtube-bb/
https://graphframes.github.io/graphframes/docs/_site/index.html
https://graphframes.github.io/graphframes/docs/_site/index.html
https://graphframes.github.io/graphframes/docs/_site/user-guide.html
https://graphframes.github.io/graphframes/docs/_site/user-guide.html

BIBLIOGRAPHY

[108] Spark, A.: Spark Streaming Programming (accessed May 2019). https://

spark.apache.org/docs/latest/streaming-programming-guide.html

[109] Stachowiak, H.: Allgemeine Modelltheorie (1973)

[110] Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.:

IncQuery-D: A Distributed Incremental Model Query Framework in the

Cloud. In: Proc. of Model-Driven Engineering Languages and Systems - 17th

International Conference, MODELS 2014, September 28 - October 3, pp.

653–669 (2014). DOI 10.1007/978-3-319-11653-2_40

[111] Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The Train Benchmark: cross-

technology performance evaluation of continuous model queries. Software &

Systems Modeling 17(4), 1365–1393 (2018). DOI 10.1007/s10270-016-0571-8

[112] Szárnyas, G., Marton, J., Maginecz, J., Varró, D.: Reducing property

graph queries to relational algebra for incremental view maintenance. CoRR

abs/1806.07344 (2018)

[113] TinkerPop: And Step. Apache TinkerGraph (accessed February 2020). http:

//tinkerpop.apache.org/docs/current/reference/#and-step

[114] TinkerPop: Has Step. Apache TinkerGraph (accessed February 2020). http:

//tinkerpop.apache.org/docs/current/reference/#has-step

[115] TinkerPop: Not Step. Apache TinkerGraph (accessed February 2020). http:

//tinkerpop.apache.org/docs/current/reference/#not-step

[116] TinkerPop: Or Step. Apache TinkerGraph (accessed February 2020). http:

//tinkerpop.apache.org/docs/current/reference/#or-step

[117] TinkerPop: Where Step. Apache TinkerGraph (accessed February 2020).

http://tinkerpop.apache.org/docs/current/reference/#where-step

[118] TinkerPop: Apache TinkerGraph (accessed October 2019). http:

//tinkerpop.apache.org/docs/current/reference/#tinkergraph-

gremlin

185

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
http://tinkerpop.apache.org/docs/current/reference/#and-step
http://tinkerpop.apache.org/docs/current/reference/#and-step
http://tinkerpop.apache.org/docs/current/reference/#has-step
http://tinkerpop.apache.org/docs/current/reference/#has-step
http://tinkerpop.apache.org/docs/current/reference/#not-step
http://tinkerpop.apache.org/docs/current/reference/#not-step
http://tinkerpop.apache.org/docs/current/reference/#or-step
http://tinkerpop.apache.org/docs/current/reference/#or-step
http://tinkerpop.apache.org/docs/current/reference/#where-step
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin

BIBLIOGRAPHY

[119] TinkerPop: TinkerGraph Indices (accessed September 2020). https://

tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/

gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex

[120] Tinkerpop, A.: Interface VertexProgram (accessed Oct 2019).

http://tinkerpop.apache.org/javadocs/3.1.4/core/org/apache/

tinkerpop/gremlin/process/computer/VertexProgram.html.

[121] Troya, J., Wimmer, M., Burgueño, L., Vallecillo, A.: Towards approximate

model transformations. In: Proc. of the Workshop on Analysis of Model

Transformations (AMT@MoDELS’14), pp. 44–53. CEUR-WS (2014)

[122] Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.: Crowdsourced

enumeration queries. In: 29th IEEE International Conference on Data

Engineering, ICDE 2013, April 8-12, pp. 673–684 (2013). DOI 10.1109/ICDE.

2013.6544865

[123] Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.: Answering enu-

meration queries with the crowd. Commun. ACM 59(1), 118–127 (2016).

DOI 10.1145/2845644

[124] Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I.,

Szatmári, Z., Varró, D.: EMF-IncQuery: An integrated development envi-

ronment for live model queries. Sci. Comput. Program. 98, 80–99 (2015).

DOI 10.1016/j.scico.2014.01.004

[125] Uta, A., Ghit, B., Dave, A., Boncz, P.A.: [Demo] Low-latency Spark Queries

on Updatable Data. In: Proc. of the 2019 International Conference on

Management of Data, SIGMOD Conference 2019, June 30 - July 5, pp.

2009–2012 (2019). DOI 10.1145/3299869.3320227

[126] W3C RDF Data Access Working Group: SPARQL Query Language (accessed

November 2019). https://www.w3.org/TR/rdf-sparql-query/

[127] Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your

models Ready for MDA, 2nd edn. Addison-Wesley (2003)

186

https://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex
https://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex
https://tinkerpop.apache.org/javadocs/3.2.2/full/org/apache/tinkerpop/gremlin/tinkergraph/structure/TinkerGraph.html#vertexIndex
http://tinkerpop.apache.org/javadocs/3.1.4/core/org/apache/tinkerpop/gremlin/process/computer/VertexProgram.html
http://tinkerpop.apache.org/javadocs/3.1.4/core/org/apache/tinkerpop/gremlin/process/computer/VertexProgram.html
https://www.w3.org/TR/rdf-sparql-query/

BIBLIOGRAPHY

[128] Webber, J., Robinson, I., Eifrem, E.: Graph Databases. O’Reilly Media

(2013)

[129] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.: Experimen-

tation in Software Engineering. Springer (2012). DOI 10.1007/978-3-642-

29044-2

[130] Yang, C.C., Ng, T.D.: Terrorism and Crime Related Weblog Social Network:

Link, Content Analysis and Information Visualization. In: Proc. of IEEE

International Conference on Intelligence and Security Informatics, ISI 2007,

May 23-24, pp. 55–58 (2007). DOI 10.1109/ISI.2007.379533

[131] Yorker, T.N.: Data from the New Yorker Caption Contest (accessed October

2019). https://github.com/nextml/caption-contest-data

187

https://github.com/nextml/caption-contest-data

Appendix A
Results and queries for the comparison

of Processing Platforms

In this appendix we show some results of the experiments proposed in Chapter 3,

as well as the queries for the two case studies (TrainBenchmark and TwitterFlickr).

In this way, in Section A.1 we present the implementation of all queries used in

the experiments, whereas in Section A.2 we show some figures and tables with the

results of the experiments performed for TrainBenchmark example.

A.1 Queries for processing platforms

The queries presented in this section have two types of implementations: (i)

queries without any side effect and (ii) queries that involve an effect over the

source data (adding, removing or updating existing elements). Then, we show both

implementations in for the two case studies the following.

189

Appendix A. Results and queries for the comparison of Processing Platforms

A.1.1 TwitterFlickr queries with effect

Listing A.1: Gremlin queries with effect for TwitterFlickr case study

1 // HotTopic
2 g . V () . hasLabel (" Hashtag ")
3 .where(
4 __ . in (" contains " ," tags ")
5 . count () . i s (P . gte (100))
6) . as (" h ")
7 .addV(" HotTopic ")
8 . property (" date " , System . currentTimeMillis ())
9 . as (" ht ")

10 .addE(" event ")
11 . from(" ht ") . to (" h ") . iterate () ;
12 // PopularTwitterPhoto
13 g . V () . hasLabel (" Hashtag ")
14 .where(
15 __ . in (" contains ")
16 .where(
17 __ . hasLabel (" Tweet ")
18 . in (" likes ") . count () . i s (P . gte (30))
19)
20) . as (" h ")
21 . in () . hasLabel (" Photo ") . as (" p ")
22 .addV(" PopularTwitterPhoto ")
23 . property (" hashtag " , __ . select (" h ") . id ())
24 . property (" date " , System . currentTimeMillis ())
25 . as (" labelPTP ")
26 .addE(" event ")
27 . from(" labelPTP ") . to (" p ") . iterate () ;
28 // PopularFlickrPhoto
29 g . V () . hasLabel (" Photo ")
30 .where(
31 __ . in (" favorites ")
32 .where(
33 __ . hasLabel (" FlickrUser ") . in (" follows ")
34 . count () . i s (P . gte (50))
35) . count () . i s (P . gte (30)))
36 . as (" labelPhoto ")
37 .addV(" PopularFlickrPhoto ")
38 . property (" date " , System . currentTimeMillis ())
39 . as (" labelPFP ")
40 .addE(" event ")
41 . from(" labelPFP ") . to (" labelPhoto ") . iterate () ;
42 // NiceTwitterPhoto
43 List tags = g . V () . hasLabel (" TwitterUser ")
44 .where(

190

A.1 Queries for processing platforms

45 __ . in (" follows ")
46 .where(
47 __ . in (" follows ") . count () . i s (P . gte (50))
48) . count () . i s (P . gte (50))
49) . as (" tu ")
50 . out (" publishes ") . hasLabel (" Tweet ")
51 . out (" contains ") . hasLabel (" Hashtag ")
52 . as (" h ")
53 . select (" tu " , "h ") .groupCount ()
54 . unfold () .where(__ . select (values) . i s (P . gte (3))) . select (keys)
55 . select (" h ") . toList () ;
56 g . V () . hasLabel (" Hashtag ")
57 . i s (P . within (tags)) . as (" h ")
58 . in (" tags ") . hasLabel (" Photo ") . as (" p ")
59 .addV(" NiceTwitterPhoto ")
60 . property (" hashtag " , __ . select (" h ") . id ())
61 . property (" date " , System . currentTimeMillis ())
62 . as (" labelNTP ")
63 .addE(" event ")
64 . from(" labelNTP ") . to (" p ") . iterate () ;
65 // ActiveUserTweeted
66 g . V () . hasLabel (" Tweet ")
67 . order () .by(" currentTimestamp " , asc) . tail (10000)
68 . as (" t ")
69 . in (" publishes ") . hasLabel (" TwitterUser ")
70 .where(
71 __ . out (" follows ") . count () . i s (P . gte (5000))
72) .and(
73 __ . in (" follows ")
74 .where(
75 __ . in (" follows ") . count () . i s (P . gte (30))
76) . count () . i s (P . gte (30))
77) . as (" tu ")
78 .addV(" ActiveUserTweeted ")
79 . property (" tweet " , __ . select (" t ") . id ())
80 . property (" date " , System . currentTimeMillis ())
81 . as (" labelActive ")
82 .addE(" event ")
83 . from(" labelActive ") . to (" tu ") . iterate () ;

Listing A.2: Neo4j queries with effect for TwitterFlickr case study

1 // HotTopic
2 StatementResult result = session . run (
3 "MATCH (p)−[tagsE : tags]−>(h : Hashtag)<−[containsE : contains]−(t)
4 WITH h , (COUNT(tagsE) + COUNT(containsE))
5 AS sumHT WHERE sumHT>100
6 CREATE (: HotTopic{date : timestamp () }) − [: EVENT]−>(h) ") ;

191

Appendix A. Results and queries for the comparison of Processing Platforms

7 result . consume () ;
8 // PopularTwitterPhoto
9 StatementResult result = session . run (

10 "MATCH (u)−[l : likes]−>(t : Tweet)
11 WITH t , count (l) AS likes WHERE likes >= 30
12 MATCH (t) − [: contains]−>(h : Hashtag)
13 WITH DISTINCT h as h
14 MATCH (h) <−[:tags]−(p : Photo)
15 CREATE (: PopularTwitterPhoto{
16 timestamp : timestamp () , idHashtag : h . id })
17 − [: EVENT]−>(p) ") ;
18 result . consume () ;
19 // PopularFlickrPhoto
20 StatementResult result = session . run (
21 "MATCH (fu2 : FlickrUser) − [: follows]−>(fu : FlickrUser)
22 WITH fu , COUNT(fu2) AS followers WHERE followers >= 50
23 MATCH (fu) − [: favorites]−>(p : Photo)
24 WITH p , COUNT(fu) AS favs WHERE favs >= 30
25 CREATE (: PopularFlickrPhoto{timestamp : timestamp () })
26 − [: EVENT]−>(p) ") ;
27 result . consume () ;
28 // NiceTwitterPhoto
29 StatementResult result = session . run (
30 "MATCH (ffollower : TwitterUser) − [: follows]−>(follower : TwitterUser)
31 WITH follower , COUNT(ffollower)
32 AS ffollowers WHERE ffollowers >= 50
33 MATCH (follower) − [: follows]−>(tu : TwitterUser)
34 WITH DISTINCT tu , COUNT(follower)
35 AS followers
36 WHERE followers >= 50 WITH DISTINCT tu
37 MATCH (tu) − [: publishes]−>(t : Tweet)
38 −[containsE : contains]−>(h : Hashtag)
39 WITH DISTINCT h , tu , COUNT(distinct containsE)
40 AS uses WHERE uses >= 3 WITH DISTINCT h
41 MATCH (h) <−[:tags]−(p : Photo)
42 CREATE (: NiceTwitterPhoto{
43 timestamp : timestamp () , idHashtag : h . id })
44 − [: EVENT]−>(p) ") ;
45 result . consume () ;
46 // ActiveUserTweeted
47 StatementResult result = session . run (
48 "MATCH (ffollower : TwitterUser) − [: follows]−>(follower : TwitterUser)
49 WITH follower , COUNT(ffollower)
50 AS ffollowers WHERE ffollowers >= 30
51 MATCH (follower) − [: follows]−>(tu : TwitterUser)
52 WITH tu , COUNT(follower) AS followers WHERE followers >= 30
53 MATCH (tu) − [: follows]−>(tu2 : TwitterUser)
54 WITH tu , followers , COUNT(tu2)
55 AS following WHERE following >= 5000

192

A.1 Queries for processing platforms

56 MATCH (t : Tweet) WITH t , tu
57 ORDER BY t . currentTimestamp DESC LIMIT 10000
58 MATCH (tu) − [: publishes]−>(t)
59 CREATE (: ActiveUserTweeted{timestamp : timestamp () , tweetid : t . id })
60 − [: EVENT]−>(tu) ") ;
61 result . consume () ;

Listing A.3: CrateDB queries with effect for TwitterFlickr case study

1 // HotTopic
2 PreparedStatement statement = conn . prepareStatement (
3 "INSERT INTO hottopic (hashtagid , date)
4 (SELECT a . idnode , CURRENT_TIMESTAMP FROM
5 (SELECT DISTINCT
6 h . idNode , h . id , COUNT(c . hashtagid) countContains
7 FROM hashtag h , contains containsE
8 WHERE h . idNode=containsE . hashtagid
9 GROUP BY h . idNode , h . id) a ,

10 (SELECT DISTINCT
11 h . idNode , h . id , COUNT(tagsE . hashtagid) countTags
12 FROM hashtag h , tags tagsE
13 WHERE h . idNode=c . hashtagid
14 GROUP BY h . idNode , h . id) b
15 WHERE a . idnode = b . idnode
16 AND a . countContains + b . countTags > 100) ") ;
17 statement . execute () ;
18 // PopularTwitterPhoto
19 PreparedStatement statement = conn . prepareStatement (
20 "INSERT INTO populartwitterphoto (idphoto , idhashtag , date)
21 (SELECT tagsE . photoid , tagsE . hashtagid , CURRENT_TIMESTAMP
22 FROM tags tagsE
23 WHERE tagsE . hashtagid
24 IN (SELECT DISTINCT containsE . hashtagid
25 FROM contains containsE
26 WHERE containsE . tweetid
27 IN (SELECT DISTINCT l . tweetid
28 FROM likes l
29 GROUP BY l . tweetid
30 HAVING COUNT(l . tweetid) >= 30))) ") ;
31 statement . execute () ;
32 // PopularFlickrPhoto
33 PreparedStatement statement = conn . prepareStatement (
34 "INSERT INTO popularflickrphoto (idphoto , date)
35 (SELECT photoid , CURRENT_TIMESTAMP FROM
36 favorites ,
37 (SELECT DISTINCT fu . idnode
38 FROM follows f , flickruser fu
39 WHERE fu . idnode = f . userid2

193

Appendix A. Results and queries for the comparison of Processing Platforms

40 GROUP BY fu . idnode , fu . usrname
41 HAVING COUNT(fu . idnode) >= 50) followers
42 WHERE flickruserid=idnode
43 GROUP BY photoid
44 HAVING COUNT(photoid) >= 30) ") ;
45 statement . execute () ;
46 // NiceTwitterPhoto
47 PreparedStatement statement = conn . prepareStatement (
48 "INSERT INTO NiceTwitterPhoto (photoid , hashtagid , date)
49 (SELECT tagsE . photoid , tagsE . hashtagid , CURRENT_TIMESTAMP

↪→FROM
50 tags tagsE ,
51 (SELECT DISTINCT containsE . hashtagid FROM
52 contains containsE ,
53 (SELECT DISTINCT tweetid , twitteruserid
54 FROM publishes
55 WHERE twitteruserid IN (SELECT userid2 FROM
56 (SELECT userid2 , followers FROM
57 follows ,
58 (SELECT
59 userid2 userid ,
60 COUNT(userid1) followers
61 FROM follows , twitteruser
62 WHERE userid2=idnode
63 GROUP BY userid2) numFollows
64 WHERE userid1=userid
65 AND followers >= 50)

↪→numFollPerFollower
66 GROUP BY userid2
67 HAVING COUNT(userid2) >= 50)) tweets
68 WHERE tweets . tweetid = containsE . tweetid
69 GROUP BY containsE . hashtagid , tweets . twitteruserid
70 HAVING COUNT(∗) >= 3) hashtags
71 WHERE tagsE . hashtagid = hashtags . hashtagid) ") ;
72 statement . execute () ;
73 // ActiveUserTweeted
74 PreparedStatement statement = conn . prepareStatement (
75 "INSERT INTO
76 activeusertweeted (tweetid , twitteruserid , currentimestamp)
77 (SELECT d . tweetid , a . userid1 , CURRENT_TIMESTAMP
78 FROM
79 (SELECT userid1
80 FROM follows
81 GROUP BY userid1
82 HAVING COUNT(userid1) >= 5000) a ,
83 (SELECT userid2 FROM
84 (SELECT userid2 , followers FROM
85 follows ,
86 (SELECT userid2 userid , COUNT(userid1) followers

194

A.1 Queries for processing platforms

87 FROM follows , twitteruser
88 WHERE userid2=idnode
89 GROUP BY userid2) numFollows
90 WHERE userid1=userid
91 AND followers >= 30) numFollPerFollower
92 GROUP BY userid2
93 HAVING COUNT(userid2) >= 30) b ,
94 publishes d
95 WHERE a . userid1 = b . userid2
96 AND b . userid2 = d . twitteruserid
97 AND d . tweetid IN
98 (SELECT idnode
99 FROM tweet

100 ORDER BY currentimestamp
101 DESC LIMIT 10000)) ") ;
102 statement . execute () ;

Listing A.4: Memgraph queries with effect for TwitterFlickr case study

1 // HotTopic
2 StatementResult result = session . run (
3 "MATCH (p)−[tagsE : tags]−>(h : Hashtag)<−[containsE : containsA]−(t)
4 WITH h , (COUNT(tagsE) + COUNT(containsE))
5 AS sumHT WHERE sumHT>100
6 CREATE (: HotTopic{date : timestamp () }) − [: EVENT]−>(h) ") ;
7 result . consume () ;
8 // PopularTwitterPhoto
9 StatementResult result = session . run (

10 "MATCH (u)−[l : likes]−>(t : Tweet)
11 WITH t , count (l) AS likes WHERE likes >= 30
12 MATCH (t) − [: containsA]−>(h : Hashtag)
13 WITH DISTINCT h AS h
14 MATCH (h) <−[:tags]−(p : Photo)
15 CREATE (: PopularTwitterPhoto{
16 timestamp : timestamp () , idHashtag : h . id })
17 − [: EVENT]−>(p) ") ;
18 result . consume () ;
19 // NiceTwitterPhoto
20 StatementResult result = session . run (
21 "MATCH (ffollower : TwitterUser) − [: follows]−>(follower : TwitterUser)
22 WITH follower , COUNT(ffollower)
23 AS ffollowers WHERE ffollowers >= 50
24 MATCH (follower) − [: follows]−>(tu : TwitterUser)
25 WITH DISTINCT tu , COUNT(follower)
26 AS followers WHERE followers >= 50 WITH DISTINCT tu
27 MATCH (tu) − [: publishes]−>(t : Tweet)−[c : containsA]−>(h : Hashtag)
28 WITH DISTINCT h , tu , c WITH h , tu , COUNT(c)
29 AS uses WHERE uses >= 3 WITH DISTINCT h

195

Appendix A. Results and queries for the comparison of Processing Platforms

30 MATCH (h) <−[:tags]−(p : Photo)
31 CREATE (: NiceTwitterPhoto{
32 timestamp : timestamp () , idHashtag : h . id })
33 − [: EVENT]−>(p) ") ;
34 result . consume () ;

A.1.2 TwitterFlickr queries without effect

Listing A.5: Gremlin queries without effect for TwitterFlickr case study

1 // HotTopic
2 g . V () . hasLabel (" Hashtag ")
3 .where(
4 __ . in (" contains " ," tags ")
5 . count () . i s (P . gte (100))
6) . toList () ;
7 // PopularTwitterPhoto
8 g . V () . hasLabel (" Hashtag ")
9 .where(

10 __ . in (" contains ")
11 .where(
12 __ . hasLabel (" Tweet ")
13 . in (" likes ") . count () . i s (P . gte (30))
14)
15) . in () . hasLabel (" Photo ") . toList () ;
16 // PopularFlickrPhoto
17 g . V () . hasLabel (" Photo ")
18 .where(
19 __ . in (" favorites ")
20 .where(
21 __ . hasLabel (" FlickrUser ") . in (" follows ")
22 . count () . i s (P . gte (50))
23) . count () . i s (P . gte (30)))
24 . toList () ;
25 // NiceTwitterPhoto
26 List tags = g . V () . hasLabel (" TwitterUser ")
27 .where(
28 __ . in (" follows ")
29 .where(
30 __ . in (" follows ") . count () . i s (P . gte (50))
31) . count () . i s (P . gte (50))
32) . as (" tu ")
33 . out (" publishes ") . hasLabel (" Tweet ")
34 . out (" contains ") . hasLabel (" Hashtag ")
35 . as (" h ")

196

A.1 Queries for processing platforms

36 . select (" tu " , "h ") .groupCount ()
37 . unfold () .where(__ . select (values) . i s (P . gte (3))) . select (keys)
38 . select (" h ") . toList () ;
39 g . V () . hasLabel (" Hashtag ")
40 . i s (P . within (tags))
41 . in (" tags ") . hasLabel (" Photo ") . toList () ;
42 // ActiveUserTweeted
43 g . V () . hasLabel (" Tweet ")
44 . order () .by(" currentTimestamp " , asc) . tail (10000)
45 . in (" publishes ") . hasLabel (" TwitterUser ")
46 .where(
47 __ . out (" follows ") . count () . i s (P . gte (5000))
48) .and(
49 __ . in (" follows ")
50 .where(
51 __ . in (" follows ") . count () . i s (P . gte (30))
52) . count () . i s (P . gte (30))
53) . toList () ;

Listing A.6: Neo4j queries without effect for TwitterFlickr case study

1 // HotTopic
2 StatementResult result = session . run (
3 "MATCH (p)−[tagsE : tags]−>(h : Hashtag)<−[containsE : contains]−(t)
4 WITH h , (COUNT(tagsE) + COUNT(containsE))
5 AS sumHT WHERE sumHT>100
6 RETURN h ") ;
7 result . list () ;
8 // PopularTwitterPhoto
9 StatementResult result = session . run (

10 "MATCH (u)−[l : likes]−>(t : Tweet)
11 WITH t , count (l) AS likes WHERE likes >= 30
12 MATCH (t) − [: contains]−>(h : Hashtag)
13 WITH DISTINCT h as h
14 MATCH (h) <−[:tags]−(p : Photo)
15 RETURN p ") ;
16 result . list () ;
17 // PopularFlickrPhoto
18 StatementResult result = session . run (
19 "MATCH (fu2 : FlickrUser) − [: follows]−>(fu : FlickrUser)
20 WITH fu , COUNT(fu2) AS followers WHERE followers >= 50
21 MATCH (fu) − [: favorites]−>(p : Photo)
22 WITH p , COUNT(fu) AS favs WHERE favs >= 30
23 RETURN p ") ;
24 result . list () ;
25 // NiceTwitterPhoto
26 StatementResult result = session . run (
27 "MATCH (ffollower : TwitterUser) − [: follows]−>(follower : TwitterUser)

197

Appendix A. Results and queries for the comparison of Processing Platforms

28 WITH follower , COUNT(ffollower)
29 AS ffollowers WHERE ffollowers >= 50
30 MATCH (follower) − [: follows]−>(tu : TwitterUser)
31 WITH DISTINCT tu , COUNT(follower)
32 AS followers
33 WHERE followers >= 50 WITH DISTINCT tu
34 MATCH (tu) − [: publishes]−>(t : Tweet)
35 −[containsE : contains]−>(h : Hashtag)
36 WITH DISTINCT h , tu , COUNT(distinct containsE)
37 AS uses WHERE uses >= 3 WITH DISTINCT h
38 MATCH (h) <−[:tags]−(p : Photo)
39 RETURN p ") ;
40 result . list () ;
41 // ActiveUserTweeted
42 StatementResult result = session . run (
43 "MATCH (ffollower : TwitterUser) − [: follows]−>(follower : TwitterUser)
44 WITH follower , COUNT(ffollower)
45 AS ffollowers WHERE ffollowers >= 30
46 MATCH (follower) − [: follows]−>(tu : TwitterUser)
47 WITH tu , COUNT(follower) AS followers WHERE followers >= 30
48 MATCH (tu) − [: follows]−>(tu2 : TwitterUser)
49 WITH tu , followers , COUNT(tu2)
50 AS following WHERE following >= 5000
51 MATCH (t : Tweet) WITH t , tu
52 ORDER BY t . currentTimestamp DESC LIMIT 10000
53 MATCH (tu) − [: publishes]−>(t)
54 RETURN tu ") ;
55 result . list () ;

Listing A.7: CrateDB queries without effect for TwitterFlickr case study

1 // HotTopic
2 PreparedStatement statement = conn . executeQuery (
3 "SELECT a . idnode , CURRENT_TIMESTAMP FROM
4 (SELECT DISTINCT
5 h . idNode , h . id , COUNT(c . hashtagid) countContains
6 FROM hashtag h , contains containsE
7 WHERE h . idNode=containsE . hashtagid
8 GROUP BY h . idNode , h . id) a ,
9 (SELECT DISTINCT

10 h . idNode , h . id , COUNT(tagsE . hashtagid) countTags
11 FROM hashtag h , tags tagsE
12 WHERE h . idNode=c . hashtagid
13 GROUP BY h . idNode , h . id) b
14 WHERE a . idnode = b . idnode
15 AND a . countContains + b . countTags > 100") ;
16 // PopularTwitterPhoto
17 PreparedStatement statement = conn . executeQuery (

198

A.1 Queries for processing platforms

18 "SELECT tagsE . photoid , tagsE . hashtagid , CURRENT_TIMESTAMP
19 FROM tags tagsE
20 WHERE tagsE . hashtagid
21 IN (SELECT DISTINCT containsE . hashtagid
22 FROM contains containsE
23 WHERE containsE . tweetid
24 IN (SELECT DISTINCT l . tweetid
25 FROM likes l
26 GROUP BY l . tweetid
27 HAVING COUNT(l . tweetid) >= 30)) ") ;
28 // PopularFlickrPhoto
29 PreparedStatement statement = conn . executeQuery (
30 "SELECT photoid , CURRENT_TIMESTAMP FROM
31 favorites ,
32 (SELECT DISTINCT fu . idnode
33 FROM follows f , flickruser fu
34 WHERE fu . idnode = f . userid2
35 GROUP BY fu . idnode , fu . usrname
36 HAVING COUNT(fu . idnode) >= 50) followers
37 WHERE flickruserid=idnode
38 GROUP BY photoid
39 HAVING COUNT(photoid) >= 30") ;
40 // NiceTwitterPhoto
41 PreparedStatement statement = conn . executeQuery (
42 "SELECT tagsE . photoid , tagsE . hashtagid , CURRENT_TIMESTAMP FROM
43 tags tagsE ,
44 (SELECT DISTINCT containsE . hashtagid FROM
45 contains containsE ,
46 (SELECT DISTINCT tweetid , twitteruserid
47 FROM publishes
48 WHERE twitteruserid IN (SELECT userid2 FROM
49 (SELECT userid2 , followers FROM
50 follows ,
51 (SELECT
52 userid2 userid ,
53 COUNT(userid1) followers
54 FROM follows , twitteruser
55 WHERE userid2=idnode
56 GROUP BY userid2) numFollows
57 WHERE userid1=userid
58 AND followers >= 50)

↪→numFollPerFollower
59 GROUP BY userid2
60 HAVING COUNT(userid2) >= 50)) tweets
61 WHERE tweets . tweetid = containsE . tweetid
62 GROUP BY containsE . hashtagid , tweets . twitteruserid
63 HAVING COUNT(∗) >= 3) hashtags
64 WHERE tagsE . hashtagid = hashtags . hashtagid ") ;
65 // ActiveUserTweeted

199

Appendix A. Results and queries for the comparison of Processing Platforms

66 PreparedStatement statement = conn . executeQuery (
67 "SELECT d . tweetid , a . userid1 , CURRENT_TIMESTAMP
68 FROM
69 (SELECT userid1
70 FROM follows
71 GROUP BY userid1
72 HAVING COUNT(userid1) >= 5000) a ,
73 (SELECT userid2 FROM
74 (SELECT userid2 , followers FROM
75 follows ,
76 (SELECT userid2 userid , COUNT(userid1) followers
77 FROM follows , twitteruser
78 WHERE userid2=idnode
79 GROUP BY userid2) numFollows
80 WHERE userid1=userid
81 AND followers >= 30) numFollPerFollower
82 GROUP BY userid2
83 HAVING COUNT(userid2) >= 30) b ,
84 publishes d
85 WHERE a . userid1 = b . userid2
86 AND b . userid2 = d . twitteruserid
87 AND d . tweetid IN
88 (SELECT idnode
89 FROM tweet
90 ORDER BY currentimestamp
91 DESC LIMIT 10000) ") ;

Listing A.8: Memgraph queries without effect for TwitterFlickr case study

1 // HotTopic
2 StatementResult result = session . run (
3 "MATCH (p)−[tagsE : tags]−>(h : Hashtag)<−[containsE : containsA]−(t)
4 WITH h , (COUNT(tagsE) + COUNT(containsE))
5 AS sumHT WHERE sumHT>100
6 RETURN h ") ;
7 result . list () ;
8 // PopularTwitterPhoto
9 StatementResult result = session . run (

10 "MATCH (u)−[l : likes]−>(t : Tweet)
11 WITH t , count (l) AS likes WHERE likes >= 30
12 MATCH (t) − [: containsA]−>(h : Hashtag)
13 WITH DISTINCT h AS h
14 MATCH (h) <−[:tags]−(p : Photo)
15 RETURN p ") ;
16 result . list () ;
17 // NiceTwitterPhoto
18 StatementResult result = session . run (
19 "MATCH (ffollower : TwitterUser) − [: follows]−>(follower : TwitterUser)

200

A.1 Queries for processing platforms

20 WITH follower , COUNT(ffollower)
21 AS ffollowers WHERE ffollowers >= 50
22 MATCH (follower) − [: follows]−>(tu : TwitterUser)
23 WITH DISTINCT tu , COUNT(follower)
24 AS followers WHERE followers >= 50 WITH DISTINCT tu
25 MATCH (tu) − [: publishes]−>(t : Tweet)−[c : containsA]−>(h : Hashtag)
26 WITH DISTINCT h , tu , c WITH h , tu , COUNT(c)
27 AS uses WHERE uses >= 3 WITH DISTINCT h
28 MATCH (h) <−[:tags]−(p : Photo)
29 RETURN p ") ;
30 result . list () ;

Listing A.9: GraphFrames queries without effect for TwitterFlickr case study

1 // HotTopic
2 graph . find (" (a)−[tagsE]−>(h) ")
3 . f i l t e r (" tagsE . relationship = 'tags'
4 OR tagsE . relationship = 'contains '")
5 .groupBy(" h ") . count ()
6 . select (" h ") .where("count >= 100") ;
7 // PopularTwitterPhoto
8 var popularTwitterPhoto =
9 graph . find (" (u)−[l]−>(t) ")

10 . f i l t e r (" u . node = 'TwitterUser '
11 AND l . relationship = 'likes '
12 AND t . node= 'Tweet '")
13 .groupBy(" t ") . count ()
14 .where("count >= 30") . select (" t ") ;
15 var popularTwitterPhoto2 =
16 graph . find (" (t)−[containsE]−>(h) ")
17 . f i l t e r (" t . node = 'Tweet '
18 AND containsE . relationship = 'contains '
19 AND h . node= 'Hashtag '") ;
20 val popularTwitterPhotoJoin1 =
21 popularTwitterPhoto . join (
22 popularTwitterPhoto2 ,
23 popularTwitterPhoto . col (" t ")
24 ===
25 popularTwitterPhoto2 . col (" t "))
26 . select (" h ") . distinct ;
27 popularTwitterPhoto2 =
28 graph . find (" (p)−[tagsE]−>(h) ")
29 . f i l t e r (" p . node = 'Photo '
30 AND tagsE . relationship = 'tags'
31 AND h . node= 'Hashtag '") ;
32 popularTwitterPhoto =
33 popularTwitterPhotoJoin1 . join (
34 popularTwitterPhoto2 ,

201

Appendix A. Results and queries for the comparison of Processing Platforms

35 popularTwitterPhotoJoin1 . col (" h ")
36 ===
37 popularTwitterPhoto2 (" h "))
38 . select (" h " , "p ") ;
39

40 // PopularFlickrPhoto
41 var popularFlickrPhoto =
42 graph . find (" (fu2)−[follows]−>(fu) ")
43 . f i l t e r (" fu2 . node = 'FlickrUser '
44 AND fu . node = 'FlickrUser '
45 AND follows . relationship = 'follows '")
46 .groupBy(" fu ") . count () . select (" fu ") .where("count >= 50") ;
47 var fav =
48 graph . find (" (fUser)−[favorites]−>(p) ")
49 . f i l t e r (" fUser . node = 'FlickrUser '
50 AND favorites . relationship = 'favorites '
51 AND p . node = 'Photo '") ;
52 popularFlickrPhoto =
53 popularFlickrPhoto . join (
54 fav ,
55 fav . col (" fUser ")
56 ===
57 popularFlickrPhoto . col (" fu "))
58 .groupBy(" p ") . count .where("count >= 30") . select (" p ") ;
59 // NiceTwitterPhoto
60 var niceTwitterPhoto =
61 graph . find (" (ffollower)−[follows]−>(follower) ")
62 . f i l t e r (" ffollower . node = 'TwitterUser '
63 AND follower . node = 'TwitterUser '
64 AND follows . relationship = 'follows '")
65 .groupBy(" follower ") . count
66 .where("count >= 50") . select (" follower ") ;
67 var niceTwitterPhoto2 =
68 graph . find (" (follower1)−[follows]−>(tu) ")
69 . f i l t e r (" follower1 . node = 'TwitterUser '
70 AND tu . node = 'TwitterUser '
71 AND follows . relationship = 'follows '") ;
72 var niceTwitterPhotoJoin1 =
73 niceTwitterPhoto2 . join (
74 niceTwitterPhoto ,
75 niceTwitterPhoto . col (" follower ")
76 ===
77 niceTwitterPhoto2 . col (" follower1 "))
78 .groupBy(" tu ") . count ()
79 .where("count >= 50") . select (" tu ") ;
80 niceTwitterPhoto2 =
81 graph . find (" (tu1)−[publishes]−>(t) ")
82 . f i l t e r (" tu1 . node= 'TwitterUser '
83 AND publishes . relationship = 'publishes '

202

A.1 Queries for processing platforms

84 AND t . node = 'Tweet '")
85 . select (" tu1 " , "t ") . distinct ;
86 niceTwitterPhotoJoin1 =
87 niceTwitterPhoto2 . join (
88 niceTwitterPhotoJoin1 ,
89 niceTwitterPhotoJoin1 . col (" tu ")
90 ===
91 niceTwitterPhoto2 . col (" tu1 ")) ;
92 niceTwitterPhoto2 =
93 graph . find (" (t1)−[contains]−>(h) ")
94 . f i l t e r (" t1 . node = 'Tweet '
95 AND contains . relationship = 'contains '
96 AND h . node = 'Hashtag '") ;
97 niceTwitterPhotoJoin1 =
98 niceTwitterPhoto2 . join (
99 niceTwitterPhotoJoin1 ,

100 niceTwitterPhotoJoin1 . col (" t ")
101 ===
102 niceTwitterPhoto2 . col (" t1 "))
103 . select (" tu1 " , "h " , "contains ") .groupBy(" h " , "tu1 ") . count
104 .where("count >= 3") . select (" h ") . distinct ;
105 niceTwitterPhoto =
106 graph . find (" (p)−[tags]−>(hashtag) ")
107 . f i l t e r (" p . node = 'Photo '
108 AND tags . relationship = 'tags'
109 AND hashtag . node = 'Hashtag '") ;
110 niceTwitterPhoto =
111 niceTwitterPhoto . join (
112 niceTwitterPhotoJoin1 ,
113 niceTwitterPhoto . col (" hashtag ")
114 ===
115 niceTwitterPhotoJoin1 . col (" h "))
116 . select (" hashtag " , "p ") ;
117 // ActiveUserTweeted
118 var activeUserTweeted =
119 graph . find (" (ffollower)−[follows]−>(follower) ")
120 . f i l t e r (" ffollower . node = 'TwitterUser '
121 AND follower . node = 'TwitterUser '
122 AND follows . relationship = 'follows '")
123 .groupBy(" follower ") . count
124 .where("count >= 30") . select (" follower ") ;
125 val activeUserTweeted2 =
126 graph . find (" (follower1)−[follows]−>(tu) ")
127 . f i l t e r (" follower1 . node = 'TwitterUser '
128 AND tu . node = 'TwitterUser '
129 AND follows . relationship = 'follows '") ;
130 var activeUserTweetedJoin1 =
131 activeUserTweeted2 . join (
132 activeUserTweeted ,

203

Appendix A. Results and queries for the comparison of Processing Platforms

133 activeUserTweeted . col (" follower ")
134 ===
135 activeUserTweeted2 . col (" follower1 "))
136 .groupBy(" tu ") . count ()
137 .where("count >= 30") . select (" tu ") ;
138 activeUserTweeted =
139 graph . find (" (tu1)−[follows]−>(tu2) ")
140 . f i l t e r (" follows . relationship = 'follows '
141 AND tu1 . node = 'TwitterUser '
142 AND tu2 . node = 'TwitterUser '")
143 .groupBy(" tu1 ") . count
144 .where("count >= 5000") . select (" tu1 ") ;
145 activeUserTweetedJoin1 =
146 activeUserTweeted . join (
147 activeUserTweetedJoin1 ,
148 activeUserTweetedJoin1 . col (" tu ")
149 ===
150 activeUserTweeted . col (" tu1 ")) ;
151 activeUserTweeted =
152 graph . find (" (tUser)−[publishes]−>(t) ")
153 . f i l t e r (" tUser . node = 'TwitterUser '
154 AND publishes . relationship = 'publishes '
155 AND t . node = 'Tweet '")
156 . orderBy (desc (" t . currentTimestamp ")) . limit (10000) ;
157 activeUserTweeted =
158 activeUserTweeted . join (
159 activeUserTweetedJoin1 ,
160 activeUserTweetedJoin1 . col (" tu1 ")
161 ===
162 activeUserTweeted . col (" tUser "))
163 . select (" t " , "tUser ") ;

A.1.3 TrainBenchmark queries with effect

Listing A.10: Gremlin queries with effect for TrainBenchmark case study

1 // PosLength
2 List<Vertex> matches =
3 g . V () . hasLabel (" Segment ")
4 . has (" length " , P . lte (0)) . as (" segment ") . toList () ;
5 for (Vertex n : matches) {
6 n . property (" length " , −((Integer) n . value (" length ")) + 1) ;
7 }
8 // SwitchMonitored
9 List<Vertex> matches =

10 g . V () . hasLabel (" Switch ")

204

A.1 Queries for processing platforms

11 . not (__ .outE(" monitoredBy ")) . as (" sw ") . toList () ;
12 for (Vertex n : matches) {
13 Vertex sensor = graph . addVertex(" Sensor ") ;
14 sensor . property (" id " , 0) ;
15 n .addEdge(" monitoredBy " , sensor) ;
16 }
17 // RouteSensor
18 List<Map<String , Object>> matches =
19 g . V () . hasLabel (" Route ") . as (" route ")
20 . out (" follows ") . hasLabel (" SwitchPosition ") . as (" swP ")
21 . out (" target ") . hasLabel (" Switch ") . as (" sw ")
22 . out (" monitoredBy ") . hasLabel (" Sensor ") . as (" sensor ")
23 . not (__ . inE (" requires ") .outV() . as (" route2 ")
24 .where(" route2 " , P . eq (" route ")))
25 . select (" route " , "sensor ") . toList () ;
26 for (Map<String , Object> n : matches) {
27 ((Vertex) n . get (" route "))
28 .addEdge(" requires " , (Vertex) n . get (" sensor ")) ;
29 }
30 // SwitchSet
31 List<Map<String , Object>> matches =
32 g . V () . hasLabel (" Route ")
33 . has (" active " , true) . as (" route ")
34 . out (" entry ") . hasLabel (" Semaphore ") . as (" semaphore ")
35 . select (" route ")
36 . out (" follows ") . hasLabel (" SwitchPosition ") . as (" swP ")
37 . values (" position ") . as (" position ") . select (" swP ")
38 . out (" target ") . hasLabel (" Switch ") . as (" sw ")
39 . values (" currentPosition ") . as (" currentPosition ")
40 .where(" position " , P . neq (" currentPosition "))
41 . select (" semaphore " , "route " ,
42 "swP " , "sw " , "currentPosition " , "position ") . toList () ;
43 for (Map<String , Object> n : matches) {
44 String position = (String) n . get (" position ") ;
45 ((Vertex) n . get (" sw ")) . property (" currentPosition " , position) ;
46 }
47 // ConnectedSegments
48 List<Map<String , Object>> matches =
49 g . V () . hasLabel (" Sensor ") . as (" sensor ")
50 . in (" monitoredBy ") . hasLabel (" Segment ") . as (" segment1 ")
51 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment2 ")
52 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment3 ")
53 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment4 ")
54 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment5 ")
55 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment6 ")
56 . out (" monitoredBy ") . as (" sensor2 ")
57 .where(" sensor " , P . eq (" sensor2 "))
58 . select (" sensor " , "segment1 " , "segment2 " ,
59 "segment3 " , "segment4 " , "segment5 " , "segment6 ") . toList () ;

205

Appendix A. Results and queries for the comparison of Processing Platforms

60 for (Map<String , Object> n : matches) {
61 Vertex segment2 = (Vertex) n . get (" segment2 ") ;
62 segment2 . remove () ;
63 ((Vertex) n . get (" segment1 "))
64 .addEdge(" connectsTo " , (Vertex) n . get (" segment3 ")) ;
65 }
66 // SemaphoreNeighbor
67 List<Map<String , Object>> matches =
68 g . V () . hasLabel (" Route ") . as (" route1 ")
69 . out (" exit ") . hasLabel (" Semaphore ") . as (" semaphore ")
70 . select (" route1 ")
71 . out (" requires ") . hasLabel (" Sensor ") . as (" sensor1 ")
72 . in (" monitoredBy ") . as (" te1 ")
73 . out (" connectsTo ") . as (" te2 ")
74 . out (" monitoredBy ") . hasLabel (" Sensor ") . as (" sensor2 ")
75 . in (" requires ") . hasLabel (" Route ") . as (" route2 ")
76 .where(" route2 " , P . neq (" route1 ")) . select (" route2 ")
77 . not (__ . out (" entry ") . as (" semaphore2 ")
78 .where(" semaphore2 " , P . eq (" semaphore ")))
79 . select (" semaphore " , "route1 " , "route2 " ,
80 "sensor1 " , "sensor2 " , "te1 " , "te2 ") . toList () ;
81 for (Map<String , Object> n : matches) {
82 Vertex semaphore = (Vertex) n . get (" semaphore ") ;
83 Vertex route2 = (Vertex) n . get (" route2 ") ;
84 if (! route2 . edges (Direction . OUT , "entry ") . hasNext ()) {
85 route2 .addEdge(" entry " , semaphore) ;
86 }
87 }

Listing A.11: Neo4j queries with effect for TrainBenchmark case study

1 // PosLength
2 StatementResult result = session . run (
3 "MATCH (segment : Segment)
4 WHERE segment . length <= 0
5 SET segment . length = −segment . length + 1
6 RETURN segment , segment . length AS length ") ;
7 result . consume () ;
8 // SwitchMonitored
9 StatementResult result = session . run (

10 "MATCH (sw : Switch) , (n) WITH sw , MAX (n . id) AS maxid
11 WHERENOT (sw) − [: monitoredBy]−>()
12 CREATE (sw) − [: monitoredBy]−>(:Sensor{id : maxid + 1}) ") ;
13 result . consume () ;
14 // RouteSensor
15 StatementResult result = session . run (
16 "MATCH (route : Route) − [: follows]−>(swP : SwitchPosition)
17 − [: target]−>(sw : Switch) − [: monitoredBy]−>(sensor : Sensor)

206

A.1 Queries for processing platforms

18 WHERENOT (route) − [: requires]−>(sensor)
19 CREATE (route) − [: requires]−>(sensor) ") ;
20 result . consume () ;
21 // SwitchSet
22 StatementResult result = session . run (
23 "MATCH (semaphore : Semaphore) <−[:entry]−(route : Route)
24 − [: follows]−>(swP : SwitchPosition) − [: target]−>(sw : Switch)
25 WHERE semaphore . signal = "GO"
26 AND route . active = true
27 AND sw . currentPosition <> swP . position
28 SET sw . currentPosition = swP . position
29 RETURN semaphore , route , swP , sw ,
30 sw . currentPosition AS currentPosition ,
31 swP . position AS position ") ;
32 result . consume () ;
33 // ConnectedSegments
34 StatementResult result = session . run (
35 "MATCH
36 (sensor : Sensor) <−[:monitoredBy]−(segment1 : Segment) ,
37 (segment1 : Segment) − [: connectsTo]−>(segment2 : Segment)
38 − [: connectsTo]−>(segment3 : Segment) − [: connectsTo]
39 −>(segment4 : Segment) − [: connectsTo]−>
40 (segment5 : Segment) − [: connectsTo]−>
41 (segment6 : Segment) ,
42 (segment2 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
43 (segment3 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
44 (segment4 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
45 (segment5 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
46 (segment6 : Segment) − [: monitoredBy]−>(sensor : Sensor)
47 DETACH DELETE segment2 ") ;
48 result . consume () ;
49 // SemaphoreNeighbor
50 StatementResult result = session . run (
51 "MATCH (semaphore : Semaphore) <−[:exit]−(route1 : Route)
52 − [: requires]−>(sensor1 : Sensor) ,
53 (sensor1) <−[:monitoredBy]−(te1) − [: connectsTo]
54 −>(te2) − [: monitoredBy]−>(sensor2 : Sensor)
55 <−[:requires]−(route2 : Route)
56 WHERENOT (semaphore) <−[:entry]−(route2)
57 AND route1 <> route2
58 CREATE (semaphore) <−[:entry]−(route2) ") ;
59 result . consume () ;

Listing A.12: CrateDB queries with effect for TrainBenchmark case study

1 // PosLength
2 ResultSet resultset =
3 statement . executeQuery (

207

Appendix A. Results and queries for the comparison of Processing Platforms

4 "SELECT id AS segment , length AS length
5 FROM Segment
6 WHERE length <= 0 ; ") ;
7 long count = 0 ;
8 while (resultset . next ()) {
9 count++;

10 Long segment = resultset . getLong (" segment ") ;
11 PreparedStatement statementP = conn
12 . prepareStatement (
13 "UPDATE Segment SET length = −length + 1
14 WHERE id = " + segment) ;
15 statementP . execute () ;
16 }
17 // SwitchMonitored
18 ResultSet resultset = statement . executeQuery (
19 "SELECT switch . id AS sw
20 FROM switch\n"
21 LEFT JOIN monitoredBy
22 ON monitoredBy . \" TrackElement_id \" = switch . id
23 WHERE monitoredBy . \" TrackElement_id \" IS NULL; ") ;
24 long count = 0 ;
25 while (resultset . next ()) {
26 Statement statement1 = conn . createStatement () ;
27 statement1 . executeUpdate (
28 "INSERT INTO Sensor (id) (SELECT MAX(id) +1
29 FROM
30 (SELECT id AS id
31 FROM region
32 UNION ALL SELECT id AS id FROM route
33 UNION ALL SELECT id AS id FROM sensor
34 UNION ALL SELECT id AS id FROM switch
35 UNION ALL SELECT id AS id FROM segment
36 UNION ALL SELECT id AS id FROM semaphore
37 UNION ALL SELECT id AS id FROM sensor
38 UNION ALL SELECT id AS id FROM switchposition)
39 maxid) ") ;
40 Statement statement2 = conn . createStatement () ;
41 ResultSet result = statement2 . executeQuery (
42 "SELECT MAX(id) AS id FROM sensor ") ;
43 result . next () ;
44 Statement statement3 = conn . createStatement () ;
45 statement3 . executeUpdate (
46 "INSERT INTO monitoredBy (\" TrackElement_id \" , \" Sensor_id \")
47 VALUES ("
48 + resultset . getLong (" sw ") + " ,"
49 + result . getLong (" id ") + ") ") ;
50 count++;
51 }
52 // RouteSensor

208

A.1 Queries for processing platforms

53 int result = statement1 . executeUpdate (
54 "INSERT INTO requires (\" Route_id \" , \" Sensor_id \")
55 (SELECT Route . id , Sensor . id
56 FROM Sensor
57 INNER JOIN monitoredBy
58 ON monitoredBy . \" Sensor_id \" = Sensor . id
59 INNER JOIN Switch
60 ON Switch . id = monitoredBy . \" TrackElement_id \"
61 INNER JOIN SwitchPosition
62 ON SwitchPosition . target = Switch . id
63 INNER JOIN Route
64 ON Route . id = SwitchPosition . route
65 LEFT OUTER JOIN requires
66 ON requires . \" Route_id \" = Route . id
67 AND requires . \" Sensor_id \" = Sensor . id
68 WHERE requires . \" Sensor_id \" IS NULL) ; ") ;
69 // SwitchSet
70 ResultSet resultset = statement . executeQuery (
71 "SELECT Semaphore . id AS semaphore ,
72 Route . id AS route ,
73 SwitchPosition . id AS swP ,
74 Switch . id AS sw ,
75 SwitchPosition . position AS position ,
76 Switch . currentPosition AS currentPosition
77 FROM route
78 INNER JOIN SwitchPosition
79 ON Route . id = SwitchPosition . route
80 INNER JOIN Switch
81 ON SwitchPosition . target = Switch . id
82 INNER JOIN Semaphore
83 ON Route . entry = Semaphore . id
84 WHERE Route . active = 0
85 AND Switch . currentPosition != SwitchPosition . position
86 AND Semaphore . signal = 'GO' ; ") ;
87 long count = 0 ;
88 while (resultset . next ()) {
89 count++;
90 PreparedStatement statementP = conn . prepareStatement (
91 "UPDATE Switch
92 SET currentPosition = \"" + resultset . getString (" position ")
93 + "\" WHERE id = " + resultset . getLong (" sw ")) ;
94 statementP . execute () ;
95 }
96 // ConnectedSegments
97 ResultSet resultset = statement . executeQuery (
98 "SELECT mb1 . \" Sensor_id \" AS sensor ,
99 ct1 . \" TrackElement1_id \" AS segment1 ,

100 ct2 . \" TrackElement1_id \" AS segment2 ,
101 ct3 . \" TrackElement1_id \" AS segment3 ,

209

Appendix A. Results and queries for the comparison of Processing Platforms

102 ct4 . \" TrackElement1_id \" AS segment4 ,
103 ct5 . \" TrackElement1_id \" AS segment5 ,
104 ct5 . \" TrackElement2_id \" AS segment6
105 FROM connectsTo AS ct1
106 INNER JOIN connectsTo AS ct2
107 ON ct1 . \" TrackElement2_id \"
108 = ct2 . \" TrackElement1_id \"
109 INNER JOIN connectsTo AS ct3
110 ON ct2 . \" TrackElement2_id \"
111 = ct3 . \" TrackElement1_id \"
112 INNER JOIN connectsTo AS ct4
113 ON ct3 . \" TrackElement2_id \"
114 = ct4 . \" TrackElement1_id \"
115 INNER JOIN connectsTo AS ct5
116 ON ct4 . \" TrackElement2_id \"
117 = ct5 . \" TrackElement1_id \"
118 INNER JOIN monitoredBy AS mb1
119 ON mb1 . \" TrackElement_id \"
120 = ct1 . \" TrackElement1_id \"
121 INNER JOIN monitoredBy AS mb2
122 ON mb2 . \" TrackElement_id \"
123 = ct2 . \" TrackElement1_id \"
124 AND mb1 . \" Sensor_id \"
125 = mb2 . \" Sensor_id \"
126 INNER JOIN monitoredBy AS mb3
127 ON mb3 . \" TrackElement_id \"
128 = ct3 . \" TrackElement1_id \"
129 AND mb1 . \" Sensor_id \"
130 = mb3 . \" Sensor_id \"
131 INNER JOIN monitoredBy AS mb4
132 ON mb4 . \" TrackElement_id \"
133 = ct4 . \" TrackElement1_id \"
134 AND mb1 . \" Sensor_id \"
135 = mb4 . \" Sensor_id \"
136 INNER JOIN monitoredBy AS mb5
137 ON mb5 . \" TrackElement_id \"
138 = ct5 . \" TrackElement1_id \"
139 AND mb1 . \" Sensor_id \"
140 = mb5 . \" Sensor_id \"
141 INNER JOIN monitoredBy AS mb6
142 ON mb6 . \" TrackElement_id \"
143 = ct5 . \" TrackElement2_id \"
144 AND mb1 . \" Sensor_id \" = mb6 . \" Sensor_id \"
145 WHERE ct1 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
146 AND ct2 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
147 AND ct3 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
148 AND ct4 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
149 AND ct5 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
150 AND ct5 . \" TrackElement2_id \" IN (SELECT id FROM Segment) ; ") ;

210

A.1 Queries for processing platforms

151 while (resultset . next ()) {
152 count++;
153 Statement statement1 = conn . createStatement () ;
154 statement1 . executeUpdate ("DELETE FROM segment WHERE id = " +
155 resultset . getLong (" segment2 ")) ;
156 Statement statement2 = conn . createStatement () ;
157 statement2 . executeUpdate (
158 "DELETE FROM connectsTo
159 WHERE \" TrackElement2_id \" = " +
160 resultset . getLong (" segment2 ")
161 + " AND \" TrackElement1_id \" =" +
162 resultset . getLong (" segment1 ")) ;
163 Statement statement3 = conn . createStatement () ;
164 statement3 . executeUpdate (
165 "DELETE FROM connectsTo
166 WHERE \" TrackElement2_id \" = " +
167 resultset . getLong (" segment3 ")
168 + " AND \" TrackElement1_id \" =" +
169 resultset . getLong (" segment2 ")) ;
170 Statement statement4 = conn . createStatement () ;
171 statement4 . executeUpdate ("DELETE FROM monitoredBy
172 WHERE \" TrackElement_id \" = " + resultset . getLong (" segment2 ") +
173 " AND \" Sensor_id \" =" + resultset . getLong (" sensor ")) ;
174 Statement statement5 = conn . createStatement () ;
175 statement5 . executeUpdate (
176 "INSERT INTO connectsTo (
177 \" TrackElement1_id \" ,
178 \" TrackElement2_id \")
179 VALUES("
180 + resultset . getLong (" segment1 ") + " ,"
181 + resultset . getLong (" segment3 ") + ") ") ;
182 }
183 // SemaphoreNeighbor
184 ResultSet resultset = statement . executeQuery (
185 "SELECT Route1 . exit AS semaphore ,
186 Route1 . id AS route1 ,
187 Route2 . id AS route2 ,
188 requires1 . \" Sensor_id \" AS sensor1 ,
189 requires2 . \" Sensor_id \" AS sensor2 ,
190 ct . \" TrackElement1_id \" AS te1 ,
191 ct . \" TrackElement2_id \" AS te2
192 FROM Route AS Route1
193 INNER JOIN requires AS requires1
194 ON Route1 . id = requires1 . \" Route_id \"
195 INNER JOIN monitoredBy AS mb1
196 ON requires1 . \" Sensor_id \" = mb1 . \" Sensor_id \"
197 INNER JOIN connectsTo AS ct
198 ON mb1 . \" TrackElement_id \" = ct . \" TrackElement1_id \"
199 INNER JOIN monitoredBy AS mb2

211

Appendix A. Results and queries for the comparison of Processing Platforms

200 ON ct . \" TrackElement2_id \" = mb2 . \" TrackElement_id \"
201 INNER JOIN requires AS requires2
202 ON mb2 . \" Sensor_id \" = requires2 . \" Sensor_id \"
203 INNER JOIN Route AS Route2
204 ON requires2 . \" Route_id \" = Route2 . id
205 AND Route1 . id != Route2 . id
206 AND Route1 . exit IS NOT NULL
207 AND (Route2 . entry IS NULL
208 OR Route2 . entry != Route1 . exit) ") ;
209 Statement statement1 = conn . createStatement () ;
210 long count = 0 ;
211 while (resultset . next ()) {
212 statement1 . executeUpdate (
213 "UPDATE route SET entry = "
214 + resultset . getLong (" semaphore ")
215 + " WHERE id =" + resultset . getLong (" route2 ")) ;
216 count++;
217 }

Listing A.13: Memgraph queries with effect for TrainBenchmark case study

1 // SwitchMonitored
2 StatementResult result = session . run (
3 "MATCH (sw : Switch) , (n)
4 OPTIONAL MATCH (sw)−[m : monitoredBy]−>()
5 WITH sw , max(n . id) AS maxid , m
6 WHERE m IS NULL
7 CREATE (sw) − [: monitoredBy]−>(:Sensor{id : maxid +1}) ") ;
8 result . consume () ;
9 // RouteSensor

10 StatementResult result = session . run (
11 "MATCH (route : Route) − [: follows]−>(swP : SwitchPosition)
12 − [: target]−>(sw : Switch) − [: monitoredBy]−>(sensor : Sensor)
13 OPTIONAL MATCH (route)−[r : requires]−>(sensor)
14 WITH sensor , r , route , sw , swP
15 WHERE r IS NULL
16 CREATE (route) − [: requires]−>(sensor) ; ") ;
17 result . consume () ;
18 // SemaphoreNeighbor
19 StatementResult result = session . run (
20 "MATCH (semaphore) <−[:exit]−(route1) − [: requires]−>(sensor1)
21 MATCH (sensor1) <−[:monitoredBy]−(te1) − [: connectsTo]
22 −>(te2) − [: monitoredBy]−>(sensor2)
23 <−[:requires]−(route2)
24 WHERE route1 <> route2
25 OPTIONAL MATCH (semaphore)<−[e : entry]−(route2)
26 WITH semaphore , route1 , route2 ,
27 sensor1 , sensor2 , te1 , te2 , e

212

A.1 Queries for processing platforms

28 WHERE e IS NULL
29 CREATE (semaphore) <−[:entry]−(route2) ") ;
30 result . consume () ;

A.1.4 TrainBenchmark queries without effect

Listing A.14: Gremlin queries without effect for TrainBenchmark case study

1 // PosLength
2 List<Vertex> matches =
3 g . V () . hasLabel (" Segment ")
4 . has (" length " , P . lte (0)) . as (" segment ") . toList () ;
5 // SwitchMonitored
6 List<Vertex> matches =
7 g . V () . hasLabel (" Switch ")
8 . not (__ .outE(" monitoredBy ")) . as (" sw ") . toList () ;
9 // RouteSensor

10 List<Map<String , Object>> matches =
11 g . V () . hasLabel (" Route ") . as (" route ")
12 . out (" follows ") . hasLabel (" SwitchPosition ") . as (" swP ")
13 . out (" target ") . hasLabel (" Switch ") . as (" sw ")
14 . out (" monitoredBy ") . hasLabel (" Sensor ") . as (" sensor ")
15 . not (__ . inE (" requires ") .outV() . as (" route2 ")
16 .where(" route2 " , P . eq (" route ")))
17 . select (" route " , "sensor ") . toList () ;
18 // SwitchSet
19 List<Map<String , Object>> matches =
20 g . V () . hasLabel (" Route ")
21 . has (" active " , true) . as (" route ")
22 . out (" entry ") . hasLabel (" Semaphore ") . as (" semaphore ")
23 . select (" route ")
24 . out (" follows ") . hasLabel (" SwitchPosition ") . as (" swP ")
25 . values (" position ") . as (" position ") . select (" swP ")
26 . out (" target ") . hasLabel (" Switch ") . as (" sw ")
27 . values (" currentPosition ") . as (" currentPosition ")
28 .where(" position " , P . neq (" currentPosition "))
29 . select (" semaphore " , "route " ,
30 "swP " , "sw " , "currentPosition " , "position ") . toList () ;
31 // ConnectedSegments
32 List<Map<String , Object>> matches =
33 g . V () . hasLabel (" Sensor ") . as (" sensor ")
34 . in (" monitoredBy ") . hasLabel (" Segment ") . as (" segment1 ")
35 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment2 ")
36 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment3 ")
37 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment4 ")
38 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment5 ")

213

Appendix A. Results and queries for the comparison of Processing Platforms

39 . out (" connectsTo ") . hasLabel (" Segment ") . as (" segment6 ")
40 . out (" monitoredBy ") . as (" sensor2 ")
41 .where(" sensor " , P . eq (" sensor2 "))
42 . select (" sensor " , "segment1 " , "segment2 " ,
43 "segment3 " , "segment4 " , "segment5 " , "segment6 ") . toList () ;
44 // SemaphoreNeighbor
45 List<Map<String , Object>> matches =
46 g . V () . hasLabel (" Route ") . as (" route1 ")
47 . out (" exit ") . hasLabel (" Semaphore ") . as (" semaphore ")
48 . select (" route1 ")
49 . out (" requires ") . hasLabel (" Sensor ") . as (" sensor1 ")
50 . in (" monitoredBy ") . as (" te1 ")
51 . out (" connectsTo ") . as (" te2 ")
52 . out (" monitoredBy ") . hasLabel (" Sensor ") . as (" sensor2 ")
53 . in (" requires ") . hasLabel (" Route ") . as (" route2 ")
54 .where(" route2 " , P . neq (" route1 ")) . select (" route2 ")
55 . not (__ . out (" entry ") . as (" semaphore2 ")
56 .where(" semaphore2 " , P . eq (" semaphore ")))
57 . select (" semaphore " , "route1 " , "route2 " ,
58 "sensor1 " , "sensor2 " , "te1 " , "te2 ") . toList () ;

Listing A.15: Neo4j queries without effect for TrainBenchmark case study

1 // PosLength
2 StatementResult result = session . run (
3 "MATCH (segment : Segment)
4 WHERE segment . length <= 0
5 RETURN segment , segment . length AS length ") ;
6 result . list () ;
7 // SwitchMonitored
8 StatementResult result = session . run (
9 "MATCH (sw : Switch) , (n) WITH sw , MAX (n . id) AS maxid

10 WHERENOT (sw) − [: monitoredBy]−>()
11 RETURN sw ") ;
12 result . list () ;
13 // RouteSensor
14 StatementResult result = session . run (
15 "MATCH (route : Route) − [: follows]−>(swP : SwitchPosition)
16 − [: target]−>(sw : Switch) − [: monitoredBy]−>(sensor : Sensor)
17 WHERENOT (route) − [: requires]−>(sensor)
18 RETURN route , sensor , sw , swP ") ;
19 result . list () ;
20 // SwitchSet
21 StatementResult result = session . run (
22 "MATCH (semaphore : Semaphore) <−[:entry]−(route : Route)
23 − [: follows]−>(swP : SwitchPosition) − [: target]−>(sw : Switch)
24 WHERE semaphore . signal = "GO"
25 AND route . active = true

214

A.1 Queries for processing platforms

26 AND sw . currentPosition <> swP . position
27 RETURN semaphore , route , swP , sw ,
28 sw . currentPosition AS currentPosition ,
29 swP . position AS position ") ;
30 result . list () ;
31 // ConnectedSegments
32 StatementResult result = session . run (
33 "MATCH
34 (sensor : Sensor) <−[:monitoredBy]−(segment1 : Segment) ,
35 (segment1 : Segment) − [: connectsTo]−>(segment2 : Segment)
36 − [: connectsTo]−>(segment3 : Segment) − [: connectsTo]
37 −>(segment4 : Segment) − [: connectsTo]−>
38 (segment5 : Segment) − [: connectsTo]−>
39 (segment6 : Segment) ,
40 (segment2 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
41 (segment3 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
42 (segment4 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
43 (segment5 : Segment) − [: monitoredBy]−>(sensor : Sensor) ,
44 (segment6 : Segment) − [: monitoredBy]−>(sensor : Sensor)
45 RETURN segment1 , segment2 , segment3 ,
46 segment4 , segment5 , segment6 ") ;
47 result . list () ;
48 // SemaphoreNeighbor
49 StatementResult result = session . run (
50 "MATCH (semaphore : Semaphore) <−[:exit]−(route1 : Route)
51 − [: requires]−>(sensor1 : Sensor) ,
52 (sensor1) <−[:monitoredBy]−(te1) − [: connectsTo]
53 −>(te2) − [: monitoredBy]−>(sensor2 : Sensor)
54 <−[:requires]−(route2 : Route)
55 WHERENOT (semaphore) <−[:entry]−(route2)
56 AND route1 <> route2
57 RETURN semaphore , route1 , route2 ,
58 te1 , te2 , sensor1 , sensor2 ") ;
59 result . list () ;

Listing A.16: CrateDB queries without effect for TrainBenchmark case study

1 // PosLength
2 ResultSet resultset =
3 statement . executeQuery (
4 "SELECT id AS segment , length AS length
5 FROM Segment
6 WHERE length <= 0 ; ") ;
7 // SwitchMonitored
8 ResultSet resultset = statement . executeQuery (
9 "SELECT switch . id AS sw

10 FROM switch\n"
11 LEFT JOIN monitoredBy

215

Appendix A. Results and queries for the comparison of Processing Platforms

12 ON monitoredBy . \" TrackElement_id \" = switch . id
13 WHERE monitoredBy . \" TrackElement_id \" IS NULL; ") ;
14 // RouteSensor
15 int result = statement1 . executeQuery (
16 "SELECT Route . id , Sensor . id
17 FROM Sensor
18 INNER JOIN monitoredBy
19 ON monitoredBy . \" Sensor_id \" = Sensor . id
20 INNER JOIN Switch
21 ON Switch . id = monitoredBy . \" TrackElement_id \"
22 INNER JOIN SwitchPosition
23 ON SwitchPosition . target = Switch . id
24 INNER JOIN Route
25 ON Route . id = SwitchPosition . route
26 LEFT OUTER JOIN requires
27 ON requires . \" Route_id \" = Route . id
28 AND requires . \" Sensor_id \" = Sensor . id
29 WHERE requires . \" Sensor_id \" IS NULL; ") ;
30 // SwitchSet
31 ResultSet resultset = statement . executeQuery (
32 "SELECT Semaphore . id AS semaphore ,
33 Route . id AS route ,
34 SwitchPosition . id AS swP ,
35 Switch . id AS sw ,
36 SwitchPosition . position AS position ,
37 Switch . currentPosition AS currentPosition
38 FROM route
39 INNER JOIN SwitchPosition
40 ON Route . id = SwitchPosition . route
41 INNER JOIN Switch
42 ON SwitchPosition . target = Switch . id
43 INNER JOIN Semaphore
44 ON Route . entry = Semaphore . id
45 WHERE Route . active = 0
46 AND Switch . currentPosition != SwitchPosition . position
47 AND Semaphore . signal = 'GO' ; ") ;
48 // ConnectedSegments
49 ResultSet resultset = statement . executeQuery (
50 "SELECT mb1 . \" Sensor_id \" AS sensor ,
51 ct1 . \" TrackElement1_id \" AS segment1 ,
52 ct2 . \" TrackElement1_id \" AS segment2 ,
53 ct3 . \" TrackElement1_id \" AS segment3 ,
54 ct4 . \" TrackElement1_id \" AS segment4 ,
55 ct5 . \" TrackElement1_id \" AS segment5 ,
56 ct5 . \" TrackElement2_id \" AS segment6
57 FROM connectsTo AS ct1
58 INNER JOIN connectsTo AS ct2
59 ON ct1 . \" TrackElement2_id \"
60 = ct2 . \" TrackElement1_id \"

216

A.1 Queries for processing platforms

61 INNER JOIN connectsTo AS ct3
62 ON ct2 . \" TrackElement2_id \"
63 = ct3 . \" TrackElement1_id \"
64 INNER JOIN connectsTo AS ct4
65 ON ct3 . \" TrackElement2_id \"
66 = ct4 . \" TrackElement1_id \"
67 INNER JOIN connectsTo AS ct5
68 ON ct4 . \" TrackElement2_id \"
69 = ct5 . \" TrackElement1_id \"
70 INNER JOIN monitoredBy AS mb1
71 ON mb1 . \" TrackElement_id \"
72 = ct1 . \" TrackElement1_id \"
73 INNER JOIN monitoredBy AS mb2
74 ON mb2 . \" TrackElement_id \"
75 = ct2 . \" TrackElement1_id \"
76 AND mb1 . \" Sensor_id \"
77 = mb2 . \" Sensor_id \"
78 INNER JOIN monitoredBy AS mb3
79 ON mb3 . \" TrackElement_id \"
80 = ct3 . \" TrackElement1_id \"
81 AND mb1 . \" Sensor_id \"
82 = mb3 . \" Sensor_id \"
83 INNER JOIN monitoredBy AS mb4
84 ON mb4 . \" TrackElement_id \"
85 = ct4 . \" TrackElement1_id \"
86 AND mb1 . \" Sensor_id \"
87 = mb4 . \" Sensor_id \"
88 INNER JOIN monitoredBy AS mb5
89 ON mb5 . \" TrackElement_id \"
90 = ct5 . \" TrackElement1_id \"
91 AND mb1 . \" Sensor_id \"
92 = mb5 . \" Sensor_id \"
93 INNER JOIN monitoredBy AS mb6
94 ON mb6 . \" TrackElement_id \"
95 = ct5 . \" TrackElement2_id \"
96 AND mb1 . \" Sensor_id \" = mb6 . \" Sensor_id \"
97 WHERE ct1 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
98 AND ct2 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
99 AND ct3 . \" TrackElement1_id \" IN (SELECT id FROM Segment)

100 AND ct4 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
101 AND ct5 . \" TrackElement1_id \" IN (SELECT id FROM Segment)
102 AND ct5 . \" TrackElement2_id \" IN (SELECT id FROM Segment) ; ") ;
103 // SemaphoreNeighbor
104 ResultSet resultset = statement . executeQuery (
105 "SELECT Route1 . exit AS semaphore ,
106 Route1 . id AS route1 ,
107 Route2 . id AS route2 ,
108 requires1 . \" Sensor_id \" AS sensor1 ,
109 requires2 . \" Sensor_id \" AS sensor2 ,

217

Appendix A. Results and queries for the comparison of Processing Platforms

110 ct . \" TrackElement1_id \" AS te1 ,
111 ct . \" TrackElement2_id \" AS te2
112 FROM Route AS Route1
113 INNER JOIN requires AS requires1
114 ON Route1 . id = requires1 . \" Route_id \"
115 INNER JOIN monitoredBy AS mb1
116 ON requires1 . \" Sensor_id \" = mb1 . \" Sensor_id \"
117 INNER JOIN connectsTo AS ct
118 ON mb1 . \" TrackElement_id \" = ct . \" TrackElement1_id \"
119 INNER JOIN monitoredBy AS mb2
120 ON ct . \" TrackElement2_id \" = mb2 . \" TrackElement_id \"
121 INNER JOIN requires AS requires2
122 ON mb2 . \" Sensor_id \" = requires2 . \" Sensor_id \"
123 INNER JOIN Route AS Route2
124 ON requires2 . \" Route_id \" = Route2 . id
125 AND Route1 . id != Route2 . id
126 AND Route1 . exit IS NOT NULL
127 AND (Route2 . entry IS NULL
128 OR Route2 . entry != Route1 . exit) ") ;

Listing A.17: Memgraph queries without effect for TrainBenchmark case study

1 // SwitchMonitored
2 StatementResult result = session . run (
3 "MATCH (sw : Switch) , (n)
4 OPTIONAL MATCH (sw)−[m : monitoredBy]−>()
5 WITH sw , max(n . id) AS maxid , m
6 WHERE m IS NULL
7 RETURN sw ") ;
8 result . list () ;
9 // RouteSensor

10 StatementResult result = session . run (
11 "MATCH (route : Route) − [: follows]−>(swP : SwitchPosition)
12 − [: target]−>(sw : Switch) − [: monitoredBy]−>(sensor : Sensor)
13 OPTIONAL MATCH (route)−[r : requires]−>(sensor)
14 WITH sensor , r , route , sw , swP
15 WHERE r IS NULL
16 RETURN route , sensor , swP , sw ") ;
17 result . list () ;
18 // SemaphoreNeighbor
19 StatementResult result = session . run (
20 "MATCH (semaphore) <−[:exit]−(route1) − [: requires]−>(sensor1)
21 MATCH (sensor1) <−[:monitoredBy]−(te1) − [: connectsTo]
22 −>(te2) − [: monitoredBy]−>(sensor2)
23 <−[:requires]−(route2)
24 WHERE route1 <> route2
25 OPTIONAL MATCH (semaphore)<−[e : entry]−(route2)
26 WITH semaphore , route1 , route2 ,

218

A.1 Queries for processing platforms

27 sensor1 , sensor2 , te1 , te2 , e
28 WHERE e IS NULL
29 RETURN semaphore , route1 , route2 , sensor1 , sensor2 , te1 , te2 ") ;
30 result . list () ;

Listing A.18: GraphFrames queries without effect for TrainBenchmark case study

1 // PosLength
2 graph . find (" (segment) ")
3 . f i l t e r (" segment . node = 'Segment ' AND segment . length <= 0") ;
4 // SwitchMonitored
5 var monitored = graph . find (" (switch1)−[monitoredBy]−>() ")
6 . f i l t e r (" switch1 . node = 'Switch '
7 AND monitoredBy . relationship = 'monitoredBy '")
8 .groupBy(" fu ") . count . select (" fu ") .where("count >= 50") ;
9 switchMonitored = monitored . join (

10 switchMonitored ,
11 monitored . col (" switch1 . id ")
12 === switchMonitored . col (" switch . id ") , "outer ")
13 .where(" switch1 is null ")
14 .groupBy(" p ") . count .where("count >= 30") . select (" p ") ;
15 // RouteSensor
16 graph . find (" (route)−[follows]−>(swP) ;
17 (swP)−[target]−>(sw) ; (sw)−[monitoredBy]−>(sensor) ;
18 ! (route)−[]−>(sensor) ")
19 . f i l t e r (" route . node = 'Route '
20 AND swP . node = 'SwitchPosition '
21 AND follows . relationship = 'follows '
22 AND target . relationship = 'target '
23 AND sw . node = 'Switch '
24 AND monitoredBy . relationship = 'monitoredBy '
25 AND sensor . node = 'Sensor '") ;
26 // SwitchSet
27 graph . find (" (route)−[entry]−>(semaphore) ; (
28 route)−[follows]−>(swP) ;
29 (swP)−[target]−>(sw) ")
30 . f i l t e r (" semaphore . node = 'Semaphore '
31 AND semaphore . signal = 'GO'
32 AND entry . relationship = 'entry '
33 AND route . node= 'Route '
34 AND route . active = true
35 AND follows . relationship = 'follows '
36 AND swP . node = 'SwitchPosition '
37 AND sw . currentPosition != swP . position
38 AND target . relationship = 'target '
39 AND sw . node = 'Switch '") . distinct
40 // ConnectedSegments
41 graph . find (" (segment1)−[monitoredBy]−>(sensor) ;

219

Appendix A. Results and queries for the comparison of Processing Platforms

42 (segment1)−[connectsTo1]−>(segment2) ;
43 (segment2)−[connectsTo2]−>(segment3) ;
44 (segment3)−[connectsTo3]−>(segment4) ;
45 (segment4)−[connectsTo4]−>(segment5) ;
46 (segment5)−[connectsTo5]−>(segment6) ;
47 (segment2)−[monitoredBy2]−>(sensor) ;
48 (segment3)−[monitoredBy3]−>(sensor) ;
49 (segment4)−[monitoredBy4]−>(sensor) ;
50 (segment5)−[monitoredBy5]−>(sensor) ;
51 (segment6)−[monitoredBy6]−>(sensor) ")
52 . f i l t e r (" sensor . node = 'Sensor '
53 AND monitoredBy . relationship = 'monitoredBy '
54 AND segment1 . node = 'Segment '
55 AND connectsTo1 . relationship = 'connectsTo '
56 AND segment2 . node = 'Segment '
57 AND connectsTo2 . relationship = 'connectsTo '
58 AND segment3 . node = 'Segment '
59 AND connectsTo3 . relationship = 'connectsTo '
60 AND segment4 . node = 'Segment '
61 AND connectsTo4 . relationship = 'connectsTo '
62 AND segment5 . node = 'Segment '
63 AND connectsTo5 . relationship = 'connectsTo '
64 AND segment6 . node = 'Segment '
65 AND monitoredBy2 . relationship = 'monitoredBy '
66 AND monitoredBy3 . relationship = 'monitoredBy '
67 AND monitoredBy4 . relationship = 'monitoredBy '
68 AND monitoredBy5 . relationship = 'monitoredBy '
69 AND monitoredBy6 . relationship = 'monitoredBy '") ;
70 // SemaphoreNeighbor
71 var SemaphoreNeighbor =
72 graph . find (" (route1)−[exit]−>(semaphore) ;
73 (route1)−[requires]−>(sensor1) ;
74 (te1)−[monitoredBy1]−>(sensor1) ;
75 (te1)−[connectsTo]−>(te2) ;
76 (te2)−[monitoredBy2]−>(sensor2) ;
77 (route2)−[requires2]−>(sensor2) ")
78 . f i l t e r (" semaphore . node = 'Semaphore '
79 AND exit . relationship = 'exit'
80 AND route1 . node = 'Route '
81 AND requires . relationship = 'requires '
82 AND sensor1 . node = 'Sensor '
83 AND monitoredBy1 . relationship = 'monitoredBy '
84 AND connectsTo . relationship = 'connectsTo '
85 AND monitoredBy2 . relationship = 'monitoredBy '
86 AND sensor2 . node = 'Sensor '
87 AND requires2 . relationship = 'requires '
88 AND route2 . node = 'Route '
89 AND route1 != route2 ")
90 var entry =

220

A.1 Queries for processing platforms

91 graph . find (" (route22)−[entry]−>(semaphore1) ")
92 . f i l t e r (" route22 . node = 'Route '
93 AND entry . relationship = 'entry '
94 AND semaphore1 . node = 'Semaphore '") ;
95 SemaphoreNeighbor = SemaphoreNeighbor . join (
96 entry ,
97 SemaphoreNeighbor . col (" semaphore . id ")
98 === entry . col (" semaphore1 . id ")
99 && SemaphoreNeighbor . col (" route2 . id ")

100 === entry . col (" route22 . id ") , "outer ")
101 .where(" entry is null ")
102 .groupBy(" p ") . count .where("count >= 30") . select (" p ")

221

Appendix A. Results and queries for the comparison of Processing Platforms

A.2 Additional charts and tables displaying TrainBench-

mark results

To improve the readability of Chapter 3, this appendix contains some of the

tables and figures that show the results of the evaluations. Specifically, Figures A.1

and A.2 show the execution time of the experiments without effect over the graph

with single and parallel executions of TrainBenchmark example, respectively. Then,

Figures A.3 and A.4 show the execution time of the experiments with effect over the

graph with single and parallel executions of TrainBenchmark example, respectively.

Finally, Table A.1 shows the coefficient of variation for parallel execution and Table

A.2 summarizes all syntax features of queries of TrainBenchmark example.

222

A.2 Additional charts and tables displaying TrainBenchmark results

(a) PosLength (b) SwitchMonitored

(c) RouteSensor (d) SwitchSet

(e) ConnectedSegments (f) SemaphoreNeighbor

Figure A.1: Execution time results for queries without effect of TrainBenchmark
example with single runs

223

Appendix A. Results and queries for the comparison of Processing Platforms

(a) PosLength (b) SwitchMonitored

(c) RouteSensor (d) SwitchSet

(e) ConnectedSegments (f) SemaphoreNeighbor

Figure A.2: Execution time results for queries without effect of TrainBenchmark
example with parallel runs

224

A.2 Additional charts and tables displaying TrainBenchmark results

(a) PosLength (b) SwitchMonitored

(c) RouteSensor (d) SwitchSet

(e) ConnectedSegments (f) SemaphoreNeighbor

Figure A.3: Execution time results for queries with effect of TrainBenchmark
example with single runs

225

Appendix A. Results and queries for the comparison of Processing Platforms

(a) PosLength (b) SwitchMonitored

(c) RouteSensor (d) SwitchSet

(e) ConnectedSegments (f) SemaphoreNeighbor

Figure A.4: Execution time results for queries with effect of TrainBenchmark
example with parallel runs

226

A.2 Additional charts and tables displaying TrainBenchmark results

Query Name Tech Models

420K 820K 1M5 3M 6M5 13M

PosLength

TinkerGraph 9.90 57.71 36.01 135.44 37.02 116.05
Neo4j 29.19 17.40 5.12 17.49 13.11 14.83

JanusGraph 25.10 9.95 13.65 43.29 44.09 -
OrientDB 14.37 3.98 54.20 11.93 3.54 -
CrateDB 87.24 94.74 90.96 103.37 96.27 -

Memgraph 5.17 2.86 1.10 0.85 5.43 14.26
GraphFrames 82.19 65.51 92.06 79.33 - -

SwitchMonitored

TinkerGraph 4.33 77.91 89.64 70.61 70.71 87.38
Neo4j 13.09 5 39.12 8.80 38.97 26.00

JanusGraph 7.31 11.26 3.80 12.66 4.69 -
OrientDB 6.96 54.80 1.83 53.88 40.92 -
CrateDB 13.90 46.52 68.49 2.98 35.82 -

Memgraph 6.25 9.35 1.24 1.52 4.66 2.41
GraphFrames 37.88 3.59 6.57 - - -

RouteSensor

TinkerGraph 28.96 16.91 4.46 34.72 70.68 17.72
Neo4j 11.18 11.70 13.71 18.02 10.24 24.07

JanusGraph 11.63 15.53 18.78 28.22 23.63 -
OrientDB 52.85 7.90 73.85 38.85 24.49 -
CrateDB 59.58 30.95 37.02 2.11 44.94 -

Memgraph 12.22 16.89 3.39 4.61 6.79 11.31
GraphFrames 7.25 0.42 4.72 0.65 - -

SwitchSet

TinkerGraph 8.54 98.46 20.82 1.77 61.85 127.90
Neo4j 35.89 33.04 26.27 1.41 18.81 10.07

JanusGraph 14.94 8.52 8.07 8.56 6.57 -
OrientDB 17.93 58.47 4.49 59.14 57.81 -
CrateDB 73.07 82.57 70.89 29.96 47.48 -

Memgraph 1.35 16.02 8.83 4.73 4.03 16.21
GraphFrames 1.25 1.96 10.83 - - -

ConnectedSegments

TinkerGraph 12.82 10.02 22.89 19.60 15.67 11.00
Neo4j 1.05 0.33 1.82 1.89 0.83 2.30

JanusGraph 2.65 11.05 10.59 10.98 5.36 -
OrientDB 11.02 7.30 4.65 20.34 9.02 -
CrateDB 98.65 17.33 45.44 99.57 16.27 -

Memgraph 1.40 0.20 1.39 0.77 0.50 1.50
GraphFrames 32.96 2.50 22.35 0.14 - -

SemaphoreNeighbor

TinkerGraph 2.64 1.16 31.49 22.85 13.19 14.45
Neo4j 8.89 4.41 7.07 4.09 10.65 4.64

JanusGraph 0.93 8.89 2.75 7.16 9.76 -
OrientDB 6.46 18.18 4.30 26.61 -
CrateDB 125.00 129.94 77.88 1.89 76.65 -

Memgraph 2.52 2.28 0.70 0.64 20.58 8.96
GraphFrames 6.88 1.54 5.71 1.05 - -

Table A.1: Coefficient of variation (%) of TrainBenchmark queries without effect
and parallel runs.

227

Appendix A. Results and queries for the comparison of Processing Platforms

Tech Query Update No Update

Op Char Var Op Char Var

TinkerGraph,
JanusGraph and

OrientDB
(Gremlin)

PosLength 10 167 1 6 92 1
SwitchMonitored 9 208 1 6 91 1

RouteSensor 23 424 5 20 321 5
SwitchSet 26 598 6 22 464 6

ConnectedSegment 32 714 8 27 545 8
SemaphoreNeighbor 35 743 8 30 543 8

AVG 22.5 475.6 4.8 18.5 342.6 4.8

Neo4j
(Cypher)

PosLength 9 170 2 5 132 2
SwitchMonitored 10 177 3 8 134 3

RouteSensor 9 233 4 8 220 4
SwitchSet 15 363 6 13 328 6

ConnectedSegment 13 574 7 13 610 7
SemaphoreNeighbor 14 340 7 13 354 7

AVG 11.6 309.5 4.8 10 296.3 4.8

CrateDB
(SQL)

PosLength 13 313 2 5 104 2
SwitchMonitored 31 907 11 7 183 1

RouteSensor 21 459 0 20 411 0
SwitchSet 27 673 6 22 451 6

ConnectedSegment 97 2,525 18 77 1,549 18
SemaphoreNeighbor 46 957 14 41 750 14

AVG 39.1 972.3 8.5 28.6 574.6 8.5

Memgraph
(Cypher)

PosLength 9 170 2 5 132 2
SwitchMonitored 11 197 4 9 154 3

RouteSensor 11 277 5 10 262 5
SwitchSet 15 363 6 13 328 6

ConnectedSegment 13 574 7 13 610 7
SemaphoreNeighbor 17 381 8 16 395 8

AVG 12.6 327 5.3 11 313.5 5.3

GraphFrames

PosLength - - - 5 77 1
SwitchMonitored - - - 22 372 4

RouteSensor - - - 20 315 7
SwitchSet - - - 24 374 7

ConnectedSegment - - - 48 1,052 18
SemaphoreNeighbor - - - 54 983 17

AVG - - - 28.8 528.8 9

Table A.2: Summary of DSL features for TrainBenchmark case study

228

Appendix B
Results for Online AQP techniques

In this appendix we show all results for the experiments exposed in Chapter

4. Recall that these experiments consist on running the queries of the case study

presented in Section 4.1 over different model sizes and distributions (Batch A

and B). The execution times and accuracy results of three online AQP techniques

(Temporal, Spatial and Random approximations) are depicted in the charts for each

query run. Besides, all queries were implemented with TinkerGraph technology

and Gremlin language. All charts are presented in the following.

B.1 Results for Batch A

This section presents all results of the experiments performed with Batch A

of models. Note that orders contained in these models are uniformly distributed

along the models.

First, let us focus on charts presented in Sections B.1.1 and B.1.2. The former

shows Recall value in order to measure the accuracy of the random approximations

whereas the latter shows the Precision value for this purpose. This is because the

229

Appendix B. Results for Online AQP techniques

results of Q1 return more elements as higher is the probability for each element of

the graph to be selected in the approximation, while Q2 returns less elements as

higher is this probability. However, Precision and Recall values increase with this

probability in both cases.

Second, let us observe charts presented in Sections B.1.3 and B.1.4, where

random and temporal approximations are shown for query Q3, respectively. For all

model sizes, the execution times are lower in the random approximations when the

number of elements returned stabilizes with respect to when the number of elements

stabilizes in the temporal approximations. This is because orders contained in

the models of Batch A are uniformly distributed along the month and temporal

approximations need to consider almost the entire month to stabilize the number

of elements returned (cf. Section 4.3.3).

Regarding spatial approximations, charts presented in Sections B.1.5 and B.1.6

show how random approximations always present lower execution times than spatial

approximations for Q4. However, observe charts for spatial approximation with Q5

depicted in Section B.1.7. In this case, we see how a linear increase in the number

of hops imply an exponential increase in the execution times, as previously exposed

in Section 4.3.3.

230

B.1 Results for Batch A

B.1.1 Q1 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Precision for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Precision for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Precision for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Precision for 250K.

Figure B.1: Q1 Batch A. Accuracy and Precision with Random Approximations.

231

Appendix B. Results for Online AQP techniques

B.1.2 Q2 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Precision for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Precision for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Precision for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Precision for 250K.

Figure B.2: Q2 Batch A. Accuracy and Precision with Random Approximations.

232

B.1 Results for Batch A

B.1.3 Q3 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Recall for 250K.

Figure B.3: Q3 Batch A. Accuracy and Recall with Random Approximations.

233

Appendix B. Results for Online AQP techniques

B.1.4 Q3 - Temporal approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Recall for 250K.

Figure B.4: Q3 Batch A. Accuracy and Recall with Temporal Approximations.

234

B.1 Results for Batch A

B.1.5 Q4 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Recall for 250K.

Figure B.5: Q4 Batch A. Accuracy and Recall with Random Approximations.

235

Appendix B. Results for Online AQP techniques

B.1.6 Q4 - Spatial approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Recall for 250K.

Figure B.6: Q4 Batch A. Accuracy and Recall with Spatial Approximations.

236

B.1 Results for Batch A

B.1.7 Q5 - Spatial approximation

(a) Performance Evolution for 31K. (b) Accuracy and Precision for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Precision for 62K.

Figure B.7: Q5 Batch A. Accuracy and Precision with Spatial Approximations.

237

Appendix B. Results for Online AQP techniques

B.2 Results for Batch B

This section presents all results of the experiments performed with Batch B of

models. Recall that orders contained in these models are mainly focused on the

first week.

First, let us focus on charts presented in Sections B.2.1 and B.2.2. Note how

the execution times and accuracy results are very similar to the results for Batch

A exposed in Sections B.1.1 and B.1.2. This is because random approximations

behave in the same way regardless of data distribution.

Second, observe charts presented in Sections B.2.3 and B.2.4 for random and

temporal approximations with query Q3, respectively. Unlike the results presented

in the graphs of Batch A (Section B.1), the execution times are lower in temporal

approximations when the number of elements returned stabilizes with respect to

when the number of elements stabilizes in random approximations. This is because

orders contained in the models of Batch B are focused in the first week of the

month. For this reason, the elements returned stabilize when considering only the

first days of the month with temporal approximations, that get a value of 100% for

the Recall.

Finally, charts presented in Sections B.2.5 and B.2.6 show the results for

random and spatial approximations with Q4. In this case, random approximations

also present lower execution times than spatial approximations in all cases. In

addition, charts for spatial approximation with Q5 depicted in Section B.2.7 show

a linear increase in the number of hops that imply an exponential increase in the

execution times. All these results are thoroughly exposed in Section 4.3.3.

238

B.2 Results for Batch B

B.2.1 Q1 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

y	=	8482.9x	+	10148

0
200
400
600
800
1,000
1,200
1,400
1,600
1,800

0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000
200,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned Lineal		 (Execution	time)

(g) Performance Evolution for 250K.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	recall	250	K	- Batch	B

Recall Accuracy

(h) Accuracy and Recall for 250K.

Figure B.8: Q1 Batch B. Accuracy and Recall with Random Approximations.

239

Appendix B. Results for Online AQP techniques

B.2.2 Q2 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Precision for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Precision for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Precision for 125K.

0

5,000

10,000

15,000

20,000

25,000

0

5,000

10,000

15,000

20,000

25,000

30,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned

(g) Performance Evolution for 250K.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Pr
ec
isi
on

Accuracy	&	Precision	250	K	- Batch	B

Precision Accuracy

(h) Accuracy and Precision for 250K.

Figure B.9: Q2 Batch B. Accuracy and Precision with Random Approximations.

240

B.2 Results for Batch B

B.2.3 Q3 - Random approximation

Please note that the number of elements returned for this query with the

Pattern Model of 250K is 0. This result is not relevant to get conclusions and

therefore it is not shown here.

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

Figure B.10: Q3 Batch B. Accuracy and Recall with Random Approximations.

B.2.4 Q3 - Temporal approximation

Please note that the number of elements returned for this query with the

Pattern Model of 250K is 0. This result is not relevant to get conclusions and

therefore it is not shown here.

241

Appendix B. Results for Online AQP techniques

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

Figure B.11: Q3 Batch B. Accuracy and Recall with Temporal Approximations.

242

B.2 Results for Batch B

B.2.5 Q4 - Random approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Recall for 250K.

Figure B.12: Q4 Batch B. Accuracy and Recall with Random Approximations.

243

Appendix B. Results for Online AQP techniques

B.2.6 Q4 - Spatial approximation

(a) Performance Evolution for 31K. (b) Accuracy and Recall for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Recall for 62K.

(e) Performance Evolution for 125K. (f) Accuracy and Recall for 125K.

(g) Performance Evolution for 250K. (h) Accuracy and Recall for 250K.

Figure B.13: Q4 Batch B. Accuracy and Recall with Spatial Approximations.

244

B.2 Results for Batch B

B.2.7 Q5 - Spatial approximation

(a) Performance Evolution for 31K. (b) Accuracy and Precision for 31K.

(c) Performance Evolution for 62K. (d) Accuracy and Precision for 62K.

Figure B.14: Q5 Batch B. Accuracy and Precision with Spatial Approximations.

245

Appendix C
SDR Algorithm Execution

In this appendix we show several clarifying aspects of the algorithm presented

in Chapter 5. First, in Section C.1 we present an example of the functioning of the

SDR algorithm with an specific query (ProductPopularity in this case). Second,

in Section C.2, we explain how the SDR works when the operators where, not,

and and or appears in a query. In Section C.3 we show all the execution times

of the experiments performed with the incremental version of the SDR algorithm

in absolute terms (cf. Experiments with streams of information of Section 5.4.4).

Finally, in Section C.4 we place some tables and figures referred in Chapter 5 that

contains the results of the evaluation, in order to improve the readability of the

chapter.

C.1 ProductPopularity with SDR algorithm

To demonstrate how the SDR algorithm works for a specific query, a small

graph for Amazon case study is shown in Fig. C.1. In this case, the graph contains

two Customers (C1 and C2) and two products (P10 and P20). C1 orders two

247

Appendix C. SDR Algorithm Execution

C1 C2

O1C1 O2C1 O1C2

P10 P20

orders orders
orders

contains contains contains

Figure C.1: Graph 1: example for Amazon case

Orders (O1C1 and O2C1), whereas C2 orders one (O1C2). We want to apply the

SDR algorithm for this graph with the ProductPopularity query showed in Listing

5.2. The updates of the weight for each object as iterations run are displayed in

Table C.1. In the following, each function and iteration of the algorithm displayed

in Algorithm 1 is explained in detail. Note that when we refer to line numbers,

unless otherwise specified, we are referring to the following:

• Text of the section: line numbers that are mentioned in the normal text of

this section refer to the lines of SDRAlgorithm depicted in Algorithm 1.

• Non-enumerated lists: line numbers that are mentioned in non-enumerated

lists refer to the lines of SDRVertexCentric function.

• Enumerated lists: line numbers that are mentioned in enumerated lists refer

to the lines of functions WeightInitialisation, InWeightPropagation or

FurWeightPropagation, depending on the specific case.

First, the SDR algorithm calls the SDRVertexCentric function for each object

in the graph (line 1). This function starts the initial iteration (iteration = 0) and

it has the following execution flow:

• First, it establishes guardCondition to true (line 4).

• Since iteration meets the condition of line 5 (iterarion==0), the function

selects the last step of the query to be analysed (line 6).

248

C.1 ProductPopularity with SDR algorithm

• Then, it calls WeightInitialisation function (line 7). Note that at this

point iteration = 0 and S.size = 2. WeightInitialisation works as

follows:

1. First, the function checks the type of the step s. In ProductPopularity

query, the last step is a where step. As a where step is a traversal step

that has only one statement, the function gets into the if clause of

line 12 and obtains the subquery contained in this statement (line 13).

2. Then, it makes a recursive call with this subquery as input data of

the SDRVertexCentric function (line 15). Note that at this point

iteration = 0 and S.size = 4, since the subquery has 4 steps1. This

call has the following flow for each iteration:

– guardCondition is established to true (line 4).

– iteration meets the condition of line 5, so the function selects

the last step of the subquery and stores it in s (line 6).

– Then, it calls WeightInitialisation function, that works as

follows:

(a) Now, the step s corresponds with the has step (line 5 in

Listing 5.2).

(b) Same as for the query, the function checks its type. In this

case, s is a property filter, so the function gets into the if

clause of line 1 and checks if v matches the filter (line 2).

As shown in Figure C.1, only the object P10 matches the

filter, so for v = P10 the function gets into the if clause

of line 2. For the rest of objects the function establishes

guardCondition to false (line 7).

(c) Then, for v = P10, the function searches the previous step

of the subquery that corresponds with a relationship (line 3).

As can be viewed in Listing 5.2, this step is the relationship

step contains.

1The SDR algorithm adds an initial graph step at the beginning of a traversal
subquery. For this reason, a traversal subquery always has one more step than its
size, i.e. S.size = 4 in this case.

249

Appendix C. SDR Algorithm Execution

(d) Therefore, it counts the number of neighbors that P10 can

reach through relationship contains (line 4). Since P10 can

reach O1C1 through relationship contains, cNeighbors is

equal to 1.

(e) As cNeighbors is higher than 0, guardCondition is established

to true (line 5).

(f) Once the function finishes the if-then-else clause of lines 1 to

18, it checks the value of guardCondition. For v = P10, this

value is true, so the function gets into the if clause of line

19 and calculates the weight of P10. Since weight is 0 and

cNeighbors is 1, the new value of weight is 1 (line 20). On

the contrary, as stated before, for v 6= P10 guardCondition

is false so weight remains 0. Note how in the second column

of Table C.1 the object P10 has weight = 1, whereas the

remaining objects have weight = 0.

(g) Finally, it returns the weight value (line 22) and the function

finishes.

– Then, the SDRVertexCentric function increments iteration

counter (line 16) and the next iteration starts (at this point

iteration = 1 and S.size = 4).

– As iteration is less than S.size, the SDRVertexCentric function

stays in the while loop of line 3 and sets guardCondition to true

(line 4).

– As iteration = 1, it gets into the else clause of line 8 and selects

the same value for s than the initial iteration (line 9).

– Then, it gets into if clause of line 10 and it calls

InWeightPropagation function (line 11). This function works

as follows :

(a) First, it checks the type of s. As stated in the pre-

vious iteration (recall that WeightInitialisation and

InWeightPropagation analyse the same step), s is a prop-

erty filter so it gets into if clause of line 3.

(b) Same as in the WeightInitialisation function, it searches

250

C.1 ProductPopularity with SDR algorithm

the previous step that corresponds to a relationship and

stores it in pRel (line 4). This relationship is contains.

(c) Then, iteration is incremented (line 5), which means that

iteration = 2.

(d) The algorithm checks if the calculated weight in the previous

iteration is higher than 0 (line 6). This is true only for v =

P10, so, in this case, it sends a message through relationship

contains to O1C1 (line 7).

(e) Finally, the InWeightPropagation function fin-

ishes and it returns the same weight calculated in

WeightInitialisation function (line 10). Note that in

columns 2 and 3 of Table C.1 all weights are the same.

– Then, SDRVertexCentric increments iteration and the new it-

eration starts, which means that iteration = 3 and S.size =

4.

– As iteration is smaller or equal to S.size, SDRVertexCentric

stays into while loop of line 3 and sets guardCondition to true

(line 4).

– iteration 6= 0, so the function gets into else clause of line 8 and

selects the relationship step orders (line 3 in Listing 5.2) for s

(line 9).

– Besides, iteration 6= 1, so SDRVertexCentric gets into else

clause of line 12 and it calls FurWeightPropagation function,

that works as follows:

(a) First, it counts the number of messages sent from the previous

iteration to v (line 1). Note that in the previous iteration

only P10 sent a message to O1C1 through the relationship

contains, so for v = O1C1 cMessages has value 1, while for

the rest it is 0.

(b) Therefore, for v = O1C1, the function gets into if clause of

line 2 and checks the type of s.

(c) As stated before, s is the relationship step orders, so the

function gets into if clause of line 3, it counts the number of

251

Appendix C. SDR Algorithm Execution

neighbors that can be reached for v through s and stores this

number in cNeighbors. For v = O1C1, cNeighbors has value

1, since O1C1 can reach C1 through relationship orders.

(d) Then, for this value of v, guardCondition is set to true (line

5) and a message is sent through relationship orders to C1

(line 6).

(e) Finally, as guardCondition is true for every object of the

graph, the function updates the value of weight for all of them

(lines 19-21). However, since cNeighbors and cMessages are

0 for v 6= O1C1, the weight value remains the same as in

the previous iteration for this case. On the other hand, for

v = O1C1, cMessages = 1 and cNeighbors = 1, so weight

is updated to 2. Updated values for this iteration can be

viewed in column 4 of Table C.1.

(f) FurWeightPropagation returns the updated weight and it

finishes (line 22).

– Now, SDRVertexCentric increments iteration (line 16) and the

next iteration starts (at this point iteration = 4 and S.size = 4).

– guardCondition is set to true (line 4).

– iteration 6= 0, so SDRVertexCentric gets into else clause of

line 8 and selects the added graph step at the beginning of the

subquery for s (line 9).

– Besides, iteration 6= 1, so the SDRVertexCentric gets into else

clause of line 12 and FurWeightPropagation starts again:

(a) First, it counts the number of messages sent from the previous

iteration to v (line 1). In the previous iteration, only O1C1

sent a message to C1 through the relationship orders. For

this reason, for v = C1, cMessages has value 1, and 0 for

the rest of objects.

(b) Then, for v = C1, the function gets into if clause of line 2

and checks the type of s. However, since s is a graph step,

the algorithm gets out of this if clause without any change.

(c) Finally, as guardCondition is true for every object of the

252

C.1 ProductPopularity with SDR algorithm

graph, the algorithm updates the value of weight for all of

them (lines 19-21). However, since cNeighbors and cMessages

are 0 for v 6= C1, the weight value remains the same as in

the previous iteration for this case. On the other hand,

for v = C1, cMessages = 1 and cNeighbors = 0, so weight

is updated to 1. Updated values for this iteration can be

viewed in column 5 of Table C.1.

(d) FurWeightPropagation returns the updated weight and it

finishes (line 22).

– Then, iteration is incremented by SDRVertexCentric in line 16

and since iteration = 5, which is higher than S.size, the function

escapes the while loop of line 3 and returns the value of weight

(line 18).

3. Once the results of the recursive call are obtained, the function com-

putes weights according to the type of traversal (line 16). The com-

putation process for the different types of traversal steps is explained

more in detail in Appendix C.2.

4. Then, the function escapes the if clause of line 12 and checks the

guardCondition value (line 19).

5. Since guardCondition remains true, it updates the weight value (line

20). However, as cNeighbors value is equal to 0 for every object in the

graph, the value of weight is updated with the result of the recursive

call of lines 15 and 16.

• Finally, iteration is incremented by SDRVertexCentric in line 16 (note that

at this point iteration = 1 and S.size = 2, since the query has 2 steps).

• guardCondition is set to true (line 4).

• iteration = 1, so SDRVertexCentric gets into else clause of line 8 and

selects the last step of the query for s (line 9).

• Then, it gets into if clause of line 10 and calls InWeightPropagation

function (line 11):

253

Appendix C. SDR Algorithm Execution

1. First, it checks the type of s. As stated in the previous iteration, s is

a traversal so it gets into if clause of line 3.

2. Then, it searches for the previous step that corresponds to a relation-

ship and stores it in pRel (line 4). However, since there are no more

relationship steps in the query, pRel does not contain any relationship.

3. Then, iteration is incremented (line 5), so that iteration = 2 and

S.size = 2.

4. The function checks if the calculated weight in the previous iteration

is higher than 0 (line 6). This is true only for P10, O1C1 and C1 so,

in this case, the function tries to send a message through pRel (line 7).

But since pRel does not contain a relationship, no messages are sent.

5. Finally, weight value remains the same as in the previous iteration

(line 10). Note that weights in columns 5 and 6 of Table C.1 are the

same.

• Then, iteration is incremented by SDRVertexCentric and it is equal to 3.

In this case, iteration is higher than S.size, so SDRVertexCentric escapes

the while loop of line 3, it returns weight value (line 18) and the execution

finishes.

Once SDRVertexCentric finishes, the SDR Algorithm obtains a subgraph with

the objects with weight higher than 0, and the relationships among them (lines 2

and 3). In this example, this subgraph only contains C1, O1C1 and P10 objects

and the relationships between them. Note that if ProductPopularity query is run

either over this subgraph or over the complete graph of Figure C.1, the result will

be object C1 for both executions.

C.2 Traversals with SDR algorithm

In this appendix, we explain the strategies to compute the weights for the

different types of traversal steps in Algorithm 1. We distinguish four types of

traversal steps: where, not, and and or. For a better understanding about how

the SDR algorithm computes them, we describe several examples applied to the

Amazon graph shown in Figure C.1.

254

C.2 Traversals with SDR algorithm

C.2.1 Where Step

The where step is used to filter objects according to a predicate. This predicate

is based on the path history of an object. In this way, an object is selected by the

filter if it has the path indicated in the where step predicate.

Object/Iteration It 0 It 1
C1 0 0 0 1 1
C2 0 0 0 0 0
O1C1 0 0 2 2 2
O2C1 0 0 0 0 0
O1C2 0 0 0 0 0
P10 1 1 1 1 1
P20 0 0 0 0 0

Table C.1: Object weights for ProductPopularity query with SDR Algorithm

Let us consider the sample query shown in Listing 5.2, which contains a where

step. In this query, the graph objects that order an Order that contains a Product

with the idProduct = ‘10’ are filtered. For this query to be applied to the graph

of Figure C.1, the SDR algorithm first obtains the weights of the where clause,

iterating the steps of the subquery contained in the predicate. The results of the

calculated weights for each iteration and each object of the graph are shown in

columns 2 to 6 of Table C.1. Once the algorithm finishes the calculation of the

where step, the resulting weights calculated for this step are assigned to each object

of the graph for the next iteration. Note in column 6 of Table C.1 that the weights

of all objects are the same as in the last iteration of the computation of the where

step (column 5). This is because iteration It1 does not modify the weights, since

it only sends messages, as explained in Section 5.3.1. After that, the algorithm

continues the normal execution updating the calculated weights according to the

remaining steps of the query.

C.2.2 Not Step

Same as where step, the not step is used to filter the objects according to a

predicate. However, not step removes from the result the objects that satisfy this

predicate and returns the rest.

Let us observe again the example shown in Listing 5.2 and suppose we change

the where step for a not step in this query. In this case, the graph objects that

255

Appendix C. SDR Algorithm Execution

do not order an Order that contains a Product with the idProduct = ‘10’ are

filtered. Applying this query to the graph of Figure C.1, the SDR algorithm first

traverses the steps of the predicate of the not clause. At first, the algorithm

calculates the weights in the same way as in the where step. However, in the last

iteration it performs the following operation with the weight values:

weight =

 0 if weight > 0

1 if weight ≤ 0
+ pItWeight

Therefore, if the calculated weight is higher than 0, then the algorithm changes

it to 0, and the other way around. After this conversion, if the object was relevant

to the previous steps of the query, it will have a weight 0 and, therefore, it will

be discarded when obtaining the subgraph. To avoid this, the algorithm adds the

weight calculated for that object in the penultimate iteration (pItWeight). This

process is exemplified for the graph of Figure C.1 in column 5 of Table C.2.

Object/Iteration It 0 It 1
C1 0 0 0 (1→ 0) + 0 = 0 0
C2 0 0 0 (0→ 1) + 0 = 1 1
O1C1 0 0 2 (2→ 0) + 2 = 2 2
O2C1 0 0 0 (0→ 1) + 0 = 1 1
O1C2 0 0 0 (0→ 1) + 0 = 1 1
P10 1 1 1 (1→ 0) + 1 = 1 1
P20 0 0 0 (0→ 1) + 0 = 1 1

Table C.2: Object weights for ProductPopularity query with not step with SDR
Algorithm

Then, as with the where step, the algorithm continues the normal execution

updating the calculated weights according to the remaining steps of the query.

Note in column 6 of Table C.2 that the weights for each object are the same as the

weights of the last iteration of the computation of the not step (column 5), since

in the It1 only messages are sent to other objects.

C.2.3 And Step

The and step is used to filter objects according to two or more predicates and

it ensures that filtered objects meet all predicates. Therefore, since in this case

there are more than one predicate, there are more than one subquery where to

compute the weights too.

256

C.2 Traversals with SDR algorithm

Object/Iteration It 0 It 1 It 2 It 3
C1 0 0 0 1
C2 0 0 0 1
O1C1 0 0 0 0
O2C1 0 0 2 2
O1C2 0 0 2 2
P10 0 0 0 0
P20 2 2 2 2

Table C.3: Object weights for subquery example with SDR Algorithm

Let us consider Listing 5.4, where PackagePopularity query of Amazon case

study is shown. In this case, the objects that order an Order that contains the

Product with the idProduct = ‘10’ and order an Order that contains the Product

with the idProduct = ‘20’ are filtered. Note that this query has two subqueries:

the first one is equivalent to the subquery of the where step in ProductPopularity

query, and the second one is similar but with a different property filter step. The

weights computed for the second subquery are shown in Table C.3—note that 4

iterations are displayed in the table because it is focused on the subquery. In this

way, results for both subqueries with the SDR algorithm are shown in columns 2

to 5 of Tables C.1 and C.3, respectively. For the and step, the algorithm computes

the weights for both queries separately and performs the following operation to

merge them:

weight =

n∑
i=1

pItWeighti +

n∏
i=1

weighti

If n is the number of predicates contained in the and step, weighti is the

calculated weight of the subquery of the predicate i, and pItWeighti is the calcu-

lated weight of the predicate i in the penultimate iteration. Results of the weights

computed for the PackagePopularity query are shown in Table C.4. Note we add

pItWeighti to avoid that the object has weight 0 if it is relevant to the steps

previous to the first one, similar to the situation described in Section C.2.2.

C.2.4 Or Step

Similar to the and step, the or step is used to filter the objects according to

two or more predicates. However, in this case, it ensures that the filtered objects

meet at least one of the predicates.

257

Appendix C. SDR Algorithm Execution

Object/Iteration It 0 It 1

C1 (0+0) + (1*1) = 1 1
C2 (0+0) + (0*1) = 0 0
O1C1 (2+0) + (2*0) = 2 2
O2C1 (0+2) + (0*2) = 2 2
O1C2 (0+2) + (0*2) = 2 2
P10 (1+0) + (1*0) = 1 1
P20 (0+2) + (0*2) = 2 2

Table C.4: Object weights for PackagePopularity example with SDR Algorithm

Let us consider we modify in Listing 5.4 the and step with an or step, obtaining

the query SimProductsPopularity of Amazon case example. In this case, the objects

that order an Order that contains the Product with the idProduct = ‘10’ or

order an Order that contains the Product with the idProduct = ‘20’ are filtered.

Starting from the results shown in columns 2 to 5 of Table C.1 and Table C.3, the

or step performs the following merge of subqueries:

weight =
n∑

i=1

weighti

Being n the number of predicates contained in the or step and weighti the

calculated weight of the subquery of the predicate i. Results for SimProductsPopu-

larity query over the graph of Figure C.1 are shown in Table C.5. Note that with

the simple graph of Figure C.1, all the objects in the graph are assigned weights >

0. This would not be the case in a real system, where many elements would be

discarded, as we describe in Section 5.4.

Object/Iteration It 0 It 1
C1 (1+1) = 2 2
C2 (0+1) = 1 1
O1C1 (2+0) = 2 2
O2C1 (0+2) = 2 2
O1C2 (0+2) = 2 2
P10 (1+0) = 1 1
P20 (0+2) = 2 2

Table C.5: Object weights for SimProductsPopularity example with SDR Algorithm

258

C.3 Results for Experiments with SDR algorithm and streams of information

C.3 Results for Experiments with SDR algorithm and

streams of information

In this section we present three tables where the execution times of all experi-

ments performed with the incremental version of the SDR algorithm are shown.

The execution times are exposed in absolute terms and represented in milliseconds.

Results of Amazon, Contest and Youtube examples are presented in Tables C.6,

C.7 and C.8, respectively. Columns TCG represent the execution times obtained on

the complete graph (without using the SDR algorithm), whereas columns TSubG

represent the executions times obtained where the SDR algorithm is used in the

experiments. Some numbers of C.7 are not shown. Please, remember that this

is because the queries performed on the complete models take too long and the

break-even point was already reached. For this reason, there was no real need to

compute them (cf. Section 5.4.4).

Note how the execution times of columns TSubG decreases respect to the

execution times of columns TCG as the model size increases, i.e. the time gain

increases with the model size. In addition, as the value of β increases, the value

of columns TSubG also decreases respect to columns TCG. This means that the

time gain increases as more data arrives to the system. However, columns TSubG

increases respect to the execution times of columns TCG as α value increases. This

means that the time gain increases as more times the query is executed (cf. RQ3

conclusions of Chapter 5). Finally, note how the disjunctive, conditional, simple,

conjunctive and negative query patterns present a higher time gain than queries

that follow aggregation pattern. This is because the execution times of columns

TSubG of these patterns are lower with respect to columns TCG than queries that

follow aggregation patterns. In this sense, the time gain of queries that follow

aggregation patterns depends on the overload imposed by the aggregation operators

and their corresponding filters.

259

Appendix C. SDR Algorithm Execution

Q
u
er

y
N

a
m

e
M

o
d
el

s

α
=

5
α
=

1
0

2
M

4
M

8
M

1
5
M

2
M

4
M

8
M

1
5
M

β
T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

P
ro

d
u
ct

P
o
p
u
la

ri
ty

(S
im

p
le

)

5
0

9
4
5
8
2

9
2
0
5
7

1
5
3
9
3
5

1
5
2
3
4
6

2
8
0
9
0
2

2
9
5
2
4
7

6
2
0
6
2
5

6
3
0
3
9
8

9
0
6
0
7

7
5
2
3
9

1
4
8
4
2
0

1
2
9
1
4
5

2
8
6
2
5
2

2
6
8
8
0
5

6
1
1
3
2
0

5
5
6
4
5
8

1
0
0

1
1
5
9
7
9

1
3
1
7
6
1

1
8
5
2
9
1

2
2
6
9
1
2

3
4
4
5
1
0

4
3
2
3
6
0

7
7
3
1
3
4

9
5
1
5
9
4

1
1
2
4
5
9

1
1
0
5
1
7

1
8
3
4
2
0

1
7
9
4
7
9

3
4
6
1
2
0

3
7
4
6
0
0

7
3
8
8
8
4

7
8
6
1
9
2

1
5
0

1
3
3
7
0
7

1
6
4
5
3
4

2
2
3
7
2
3

2
8
9
5
6
4

4
1
1
6
2
7

5
5
9
8
0
5

9
2
7
3
3
5

1
2
7
3
4
5
7

1
3
5
3
8
9

1
3
4
0
3
7

2
1
5
0
8
7

2
3
4
4
7
9

4
1
0
7
8
1

4
7
0
6
5
8

8
8
1
8
2
4

1
0
4
7
9
2
7

2
0
0

1
5
3
5
2
4

1
9
2
4
1
0

2
5
1
0
8
3

3
4
7
3
4
3

4
7
4
6
1
8

6
7
9
7
6
2

1
0
7
0
5
9
4

1
6
1
3
0
4
3

1
5
3
1
0
1

1
6
3
8
4
9

2
4
8
7
5
4

2
8
3
1
4
6

4
7
5
0
0
8

5
8
0
7
5
1

1
0
2
5
0
0
8

1
2
6
8
5
0
7

2
5
0

1
7
3
2
9
1

2
1
8
0
7
2

2
8
0
2
4
8

4
1
8
4
0
4

5
2
7
6
1
7

8
0
1
0
8
1

1
2
1
6
5
1
4

1
9
5
3
4
5
3

1
7
4
1
7
5

1
8
7
6
9
9

2
8
0
4
2
0

3
3
6
1
4
6

5
3
8
7
3
5

6
8
8
4
9
6

1
1
7
1
3
2
2

1
5
5
5
3
9
4

P
ro

d
u
ct

P
o
p
u
la

ri
ty

C

(C
o
n
d
it

io
n
a
l)

5
0

9
7
9
1
1

9
4
7
4
4

1
5
6
1
7
9

1
5
2
4
6
1

3
0
3
8
6
5

3
0
7
5
3
4

6
1
3
0
3
7

6
5
6
7
7
9

9
3
1
1
6

7
7
0
8
1

1
5
0
7
3
3

1
3
0
6
0
1

2
9
7
7
8
7

2
6
4
2
0
2

5
9
8
7
8
1

5
6
0
8
1
3

1
0
0

1
1
9
7
7
1

1
2
8
8
4
4

1
9
5
0
0
5

2
2
4
6
2
8

3
7
6
8
1
1

4
4
1
6
6
8

7
8
0
6
7
0

9
8
1
7
3
4

1
1
5
9
7
6

1
0
8
3
1
1

1
9
3
2
6
8

1
9
0
1
7
1

3
5
4
6
1
3

3
7
1
5
4
5

7
5
2
7
7
7

7
9
8
4
3
6

1
5
0

1
4
0
8
4
9

1
6
6
6
1
1

2
2
3
4
1
6

2
8
2
6
2
1

4
4
8
1
1
1

5
6
7
9
8
1

9
0
2
7
3
5

1
2
7
4
1
6
9

1
3
2
5
4
1

1
3
7
3
0
4

2
2
9
4
7
9

2
4
2
1
2
5

4
2
9
4
6
5

4
8
2
2
7
5

8
9
7
0
7
1

1
0
5
9
9
5
0

2
0
0

1
6
1
3
6
8

1
9
9
9
7
1

2
6
0
4
5
0

3
4
6
2
8
5

5
1
1
3
3
7

6
8
9
7
2
9

1
0
5
5
0
9
4

1
5
9
6
6
9
5

1
5
5
5
6
5

1
5
9
2
5
3

2
6
8
2
8
7

2
9
2
4
9
6

4
9
3
7
7
1

5
7
4
2
6
7

1
0
2
4
2
6
5

1
2
6
6
1
3
7

2
5
0

1
7
7
9
6
6

2
2
6
5
7
0

2
9
0
9
3
0

4
1
0
4
9
4

5
6
7
6
1
2

8
1
1
0
4
7

1
1
9
7
4
2
5

1
8
4
4
4
8
3

1
7
5
4
4
5

1
8
6
4
0
7

2
9
4
1
9
3

3
3
8
6
1
4

5
5
7
2
2
2

6
7
3
6
3
6

1
1
7
8
0
4
9

1
5
3
2
9
5
7

A
lt

er
n
a
ti

v
eC

u
st

o
m

er

(N
eg

a
ti

v
e)

5
0

9
7
0
6
8

7
6
3
5
3

1
6
8
3
7
7

1
3
4
4
9
6

3
2
0
6
3
9

2
8
0
4
0
0

6
9
9
1
3
5

5
9
4
4
8
7

9
3
8
9
4

7
5
0
2
9

1
6
3
7
9
0

1
2
6
8
8
8

3
1
6
0
4
5

2
5
8
4
4
8

6
5
5
9
6
5

5
6
4
1
3
0

1
0
0

1
2
2
5
6
7

1
1
1
5
4
0

2
1
3
5
8
5

1
9
3
3
4
2

4
1
1
7
3
1

3
9
7
1
7
2

9
3
7
9
1
9

8
8
8
5
9
1

1
1
8
4
3
9

1
0
3
2
3
9

2
0
4
4
7
8

1
7
9
0
3
1

4
0
2
2
3
8

3
5
8
7
5
0

8
5
4
3
2
4

7
7
7
3
4
8

1
5
0

1
4
8
9
3
9

1
3
7
8
4
0

2
5
4
4
8
2

2
4
9
0
6
0

5
0
5
0
7
8

5
0
5
4
0
2

1
1
8
1
9
1
0

1
1
8
5
9
1
1

1
4
1
2
8
8

1
2
8
6
1
9

2
4
4
4
5
9

2
2
4
6
8
9

4
8
2
1
6
6

4
4
6
2
6
0

1
0
6
2
5
3
9

1
0
2
7
9
0
3

2
0
0

1
7
3
3
4
3

1
6
5
7
1
2

2
9
5
0
4
5

3
0
0
6
3
2

5
9
6
0
2
1

6
1
3
3
9
9

1
4
1
4
5
9
7

1
4
9
2
4
5
4

1
6
3
7
6
4

1
5
4
6
7
0

2
8
2
5
5
2

2
6
8
2
1
3

5
6
3
9
6
1

5
3
7
8
0
1

1
2
7
2
7
3
2

1
2
3
6
9
0
0

2
5
0

1
9
7
2
6
7

1
9
1
8
9
5

3
3
2
2
4
5

3
5
3
9
6
4

6
7
5
1
4
6

7
2
8
1
3
7

1
6
5
9
4
9
3

1
8
6
9
0
3
9

1
8
6
2
8
0

1
7
6
0
5
7

3
2
2
9
8
4

3
1
6
9
0
6

6
4
3
1
6
7

6
2
3
7
8
6

1
4
4
3
4
4
9

1
4
2
6
9
0
3

P
a
ck

a
g
eP

o
p
u
la

ri
ty

(C
o
n
ju

n
ct

iv
e)

5
0

1
0
4
2
0
3

9
6
6
7
9

1
6
5
3
6
8

1
5
2
4
1
2

3
0
9
9
1
2

3
0
6
4
5
7

6
1
8
5
3
5

6
1
2
0
0
1

1
0
0
7
1
8

7
6
3
6
9

1
6
1
0
5
8

1
3
1
7
7
2

3
0
4
9
7
0

2
6
1
2
3
6

6
0
7
5
2
3

5
5
5
4
4
8

1
0
0

1
2
6
7
9
6

1
3
6
4
0
5

1
9
7
1
7
4

2
2
3
7
3
1

3
6
7
7
6
9

4
3
7
5
8
6

7
6
8
4
1
8

9
1
8
2
4
4

1
1
7
3
6
5

1
1
1
9
3
9

1
9
7
4
7
7

1
8
4
3
1
9

3
7
9
4
3
1

3
5
8
1
5
0

7
7
9
7
7
8

7
8
8
5
8
0

1
5
0

1
4
7
8
8
1

1
7
1
8
7
5

2
3
1
1
7
0

2
9
1
5
8
5

4
3
8
6
3
9

5
5
6
8
8
8

9
1
5
8
5
2

1
2
6
5
6
6
9

1
4
1
2
9
0

1
3
5
2
6
4

2
3
8
8
1
6

2
4
6
3
2
9

4
4
8
2
9
5

4
8
1
6
3
4

9
2
2
9
8
4

1
0
0
2
3
6
7

2
0
0

1
6
8
9
7
7

2
0
4
3
3
4

2
6
9
4
2
0

3
5
8
5
7
9

5
1
1
4
2
5

6
8
1
7
7
9

1
0
5
4
2
2
2

1
6
4
9
1
3
3

1
5
8
5
5
3

1
6
0
5
2
2

2
7
5
6
1
6

2
9
2
7
4
4

5
1
9
9
6
5

5
7
1
9
9
9

1
0
1
1
1
5
5

1
2
9
4
4
7
8

2
5
0

1
8
6
0
3
2

2
2
8
2
1
9

3
0
5
4
8
8

4
3
1
9
0
8

5
7
6
0
7
8

8
1
5
4
5
7

1
2
0
2
9
9
5

1
9
6
4
1
0
0

1
7
7
5
2
6

1
8
5
9
8
4

2
9
4
9
1
9

3
3
8
2
9
7

5
7
9
6
9
6

6
6
5
4
7
4

1
1
4
0
1
6
3

1
5
1
9
4
4
7

S
im

P
ro

d
u
ct

sP
o
p
u
la

ri
ty

(D
is

ju
n
ct

iv
e)

5
0

1
0
0
2
9
6

9
8
2
6
2

1
6
3
6
3
0

1
6
2
1
4
5

2
9
7
5
9
2

3
4
4
9
0
6

6
1
5
3
9
3

7
2
5
1
6
9

9
9
4
5
4

8
0
6
8
9

1
5
8
2
7
3

1
4
2
3
2
1

3
1
0
2
7
8

2
7
9
7
3
0

6
1
6
0
1
3

5
8
2
5
9
8

1
0
0

1
2
3
7
5
2

1
4
6
0
1
2

2
0
4
1
1
4

2
4
6
5
5
1

3
6
7
5
6
9

4
9
7
8
8
1

7
7
5
4
9
6

1
0
6
4
9
3
1

1
1
9
5
7
8

1
1
8
2
6
7

1
9
4
8
7
4

1
9
6
7
6
0

3
7
7
1
7
3

3
9
5
4
8
5

7
7
5
2
5
1

9
0
2
9
0
4

1
5
0

1
4
5
2
3
7

1
8
9
5
2
0

2
3
1
3
5
6

3
3
6
3
2
7

4
3
5
0
0
8

6
5
2
6
8
1

8
8
4
6
4
5

1
4
6
5
7
4
5

1
3
9
0
1
5

1
4
5
9
7
0

2
3
0
1
7
4

2
5
7
4
2
4

4
4
5
6
1
1

5
3
2
5
4
1

9
1
7
4
2
7

1
2
2
4
3
9
1

2
0
0

1
6
6
8
6
4

2
2
9
2
7
8

2
6
6
0
1
1

4
0
9
7
4
6

5
0
0
6
2
5

8
1
2
4
9
8

1
0
3
7
9
7
4

1
8
8
6
0
4
5

1
6
1
6
2
4

1
7
8
9
7
5

2
6
5
9
0
7

3
2
6
6
9
6

5
0
0
3
1
2

6
1
2
6
6
7

1
0
3
9
7
9
3

1
4
1
6
4
7
7

2
5
0

1
8
3
4
1
3

2
6
3
0
9
8

3
0
3
1
2
4

4
9
8
3
9
2

5
6
6
1
7
6

9
4
9
5
9
0

1
1
9
4
7
4
8

2
2
7
6
8
6
4

1
8
6
6
7
7

2
0
3
5
3
9

3
0
0
9
0
9

3
7
8
6
0
2

5
7
6
0
0
2

7
3
9
8
6
0

1
2
0
9
9
8
1

1
7
9
9
9
6
1

P
re

fC
u
st

o
m

er

(A
g
g
re

g
a
ti

o
n
)

5
0

1
0
0
8
4
3

7
5
7
3
1

1
7
5
6
5
9

1
3
4
0
6
9

3
1
5
1
4
8

2
4
2
3
8
1

6
4
1
7
0
6

4
9
2
0
6
3

9
2
5
1
6

6
7
4
1
1

1
5
8
1
3
5

1
1
6
3
1
5

2
9
7
8
5
5

2
2
0
4
9
3

6
2
1
2
0
4

4
6
9
2
7
0

1
0
0

1
2
7
4
8
7

9
9
1
3
8

2
1
4
0
3
5

1
7
1
5
1
5

3
8
7
4
8
4

3
2
0
5
5
4

8
0
0
5
3
5

6
9
2
8
6
2

1
1
6
4
9
1

8
9
9
4
6

1
9
5
9
4
8

1
5
1
5
9
1

3
6
8
2
8
5

2
9
4
6
1
8

7
7
3
3
3
8

6
3
8
3
4
5

1
5
0

1
5
1
1
5
9

1
2
4
4
6
4

2
5
1
8
4
5

2
1
0
0
5
9

4
6
1
7
1
1

3
9
6
2
5
0

9
4
7
7
4
8

8
8
1
5
4
0

1
3
8
4
2
9

1
1
1
6
8
4

2
3
1
9
6
6

1
9
1
3
7
4

4
3
5
3
9
1

3
6
7
4
0
4

9
1
1
9
4
7

8
1
8
6
3
3

2
0
0

1
7
4
3
1
8

1
4
5
1
9
6

2
8
9
5
5
4

2
5
6
3
5
8

5
3
7
2
0
3

4
7
6
1
1
4

1
1
1
8
5
1
4

1
0
6
0
4
6
1

1
6
0
5
0
3

1
3
1
6
5
5

2
6
7
3
9
6

2
3
2
0
0
0

5
0
2
3
2
9

4
4
7
3
2
0

1
0
6
1
7
8
7

9
8
5
6
8
1

2
5
0

1
9
2
0
1
4

1
6
2
3
7
2

3
1
8
6
5
2

2
8
9
7
1
8

6
0
2
0
9
0

5
5
0
7
3
5

1
2
7
6
5
5
2

1
2
5
3
4
1
8

1
8
1
8
1
2

1
5
0
7
4
3

3
0
0
5
8
7

2
7
0
1
9
7

5
6
8
6
0
8

5
1
7
6
5
4

1
2
0
9
6
0
5

1
1
5
8
5
8
4

P
re

fC
u
st

o
m

er
S
im

P
ro

d
u
ct

s

(A
g
g
re

g
a
ti

o
n
)

5
0

9
0
1
9
4

7
1
2
2
8

1
7
0
9
9
9

1
3
2
6
3
8

2
9
7
0
8
0

2
4
1
6
5
2

6
4
3
6
6
1

4
8
7
5
0
2

8
6
6
6
8

6
6
5
4
6

1
6
3
0
5
0

1
1
8
8
1
4

3
0
8
3
6
8

2
3
8
7
4
0

6
2
2
6
0
0

4
5
6
0
5
4

1
0
0

1
1
5
7
3
0

9
4
2
2
8

2
1
1
6
3
5

1
7
3
2
6
1

3
7
3
0
8
0

3
2
4
1
5
2

8
0
6
0
8
8

6
8
2
7
7
2

1
1
3
2
0
0

8
8
8
9
4

2
0
2
5
7
1

1
6
2
5
2
1

3
8
1
5
8
0

3
1
5
6
4
8

7
8
2
5
1
0

6
4
4
7
4
0

1
5
0

1
3
8
4
7
8

1
1
7
8
9
5

2
4
8
1
7
3

2
1
1
1
6
6

4
5
0
5
8
0

4
0
2
6
5
2

9
7
1
9
1
1

8
7
9
1
5
3

1
3
5
5
7
9

1
1
2
2
0
7

2
3
9
7
8
1

2
0
2
0
9
4

4
5
3
9
5
7

3
8
7
4
8
8

9
2
8
6
9
1

8
3
3
2
2
1

2
0
0

1
6
0
0
3
4

1
3
8
5
6
1

2
8
4
6
3
2

2
6
1
8
2
6

5
3
1
0
8
0

4
8
0
1
5
2

1
1
4
0
4
7
5

1
0
7
5
8
0
8

1
5
8
8
1
9

1
3
4
5
0
4

2
7
5
2
3
8

2
4
2
2
7
2

5
2
0
2
9
2

4
6
7
5
6
1

1
0
8
6
1
2
1

1
0
1
0
8
5
5

2
5
0

1
8
1
9
1
4

1
5
9
8
9
5

3
1
2
8
8
9

2
8
9
5
3
4

5
9
8
0
8
0

5
5
9
1
5
2

1
2
9
3
3
6
8

1
2
6
8
7
3
3

1
8
1
1
7
0

1
5
3
8
6
1

3
1
1
5
7
0

2
8
0
7
7
2

5
9
2
0
4
8

5
3
8
8
8
1

1
2
3
4
4
4
7

1
1
8
9
4
2
1

Table C.6: Incremental results for Amazon case study (ms).
260

C.3 Results for Experiments with SDR algorithm and streams of information

Q
u
er

y
N

am
e

M
o
d
el

s

α
=

5
α
=

1
0

1M
4M

9M
12

M
1M

4M
9M

12
M

β
T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

R
ec

en
tP

ar
t

(S
im

p
le

)

50
57

08
6

50
48

2
24

90
35

24
76

77
49

35
21

56
47

01
76

72
68

89
81

72
58

14
7

44
58

3
24

64
68

22
87

94
49

74
53

51
17

88
70

81
01

88
51

94

10
0

88
49

1
80

05
4

36
87

53
40

58
90

74
85

89
93

62
18

11
36

62
6

16
08

53
4

87
55

8
71

24
8

36
48

54
37

31
19

75
24

65
83

47
11

10
68

82
9

15
19

48
4

15
0

11
27

76
10

66
21

47
57

55
53

47
79

99
34

07
12

95
13

3
15

14
97

6
23

11
69

9
11

34
20

98
39

2
48

05
10

50
17

39
10

10
82

8
11

54
43

1
14

24
24

1
21

26
49

3

20
0

13
90

85
13

56
21

59
08

16
70

96
20

12
31

93
9

16
49

99
8

18
88

91
6

29
72

17
6

13
84

56
12

42
65

59
65

95
62

97
81

12
69

81
6

14
79

46
4

17
74

53
0

27
28

55
1

25
0

16
26

66
16

10
58

66
75

99
82

33
93

14
76

08
0

20
06

91
6

22
73

80
3

36
25

74
6

16
24

80
14

88
37

71
18

01
75

84
73

15
25

97
1

17
99

12
2

21
46

67
0

33
20

47
3

C
on

te
st

P
ar

t

(C
on

d
it

io
n
al

)

50
64

68
5

54
72

2
27

31
16

28
48

92
53

92
70

62
84

70
83

67
99

10
58

45
5

65
74

1
47

53
6

26
03

87
25

02
61

55
23

53
56

96
56

79
25

84
91

32
93

10
0

94
55

7
90

75
5

38
47

07
46

05
63

78
55

58
10

59
60

6
12

12
87

6
18

51
56

4
94

42
3

76
97

9
37

83
22

40
36

84
81

84
26

92
76

46
11

47
25

4
16

26
02

3

15
0

12
38

14
12

52
95

50
91

16
63

16
63

10
27

63
2

14
66

25
9

15
89

61
6

26
62

79
6

12
27

56
10

55
40

49
07

31
54

80
28

10
64

12
7

13
02

33
3

15
00

57
1

22
94

81
2

20
0

15
23

55
15

71
68

62
22

85
78

05
15

12
68

80
4

18
76

83
6

19
63

13
3

34
51

48
4

14
82

21
13

25
06

60
44

12
68

91
80

13
05

77
2

16
64

72
9

18
52

64
9

29
77

37
5

25
0

17
23

92
18

49
72

72
20

56
94

99
12

15
09

90
5

22
96

66
6

23
38

78
9

42
67

67
7

17
35

80
15

94
31

71
72

65
82

69
91

15
47

55
5

20
33

33
0

22
04

80
7

36
42

62
6

U
n
c h

os
en

C
ap

(C
on

ju
n
ct

iv
e)

50
69

04
9

54
91

3
28

14
21

27
74

07
55

90
17

60
63

65
80

84
53

95
93

44
69

34
7

48
88

2
27

77
74

26
12

83
55

90
33

55
59

67
81

89
13

86
77

71

10
0

10
04

66
88

99
4

39
94

21
45

60
73

82
42

72
10

07
61

6
11

73
15

6
17

15
37

9
98

03
3

77
66

5
39

38
26

41
96

63
80

82
40

90
02

96
11

75
23

2
15

42
82

5

15
0

12
97

34
12

16
99

51
64

21
61

64
07

10
73

50
8

13
94

15
5

15
29

45
0

24
86

43
6

12
68

02
10

40
19

51
00

41
56

49
84

10
50

62
1

12
45

97
4

15
26

89
3

21
70

25
4

20
0

15
80

83
15

14
63

63
34

21
77

24
07

13
25

15
4

17
87

77
9

18
85

82
6

32
54

13
4

15
34

09
13

05
20

62
55

17
70

51
04

12
94

81
3

15
88

05
7

18
92

02
9

27
85

59
1

25
0

18
37

81
18

17
20

75
04

21
92

07
40

15
72

33
4

21
64

64
3

22
44

47
5

39
75

66
9

18
00

81
15

61
75

74
02

86
83

86
74

15
37

42
5

19
15

86
5

22
56

05
3

33
90

72
6

F
u
n
n
ie

st
C

ap
ti

on

(A
gg

re
ga

ti
on

)

10
41

13
6

33
21

55
18

64
32

93
80

40
35

81
36

23
46

01
4

51
71

38
87

59
56

6
38

19
3

21
39

49
17

53
14

63
91

90
34

19
88

16
30

64
2

51
14

18
58

68
91

3

20
50

13
6

55
11

55
22

58
45

13
49

16
9

-
-

63
29

99
15

33
18

14
46

27
0

32
37

42
20

72
09

91
48

90
40

75
33

23
86

26
1

60
77

47
88

56
67

5

50
75

40
0

11
03

50
2

33
37

55
27

66
95

5
-

-
-

-
-

-
-

-
-

-
-

-

10
0

11
41

73
21

89
97

9
55

37
41

51
70

10
1

-
-

-
-

-
-

-
-

-
-

-
-

15
0

14
85

16
31

49
79

0
70

38
45

79
27

16
9

-
-

-
-

-
-

-
-

-
-

-
-

20
0

18
11

56
40

71
86

6
-

-
-

-
-

-
-

-
-

-
-

-
-

-

25
0

21
99

15
51

79
01

2
-

-
-

-
-

-
-

-
-

-
-

-
-

-

A
b
an

d
on

(A
gg

re
ga

ti
on

)

50
64

11
0

48
42

4
27

17
46

25
76

09
54

66
39

59
31

03
82

92
05

92
05

56
59

42
3

45
45

0
25

82
46

24
84

62
52

50
74

51
66

87
82

92
30

82
99

02

10
0

94
29

8
81

43
0

39
41

28
42

13
86

82
71

80
98

11
10

12
39

67
7

16
28

80
5

84
68

3
72

96
9

37
53

44
40

03
98

79
92

37
85

12
10

12
26

04
8

14
40

93
6

15
0

12
35

76
10

93
38

52
86

16
57

35
97

11
01

26
9

13
34

26
5

16
39

14
6

23
21

02
3

11
01

98
99

85
6

48
93

03
53

89
13

10
44

10
7

11
77

35
2

16
19

18
0

20
26

75
1

20
0

15
09

60
13

97
17

64
35

79
70

51
28

13
75

69
8

17
05

21
8

20
38

38
9

29
74

64
2

13
68

81
12

64
72

60
56

37
67

92
33

12
89

72
9

15
11

57
5

20
06

93
3

26
15

55
6

25
0

18
04

19
16

88
06

77
94

75
85

42
06

16
47

02
6

20
64

52
4

24
39

69
2

36
28

47
4

16
17

61
15

23
30

72
41

10
80

84
73

15
32

90
3

18
32

58
6

23
94

38
6

31
99

69
2

F
u
n
n
ie

st
C

ap
ti

on
U

(A
gg

re
ga

ti
on

&
C

on
ju

n
ct

iv
e)

10
42

73
4

13
60

43
18

57
80

26
05

15
34

39
01

52
23

63
53

31
39

10
49

67
9

43
39

4
95

61
1

17
64

77
20

35
76

35
35

80
40

97
64

52
41

49
81

70
49

20
50

73
4

21
10

43
20

67
12

37
29

71
-

-
61

02
03

17
36

51
7

52
24

5
13

68
04

20
30

66
28

61
03

41
11

87
57

62
68

59
81

36
12

31
29

4

50
75

65
8

40
78

84
28

38
17

74
55

54
-

-
-

-
-

-
-

-
-

-
-

-

10
0

11
10

81
77

28
49

41
14

84
12

11
02

1
-

-
-

-
-

-
-

-
-

-
-

-

15
0

14
69

01
10

76
41

9
52

27
12

16
96

97
1

-
-

-
-

-
-

-
-

-
-

-
-

20
0

17
09

39
14

69
66

1
-

-
-

-
-

-
-

-
-

-
-

-
-

-

25
0

20
67

52
18

07
56

1
-

-
-

-
-

-
-

-
-

-
-

-
-

-

Table C.7: Incremental results for Contest case study (ms).
261

Appendix C. SDR Algorithm Execution

Q
ue

ry
N

am
e

M
o d

el
s

α
=

5
α
=

1
0

1M
4M

9M
12

M
1M

4M
9M

12
M

β
T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

T
S
u
b
G

T
C
G

G
et

A
ni

m
al

V
id

eo
s

(C
on

di
ti

on
al

)

50
16

04
78

15
10

24
33

99
51

35
57

19
55

13
43

59
67

49
75

77
30

92
06

97
16

99
01

14
50

60
33

39
13

33
77

32
52

59
18

54
31

14
72

41
14

83
27

76

10
0

25
14

37
24

34
03

52
52

12
61

46
28

85
53

65
10

20
60

9
11

78
65

6
15

92
92

7
26

00
93

23
21

75
51

64
84

57
23

57
81

54
07

90
93

59
11

28
88

9
14

12
39

0

15
0

34
12

57
32

84
62

70
88

97
86

46
94

11
53

59
3

14
28

31
1

15
97

96
2

22
32

77
9

34
83

96
31

66
10

69
72

17
79

60
99

10
98

10
9

12
58

21
4

15
27

07
5

19
61

04
5

20
0

43
01

35
42

05
67

89
67

55
11

15
37

1
14

62
37

4
18

25
14

9
20

28
70

2
28

70
43

0
43

53
38

40
23

17
87

78
06

10
16

10
2

13
82

72
9

16
13

78
7

19
23

39
5

24
85

03
7

25
0

51
85

36
50

91
71

10
75

01
8

13
57

56
8

17
50

25
7

22
32

83
1

24
30

51
7

34
96

81
3

52
40

31
48

68
77

10
57

31
4

12
35

37
0

16
64

98
1

19
72

89
9

23
21

97
7

30
16

11
2

N
ot

P
re

se
n t

(N
eg

at
iv

e)

50
17

99
43

13
66

10
36

51
96

32
76

02
55

81
88

57
51

89
77

69
19

82
79

70
17

72
55

14
65

64
36

05
15

32
98

27
55

13
72

54
49

17
74

80
57

85
31

09

10
0

27
62

93
22

45
32

56
30

01
55

03
63

86
67

23
97

45
17

12
20

63
4

13
80

34
8

26
99

92
23

76
99

54
65

41
55

58
99

84
70

47
91

97
04

11
58

23
9

14
76

49
7

15
0

37
29

47
30

58
32

75
85

48
76

52
29

11
55

28
4

13
53

80
3

16
63

70
6

19
03

88
2

36
09

02
32

47
80

73
11

85
77

18
14

11
37

22
3

12
77

03
6

15
65

78
9

20
53

35
5

20
0

46
64

42
38

58
19

95
21

31
98

17
28

14
41

82
9

17
08

61
5

21
02

32
9

24
20

29
1

45
11

02
41

13
19

91
39

89
99

34
44

14
46

47
7

16
32

82
5

19
71

17
4

26
42

18
3

25
0

56
08

99
46

51
94

11
46

29
8

11
95

73
7

17
29

43
2

20
66

78
9

25
45

58
6

29
44

24
6

54
16

72
49

82
19

10
93

80
2

12
10

20
9

17
52

24
7

19
96

90
4

23
80

09
4

32
20

04
4

A
ni

m
al

P
er

so
n

(C
on

ju
nc

ti
ve

)

50
18

21
73

14
71

67
35

31
07

35
48

14
55

68
84

59
46

64
74

54
89

91
93

98
18

38
73

13
70

45
35

96
83

33
28

66
55

06
72

52
92

28
79

09
34

84
62

24

10
0

27
31

60
24

19
97

55
06

71
61

26
10

85
29

20
10

19
40

6
11

65
08

8
16

08
66

0
27

59
55

22
12

43
55

35
62

55
80

83
83

97
78

88
98

65
12

07
92

3
14

67
41

1

15
0

36
36

68
33

31
03

74
65

11
85

76
63

11
45

85
9

14
40

24
4

15
77

52
8

22
46

67
1

36
54

68
30

68
50

74
78

97
78

15
65

11
30

26
4

12
40

28
6

16
20

16
3

20
65

08
0

20
0

45
45

27
42

78
19

93
97

87
10

98
69

4
14

35
69

3
18

57
70

2
19

92
25

4
29

08
60

2
45

50
32

39
58

12
94

14
83

99
96

44
14

19
53

3
15

86
04

7
20

28
31

0
26

41
63

8

25
0

54
57

88
51

57
71

11
32

09
5

13
28

54
7

17
27

11
5

22
64

88
4

24
13

02
6

35
53

21
6

54
41

44
47

61
85

11
34

50
3

12
10

87
5

17
01

48
3

19
36

73
7

24
36

65
5

32
28

63
7

P
re

se
nt

So
on

(C
on

ju
nc

ti
ve

)

50
16

99
30

13
67

43
35

65
34

35
19

68
56

25
44

57
83

49
80

79
98

90
29

38
17

03
14

14
60

48
37

11
42

34
42

94
55

74
68

54
25

38
80

01
41

81
33

01

10
0

26
25

83
23

08
32

54
28

81
59

04
77

84
35

94
97

96
87

12
14

88
8

15
70

94
2

25
82

69
23

40
71

56
19

39
58

18
04

85
09

94
91

77
64

12
07

90
6

14
39

29
0

15
0

35
30

10
32

14
49

72
83

58
83

37
39

11
25

35
0

13
61

92
6

16
14

58
3

21
95

49
1

34
64

08
31

84
33

75
10

16
81

54
34

11
43

26
0

12
83

45
1

16
15

51
2

20
35

74
3

20
0

44
31

02
41

29
56

91
19

48
10

64
98

4
14

06
92

9
17

50
51

3
20

10
72

2
28

58
95

0
43

14
32

40
36

91
93

96
88

10
45

19
0

14
31

93
7

16
43

06
5

20
17

41
1

25
95

70
0

25
0

53
13

95
51

91
77

10
99

00
3

13
00

46
1

16
89

53
8

21
28

99
7

24
11

27
9

34
68

37
4

51
71

88
48

78
78

11
28

80
2

12
68

84
5

17
20

91
3

20
09

18
7

24
24

48
6

31
39

30
0

P
et

s

(D
is

ju
nc

ti
ve

)

50
18

21
90

19
25

86
38

26
61

43
16

39
57

56
67

71
15

42
80

65
25

10
56

72
4

17
51

11
17

14
66

38
88

45
38

85
10

55
57

10
64

75
31

80
73

00
93

15
56

10
0

27
57

13
33

03
36

57
96

50
74

68
75

86
79

66
12

72
09

3
12

43
50

5
18

40
70

2
26

57
52

28
07

16
57

28
48

65
38

52
85

14
26

10
90

56
4

12
19

50
4

15
94

42
9

15
0

36
73

41
46

74
90

77
67

62
10

58
48

0
11

61
32

5
18

05
95

7
16

71
15

0
26

31
45

1
35

90
87

39
28

96
75

53
16

91
63

04
11

32
11

6
15

26
74

9
16

26
86

0
22

47
26

5

20
0

45
70

45
60

90
13

96
98

36
13

65
27

2
14

53
54

9
23

24
52

1
20

97
77

7
34

03
94

6
44

95
39

49
47

04
93

87
05

11
70

45
6

14
11

32
3

19
63

38
5

20
30

64
7

29
12

09
7

25
0

54
80

30
73

92
79

11
61

64
4

16
65

80
8

17
48

32
9

28
39

48
6

25
26

52
7

41
90

92
2

54
15

63
60

16
12

11
22

38
1

14
22

89
5

16
87

22
6

23
96

79
8

24
32

06
3

35
76

64
0

In
C

as
t

(A
gg

re
ga

ti
on

)

50
18

18
10

14
10

67
38

34
09

36
16

84
59

69
40

55
81

24
80

66
08

84
19

23
18

00
88

13
74

40
37

29
06

33
74

00
56

15
55

54
49

06
79

17
89

84
67

12

10
0

27
56

10
23

50
05

60
41

84
60

29
86

92
22

34
96

18
07

12
55

71
9

14
55

43
7

27
17

89
22

86
87

57
04

67
56

95
61

86
92

13
90

34
39

12
26

16
4

14
45

62
1

15
0

36
63

52
32

47
78

82
31

24
84

25
14

12
34

78
1

13
61

88
4

17
01

41
0

20
55

58
1

36
28

61
31

60
72

76
71

86
79

29
92

11
59

61
9

12
47

75
7

16
61

49
2

20
26

56
5

20
0

45
73

68
42

07
20

10
40

16
7

10
80

80
7

15
43

21
4

17
30

90
8

21
42

50
3

26
25

44
2

45
38

22
40

11
08

96
23

30
10

14
08

9
14

47
02

0
15

85
03

1
20

97
21

7
25

64
57

7

25
0

54
85

96
51

05
17

12
58

63
0

13
14

10
9

18
50

99
3

21
03

74
3

25
84

50
8

31
87

88
4

54
24

25
48

43
89

11
57

60
6

12
38

52
4

17
37

03
4

19
20

36
0

25
29

48
4

31
04

92
1

Table C.8: Incremental results for Youtube case study (ms).
262

C.4 Additional charts and tables displaying experiments results

C.4 Additional charts and tables displaying experiments re-

sults

To improve the readability of Chapter 5, this appendix contains some of the

tables and figures that show the results of the evaluations. Specifically, Figures C.2

and C.3 show the execution time and memory consumption of the experiments with

static information of Contest and YouTube case studies, respectively. Then, Tables

C.9 and C.10 show the gain results of the experiments with dynamic information

of the same case studies.

0

5

10

15

20

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

RecentPart

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) SDR results for Simple
pattern.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ContestPart

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) SDR results for Condi-
tional pattern.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

UnchosenCap

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) SDR results for Conjunc-
tive pattern.

0

5

10

15

20

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

FunniestCaption

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) SDR results for Aggrega-
tion pattern.

0
5
10
15
20
25

0

2,000

4,000

6,000

8,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

Abandon

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) SDR results for Aggrega-
tion pattern.

0

5

10

15

20

0
50,000
100,000
150,000
200,000
250,000

1M 4M 9M 12M 16M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

FunniestCaptionU

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) SDR results for Aggre-
gation and Conjunctive pat-
tern.

Figure C.2: Performance results for SDR algorithm in Contest example queries.

263

Appendix C. SDR Algorithm Execution

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

GetAnimalVideos

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) SDR results for Condi-
tional pattern.

0

5

10

15

20

0

1,000

2,000

3,000

2M 4M 6M 8M 10M 12M
M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

NotPresent

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) SDR results for Negative
pattern.

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

AnimalPerson

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) SDR results for Conjunc-
tive pattern with 2 predi-
cates.

0
5
10
15
20
25

0

2,000

4,000

6,000

8,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PresentSoon

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) SDR results for Conjunc-
tive pattern with 3 predi-
cates.

0
5
10
15
20
25

0

5,000

10,000

15,000

20,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

Pets

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) SDR results for Disjunc-
tive pattern.

0
5
10
15
20
25

0

2,000

4,000

6,000

2M 4M 6M 8M 10M 12M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

InCast

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) SDR results for Aggrega-
tion pattern.

Figure C.3: Performance results for SDR algorithm in YouTube example queries.

264

C.4 Additional charts and tables displaying experiments results

Query Name Models

α = 5 α = 10

β 1M 4M 9M 12M 1M 4M 9M 12M

RecentPart
(Simple)

50 -0.1308 -0.0055 0.1260 0.1457 -0.3042 -0.0773 0.0280 0.2001
100 -0.1054 0.0915 0.2004 0.2934 -0.2289 0.0222 0.0985 0.2966
150 -0.0577 0.1104 0.2330 0.3446 -0.1527 0.0423 0.1244 0.3302
200 -0.0255 0.1674 0.2534 0.3645 -0.1142 0.0527 0.1417 0.3496
250 -0.0100 0.1892 0.2645 0.3729 -0.0917 0.0615 0.1518 0.3535

ContestPart
(Conditional)

50 -0.1821 0.0413 0.1419 0.2094 -0.3830 -0.0405 0.0304 0.1322
100 -0.0419 0.1647 0.2586 0.3449 -0.2266 0.0628 0.1177 0.2944
150 0.0118 0.1940 0.2991 0.4030 -0.1631 0.1046 0.1829 0.3461
200 0.0306 0.2027 0.3240 0.4312 -0.1186 0.1230 0.2156 0.3778
250 0.0680 0.2399 0.3426 0.4520 -0.0887 0.1327 0.2389 0.3947

UnchosenCap
(Conjunctive)

50 -0.2574 -0.0145 0.0781 0.1573 -0.4187 -0.0631 -0.0055 0.0563
100 -0.1289 0.1242 0.1820 0.3161 -0.2622 0.0616 0.1023 0.2383
150 -0.0660 0.1622 0.2300 0.3849 -0.2190 0.0972 0.1568 0.2964
200 -0.0437 0.1799 0.2588 0.4205 -0.1754 0.1129 0.1847 0.3208
250 -0.0113 0.1850 0.2736 0.4354 -0.1531 0.1173 0.1975 0.3346

FunniestCaption
(Aggregation)

0 0.7680 0.6378 0.6803 0.8520 0.7680 0.6378 0.6803 0.8520
10 0.8762 0.8013 0.8473 0.9410 0.8215 0.7257 0.7903 0.9129
20 0.9090 0.8326 - - 0.8571 0.7735 0.8292 0.9314
50 0.9317 0.8794 - - - - - -
100 0.9479 0.8929 - - - - - -

Abandon
(Aggregation)

50 -0.3239 -0.0549 0.0783 0.0992 -0.3074 -0.0394 -0.0162 0.0008
100 -0.1580 0.0647 0.1569 0.2389 -0.1605 0.0626 0.0611 0.1491
150 -0.1302 0.0784 0.1746 0.2938 -0.1036 0.0921 0.1132 0.2011
200 -0.0805 0.0873 0.1932 0.3147 -0.0823 0.1084 0.1468 0.2327
250 -0.0688 0.0875 0.2022 0.3276 -0.0619 0.1043 0.1635 0.2517

FunniestCaptionU
(Aggregation and

Conjunctive)

0 0.3517 -0.2278 -0.1412 -0.0071 0.3517 -0.2278 -0.1412 -0.0071
10 0.6859 0.2869 0.3416 0.4921 0.5461 0.1331 0.1371 0.3585
20 0.7596 0.4458 - - 0.6181 0.2902 0.2865 0.5142
50 0.8145 0.6193 - - - - - -
100 0.8563 0.6602 - - - - - -

Table C.9: Ratio Incremental gain results for Contest case study.

265

Appendix C. SDR Algorithm Execution

Query Name Models

α = 5 α = 10

β 2M 4M 6M 8M 2M 4M 6M 8M

GetAnimalVideos
(Conditional)

50 -0.0626 0.0443 0.0761 0.1770 -0.1712 0.0113 0.0317 0.1305
100 -0.0330 0.1455 0.1619 0.2601 -0.1202 0.0976 0.1033 0.2007
150 -0.0390 0.1802 0.1923 0.2843 -0.1004 0.1242 0.1272 0.2213
200 -0.0228 0.1960 0.1988 0.2932 -0.0821 0.1361 0.1432 0.2260
250 -0.0184 0.2081 0.2161 0.3049 -0.0763 0.1441 0.1561 0.2301

NotPresent
(Negative)

50 -0.3172 -0.1148 0.0296 0.0617 -0.2094 -0.0930 -0.0118 0.1231
100 -0.2305 -0.0230 0.1106 0.1157 -0.1359 0.0168 0.0790 0.2155
150 -0.2195 0.0087 0.1466 0.1262 -0.1112 0.0526 0.1095 0.2374
200 -0.2090 0.0301 0.1561 0.1314 -0.0967 0.0800 0.1141 0.2540
250 -0.2057 0.0413 0.1632 0.1354 -0.0872 0.0962 0.1225 0.2609

AnimalPerson
(Conjunctive)

50 -0.2379 0.0048 0.0635 0.1892 -0.3417 -0.0806 -0.0405 0.0653
100 -0.1288 0.1011 0.1633 0.2757 -0.2473 0.0081 0.0563 0.1768
150 -0.0918 0.1296 0.2044 0.2978 -0.1910 0.0431 0.0887 0.2154
200 -0.0624 0.1446 0.2272 0.3150 -0.1496 0.0582 0.1050 0.2322
250 -0.0582 0.1479 0.2374 0.3209 -0.1427 0.0631 0.1215 0.2453

PresentSoon
(Conjunctive)

50 -0.2427 -0.0130 0.0273 0.1051 -0.1661 -0.0780 -0.0275 0.0162
100 -0.1376 0.0806 0.1389 0.2266 -0.1034 0.0341 0.0728 0.1608
150 -0.0982 0.1264 0.1737 0.2646 -0.0879 0.0790 0.1092 0.2064
200 -0.0730 0.1437 0.1963 0.2967 -0.0687 0.1009 0.1285 0.2228
250 -0.0235 0.1549 0.2064 0.3048 -0.0601 0.1104 0.1435 0.2277

Pets
(Disjunctive)

50 0.0540 0.1135 0.1910 0.2368 -0.0213 -0.0009 0.1418 0.1334
100 0.1654 0.2239 0.3177 0.3244 0.0533 0.1239 0.2193 0.2351
150 0.2142 0.2662 0.3569 0.3649 0.861 0.1757 0.2585 0.2761
200 0.2495 0.2896 0.3747 0.3837 0.0913 0.1980 0.2812 0.3027
250 0.2587 0.3027 0.3843 0.3971 0.0998 0.2112 0.2961 0.3200

InCast
(Aggregation)

50 -0.2888 -0.0601 -0.0695 0.0419 -0.3103 -0.1052 -0.0306 0.0649
100 -0.1728 -0.0020 0.0411 0.1372 -0.1885 -0.0016 0.0379 0.1518
150 -0.1280 0.0230 0.0933 0.1723 -0.1480 0.0325 0.0706 0.1801
200 -0.0871 0.0376 0.1084 0.1839 -0.1314 0.0510 0.0871 0.1822
250 -0.0746 0.0422 0.1201 0.1893 -0.1198 0.0653 0.0955 0.1853

Table C.10: Ratio Incremental gain results for Youtube case study.

266

Appendix D
Experiments Replicability

This appendix presents the configuration steps that are necessary to run the

experiments conducted in this thesis. In Section D.1, we explain the configuration

for experiments’ replicability packages of Chapter 4. In addition, the configuration

for experiments’ replicability of Chapter 5 are exposed in Section D.2.

D.1 Online Techniques experiments

This section covers all the configurations steps that are necessary to run

the experiments with random, temporal and spatial approximations presented in

Chapter 4. All the packages and source datasets are available on our Git repository

[16]. These experiments must be run in an Eclipse environment by following the

steps presented below:

1. Import Java projects into a workspace.

2. Create a folder named ‘model’ in approximateTransformation/src/main/re-

sources.

267

Appendix D. Experiments Replicability

3. Copy the source models files into the created folder. These files must be in

.graphml format.

4. Open config.properties file located in approximateTransformation/src/-

main/resources that contains several configuration parameters. The configu-

ration of this file is divided into six parts:

• Configuration parameters: indicate the name of the source model to

be loaded in the property ‘file’.

• Q1 - CreateAdCampaign parameters: set ‘q1’ value to true to execute

CreateAdCampaign query. Besides, set a decimal value for ‘prob1’

from 0 to 1 to indicate the probability of the random approximation.

• Q2 - UnpopularStock parameters: set ‘q2’ value to true to execute

UnpopularStock query. Besides, set decimal value for ‘prob2’ from 0

to 1 to indicate the probability for the random approximation.

• Q3 - RelatedProducts parameters: set ‘q3Random’ value to true and a

decimal value for ‘prob3’ from 0 to 1 to test RelatedProducts query

with random approximation. On the contrary, set ‘q3Temporal’ value

to true and an entire value for n‘window3’ from 0 to 30 to test the

temporal approximation.

• Q4 - OlympicGamesTrending parameters: set ‘q4Random’ value

to true and a decimal value for ‘prob4’ from 0 to 1 to test

OlympicGamesTrending query with random approximation. On the

contrary, set ‘q4Spatial’ value to true and select an entire value for

‘hops4’ from 100 to 900 to indicate the number of hops in order to test

the spatial approximation.

• Q5 - RecommendsPack parameters: set ‘q5’ value to true to execute

RecommendsPack query. Select an entire value for ‘hops5’ from 1 to 3

to indicate the hops of the spatial approximation.

5. Once the configuration parameters are set, run the file ApproximateTrans-

formationApp.java to start the experiment.

268

D.2 Offline techniques experiments

D.2 Offline techniques experiments

This section presents the configuration steps that are necessary to run the

experiments with the SDR algorithm exposed in Chapter 5. We have classified

the configuration of these experiments in four parts. First, in Section D.2.1 we

present the common configuration steps for all the experiments. Second, in Section

D.2.2 we expose how to obtain a subgraph from a source graph using the SDR

algorithm. Third, in Section D.2.3 we explain how to run a query over a graph

or a subgraph stored in a .graphml file. Finally, in Section D.2.4 we present the

steps to run the incremental algorithm over a graph. All the packages and source

datasets are available on our Git repository [17]. Note that all the experiments are

designed to be run in an Eclipse environment.

D.2.1 Configuration and execution

In order to run the experiments for each case study, it is necessary to follow

some previous steps:

1. Import Java projects into a workspace.

2. Copy the source models into the main folder of the project (folders Ama-

zonCase, ContentCase or YoutubeCase depending on the case study).

3. Copy the yt_bb_detection_train.csv file into the folder YoutubeCase/src/-

main/resources.

Note that the repository has one artifact for each case study and each artifact

contains four runnable files in turn:

• <CaseStudy>SubgraphApp.java: it is used to obtain a subgraph from a

source graph contained in a .graphml file using the SDR algorithm.

• <CaseStudy>App.java: it is used to run a query over a graph or subgraph

contained in a .graphml file.

• <CaseStudy>IncApp.java: it is used to run the incremental SDR algorithm

using a graph stored in a .graphml file with a specific value of α and β.

269

Appendix D. Experiments Replicability

• <CaseStudy>DecApp.java: it is also used to run the incremental SDR

algorithm in a graph stored in a .graphml file. However, in this case β value

represents the number of objects (orders, answers or segments for Amazon,

Contest and Youtube case studies respectively) to be removed from the

graph. Therefore, this file does not increase the graph size but decrease it.

Note that <CaseStudy> must be replaced by AmazonCase, ContestCase or

YoutubeCase depending on the case study.

D.2.2 Obtaining a subgraph

In order to obtain a subgraph from a graph stored in a .graphml file, it is

necessary to follow the following steps:

1. Open config.properties file located in <CaseStudy>/src/main/resources.

This file contains the configuration parameters to run the experiments. In

this case, it is necessary to modify the following properties:

• Write the source model file in the property ‘file’.

• Change the property ‘nameWeights’ with a descriptive label. This

property will be used to set the name of the .graphml file where the

resulting subgraph will be stored. We recommend to set this prop-

erty according to the name of the source model. In this way, the

name of the subgraph file will have the following structure: <Query-

Name><nameWeights>.graphml.

• Set the property ‘query’ to indicate the query of the case study to be

run. Notice that Amazon case study allows values from 1 to 7 whereas

Contest and Youtube cases allow values from 1 to 6.

• The rest of properties remain the same.

2. Once the configuration is selected, it is recommended to set the Java memory

heap to 10G before running the file <CaseStudy>SubgraphApp.java.

3. After a few seconds, the program will create two files in the main folder of

the project: (i) a .graphml file with the resulting subgraph and (ii) a .log

file that contains the execution time (in milliseconds) taken for the SDR

algorithm to calculate the subgraph.

270

D.2 Offline techniques experiments

D.2.3 Running a query over a graph or a subgraph

In order to run a query over a graph or a subgraph stored in a .graphml file, it

is necessary has to follow the steps presented below:

1. Open file config.properties located in <CaseStudy>/src/main/resources. In

this case, the properties to be modified are the following:

• Indicate the name of the .graphml file to be loaded in the property

‘file’. According to the experiment, this file may contain a graph or

subgraph.

• Change the property ‘nameWeights’ with a descriptive label. This

property will be used to set the name of the .log file that con-

tains the execution time results of the experiment. We recom-

mend to set this property according to the name of the loaded

.graphml file. The file name will have the following structure: My-

Log<CaseStudyName>File<nameWeights>.log.

• Change the property ‘query’ to indicate the number of query of the

case study to be run. Notice that Amazon case study allows values

from 1 to 7 whereas Contest and Youtube cases allow values from 1

to 6.

• The rest of properties remain the same.

2. Once the configuration is selected, it is recommended to set the Java memory

heap to 10G before running <CaseStudy>App.java file.

3. After a few seconds, the program will create the .log file with the execution

times of six runs of the query over the .graphml file, previously indicated in

the property ‘file’.

D.2.4 Running the incremental SDR algorithm

The following steps are necessary to run the incremental SDR algorithm:

1. Open file config.properties located in <CaseStudy>/src/main/resources and

modify the following properties:

271

Appendix D. Experiments Replicability

• Indicate the name of the .graphml file to be loaded in the property

‘file’. According to the experiment, this file should contain a complete

graph.

• Change the property ‘nameWeights’ with a descriptive label. This

property will be used to set the name of the .log file with the results

of the experiment. We recommend to set this property according to

the name of the source model file.

• Change the property ‘query’ to indicate the query of the case study

to be run. Notice that Amazon case study allows values from 1 to 7

whereas Contest and Youtube cases allow values from 1 to 6.

• Change the property ‘records’ to select a β value.

• Change the property ‘recordsQuery’ to select an α value.

• Set the property ‘incremental’ to ‘true’ to test the SubG execution.

Otherwise, set this property to ‘false’ to test the CG execution.

2. Once the configuration is selected, it is recommended to set the Java mem-

ory heap to 10G before running <CaseStudy>IncApp.java or <CaseS-

tudy>DecApp.java files, depending on whether the experiments pretends to

add or delete records from the graph.

3. After a few seconds, the program will start to show the results of each

query execution in the console and the execution time of the experi-

ment. When the program finishes, it will create a .log file with this in-

formation. In this case, the .log file name will have the following struc-

ture: MyLog<CaseStudyName>FileIncremental<nameWeights>-<query>-

<records>-<recordsQuery>.log.

272

Apéndice E
Resumen

Actualmente una gran cantidad de datos se genera de forma diaria procedente

de distintas fuentes, como son las redes sociales, las páginas de comercio electrónico

o los buscadores web, entre otras. Un ejemplo concreto de estas fuentes es Twitter,

donde las estadísticas calculan unos 6000 tweets por segundo [63]. Cada año, esta

información crece de forma exponencial. De hecho, en 2016 se registraron alrededor

de 6,5 zettabytes de datos en los centros de datos, mientras se estima que esta cifra

subirá a 44 zettabytes en 2021. El drástico incremento en la cantidad de información

producida por estas fuentes requiere un procesamiento eficiente de los flujos de datos

en tiempo real para la toma de decisiones y la detección de situaciones de interés

que, a su vez, requieren respuestas instantáneas. Un ejemplo de la importancia del

procesamiento eficiente de grandes cantidades de flujos de información viene dado

por el análisis realizado por el banco BBVA sobre el impacto económico del Mobile

World Congress [19] de Barcelona en 2012. En este estudio se analizaron todas

las transacciones con tarjetas de crédito efectuadas durante dos semanas. Otro

ejemplo es la necesidad de analizar en tiempo real los flujos de datos procedentes

de las redes sociales o weblogs para detectar posibles ataques terroristas [97, 130].

273

Apéndice E. Resumen

Sin embargo, debido a su tamaño y complejidad, las herramientas tradicionales no

pueden procesar este tipo de datos. Por lo tanto, se hace necesario utilizar software

y hardware cuya velocidad de procesamiento y capacidad de almacenamiento sean

lo suficientemente potentes para administrar esta información.

Existen diversas propuestas para abordar el procesamiento de estas cantidades

de información, que se basan en el hecho de que la mayoría de los datos que

son procesados no son significativamente relevantes para la toma de decisiones,

especialmente cuando se trabaja con grandes volúmenes de datos. En este sentido,

los sistemas de procesamiento de flujos de datos se están volviendo populares,

como por ejemplo Apache Spark [70] o Apache Kafka [68]. En la misma línea, el

procesamiento de eventos complejos (CEP, por el término en inglés Complex Event

Processing) es capaz de procesar y analizar flujos de información representados

como una secuencia de eventos simples para obtener conclusiones de ellos, que

son representadas como eventos complejos [38, 49, 77, 78]. Existen varios motores

CEP y lenguajes de procesamiento de eventos (EPL), como el lenguaje Esper [48].

Estas tecnologías consideran que solo los datos más recientes son relevantes a la

hora de obtener resultados. De esta manera, el procesamiento de la información

no se lleva a cabo en el conjunto completo de datos, sino en un subconjunto que

viene determinado por marcas de tiempo. De esta forma, los datos más antiguos

son descartados, ya que se considera que no brindan información de interés. Este

tipo de enfoque es muy útil en los casos en los que los eventos procedentes de las

fuentes de información no están relacionados entre sí.

Sin embargo, en los sistemas reales la información está normalmente compuesta

por datos conectados entre sí, formando estructuras de grafos. A modo de ejemplo,

en Twitter los tweets son publicados por los usuarios que, a su vez, son seguidos

por otros usuarios que también siguen a otros usuarios. Con respecto a estas

estructuras de grafos, podemos distinguir dos tipos de información: persistente y

transitoria. La primera se refiere a los datos almacenados en el sistema de forma

persistente (por ejemplo, los usuarios, los productos o las tiendas). Por otra parte, la

información transitoria hace referencia a los datos que se almacenan temporalmente

(por ejemplo, los tweets, los pedidos o las transacciones bancarias) y se descartan

después de un período de tiempo—es decir, la información transitoria expira con

el tiempo. Las interconexiones entre estos datos también deben ser procesadas, lo

que inevitablemente implica una disminución en el rendimiento del sistema [111].

274

E.1 Motivación y objetivos

Esto quiere decir que no basta con considerar únicamente técnicas basadas en la

marca de tiempo de los datos a la hora de buscar mecanismos que seleccionen solo

una parte de la información a procesar para la mejora del rendimiento [38, 44, 77].

Por el contrario, es necesario diseñar mecanismos que también seleccionen el

subconjunto de la información con respecto a distintas características, como son

las conexiones, el estado y la topología de la red. En la mayoría de los casos,

será necesario descartar parte de la información para mejorar el rendimiento, es

decir, realizar una aproximación de los datos. En consecuencia, la precisión de

nuestros resultados podría verse comprometida. Sin embargo, muchas aplicaciones

no necesitan resultados extremadamente precisos, ya que gestionan información no

crítica, como los sistemas de recomendación en Facebook, Netflix o Amazon. En

estos casos, el objetivo es encontrar un equilibrio adecuado entre el rendimiento de

nuestras consultas y la precisión de sus resultados.

En la literatura, se pueden encontrar diferentes trabajos en esta línea. Por

ejemplo, en un trabajo anterior [121] se introdujo el concepto de Approximate Model

Transformations (AMT) para encontrar un equilibrio adecuado entre rendimiento y

precisión de los resultados, en el contexto de las transformaciones de modelos. Para

ello, se aplicaron técnicas de muestreo a un ejemplo de red de sensores inalámbricos

con el objetivo de mostrar los efectos de seleccionar ciertos subconjuntos de los

elementos. Sin embargo, en este caso, la información procesada no estaba compuesta

por datos interconectados, sino que los elementos eran independientes entre sí.

Otros trabajos emplean el procesamiento de consultas aproximadas (AQP, por

el término inglés Approximate Query Processing) [32, 53, 75, 87], que pretenden

obtener una respuesta aproximada que sea lo suficientemente precisa para extraer

resultados válidos, pero mejorando el rendimiento. Sin embargo, en la mayoría

de estos trabajos no se consideran flujos de datos ni información estructurada en

grafos. Por esta razón, el procesamiento de flujos de datos estructurados en forma

de grafos es aún un problema de investigación a abordar.

E.1 Motivación y objetivos

Según lo expuesto al comienzo de este apéndice, esta tesis tiene como objetivo

abordar el problema de la mejora del rendimiento en el procesamiento de grandes

cantidades de información compuesta por datos estructurados. Para mejorar este

275

Apéndice E. Resumen

rendimiento, se debe reducir la cantidad de información a procesar, lo que pone en

peligro la precisión de los resultados. Para abordar dicho problema, consideramos

información estructurada en grafos, es decir, aquella que está compuesta por datos

interconectados entre sí. Además, dado que la llegada de nueva información es

constante, cuando hablamos de este tipo de información nos referimos a “flujos de

datos estructurados en forma de grafos”. De esta forma, la principal pregunta de

investigación de esta tesis es:

RQ ¿Es posible obtener una buena (u óptima) compensación entre el rendimien-

to y la pérdida de precisión cuando procesamos grandes cantidades de información?

De esta pregunta de investigación se han derivado algunos objetivos que se

exponen a continuación.

E.1.1 Objetivos generales

Para dar respuesta a la pregunta de investigación de esta tesis, se derivaron

tres objetivos generales con respecto a las técnicas para descartar la información y

los errores que pueden surgir a partir de ellas.

• En primer lugar, nuestro objetivo es diseñar un mecanismo para seleccionar

los datos relevantes que son necesarios para una consulta. Para ello, la

información debe filtrarse de forma temporal y espacial.

• Para obtener resultados válidos, pretendemos definir los tipos de errores

que pueden surgir al seleccionar solo una parte de la información origen a

procesar y el significado de dichos errores.

• Una vez definidos los errores, queremos calcularlos y estudiarlos de acuerdo a

varios parámetros como son la cantidad de información origen o la cantidad

de información seleccionada para procesar.

E.1.2 Objetivos específicos

Además, también se derivaron los siguientes objetivos específicos de la pregunta

de investigación de esta tesis:

276

E.2 Contribuciones

• Se necesita encontrar una plataforma de procesamiento que cumpla con nues-

tros requisitos a la hora de desarrollar un método eficiente para seleccionar

solo un subconjunto de la información a procesar.

• Además, se necesita encontrar o desarrollar un lenguaje de consulta con una

sintaxis simple y clara que permita realizar las consultas sobre los datos.

• Una vez desarrollado el método, se desea probar en diferentes casos de uso

y diferentes tamaños de modelo que representen la información a procesar.

E.2 Contribuciones

Tres aportaciones principales se han obtenido a lo largo del proceso de investi-

gación de esta tesis, que se pueden resumir de la siguiente manera:

1. Un estudio comparativo entre distintas plataformas de procesamiento y los

lenguajes específicos de dominio (DSL, por el término en inglés Domain

Specific Language) más comunes que se utilizan para manejar grandes

cantidades de datos. En este estudio, se tienen en cuenta el rendimiento de

las consultas y la complejidad de su sintaxis. Medimos el rendimiento en

términos de tiempo de ejecución, mientras que la complejidad de la sintaxis

se mide en términos de número de caracteres, operadores y variables internas.

Este estudio se explica con más detalle en la sección E.3.

2. Tres métodos en línea con el procesamiento para descartar información

considerada no relevante para una consulta determinada. Estos métodos

se basan en técnicas de procesamiento de consultas aproximadas (AQP)

y seleccionan la información de acuerdo a rangos temporales y espaciales

y parámetros aleatorios. Para medir la pérdida de precisión derivada de

estos métodos definimos el error de transformación, que se da en términos

de exactitud, exhaustividad y precisión. Un resumen de estos métodos se

expone en la sección E.4.

3. Un algoritmo, llamado algoritmo SDR, basado en técnicas de preprocesa-

miento de AQP, que selecciona un subconjunto de la información de origen

que es considerada relevante de acuerdo con los patrones que se pueden

277

Apéndice E. Resumen

encontrar en una consulta determinada. Nuestros experimentos empíricos

muestran que la precisión de los resultados no se ve afectada al aplicar este

algoritmo, ya que considera todos los datos que son importantes para el pro-

cesamiento. Por este motivo, no es necesario calcular los errores producidos

al ejecutar dicho algoritmo. Un resumen de este algoritmo se expone en la

sección E.5.

E.3 Comparación y evaluación del rendimiento de las plata-

formas de procesamiento

En esta sección resumimos el estudio comparativo de siete de las plataformas

más populares para el procesamiento de grandes cantidades de datos, además de

los lenguajes de consultas empleados para trabajar con ellas.

E.3.1 Plataformas de procesamiento y lenguages de consulta

Como se expone al comienzo de este apéndice, el tratamiento de flujos de

información implica el procesamiento de los datos en tiempo real, lo que requiere de

una baja latencia. Es por esto que, con el objetivo de seleccionar la tecnología que

más se adapte a nuestros requisitos, se han analizado siete plataformas diseñadas

para trabajar con grandes cantidades de datos. Estas plataformas incluyen cinco

bases de datos de grafos (Neo4j [89], JanusGraph [64], OrientDB [29], TinkerGraph

[118] y Memgraph [83]), una base de datos SQL distribuida (CrateDB [35]) y un

paquete para trabajar con grafos distribuidos proporcionado por Apache Spark

(GraphFrames [106]). Sus características principales pueden observarse en la Tabla

E.1.

Por otro lado, cuatro lenguajes de consulta empleados con estas plataformas se

han analizado con el objetivo de escoger el que posea una sintaxis más clara para

trabajar con grafos. Estos lenguages son Gremlin [6], Cypher [88], SQL y el DSL

diseñado para trabajar con GraphFrames [107].

El objetivo de este estudio es encontrar la mejor combinación de plataforma de

procesamiento y lenguaje de consulta que se adapte a los siguientes requisitos: (i)

permita realizar consultas y actualizar la información lo más rápido posible para

dar respuestas en tiempo real, (ii) pueda hacer frente a información estructurada

278

E.3 Comparación y evaluación del rendimiento de las plataformas de
procesamiento

Platform Distributed In-memory Disk Updatable Query languages

Neo4j No No Sí Sí Cypher

JanusGraph Sí Sí Sí Sí Gremlin

OrientDB Sí Sí Sí Sí Gremlin, SQL

TinkerGraph No Sí Sí Sí Cypher, Gremlin

Memgraph Sí Sí Sí Sí Cypher

CrateDB Sí No Sí Sí SQL

GraphFrames Sí Sí No No GraphFrames DSL

Cuadro E.1: Plataformas de procesamiento utilizadas en los experimentos del
estudio del rendimiento

en forma de grafos, y (iii) con un lenguaje que proporcione una sintaxis clara

para poder estudiar el tipo de consulta a ejecutar sobre los datos. Para ello, se

han probado las tecnologías propuestas en dos casos de estudio con información

estructurada en grafos. En primer lugar, en el dominio de las redes sociales, un

sistema que trabaja con información de Twitter y Flickr y la relaciona por medio

de una clase Hashtag. Después, un caso de estudio extraído de un trabajo de

Szárnyas et al. [111], que modela un sistema de seguridad de un ferrocarril. Ambos

metamodelos están representados en las Figuras E.1 y E.2, respectivamente. Cabe

resaltar que las consultas elegidas para estos ejemplos tienen como resultado la

modificación del grafo origen, por medio de la creación, actualización o eliminación

de elementos. Además, los experimentos se realizan para distintos tamaños de

modelo comprendidos entre 3K y 14 millones de elementos.

E.3.2 Métodos de medición

Para realizar el análisis en los casos de estudio propuestos, se han realizado

cuatro conjuntos de experimentos. Estos experimentos se han diseñado de acuerdo

a dos características:

• Ejecuciones en paralelo vs individuales. Para cada caso de estudio y plata-

forma de procesamiento, se han diseñado dos tipos de ejecuciones para las

consultas. En primer lugar, una ejecución individual sin que ninguna otra

consulta esté ejecutándose al mismo tiempo en el sistema. En segundo lugar,

se han ejecutado todas las consultas a la vez en paralelo.

279

Apéndice E. Resumen

Figura E.1: Metamodelo conjunto de Twitter y Flickr.

• Consultas con y sin efecto. Dado que las consultas tienen como consecuencia

la modificación del grafo inicial, se pueden ejecutar de dos formas diferentes.

En primer lugar, se ejecutaron las consultas devolviendo los elementos

filtrados sin ningún efecto sobre el grafo, es decir, eliminando la parte de la

consulta que se encarga de modificar el grafo. En segundo lugar, se ejecutaron

generando sus respectivos efectos sobre grafo.

De esta manera, pueden distinguirse cuatro conjuntos de experimentos: (i)

ejecuciones individuales de consultas sin efecto, (ii) ejecuciones individuales de con-

sultas con efecto, (iii) ejecuciones paralelas de consultas sin efecto y (iv) ejecuciones

paralelas de consultas con efecto sobre el grafo.

E.3.3 Parámetros de estudio

Para estudiar la latencia de las plataformas de procesamiento, tanto en el caso

de consultas con efecto sobre el grafo como consultas que únicamente devuelven

información, se realizaron medidas del tiempo de ejecución en milisegundos en

todos los experimentos llevados a cabo. Además, se estudió la expresividad de los

280

E.3 Comparación y evaluación del rendimiento de las plataformas de
procesamiento

(a) Jerarquía de contención y referencias

(b) Relaciones de supertipo

Figura E.2: Metamodelo de TrainBenchmark [111]

lenguajes en las consultas de acuerdo a tres parámetros, como son el número de

caracteres, operadores y variables internas. En esta sección se expone una visión

general de los resultados.

Latencia de consulta

Nuestra hipótesis es que todas las tecnologías permiten obtener tiempos de

ejecución que las hacen adecuadas para el procesamiento en tiempo real. Sin

embargo, nos interesa conocer un valor medio aproximado de los tiempos de

ejecución de las consultas en modelos grandes con varios millones de elementos, con

281

Apéndice E. Resumen

el fin de comparar todas las tecnologías. En la Tabla E.2 se muestra un resumen

de los tiempos de ejecución para cada plataforma de procesamiento con respecto

al tamaño del modelo. Estos valores se han obtenido calculando el promedio de

los tiempos de ejecución de todas las consultas para cada tamaño de modelo en

ambos casos de estudio. En esta tabla, las filas 3 a 9 y 19 a 25 muestran los tiempos

de ejecución promedio para los ejemplos de TwitterFlickr y TrainBenchmark con

ejecuciones individuales, mientras que las filas 10 a 16 y 26 a 32 muestran los

tiempos de ejecución promedio para ejemplos de TwitterFlickr y TrainBenchmark

con ejecuciones paralelas, respectivamente. Algunos valores no se muestran en esta

tabla debido a que estos experimentos provocaron errores de desbordamiento de

memoria a causa del tamaño del modelo origen.

De los resultados obtenidos observamos que CrateDB presenta los tiempos de

ejecución más bajos para casi todas las ejecuciones individuales de las consultas del

ejemplo de TwitterFlickr. Sin embargo, también presenta los tiempos de ejecución

más altos en el caso de TrainBenchmark. Esto es debido a que las consultas de

TrainBenchmark contienen un mayor número de accesos a las relaciones del grafo,

mientras que en el caso de TwitterFlickr las consultas se componen principalmente

de operadores de agregación. De esta forma, dado que CrateDB emplea SQL,

que proporciona funciones optimizadas para filtrar por operadores de agregación,

CrateDB obtiene un mayor rendimiento en las consultas de TwitterFlickr. Además,

en la Tabla E.2 se puede observar que las ejecuciones paralelas tienen un peor

promedio del tiempo de ejecución para CrateDB que para el resto de plataformas.

Esto es debido a que existe una gran intereferencia entre consultas cuando se

ejecutan de forma simultánea en el sistema.

Por otro lado, se puede observar que Memgraph y TinkerGraph presentan

tiempos de ejecución más bajos que Neo4j y JanusGraph en la mayoría de los

casos. Esto se debe a que su implementación es en memoria, a diferencia de Neo4j

y JanusGraph que almacenan la información en disco. Sin embargo, se puede

observar que OrientDB, a pesar de ser en memoria, presenta tiempos de ejecución

mayores que JanusGraph y Neo4j en general. Esto es debido a que el rendimiento

de OrientDB empeora a medida que se utiliza un mayor número de operadores

de agregación en las consultas. Para aclarar esto, si observamos en la Tabla E.2

los resultados del ejemplo de TwitterFlickr, podemos ver que OrientDB presenta

los mayores promedios de tiempo de ejecución y una curva de crecimiento más

282

E.3 Comparación y evaluación del rendimiento de las plataformas de
procesamiento

Experiment Tech Models

2M 2M5 3M 4M 6M5 14M

TF Individual

TinkerGraph 3,061 3,591 5,044 7,193 10,608 22,468
Neo4j 25,422 15,922 21,257 27,667 34,787 263,737

JanusGraph 36,182 40,652 52,754 76,643 122,244 -
OrientDB 133,314 171,452 267,617 478,438 701,625 1,402,423
CrateDB 448 575 645 1,039 1,446 3,050

Memgraph 421 1,232 1,177 2,842 4,623 10,492
GraphFrames 17,233 17,466 18,567 21,881 26,645 39,429

TF Paralelo

TinkerGraph 3,499 3,994 4,747 6,910 10,969 22,550
Neo4j 26,595 43,230 20,702 28,393 36,867 373,875

JanusGraph 55,906 58,372 80,972 103,398 189,243 -
OrientDB 169,732 191,531 398,669 - - -
CrateDB 2,316 2,531 3,260 4,755 5,930 11,556

Memgraph 428 1,298 1,231 3,052 5,226 11,572
GraphFrames 71,467 76,936 81,621 92,317 113,373 169,070

Experiment Tech Models

420K 820K 1M5 3M 6M5 13M

TB Individual

TinkerGraph 151 316 584 1,270 2,575 4,821
Neo4j 4,930 9,737 4,158 7,885 10,742 21,692

JanusGraph 6,833 12,558 37,598 72,843 142,712 -
OrientDB 3,090 5,383 11,265 34,434 113,140 -
CrateDB 9,507 56,867 196,715 803,027 3,193,544 -

Memgraph 829 1,589 3,212 6,502 13,523 26,886
GraphFrames 6,811 7,824 10,242 66,310 - -

TB Paralelo

TinkerGraph 185 375 681 1,741 4,624 8,166
Neo4j 5,943 11,689 5,307 9,663 13,252 25,175

JanusGraph 9,406 20,510 51,213 115,522 277,571 -
OrientDB 3,572 9,245 17,569 52,835 82,502 -
CrateDB 29,840 213,914 1,060,149 3,285,652 14,330,287 -

Memgraph 960 1,893 3,732 7,592 15,572 33,241
GraphFrames 30,417 38,632 52,880 376,672 - -

Cuadro E.2: Promedios de tiempo de ejecución (ms) según el tamaño de modelo

283

Apéndice E. Resumen

pronunciada para el ejemplo de TrainBenchmark que el resto de tecnologías, a

excepción de CrateDB. Esto significa que la penalización que proviene de las

consultas con operadores de agregación hace que incluso las implementaciones

en disco superen a OrientDB. Con respecto a las otras dos implementaciones de

bases de datos de grafos en memoria, Memgraph supera a TinkerGraph para el

ejemplo de TwitterFlickr, mientras que TinkerGraph supera a Memgraph para

el ejemplo de TrainBenchmark. Finalmente, podemos observar que las consultas

de Neo4j son más rápidas que las consultas de JanusGraph, lo que significa que

Neo4j supera a JanusGraph. Además, observemos cómo los tiempos de ejecución

obtenidos con Neo4j suelen ser más bajos que los tiempos de ejecución obtenidos

con GraphFrames para ejecuciones individuales y en paralelo. Por lo tanto, Neo4j

supera a GraphFrames y JanusGraph en la mayoría de los casos.

Latencia de actualización

En este caso, nuestra hipótesis es que la modificación del grafo como consecuen-

cia de la consulta no implica una gran sobrecarga con respecto a todo el tiempo

de ejecución de la misma, lo que significa que las tecnologías estudiadas podrían

utilizarse para el procesamiento en tiempo real. La Tabla E.3 muestra un resumen

de los tiempos de ejecución para cada plataforma de procesamiento con respecto

al tamaño del modelo cuando las consultas modifican el grafo. Nótese que para

algunos tamaños de modelo y casos de estudio, algunos valores no se muestran en

la tabla. Esto se debe a que los experimentos en paralelo presentaban problemas

de concurrencia al modificar el grafo con varias consultas en paralelo (por ejemplo,

en el caso de las consultas con Neo4j y Memgraph). Además, no hemos ejecutado

ningún experimento con consultas de OrientDB en paralelo para este caso, ya que

esta tecnología no admite multi-threading cuando se usa el lenguaje Gremlin [28].

Con respecto a las consultas en experimentos individuales, algunas de ellas tardaban

demasiado tiempo y la línea de tendencia ya puede inferirse con los resultados

presentados, por lo que no es necesario terminar de calcular estos experimentos.

En primer lugar, se puede observar cómo Neo4j y JanusGraph presentan los

tiempos de ejecución más altos para todos los casos del ejemplo de TwitterFlickr,

excepto OrientDB. La razón es que almacenan el grafo en el disco y acceder

al disco es más costoso que acceder a la memoria. En cuanto al ejemplo de

284

E.3 Comparación y evaluación del rendimiento de las plataformas de
procesamiento

Experiment Tech Models

2M 2M5 3M 4M 6M5 14M

TF Individual

TinkerGraph 3,186 4,227 4,768 7,260 12,175 25,162
Neo4j 25,870 40,453 20,559 29,667 38,319 370,804

JanusGraph 38,913 49,455 53,177 81,612 117,246 -
OrientDB 135,967 174,957 230,198 448,458 664,727 1,636,927
CrateDB 516 720 773 1,268 1,609 3,443

Memgraph 413 855 1,009 1,904 2,954 7,991

TF Paralelo

TinkerGraph 3,378 4,150 4,845 7,201 11,418 25,574
Neo4j 25,768 42,180 22,433 - - -

JanusGraph 51,585 67,487 77,478 135,398 218,998 -
OrientDB - - - - - -
CrateDB 515 710 790 1,232 1,825 3,535

Memgraph 439 957 - - - -

Experiment Tech Models

420K 820K 1M5 3M 6M5 13M

TB Individual

TinkerGraph 152 290 615 1,187 2,632 5,253
Neo4j 88,410 397,606 1,637,751 - - -

JanusGraph 7,442 14,074 32,190 61,800 128,325 -
OrientDB 2,684 5,666 14,177 42,713 146,364 1,186,161
CrateDB 13,447 61,167 226,460 936,874 - -

Memgraph 140,121 588,041 - - - -

TB Paralelo

TinkerGraph 150 275 685 - 4,566 8,098
Neo4j 99,823 405,467 - - - -

JanusGraph 11,367 17,678 56,544 112,923 272,512 -
OrientDB - - - - - -
CrateDB 35,389 106,603 227,880 954,774 - -

Memgraph - - - - - -

Cuadro E.3: Promedios de tiempo de ejecución (ms) según el tamaño del modelo
(con efecto sobre el grafo)

285

Apéndice E. Resumen

TrainBenchmark, CrateDB presenta los tiempos de ejecución más altos, ya que no

está diseñado para trabajar con grafos y las consultas de TrainBenchmark están

compuestas principalmente por filtros que atraviesan relaciones del grafo, como

comentamos anteriormente. Sin embargo, podemos observar que Neo4j y OrientDB

obtienen el mayor tiempo promedio de ejecución en ambos casos de estudio y

presentan problemas de concurrencia al modificar el grafo con consultas paralelas.

En este sentido, Memgraph también presenta problemas de concurrencia para

ambos casos de estudio al modificar el grafo en paralelo. Finalmente, los resultados

de TinkerGraph y JanusGraph muestran que las consultas con efecto sobre el grafo

se comportan de manera similar a las consultas sin efecto (compárense Tablas E.2

y E.3). Sin embargo, los tiempos de ejecución de las consultas TinkerGraph son

más rápidos que las consultas de JanusGraph.

En general, podemos ver que los promedios de tiempo de ejecución del ejemplo

de TwitterFlickr son mucho más bajos que los promedios de tiempos de ejecución

del ejemplo de TrainBenchmark para los experimentos de Neo4j y Memgraph. La

razón es que el efecto que tienen las consultas de TwitterFlickr sobre el grafo

es la agregación de nuevos objetos y relaciones, mientras que las consultas de

TrainBenchmark generalmente actualizan la información ya existente. Por esta

razón, podemos afirmar que Neo4j y Memgraph obtienen un mejor rendimiento

al crear nuevos elementos que al actualizar la información existente. Comparando

las Tablas E.2 y E.3, se puede ver que CrateDB, TinkerGraph y JanusGraph—y

también las consultas de OrientDB en ejecución individual—no presentan una alta

disminución de rendimiento al actualizar el grafo con respecto a la obtención de

los resultados con consultas sin efecto. Sin embargo, TinkerGraph obtiene menores

tiempos de ejecución.

Expresividad del lenguaje

Con respecto a la expresividad del lenguage la hipótesis es que los DSL para

bases de datos de grafos proporcionan una mayor expresividad que el resto de

DSL estudiados. Sin embargo, nos interesa estudiar qué lenguaje permite escribir

consultas de forma más sencilla. Para ello medimos el número de operadores,

caracteres y variables internas de las consultas. Un ejemplo de estos resultados

para el caso de TwitterFlickr se muestra en la Tabla E.4. Esta se divide en cuatro

286

E.4 Mejora del rendimiento empleando técnicas en línea con el procesamiento

columnas. La primera columna indica la plataforma utilizada para ejecutar la

consulta, la segunda columna muestra el nombre de la consulta, la tercera columna

representa las características de las consultas con efecto sobre el grafo y la cuarta

columna representa las características de las consultas sin efecto. Las columnas

tercera y cuarta se dividen, a su vez, en tres subcolumnas, que muestran el número

de operadores, caracteres y variables internas, respectivamente. Además, las filas en

negrita representan el promedio de estos parámetros para cada plataforma. Cabe

resaltar que las consultas de JanusGraph, TinkerGraph y OrientDB tienen la misma

sintaxis ya que usan el lenguaje Gremlin. Además, aunque Neo4j y Memgraph

usan Cypher como DSL, Memgraph no permite todos los métodos incluidos en

el lenguaje Cypher, por ello diferenciamos entre Cypher para Memgraph y para

Neo4j.

En los resultados se puede observar que Gremlin reduce significativamente

el número de operadores y caracteres al consultar el grafo con respecto a la

actualización del mismo como resultado de una consulta. Cypher no obtiene

cambios importantes al consultar el grafo con respecto a su actualización y presenta

resultados similares para las plataformas Neo4j y Memgraph.

Por otro lado, incluso teniendo en cuenta que GraphFrames DSL está diseñado

para trabajar con grafos, proporciona una sintaxis más compleja que Gremlin y

Cypher. Además, esta plataforma no permite la actualización del grafo. Dado que

SQL no está diseñado para trabajar con grafos, proporciona menor intuitividad

que Cypher y Gremlin. Luego, Gremlin y Cypher permiten consultas sobre el grafo

de una manera más sencilla que SQL o GraphFrames DSL, ya que presentan un

menor número de caracteres, variables y operadores. Por lo tanto, los DSL para

bases de datos de grafos proporcionan más intuición y expresividad que el resto de

DSL.

E.4 Mejora del rendimiento empleando técnicas en línea con

el procesamiento

En esta sección se resumen lás técnicas desarrolladas para obtener una mejora

de rendimiento en el procesamiento de flujos de datos estructurados, empleando

técnicas AQP que se ejecutan en línea con dicho procesamiento. También se resumen

los tipos de error derivados de estas técnicas en términos de precisión, exhaustividad

287

Apéndice E. Resumen

Tech Query Efecto Sin Efecto

Op Char Var Op Char Var

TinkerGraph,
JanusGraph and

OrientDB
(Gremlin)

HotTopic 15 202 2 8 89 0
PopularTwitterPhoto 24 328 3 13 144 0
PopularFlickrPhoto 21 284 2 14 149 0
NiceTwitterPhoto 46 593 5 35 412 2
ActiveUserTweeted 34 446 3 23 258 0

AVG 28 370.6 3 18.6 210.4 0.4

Neo4j
(Cypher)

HotTopic 12 222 6 11 177 6
PopularTwitterPhoto 15 275 6 14 199 6
PopularFlickrPhoto 16 281 5 15 222 5
NiceTwitterPhoto 28 538 11 27 465 11
ActiveUserTweeted 29 535 8 28 463 8

AVG 20 370.2 7.2 19 305.2 7.2

CrateDB
(SQL)

HotTopic 17 476 8 16 418 8
PopularTwitterPhoto 12 373 3 11 294 3
PopularFlickrPhoto 14 360 3 13 292 3
NiceTwitterPhoto 29 731 8 28 655 8
ActiveUserTweeted 31 651 6 30 563 6

AVG 20.6 518.2 5.6 19.6 444.4 5.6

Memgraph
(Cypher)

HotTopic 12 224 6 11 178 6
PopularTwitterPhoto 15 276 6 14 200 6
PopularFlickrPhoto 16 281 5 15 222 5
NiceTwitterPhoto 28 525 11 27 452 11
ActiveUserTweeted 29 535 8 28 463 8

AVG 20 368.2 7.2 19 303 7.2

GraphFrames

HotTopic - - - 11 151 4
PopularTwitterPhoto - - - 38 745 10
PopularFlickrPhoto - - - 30 480 8
NiceTwitterPhoto - - - 74 1,517 18
ActiveUserTweeted - - - 62 1,273 15

AVG - - - 43 833.2 11

Cuadro E.4: Resumen de las características de cada DSL para el caso de estudio
de TwitterFlickr

288

E.4 Mejora del rendimiento empleando técnicas en línea con el procesamiento

y exactitud.

E.4.1 Técnicas AQP en línea

El objetivo de esta tesis es seleccionar el subconjunto de datos relevantes que

permita obtener resultados válidos con las consultas realizadas. De esta manera,

aplicar AQP a nuestros datos puede resultar en una pérdida de precisión, ya que

no todos los elementos y conexiones serán considerados en la aproximación. Por el

contrario, tratar de tener en cuenta toda la información relevante puede resultar en

un tiempo de respuesta inaceptable o en la necesidad de contar con más recursos

(por ejemplo, memoria) de los que se dispone. Por eso, el objetivo es encontrar

un equilibrio adecuado entre el rendimiento de las consultas y la precisión de sus

resultados. Para ello, se necesita responder a dos preguntas: (a) ¿cómo seleccionar el

subconjunto de datos que es relevante para una consulta determinada?; y (b) ¿cómo

estimar el error que cometemos al descartar algunos de los datos de entrada? Este

problema puede aplicarse en aquellos sistemas que tratan con grandes cantidades

de datos y no necesitan resultados extremadamente precisos. Un ejemplo de esto

es el sistema de recomendación de Amazon, cuyo metamodelo se presenta de forma

simplificada en la Figura E.3.

Con respecto al procesamiento de consultas aproximadas, se utilizan dos tipos

de técnicas de AQP. Estas son las técnicas en línea con el procesamiento y las

técnicas de preprocesamiento. Las primeras se realizan al momento de procesar los

datos, mientras que las segundas realizan un cálculo inicial antes de la ejecución de

las consultas y almacenan esta información para ser utilizada en el procesamiento.

En esta sección abordamos las técnicas AQP en línea con el procesamiento. En

concreto exploramos tres posibles aproximaciones, que son las aproximaciones

aleatorias, temporales y espaciales.

Aproximaciones espaciales

En nuestro enfoque, los datos estructurados en grafos implican que los objetos

están vinculados entre sí a través de diferentes tipos de relaciones. De esta manera,

podemos navegar por un modelo comenzando en un objeto y atravesando las

relaciones existentes. Para aclarar esto, definimos el concepto de salto. Un salto

es la navegación de un objeto a otro por la relación que los vincula. Por ejemplo,

289

Apéndice E. Resumen

Figura E.3: Metamodelo de ejemplo de Amazon.

observando el metamodelo de la Figura E.3, a partir de un pedido podemos

determinar el área geográfica a la que está destinado en un salto, navegando por la

relación isDestinedTo. Además, los objetos se pueden conectar a otros objetos del

mismo tipo. Por ejemplo, desde un área geográfica podemos llegar, en un salto, a

todas sus áreas geográficas vecinas, a través de la relación de neighbors. De esta

forma, en dos saltos, podemos llegar a todas las áreas geográficas que sean vecinas

de sus vecinas, etc. A partir de esto, podemos obtener ventanas espaciales partiendo

de un objeto y considerando otros objetos alcanzables en n saltos.

Aproximaciones temporales

Dado que los datos entrantes se etiquetan generalmente con una marca de

tiempo, que indica el momento en el que ocurren, y los flujos de datos pueden consi-

derarse infinitos (tengamos en cuenta, por ejemplo, toda la información almacenada

en Facebook durante su vida útil), podemos crear ventanas temporales filtradas

por la marca de tiempo de los datos. Generalmente, la consulta determinará una

ventana temporal, ya que las consultas se suelen centrar en un intervalo de tiempo

específico. La idea es reducir el modelo completo seleccionando un subconjunto del

290

E.4 Mejora del rendimiento empleando técnicas en línea con el procesamiento

modelo que viene determinado por la ventana temporal. Sin embargo, podemos

estar interesados en aplicar una aproximación temporal adicional al modelo origen

para obtener un modelo aproximado. De esta manera, partiendo de una ventana

temporal (ti, te) de tamaño N donde ti es el tiempo inicial y te es el tiempo final de

la ventana, es posible procesar solo un subperíodo de tiempo (tai, tae) con tamaño

n donde (tai , tae) ⊆ (ti, te) y n < N .

Aproximaciones aleatorias

Otra forma de obtener modelos aproximados es aplicando técnicas de muestreo

aleatorio, lo que implica que la decisión sobre qué elementos del modelo completo

conformarán el modelo aproximado se toma al azar. Por ejemplo, podemos asignar

una probabilidad a cada elemento del modelo para que se incluya en el modelo

aproximado. Además de esto, también se pueden hacer aproximaciones por tipo

de elemento (por ejemplo, se podría determinar que solo el 30% de los pedidos se

incluyan en el modelo aproximado). En el caso de esta tesis, se ha implementado la

primera propuesta. Por supuesto, las aproximaciones aleatorias se pueden combinar

tanto con aproximaciones temporales como con aproximaciones espaciales.

E.4.2 Medidas de precisión

Dado que estamos sacrificando precisión para obtener rendimiento, un aspecto

muy importante de nuestro enfoque es poder medir ambos. Consideramos el

rendimiento en términos de tiempo de ejecución de las consultas. Con respecto a

la precisión, empleamos los términos de precisión, exhaustividad y exactitud [81].

Estas tres medidas se definen mediante fórmulas que incluyen los conceptos de

Verdaderos Positivos (TP, por el término en inglés True Positive), Falsos Positivos

(FP), Falsos Negativos (FN) y Verdaderos Negativos (TN, por el término en inglés

True Negative). Según esto, las tres medidas de precisión se pueden calcular de la

siguiente manera [81]:

• Exactitud: en nuestro contexto, describe el efecto de FP y FN cuando se

ejecutan consultas en el modelo aproximado. Se calcula de la siguiente

manera: Exactitud = (TP + TN)/(TP + TN + FN + FP).

291

Apéndice E. Resumen

• Precisión: esta medida es útil para determinar qué tan preciso es el modelo

cuando los FP son costosos. Por ejemplo, en la detección de correo no deseado,

un FP puede provocar la pérdida de información importante cuando un

correo electrónico que no es spam se identifica como spam. Se calcula de la

siguiente manera: Precisin = TP/(TP + FP).

• Exhaustividad: esta medida calcula la precisión del modelo cuando los FN

son costosos. Por ejemplo, un FN en la detección de enfermedades puede

tener consecuencias catastróficas en la vida del paciente. Se calcula de la

siguiente manera: Exhaustividad = TP/(TP + FN).

E.4.3 Evolución del rendimiento y precisión con modelos apro-

ximados

Lógicamente, ejecutar las consultas en los modelos aproximados es más rápido

que ejecutarlas en el modelo completo. Sin embargo, estamos interesados en com-

probar cómo es la ganancia de rendimiento (entendido en términos de tiempo de

ejecución), dependiendo del tamaño del modelo completo y la distribución de los

datos. Esto conlleva, además, el cálculo de los tres parámetros elegidos para medir

el error de los resultados, explicados previamente. Para ello, hemos llevado a cabo

una serie de experimentos empleando Gremlin sobre distintos tamaños de modelos

del ejemplo mostrado en la Figura E.3 (entre 2 y 16 millones elementos) con los tres

tipos de aproximaciones. Además, hemos agrupado los modelos fuente en dos lotes.

En primer lugar, un lote A en el que los datos se distribuyen uniformemente a lo

largo un mes. En segundo lugar, un lote B donde los datos se centran principalmente

en la primera semana.

En todos los experimentos se ha medido el tiempo de ejecución y el número de

elementos devueltos por la consulta sobre distintos tamaños de modelos aproxima-

dos, cada uno de ellos de mayor tamaño que el anterior hasta alcanzar el tamaño

del modelo completo. Para las aproximaciones aleatorias consideramos tamaños de

modelo aproximado desde el 10% al 100% del total con incrementos de 10% entre

uno y otro. En el caso de las aproximaciones temporales consideramos tamaños del

modelo que comprenden de 3 a 30 días con incrementos de 3 días entre uno y otro.

Finalmente, las aproximaciones espaciales comprenden modelos aproximados con

ventanas espaciales de 100 a 900 saltos con incrementos de 100 saltos entre uno

292

E.4 Mejora del rendimiento empleando técnicas en línea con el procesamiento

y	=	8482.9x	+	10148

0
200
400
600
800
1,000
1,200
1,400
1,600
1,800

0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000
200,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned Lineal		 (Execution	time)

(a) Evolución del rendimiento con Q1.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	recall	250	K	- Batch	B

Recall Accuracy

(b) Exactitud y Exhaustividad con Q1.

0

5,000

10,000

15,000

20,000

25,000

0

5,000

10,000

15,000

20,000

25,000

30,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

Performance	Evolution	 250K	- Batch	B

Execution	time Elements	 returned

(c) Evolución del rendimiento con Q2.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Pr
ec
isi
on

Accuracy	&	Precision	250	K	- Batch	B

Precision Accuracy

(d) Exactitud y precisión con Q2.

Figura E.4: Exactitud, Precisión y Exhaustividad con aproximaciones aleatorias.

y otro. En las figuras E.4, E.5, E.6 y E.7 se pueden observar algunos resultados

comparativos del tiempo de ejecución (gráficas a y c) y el error en términos de

precisión, exactitud y exhaustividad (gráficas b y d) obtenidos con los tres tipos de

aproximaciones. Para todas las gráficas se representan los siguientes parámetros:

modelo y lote (título de la gráfica) y tamaño del modelo aproximado considerados

de acuerdo a la aproximación empleada (eje X). Además las gráficas a y c de todas

las figuras representan el tiempo de ejecución con una línea azul (eje Y izquierdo)

y el número de elementos devueltos por la consulta con una línea naranja (eje Y

derecho). Finalmente, en las gráficas b y d viene representado el valor de precisión

o exhaustividad con una línea azul (eje Y izquierdo) y el valor de exactitud en gris

(eje Y derecho).

En todas las gráficas se puede observar que cuanto menor es el modelo apro-

ximado considerado, más rápido es el tiempo de ejecución. Esto significa que el

tiempo que emplea el motor Gremlin para filtrar los datos que componen nuestros

modelos aproximados compensa, ya que el motor ejecuta las consultas más rápido

con modelos más pequeños.

293

Apéndice E. Resumen

0

1,000

2,000

3,000

4,000

5,000

6,000

0

5,000

10,000

15,000

20,000

25,000
0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 62K	- Batch	A

Execution	time Elements	 returned

(a) Evolución del rendimiento con Q3 para
aproximación aleatoria.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	Recall	62K	- Batch	A

Recall Accuracy

(b) Exactitud y Exhaustividad con Q3 para
aproximación aleatoria.

0

1,000

2,000

3,000

4,000

5,000

6,000

0

5,000

10,000

15,000

20,000

25,000

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

days

Performance	Evolution	 62	K	- Batch	A

Execution	time Elements	 returned

(c) Evolución del rendimiento con Q3 para
aproximación temporal.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 6 9 12 15 18 21 24 27

Ac
cu
ra
cy

Re
ca
ll

days

Accuracy	&	Recall	62K	- Batch	A

Recall Accuracy

(d) Exactitud y Exhaustividad con Q3 para
aproximación temporal.

Figura E.5: Comparación entre aproximaciones temporales y aleatorias con datos
uniformemente distribuidos.

Por otro lado, considerando el tipo de aproximación, vemos que en las aproxi-

maciones aleatorias el tiempo de ejecución aumenta linealmente a medida que crece

el tamaño del modelo aproximado independientemente de si la consulta se ejecuta

en el lote A o B (obsérvense como ejemplo las figuras E.5a y E.6a). Con respecto

a las aproximaciones temporales podemos ver que los tiempos de ejecución no

presentan mucha variación de acuerdo a la distribución de los datos (figuras E.5c y

E.6c), y, además, ese tiempo de ejecución también crece linealmente. Sin embargo,

en las aproximaciones espaciales podemos ver que el tiempo de ejecución no crece

linealmente, sino que lo hace más rápido (obsérvese por ejemplo la Figura E.7c).

Esto es razonable, ya que un aumento lineal en el número de saltos implica un

aumento exponencial de los datos considerados en el modelo aproximado.

Tengamos en cuenta ahora los resultados de número de elementos devueltos

por la consulta, precisión y exhaustividad de las gráficas.Vemos que a medida que

aumenta el tamaño de los datos considerado en el modelo aproximado, representado

294

E.4 Mejora del rendimiento empleando técnicas en línea con el procesamiento

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

0

5,000

10,000

15,000

20,000

25,000

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 62K	- Batch	B

Execution	time Elements	 returned

(a) Evolución del rendimiento con Q3 para
aproximación aleatoria.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	&	Recall	62K	- Batch	B

Recall Accuracy

(b) Exactitud y exhaustividad con Q3 para
aproximación aleatoria.

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000

0

5,000

10,000

15,000

20,000

25,000

3 6 9 12 15 18 21 24 27 30

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

days

Performance	Evolution	 62K	- Batch	B

Execution	time Elements	 returned

(c) Evolución del rendimiento con Q3 para
aproximación temporal.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

3 6 9 12 15 18 21 24 27

Ac
cu
ra
cy

Re
ca
ll

days

Accuracy	vs	Recall	62K	- Batch	B	

Recall Accuracy

(d) Exactitud y exhaustividad con Q3 para
aproximación temporal.

Figura E.6: Comparación entre aproximaciones temporales y aleatorias con un foco
temporal en los datos.

en el eje horizontal, el número de elementos devueltos por las consultas (línea

naranja de las gráficas) comienza a estabilizarse. De esta forma, en el punto de

estabilización podríamos considerar que hemos alcanzado la cantidad de datos

necesaria para que un modelo aproximado sea óptimo, ya que los valores de precisión

y exhaustividad en cada caso son cercanos a 1.

Finalmente, observamos que en la mayoría de los casos los valores de exactitud

están muy cerca de 1. Esto se debe a la influencia de los TN en la ecuación

de exactitud. En consecuencia, el valor de exactitud no es lo suficientemente

descriptivo para representar la desviación producida al ejecutar la consulta en el

modelo aproximado frente a ejecutarla en el modelo completo.

295

Apéndice E. Resumen

0
50
100
150
200
250
300
350
400
450

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000
0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95 1.
0

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)
Performance	Evolution	 125	K	- Batch	B

Execution	time Elements	 returned

(a) Evolución del rendimiento con Q4 para
aproximación aleatoria.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.
1

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45 0.
5

0.
55 0.
6

0.
65

0.
70

0.
75 0.
8

0.
85

0.
90

0.
95

Ac
cu
ra
cy

Re
ca
ll

Accuracy	vs	Recall	125K	- Batch	B

Recall Accuracy

(b) Exactitud y exhaustividad para Q4 con
aproximación aleatoria.

0
50
100
150
200
250
300
350
400
450

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

100 200 300 400 500 600 700 800 900

El
em

en
ts
	re

tu
rn
ed

Ex
ec
ut
io
n	
tim

e	
(m

s)

hops

Performance	Evolution	 125K	- Batch	B

Execution	time Elements	 returned

(c) Evolución del rendimiento con Q4 para
aproximación espacial.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

100 200 300 400 500 600 700 800 900

Ac
cu
ra
cy

Re
ca
ll

hops

Accuracy	vs	Recall	125K	- Batch	B

Recall Accuracy

(d) Exactitud y exhaustividad para Q4 con
aproximación espacial.

Figura E.7: Comparación entre aproximaciones espaciales y aleatorias.

E.5 Mejora del rendimiento empleando técnicas de prepro-

cesamiento

En esta sección resumimos la última contribución de esta tesis, que consiste en

un algoritmo de preprocesamiento, llamado algoritmo SDR (por sus siglas en inglés

Source DataSet Reduction). Este algoritmo es capaz de manejar datos persistentes

y transitorios al mismo tiempo y tiene como objetivo mejorar el rendimiento de las

consultas reduciendo el conjunto de datos a procesar. Sin embargo, a diferencia de

las técnicas convencionales de AQP, reduce el conjunto de datos sin comprometer

la precisión de los resultados, es decir, puede producir respuestas completamente

correctas. Para ello, obtiene un subgrafo del conjunto de datos completo (es decir,

del modelo) con los elementos que son relevantes para una consulta determinada.

De esta manera podemos lograr aceleraciones de más de 100x para algunos tipos de

consultas, incluso en sistemas ya optimizados. El algoritmo se ejecuta una primera

vez antes de que se realice la consulta para obtener un subgrafo inicial. Después,

296

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

una versión incremental del algoritmo actualiza el subgrafo conforme se modifica el

grafo original. En la figura E.8 se muestra una visión general de nuestra propuesta

y todos sus componentes.

Figura E.8: Overall view of queries using the SDR algorithm.

E.5.1 Clasificación de las queries

La estrategia seguida por el algoritmo a la hora de reducir el conjunto de

datos de origen depende del tipo de consulta. Por este motivo, hemos definido

una clasificación que tiene en cuenta los operadores y cláusulas que constituyen

la consulta. A continuación, describimos los patrones más habituales que pueden

encontrarse en las consultas sobre grafos y que son relevantes para nuestro algoritmo.

Estos patrones se tratan de forma atómica, es decir, omitiendo cualquier otro patrón

que pueda estar presente.

• Patrón simple: las consultas que siguen un patrón simple obtienen la infor-

mación empleando solo las relaciones entrantes y salientes de los objetos y

filtros de propiedad. Por relación entrante y saliente nos referimos a una

297

Apéndice E. Resumen

navegación a través de una relación, mientras que un filtro de propiedad se

utiliza para obtener uno o más elementos del grafo según el valor de una

propiedad del objeto o la relación.

• Patrón de condición: las consultas que siguen un patrón de condicion se-

leccionan la información mediante una cláusula where, que implica una

subconsulta con la condición definida dentro de la cláusula.

• Patrón de Negación: las consultas que siguen el patrón de negación obtienen

la información mediante una condición not.

• Patrón conjuntivo: las consultas que siguen el patrón conjuntivo seleccionan

la información con una cláusula and que contiene dos o más predicados. La

consulta selecciona aquellos elementos que cumplen todos los predicados.

• Patrón disyuntivo: las consultas que siguen el patrón disyuntivo seleccionan

la información con una cláusula or que contiene dos o más predicados. La

consulta selecciona aquellos elementos que cumplen al menos uno de los

predicados.

• Patrón de agregación: las consultas que siguen el patrón de agregación en

primer lugar agrupan la información con operadores de agregación y luego

la filtran con un operador relacional.

E.5.2 Algoritmo SDR

Una vez definidos los tipos de patrones que se pueden encontrar en una

consulta, podemos explicar el funcionamiento del algoritmo SDR. Este algoritmo

está inspirado en el algoritmo PageRank de Google [96], que obtiene un ranking de

las páginas web más relevantes según el número de páginas que apuntan hacia ellas

y sus respectivos pesos. Estos pesos representan la probabilidad de que una persona

que haga clic aleatoriamente en enlaces web llegue a esta página. De manera similar,

el algoritmo SDR analiza una consulta para asignar un peso a todos los objetos

del grafo de acuerdo con su relevancia para la consulta. Como resultado devuelve

un subgrafo con los objetos que tienen un peso mayor que 0 y las relaciones entre

ellos. Estos elementos son considerados relevantes para la consulta.

298

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

Una consulta se compone de diferentes cláusulas, operaciones y filtros, que en

el contexto de este trabajo llamaremos pasos. Es decir, consideramos que un paso

es cualquier tipo de cláusula, filtro u operación que se aplica a los elementos de

un modelo según lo especificado por una consulta. De acuerdo con los patrones de

consulta presentados en la Sección E.5.1, consideramos ocho tipos de pasos: filtros

de tipo de elemento, filtros de propiedad, relaciones, operación and, operación or,

operación not, operación where y agregaciones. Un paso puede, a su vez, dividirse

en subpasos.

El algoritmo se ejecuta en paralelo en cada objeto, por medio del uso de

VertexProgram [120] de Tinkerpop, y ejecuta varias iteraciones.De esta forma, en

cada iteración se analiza un paso de la consulta y el objeto envía un mensaje a

través de las relaciones relevantes relacionadas con dicho paso y cuenta la cantidad

de mensajes que sus vecinos le enviaron en la iteración anterior. El peso se calcula

utilizando el número de mensajes recibidos y enviados. El flujo completo del

algoritmo SDR se muestra en el Algoritmo 4. Las entradas del algoritmo son la

consulta Q y el grafo G ; el resultado es el subgrafo con los objetos que son relevantes

para Q. Como se indicó anteriormente, el algoritmo SDR recorre los pasos de la

consulta en varias iteraciones. Para lograr esto, la función SDRVertexCentric(Q,

v) se ejecuta en cada objeto en paralelo.

Al igual que el algoritmo PageRank de Google, las dos primeras iteraciones

del algoritmo SDR son ligeramente diferentes al resto. El algoritmo SDR usa

la iteración inicial (función WeightInitialisation(s, v)) para calcular un peso

inicial de aquellos objetos que son relevantes para el primer paso de la consulta.

Para calcular este peso inicial, el algoritmo cuenta el número de relaciones que tiene

v con los objetos que son relevantes para el paso. Luego, en la segunda iteración

(función InWeightPropagation(s, v, weight)), los objetos informan, a través de

esas relaciones, a sus objetos vecinos sobre su peso actual. Las iteraciones restantes

(función FurWeightPropagation(s, v, weight)) calcularán los pesos de los objetos

de acuerdo con su relevancia para la consulta y las relaciones con los otros objetos

relevantes.

299

Apéndice E. Resumen

Algorithm 4: The main SDR algorithm
Data: A query Q and a Graph G(V,E)
Result: A subgraph SG(VSG,ESG)
1: v.weight = SDRVertexCentric(Q,v) ∀ v ∈ V
2: ListSGIds add {vw.id, vw.weight} ∀ vw ∈ V where vw.weight 6= 0
3: return SG = G − {vd ∈ V where vd.id /∈ ListSGIds}

Function SDRVertexCentric(Q, v)

1: Obtain the set S of steps of Q
2: iteration = 0, weight = 0
3: while iteration <= S.size do
4: guardCondition = true
5: if iteration == 0 then
6: s = S.get(S.size – 1)
7: weight = WeightInitialisation(s, v)

8: else
9: Select s = S.get(S.size – iteration)
10: if iteration == 1 then
11: weight = InWeightPropagation(s, v, weight)

12: else
13: weight = FurWeightPropagation(s, v, weight)

14: end if
15: end if
16: iteration++
17: end while
18: return weight

300

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

Function WeightInitialisation(s, v)

1: if s is property filter then
2: if v matches the filter then
3: pRel = previous relationship step of s
4: cNeighbors = No. neighbors of v through pRel
5: guardCondition = cNeighbors > 0?
6: else
7: guardCondition = false
8: end if
9: else if s is a relationship then
10: cNeighbors = No. neighbors of v through s
11: guardCondition = cNeighbors > 0?
12: else if s is a TraversalParent filter then
13: Obtain subqueries SQ from s
14: for q : SQ do
15: weightsSQ = SDRVertexCentric(q, v), q ∈ SQ
16: weight = TraversalParentType(weightsSQ)

17: end for
18: end if
19: if guardCondition then
20: weight = weight + cNeighbors
21: end if
22: return weight

Function InWeightPropagation(s, v, weight)

1: if s is relationship and weight > 0 then
2: Send messages through s
3: else if s is property filter or TraversalParent then
4: pRel = previous relationship of s
5: iteration++
6: if weight > 0 then
7: Send messages through pRel
8: end if
9: end if
10: return weight

301

Apéndice E. Resumen

Function FurWeightPropagation(s, v, weight)

1: cMessages = sum(received messages)
2: if cMessages > 0 then
3: if s is relationship then
4: cNeighbors = No. neighbors of v through s
5: guardCondition = cNeighbors > 0?
6: Send messages through s
7: else if s is a property filter then
8: pRel = previous relationship of s
9: iteration ++
10: if v match the filters then
11: cNeighbors=No. neighbors of v thru pRel
12: guardCondition = cNeighbors > 0?
13: Send messages through pRel
14: else
15: guardCondition = false
16: end if
17: end if
18: end if
19: if guardCondition then
20: weight = weight + cNeighbors + cMessages
21: end if
22: return weight

E.5.3 Algoritmo SDR incremental

Nuestro enfoque está diseñado para sistemas dinámicos que se actualizan

constantemente con nueva información. Ejecutar el algoritmo SDR principal en

todos los objetos cada vez que cambia el grafo es demasiado costoso en términos

de tiempo y memoria. Por esta razón, hemos desarrollado el llamado algoritmo

SDR incremental que actualiza los pesos de los objetos del grafo cuando se agregan

nuevos elementos o se actualizan o descartan elementos existentes. De esta manera,

el algoritmo principal SDR debe ejecutarse solo una vez al inicio y luego actualizarse

cada vez que cambia la información del grafo. El algoritmo SDR incremental se

muestra en Algoritmo 5. Cabe resaltar que el algoritmo SDR incremental solo

actualiza el peso de los objetos que llegan o se modifican en el sistema, ya que los

302

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

objetos eliminados no necesitan actualizar sus pesos. También actualiza el peso

de los objetos que pueden verse afectados debido a un cambio en la estructura del

grafo, es decir, los objetos a los que se puede acceder desde los objetos agregados,

actualizados o eliminados a través de las relaciones de la consulta.

Algorithm 5: The Incremental SDR algorithm
Data: A set of objects Vn, a query Q and a Graph G(V,E)
Result: A subgraph SG(VSG,ESG)
1: Obtain steps S from Q
2: Initialise an empty subgraph SGi(Vi,Ei)
3: for s : S do
4: if s represents a relationship then
5: SGi = SGi ∪ createSubGraph(s, Vn)

6: else if s represents a TraversalParent then
7: Obtain subqueries SQ from s
8: for q : SQ do
9: Obtain steps SSQ from q
10: for sSQ : SSQ do
11: if sSQ represents a relationship then
12: SGi = SGi ∪ createSubGraph(sSQ, Vn)

13: end if
14: end for
15: end for
16: end if
17: end for
18: vi.weight = SDRVertexCentric(Q, vi) ∀ vi ∈ Vi
19: ListWeights = get weight and id from SGi

20: Update ListSGIds with ListWeights
21: return SG = G − {vd ∈ V where vd.id /∈ ListSGIds}

Por lo general, se agregará, descartará o modificará más de un objeto en el

grafo al mismo tiempo, porque los eventos generalmente llegan en lotes. Por tanto,

las entradas del Algoritmo 5 son un conjunto de objetos Vn, la consulta Q y el

grafo G(V,E). El conjunto Vn contiene aquellos objetos que se agregan o actualizan

en el grafo más el conjunto de vecinos de los objetos eliminados, en caso de haberlos.

Como salida, el algoritmo devuelve el subgrafo actualizado SG para ser consultado

(línea 21).

El hecho de que el algoritmo SDR incremental solo tenga que actualizar los pesos

303

Apéndice E. Resumen

Algorithm 6: Function createSubGraph
Data: A step s and an a set of objects Vn
Result: A subgraph SG(VSG,ESG)
1: Initialise an empty subgraph SG(VSG,ESG)
2: nextr = s ∪ forward relationships of s
3: previousr = backward relationships of s
4: for n : nextr ∪ p : previousr do
5: SG = SG ∪ neighbors of Vn through n and p
6: end for
7: return SG

de los vecinos de los objetos recién añadidos, actualizados o descartados del grafo

no representa una sobrecarga de rendimiento significativa, ya que la complejidad

del algoritmo es O(v · r · n), donde v es el tamaño de Vn (es decir, el número de

elementos nuevos, actualizados o de vecinos de los elementos descartados), r es

el número de relaciones de s, y n es el número de vecinos de Vn a través de s.

Dado que estos números son normalmente pequeños, el tiempo de ejecución de

este algoritmo no es significativo en comparación con la ejecución de la consulta.

Además, este algoritmo incremental se ejecuta en paralelo con las consultas, por lo

que no afecta a su rendimiento.

E.5.4 Mejora del rendimiento con algoritmo SDR

Con el objetivo de demostrar que el algoritmo SDR efectivamente mejora el

rendimiento de las consultas sobre flujos de datos estructurados en forma de grafos,

se ha probado en tres casos de estudio. El primero de ellos es el ejemplo de Amazon

de la Figura E.3, compuesto por datos sintéticos, y los otros dos procedentes de

datasets reales, cuyos metamodelos se representan en las figuras E.9 y E.10. Con

cada uno de ellos hemos desarrollado consultas que consideran todos los tipos de

patrones expuestos en la sección E.5.1. Estas consultas se han probado en varios

tamaños de modelo empleando dos tipos de sistemas, uno con información estática

(que representaría una captura de los datos de un sistema dinámico en un instante

determinado) y otro con información dinámica.

304

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

Figura E.9: Metamodelo del NY Caption Contest

Sistema con información estática

Para el sistema estático se han medido tres parámetros: (i) tiempo de ejecución,

(ii) memoria consumida y (iii) número de elementos en el grafo y en el subgrafo.

Como ejemplo, en la Figura E.11 se representan los resultados para el tiempo

de ejecución y la memoria consumida en el caso de estudio de Amazon. Como

se puede observar, en todos los casos ambos parámetros son menores cuando la

consulta se ejecuta sobre el subgrafo que cuando se ejecuta sobre el grafo. Aunque la

mejora de rendimiento de las consultas que siguen patrones de agregación (figuras

E.11f y E.11g) es menor que la del resto de consultas. Esto es debido a que el

rendimiento para este tipo de patrones depende en gran medida del tiempo y

la memoria necesarios para resolver los filtros y operadores de agregación de las

consultas. Además, se puede observar que las consultas que contienen un patrón

de negación (figura E.11c) también presentan una mejoría de rendimiento menor

que las consultas que presentan patrones simples, condicionales, de conjunción o

de disyunción. Esto es debido a que cuantos más elementos cumplan la condición

impuesta por la cláusula not menor será el tamaño del subgrafo y mayor mejora del

rendimiento, es decir, que la mejora del rendimiento es directamente proporcional al

número de elementos que cumplen la condición. De esta forma, según los resultados

obtenidos en la figura E.11c, podemos concluir que el subgrafo obtenido para

este ejemplo contiene más elementos que los subgrafos obtenidos para el resto de

305

Apéndice E. Resumen

Figura E.10: Metamodelo del ejemplo de Youtube

consultas.

Con respecto a los tamaños del grafo y del subgrafo, en la Tabla E.5 se muestra,

para todos los casos de estudio, en cuánto se reduce el tamaño del subgrafo obtenido

con el algoritmo SDR en comparación con el tamaño del grafo origen. Este valor es

calculado como del ratio de elementos del grafo que se encuentran en el subgrafo.

De esta forma, a mayor valor del ratio menor será el número de elementos del grafo

que se encuentran en el subgrafo. En la tabla, podemos observar que las consultas

que siguen patrones simples, condicionales, conjuntivos y disyuntivos logran una

reducción de más del 90% en todos los casos y cerca del 100% en muchos de ellos.

Esto sugiere que, en estos casos, el algoritmo SDR obtiene un subgrafo que está

cerca del subgrafo mínimo requerido para ejecutar la consulta. Por el contrario, los

resultados no son tan buenos para las consultas que siguen el patrón de agregación.

Esto se debe al hecho de que la implementación del algoritmo no considera los pasos

de agregación para obtener el subgrafo, por lo que la reducción del tamaño depende

únicamente de los filtros de consulta que se encuentran antes del operador de

agregación en la consulta. De esta forma, cuanto más restrictivos sean estos filtros

menor será el tamaño del subgrafo. Además, como hemos comentado anteriormente,

la reducción lograda en el caso de consultas que siguen un patrón negativo depende

directamente del número de elementos que cumplen el predicado de la cláusula not.

306

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)
ProductPopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(a) Resultados para Q1 con
SDR (patrón Simple).

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

ProductPopularityC

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(b) Resultados para Q1 con
SDR y cláusula where (pa-
trón Cond.).

0
5
10
15
20
25

0
1,000
2,000
3,000
4,000
5,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

AlternativeCustomer

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(c) Resultados para Q2 con
SDR (patrón Neg.).

0
5
10
15
20
25

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000

2M 4M 8M 15M

M
em

or
y	
co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PackagePopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(d) Resultados para Q3 con
SDR (patrón Conj.).

0
5
10
15
20
25

0
3,000
6,000
9,000
12,000
15,000
18,000
21,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

SimProductsPopularity

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(e) Resultados para Q4 con
SDR (patrón Disj.).

0
5
10
15
20
25

0
100
200
300
400
500
600
700
800
900

1,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B)

Ex
ec
ut
io
n	
tim

e	
(m

s)

PrefCustomer

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(f) Resultados para Q5 con
SDR (patrón Aggr.).

0

5

10

15

20

25

0
100
200
300
400
500
600
700
800
900

1,000

2M 4M 8M 15M

M
em

or
y	
Co
ns
um

pt
io
n	
(G
B
)

Ex
ec
ut
io
n	
ti
m
e	
(m

s)

PrefCustomerSimProducts

Time	Subgraph Time	Graph

Memory	Subgraph Memory	Graph

(g) Resultados para Q6 con
SDR (patrón Aggr.).

Figura E.11: Performance results of the SDR algorithm for the Amazon queries.

Esto explica que el valor de la ganancia de reducción sea menor en este tipo de

consultas que en el resto.

Sistema con información dinámica

Con respecto al sistema dinámico, se han realizado dos tipos de experimentos. El

primero consiste en ejecutar la consulta de forma periódica sobre el grafo completo,

más concretamente cada vez que se añade un número determinado de registros.

Entendiéndose como registro un conjunto de elementos que están relacionados

entre sí. El segundo realiza una ejecución inicial del algoritmo SDR principal para

calcular un subgrafo inicial y, a partir de ahí, el algoritmo incremental se encarga

de actualizar dicho subgrafo a medida que se modifica el grafo original y la consulta

se ejecuta de forma periódica en dicho subgrafo (cada vez que se añade un número

307

Apéndice E. Resumen

Caso de estudio Nombre de la consulta Patrón Modelos

Amazon

2M 4M 8M 15M

ProductPopularity Simple 0.9912 0.9949 0.9973 0.9926
ProductPopularityC Cond. 0.9912 0.9949 0.9973 0.9926
AlternativeCustomer Neg. 0.4739 0.5140 0.4423 0.5206
PackagePopularity Conj. 0.9861 0.9921 0.9959 0.9880

SimProductsPopularity Disj. 0.9817 0.9895 0.9945 0.9859
PrefCustomer Aggr. 0.9039 0.8902 0.8815 0.8757

PrefCustomerSimProducts Aggr. 0.8970 0.8858 0.8790 0.8734

Contest

1M 4M 9M 12M 16M

RecentPart Simple 0.9663 0.9806 0.9898 0.9926 0.9942
ContestPart Cond. 0.9226 0.9803 0.9896 0.9924 0.9941
UnchosenCap Conj. 0.9086 0.9668 0.9825 0.9872 0.9901

FunniestCaption Aggr. 0.8427 0.7657 0.7444 0.7429 0.7435
Abandon Aggr. 0.7721 0.7564 0.7525 0.7513 0.7506

FunniestCaptionU Aggr.&Conj. 0.8658 0.9548 0.9584 0.9603 0.8634

YouTube

2M 4M 6M 8M 10M 12M

GetAnimalVideos Cond. 0.9951 0.9951 0.9951 0.9951 0.9951 0.9951
NotPresent Neg. 0.9688 0.9683 0.9683 0.9685 0.9685 0.9685

AnimalPerson Conj. 0.9946 0.9945 0.9945 0.9945 0.9945 0.9945
PresentSoon Conj. 0.9815 0.9817 0.9817 0.9817 0.9817 0.9816

Pets Disj. 0.9588 0.9582 0.9574 0.9573 0.9574 0.9578
InCast Aggr. 0.5456 0.5460 0.5464 0.5462 0.5464 0.5464

Cuadro E.5: Ratio de la ganancia de elementos cuando se usa el algoritmo SDR.

determinado de registros, como en el caso anterior). En ambos sistemas, se ha

medido el tiempo de ejecución para el experimento completo. Nótese que, en el

caso en que se emplea el algoritmo SDR, se ha considerado el tiempo que tarda la

ejecución inicial del algoritmo. Con estos valores hemos calculado la ganancia del

tiempo de ejecución sobre el subgrafo con respecto al tiempo de ejecución sobre el

grafo para ver en qué momento se ve compensada la ejecución inicial del algoritmo

SDR. Los resultados para el caso de estudio de Amazon se muestran en la tabla

E.6, donde β es el número total de registros agregados por experimento, mientras

que α representa el tamaño del lote de registros nuevos que han llegado al sistema

cada vez que se ejecuta la consulta. Esto significa que, para un valor constante

de α, cuanto mayor es el valor de β, mayor es el número de veces que se ejecuta

la consulta en cada experimento. En las tablas se resalta en negrita el punto en

el que la ganancia de tiempo se vuelve positiva, que depende del valor de β, es

decir, el punto en el que la ejecución inicial del algoritmo SDR se ve compensada.

Como se puede observar la ganancia de tiempo, en otras palabras la rapidez con

que se alcanza el punto de equilibrio, es directamente proporcional al valor de β e

inversamente proporcional al valor de α. Además, dicha ganancia también aumenta

308

E.5 Mejora del rendimiento empleando técnicas de preprocesamiento

con el tamaño del modelo.

Query Name Models

α = 5 α = 10

β 2M 4M 8M 15M 2M 4M 8M 15M

ProductPopularity
(Simple)

50 -0.0274 -0.0104 0.0486 0.0155 -0.2043 -0.1492 -0.0649 -0.0986
100 0.1198 0.1834 0.2032 0.1875 -0.0176 -0.0220 0.0760 0.0602
150 0.1874 0.2274 0.2647 0.2718 -0.0101 0.0827 0.1272 0.1585
200 0.2021 0.2771 0.3018 0.3363 0.0656 0.1215 0.1821 0.1920
250 0.2053 0.3302 0.3414 0.3772 0.0721 0.1658 0.2175 0.2469

ProductPopularityC
(Conditional)

50 -0.0334 -0.0244 0.0119 0.0666 -0.2080 -0.1541 -0.1271 -0.0677
100 0.0704 0.1319 0.1468 0.2048 -0.0708 -0.0163 0.0456 0.0572
150 0.1546 0.2095 0.2110 0.2915 0.0347 0.0522 0.1095 0.1537
200 0.1930 0.2479 0.2586 0.3392 0.0232 0.0828 0.1402 0.1910
250 0.2145 0.2913 0.3001 0.3508 0.0588 0.1312 0.1728 0.2315

AlternativeCustomer
(Negative)

50 -0.2713 -0.2519 -0.1435 -0.1760 -0.2514 -0.2908 -0.2229 -0.1628
100 -0.0989 -0.1047 -0.0367 -0.0555 -0.1472 -0.1421 -0.1212 -0.0990
150 -0.0805 -0.0218 0.0006 0.0034 -0.0985 -0.0880 -0.0805 -0.0337
200 -0.0461 0.0186 0.0283 0.0522 -0.0588 -0.0535 -0.0486 -0.0290
250 -0.0280 0.0614 0.0728 0.1121 -0.0581 -0.0192 -0.0311 -0.0116

PackagePopularity
(Conjunctive)

50 -0.0778 -0.0850 -0.0113 -0.0107 -0.3188 -0.2222 -0.1674 -0.0938
100 0.0704 0.1187 0.1596 0.1632 -0.0485 -0.0714 -0.0594 0.0112
150 0.1396 0.2072 0.2123 0.2764 -0.0445 0.0305 0.0692 0.0792
200 0.1730 0.2486 0.2499 0.3607 0.0123 0.0585 0.0910 0.2189
250 0.1849 0.2927 0.2936 0.3875 0.0455 0.1282 0.1289 0.2496

SimProductsPopularity
(Disjunctive)

50 -0.0207 -0.0092 0.1372 0.1514 -0.2326 -0.1121 -0.1092 -0.0574
100 0.1525 0.1721 0.2617 0.2718 -0.0111 0.0096 0.0463 0.1414
150 0.2337 0.3121 0.3335 0.3965 0.0477 0.1059 0.1632 0.2507
200 0.2722 0.3508 0.3838 0.4497 0.0969 0.1861 0.1834 0.2659
250 0.3029 0.3918 0.4038 0.4753 0.0828 0.2052 0.2215 0.3278

PrefCustomer
(Aggregation)

50 -0.3316 -0.3102 -0.3002 -0.3041 -0.3724 -0.3595 -0.3509 -0.3238
100 -0.2860 -0.2479 -0.2088 -0.1554 -0.2951 -0.2926 -0.2500 -0.2115
150 -0.2145 -0.1989 -0.1652 -0.0751 -0.2395 -0.2121 -0.1850 -0.1140
200 -0.2006 -0.1295 -0.1283 -0.0547 -0.2191 -0.1526 -0.1230 -0.0772
250 -0.1826 -0.0999 -0.0932 -0.0185 -0.2061 -0.1125 -0.0984 -0.0440

PrefCustomerSimProducts
(Aggregation)

50 -0.2663 -0.2892 -0.2294 -0.3203 -0.3024 -0.3723 -0.2916 -0.3652
100 -0.2282 -0.2215 -0.1509 -0.1806 -0.2734 -0.2464 -0.2089 -0.2137
150 -0.1746 -0.1753 -0.1190 -0.1055 -0.2083 -0.1865 -0.1715 -0.1146
200 -0.1550 -0.0871 -0.1061 -0.0601 -0.1808 -0.1361 -0.1128 -0.0745
250 -0.1377 -0.0807 -0.0696 -0.0194 -0.1775 -0.1097 -0.0987 -0.0379

Cuadro E.6: Gain ratio when using the incremental algorithm in the Amazon case
study.

Considerando los diferentes patrones de consulta, podemos ver que las consultas

que contienen patrones disyuntivos logran la mayor ganancia, seguidas de las

consultas que contienen patrones simples y las consultas que contienen patrones

condicionales. Por otro lado, las consultas que contienen patrones conjuntivos tienen

una ganancia mayor que las consultas con patrones negativos y con patrones de

agregación.

309

Apéndice F
Conclusiones y Contribuciones

En este apéndice se exponen, en castellano, las conclusiones y contribuciones

principales derivadas tras la realización de esta tesis doctoral.

Como se ha mencionado a lo largo de este documento, uno de los principales

retos al trabajar con aplicaciones de generación y transmisión de datos es conseguir

una baja latencia en el procesamiento, lo que implica obtener respuestas rápida-

mente. Es precisamente esta característica la que motivó la primera contribución de

esta tesis, presentada en el Capítulo 3. En dicho capítulo presentamos un estudio

comparativo de 7 plataformas de procesamiento que son habitualmente usadas

para trabajar con grandes volúmenes de datos. Estas plataformas son TinkerGraph,

Neo4j, CrateDB, Memgraph, GraphFrames, OrientDB y JanusGraph. Además, se

compararon 4 lenguajes específicos de dominio para escribir las consultas, que son

Gremlin, Cypher, SQL y el DSL de GraphFrames. Nuestro objetivo era obtener la

mejor combinación de lenguaje y plataforma de procesamiento que se adaptara a

los siguientes requisitos: (i) permitiera realizar consultas y actualizar la informa-

ción lo más rápido posible para dar respuestas en tiempo real, (ii) pudiera hacer

frente a información estructurada en forma de grafos, y (iii) con un lenguaje que

311

Apéndice F. Conclusiones y Contribuciones

proporcionara una sintaxis clara para poder estudiar el tipo de consulta a ejecutar

sobre los datos.

Todas las tecnologías se evaluaron mediante dos casos de estudio con informa-

ción estructurada en forma de grafos. En los experimentos se comparó el rendimiento,

en términos de tiempo de ejecución, y la complejidad del lenguaje, en términos de

número de caracteres, operadores y variables internas. Los resultados mostraron

que las bases de datos de grafos son las tecnologías más eficientes para trabajar con

este tipo de información. Además, los lenguajes utilizados con estas bases de datos

presentan la sintaxis más simple. Por lo tanto, concluimos que la combinación más

adecuada para nuestros requisitos era TinkerGraph y Gremlin.

La segunda contribución principal se presentó en el Capítulo 4. Esta contribu-

ción aborda el procesamiento de consultas aproximadas de forma online cuando

se trabaja con flujos de información estructurados en grafos. Se propusieron tres

técnicas para mejorar el rendimiento al consultar modelos grandes, denominadas

aproximaciones temporales, espaciales y aleatorias. Las aproximaciones temporales

y espaciales seleccionan un subconjunto de la fuente de información mediante la

reducción de los rangos temporal y espacial, respectivamente, mientras que las

aproximaciones aleatorias agregan una probabilidad a cada elemento del grafo

para ser incluido en el subconjunto. Para encontrar el equilibrio correcto entre la

pérdida de precisión derivada de estas aproximaciones y la ganancia de rendimiento,

propusimos un método para medir la precisión. Este método se basa en los términos

de exactitud, exhaustividad y precisión.

Se utilizaron dos distribuciones de datos diferentes en los experimentos del Ca-

pítulo 4, con el fin de analizar cómo esta característica afecta a las aproximaciones.

Los resultados concluyeron que es posible mejorar el rendimiento empleando aproxi-

maciones y se puede adquirir un valor de precisión óptimo cuando se considera solo

una parte del modelo fuente. Sin embargo, las aproximaciones temporales son la

opción más conveniente cuando los datos presentan un enfoque temporal. Además,

las aproximaciones aleatorias mostraron un rendimiento similar independientemen-

te de la distribución de datos y sus experimentos demostraron que son la mejor

opción cuando una consulta no contiene filtrado temporal o espacial. Finalmente,

los resultados de las aproximaciones espaciales mostraron que son muy costosos en

términos de tiempo de ejecución y solo se amortizan cuando no hay otra opción

viable.

312

La última contribución se presentó en el Capítulo 5. Este capítulo aborda el

procesamiento de consultas aproximadas offline para mejorar el rendimiento de

las aplicaciones de transmisión de datos. Para lograrlo, diseñamos y desarrollamos

el algoritmo de Reducción del Conjunto Origen de Datos (SDR, por sus siglas en

inglés Source Dataset Reduction). Este algoritmo optimiza el rendimiento de las

consultas sobre flujos de datos estructurados en grafos, al seleccionar un subgrafo

del modelo de origen. Este subgrafo contiene los datos que son relevantes para la

consulta y, por lo tanto, la consulta se puede ejecutar de manera más eficiente.

Dado que los elementos contenidos en el subgrafo dependen de la estructura de la

consulta, se identificaron seis patrones que se pueden encontrar en las consultas

sobre grafos. Estos patrones son: (i) simples, (ii) condicionales, (iii) de conjunción,

(iv) de disyunción, (v) negativos y (vi) de agregación. Dado que nuestro enfoque

está diseñado para trabajar con flujos de información, desarrollamos una versión

incremental del algoritmo, llamada Incremental SDR. Este algoritmo actualiza el

subgrafo a medida que llega nueva información al sistema.

Se utilizaron tres casos de estudio para validar nuestra propuesta. Los resultados

mostraron que al consultar el subgrafo obtenido con el algoritmo SDR en lugar

de todo el grafo se logra una mejora del rendimiento para todos los patrones de

consulta. De hecho, algunos patrones solo necesitan consultar un subgrafo que

contiene únicamente el 1% de los elementos del grafo original. En concreto, los

patrones de consulta en los que la ganancia de tiempo es mayor son, por este orden,

disyuntivo, condicional, simple, conjuntivo y negativo. Sin embargo, las consultas

que siguen patrones de agregación se comportan de forma ligeramente diferente

al resto, ya que dependen de los filtros y operadores de agregación que contienen.

Además, también demostramos que las mejoras de rendimiento aumentan con

el tamaño del grafo original, así como con el número de veces que se ejecuta la

consulta.

Por lo tanto, nuestro enfoque ha demostrado que es posible obtener la mejor

compensación entre la exactitud de los resultados y el rendimiento del procesa-

miento. Por esta razón, consideramos que esta tesis proporciona una respuesta a

la pregunta de investigación propuesta en la Sección 1.1 (¿Podemos obtener una

buena (u óptima) compensación entre rendimiento y pérdida de precisión al procesar

cantidades muy grandes de información?) y también logra los objetivos esperados.

313

	List of Figures
	List of Tables
	Glossary
	Introduction
	Motivations and Goals
	General Goals
	Specific Goals

	Contribution
	Outline

	Background
	Model-Driven Engineering
	History
	Main concepts

	Data Streaming Applications
	Complex Event Processing
	Approximate Query Processing

	Graph-structured information
	Models as graphs
	Graph processing platforms

	Comparison and Performance Evaluation of Processing Platforms
	A running example
	Processing platforms
	Neo4j
	JanusGraph
	OrientDB
	TinkerGraph
	Memgraph
	CrateDB
	Apache Spark. GraphFrames

	Query Languages
	SQL
	Cypher
	Gremlin
	GraphFrames

	Performance Analysis and Evaluation
	Research Questions
	Case studies
	Experimental Setup
	Results
	Threats to validity

	Related work
	Summary

	Improving Performance with Online Techniques
	A running example
	Approach
	Main concepts
	Online AQP Techniques
	Measures for accuracy

	Performance Analysis and Evaluation
	Research Questions
	Experimental Setup
	Results
	Discussion
	Threats to validity

	Related Work
	Summary

	Improving performance with Offline techniques
	A running example
	Classification of queries
	Simple filter pattern
	Condition pattern
	Negation pattern
	Conjunctive pattern
	Disjunctive pattern
	Aggregation pattern

	The SDR algorithm
	The main SDR Algorithm
	Incremental SDR Algorithm

	Performance Analysis and Evaluation
	Research Questions
	Case Studies
	Experimental Setup
	Experiments and data collected
	Functional Correctness

	Results
	RQ1: Graph size reduction
	RQ2: Performance improvement
	RQ3: Execution time gains with data streams
	SDR algorithm and Indexing techniques
	Threats to Validity

	Related Work
	Summary

	Conclusions and Future Work
	Summary and Conclusions
	Publications
	Publications Supporting this Dissertation
	Further Publications

	Future Work
	Online techniques
	Offine techniques
	Mixed techniques

	Bibliography
	Results and queries for the comparison of Processing Platforms
	Queries for processing platforms
	TwitterFlickr queries with effect
	TwitterFlickr queries without effect
	TrainBenchmark queries with effect
	TrainBenchmark queries without effect

	Additional charts and tables displaying TrainBenchmark results

	Results for Online AQP techniques
	Results for Batch A
	Q1 - Random approximation
	Q2 - Random approximation
	Q3 - Random approximation
	Q3 - Temporal approximation
	Q4 - Random approximation
	Q4 - Spatial approximation
	Q5 - Spatial approximation

	Results for Batch B
	Q1 - Random approximation
	Q2 - Random approximation
	Q3 - Random approximation
	Q3 - Temporal approximation
	Q4 - Random approximation
	Q4 - Spatial approximation
	Q5 - Spatial approximation

	SDR Algorithm Execution
	ProductPopularity with SDR algorithm
	Traversals with SDR algorithm
	Where Step
	Not Step
	And Step
	Or Step

	Results for Experiments with SDR algorithm and streams of information
	Additional charts and tables displaying experiments results

	Experiments Replicability
	Online Techniques experiments
	Offline techniques experiments
	Configuration and execution
	Obtaining a subgraph
	Running a query over a graph or a subgraph
	Running the incremental SDR algorithm

	Resumen
	Motivación y objetivos
	Objetivos generales
	Objetivos específicos

	Contribuciones
	Comparación y evaluación del rendimiento de las plataformas de procesamiento
	Plataformas de procesamiento y lenguages de consulta
	Métodos de medición
	Parámetros de estudio

	Mejora del rendimiento empleando técnicas en línea con el procesamiento
	Técnicas AQP en línea
	Medidas de precisión
	Evolución del rendimiento y precisión con modelos aproximados

	Mejora del rendimiento empleando técnicas de preprocesamiento
	Clasificación de las queries
	Algoritmo SDR
	Algoritmo SDR incremental
	Mejora del rendimiento con algoritmo SDR

	Conclusiones y Contribuciones

