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ABSTRACT 

 

Syntheses and Applications of Soluble Polyisobutylene (PIB)-supported 

 Transition Metal Catalysts. (December 2008) 

Jianhua Tian, B.S., Liaoning Normal University, China;  

M.S., Dalian University of Technology, China 

Chair of Advisory Committee: Dr. David E. Bergbreiter 

 

Soluble polymer supports facilitate the recovery and recycling of expensive 

transition metal complexes.  Recently, polyisobutylene (PIB) oligomers have been found 

to be suitable polymer supports for the recovery of a variety of transition metal catalysts 

using liquid/liquid biphasic separations after a homogeneous reaction.  Our work has 

shown that PIB-supported Ni(II) and Co(II) β-diketonates prepared from commercially 

available vinyl terminated PIB oligomers possess catalytic activity like that of  their low 

molecular weight analogs in Mukaiyama epoxidation of olefins.  

Carboxylic acid terminated PIB derivatives can act as carboxylate ligands for 

Rh(II) cyclopropanation catalysts.  An achiral PIB-supported Rh(II) carboxylate catalyst 

showed good activity in cyclopropanation of styrene in hydrocarbon solvents, and could 

be easily recycled nine times by a post reaction extraction.  Further application of PIB 

supports in asymmetric cyclopropanation reactions were investigated using PIB-

supported arenesulfonyl Rh(II) prolinates derived from L-proline as examples.  The PIB-

supported chiral Rh carboxylates demonstrated moderate activity and were recovered 
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and reused for four to five cycles.  The prolinate catalyst prepared from PIB-anisole also 

showed encouraging enantioselectivity and about 8% ee and 13% ee were observed on 

trans- and cis-cyclopropanation product respectively.  

Finally, PIB oligomers can be modified in a multi step sequence to prepare PIB-

supported chiral bisoxazolines that can in turn be used to prepare active, recyclable PIB-

supported Cu(I) bisoxazoline complexes for olefin cyclopropanation.  These chiral 

copper catalysts showed moderate catalytic activity and good stereoselectivity in 

cyclopropanation of styrene.  A chiral ligand prepared from D-phenylglycinol provided 

the most effective stereo control and gave the trans- and cis-cyclopropanation product in 

94% ee and 68% ee respectively.  All three PIB-supported chiral bisoxazoline-Cu(I) 

catalysts could be reused five to six times. 
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CHAPTER I 

INTRODUCTION 

 

Liquid/liquid separations are ubiquitous in chemistry.  Indeed most organic 

reactions involve a gravity separation of two phases of different density and polarity in 

the work-up steps.  This same concept of separations also has precedent in homogeneous 

catalysis for separation of catalysts and products too.1  Processes like the SHOP process 

and later processes like the Ruhrchemie/Rhone–Poulenc (RCH/RP) oxo process 

commercialized in 1980s,1,2 advantageously immobilize a catalyst in one of the two 

liquid phases to facilitate catalyst recovery and reuse.  More recent biphasic systems that 

use organic solvents,3,4 fluorous solvents,5 ionic liquids6 and supercritical fluids7 have 

been developed and used in a variety of catalytic transformations over the past two 

decades.  The use of soluble polymer supports to bind a catalyst and ensure high levels 

of catalyst and ligand recovery in liquid/liquid separations in biphasic liquid/liquid 

systems is a more recent concept.  

When a liquid/liquid separation is used, the polymeric catalysts are isolated as a 

solution at the separation stage.  As was true for solid/liquid separation strategies that 

used soluble polymer facilitated catalysis, catalytic reactions prior to the separation 

process often involve single phase conditions.  However, sometimes reactions are carried 

out under biphasic conditions.  In some of those cases, partial misciblization occurs or  

the polymeric catalyst’s phase selective solubility is different during the catalytic 
 
____________ 
This dissertation follows the style of Journal of the American Chemical Society. 



 2

process.  In cases where the reaction involves a single solvent, an extraction is used to 

either remove the polymeric catalyst from the product or to remove the product from the 

catalyst.  With systems containing mixed solvents, a perturbation induced by a 

temperature change (a thermomorphic effect),8 a perturbation induced by addition of a 

small amount of a chemical perturbant (a latent biphasic system),9 or a perturbation 

induced by product formation (self disassembly)10 can lead to liquid/liquid biphase 

separation which can be followed by a liquid/liquid separation of the polymer-supported 

catalyst and product phases.  All liquid/liquid separations rely on a gravity based 

separation of two liquid phases to recover and separate the catalyst. All useful 

liquid/liquid separations require a soluble polymer-supported catalyst to have high phase 

selective solubility. 

As is true in some solid/liquid separations, liquid/liquid separations of mixed 

solvent systems can often be carried out without exposing the catalyst mixture to air or 

water.  This can be advantageous if the catalysts or their ligands are air or moisture 

sensitive because there is no need to open the reactor and transfer the reaction mixture to 

another container for a workup. 

The choice of solvents and polymers for liquid/liquid separations is affected by 

the catalytic process of interest.  First, solvents suitable for the catalytic process have to 

be used.  Second, if miscible solvents are used, they can be miscible under the reaction 

conditions but it must be possible to perturb this mixture so that it is biphasic during the 

separation step.  Third, if a thermomorphic, latent biphasic, or self disassembling 

separation is used, it has to be experimentally practical to separate the two liquid phases.  



 3

For example, formation of a biphase with two solvents nearly equal in density will yield 

an emulsion whose separation will be difficult.  Likewise, a liquid/liquid separation that 

only occurs far from ambient temperature would make a separation less practical.  

Fourth, the solvents used have to be acceptable.  Finally, liquid/liquid separations would 

not be feasible in some cases.  For example, while separation of heptane and aqueous 

ethanol is feasible in general, but it might be impractical if a particular product acted as 

an emulsifying agent for heptane and aqueous EtOH.   

The nature of the polymer support is another consideration if liquid/liquid 

separations of a polymer-supported catalyst and product are to be effective. For a 

liquid/liquid separation using soluble polymer supports, to be useful, the polymer-

supported catalyst must preferentially dissolve in one of the two phases and products in 

the other. Thus, polar polymer-supported catalysts are more suitable for preparing 

nonpolar products and vice versa. A more subtle facet of this issue is that while a soluble 

polymer and hence the polymer-supported catalyst can have very high (>99.99%) phase 

selective solubility in one phase of a liquid/liquid biphasic system, low molecular weight 

products often have some solubility in both phases.  Thus, some of the product is often 

‘lost’ to the catalyst-containing phase in the first few cycles of a liquid/liquid based 

recycling process involving a soluble polymer-supported catalyst.  This ‘loss’ of product 

can be mitigated by an extraction.  It is also arguably less important when a catalyst is 

recycled numerous times. 
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Water/Organic Biphasic Systems     

Water is generally considered to be the most environmental benign solvent. 

Many biphasic systems that include water as a solvent immobilize the catalyst in the 

aqueous phase.11 Because many organic products are insoluble in water, complete 

separation of catalysts from products can be achieved easily. However, a biphasic 

catalytic process can introduce kinetic problems.  In some cases, partial solubility of 

catalyst or substrate in the other phase or efficient mixing can alleviate these problems 

and reasonable reaction rates can be achieved.  This is the case in the 

Ruhrchemie/Rhone–Poulenc (RCH/RP) oxo process for the production of butyraldehyde 

from propene where a water soluble triphosphine ligated Rh(I) complex is used to 

catalyze the hydroformylation of alkenes.12 However, such chemistry is often restricted 

to a few substrates.  For example, in the RCH/RP process other more lipophilic 

substrates, e.g. larger 1-alkenes, are not readily hydroformylated. 

While many sorts of ionic or polar substituents can be used to make catalysts 

water soluble and thus amenable to aqueous biphasic catalysis, water-soluble polymers 

can be used too.  The discussion below will focus on the cases where a water-soluble 

polymer is used as a phase tag to insure that a catalyst is phase selectively soluble so that 

it can be separated and recovered by a liquid/liquid separation.   

Thermoregulated Phase Transfer Catalysis   

Poly(ethylene glycol) (PEGs) have been used as soluble polymer supports for the 

recovery and recycling of catalysts in homogeneous catalysis.  Like the poly(N-

isopropylacrylamide) (PNIPAM), which will be discussed later, PEG supports also 
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exhibit LCST (lower critical solution temperature) behavior.  However, unlike PNIPAM, 

PEGs often separate as an oil above their LCST.  This LCST behavior of PEGs in water 

has been used to design a process termed “thermoregulated phase-transfer catalysis” 

(TRPTC) by Jin’s group.13,14  Rhodium catalysts attached to these sorts of polymers have 

been successfully used in hydroformylation of higher olefins which are not suitable 

substrates in RCH/RP processes using a biphasic liquid/liquid mixture of water and an 

organic solvent.  In these TRPTC systems, the polymer-supported catalysts’ inverse 

temperature dependent solubility makes them soluble in an aqueous phase at a 

temperature below their LCST.  However, at their LCST the polymer’s solubility 

changes.  Since PEGs separate as an oil-in-water emulsion at their LCST, these polymers 

and catalysts bound to them can partition into the organic phase that is present.  In cases 

where the substrate is present in that organic phase, the reaction does not occur to any 

appreciable extent below this LCST because the catalyst concentration is low.  However, 

above the LCST, the catalyst concentration in the organic phase increases and reaction 

occurs.  Cooling after the reaction is complete allows the polymer-supported catalyst to 

partition back into the aqueous phase where it can be recovered. 

An example of thermoregulated catalysis is the hydroformylation of 1-decene in 

a water/toluene system using the PEG-supported P,N-bidentate triphenylphosphine 

ligand 1.15  In this case the catalyst was generated in situ by reaction of RhCl3.3H2O with 

1.  Catalytic reactions were carried out using 0.1 mol% of Rh catalyst at 120 °C and, 

under these conditions, essentially 100% conversion of alkene to aldehydes product was 
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seen.  A slight disadvantage to this system was a lower n:iso selectivity in the range of 

0.60-0.64 due to the increased alkene isomerization at the 120 °C reaction temperature. 

While the level of Rh leaching into product phase was not measured, good 

recycling efficiency was evident from the fact that after 20 cycles the yield of aldehyde 

and the TOF number of the catalyst were 94.4% and 189 h-1 as compared to 99% and 

198 h-1 in the first cycle.  The high recyclability of the Rh catalyst in the water phase 

suggests both a high phase selective solubility for the catalyst and good catalyst stability, 

a stability that the authors attributed to P-N chelation of Rh by the ligand.   

These recycling results suggest a high phase selective solubility for Rh 

complexes of the ligand 1 during the catalyst/product separation step.  However, this 

successful hydroformylation could not be solely attributed to the ligands’ LCST 

behavior.  Specifically, the biphasic hydroformylation reaction still occurred below the 

LCST.  When a Rh catalyst was prepared using 1 (LCST = 92 °C), a ca. 40% increase in 

conversion from ca. 65% conversion to ca. 85% conversion was seen as the biphasic 

toluene/water mixture of catalyst was heated through the LCST temperature (i.e. from 90 

to 100 °C).15  

N
(CH2CH2O)nH
(CH2CH2O)mH

PPh2
m + n = 45

O(CH2CH2O)25HPh2P

21  

Further studies of hydroformylation using catalysts that have LCST behavior 

showed that even a very hydrophobic internal alkene, oleyl alcohol, afforded a good 

(81%) yield of aldehyde products that decreased minimally to 78% through four cycles 

using a very simple monovalent PEG-phosphine ligand 2.16  
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A Ru complex of ligand 3 has also been used to reduce nitroarenes to aniline 

derivatives using CO as the reductant (eq. 1).17  While no analyses for Ru were reported, 

only a slight loss of activity over four cycles was observed when recycling these 

catalysts.    

SPh2P
O

O
N

(CH2CH2O)nH

(CH2CH2O)mH

3
NO2

Z   water/toluene

NH2

Z
10h, 140 oC, PCO = 4 MPa

Z = -Cl, -CN, -COCH3

Ru3(CO)12+0.1 mol%

 

Attempts at enantioselective hydroformylation of styrene under TRPTC 

conditions have been reported by Breuzard and co-workers.18  In this work, the catalysts 

were generated in situ by allowing a PEG-supported chiral phosphite ligand 4 or 5 

derived from (S)-binaphthol to react with [Rh(cod)2BF4] in an aqueous solution.  Very 

modest enantioselectivity, ca. 25% ee, was achieved using ligand 5.  Moreover, 

recycling was unsuccessful for either polymer-supported ligand.  This might be 

attributed to the use of relatively short PEG chains in the ligand syntheses.  

Alternatively, there could have been some catalyst decomposition. 31P NMR 

spectroscopic studies of recovered catalyst/ligand or ICP analyses for Rh might have 

addressed this issue but were not reported.   

4

O
O P(OCH2CH2)16-17OCH3

O
O

O
O

P(OCH2CH2)4-5OP

5
 

(1) 



 8

Smart catalyst that coupled a catalyst to a soluble responsive polymer were 

described by our group earlier in our efforts to develop recoverable catalysts.19,20  More 

recently, Davies and Stringer found that an aqueous solution of poly(alkene oxide)s 

(Poloxamers) can serve as a smart reaction medium that exhibits anti- or hyper-

Arrhenius behavior.21   In these cases, the polymer was not used in a catalyst recovery 

step.  Rather the highly temperature dependent critical micelle concentration (cmc) of 

these polymers was used to design systems where reactions were turned ON or OFF 

above a particular temperature.  For example, an exothermic reaction containing 

hydrophobic and hydrophilic reactants was turned OFF after all the hydrophobic reactant 

was transferred into micellar pseudophase formed at higher temperature. It was turned 

back ON once the reaction mixture was cooled.  More interestingly, hyper-Arrhenius 

behavior with a significantly accelerated reaction rate was seen in cases where the 

reactants and catalyst both partitioned into the micellar phase.    

Aqueous Biphasic Catalysts Separable by Extraction 

Saluzzo and coworkers reported another PEG-supported BINAP ligand 6 and its 

use in Ru-catalyzed aqueous biphasic asymmetric hydrogenation of ketones.22  The 

PEG-supported Ru catalyst was prepared in DMF by reaction of [RuCl2(benzene)]2 with 

6.  Initial tests of this Ru catalyst under aqueous biphasic conditions were conducted 

with acetophenone as a substrate in the presence of (S,S)-diphenylethylene diamine.  

After a biphasic reaction and pentane extraction of the product, the aqueous phase 

containing the Ru-catalyst was reused.  Recycling was evaluated in the hydrogenation of 

ethyl acetoacetate to form ethyl 3-hydroxybutanoate.  The polymer-supported Ru 
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catalyst could only be reused twice with a large decrease in conversion (from 100% in 

cycle 1 to 20% in cycle 2) and enantioselectivity (from 75% ee in cycle 1 to 56% ee in 

cycle 2). 

PPh2
PPh2

H
N

N
H

O
O

O
H3C

n

n = 110-113

1R

1R =
-H (70%)

O
O

O
H3C

n
(30%)

and

6
 

Another example of an aqueous biphasic system with PEG supports was 

described by Benaglia and coworkers.23 In their work, PEG-supported chiral 

bisoxazoline (Box) ligands 7a-c were prepared and used in Cu(OTf)2 catalyzed 

Mukaiyama aldol reactions between the trimethylsilyl ketene acetal of methyl 

isobutyrate and various aldehydes in aqueous media (eq. 2). Cu(II) catalysts ligated by 

either 7a or 7b showed that the reaction of the ketene acetal and benzaldehyde 

proceeded with the highest enantioselectivity (55% ee) with ligand 7b, a result that was 

comparable to results reported by Kobayashi with unsupported ligands in aqueous 

media.24  However, poor water-solubility of the aldehyde electrophiles led to relatively 

low synthetic yields. The use of ligand 7c slightly improved the enantioselectivity but 

did not affect the yield.  Higher yields were only seen with more polar aldehydes such as 

4-nitrobenzaldehyde perhaps because of solubility.  These more reactive aldehydes were 

used to study catalyst recycling. Catalyst recycling was in this case involved separation 

of the organic product from the aqueous solution of the catalyst by extraction of aqueous 

phase with diethyl ether.  The resulting aqueous phase containing the catalysts was 
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directly reused in a subsequent reaction cycle.  These experiments showed that catalysts 

that used ligand 7c could not be recycled (the ligand was partly soluble in diethyl ether). 

However, recycling Cu(OTf)2 complexed by 7b was successful with only modest 

decreases in yield (40% to 38%) and enantioselectivity (50% to 43% ee) through three 

cycles.  

OTMS

OMe
PhCHO+

7a, b, or c

H2O, 0 oC, 24 h
COOMe

Ph

OH
N N

O O

R R

Me

7a:  R = -CH(CH3)2

(OCH2CH2)40

MeOPEG5000P

P

=
7b:  R = -CH2Ph

7c:  R = -CH2Ph P =
(CH2)3O-O

(CH2)3O-O

Cu(OTf)2 +
30 mol%

 

Gao used a similar approach in extracting products from a PEG-supported Pd 

catalyst prepared from the bis(pyridylmethane) ligand 8 and Pd(OAc)2 in studying cross-

coupling reactions of aryl halides with either ArB(OH)2 or sodium tetraphenylborate.25   

These reactions were either carried out using PEG2000 or a PEG2000-H2O mixture as a 

solvent.  While the Pd catalyst ligated by 8 was successfully recycled 6 times using 

PEG2000 as solvent in cross-couplings with substituted aryl boronic acids after extracting 

the products with diethyl ether (eq. 3), ligand 8 was evidently not effective in stabilizing 

the Pd(0) catalyst in the PEG-water mixture as Pd black formed in the second cycle 

when water was used as a cosolvent.  This observation is not at all unique to this 

(2) 
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particular ligand.  Adventitious catalyst decomposition or inherent catalyst instability 

frustrates many attempts to recycle homogeneous catalysts.   

O O
N

N

N

N
8

PEG

 + (Cl or Br)
Z

PEG2000 (as solvent)

ZZ = -CH3; -COCH3

0.4 mol% Pd(OAc)2

-OCH3, -Br, -C(=O)H

Y

B(OH)2

Y

Y = -CF3, -OCH3, -CH3, -H

2 equiv K2CO3, 110 oC, 15 h

 

Aqueous biphasic catalysis and aqueous biphasic catalysis with polymer-

supported catalysts are both successful strategies for separation of catalysts and 

products.  However, satisfactory results with more hydrophobic substrates are 

problematic in either case.  A possible solution to this problem is the use of amphiphilic 

block copolymer supports that contain a hydrophilic water-soluble block.  This concept 

is illustrated by work where poly(2-oxazoline) copolymers were used to separate, 

recover, and recycle cross-coupling Pd catalysts 26,27 or Rh hydroformylation and 

hydrogenation catalysts.28,29  

Poly(2-oxazoline) copolymer-supported palladium (9) and rhodium (10) catalysts 

were prepared as shown in eq. 4 and 5.28,30  In these examples, the metal ligation 

involved an N-heterocyclic carbene ligand and the polymers were prepared using a Pd-

complex as a comonomer or by a post-polymerization coupling of a Rh complexed 

functional NHC ligand to a pendant -CO2H group.      

(3) 
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N

O
(CH2)n

N

O
CH3

N

O
(CH2)nH

NN CH3

PdI I

N N CH3H3C+

+

H3C
N N N N

OH3C

N
CH3

Pd
I

I
N

N
CH3

H3C

(CH2)nO

N

(CH2)nO
H1. CH3OTf

2.

3. K2CO3

x
y z

9a:  n = 4; x = 28; y = ca. 2; z = ca. 3   Mn = 3920 g/mol
9b:  n = 6; x = 29; y = ca. 2; z = ca. 3   Mn = 4400 g/mol
9c:  n = 8; x = 30; y = ca. 2; z = ca. 3   Mn = 4730 g/mol

HN

 

10

N(CH2)2OHNH3C

Rh
Br

H3C
N N N N

OH3C (CH2)8O

CH3

(CH2)4O

COOH

30
4 4

H3C
N N N

OH3C (CH2)8O

CH3

(CH2)4O

C

30
4 2 N

(CH2)4O

COOH

2 N

O

Rh
N

N

Br

CH3

O

DCC, DMAP rt, 18 h, CH2Cl2

(CH2)2

+

 

Unlike PEGs, these amphiphilic block copolymer-supported catalysts were not 

completely soluble in water.  Instead, these amphiphilic polymers formed micellar 

aggregates with a 15-nm hydrodynamic radius under the reaction conditions.  The 

polymer-supported Pd catalyst 9a-c showed good catalytic activity in the coupling of 

iodobenzene and styrene.  For example, ca. 93% of trans-stilbene was obtained after 3 

hours at 90 ºC using 0.67 mol% catalyst for 9a, b, or c.  In these cases, the spacer length 

(4) 

(5) 
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affected the catalytic activity of the pendant polymer-supported catalysts.  A minimum 

spacer length of six methylene groups was needed to reach the highest turnover 

frequency (TOF = 570 h-1).  Recycling of catalyst 9c was performed by a post reaction 

extraction with diethyl ether.  The initial yield of 80% in the first cycle reduced 

somewhat to 68% in the third cycle.  While the authors speculated that the lower activity 

might arise from residual diethyl ether left in the aqueous phase that prevented the 

solubilization of the substrates, other explanations for a decreased rate (catalyst 

decomposition, metal leaching) were not fully explored.  

The same catalyst used in Heck couplings was also effective in the Suzuki 

coupling reactions between iodobenzene and phenyl boronic acid.  The highest TOF 

number (5200 h-1) was achieved by using 0.1 mol% of catalyst 9c at 80 ºC.   In this case 

no results on catalyst recycling were reported.30 

The rhodium catalyst 10 was successfully reused four times in hydroformylation 

of 1-octene under aqueous biphasic conditions using a mixture of water and 1-octene 

where the substrate 1-octene was the organic phase.  The organic phase consisting of the 

aldehyde products was separated by decantation after the reaction and the denser 

aqueous catalyst-containing phase was directly reused for the next cycle.  Rh leaching 

into the product phase after the first cycle was measured by ICP-OES (inductively 

coupled plasma-optical emission spectroscopy).  The TOF varied from 1100 h-1 to 2350 

h-1 in the third cycle to 2360 h-1 in the fourth cycle.  These TOF values were similar to 

those seen for an analogous low molecular weight analog in benzene (TOF = 2400 h-1) 

measured in the same lab with a structurally similar Rh-carbene catalyst.  The authors 
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suggested that the initially lower TOF number in the first two cycles and variation of the 

n:iso ratio from 2.6 in the first cycle to 1.2 in the last two cycles were due to incomplete 

exchange of the bromide on rhodium for hydride in the initial cycles.  Analyses for 

bromide in the recovered catalysts that would have established this were not reported.  

The authors also noted some hydrolysis of the ester group that coupled the Rh-NHC 

complex to the polymer in 10 occurs over 18 h.  This resulted in a calculated loss of 

2.7% of the charged Rh in each 2 h reaction cycle.    

Similar water-soluble poly(2-oxazoline)-supported chiral Rh catalysts ligated by 

the polymers 11a and 11b also have been used in asymmetric hydrogenation reactions.29  

Hydrogenation of the acid 12a was less effective than hydrogenation of the ester 12b 

(eq. 6).  Using 11a as a ligand, 94% conversion and 85% ee was observed in 35 min with 

a Rh catalyst formed in situ.  Using 11b, the conversion was only slightly less (90%) 

with the same stereoselectivity with a similarly formed catalyst.  Recycling was only 

studied for a catalyst ligated by 11b and in hydrogenation of the ester 12b and in this 

case only once.  The only moderate conversions and no enantioselectivity seen with the 

acid 12a was explained in terms of the possible micelles that this amphiphilic polymeric 

catalyst might form and the lower solubility of the more polar acid substrate in these 

micelles.   
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H
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11a:  n = 2
11b:  n = 4

(CH2)nO
CO2H

2
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CO2R

NHCOCH3

H

CO2R

NHCOCH3

H

H2 (1 bar), H2O, rt, 40 min

12a: R = -H 12b: R = -CH3

Ph2P

Ph2P [Rh(cod)2]BF4

+

Rh/olefin = 1/50
 

The use of poly(N-vinylimidazole) (PVI) (13) as a recyclable organocatalyst for 

thiol additions to ,-unsaturated carbonyl compounds was recently described by the 

Beletskaya group.31  In this reaction (eq. 7), 10 mol% of PVI (75.3 kDa) in a EtOH-

water mixture was used to quantitatively effect a Michael addition of thiophenol onto 

methyl acrylate.  After the reaction, a diethyl ether extraction removed the product.  

Then additional water, EtOH, or reagents were added as needed.  Through four cycles 

the yield of thioether product was 100, 99, 100 and 100%.   

SH N

N

800

EtOH-H2O (3:2)
4 h, rt

10 mol%

13

OMe

O +
OMe

O

S
 

In general, polymer-supported catalysts are prepared from terminally 

functionalized or pendent group functionalized polymer supports.  Recently, Neumann 

and coworkers described using the interaction between atoms on the main chain and 

metal ions to support a homogeneous catalyst.32  In this research, polyethyleneimine 

(PEI, Mw = 10,000) was first alkylated with iodododecane and iodomethane using a ratio 

(6) 

(7) 
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of substrate PEI to alkylating agents of 10.5:1:7.4 (CH2CH2NH/C12H25I/CH3I).  The 

resulting alkylated PEI only contained tertiary amines and quaternary ammonium 

moieties based on 15N-1H heteronuclear multiple bond correlation spectroscopy.  Ionic 

immobilization of polyoxometalates such as Na12[ZnWZn2(H2O)2(ZnW9O34)2] and 

Na3(PO4[WO(O2)2]4) onto these water-soluble, randomly alkylated PEI supports 

afforded catalysts 14 and 15 respectively.  Unlike unalkylated PEI-supported 

polyoxometalates, these amphiphilic catalysts14 and 15 were very effective in many 

hydrogen peroxide mediated oxidation reactions with hydrophobic substrates in aqueous 

media as shown in eqs. 8-10. High conversions (>96%) were obtained in all these 

reactions.  The recyclability of these catalysts was demonstrated in epoxidation of 

cyclododecene with 14.  No apparent decrease of activity was observed over three cycles 

though the details of the liquid-liquid separation technique used in this case were not 

discussed in detail.   

N

N

R

R

N
N

N
N

N
R

N

N
R

N
RR

N
R R

Alkylated polyethyleneimine (PEI)

R = -C12H25

R

alkylated PEI/{PO4[WO(O2)2]4}3-

alkylated PEI/[ZnWZn2(H2O)2(ZnW9O34)]12-

14

15
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Organic/Organic Biphasic Systems 

Most organic reactions are still carried out in organic media.  Catalysts attached 

to phase selectively soluble polymer supports can be separated from products, recovered 

and reused in these systems just as they are in water/organic systems.  Three general 

schemes are used.  First, the reaction can be carried out in a mixture of immiscible 

organic solvents.  If the polymer-supported catalysts were phase selectively soluble in a 

phase different than that favored by the product, the separation would just involve a 

gravity separation after the reaction.  A second and possibly more useful scheme is to 

carry out a reaction under conditions where the solvent mixture used is a single phase.  

Then a phase separation could be triggered by a addition of another solvent, an additive 

or a temperature change.  Gravity separation would then serve to separate and recover 

the catalyst.  Again, a phase selectively soluble polymer-supported catalyst would be 

required and the product would have to be preferentially soluble in the non-catalyst 

containing phase.  Finally, a reaction can be run homogeneously in a single solvent.  

Extraction with an immiscible solvent can then remove the product or catalyst if the 

catalyst is phase selectively soluble in a solvent that is not a good solvent for the 

product. Phase selective solubility of polymers in one or the other phase of an 

(8) 

(9) 

(10) 
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organic/organic biphasic system is required for any of the above schemes to be viable.  

Fortunately, polymers often have excellent phase selective solubility – phase selective 

solubility that is subtly dependent on polymer microstructure.33,34  Polymers can be 

molecularly engineered to be soluble only in a polar phase or only in a nonpolar phase.  

Thus, these organic/organic separation schemes can in principle be implemented in 

many if not most solvent mixtures. 

Thermomorphic Polar Phase Selectively Soluble Polymers 

Thermomorphic separations using soluble polymers were first described by our 

group in 1998 using polar poly(N-isopropylacrylamide) (PNIPAM) polymer supports.8 

Subsequent to our initial work with PNIPAM-supported catalysts under thermomorphic 

conditions, we prepared both PEG and PNIPAM supported SCS-Pd complexes.35,36  The 

initial reports of their use in catalysis was discussed in our earlier review.37  While later 

studies showed that these complexes are precatalysts and not catalysts for Pd-catalyzed 

cross-couplings,38-40 low loadings of Pd complexes can be used in catalytic reactions to 

form products with high levels of separation of Pd from the cross-coupling products.  

For example, the PEG-supported SCS-Pd complex 16 was used in 90% aqueous 

dimethylacetamide (DMA)/heptane (1:2, vol:vol) in cross-coupling chemistry (eq. 11) 

under microwave conditions with reactions being complete in 10-30 min with as little as 

0.01 mol% catalyst.41   In this reaction, microwave heating caused the initial 

thermomorphic biphasic mixture to become miscible.  After the reaction, cooling 

reformed the biphasic mixture.  Separation of the polar phase recovered the complex 16 

and four recycles were carried out.  Pd leaching into the nonpolar heptane phase was 
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measured by ICP-MS and in a reaction using ca. 3 x 10-4 M Pd, the amount of Pd lost 

was < 0.5 % of the charged Pd.  

Pd

S

S

Cl

PEG350OMe

PEG350OMe
16

I
Z

X

X
Z+

Z = -H, -COOH
X = -COOH, -COOt-Bu, -COOMe, -Ph, N

90% DMA-heptane, Et3N
µW, 150 oC, 20 min

0.1-0.2 mol%

16

 

While the polar polymer-supported Pd complex 16 is effective in cross-couplings 

of aryl iodides and acrylates, the use of less expensive aryl bromides as substrates for C-

C coupling reactions is more attractive.  Hindered phosphine-ligated Pd catalysts are 

efficient in this process42  because the concentration of more coordinatively unsaturated 

Pd complexes is larger.43,44  This aspect of homogeneous Pd chemistry has been 

extended to thermomorphic polymeric systems using the PEG-supported hindered 

phosphine 17 to form a Pd catalyst for Sonogashira coupling reactions conducted in a 

DMSO/heptane (eq. 12).45  Unreactive aryl bromides were suitable substrates with this 

more hindered polymer-supported phosphine ligand.  This polymer-supported catalyst 

was successfully recycled through five cycles with overall yields >90%.  However, poor 

recyclability was seen when an aliphatic alkyne was used in place of phenyl acetylene in 

eq. 12.   The studies of recyclability of PEG-supported Pd catalyst were more thorough 

than most such studies.  First, the kinetics were examined for three bromoarene 

substrates – 4-bromoanisole, bromobenzene, 4-bromoacetophenone.  The TOF in the 

first cycles were 336, 440, and 1150 h-1 versus a TOF of 252, 312, and 880 h-1in the fifth 

cycles for these three substrates, respectively.  These differences were attributed in large 

(11) 
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part to oxidation of the Cu(I) cocatalyst to Cu(II) since the TOF values increased when 

fresh CuI was added to the reaction mixture.  Second, leaching of 17 or Pd into the 

heptane phase was negligible based on the absence of the characteristic resonance for the 

-CH2O- group of PEG on 1H NMR spectra of the nonpolar phase and analysis by X-ray 

fluorescence (XRF) for Pd.  Based on the sensitivity of the XRF analysis, the retention 

of both the palladium and copper species in the DMSO phase was estimated to be > 

99.995%. 

DMSO-heptane, 60 oC, 0.5-7 h

+

P+
H

MeOPEG-O

17
1 mol% Na2PdCl4, 0.7 mol% CuIR

R = -Ph, -Si(CH3)3, C6H13

Z = -COCH3, -CH3, -Cl, -H, -OCH3

R

BrZ

Z

2 mol%

 

Plenio’s group has also reported using the PEG-supported phosphine ligand 18 in 

Pd-catalyzed biphasic Sonogashira coupling reactions in a thermomorphic solvent 

mixture of a 5:2:5 (v:v:v) of CH3CN, Et3N, and heptane.45  In coupling of aryl iodides 

and acetylenes catalyzed with a catalyst derived from 18 (eq. 13) they noted that added 

Et3N affected the temperature-induced miscibility between CH3CN and heptane.  By 

introducing 20 vol% Et3N, full miscibility was achieved by heating to 80 ºC.  In the 

absence of this additive, CH3CN and heptane do not achieve full miscibility at this 

temperature.  However, while this strategy worked to make two otherwise immiscible 

solvents miscible, this initial miscibility could not be replicated in recycling experiments 

(12) 
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because of the formation of ammonium salt, an effect noted previously in other systems.9  

In this case, Plenio’s group simply added a stronger inorganic base, K2CO3, that would 

serve to deprotonate the ammonium salt as it formed.  Using this idea this group was 

able to recycle a Pd catalyst formed from ligand 18 five times with excellent overall 

yields (83% to 96%) with a variety of aryl iodides (Z = -CH3, -OCH3, or -Cl) and 

alkynes (R = -C4H9, or -SiEt3, -Ph). 

18

CH3CN-heptane-Et3N, 80 oC+ R

R
IZ

Z
 1 mol% PdCl2(CH3CN)2

K2CO3, 4 mol% CuI, 1.5 - 4 h

MeOPEG O PPh22 mol%

 

Recently, Wang and coworkers have reported a new thermomorphic system 

composed of PEG4000, toluene, and heptane as a solvent mixture for the 

hydroformylation of p-isobutylstyrene by a rhodium catalyst.46  In this system, the 

temperature at which miscibility is achieved is tunable by changing the weight ratio of 

the components.  For example, a biphasic PEG4000/toluene/heptane solvent system with 

2/3/1 ratio of components formed a monophase at 110 ºC.  Good yields (96%) and TOF 

numbers (384 h-1) were achieved at 120 ºC when using a rhodium catalyst formed in situ 

from RhCl3.3H2O and the PEG-phosphite derivative 19.  This PEG-phosphite-supported 

rhodium catalyst was recycled seven times by thermomorphic phase separation.  ICP-

OES analysis of the upper phase revealed about a third of the charged rhodium was 

leached into the product phase over the first three cycles.  Leaching then dropped to 3% 

in each of the subsequent cycles. The origin of this leaching was not determined.  It is 

possible that this higher metal leaching in the first several cycles might be a result of the 

(13) 
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polydispersity of the PEG used to prepare ligand 19 since others have shown that the 

molecular weight of a polymer support can affect its phase selective solubility in 

thermomorphic separations.36,47.  Such effects can be minimized if the polymer or the 

polymer-supported catalyst is first exhaustively purified using a continuous liquid/liquid 

extractor.36 

O
P

O
O(CH2CH2O)19C8H17

19  

In a follow up paper, this group described using a more PEG phase selectively 

soluble ligand P[(OCH2CH2)8OCH3]3 (20).48  In a study with the same solvents at 110 ºC 

but without Rh present, 0.4% of the charged ligand 20 leached into the nonpolar phase.  

This was a lower ligand leaching value than found for ligand 19 (2.2 %).   When a Rh 

catalyst was formed with the PEG derivative 20, it could be reused for nine cycles 

without any measurable decrease in activity.  As was true for a catalyst ligated by 19, 

rhodium leaching decreased after the first few cycles eventually stabilizing at ca. 1% 

leaching per cycle.  These results suggest that Rh leaching in these systems is not solely 

due to ligand loss. 

To further decrease rhodium leaching into the product phase of these 

thermomorphic hydroformylation reactions, a series of solvent mixtures were tested to 

determine which solvent mixture has the least ligand leaching using the PEG-supported 

phosphite ligand 20.49  A mixture of PEG400 and heptane (3 g each) were used as the 

solvents along with a series of organic cosolvents.  The best results for a thermomorphic 

system were seen when 3.15 g of 1,4-dioxane was used as a cosolvent.  In that case, a 
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thermomorphic system using ligand 20 showed only 0.05 mol% ligand was leached into 

the heptane phase under the conditions used for the hydroformylation reaction.  

The recycling efficiency of this optimized thermomorphic system was examined 

in the hydroformylation of 1-dodecene using ligand 20 with 1/1000 ratio of Rh/olefin.   

After 23 cycles, a catalytic system containing PEG-supported ligand 20 and Rh in a 

mixture of PEG400, heptane, and 1,4-dioxane still had high activity (94% yield).   Metal 

analysis of product phase using ICP-AES showed that though 1.1% of Rh leaching was 

detected in the first cycle, the average metal loss for the rest of the cycles was about 

0.65%, much less than seen previously.  However, while these results are much 

improved, the overall loss of Rh through 23 cycles would still be ca. 15%.  

Thermomorphic Nonpolar Phase Selectively Soluble Polymers 

The thermomorphic separations using soluble polymers first described by our 

group used polar polymers like PEG and PNIPAM.  However, polar polymer-supported 

catalysts in thermomorphic separations have an inherent problem in that both the 

products and byproducts of most reactions often preferentially accumulate in a polar 

phase.  This affects the conditions necessary for miscibility in a recycling experiment.  It 

also makes catalyst/product separation more problematic.  Thus, as our group continued 

to explore the idea of thermomorphic separations we focused most of our attention on 

nonpolar polymers for separation of catalysts and products.    

An advantage of poly(N-alkylacrylamide) supports is their phase selective 

solubilities are tunable by changing the structure of the alkyl substituents on the nitrogen 

atom.33,34  For example, in contrast to PNIPAM, poly(N-octadecylacrylamide) 
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(PNODAM) is a lipophilic polymer that has heptane solubility.  We prepared 

PNODAM-supported phosphine and SCS ligands using a procedure like that used earlier 

to prepare PNIPAM derivatives.  Metalation with Pd(PhCN)2Cl2 and Pd(dba)2 in 

refluxing THF then led to the Pd complexes 21 and 22 that had high nonpolar phase 

solubility.  The SCS-Pd complex 21 could be used in Heck reactions just like earlier 

PNIPAM-supported complexes.  While the actual catalyst has subsequently been shown 

to not be the SCS-Pd complex,38 reactions using 21 to form cinnamic acid from 

iodobenzene and acrylic acid could be repeated multiple times without any additional Pd 

source.   For example, after nine cycles conversion was still 90%.50    

O
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NHC18H371

10 21
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O
O
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O

NHC18H37
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(CH2)3
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Allylic substitutions that used the Pd(0) catalyst 22 were also reported. While 

five cycles with this catalyst were successful, gradual deactivation of the catalyst was 

observed based on the increase in reaction times from 1 h in cycle 1 to 52 h in cycle 5.  

In this case, the use of a soluble polymer allowed us to examine the catalyst after the 

reaction.  This 31P NMR spectroscopy analysis showed that oxidation of phosphine 

ligands during the reaction was the proximate cause of the catalyst deactivation.   

More recently, our group has begun to explore polyisobutylene (PIB) as an 

alternative to those polyethylene (PE) supports.  Vinyl terminated PIB is commercially 
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available51 and its vinyl end groups can easily be modified.52  More usefully, these PIB 

oligomers are soluble in many nonpolar organic solvents at room temperature.  Studies 

on phase selective solubility using methyl red and dansyl labeled PIB oligomers in a 

biphasic system consisting of 90% aqueous ethanol and heptane, revealed that these PIB 

derivatives are selectively soluble in heptane phase of these thermomorphic solvent 

mixtures to an extent of more than 99.6%.4,52 

The utility of PIB oligomers as nonpolar soluble supports was first demonstrated 

in the thermomorphic systems using Pd catalyzed cross-coupling reactions.  Both an 

SCS ligand and a phosphine ligand were attached to the terminus of a PIB oligomer and 

these PIB ligands were used to prepare the Pd species 23 and 24.40,53  Like other 

supported SCS-Pd(II) species, the PIB-SCS-Pd precatalyst 23 was only effective for aryl 

iodides as substrates in Heck chemistry that was carried out at 100 °C.  In these cases, an 

equivolume mixture of heptane and DMA was used as solvent.  This solvent mixture 

was miscible under the reaction conditions but immiscible at room temperature and the 

Pd in the heptane phase was separated and reused for three cycles without observable 

loss of activity.  Similar results were achieved in a Sonogashira reaction conducted at 70 

°C in a monophasic 90% aqueous ethanol and heptane mixture using the Pd catalyst 24 

formed from a PIB-supported phosphine and Pd2(dba)3.  

PIB
O

NH(CH2)3PPh2

24Pd
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Plenio’s group has also reported using nonpolar linear polystyrene-supported 

hindered phosphines 25 to form recoverable Pd catalysts.54,55   This polymeric ligand 

was used in mixtures of DMSO or nitromethane with cyclohexane (eq. 14) for 

Sonogashira chemistry or Suzuki couplings.  In the Sonogashira chemistry, the aryl 

bromide substrates included -COCH3, -CH3, -Cl, -H and -OCH3 substituents and 

phenylacetylene or 1-octyne were used as the alkynes.  In the Suzuki chemistry, 

Pd(OAc)2 was used as the Pd source, K3PO4 as the base, phenylboronic acid, and aryl 

bromides and chlorides with -COCH3, -H, -CN, and -OCH3 substituents as substrates.  In 

either case, the Pd catalyst ligated by the poly(4-methylstyrene)-supported hindered 

phosphine could be recovered in the cyclohexane phase.  Five cycles were carried out.  

The loss of Pd into the polar phase in either example was less than 0.2% of the charged 

Pd based on XRF and UV spectroscopic analysis.   

DMSO-cyclohexane, 60 oC
+

25
1 mol% PdCl2(PhCN)2,

R

R

BrZ

Z

2 mol%

2 mol% CuI, 2-12 h

P+
H

CH3

6

1
25  

Latent Biphasic Separations 

The use of temperature as a trigger to induce phase separation of solvents in a 

mixed solvent system is not always necessary.  Product formation or small amounts of 

additives can have a similar effect and this strategy has been used to advantage with 

several sorts of soluble polymer-supported catalysts. 

(14) 
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Polysiloxanes have been used as supports for the recovery of catalysts but are 

usually recovered by membrane filtration or solvent precipitation.56,57 Liquid/liquid 

phase separations are an alternative to this approach for separation/recovery/reuse of 

polysiloxane-supported catalysts.  The viability of this approach was demonstrated by 

the synthesis of several dye-labeled polydimethylsiloxanes 26 and 27 (eq. 15).58  The 

feasibility of liquid/liquid biphasic separation for both 26 and 27 were studied using 

either a thermomorphic mixture of heptane and DMF or a latent biphasic mixture of 

heptane and EtOH.  In these experiments, a heptane solution of the dye-labeled polymer 

was mixed with an equal volume of DMF or EtOH.  Heating in the first case generated a 

monophasic solution that on cooling had 97.6% (26) or 99.5% (27) of the dye in the 

heptane phase.  In the heptane/EtOH mixture, addition of 20 vol% water produced a 

biphasic mixture with 99.6% (26) or 99.5% (27) of the dye in the heptane phase.     
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Based on these results, a silane-terminated poly(dimethylsiloxane) was used to 

hydrosilate a Cinchona alkaloid.58  The product immobilized quinine derivative 28 was 

then used to catalyze Michael additions of thiophenols to α,β-unsaturated ketones and 

(15) 
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esters (eq. 16) in a equivolume of EtOH and heptane.  Recycling simply involved water 

addition followed by separation of the catalyst containing heptane phase.  This recycled 

heptane phase containing the polymer-supported quinine 28 afforded 80% to 100% 

yields of products for each cycle through five cycles.  No effort was made to optimize 

this chiral catalyst and only modest enantioselectivity was observed. 
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A polyisobutylene-supported Pd catalyst 24 was also successfully used in allylic 

substitution of cinnamyl acetate by secondary amines in a latent biphasic system (eq. 

17).  In this case, a mixture of EtOH and heptane was used as a solvent at room 

temperature and the separation was effected by addition of 10 vol% water.  This allylic 

substitution catalyst was successfully recycled five times.53  

R2NH2+
EtOH-heptane

rt, 20 h

R = -CH2CH3, -CH2CH2OCH2CH2-

1 mol% 24, Et3NOAc
NR2

 

Polystyrene (PS) is an attractive soluble polymer to use to support catalysts 

because of the many examples that use cross-linked polystyrene as a support for 

catalysts, reagents, and sequestrants.  However, while linear polystyrene or poly(4-

methylstyrene) can be used in some liquid/liquid separations, modified polystyrenes with 

(16) 

(17) 
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larger p-alkyl groups are more suitable because they have greater phase selective 

solubility.  This is illustrated by work that used poly(4-tert-butylstyrene) (PtBS) as a 

support.  This polymer, unlike polystyrene itself, is very soluble in heptane supports.  

This was shown with the dye-labeled polymers 29 and 30.  UV-visible spectroscopy 

showed that polymers with ca. 95 mol% tert-butylstyrene groups were 99.5 % nonpolar 

phase selectively soluble in mixtures of heptane and polar solvents in thermomorphic or 

latent biphasic systems.59    
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The use of PtBS in catalysis was demonstrated by the use of 29 and 30 as 

nucleophilic organocatalysts.  When 10 mol% of 29 was added to an equivolume 

mixture of heptane and EtOH containing 2-nitropropane and methyl acrylate, a Michael 

addition product formed (eq. 18).  After the reaction was complete, addition of < 10 

vol% water induced biphasic separation.  All of the catalyst 29 separated into the 

heptane phase based on visual absence dye in the polar phase.  In recycling, this heptane 

solution was separated and a fresh EtOH solution of nitropropane and methyl acrylate 

was added.  Five cycles in total were carried out.  The yields of product in cycles 3, 4, 



 30

and 5 were 69, 72, and 71%, respectively.  These yields are similar to those seen with a 

non-recyclable catalyst triphenylphosphine.   

H3C
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A second example of recyclability of a PtBS-supported catalyst was the use of 30 

in formation of a tert-Boc derivative of 2,6-dimethylphenol (eq. 19).  In this case, an 

equivolume mixture of EtOH and heptane was again used and phase separation was 

effected by adding a small amount of water (ca. 10% of the amount of EtOH).  This 

polymer-supported DMAP analog was reused through 20 cycles with an average isolated 

yield of product of 93%/cycle.  Other nonpolar polymers can be equally effective as 

supports for recoverable DMAP catalysts under latent biphasic conditions.  The 

PNODAM-supported DMAP catalyst 31 for example was used and recycled 6 times for 

acylation of 2,6-dimethylphenol by (Boc)2O.   Recycling of the catalyst was conducted 

in a 1:1 heptane-EtOH solvent system at room temperature with water addition used to 

perturb the system.  A thermomorphic system (heptane/DMF) could also be used to 

recover this catalyst.9  Likewise, the PNIPAM-supported DMAP catalyst 32 is also 

recoverable and reusable in systems where reversed phase selective solubility is desired 

in the catalyst/product separation step (32 is polar phase soluble).  

OH OBoc
(Boc)2O

1 mol% 30 or 31
EtOH-heptane, rt, 1 h

 

(18) 

(19) 
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Polymer-supported palladium catalysts 33 and 34 were both successfully used in 

Heck reactions.  These polymeric Pd catalysts were designed to be recoverable in either 

a nonpolar or polar phase, respectively, and incorporated a colorimetric ligand to 

facilitate visual analysis of catalyst recovery/separation efficiency.  While visual analysis 

of this colored Pd catalyst separation is possible, catalyst decomposition (Pd black 

formation) was observed during a Heck catalysis which makes these Pd complexes less 

useful in cross-coupling than others.60  
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Another example where a latent biphasic system with heptane phase recovery of 

a catalyst after addition of a small amount of water was used effectively is the atom 

efficient formation of an oxazoline from ethyl isocyanoacetate and benzaldehyde (eq. 

21).  This process was catalyzed both by the silver carboxylate catalyst 35 as well as by 

the SCS-Pd complex 21.9  Catalyst 35 was supported on a readily available alternating 

copolymer derived from maleic anhydride and an alkyl vinyl ether (eq. 20).  In this 

example, a phase selectively soluble hydrocarbon polymer was obtained by using 

octadecylvinyl ether as one monomer and by treating the maleic anhydride groups with a 
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mixture of octadecylamine and morpholine.  The amic acid derived from the primary 

amine could be imidized on heating and the amount of morpholine could be controlled to 

set the amount of -COOH groups in the product which determined the loading of Ag(I) 

in the eventual catalyst.  Recycling of catalyst 35 was successful in a latent biphasic 

system of heptane and EtOH with an average loss of <0.15% of the starting Ag(I)/cycle 

over five cycles.  

O
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n
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n-C18H37NH2
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The use of 21 as a Pd source was also successful in a latent biphasic system 

containing DMA and heptane (1:1, vol).  In this case, the phase separation was effected 

automatically at room temperature by the formation of triethylammonium iodide 

byproduct.9  In this example, the byproduct formation advantageously effected the 

desired catalyst separation.  However, it also illustrates the fact that byproducts not only 

have to be removed from a product, they can also affect the practicality of catalyst 

recovery efforts that depend on a phase separation event. 

(20) 

(21) 
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Catalyst Separation and Reuse by Extraction 

Whether a thermomorphic or a latent biphasic scheme is used, the common 

feature of the above reactions is that mixed solvents are used.  An alternative is to carry 

out a reaction in a single solvent and to rely on a soluble polymer’s phase selective 

solubility in a subsequent extraction to separate the product from catalyst or catalyst 

from product.   The use of this approach was demonstrated with Polymer-supported 

hindered phosphine ligands 17 and 36 that used in Pd-catalyzed coupling chemistry.  

They both can be recycled either in a thermomorphic system as discussed above or by 

selective product extraction.  Both ligands were most effective in Pd catalysis when the 

coupling of an aryl halide and phenylboronic acid was carried out in pure DMSO.61  

While this single polar solvent phase gave the best yield in this cross coupling chemistry, 

the use of a single solvent precludes a thermomorphic separation.  These PEG-

containing ligands might have been recoverable by solvent precipitation.  However, 

Plenio’s group found that these catalysts could be efficiently recycled through three to 

six cycles by selective extraction of the products with heptane. High yields were 

achieved for both aryl bromides and aryl chlorides.  Kinetic data were obtained in 

catalytic reactions using ligand 17.  Aryl bromides were more reactive with TOFs of 500 

h-1 to 1200 h-1 that were dependent on the aryl halide substituents.  TOF numbers for aryl 

chlorides were less than 100 h-1 in most cases.  After five or six cycles, slight decreases 

in TOFs were seen.  The leaching of Pd in product phase was below the detection limits 

of a colorimetric 4,4’-bis(dimethylamino)thiobenzophenone-based UV analysis for Pd. 
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Most examples of soluble polymer-supported catalysts that are recoverable 

involve batch type reactions.  An exception to this is the use of either 17 or 25 as a 

ligand for Pd in Sonogashira couplings (eqs. 12 and 14 above).  Both of these ligands 

have been used in a continuous reactor where solvent extraction served to separate a 

nonpolar product from a polar polymer-supported catalyst or vice versa.  This 

liquid/liquid separation relied on a density differences between the phase containing a 

polar polymer-supported Pd catalyst or a nonpolar polymer-supported Pd catalyst and 

the product phase to effect a continuous separation.  In these two cases, the reactant was 

added in a nonpolar or polar phase and the product was continuously recovered from the 

upper less dense or lower more dense phase.54    

Polymer Stabilized Nanoparticles 

Many palladium mediated cross-coupling reactions are now thought to involve 

actual catalysis by traces of palladium(0) formed in situ.62,63  Amphiphilic block 

copolymers containing hetero atoms such as nitrogen have long been known as agents 

that stabilize nanoparticles including catalytic Pd particles.64,65  Linear copolymers and 

dendrimers which are not included in this dissertation, have more recently been used 

both to stabilize these sorts of particulate catalysts and to facilitate their separation, 

recovery, and reuse.  This has included using such polymers to carry out liquid/liquid 

separations to recover and reuse these catalysts as discussed below.    
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An apt example of the how linear copolymers can be used to facilitate the 

recovery and reuse of nanoparticle catalysts is the work by the Beletskaya group.66    

This group described recyclable amphiphilic PS-PEO block copolymer suspensions of 

Pd(0) nanoparticles 37 that were effective in catalysis of Heck coupling reactions and 

other Pd(0)-catalyzed reactions.  These Pd nanoparticles stabilized in a dendrimer-like 

polymeric micelle were similar to those described earlier by Fox and Whitesell,67 but the 

Beletskaya group’s work has demonstrated these catalysts’ recyclability.  In the Russian 

work, the catalyst system was prepared in water and the palladium nanoparticles were 

generated in situ within micelles formed by the PS-PEO block copolymer that contained 

a cationic cetylpyridinium chloride (CPC) surfactant that asorbed into the hydrophobic 

micellar core.  The resulting PEO-PS-Pd(0) catalyst could be stored for one year without 

change.  These polymer stabilized Pd colloids were used in Heck couplings (eq. 22) with 

activity comparable to that of a low molecular weight palladium complex 

(PdCl2(CH3CN)2).  These (PEO-PS-Pd(0)) colloids 37 could be used in a thermomorphic 

mixture of 90% aqueous DMA/heptane (1/2, v/v) three times with yields of 90, 86 and 

94%.  Heck chemistry with aryl bromides worked but longer reaction times and higher 

temperatures were required.  These PEO-PS-Pd(0) colloids were also used and recycled 

in N- or O-heterocyclization reactions (eq. 23 and 24).  In reaction in eq. 24, 0.5 mol% 

of PEO-PS-Pd(0) afforded the alkyne cycloaddition product in an average 70% yield 

over three catalytic cycles.  Similar chemistry with an acetonitrile or triphenylphosphine 

complex of PdCl2 required 5-6 mol% of a non-recyclable catalyst to achieve a similar 

result.   
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Use of 1-iodododecane to alkylate PEI (Mw = 60,000) led to a PEI derivative that 

could stabilize Pd nanoparticles in aqueous solution.  Such alkylated-PEI-stabilized Pd 

nanoparticles were successfully used for hydrogenation of alkenes.68  Analysis by 15N-

1H heteronuclear multiple bond correlation spectroscopy showed that only secondary 

and tertiary amine groups remained in the alkylated PEI support.  Under identical 

reaction conditions, higher reaction yields (>99%) and faster reaction rates were 

obtained in the hydrogenation of 1-octene with Pd nanoparticles stabilized by the 

amphiphilic alkylated PEI in an aqueous biphasic system than were seen with Pd 

nanoparticle catalysts stabilized by unalkylated PEI.  The alkylated-PEI-Pd nanoparticles 

(38) also showed significant chemoselectivity in competition reactions between 1-octene 

(22) 

(23) 

(24) 
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and 2-methyl-2-heptene or in reactions of 3-methylcyclohexene and 1-

methylcyclohexene where only the less hindered substrates were hydrogenated.  

Recovery and recycling of the alkylated-PEI-Pd nanoparticles was also possible.  In 

these cases, recycling simply involved decantation of the less dense alkane product 

phase from the aqueous phase.  Over five reaction cycles were reported with 1-octene as 

substrate and >99% yield was obtained in each cycle. 

N

N

R

R

N
N

N
N

N
R

N

N

N
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R R

Alkylated polyethyleneimine (PEI)
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The use of soluble microgels that stabilize metal nanoparticles has recently been 

reported.69-71  Such microgels can be prepared from acrylamides and/or acrylates and 

other functional vinyl monomers as soluble, intramolecularly cross-linked, globular-

shaped macromolecules that are 10-100 nm in diameter.  They dissolve in water or 

organic solvents such as DMF, chlorinated hydrocarbons, CH3CN, acetone, EtOAc, 

THF, or toluene to form low-viscosity stable solutions.  Like other functionalized 

polymers, microgels have pendent groups and can thus support reagents or catalysts. 

Such microgels are often recovered from solution and separated from products by 

ultracentrifugation, or ultrafiltration.  A recent study has also shown that microgel-
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stabilized metal nanoparticles can be separated, recovered, and reused using a liquid-

liquid biphasic systems too. 

In this recent work, Biffis’ group showed that in a biphasic mixture of water and 

CH2Cl2, pH-responsive microgel-stabilized Pd and Au nanoparticles selectively dissolve 

to the extent of > 99% in either the aqueous phase or CH2Cl2 phase depending on pH.  

These microgel-stabilized metal nanoparticles were prepared from N,N-dimethyl 

acrylamide (DMAA; 40 mol%), and N,N-dimethylaminoethyl methacrylate (DMAEMA; 

10 mol%) and ethylene dimethacrylate (EDMA, 50 mol%) using the metal salts 

Pd(OAc)2 or AuCl3, respectively.72  Similar switchable phase affinity was also observed 

for these microgel-stabilized metal nanoparticles in organic/fluorous biphasic systems 

via the addition of perfluorooctanoic acid or triethylamine. 

The Biffis group also successfully recycled microgel-stabilized Pd nanoparticles 

catalysts.73  In this case, a series of microgels (39a-e) formed by copolymerization of 

differing amounts of the monomers DMAA, EDMA, DMAEMA (eq. 25) was used to 

complex Pd(OAc)2.  Subsequent NaHBEt3 reduction of the microgel-supported Pd(II) 

salt yielded Pd nanoparticles that were stabilized inside of the microgel framework.  The 

average size of the microgel-stabilized Pd nanoparticles was found to be ca. 1.9-2.8 nm 

based on transmission electron microscopy.  These soluble polymer-stabilized 

nanoparticles were shown to be useful catalysts for an aqueous phase oxidation of 1-

phenylethanol to acetophenone by molecular oxygen.  They showed higher or 

comparable activity (100% yield, 6 h, 1 mol% Pd) than Pd nanoparticles entrapped in 

aluminium hydroxide (90% yield, 6 h, 1 mol% Pd) or Pd nanoparticles supported on 
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hydroxyapatite (> 99% yield, 24 h, 0.04 mol% Pd).  Separation of these microgel-

supported Pd nanoparticles from product and recycling was accomplished by a post 

reaction extraction of the aqueous reaction media with diethyl ether.  The activity 

through three cycles (100%, 82%, 17%) using Pd catalysts stabilized by microgel 39b 

showed a large decrease due to Pd metal precipitation in the third cycle. 
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Catalyst Recovery in Self-Separating Systems 

A third general way to use soluble polymers to facilitate catalyst recovery in 

liquid/liquid separations is similar in concept to latent biphasic chemistry.  The 

difference is that rather than perturbing a mixed solvent system with an additive, the 

formation of the products induces liquid/liquid biphase formation.  This is actually an 

old strategy that was successfully used in the SHOP process.1   A recent report from our 

group where a soluble polymer is usefully used in this way is the use of the  PIB-

supported Cu(I) complexes in ATRP polymerization of styrene.74 

In this report, the properties of the PIB polymer facilitate catalyst separation in 

two ways.  First, the PIB-supported triazole catalyst was prepared in a mixture of 

(25) 
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heptane and EtOH from an azide-terminated PIB and an alkyne containing a chelating 

group for copper (40 or 41) using Cu catalysis (eq. 26).75  After this copper assisted 

alkyne azide cyclization was complete, cooling produced a biphasic mixture and the 

polymer-supported chelated copper complex 42a or 42b which was isolated as a heptane 

solution.  The copper complex 42a was then used in a ATRP polymerization of styrene.  

This polymerization was carried out using equivolume mixture of heptane and styrene 

with 1-bromo-1-phenylethane serving as an initiator (eq. 27).   
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42aPhCHBrCH3  +
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n

 

In this second polymerization step of this catalytic cascade process the 

miscibility of this heptane/styrene solvent mixture changed as polystyrene formed 

because polystyrene is insoluble in heptane.  Thus, when a polymerization like eq. 27 

was carried out at 110 °C to ca. 50% conversion and cooled, two phases formed with the 

Cu catalyst 42a being in the upper heptane phase and the colorless polystyrene being in 

the lower phase.  Using this approach, catalyst 42a was successfully recycled five times 

in a styrene polymerization.  An average of 50% conversion achieved for each cycle 

(26) 

(27) 
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with only ca. 3% of copper loss in the product was detected by ICP-MS.  These results 

suggest that these copper catalysts and this approach should be useful in the synthesis 

and modification of other sorts of polymers if contamination of products by catalyst 

residue is of concern.  

Fluorous/Organic Biphasic Catalysis 

The concept of fluorous biphasic catalysis (FBS) was introduced by Horvath in 

1990’s,76 and has become an attractive strategy to facilitate synthesis and catalysis.  In 

this introduction, we have only briefly noted a few recent examples where soluble 

polymer-supported species are used to advantage in this sort of solvent system.   

The attachment of phosphine ligands onto fluorinated polymer supports had 

previously been used in the synthesis of easily separated Rh catalysts for fluorous 

biphasic catalysis.77,78   Similar fluoroacrylates containing alkyldiarylphosphines (e.g. 

43) have also been used react with [RhCl(cod)2] in the fluorinated solvent FC113 to 

form Rh complexes 44 in situ  (eq. 28).  This catalyst was then used in hydroformylation 

and hydrogenation of alkenes in scCO2.79-81  Catalyst recycling proved possible in this 

system and a total of 20 cycles were carried out for the hydrogenation of 1-octene.  No 

Rh was detected in the octane product by neutron activation analysis.   
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A second example where fluorinated polymer supports have facilitated catalyst 

separation and reuse is their use in olefin metathesis.  Yao’s group prepared a metathesis 

catalyst 45 with a Grubbs-Hoveyda Ru complex as a pendant group on a fluorinated 

polyacrylate similar to 43.  They then used the polymer-supported catalyst 45 in ring 

closing metathesis of 1,6- and 1,7- diene substrates in a mixture of PhCF3 and CH2Cl2 

(1:19, v/v) at 50 ºC.82  They noted that this catalyst could be completely recovered by a 

post-reaction extraction with a fluorinated solvent (FC72) due to its excellent solubility 

in fluorous solvents. High conversions and recyclability of 45 through 20 reaction cycles 

was observed.  

O
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Fluorinated polymers containing a phosphine ligand have also been directly 

prepared by free radical copolymerization of styryldiphenylphosphines with 

fluoroacrylate monomers.83   When the product polymer 46 was allowed to react with 

[Rh(CO)2(acac)] in a hexane-toluene-perfluoromethylcyclohexane (40:20:40, vol) 

solvent mixture, a Rh(I) catalyst that was formed in situ was then used in 

hydroformylation.  In this case, the reaction was carried out under monophasic 

conditions at 50 ºC.  Cooling separated the fluorous catalyst phase and organic product 

phase.  This sort of thermomorphic approach to fluorous catalysis was first noted by 
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Horvath in his original description of fluorous chemistry.76   Compared to other aqueous 

soluble polymer supported Rh catalysts, higher activity (TOF 136 h-1) and 

regioselectivity (99%) were observed in the hydroformylation of 1-decene using a Rh 

catalyst ligated by th polymeric phosphine ligand 46.  However, catalyst recycling in this 

case proved to be problematic.  These problems arose not because of catalyst loss or 

deactivation but mostly because of the continuous loss of the fluorous phase into the 

organic solvents over three cycles.  

Polymer-Supported Catalysts in Ionic Liquids 

Ionic Liquids (ILs) are of increasing interest as alternative solvents for chemical 

reactions in both the academia and industry.6,84  These interesting materials have been 

used since the 1990s in commercial processes because they facilitate product catalyst 

separations.85    Soluble polymeric materials have been used in this context too. 

The most common use of higher molecular weight materials in ILs chemistry is 

their use as insoluble supports for supported ionic liquid phases (as SILs).86,87  However, 

soluble polymers have attracted some attention too.  An example of this is work by 

Wolfson and coworkers where a polymer supported IL-phase was formed by mixing an 

IL (1-butyl-3-methylimidazolium hexafluorophosphate, bmim+PF6
-) with a soluble 

polyelectrolyte, poly(diallyldimethylammonium chloride).88  Hydrogenations of 2-

cyclohexen-1-one and 1,3-cyclooctadiene with (PPh3)3RhCl under biphasic conditions 

with this mixed ionic liquid 47 were faster (TOF = 9 and 14 h-1 respectively) than 

analogous hydrogenations with the same catalyst using a biphasic mixture of bmim+PF6
- 

and diethyl ether (TOF = 2.7 and 5.9 h-1 respectively).  Asymmetric hydrogenation of 
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methyl acetoacetate with BINAP-Ru catalyst (48) likewise was faster too.  A biphasic 

mixture of isopropanol and the polymer-supported IL 47 containing the Ru catalyst 

formed product with 97% ee and with a TOF of 29 h-1 while the same BINAP-Ru 

catalyst only had a TOF = 16 h-1 with bmim+PF6
- alone.  In both cases, catalysts in the 

reactions using the ionic liquid phase 47 were reused twice with no change in activity or 

stereoselectivity.  Atomic absorption spectroscopic analyses did not detect any leached 

rhodium or ruthenium in the organic product phases.  
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CHAPTER II 

POLYISOBUTYLENE-SUPPORTED NICKEL(II) AND COBALT(II)  

β-DIKETONATES FOR OLEFINS MUKAIYAMA EPOXIDATION* 

 

Introduction 

The use of transition metal complexes to catalyze organic transformations has 

become a very powerful tool applied in modern synthetic organic chemistry.  Every year, 

a wide variety of new reactions and new synthetic methods that use transition metals as 

catalysts are invented and developed.89,90  The Ni(II) catalyzed olefin epoxidation 

developed by Mukaiyama and coworkers is such a reaction (eq. 29).91  

R1 R3
R2

R4
R1 R3

R2

R4O

Ni(acac)2
PO2 = 1atm

isobutyraldehyde
DCM, rt  

The Mukaiyama aerobic oxidation reaction is a simple and efficient method for 

the production of epoxides.  While the epoxidation of olefins is catalyzed by the β-

diketonato complexes of Ni(II), Fe(III), Co(II), and Cu(II) in the presence of excess of 

aldehydes, the Mukaiyama oxidation usefully uses molecular oxygen as the source of 

oxygen atoms.  This makes the overall oxidation procedure safer and more practical than 

oxidations that use peracids.  In this chemistry, product formation is complete in a few 

hours with high selectivity for alkene oxidation to the epoxide over allylic oxidation to 

(29) 

____________ 
*Reprinted with permission from “ Polyisobutylene supports-a non-polar hydrocarbon 
analog of PEG supports.” by Li, J.; Sung, S.; Tian, J.; Bergbreiter, D. E., 2005. 
Tetrahedron, 61, 12081-12092, Copyright [2005] by Elsevier Ltd.   
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allylic alcohol or enone.  Metal carboxylates of these same metals are also effective for 

the oxidation process but typically have slightly lower selectivity. 

Mechanistic studies on the Mukaiyama epoxidation have been conducted by 

many groups.92-96  The role of the transition metal catalyst in the reaction is still not very 

clear, and reactions may proceed by different oxygen activation mechanisms with 

different metals.  It is widely accepted that oxidation of alkenes under Mukaiyama’s 

conditions involves radical intermediates.  Mastrorilli and coworkers have found that 

light could initiate the reaction under Mukaiyama’s conditions even in the absence of 

any metal catalyst.97  When the reaction was carried out in dark or in the presence of a 

radical inhibitor (p-hydroquinone) no product was detected.  However, light was not 

observed to have an effect when metal complexes were used, which suggests that metal-

catalyzed epoxidation proceeds by a different pathway.  

Nam and coworkers suggested that the acylperoxy radical might be the reactive 

species in the reaction.  Alternatively, oxometal species could be another way metals 

with a tendency for high oxidation states could convert alkenes to corresponding 

epoxides.94  A study done by Nolte’s group suggested another pathway for epoxidation 

(Scheme 1).95  In Nolte’s mechanism, the aldehyde coordinated to the Ni(II) center first 

and then generated a metal stabilized acylperoxy radical that further reacted with alkene 

to form epoxide.  Nolte’s work also pointed out that the ratio of aldehyde to alkene had 

an significant influence on the reaction mechanism.95,96  A 1:1 ratio of aldehyde to 

alkene resulted in a relatively slow reaction rate as compared to reactions that used a 3:1 

ratio of aldehyde to alkene.  Epoxide formation was believed to go through the aldehyde 
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autoxidation pathway predominantly based on the formation of byproducts such as 

ketone, alcohol and carbon dioxide (Scheme 2).  If the ratio were lower than 0.5:1 

(aldehyde:alkene), no reaction occurred because the excess alkene inhibited the aldehyde 

autoxidation.  On the other hand, when higher ratios (3:1) of aldehyde to alkene were 

employed, epoxidation went smoothly and fast.  In addition to epoxidation via the 

aldehyde autoxidation pathway, part of the epoxidation product could be formed through 

a peracid pathway that lead to the carboxylic acid byproduct (Scheme 3).  In this case, 

the metal catalysts in the Mukaiyama epoxidation system would presumably affect the 

initiation step and accelerate the formation of acylperoxy radical.  At higher aldehyde 

concentration, some of reactive acylperoxy radicals generated could form acylperoxy 

acid groups that could react with aldehyde and form two equivalents of carboxylic acid 

groups without formation of epoxide. 
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  Scheme 1.  Mukaiyama epoxidation mechanism proposed by Nolte 
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Scheme 3.  Peroxy acid oxidation mechanism 

Scheme 2.  Aldehyde autoxidation mechanism 
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Due to its mild reaction conditions and high selectivity, the Mukaiyama method 

has received increasing attention in synthetic organic chemistry despite the fact that 

excess aldehyde has to be used in the reaction.  However, while this reaction is useful, 

recovery and recycling of the transition metal catalysts is still an unmet challenge for 

this reaction.  Although the nickel and cobalt β-diketonates used in Mukaiyama 

epoxidation are not expensive, preparation of reusable metal catalysts is still attractive in 

potential industrial applications and is of interest in the context of “Green” Chemistry.   

Pioneering works that addressed this issue before my work are discussed below. 

The first polymer-supported transition metal catalyst for Mukaiyama epoxidation 

was 49, a bis-2-acetoacetoxyethyl polymethacrylate copper(II) complex synthesized by 

Corain and Zecca in 1994.98  While this soluble polymer-supported Cu(II) complex was 

active as a catalyst, its catalytic activity and selectivity in the epoxidation of cyclohexene 

(58% conversion, 79% selectivity) were lower than its low molecular weight analog and 

significant metal leaching was observed.  

Iqbal’s group developed a polyaniline-supported cobalt(II) acetate, where the 

metal ions were anchored onto the polymer through the coordination by nitrogen 

atoms.99  This polymer-supported catalyst 50 was effective for aerobic oxidation of 

various alkenes, including the electron poor substrates, e.g. α,β-unsaturated carbonyl 

compounds, which are usually not reactive substrates under aerobic oxidation 

conditions.  For example, chalcone and cinnamoyl amides could be converted to the 

corresponding epoxides in good yields (72% and 53-63% respectively) with this 

catalytic system (eq. 30 and 31).  The recyclability of the catalyst was investigated with 



 50

trans-stilbene and N-benzyl cinnamoyl amide as substrates.  Catalyst 50 could be reused 

up to three times by merely filtering the product solution and drying the catalyst residue 

before reuse.  Only a small decrease in activity was observed cycle to cycle.  
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More recently, polybenzimidazole (PBI)-supported transition metal 

acetylacetonates were synthesized by Nolte’s group.100  The results for epoxidation of 

limonene showed that the PBI-supported Ni catalyst 51a was more active than the 

homogeneous catalyst Ni(II) (acac)2 and the catalyst 51a displayed better selectivity 

toward formation of limonene oxide (74% yield of epoxide at 93% conversion).  PBI-

supported Co 51b was also very active but somewhat less selective.  However, metal 

(30) 

(31) 



 51

leaching was still a problem with PBI-supported Ni.  After the first cycle of (S)-limonene 

epoxidation, 20% of the original Ni species leached from the support into solution. 

All three polymer-supported catalysts showed moderate recyclability.  However, 

reaction with catalysts 50, 51a, and 51b were biphasic due to the insolublility of the 

polymer supports.  We expected that by using soluble polymer supports, the reaction 

efficiency would be improved while reusability of the polymer-supported transition 

metal catalysts could still be effective.  This led us to design and synthesize soluble 

polymer-supported Ni(II) and Co(II) complexes for Mukaiyama olefin epoxidation as 

discussed below. 

Results and Discussion 

While most work on polymer-supported catalysts has focused on using insoluble 

polymer supports, an alternative approach developed by our group in the last few years 

that has parallels in the strategy used in fluorous biphasic catalysis is to use phase 

selectively soluble polymers as supports.  Such polymer-supported catalysts can be used 

as homogeneous catalysts in a single phase with the substrate and then separated using 

either thermomorphic or latent liquid/liquid biphasic approaches.  Either approach can 

be a convenient and efficient way to effect the separation of a soluble polymer-supported 

homogeneous catalyst from a product if the polymer selectively dissolves in a phase 

different than that of the product.  Such separations are most practical if the polymer can 

be isolated as a hydrocarbon (e.g., heptane) solution, where the polymer has a phase 

selective solubility of 200:1, or more because most organic products of interest are more 

soluble in polar phases.  In our previous work, nonpolar polymers poly(N-
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octadecylacrylamide) (PNODAM) and poly(4-tert-butyl styrene) (PtBS) have been 

successfully used as nonpolar soluble supports in the palladium catalyzed Heck 

reactions50 and triphenylphosphine catalyzed Michael additions71 respectively.  Such 

polymers showed excellent nonpolar phase selective solubility and, catalysts 

immobilized on these polymer could be recycled multiple times without obvious 

decreases in catalytic activity in a thermomorphic biphasic system.  In this chapter, I am 

going to describe an example of this sort of approach and its application in transition 

metal catalyzed Mukaiyama olefin epoxidation reactions. 

An alternative polyolefin support that we have recently begun to study is 

polyisobutylene (PIB) oligomers.52  The PIB oligomers to be used below can be obtained 

from BASF under the trade name Glissopal (Mn = 1000 Da, DP = 17; Mn = 2300 Da, DP 

= 40).  PIB has an inert carbon chain with methyl groups distributed along the backbone.  

These methyl groups greatly limit the crystallinity of PIB oligomers.  As a result, PIB 

exhibits much high solubility in a variety of nonpolar or weak polar organic solvents 

such as hexane, toluene, dichloromethane and THF.  In THF, for example, the PIB 

derivatives are even soluble at -78 °C.  Furthermore, PIB oligomers are also soluble in a 

solvent mixture containing a nonpolar solvent mentioned above and a polar solvent such 

as DMF, methanol, ethyleneglycol diacetate (EGDA) at an elevated temperature.  Such 

solubility enables PIB oligomers to be easily modified into ligands in good yields under 

various reaction conditions. 

An initial use of methyl red- and dansyl-labeled PIB oligomers in different 

liquid/liquid biphasic systems demonstrated that PIB derivatives possessed excellent 
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nonpolar phase selective solubility.  In the case of 90% aqueous ethanol as a polar phase 

and heptane as a non-polar phase, about 99.5% of the dye labeled PIB retained in the 

heptane phase even after several cycles of thermoregulated phase merging and 

separation (Table 1).4  Another advantage of PIB is that the terminally functionalized 

PIB oligomers and derivatives can be easily analyzed by routine analytical techniques 

such as NMR spectroscopy, IR spectroscopy, and UV-vis spectroscopy (Figure 1).  In 

specific cases PIB derivatives even can be separated by column chromatography, which 

provides another purification method in addition to liquid/liquid extraction.  

 

 

 

 

       PIB-MR 1000                90% ethanol-H2O                     99.60
       PIB-dansyl 1000           90% ethanol-H2O                       99.70
       PIB-MR 1000                EtOAc                                          93.75
       PIB-MR 1000                t-BuOH                                     99.42
       PIB-MR 2300                90% ethanol-H2O                     99.70
       PIB-dansyl 2300           90% ethanol-H2O                       99.60
       PIB-MR 2300                EtOAc                                         92.86
       PIB-MR 2300                t-BuOH                                     98.59

       Polymer                      Polar solvent           Phase selectivity in 
                                                                           non-polar solvent (%)

 

Figure 1.  1H NMR spectrum of PIB-alkene. 

Table 1.  Phase selective solubility of dye labeled PIB in heptane/polar  
solvent biphasic system 

HH
n

n = 17, 40
Trade name: Glissopal

H

MR = methyl red 
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β-Diketones are bidentate type ligands that are widely used to form transition 

metal complexes.  The first PIB-β-diketone ligand we tried to prepare was designed to 

attach PIB chain to the ‘3’ position of 2,4-pentadione.  Its synthesis is shown in Scheme 

4.  Hydroboration of PIB-alkene 52 followed by oxidation under basic conditions gave 

rise to the PIB-alcohol 53, a very useful intermediate in the modification of PIB.  

Treatment of alcohol 53 with methanesulfonyl chloride afforded PIB-mesylate 54.  

However, reaction of a potassium β-diketonate with 54 instead led to a PIB-vinyl ether 

55 as the major product.  In this case, “O” alkylation of the ambident nucleophile is 

dominated.  

 

PIB OH

1. BH3-S(CH3)2, 
    hexanes, r.t.
    overnight

2. NaOH, H2O2, 
    hexanes, 6 h

MsCl, Et3N

DCM, rt, 6 h
PIB OMs

    t-BuOK, heptane
    /DMF, reflux, 16 h PIB O

O

PIB

1,3-pentadione
H

n
= PIB

52 53 54

55  

In a redesigned synthetic route, a PIB-β-diketone was prepared starting from a 

PIB-carboxylic acid 58 which was synthesized through the classic malonic ester 

synthesis route (Scheme 5).  The PIB-acid chloride 59 was used as the electrophile in a 

reaction with the enolate of tert-butyl acetylacetate 60.  The nucleophilic substitution at 

the sp2-hybridized carbon of the carbonyl group afforded a tricarbonyl product 61 that 

Scheme 4.  Initial attempt toward synthesis of PIB-β-diketone 
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could be decarboxylated after acidolysis of the tert-butyl ester, forming the desired PIB-

supported β-diketone 62 which was characterized by 1H NMR spectroscopy (Figure 2). 

 

CO2Et

CO2Et

(EtO2C)2CHNa
heptane/aEtOH
    reflux, 24 h

i) NaOH

ii) HCl

CO2H

CO2H
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 reflux, 36 h

PIB OMs

SOCl2, toluene
reflux

PIB PIB

PIB PIB

O

Cl

O

O

O MgBr2-OEt2, pyridine

PIB-acid chloride
DCM, rt

O

O

O

O
PIB O O

MeSO3H
DCM, rt

PIB

54 56 57

58 59

60
61

62
 

Further experiments showed that the tert-butyl acetylacetate nucleophile 60 could 

be replaced by other methyl ketone enolates, which makes this method more general (eq. 

32).  Both PIB-β-diketones 62 and 63 could be prepared in this way and identified by the 

signals showed at δ 15-16 (enol hydrogen) and δ 5.5- 6.0 (vinyl hydrogen) in their 1H 

NMR spectra (Figure 2).  

O

R

O

i) LDA, THF, - 78 ºC PIB

R

O

ii) PIB-acid chloride R = Me, tBu
62 and 63  

 

 

 

Scheme 5.  Synthesis of PIB-β-diketone 

(32) 
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Although the above routes to PIB-β-diketone ligands were successful, the overall 

synthesis is experimentally tedious.  To further shorten the synthesis, the PIB methyl 

ketone 64 formed through ozonolysis of PIB alkene was used as the precursor of 

nucleophile instead of low molecular weight methyl ketones.  This route took advantage 

of the excellent solubility of PIB derivatives, which allowed the deprotonation of the 

PIB methyl ketone with LDA to be carried out in THF at - 78 °C.  Our most successful 

work with this route is the chemistry shown in Scheme 6 in which ethyl trifluoroacetate 

was used as the electrophile and PIB-diketone 65 was prepared as the only product.  An 

analogous reaction using pivalolyl chloride as the electrophile was less successful.  

While the expected β-diketone product 66 formed, presence of another unknown species 

was also evidenced by a singlet in the 1H-NMR spectrum of the product at δ 3.7.  

Fortunately this PIB-supported species could be separated from the desired product by 

column chromatography. 

 

O

O O

PIB

Figure 2.  1H NMR spectrum of PIB-β-diketone 62. 



 57

 

PIB

i) O3, toluene,
- 78 ºC

ii) PPh3
PIB

O
PIB

O

i) LDA, THF
- 78 ºC

ii) CF3CO2Et CF3

O

i) LDA, THF
- 78 ºC

ii) (CH3)3CCOCl

PIB
O O

52 64 65

66

unknown species+

 

Other efforts to simplify the synthesis were also studied.  To replace the 

multistep malonic ester synthesis, alternative routes to form PIB-carboxylic acids were 

explored.  The first of these routes used KMnO4 promoted oxidation of a PIB-alcohol 

derivative 53 to PIB-acid 67 (eq. 33).  This reaction, however, only proceeded to the 

extent of 68%-the product was contaminated by the starting PIB-alcohol.  A phase 

transfer agent (MeO-PEG5000-OH) had to be added in this case because of the 

insolubility of KMnO4 and the incomplete conversion can be attributed to the poor 

solubility of the oxidant in the reaction mixture.  A second route to a carboxylic acid 

derivative 68 used a haloform reaction in a biphasic system consisting of THF and 6N 

NaOH (eq. 34).  Again, addition of a phase transfer agent, tetrabutylammonium bromide 

(TBAB) was necessary for the reaction to occur.  THF was found to be the best solvent 

for this reaction due to its miscibility with water.  This reaction produced a carboxylic 

acid product that was confirmed by 1H NMR spectroscopy (a single peak at δ 2.33 from 

the methylene group next to the carboxyl group and carbonyl group absorbence at 1706 

cm-1 by IR).  However, on esterification this product (EtOH, p-TsA), an ester product 

Scheme 6.  Alternative route to PIB-β-diketone 
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was produced that had more than one type of ester group suggesting that some other 

unidentified acids were also present (this was not a problem with malonic ester synthesis 

route above).  

OH
KMnO4, PEG5000

DCM/3% AcOH
rt, 48 h

OH

O

PIB
O

I2, KI, KOH,
TBAB

THF/H2O
PIB

O

OH
rt, 48 h

67

68

53

64

PIB PIB

 

With the PIB-β-diketones in hand, the PIB-supported nickel 69a and cobalt 69b 

complexes were prepared by ligand exchange with the corresponding metal acetate salts 

in ethanol/heptane mixtures (eq. 35).  Clear changes in the IR spectrum were seen for the 

products of these reactions.  Characteristics of metal-β-diketonates are that the 

absorption frequencies of the conjugated carbonyl groups and carbon-carbon double 

bonds move to lower frequency due to the influence of the bonding metal ions.  

Typically, two absorbance peaks between 1600 cm-1 and 1500 cm-1 were seen.  For 

example, the absorption frequencies of the carbonyl group and carbon-carbon double 

bond in 69a are at 1592 cm-1 and 1515 cm-1 respectively.           

O O

M(OAc)2, NaOEt
heptane/EtOH

reflux, 16 h (Ni)
rt, 24 h (Co)

O O

MM = Ni or Co
2-n

(OAc)n
n = 0 or 1

PIB

69a and 69b

PIB

62  

                                                                                                                                                                                                                                                                     

(33) 

(34) 

(35) 
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The catalysts 69a and 69b prepared as described above were examined for 

catalytic activity in the epoxidation of α-(-)-pinene under Mukaiyama’s conditions (eq. 

36).  Heptane was used as solvent to simplify the subsequent catalyst recycling.  These 

experiments indicated that both 69a and 69b were highly active and selective.  Only 

trace amounts of byproducts were found by GC analysis.  To our surprise, catalyst 69b 

was more reactive than 69a with epoxidation going to complete in four hours.  For 69b, 

eight hours were needed to obtain 100% conversion.  The reusability of the polymer-

supported catalysts was also studied.  In these preliminary experiments, the catalysts 

were recycled three times by extraction of the heptane phase with acetonitrile after each 

run.  A fourth cycle was unsuccessful for both catalysts possibly due to metal leaching 

into the product phase (Table 2). 

Oisobutyraldehyde

heptane, rt
O2 (1 atm)

69a or 69b, (1 mmol%)

(3 equiv)

 

 

 

 

 

 

                        *  Determined by GC. 

conversion of 
pinene (%)* cycle 

69a (Ni) 69b (Co) 

1 100 98.7 

2 97.6 96.8 

3 96.6 89.0 

Table 2. Recycling of PIB-supported Ni and Co 
catalysts in Mukaiyama epoxidation of α-pinene 
 

(36) 
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When compared to other insoluble polymer-supported nickel and cobalt 

complexes, both the PIB-supported Ni and PIB-supported Co catalysts demonstrate 

improved activity and selectivity.  However, metal leaching is still a problem in both 

cases.  It was also noted that some green or pink solid was formed during the reaction for 

the nickel or cobalt catalysts respectively.  This suggests that the decomposition of PIB-

supported catalysts occurred during the reaction.  This may have been caused by the 

carboxylic acid byproduct.  Another problem was in the separation of product and 

catalysts.  Due to the low polarity of pinene oxide, extraction of the reaction solution 

three times with acetonitrile did not remove all the products.  As much as 40% of 

product was still left in the heptane phase.  This issue might be less problematic with a 

more polar substrate such as styrene or methyl acrylate. 

Conclusions 

Four PIB-supported-β-diketone ligands were prepared through different synthetic 

routes.  The reaction of PIB-acid chloride as an electrophile with an enolate nucleophile 

derived from a low molecular weight methyl ketone turned out to be a reliable method 

for synthesis of PIB-β-diketones with various alkyl substituents.  Switching the 

electrophile and nucleophile in the above synthesis scheme also afford us an efficient 

route to these PIB-β-diketones.  In this way, polymer-supported diketone ligands could 

be obtained in only two steps using a PIB-methyl ketone enolate as a nucleophile using 

readily available low molecular weight carbonyl compounds (ester or acid chloride) as 

the electrophile.  Subsequent ligands exchange with Ni(OAc)2 or Co(OAc)2 led to the 
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corresponding PIB-supported Ni and PIB-supported Co complexes which were catalysts 

in the epoxidation of α-(-)-pinene under Mukaiyama’s conditions.  

The experimental results indicated that both the PIB-supported Ni and PIB-

supported Co complexes were highly active and selective.  Only trace amounts of 

byproducts were observed by GC analysis.  Like their low molecular weight versions, 

the PIB-supported Co complex was more reactive than the PIB-supported Ni complex 

with the epoxidation being complete in four hours.  Longer reaction time was needed to 

get 100% conversion in the case of using PIB-supported Ni complex.  

The reusability of these polymeric catalysts was also studied.  In these 

preliminary experiments, the catalysts were recycled three times.  The fourth cycles for 

both catalysts were unsuccessful due to the decomposition of catalysts.  
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CHAPTER III 

POLYISOBUTYLENE-SUPPORTED RHODIUM(II) AND COPPER(II) 

COMPLEXES FOR OLEFIN CYCLOPROPANATION* 

 

Introduction 

The earliest example of metal catalyzed diazo compounds decomposition was 

reported by Silberrad and Roy in 1906.101  Extensive studies on both applications and 

mechanism of the reaction only started several decades after that.  In the generally 

accepted mechanism suggested by Yates in 1952,102 addition of the diazo compound to a 

metal coordination site results in the loss of dinitrogen and generates a metal stabilized 

carbene in situ.  This Fischer type of metal carbene has proven to be a very useful 

reactive species in many organic transformations such as olefin cyclopropanation, 

carbon-hydrogen insertion, ylide formation, and heteroatom-hydrogen insertion.103,104  

This chapter will focus mainly on the design and synthesis of polymer-supported 

transition metal catalysts and their applications in olefin cyclopropanation with diazo 

compounds.  

Transition Metal Catalyzed Cyclopropanation of Olefins 

The chemical reactivity and bonding features of cyclopropane have long 

fascinated organic chemists.  Of further interest is the fact that derivatives of this 

smallest carbocycle also possess bioactivity and play a significant role in enzyme-

____________ 
*Reprinted with permission from “Soluble polyisobutylene-supported reusable catalysts 
for olefin cyclopropanation.” by Bergbreiter, D. E.; Tian, J., 2007. Tetrahedron Lett., 48, 
4499-4503, Copyright [2007] by Elsevier Ltd.   
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mediated reactions.  It is surprising to know that such three-membered rings are 

kinetically and thermodynamically stable enough in many cases and this structural motif 

is found in molecules as diverse as fatty acids, terpenes that are formed in various 

biosynthetic pathways.105      

The transition metal catalyzed cyclopropanation of alkenes with diazo 

compounds has been widely used in organic synthesis for the formation of cyclopropane 

structural subunit in natural and unnatural products.  During the past few decades, a 

variety of achiral and chiral transition metal catalysts have been prepared and used in 

olefin cyclopropanation reactions.  Of these catalysts, rhodium(II) carboxylates, e.g. 

rhodium(II) acetate dimer 70, are the most common.103  

Rh
O O

O

Rh
O

OO

O
O 70

Rh2(OAc)4  

Rhodium(II) carboxylates exist as binuclear compounds with D4h symmetry.  The 

16-electron configuration on both rhodium ions provide two axial vacant coordination 

sites which allow the rhodium to act as a Lewis acid catalyst in reactions.106  Generally 

speaking, rhodium(II) carboxylates are thermal- and air-stable.  Although Lewis bases 

such as amines and nitriles can easily occupy the two vacant sites, such bonding is weak 

and the catalyst can be regenerated after removal of those inhibitors by simply heating 

under vacuum.  However, similar coordination is not observed between alkenes and 

rhodium(II) carboxylate dimers in solution, except for a Rh complex containing a strong 

electron-withdrawing group, for example, a rhodium(II) trifluoroacetate dimer.107,108  
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Cyclopropanation with Rh(II) carboxylates is very effective when diazocarbonyl 

compounds are employed.  Other rhodium complexes, such as iodorhodium (III) 

prophyrins, hexarhodium hexadecacarbonyl, dirhodium(II) phosphates, and ortho-

metallated phosphines are also effective for this reaction.  However, this effectiveness 

does not extend to reactions using less stable diazomethane where palladium catalysts 

are more suitable for catalysis of cyclopropanation reactions (via an alkene carbene 

Pd(0) intermediate).  In these Pd-catalyzed reactions, cyclopropanation products are 

formed through intramolecular rearrangement to palladacyclobutanes followed by 

reductive elimination.109  

In addition to the reactivity of the diazo compounds, the difference in selectivity 

among different carbenoids is another issue that affects the utility of these catalysts.  

Casey and co-workers found that benzylidene transfer from (CO)5W=CHPh to alkenes 

predominantly yielded cis-cyclopropanation product.110  This could not be fully 

explained by the pathway of forming a metallacyclobutane intermediate which was 

generally accepted as the intermediate in olefin metathesis.111  Instead of that, they 

suggested that the electrophilic attack of metal carbene on Cα, the least substituted 

carbon, resulted in the development of positive charge at the Cβ which was stabilized in 

the transition state via π-electron donation from the phenyl ring.  The interaction 

between the bulky W(CO)5 unit and the substituents at the Cα strongly control the 

stereoselectivity.  The high cis-selectivity was a result of the co-influence of these two 

factors (Scheme 7).  
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Similar results were also obtained by Brookhart’s group in the cyclopropanation 

of alkenes with Cp(CO)2Fe=CHPh+.112  However, in their study, reaction of 

Cp(CO)2Fe=CHCH3
+ with internal alkenes also afforded cis-cyclopropanation isomer 

with high selectivity.  Here there is no phenyl ring to provide the stabilization effect as 

discussed above.  Although the precise mechanism of this ylidene transfer is still not 

clear, in their proposed transition state, the larger substituent R1 at Cα adopt a position 

between CH3 and H to form the intermediate with lowest energy.  Subsequent 

synchronous Ccarbene - Cβ bond formation to displace the metal unit can then lead to the 

cis-products (eq. 37).113  Substituents R3 and R4 reportedly had less influence on the 

stereocontrol. 

FeCO
CO

H

CH3
R3

R4

R2

R1 FeCO
CO

H

CH3

+
α

β
R3

R4

R2

R1

α

β

R1 > R2  

An alternative mechanistic model aimed to explain the selectivity difference was 

proposed by Doyle.114  According to this model initial electronic addition of metal 

Scheme 7.  Mechanism of benzylidene transfer from 
     (CO)5W=CHPh to alkene 

(37) 
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carbene to the alkene forms a π complex.  Then the alkene moiety rotates around the 

Ccarbene - Cα bond to a position, where Cβ is anti-parallel to the metal center.  Formation 

of such alkene and metal carbene orientation is energetically favored.  Subsequent 

backside displacement of the metal complex affords the cyclopropanation products. 

Stereoselectivity is mainly determined by the interaction between the substituents on the 

carbene center and alkene carbons (Scheme 8).  The usefulness of this mechanistic 

model was illustrated by considering cyclopropanation of a monosubstituted alkene.  In 

this case, if the steric repulsion between substituents R and Z is weak in the transition 

state, kc can be assumed to equal to kt and the reaction prefers to form cis-product 

through a more stable π complex A.  Increasing the size of R group will result in a 

decreased kc and further decrease the cis/trans ratio.  
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Scheme 8.  Doyle’s mechanism for olefin cyclopropanation 
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The most attractive feature of this model lies in its prediction of the trans-product 

in the cyclopropanation of alkene with ethyl diazoacetate.  In this case, the carbonyl 

group next to the carbene center serves as an electron-donating group that stabilizes the 

positive charge developed on the Cβ during the electrophilic addition of carbene to the 

alkene.  This makes π complex B more favorable on energy and gives rise to the trans-

product (Scheme 9). 
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Recent Development in Rhodium Catalyzed Asymmetric Cyclopropanation of Olefins 

Rhodium complexes have been recognized as the most effective catalysts for 

olefin cyclopropanation reactions with diazo carbonyl compounds.  In this reaction, four 

enantiomers are usually obtained from the cis- and trans-diastereomers unless very 

bulky or chiral derivatives of diazoacetate are employed (Scheme 10).115  To further 

broaden their applications in organic synthesis, recent development in this area has been 

focused on the design and synthesis of chiral rhodium catalysts, catalysts that can afford 

a single product. 

 

 

 

Scheme 9.  Cyclopropanation with diazo carbonyl compound 
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The high efficiency and simplicity of rhodium carboxylates makes them become 

an extensively studied topic despite the fact that stereocontrol is not efficient even if 

chiral carboxylate ligands are used.  Early studies of chiral rhodium carboxylates 

included a study of the chiral rhodium carboxylates 71 and 72 by Cotton and Falvello 

who prepared by reaction of RhCl3.3H2O with corresponding chiral carboxylic acids in 

aqueous solution.116  However, the use of such homochiral rhodium complexes in C-C 

bond formation reactions with diazocarbonyl compounds was actually studied by the 

McKervey group.117  In addition to complex 71, McKervey and coworkers synthesized 

two new Rh carboxylates 73a and 73b through ligand exchange of L-proline derivatives 

with Na4Rh2(CO3)4 in aqueous solution.  Three typical carbenoid reactions, e.g. 

intramolecular aromatic cycloaddition, C-H insertion, and alkene cyclopropanation were 

chosen as examples to exemplify the catalytic activity and selectivity of these catalysts. 

Catalyst 73b was more efficient than 71 in aromatic cycloaddition reaction (eq. 38) and 

80% yield and 33% ee were obtained.  For C-H insertion reaction (eq. 39), catalyst 73a 

Scheme 10.  Mechanism of transition metal complex catalyzed olefin cyclopropanation 
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demonstrated highest activity with more than 90% yield.  After treatment of the resulting 

cyclopentanone product mixture containing cis- and trans-isomers with NaOH(aq) 

followed by acidification, the trans-product was obtained as the only product with 12% 

ee.  Cyclopropanation catalyzed by 71 provided a bicyclo-product in 97% yield, but only 

12% ee was observed (eq. 40). 
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Although these preliminary results were not satisfactory, the idea of using 

available chiral carboxylic acid to set up a chiral environment around rhodium ions has 

opened the door toward the design of more successful catalysts.  The most successful 

work with chiral rhodium(II) arenesulfonyl prolinate type catalysts was presented by 

Davies group.118,119  This group described cyclopropanation of styrene with 

vinylcarbenoids formed by decomposition of alkyl 2-diazo-4-phenylbutenoate that 

(38) 

(39) 

(40) 
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preferentially afforded trans-cyclopropanation product both in good yield and 

enantioselectivity.  Such vinylcarbenoids also showed high diastereoselectivity (>20:1; 

trans:cis) even using Rh2(OAc)4.120  

In order to evaluate the influences of chiral environment around the rhodium ions 

on the stereoselectivity of cyclopropanation, Davies and coworkers prepared a series of 

Rh(II) catalysts 74a-g derived from L-proline with different N-sulfonyl groups.  

Catalysts with different size rings and acyclic catalysts (75-78) were also subsequently 

examined for stereoselectivity in the cyclopropanation of styrene with methyl 2-diazo-4-

phenylbutenoate in dichloromethane or pentane (eq. 41).119  In all cases, excellent 

diastereoselectivities, typically from 43:1 to 70:1 (trans:cis), were observed.  It should 

be indicated that under the same reaction condition use of pentane as reaction solvent 

instead of dichloromethane led to higher enantioselectivity.  Catalysts 74c and 74d 

proved to be the most effective in stereocontrol, and the resulting trans-products were 

obtained with 90-92% ee and 83-89% yields.  
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A few years later, the same group developed two new Rh(II) catalysts, 79 and 80 

from L-proline.121,122  Compared to Rh2(S-DOSP)4 (74d), catalyst 79 only showed 

moderate enantioselectivity (49% to 59% ee) in cyclopropanation of styrene with alkyl 

2-diazo-4-phenylbutenoate.  Higher selectivity (83% ee) was observed when the reaction 

was conducted at lower temperature (-50 ºC).  Catalyst 80 (Rh2(S-biTISP)2) proved to be 

an excellent catalyst for asymmetric cyclopropanation giving up to 98% ee in 

cyclopropanation of styrene with methyl 2-diazo-4-phenylbutenoate in dichloromethane 

at -50 ºC.  Unlike 74d, catalyst 79 and 80 exhibited an opposite asymmetric induction 

and led to a trans-cyclopropanation product with the (R,R) configuration.  In the former 

case, the (S,S) configuration predominated in the product.  
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To reveal the nature of the high trans-stereoselectivity of vinylcarbenoids, a 

mechanistic study using 13C kinetic isotope effects in conjunction with density functional 

theory calculations was conducted by Davies and Singleton.123  Their results suggest that 

the alkene would take on a favored arrangement with its substituent (R1) far from the 

surface of rhodium center and attack the carbene center from the direction opposite to 

the Rh centers.  The stabilization effect of the carbenoid by the vinyl or aryl group leads 

to a later, less-flexible, transition state with a potential energy barrier.  During this 

process, the R1 will point to the alkene unit on the carbenoid to avoid the strong steric 

repulsion from the ester group.  As a result, the alkene configuration is retained, and 

trans-isomer is achieved as the major product (Scheme 11).  Compared to a side-on 

mechanism previously proposed by Davies,119 where the alkene attacked the carbene 

center from the side of electron-withdrawing group, this end-on approach of the alkene 

is more reasonable.  Prediction of the stereochemistry in cyclopropanation with this 

revised model is consistent with the experimental results.   
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Scheme 11.  “End-on” model of olefin cycloaddition with vinylcarbenoide                 
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Ishitani and Achiwa designed and prepared substituted biphenyl carboxylate 

ligand (S)-BDME as candidate ligands for a chiral rhodium complex.  Subsequent 

reaction of these chiral carboxylates with RhCl3.H2O in the presence of sodium 

bicarbonate gave rise to the Rh2(S-BDME)4 complex 81 (eq. 42).124  Compared to Rh2(S-

MEPY)4 which will be discussed later, catalyst 81 showed higher catalytic activity and 

opposite cis-selectivity in asymmetric cyclopropanation of styrene with different 

diazoacetates and 53% ee to 99% ee were achieved on cis-products.  

COOH

MeO

MeO

COOMe

(S)-BDME

RhCl3.3H2O

NaHCO3
35%

MeO

MeO

COOMe

O

O

Rh

Rh
4

Rh2(S-BDME) 81
 

More recently, application of M-enantiomer of dirhodium(II) ortho-metalated 

phosphine complex 82 in cyclopropanation of styrene with diazoacetate have been 

reported by Barberis and coworkers.125  Catalyst 82 gave high enantiomeric excess for 

both cis- (91% ee) and trans-product (87% ee) and 55% yield.  Utilization of more bulky 

trityl group instead of trifluoromethyl group resulted in the great improvement on yield 

but poorer enantioselectivity.  A tentative model was proposed to explain the observed 

experimental results (Scheme12). 

 

 

(42) 
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Other types of dirhodium(II) catalysts have been developed and used in 

carbenoid chemistry.  Hashimoto’s group developed a new type of chiral rhodium(II) 

carboxylates 83 and 84, derived from natural amino acids.  Catalysts 83 and 84 were 

successfully employed in 1,3-dipolar cycloaddition of α-diazo ketones126 and Si-H 

insertion of methyl phenyl-diazoacetate127 and 2,3-sigmatropic rearrangement via 

intramolecular formation of allylic oxonium ylides.128  Further modification on this type 

of catalysts was done by Davies group.129  Use of an adamantyl group instead of a tert-

 Scheme 12.  Proposed transition state for the cyclopropanation of 
 styrene catalyzed by 82 



 75

butyl group at the α position afforded complex 85 which slightly improved the 

enantioselectivity in both intramolecular C-H insertion of the aryldiazoacetate and 

cyclopropanation of styrene with diazophosphonate as compared to Hashimoto’s 

catalysts (eq. 43 and 44). 
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Dirhodium(II) chiral phosphate complexes 86 and 87 prepared separately by 

McKervey’s group130 and Pirrung’s group131 showed good activity and moderate 

selectivity in 2,3-sigmatropic rearrangement, C-H insertion and aromatic cycloaddition 

reactions.  Attachment of two dodecyl groups on the 6 and 6’ position of the aromatic 

rings dramatically enhanced both the activity and selectivity in the intramolecular 

tandem carbonyl ylide formation-cycloaddition of α-diazo-β-keto esters.132  McKervey 

and coworkers also reported a new family of dirodium(II) carboxylates containing C2 

(43) 

(44) 
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symmetry (88-90).133  However, only modest enantiomeric control were observed (up to 

29% ee) when using such C2 symmetric rhodium complexes in intramolecular oxonium 

ylide-[2,3] sigmatropic rearrangement of diazo keto ester. 
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In addition to rhodium carboxylates, chiral rhodium(II) carboxamidates 

developed by Doyle’s group are another class of effective catalysts in carbenoid 

reactions.134  Although the first rhodium(II) carboxamidate (91) was derived from 

acetamide, acyclic amides are not suitable candidates for preparation of carboxamidates 

because of their preferred trans-conformation which is disfavored for ligand exchange 

with Rh2(OAc)4 (eq. 45).  As a result, cyclic amides with cis form are the only good 

ligand source for carboxamidates.  Unlike the carboxylates, carboxamidates have 

multiple isomers (Figure 3), but the cis-2,2 isomer has been found to be the dominant 

one.  Carboxamidates are less active in the decomposition of diazocarbonyl compounds 

than carboxylates, but higher selectivity are usually observed due to their more rigid 

chiral environment around the rhodium centers.  
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During the past two decades, a variety of chiral rhodium(II) carboxamidates have 

been synthesized.  The major contributions came from Doyle’s research group.  In 1990, 

Doyle and coworkers first synthesized four new chiral rhodium(II) carboxamidates (92-

95) from chiral oxazolidinones and methyl (S)-(-)-2-pyrrolidone carboxylate.135  

Evaluations of these rhodium(II) carboxamidates were conducted in the 

cyclopropanation of styrene with D- or L-menthyl diazoacetates, and catalyst 95 (Rh2(S-

MEPY)4) proved to be superior to any other carboxamidates in achieving high 

enantiomeric control.  
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Figure 3.  Possible stereo isomers of rhodium(II) carboxamidate.  

(45) 
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Further studies have revealed that rhodium(II) carboxamidates are more suitable 

for use in intramolecular cyclopropanation reactions and copper(I) bisoxazoline(Box) 

catalysts and rhodium(II) carboxylates are usually preferred in catalysis of 

intermolecular cyclopropanation reactions which will be discussed later.  For example, 

complex 95 catalyzed intramolecular cyclopropanation of allylic diazoacetates afforded 

bicyclic lactones in high yield (70-93%) and enantioselectivity (>94% ee in most cases) 

with only few exceptions (Figure 4 and Scheme 13).136  In the case of 2-methallyl 

diazoacetate, only 7% ee was observed.  This low enantioselectivity was greatly 

improved by employing rhodium(II) carboxamidates 96 and 97 derived from 

imidazolidinone carboxylates137 and oxaazetidine carboxylates respectively.138  The best 

result (89% ee) was achieved with complex 97c (Rh2(S-MPPIM)4).  Homoallylic 

diazoacetates were successfully converted to the corresponding bicyclic lactones under 

the same conditions (Scheme 14).  When using allylic or homoallylic dizaoacetamides as 

substrates, substitution of the extra hydrogen on the amide nitrogen with other 

substituents is crucial to achieve higher yield due to the formation of reaction favored 

conformation.  
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 Scheme 14.  Stereocontrol in intramolecular cyclopropanation of  
 homoallylic diazo acetates 

 Scheme 13.  Stereocontrol in intramolecular cyclopropanation of allylic diazo acetates 

Figure 4.  Preferred spatial orientation in the transition state of cyclopropanation  
using rhodium(II) carboxamidate. 



 80

It is noteworthy that the ester groups in the catalyst framework also participate in 

the determination of stereochemistry through both steric interaction and electronic 

stabilization of carbenoids.135  Changing the ester group to alkyl or phenyl groups 

resulted in the decrease in enantioselectivity.139  

Another important application of rhodium(II) carboxamidates is the 

intramolecular C-H insertion reactions with diazocarbonyl compounds.  Five member 

ring, γ-lactones are the most common products and can be obtained with good yield and 

high enantioselectivity.140,141  The application of this chemistry in organic synthesis was 

demonstrated in the preparation of S-(+)-Imperanene,142 where the only chiral center on 

the allylic position was set up via an enantioselective C-H insertion reaction.  The use of 

Rh2(4S-MPPIM)4 complex (97c) provided the γ-lactone intermediate with 93% ee and 

68% yield (Scheme 15).  
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Scheme 15.  Total synthesis of S-(+)-imperanene 
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Hashimoto and coworkers designed and prepared dirhodium(II) tetrakis[3S-

phthalimido-2-piperidinonate], complex 98.143  An initial evaluation of this rhodium 

catalyst in the intermolecular cyclopropanation of styrene and alkyl diazoacetates 

yielded results like those noted by Doyle’s group.  While utilization of diethyl ether as 

solvent had a positive effect on the enantiomeric control, the highest enantioselectivity 

(98% ee for trans and 96% ee for cis) was achieved using 2,4-dimethyl-3-pentyl 

diazoacetate as the carbene source.  This is also the best result ever reported for a 

rhodium(II) carboxamidate catalyzed intermolcular cyclopropanation reactions.  

Complex 98 and 99 are also effective in tandem carbonyl ylide formation-intermolecular 

1,3-dipolar cycloaddition of α-diazo ketones126 and as Lewis acid catalyst for Hetero 

Diels-Alder reactions.144 
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Lower production cost has been one of the goals pursued in industry.  It is not 

surprising that recovery and recycling of precious rhodium salts and expensive chiral 

auxiliaries has been a challenge in both academia and industry.  Attempts to recycle 

rhodium catalysts in fluorous biphasic systems and ionic liquids have been reported by 

Biffis’ group145 and Narayana’s group respectively.146  Use of polymers as supports is 

another alternative method to address the catalyst recycling issue.  The first reusable 

polymer-supported rhodium catalyst (100) was prepared by Bergbreiter’s group, where 
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polyethylene (PE) oligomers were used as the immobilization phase.147  Bergbreiter and 

Doyle subsequently used these same PE supports in Rh2(S-MEPY)4 catalyzed 

cyclopropanation chemistry (101a).148  However, with PE supports, elevated temperature 

is required to dissolve the polymer.  That is not ideal for asymmetric catalysis since the 

enantioselectivities are often higher at ambient or subambient temperature. 

Alternative insoluble polymer supports such as NovaSyn Tentagel (TG) resin, a 

material in which the polystyrene backbone is grafted with poly(ethylene oxide) chains, 

and Merrifield resin were also used to support dirhodium carboxamidates (101b and 

101c) by Doy’s group.  These insoluble polymer-supported Rh catalysts showed good 

recyclability and selectivity.149,150  A more universal and convenient immobilization 

method was developed by Davies’ group, where various dirhodium complexes were 

anchored on an insoluble cross-linked polystyrene containing pyridine functionalities.151  

The coordination interaction between one of the axial vacant orbitals of the dirhodium 

complex and pyridine was strong enough under reaction conditions to allow these 

polymer-supported rhodium catalysts to be recycled via a simple solid/liquid filtration.  

For example, immobilized Rh2(S-biTISP)2 (102) was successfully reused up to fifteen 

times without any drop in yield and enantioselectivity in the cyclopropanation of styrene.  
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Recent Development in Copper Catalyzed Asymmetric Cyclopropanation of Olefins 

In addition to rhodium complexes, copper complexes are another transition metal 

catalyst widely used in olefin cyclopropanation reactions.  In most cases, the catalysts 

are prepared as stable Cu(II) complexes and reduced to reactive Cu(I) species in the 

reaction mixture with phenylhydrazene.  After the pioneering work (103 and 104) 

introduced by Nozaki152 and Aratani153 respectively, considerable efforts have been done 

to develop new chiral ligands pursuing high enantiomeric control.  
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A series of novel binuclear copper(II) complexes 105a-d have been reported 

recently.154  Compared to their mononuclear counterparts, these binuclear copper(II) 

catalysts like 105 exhibit moderately increased enantioselectivity in the asymmetric 
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cyclopropanation of styrene with ethyl diazoacetate.  An average 85% ee for trans and 

92% ee for cis were observed when the catalysts were modified with large alkyl groups 

on the alkoxide.  Such enantioselectivity also showed unusual temperature independence 

in the reactions occurring from room temperature to 50 ºC.  This was advantageous in 

that better yields could be obtained through running reaction at higher temperature 

without sacrificing the enantioselectivity. 

Matlin and coworkers prepared three copper complexes derived from 3-

trifluoroacetyl-(+)-camphor which showed excellent stereo control on the 

cyclopropanation of styrene with diazo-dimedone (eq. 46).155  Catalyst 106 demonstrated 

the highest, up to 100% ee and 48% yield after one day of reaction time.  A recoverable 

version of 106 was synthesized by immobilization of corresponding chiral ligand onto 

Hypersil 5 µm silica followed by ligand exchange with Cu(OAc)2.  Recyclability of the 

immobilized catalyst 107 was investigated with indene as substrate to avoid the problem 

of polymerization, which was observed in the case of using styrene.  Three cycles were 

reported.  
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The success of Aratani’s catalyst has brought more attention to the field of 

carbene chemistry.  Economically, the utilization of relatively cheaper copper complexes 

instead of expensive rhodium compounds is more practical for wide application in 

industry if an efficient enantioselective chiral ligand was easily available in few steps. 

Most of recently developed ligands are derived from natural chiral amines, amino acids 

and amino alcohols to simplify the process of setting up chirality.  Semicorrin ligand 

reported by Pfltaz’s group is such an example.156,157  The synthesis of this ligand 

involves only four steps from the commercially available pyroglutamic acid with total 

30-40% yields.  Good to excellent ee values (85% to 97% ee for trans and 68% to 95% 

ee for cis) were obtained when employing semicorrin ligated copper complex 108 in the 

cyclopropanation of styrene with various diazoacetates.  Such high enantioselectivity 

was attributed to the C2 symmetric structure in semicorrin ligands.  Mechanistic studies 

of the copper catalyzed cyclopropanation reactions indicate that the strong repulsive 

interaction between the carbene ester group and the C2 symmetric ligand determines the 

enantioselectivity, while the weak interaction between ester group and alkene 

substituents control the diastereoselectivity.158  

Another superior C2 symmetric chiral ligand is the bisoxazoline ligand.  Copper 

complexes like 109 have been synthesized using this ligand by Evans’ group.159,160  

Compared to semicorrins, bisoxazolines are easier to prepare and modify, and more 

effective in stereocontrol.  When using a bisoxazoline ligand derived from tert-butyl 

leucinol, up to 99% ee can be achieved for both cis- and trans-cyclopropanation 

products.  Another type of bisoxazoline ligand developed by Masamune’s group is also 
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effective for the enantioselective cyclopropanation.  However the stability of copper 

complexes 110 is not as good as with Evans’ catalysts and, decomposition of 110 was 

observed upon standing.161  Today a variety of chiral bisoxazoline ligands are 

commercially available.  In addition to cyclopropanation reactions, many other reactions, 

such as Diels-Alder reactions, Ene-reactions, Henry reactions, and Aldol reactions are 

also found to proceed with good enantioselectivity in the presence of bisoxazoline 

ligated metal complexes. 
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In general, low to medium diastereoselectivies with bisoxazoline ligands are 

usually observed because of the longer distance between the chiral centers on the ligand 

and substituents of alkenes.  To address this issue, an interesting strategy was employed 

by Zinic and Sunjic, where the two C2 symmetric centers were connected through a 

bridge.162  The supramolecular copper(I) complex formed from ligand 111 contained a 

chiral cavity which was big enough to allow the desired transformations to occur inside.  

Up to 86% de (7:93, cis:trans) was observed when n=2.  Kim and coworkers reported 

another class of catalysts with high diastereoselectivity.  These ferrocene based 

phosphine ligands (112 and 113) exhibited extremely high diastereoselectivity (up to 

100% de) in some cases with 2,6-di-tert-butyl-4-methylphenyl (BHT) azoacetate as the 

carbene source.  However, rather low enantioselectivity was seen.163  
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The use of bipyridine ligands with fixed chiral center in olefins cyclopropanation 

was first reported by Katsuki’s group.164,165  Moderate to good enantiomeric excess (up 

to 92% ee) were reported in their preliminary study.  Chiral bipyridine type ligands such 

as 114 are structurally similar to semicorrins and bisoxazolines, and easily form 

complexes with various metal ions.  However, these ligands are more complicated to 

prepare.  Inspired by Katsuki’s work, many chiral bipyridine ligands have been 

synthesized and tested in asymmetric cyclopropanation of alkenes over the past fifteen 

years.166  In some cases; both enantio- and diastereoselectivity were improved.  For 

example, planar-chiral bipyridine ligand 115 and 116 derived from ferrocene exhibited 

86:14 to 96:4 (trans:cis) diastereoselectivity with 78% to 96% ee on trans-

products.167,168  
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Results and Discussion 

PIB-supported Achiral Rhodium(II) Carboxylate 

In a previous study, a polyethylene (PE) supported rhodium(II) carboxylate 

dimer (100) was prepared and used in alkene cyclopropanation reactions.  Catalyst 100 

was successfully reused ten times in the cyclopropanation of 2,5-dimethyl-2,4-butadiene 

(eq. 47).  Analysis of the product phase showed that less than 1% of the charged metal 

leached into product phase.147  However, application of a PE-supported rhodium 

carboxamidate catalyst 101a in intramolecular C-H insertion reaction was less successful 

(eq. 48).  Compared to its low molecular weight analog Rh2(S-MEPY)4 (eq.49), catalyst 

101a showed lower activity and enantioselectivity due to the high temperature required 

to achieve solubility for this PE-supported catalyst.148  Given the superior solubility of 

PIB in a wide range of nonpolar or weak polar solvents at or below room temperature, 

we envisioned that utilization of soluble PIB-supported Rh catalysts in the same 

carbenoid chemistry could overcome the problems observed in the case of this PE-

supported Rh catalyst.  
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As part of an effort to develop a polyolefin-supported cyclopropanation catalyst 

that could be fully recovered yet used both at lower temperature and in other solvents, 

the PIB-supported Rh(II) carboxylate 117 was prepared as a blue-green viscous oil 

through ligand exchange of PIB-COOH 58 with Rh2(OAc)4 in refluxing toluene (eq. 50).  

ICP-MS analysis of a digested sample of this polymer-supported catalyst indicated a 

metal loading of 0.36 mmol of Rh/g.  

CO2HPIB
Rh2(OAc)4

toluene,
reflux

O

O

Rh

Rh
4PIB

Rh loading = 0.36 mmol of Rh/g

58 117

 

Initial evaluation of the catalytic activity and recyclability of catalyst 117 was 

conducted using the cyclopropanation of octene with ethyl diazoacetate as an example 

(eq. 51).  The reaction was carried out in heptane or cyclohexane in the presence of an 

excess of the alkene stubstrate at room temperature.  A solution of ethyl diazoacetate in 

the same nonpolar solvent was added to the reaction mixture via a syringe pump over a 

set period of time.  After each cycle, the nonpolar phase was extracted with ethylene 

(47) 

(48) 

(49) 

(50) 
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glycol diacetate (EGDA) to separate the cyclopropanation product from the PIB-

supported catalyst.  While this procedure was effective in isolating product and 

separating it from catalyst, it was not as ‘Green’ as the earlier procedure using the PE-

supported ligand in that it required some additional solvent for the extraction.  After each 

cycle, a portion of solvent had to be removed from the isolated nonpolar phase 

containing PIB-supported Rh catalyst before using it in the next cycle to avoid 

accumulation of the solvent and dilution of the catalyst phase.  The reaction yield and 

diastereoselectivity for each cycle were determined by analyzing the separated EGDA 

phase with GC.  These data are summarized in Table 3. 

 

COOEt

117

heptane, rt
N2CHCOOEt

 

 

 

 

 

 

 

 

 

 

 

(51) 
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cyclohexahe/EGDAa heptane/EGDAb 

cycle yield 
(%)c trans/cis yield 

(%)c trans/cis 

1 14 12 

2 27 25 

3 17 31 

4 25 36 

5 30 42 

6 32 43 

7 20 41 

8  34 

8d  

57/43 
 

79 

57/43 
 

a Use of 0.5 mmol ethyl diazoacetate. b Use of 1 mmol ethyl diazoacetate.  
c Determined by GC. d Yield in heptane phase. 

 
 
 
These data show that the PIB-supported Rh catalyst 117 was effective in the 

cyclopropanation of octene with ethyl diazoacetate in cyclohexane or heptane.  The 

polymer-supported catalyst was readily separated and recovered by a post reaction 

extraction with EGDA.  The desired trans- and cis-cyclopropanation products were 

obtained with a ratio of 53/47 (trans/cis) in either cyclohexane or heptane.  Slightly 

higher yields were observed when using heptane as the reaction media.  An average 

yield of 43% per cycle over eight cycles (including the product left in heptane phase) 

was obtained.  

To evaluate the influence of solvent on the cyclopropanation reaction, the PIB-

supported Rh catalyzed cyclopropanation of octene was carried out in DCM and heptane 

Table 3.  Cyclopropanation of octene with Rh catalyst 117 
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respectively.  Higher yields were obtained in heptane (66%) than were observed in DCM 

(54%).  When the reaction was carried out in heptane under the same reaction conditions 

without separation of the cyclopropanation product with EGDA, an overall 69% yield 

per cycle was obtained after four cycles.  These results show that the nonpolar solvent 

heptane is a suitable solvent for these Rh-catalyzed olefin cyclopropanation reactions.  

Indeed, heptane was a better solvent than the other more polar solvents.  Product yields 

were also lower in the mixed heptane/EGDA solvent systems formed when EGDA was 

used to extract the product.  These lower yields observed might be attributable to the 

coordination of EGDA left in the nonpolar phase after the extraction in each cycle to the 

vacant sites on rhodium centers.   

On the other hand, the presence of EGDA in the heptane phase affects the 

polarity of the reaction media as well.  Such changes in solvent polarity might result in 

changes in the conformation of the PIB chain that phase anchors the catalyst in the 

solution.  The conformation of a polymer in a solution can be significantly affected by 

the polarity of solvents.  For example, linear polymers usually prefer a stretched out 

conformation when dissolved in good solvents, but adopt a contracted conformation, 

more like a random string ball, in poor solvents.  If a similar contracted polymer chain 

formed for the PIB-supported catalysts, it could affect the reactivity of the catalytic 

centers on polymer.  If that were the case, we expect that use of more active and less 

hindered substrates would overcome the negative effect caused by EGDA. 

Another important prerequisite for recycling catalysts via a liquid/liquid biphasic 

system is that the polymer-supported catalysts and reaction products have to partition 
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into different phases.  However, the octene cyclopropanation product does not show a 

notable polar phase selective solubility.  Thus, separation of nonpolar PIB-supported Rh 

catalyst from the cyclopropanation product via a liquid/liquid separation was less 

successful in this case.  

A more successful demonstration of catalyst separation/recovery/reuse with the 

heptane/EGDA biphasic separation system was possible using styrene as substrate (eq. 

52).  The stabilization effect of the phenyl ring makes styrene a very good alkene 

nucleophile in carbenoid-mediated electrophilic addition.  Additionally, the existence of 

the aromatic ring in styrene enables its cyclopropanation product to possess enough 

polarity to selectively partition into the polar phase in a liquid/liquid extraction.  Using 

this separation technique, the PIB-supported Rh catalyst 117 was reused through nine 

cycles in the cyclopropanation of styrene.  The recovered heptane phase containing the 

polymer-supported catalyst after that cycle of catalysis still had a green color which was 

only a little lighter than was seen at the beginning of this series of reactions.  It was also 

noted that the yields of product in the first two cycles (44% and 66% respectively) were 

apparently lower than yields for other cycles.  This is because the styrene 

cyclopropanation product has to partition between the heptane and EGDA phases.  In the 

earliest cycles, some of this product partitions into the heptane phase.  Eventually, after 

ca. two cycles, the heptane phase containing the catalyst is effectively saturated with this 

product and an overall 75% yield is achieved in the subsequent seven cycles (Table 4).   

COOEt
117

heptane, rt
N2CHCOOEt

 
(52) 



 94

 

heptane/EGDAa heptane/acetonitrileb 

cycle yield 
(%)a,d trans/cis metalc 

leaching 
yield 
(%)b,d trans/cis metalc 

leaching 
1 44 1.7% 53  

2 66  75  

3 79  76  

4 74  81 2.3 

5 82 1.8% 70  

6 76  78 2.5 

7 66  77  

8 76  82 2.4 

9 75 

59/41 

 74 

 
59/41 

 

2.1 
a Use of 0.5 mmol of diazo acetate, 5 equiv. of styrene, 4 h. b Use of 1 mmol of diazo  acetate, 9 
equiv. of styrene, 5 h.  c Determined  by ICP-MS. d Determined by GC. 

 
 
 
Although the recovery and recycling of the PIB-supported catalyst was 

successful, an inconvenience in this particular liquid-liquid biphasic system is that the 

high boiling point (188 ºC) of EGDA makes the isolation of styrene cyclopropanation 

product from the EGDA phase difficult.  For this reason, such a liquid/liquid biphasic 

system is best considered to be a model for the study of the recyclability of PIB-

supported Rh catalysts in the cyclopropanation reactions.  It would, in my opinion, be 

less practical in a real application because product recovery and catalyst recovery have 

to both be practical in a application of this separation technique in industry.  

In order to make the catalyst recycling system of value for practical use, a polar 

solvent with a lower boiling point should be used so as to facilitate isolation of the 

Table 4.  Cyclopropanation of styrene with Rh catalyst 117 
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product.  To study this issue, I tested a variety of polar solvents in the liquid/liquid 

extraction step.  Acetonitrile was found to be the most suitable solvent for separation of 

the polar cyclopropanation product from the nonpolar PIB-supported Rh catalyst.  It has 

a much lower boiling point (82 ºC) than EGDA.  It is also easily phase separable from a 

heptane rich solution at room temperature based on density.  Using acetonitrile, the PIB-

supported Rh catalyst 117 still could be recycled up to nine times (average 65% yield per 

cycle) without any obvious decrease in activity (Table 4).  In a separated catalyst 

recycling experiment designed to obtain pure product, an overall 65% isolated yield of 

styrene cyclopropane product was obtained via the liquid/liquid extraction with 

acetonitrile over six cycles.     

One important feature of utilization of liquid/liquid biphasic separation technique 

in these catalyses is the ability to separate a catalyst as a solution in the separation stage 

and to reuse the catalyst-containing phase with fresh substrate.  That is evidenced in the 

above studies of 117 with EGDA or acetonitrile.  However, a second issue is the 

leaching of the catalyst.  In my work, I carried out extensive studies of metal leaching 

using ICP-MS to analyze the polar phases in both of these experiments.  These analyses 

of the polar phase for rhodium revealed that about 1.8% and 2.3% of the charged metal 

leached into EGDA and acetonitrile phases, respectively, in each cycle.  The higher 

metal leaching in the case of acetonitrile presumably reflect the better coordination 

ability of acetonitrile to the metal ion.  This property of acetonitrile was visually evident 

in these experiments as the color of the solution of 117 in heptane changed from dark 

green to pink immediately upon addition of acetonitrile.  Although the coordination of 
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actonitrile to rhodium ions could have led to an inactive or poisoned catalyst, the nitrile-

Rh bonding interactions are very weak.  Simply evaporating the acetonitirile with a 

nitrogen stream led to a reversal of the color change of the solution with the original 

dark green reforming.  The regenerated PIB-Rh catalyst was as active as before and no 

obvious negative influences on the catalysis were observed in the presence of trace 

amount of acetonitrile in the recovered heptane phase.  

Another specific aim in my research was to find new biphasic systems that may 

have potential applications for recycling polymer-supported catalysts.  As I mentioned 

above, EGDA may not be a good solvent for isolating a high-boiling-point polar product 

dissolved in it.  However, use of EGDA as a polar phase to immobilize a polar polymer-

supported catalyst for preparation a nonpolar product would be possible.  In this case, 

the separation of products can be effected by liquid/liquid extraction with low-boiling-

point hydrocarbons.  In addition, the heptane/EGDA solvent mixture has the feature that 

it also exhibited thermomorphic character.  A 1/1 (v/v) mixture of these solvents is 

immiscible at room temperature but completely miscible at 65 ºC.  This also suggests 

that the phase selective soluble polymer-supported catalyst used in the mixture of 

heptane and EGDA can be recovered and recycled in a thermomorphic conditions as 

well. Another solvent mixture containing pentadecane and dimethyl carbonate also 

demonstrated a temperature-dependent miscibility between room temperature and 45 ºC.  

Phase selective study using methyl red labeled poly(N,N-dialkylacrylamide) in these two 

novel thermomorphic system has already been investigated by other people in our 

group.169 
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Isolation of reaction products in dimethyl carbonate is much easier than that in 

EGDA due to its relatively lower boiling point (80 ºC).  However, application of this 

solvent in a cyclopropanation of styrene using ethyl diazoacetate was not successful and 

only trace amounts of the cyclopropanation products were formed based on GC analysis 

of the dimethyl carbonate phase.  The reasons for this lack of reaction were not studied 

further since the acetonitrile/heptane solvent system described above already worked 

well with this PIB-supported Rh catalyst 117. 

PIB-supported Chiral Rhodium(II) Carboxylates 

Asymmetric catalytic methods have become a powerful tool for inducing stereo-

control in organic synthesis.  In light of our success in recycling achiral PIB-supported 

Rh(II) carboxylate in cyclopropanation of styrene, we attempted to extend the same 

recycling protocol to chiral Rh(II) carboxylates.  Several candidate complexes were 

considered for recycling.  Among the numerous chiral Rh(II) carboxylates, Rh(II) 

arenesulfonyl prolinates developed by McKervey and coworkers were found to be the 

simplest to prepare.117 These sorts of Rh carboxylates demonstrate excellent 

enantioselectivity in the cyclopropanation of styrene with alkyl 2-diazo-4-

phenylbutenoates.  Moreover, in most cases, high trans-selectivities are also 

obtained.118,119  Based on these reported results, I decided to use these catalysts as 

examples to investigate the potential applicability of PIB supports in asymmetric 

catalysis.  

It is reported that Rh(II) arenesulfonyl prolinate catalysts with a tert-butyl or 

dodecyl group at the para-position of the benzene ring gave the best enantio-
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selectivity.119  This suggests that a catalyst with a longer alkyl group in place of a tert-

butyl of dodecyl group would also be effective.  Since other in our group have used vinyl 

terminated PIB-oligomers as substrates in electrophilic aromatic substitution, I pursued 

the possible synthesis of a PIB-tert-butyl benzene via an electrophilic aromatic 

substitution.  This chemistry shown in Scheme 16 if successful would make preparation 

of PIB-supported Rh(II)-tert-butyl benzenesulfonyl prolinate straightforward.  Thus the 

synthesis of PIB-tert-butyl benzene becomes the initial focus of my work in this area.  

 

PIB S
N

O O
O
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N

O
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However, the initial synthesis of PIB-supported tert-butyl benzene, the key 

intermediate for the synthesis of the desired catalyst, was not successful (Scheme 17).  

Alkylation of benzene with PIB-alkene or PIB-tert-butyl chloride (118) under Friedel-

Crafts conditions did not give the desired product.  What was seen was that the PIB 

carbon chain decomposed.  In fact, tert-butyl benzene was generated as one of the major 

products.   

 

 

 

Scheme 16.  Potential synthesis route to PIB-supported Rh(II) tert-butyl  
benzenesulfonyl prolinate 
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PIB
H2SO4, rt, 1d

benzene
PIB chain was 
decomposed

Cl
PIB

EtOH/AcCl
toluene, 2d

AlCl3
benzene, 

16h118  

A subsequent literature survey showed that similar results were also reported by 

Ipatieff and Sanford respectively when using diisobutylene or triisobutylene as 

alkylating agent.170,171  Based on the fact that the same alkylation procedure worked very 

well for activated aromatic substrates such as phenol and anisole, I believe that the 

relatively low reactivity of benzene is the main reason for the decomposition of PIB 

chain.  Under Friedel-Crafts conditions, the PIB-alkene or PIB-tert-butyl chloride is 

converted to a tertiary carbocation terminated polymer (Scheme 18).  This carbocation 

once formed can either react with the arene or can depolymerize.  The pathway of π-

complex that proceeds to form a σ-complex would form the desired substituted aromatic 

product (pathway a); pathway b that involves degradation of the polyisobutyl cation 

releases isobutylenes that can be protonated under the reaction conditions to 

competitively form tert-butyl benzene.  Further complicating the picture is the fact that 

the alkylation of the arene can be reversible.  Thus even if a PIB arene is formed, it can 

dealkylate under the same reaction conditions as well. 

 

 

Scheme 17.  Synthesis of PIB-tert-butyl benzene                 
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PIB PIB

PIB +

PIB
(a)

(b)

H+

 

 

To test this hypothesis, I first prepared a PIB-tertiary alcohol 120 by a double 

alkylation of PIB-ester 119 with CH3MgBr.  In this case, there is no diisobutylene repeat 

unit in the end group of alcohol 120.  Thus, if the tertiary carbocation formed from 120 

were to lose isobutylene, it would have to form an unstable primary carbocation instead 

of the tertiary carbocation formed in Scheme 18.  Subsequent alkylation of benzene with 

120 in the presence of FeCl3 afforded PIB-tert-butyl benzene 121 which was identified 

by 1H NMR spectrum.  The resulting PIB-tert-butyl benzene 121 was subsequently 

chlorosufonated followed by treatment with morpholine to afford the desired PIB-

sulfonamide 122 (Scheme 19).  

 

 

PIB OEt

O

MeMgBr

THF
PIB OH FeCl3, rt, 12 h

benzene

PIB
i) ClSO3H, DCM

ii) morpholine PIB

S
N

O

O O

119 120

121 122  

Scheme 19.  Alternative route to PIB-tert-butyl benzene 

Scheme 18.  Possible pathways for PIB chain decomposition 
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As part of this work, an alternative route to PIB-tert-butyl benzene shown in 

Scheme 20 was also explored.  This route involved as an initial step alkylation of 

benzylnitrile with PIB-OMs (54) and MeI form the PIB alkylated methyl benzylnitrile 

124.  The nitrile group in 124 was then reduced to aldehyde (125) with DIBAL-H at 0 

ºC.  However, subsequent Wolf-Kishner reduction of aldehyde 125 in a solvent mixture 

of toluene and ethylene glycol under reflux did not yield the expected PIB-tert-bulyl 

benzene.  This might be attributed to the use of a nonpolar solvent and a low reaction 

temperature in our procedure (180-190 ºC is usually required for Wolf-Kishner reduction 

to occur in ethylene glycol).  Other reducing agents such as p-toluenesulfonyl hydrazide 

in combination with reducing agents such as BH3, NaBH4, and LiAlH4 may be an 

alternative that would make this synthetic scheme viable as a route to the desired PIB-

tert-butyl benzene.172  But this possibility was not explored.  
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Scheme 20.  Another possible route to PIB-tert-butyl 
benzene 
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A final proposed synthesis of PIB-tert-butyl benzene is shown in Scheme 21.  

This chemistry is based on our success in preparing PIB derivatives of phenol.  

Converting the hydroxyl group in PIB-phenol (126) to a leaving group followed by a 

transition metal (Pd or Ni complexes) catalyzed reductive cleavage of the carbon-oxygen 

bond is a third possible route to PIB-tert-butyl benzene.  We briefly explored this route 

but did not get success (Scheme 21).  This might be ascribed to the use of less reactive 

mesylate and tosylate (127a and b).  Using a better leaving group such as a triflate group 

in conjunction with soluble transition metal complexes the synthesis scheme shown 

below may be successful.173   

 

PIB +

OH
H2SO4

DCM

X = Ms, Ts

OH

PIB

OX

PIB

126

127

MsCl or
TsCl NaBH4

NiCl2(PPh3)2

CHCl3/MeOH

no desired product
 was observed

 

An alternative scheme used the PIB-phenyl ether 128 as an analog of PIB-tert-

butyl benzene (Scheme 22).  Chlorosulfonation on the para-position of the benzene ring 

of this activated PIB-supported arene followed by reaction of the intermediate, PIB-

arene sulfonyl chloride, with L-proline methyl ester led to the PIB-supported 

benzenesulfonyl methyl prolinate 129.  The resulting ester was then hydrolyzed to 

carboxylic acid 130.  Subsequent ligand exchange with Rh2(OAc)4 afforded the PIB-

supported Rh(II) prolinate 131 as a blue-green viscous oil.  

 Scheme 21.  Possible route to PIB-tert-butyl benzene through 
deoxygenation of PIB-phenol 
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    The polymeric Rh catalyst 131 was then examined for activity and recyclability 

in the cyclopropanation of styrene with ethyl diazoacetate.  Separation of the polymer-

supported catalyst from cyclopropanation product was conducted by a post reaction 

extraction with EGDA.  The experimental results for these studies are collected in Table 

5. 

 

 

 

 

 

 

 
                              
                             
                                               

                                             a EGDA was used as the polar phase. b Determined by GC. c Determined  
                       by GC with a chiral column. 

cycle yield (%)a trans ee 
(%)c 

cis ee  
(%)c trans/cis 

1 39 

2 73 

3 58 

4 60 

5 43 

N/A N/A 53/47 

 Scheme 22.  Synthesis of PIB-supported chiral Rh(II) arenesulfonyl  
 prolinate (131) 

   Table 5.  Cyclopropanation of styrene with Rh catalyst 131 
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The positive result of these studies was that catalyst 131 demonstrated moderate 

catalytic activity and could be easily reused through five cycles.  However, no detectable 

enantioselectivity for either the trans- or cis-products was observed.  That however, is 

perhaps not unexpected given results seen for low molecular weight catalysts like 74a.  

To address this issue, PIB chain was directly attached onto anisole at para-position to 

increase the steric hindrance on the aromatic ring (Scheme 23).  Using the synthetic 

strategy described in Scheme 22, a more hindered PIB-supported Rh(II) prolinate 135 

was thus prepared.  While reaction of L-proline methyl ester at the ortho-position of 

PIB-anisole 132 in the presence of triethyl amine only provided trace amount of 133, the 

use of a stronger inorganic base K2CO3 in combination with running the reaction at an 

elevated temperature did afford the PIB-supported methyl prolinate 133 in good yield.  

Experimental results on using of catalyst 135 in cyclopropanation are summarized in 

Table 6. 
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cycle yield 
(%)a,b 

trans ee 
(%)c 

cis ee  
(%)c trans/cis 

1 42 7 13 51/49 

2 68   54/46 

3 69 10 13 56/44 

4 43   60/40 
                       a Acetonitrile was used as the polar phase. b Determined by GC. c Determined  
                       by GC with a chiral column. 
 

 

 

 Scheme 23.  Synthesis of PIB-supported chiral Rh(II) arenesulfonyl prolinate (135) 

Table 6.  Cyclopropanation of styrene with Rh catalyst 135 
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As was true for catalyst 131, catalyst 135 also showed moderate activity in olefin 

cyclopropanation.  In this case some enantioselectivity, ca. 8% ee and 13% ee were 

observed for the trans- and cis-products respectively.  Although such enantioselectivity 

is lower than the 6% ee seen for the trans-product and 30% ee seen for the cis-product 

when a similar low molecular weight analog 74c was used,118 these results are 

encouraging.  

In addition to the low enantioselectivity seen with PIB-supported Rh catalysts 

131 and 135, their recyclability was not as good as we expected.  After four to five 

cycles, the color of the heptane phase containing the polymeric Rh catalyst was observed 

to change to light pink from its original blue-green color.  Moreover, when using 

acetonitrile as the polar solvent in the liquid/liquid extraction, the ratio of trans to cis 

changed as the cycle number increased.  This diastereoselectivity change from 51/49 in 

the first cycle to 60/40 in the forth cycle and the color change suggested to us that the 

structure of the Rh complex and/or the oxidation state of rhodium ion might be changing 

during the recycling process.  

We have also noted that the observed lower enantioselectivity in the 

cyclopropanation of styrene may also be due to the reaction studied.  Specifically, the 

ethyl diazoacetate is not always the best carbene source for the case of Rh(II) 

benzenesulfonyl prolinate catalysts.  Higher enantio- and diastereoselectivity could be 

obtained by using alkyl 2-diazo-4-phenylbutenoate or alkyl phenyldiazoacetate.  The 

reason for this was discussed in the introduction section. 
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A final route to a PIB-arene-supported cyclopropanation catalyst received a 

cursory examination and is shown in Scheme 24.  This chemistry involved an iron-

catalyzed cross-coupling of PIB-Br 136 and phenyl Grignard reagent and was based on a 

successful work by others in the group who used this chemistry to make 4-alkystyrenes.  

My preliminary study showed that this is indeed another way to form PIB-benzene.  A 

possible problem is that the desired PIB-benzene 137 is formed along with about 22% of 

PIB-alkene as an elimination product based on 1H NMR spectrum.  Nonetheless, this 

PIB-benzene 137 could still be used as a precursor for a PIB-supported version of Rh2(S-

DOSP)4 (74d), a catalyst that has been reported to be effective at achieving enantiomeric 

control in olefin cyclopropanation reactions.  

 

PIB

PIB OMs PIB BrLiBr
heptane/
acetone PIB

FeCl3, TMEDA,
PhMgBr

THF, -78 ºC-0 ºC
reflux

+

54 136

137  

PIB-supported Chiral Rhodium(II) Carboxamidate  

Recovery and recycling of chiral Rh(II) carboxamidates developed by Doyle’s 

group is another attractive goal for my research because of these catalysts’ excellent 

performance in asymmetric olefin cyclopropanation, C-H insertion and other carbenoid 

based reactions.  As noted above, polyethylene has been used to support these catalysts. 

However, its use required elevated temperature, a disadvantage in this process.  The use 

of other soluble polymer supports in rhodium carboxamidates chemistry has not been 

Scheme 24.  Synthesis of PIB-benzene 
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reported by far.  The discussion below summarizes my preliminary results on using 

soluble PIB supports in this chemistry. 

The PIB-supported S-MEPY ligand 138 and 140 were prepared by a Fischer 

esterification of S-pyrrolidone-5-carboxylic acid (eq. 53-54).  These alcohols 53 and 

139, differ from one another in a potentially important way.  Specifically, 139 which is 

prepared through reduction of PIB-COOH (eq. 55), has two extra methylene spacers 

which place the racemic center of the polymeric support further away from the chiral 

environment around Rh centers in the catalyst.  However, it was not clear if the acid 

catalyst used in the Fischer process would affect the chiral center in S-pyrrolidone-5-

carboxylic acid.  To test this, ester 141, a low molecular weight analog of PIB-supported 

S-MEPY ligands, was prepared via Fischer esterification and a DCC-HOBt protocol 

respectively (eq. 56 and 57).  The DCC-HOBt coupling method is a very mild procedure 

for ester formation and under these esterification conditions, the chiral center in 

pyrrolidone-5-carboxylic acid is retained in the product.  The ester 141 prepared from 

the two different methods showed similar optical activity ([α]21.6
D = -0.69°, c = 1, EtOH, 

Fischer condition; [α]20.6
D = -0.49°, c = 1, EtOH, DCC-HOBt).  This result suggests that 

a catalytic amount of acid did not affect the chirality in the product ester 141 or in the 

PIB-supported S-MEPY ligands 138 and 140.  We believe that transesterification 

between PIB-alcohols and methyl S-pyrrolidone-5-carboxylate using the same acid 

catalyst would work in the same way.  
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Although alcohol 139 might be better than alcohol 53 for preparation of chiral Rh 

carboxamidate catalysts, the synthesis of the necessary starting carboxylic acid 58 is 

tedious.  Thus I also looked at alternative ways to make an achiral PIB-alcohol 

efficiently. 

Based on all the PIB intermediates we have, PIB-phenol proved to be the best 

candidate for synthesis of an achiral alcohol as it has no chiral centers.  My first effort to 

use this PIB derivative to make an alcohol used hydroboration chemistry as shown in 

Scheme 25.  Allylation of PIB-phenol 79 yielded PIB-phenyl allyl ether 142 

quantitatively.  However, the subsequent hydroboration of PIB-phenyl allyl ether 142 

generated regioisomers.  In addition to the desired primary alcohol 143a (88% yield 

based on 1H-NMR spectrum), 12% of the secondary alcohol 143b was obtained as a 

byproduct.  A better route to a single primary alcohol derivative from PIB-phenol was 

(53) 

(54) 

(55) 

(56) 

(57) 
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the reaction of PIB-phenol with ethylene carbonate or 6-chloro hexanol which led to the 

PIB-alcohols 144 and 145 respectively.  However, while these routes led to primary 

alcohols, my attempts at transesterifications of S-MEPY with them were relatively 

unsuccessful.  Transesterification of S-MEPY with alcohol 144 did not yield an ester 

product and transesterification using the alcohol 145 gave ester in less than 50% 

conversion even when the reaction was carried out for two days or longer.  

 

OH

PIB

O

O O

Cs2CO3
toluene/DMF

reflux

O

PIB

HO

Cl OH

Cs2CO3/KI
toluene/DMF

reflux

PIB

O
OH

Cs2CO3

heptane/DMF
reflux

allyl bromide O

PIB

i) BH3-SMe2
THF, 0 ºC

ii) NaOH, H2O2

O

PIB

OH
O

PIB

HO

+

79

142 143a   88%

144

145

143b   12%  

Compared to rhodium(II) carboxylates, rhodium(II) carboxamidates has been less 

studied due to the difficulties encountered in their synthesis and purification.  This 

situation did not change until a new preparative route was developed by Doyle in 1990.  

In this new synthesis procedure, the acetic acid byproduct was continuously evaporated 

Scheme 25.  Alternative routes to synthesize achiral PIB-alcohols 
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and absorbed by a base trap.  That process drove the reaction to completion.  It was also 

reported that rhodium(II) carboxamidates more easily oxidize to Rh(II)-Rh(III) dimer.  

This process is usually visually obvious based on the color change from deep blue to 

dark pink,134 and is a problem because the oxidized rhodium carboxamidates are not 

effective in olefin cyclopropanation reactions unless the Rh(III) is reduced to Rh(II) 

again.  

In general, polymer-supported rhodium carboxamidates are synthesized through 

ligand exchange of polymeric ligands with low molecular weight rhodium 

carboxamidates.  To avoid the high cost purification step, we tried to carry out a ligand 

exchange directly using the PIB-supported ligand 140 and rhodium(II) acetate dimer in 

refluxing chlorobenzene (eq. 58).  This initial attempt was not successful due to the poor 

solubility of rhodium acetate in chlorobenzene.  Addition of small amount of S-MEPY 

ligand to the reaction mixture as a phase transfer agent did initiate the ligand exchange 

(eq. 59), but the reaction rate was very slow.  After three days, there was still a large 

amount of rhodium acetate left in the bottom of the flask.  Increasing the amount of S-

MEPY accelerated the reaction rate but in turn resulted in the formation of undesired 

low molecular weight rhodium carboxamidate in the reaction mixture.  However, after a 

simple work-up based on extraction followed by flash chromatography, the desired PIB-

supported Rh carboxamidate 146 was obtained as purple viscous oil.  The color 

suggested that the Rh(II)-Rh(III) dimer  was formed. 
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Synthesis of 1-Oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylates 

Most of chiral rhodium carboxamidates currently used are derived from lactams, 

oxazolidinones, and imidazolidinones with four- or five-membered ring scaffolds.  Only 

one example based on six-membered ring 3-amino-2-piperidinone was reported by 

Hashimoto and coworkers.143  As part of my work, I also looked at a new class of chiral 

lactam ligands, 1-oxo-1,2,3,4-tetra-hydroisoquinoline-3-carboxylate 149a and 149b, that 

could potentially be used to prepare Rh carboxamidatates.  Tetrahydroisoquinoline 

derivatives 149a and 149b possess similar functionalities as S-MEPY ligand except the 

ring size.  We believe such structural similarity would lead us to a new chiral Rh 

carboxamidate.  

NH
OR

O

O

1-oxo-1,2,3,4-tetrahydroiso-
quinoline-3-carboxylate

149a and 149b

R = Me or Et

 

(58) 

(59) 
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The synthesis of tetrahydroisoquinoline derivative 149a from L-phenylalanine is 

shown in Scheme 26.  Treatment of phenylalanine with SOCl2 in anhydrous methanol at 

room temperature for 24 hours quantitatively yielded ester 147.  The amino group in 147 

was then converted to the isocyanate 148 by reaction with triphosgene.  Subsequent 

AlCl3 promoted ring closure of isocyanate 148 led to the lactam 149a in 46% yield with 

optical activity ([α]21
D = 78°, c = 0.9, MeOH). Using the same procedure, lactam 149b 

was also obtained in 58% yield.  Transesterification of 149a with PIB-alcohol 53 or 139 

afforded PIB-supported chiral lactam ligand 150 and 151 respectively (eq. 60).  Use of 

149b in transesterification was not successful perhaps due to the slightly higher steric 

hindrance on the ethyl group.  

 

OH
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Scheme 26.  Synthesis of 1-oxo-tetrahydroisoquinoline-3-carboxylates 149 
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PIB-supported Chiral Bisoxazoline-ligated Copper Triflates  

Chiral bisoxazoline ligands are recognized as a broadly useful class of chiral 

ligands and they have been used in a large number of asymmetric transformations.  

Usually the catalysis is conducted at room temperature or below, with 1-10 mol % of 

bisoxazoline-ligated transition metal catalyst.  Given the cost of the chiral bisoxazoline 

ligands, the accepted desirability of recovering transition metal catalysts, and the utility 

of the PIB-supported catalysts at room temperature and below, I extended my work with 

PIB-supported Rh catalysts to include the synthesis of chiral bisoxazoline-ligated 

catalysts. 

Bisoxazolines 154a–d were synthesized as shown in Scheme 27.  The dihydroxy 

malonodiamides 153a–d were readily prepared from diethyl methyl-, or benzylmalonate 

152a or 152b and corresponding chiral amino alcohols in good to excellent yields.  The 

cyclization was accomplished by a one pot literature method involving activation of the 

terminal hydroxyl groups with p-toluenesulfonyl chloride, followed by a DMAP 

promoted ring closure.160 

 

 

(60) 



 115

 

EtO OEt
R

OO
amino alcohol

110 oC, 48 h

70% to 90%

N
H

N
HR

OOR' R'

**
OH OH

p-TsCl, Et3N

DMAP, DCM,
    rt, 24 h
80% to 95%

O

N N

O
R

R'R'
**

R = Me or Bn

amino 
alcohol =

L-valinol
(R)-2-Phenylglycinol
(R)-2-Amino-1-butanol
(S)-Leucinol

a: R = Bn, R' = i-Pr (S,S)
b: R = Me, R' = Ph (R,R)
c: R = Bn, R' = Et (R,R)
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152a and b

153 154

 

     

Synthesis of bisoxazoline ligand derived from S-tert-leucinol with the same ring 

closing procedure discussed above was not successful due to the higher steric hindrance 

from the adjacent tert-butyl group.  Another ring closing procedure developed by 

Masamune’s group worked very well in this case.174  In this procedure, activation of the 

amide with dimethyltin dichloride followed by dehydration afforded the bisoxazoline 

154e in 69% yield (eq. 61).  

EtO OEt

OO
NH2

OH

+
Sn(Me)2Cl2

chlorobenzene,
reflux

O

N N

O

154e 69%  

The PIB-mesylate 54 was prepared as a racemic compound. To eliminate the 

possible interference from the racemic center of PIB on the catalysis, we added a 4-oxy-

benzyl linker between the polymer chain and bisoxazolines.  The synthesis of PIB-

benzyl chloride 157 is shown in Scheme 28.  PIB-mesylate 54 was converted to the PIB-

supported n-propyl benzoate 155 by a SN2 substitution.  The ester group on 155 was then 

Scheme 27.  Synthesis of low molecular weight bisoxazoline ligands 

(61) 
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reduced by LiAlH4.  The resulting alcohol 156 was treated with SOCl2 to afford the 

desired PIB-benzylchloride 157. 

 

OMsPIB
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O On-Pr
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With PIB-benzylchloride 157 and bisoxazoline 154a-e in hand, PIB supported 

ligands 158a–e were prepared by alkylation of corresponding bisoxazolines with 157 

(Scheme 29).  All of these reactions of PIB had the attractive feature that they could be 

analyzed by solution state 1H NMR spectroscopy.  These analyses verified that the 

conversions of 154a-e to 158a-e were quantitative.  Figure 5 shows a portion of the 1H 

NMR spectrum of 158b, illustrating that solution state resolution is attainable in analyses 

of these terminally functionalized PIB oligomers. 

 

 

 

 

 

 

 

Scheme 28.  Synthesis of PIB-benzyl chloride 
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These syntheses were also facilitated by the heptane solubility of the PIB 

derivatives which reduced purification to a simple heptane extraction step.  Reaction of 

158a-c with Cu(OTf)2 in dichloromethane at room temperature led to the copper 

Scheme 29.  Synthesis of PIB-supported bisoxazoine ligated copper(II) triflates 

O

N N

O

O PIB

158b

        Figure 5.  1H NMR spectrum of PIB-supported bisoxzaoline ligand 158b. 
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complexes 159a–c with metal loadings of 0.50, 0.21 and 0.44 mmol of Cu/g, 

respectively (based on ICP-MS analysis).  The resulting copper complexes 159a-c were 

studied as asymmetric catalysts for the cyclopropanation of styrene with ethyl 

diazoacetate.  Results of these cyclopropanation reactions are collected in Table 7. 

 

 

159a (1.9 mol%) 159b (1 mol%) 159c (1.9 mol%) 

cycle yield 
(%)b 

trans 
/cis 

trans 

ee 
(%)c 

cis 
ee 

(%)c 

yield 
(%) 

trans 
/cis 

trans 
ee 

(%) 

cis 
Ee 
(%) 

yield 
(%) 

trans 
/cis 

trans 
ee 

(%) 

cis 
ee 

(%) 
1 68 72/28   32 83/17 94 68 42 66/34 71 40 

2 63 69/31 37 70 53 81/19 93 72 60 66/34   

3 61 69/31   53 81/19 92 66 68 66/34 65 42 

4 56 69/31 36 71 54 81/19 92 67 52 67/33   

5 52 68/32   42 81/19 90 66 53 66/34 67 38 

6a     56 80/20 92 69 48 67/33   
a Ethyl dizaoacetate was added in 10 hours. b Determined by GC. c Determined by GC with a chiral 
column. 
 
 

 
All three PIB-supported bisoxazoline ligands showed moderate catalytic activity 

and modest to very good stereoselectivity.  Of these catalysts, 159b demonstrated the 

highest diastereoselectivity (trans/cis 81/19) and good enantioselectivity for both the cis- 

and trans-cyclopropanation products (68% and 92% ee, respectively).  Cyclopropanation 

of styrene with ethyl diazoacetate using catalyst 159a afforded the cis-product in 70% ee 

while a similar reaction with catalyst 159c yielded the trans-product in 68% ee.  These 

Table 7.  Asymmetric cyclopropanation of styrene with PIB-supported bisoxazoline 
ligated copper triflates 
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results are encouraging.  They show that a soluble PIB support and its use in heptane-

rich solutions is compatible with an asymmetric catalytic reaction at room temperature. 

Both catalysts 159b and 159c could be reused up to six times without a decrease 

in the enantio- and diastereoselectivity.  The PIB2300-supported copper catalyst 159b 

showed slightly lower catalytic activity compared to the PIB1000 version.  In the case of 

using 159c, 33%, 16% and 5% of metal leaching was observed in the EGDA phases for 

the 1st, 2nd and 5th cycles, respectively, by ICP-MS analysis.  We believe this reflects 

mass transfer of a portion of the PIB-supported copper catalyst 159c to the polar phase 

because the polar part of these ligands is relatively large in comparison to the size of the 

non-polar PIB group.  This makes the catalysts less phase selectively soluble.  The 

decrease in leaching through several cycles is presumed to reflect a greater loss of less 

phase selectively soluble lower molecular weight fractions of the polydisperse PIB-

supported catalyst in the initial biphasic separations.  The loss of PIB-supported copper 

species into the polar phase is thus both greater than that seen for PIB-Rh catalyst 117 

and decreases as the number of cycles increases. 

We also analyzed EGDA phases in another recycling experiment using the higher 

molecular weight PIB-supported catalyst 159b.  This catalyst too was reusable through 

multiple cycles.  Metal leaching for the 1st, 2nd, 3rd, 4th and 6th cycles was 13%, 7%, 

6% 7% and 7% of the charged catalyst, respectively.  These leaching rates are larger 

than we wished.  Nonetheless, they show that the recyclability of PIB2300 supported 

Cu(I) catalysts is better than that seen for PIB1000 supported catalysts, a result which we 

ascribe to the larger nonpolar PIB chain in 159b. 
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To confirm that the observed leaching reflected the inherent phase selective 

solubility of these oligomeric PIB-supported bisoxazoline catalysts in liquid/liquid 

biphasic separations, separate experiments examining the phase selective solubility of 

159b in a heptane/EGDA biphasic extraction were conducted in the absence of a 

catalytic reaction. EGDA was added to a heptane solution of 159b and the concentration 

of 159b in both the heptane and EGDA phases was analyzed by UV–visible 

spectroscopy using the absorbance of 159b at 720 nm.  Assuming that the extinction 

coefficient of 159b in the heptane and EGDA phases is the same, we estimate the phase 

selective solubility of 159b in the first two cycles in this experiment where the condition 

that no reaction occurs is ca. 14% and 7%, respectively.  These UV–visible spectroscopy 

results match our ICP-MS results.  They support the hypothesis that the lower phase 

selectivity of the PIB-supported catalyst is the origin of the catalyst leaching problem.  If 

metal loss from the bisoxazoline had occurred, the ICP-MS results that analyze for metal 

would have differed more from these UV-visible spectroscopy results which directly 

assay for the presence of the metal ligand complex.  This suggests that a higher 

molecular weight PIB will afford a more recyclable catalyst. 

Conclusions 

In summary, both PIB-supported achiral rhodium carboxylates and chiral 

rhodium prolinates have been synthesized and used in olefin cyclopropanation reactions.  

Catalyst reusability was demonstrated in both heptane/EGDA and heptane/acetonitrile 

solvent systems.  Oligomeric PIB-carboxylate ligands were used to prepare achiral 

rhodium(II) cyclopropanation catalysts that work at room temperature and that can be 



 121

recycled and reused in both heptane/EGDA and heptane/acetonitrile solvent systems 

with liquid/liquid catalyst recovery and separation.  Up to nine cycles with ca. 2% metal 

leaching were seen in a typical cyclopropanation.  PIB-supported chiral arenesulfonyl 

Rh prolinates prepared from PIB-phenyl ether and PIB-anisole respectively, also 

demonstrated moderate activity and enantioselectivity in cyclopropanation reactions, but 

gradual deactivation of the catalysts was seen over cycles.  

As an extension of rhodium catalyzed alkene cyclopropanation chemistry, PIB-

supported S-MEPY ligands were synthesized and used in the preparation of PIB-

supported Rh carboxamidate catalysts.  However, formation of oxidized rhodium 

species, Rh(II)-Rh(III), were observed during the catalyst preparation.  A new class of 

chiral lactam ligands derived from L-phenylalanine was synthesized as potential chiral 

ligands for preparation of Rh carboxamidates.  Attachment of such chiral lactam onto 

PIB supports was accomplished by acid catalyzed transesterification.   

The most stereoselective catalysts were prepared using bisoxazoline ligands. 

PIB-supported bisoxazoline-Cu(I) complexes were prepared and were shown to have 

moderate to good activity and enantioselectivity at room temperature.  Catalyst 158b 

was the most effective of these catalysts affording the cis- and trans-cyclopropanation 

product in 68% ee and 92% ee respectively and in an average 48% yield over six cycles.  

However, while these bisoxazoline ligands on PIB allowed us to prepare more 

stereoselective catalysts, leaching for PIB-supported copper catalysts is more 

problematic due to the higher mass percent loading of the polar groups in these 

oligomeric catalysts with regard to the PIB polymer.  Recyclability can be improved by 
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increasing the length of PIB chain but metal leaching is still a problem with PIB groups 

having a degree of polymerization of 40–50, that suggests to us that PIB with higher 

degrees of polymerization should be examined in this specific case. 
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CHAPTER IV 

EXPERIMENTAL 

 

Materials: polysiobutylene (PIB) oligomers were obtained from BASF Co. with 

molecular weight 1000 and 2300 (n = 17 and 40).  All other reagents were purchased 

from commercial sources and used without further purification unless otherwise 

specified.  1H NMR spectra were recorded on Varian Mercury 300 or Inova 300 

spectrometers at 300 MHz and reported in ppm referenced to CDCl3 or d-DMSO.  13C 

NMR spectra were obtained on Mercury 300 or Inova 300 spectrometer at 75 MHz and 

reported in ppm referenced to CDCl3.  Coupling constants (J values) were reported in 

hertz (Hz), and spin multiplicities are indicated by the following symbols: s (singlet), d 

(doublet), t (triplet), q (quartet), and m (multiplet).  The PIB derivatives generally 

contained peaks in the d 0.8-1.6 range that are assigned to the protons of the oligomer 

chain.  Crude products also often contained alkane solvents that appeared in this region, 

but even crude PIB products can be readily characterized by examining the end groups 

whose functional groups’ protons inevitably appeared downfield of the alkane region.  

IR spectra were obtained on a Bruker Tensor 27 FT-IR.  The phase selective solubility 

studies on PIB-supported metal complexes were performed on a Cary 100 UV/vis 

spectrophotometer.  Yields in catalytic reactions were analyzed by gas chromatography 

used a Shimadzu GC-2010 instrument with a nonpolar ZB-5MS column (length: 30 m; 

inner diameter: 0.25 mm; film thickness: 0.50 µm).  Eanatiomeric excess of chiral 

cyclopropanation products were determined by GC using a chiral cyclodextrin 2,3-di-O-
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methyl-6-O-propyldimethylsilyl-β-CD column (length: 30 m; inner diameter: 0.25 mm; 

film thickness: 0.25 µm).  Metal analysis was conducted on a Perkin Elmer DRC II ICP-

MS instrument.  All reactions were carried out under an inert atmosphere unless 

otherwise noted. 

PIB-CH2OH (53).  

The starting vinyl-terminated PIB (7.4 g, 7.4 mmol) was dissolved in 30 mL of hexane 

and then was allowed to react with 2M BH3-SMe2 in THF (2 mL, 4 mmol) at room 

temperature.  After 24 h, the reaction mixture was cooled to 0 °C and 10 mL of ethanol, 

3 mL of 4 N NaOH, and 3 mL of 30% H2O2 were added slowly and sequentially to the 

flask.  The reaction mixture was then allowed to stir at room temperature for 30 min and 

to reflux for two hours.  After cooling down to room temperature, 50 mL of water was 

added to the flask.  The reaction mixture was extracted with hexane (40 mL x 3), and the 

combined organic phase was then washed with water (15 mL x 3), brine (30 mL).  The 

organic phase was dried over Na2SO4, filtered and solvents were removed under reduced 

pressure.  After drying under vacuum for 24 h, a total yield of 6.6 g (88%) of product 

(PIB-CH2OH) was obtained.  1H NMR (300 MHz, CDCl3, δ): 0.75-1.46 (m, 276H), 

3.27-3.32 (dd, J = 7.5, 10.2 Hz, 1H), 3.44-3.49 (dd, J = 5.4, 10.2 Hz, 1H).  

PIB-CH2OMs (54).  

PIB-CH2OH (10 g, 9.8 mmol) was dissolved in 100 mL of DCM and cooled to 0 ºC.  

Then methanesulfonyl chloride (2.3 mL, 29 mmol) and triethylamine (4.3 mL, 31 mmol) 

were added dropwise.  The reaction mixture was allowed to stir for 6 h after warming to 

room temperature.  The solvent was removed under reduced pressure and the resulting 
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mixture was taken up with 300 mL of hexane.  After removal of the insoluble 

ammonium salts by filtration, the hexane solution was washed with 90% EtOH (50 mL x 

4).  The organic phase was dried over Na2SO4, filtered and the solvent was removed 

under reduced pressure.  A total yield of 10.5 g (97.8%) of product was obtained after 

drying under vacuum for 24 h.  1H NMR (300 MHz, CDCl3, δ): 0.88-1.46 (m, 211H), 

1.95 (m, 2H), 2.96 (s, 3H), 3.85-3.90 (dd, J = 7.5, 9.3 Hz, 1H), 4.03-4.08 (dd, J = 5.4, 

9.3 Hz, 1H). 

PIB-OC(CH3)=CHCOCH3 (55).  

A reaction mixture containing PIB-OMs (1 g, 0.9 mmol), 2,4-pentadione (0.6 mL, 5.8 

mmol), K2CO3 (1.2 g, 8.7 mmol), 25 mL of heptane, and 25 mL of DMF was heated to 

reflux.  After 24 h, the reaction mixture was allowed to cool down to room temperature.  

The isolated heptane phase was washed with 90% EtOH three times and dried over 

Na2SO4.  After removal of heptane, 0.81 g (80%) of light yellow viscous oil was 

obtained.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 368 H), 2.13 (s, 3H), 2.27 (s, 3H), 

3.41-3.47 (dd, J = 7.5, 9.3 Hz, 1H), 3.54-3.59 (dd, J = 5.7, 9.3 Hz, 1H), 5.41 (s, 1H). 

PIB-CH2CH(COOEt)2 (56).  

Sodium (1.6 g, 68.9 mmol) was allowed to react with EtOH (100 mL) to form a solution 

of EtONa in EtOH.  Then diethyl malonate (11.4 mL, 74 mmol) was added and the 

resulting solution was stirred at room temperature for 30 min.  A solution of PIB-

CH2OMs (7 g, 6.4 mmol) in 50 mL of heptane was also prepared and 35 mL of the 

ethanolic solution of the sodium diethyl malonate was added to this mesylate solution.  

After heating at 80 ºC for 12 h, the reaction mixture was cooled to room temperature, 
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200 mL of hexane was added, and the hexane solution was washed with water (30 mL x 

2) and dried over Na2SO4.  The solvent was removed under reduced pressure and the 

product was dried under vacuum for 24 h to yield 6.5 g (87.6%) of product.  1H NMR 

(300 MHz, CDCl3, δ): 0.88-2.0 (m, 226H), 3.35-3.40 (dd, J = 6.3, 8.7 Hz, 1H), 4.12-4.21 

(m, 4H). 

PIB-CH2CH(COOH)2 (57).  

A mixture of PIB-CH2CH(COOEt)2 (6.5 g, 5.6 mmol) and sodium hydroxide (2.6 g, 65 

mmol) was dissolved in 50 mL of ethanol and 50 mL of heptane, and the solution was 

heated to 80 ºC for 40 h.  After cooling to room temperature, the solution was 

neutralized by concentrated HCl.  Then 50 mL of water was added, the organic phase 

was separated and the water phase was extracted by hexane (40 mL x 3).  The combined 

organic phases were washed by DMF (10 mL x 3), 90% EtOH (10 mL x 3), and finally 

dried over Na2SO4.  After the solvents were removed under reduced pressure, the 

product was dried under vacuum for 24 h to give 5.4 g (87.3%) of product.  1H NMR 

(300 MHz, CDCl3, δ): 0.76-2.0 (m, 370H), 1.98 (m, 2H), 3.47-3.52 (dd, J = 6.3, 8.4 Hz, 

1H); IR (neat, cm-1) 1722.  

PIB-CH2CH2COOH (58).  

The diacid 57 was then decarboxylated by adding the diacid product 57 (5 g, 4.53 mmol) 

to a mixture of 5 mL of concentrated HCl, 5 mL of H2O in 50mL of DMF and 50 mL of 

heptane and heating this mixture at 120 ºC for 40 h.  After cooling to room temperature, 

the heptane-rich phase was isolated.  The DMF-rich phase was extracted with hexane 

(30 mL x 3).  The combined heptane and hexane phases were washed by 90% EtOH (20 
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mL x 2), brine (20 mL) and dried over Na2SO4.  The solvents were removed under 

reduced pressure and the product was dried under vacuum for 24 h to give 4 g (83.2%) 

of the desired product.  1H NMR (300 MHz, CDCl3, δ): 0.76-2.0 (m, 274H), 2.30-2.36 

(m, 2H); 13C NMR (CDCl3, δ): 14.1, 22.3, 29.1, 31.5, 32.1, 34.1, 36.2, 38.2, 53.2, 57, 

57.9, 58.4, 59.3, 179.5;  IR (neat, cm-1) 1711. 

PIB-CH2CH2COCl (59).   

A sample of PIB-CH2CH2COOH (1.2 g, 1.1 mmol) and 20 mL of toluene (dry) was 

added to a 100-mL flask.  Then thionyl chloride (2 mL, 27 mmol) was added to this 

solution dropwise at room temperature.  The reaction mixture was heated to 115 ºC for 4 

h.  After cooling, the solvent was removed under reduced pressure and the residue was 

examined by IR (1802 cm-1) after drying under vacuum for 2 h.  The PIB-acid chloride 

so obtained was typically used in further steps without further analysis. 

PIB-CH2CH2COCH(COCH3)COOt-Bu (61).   

In a 100-mL, two-necked dry flask equipped with a magnetic stir bar, was placed 

MgBr2.OEt2 (1.55 g, 6 mmol) and 30 mL of dichloromethane under nitrogen.  The 

resulting heterogeneous mixture was cooled down to 0 ºC using an ice bath, and then 

tert-butyl acetoacetate (0.7 mL, 4 mmol) was added to the reaction mixture by a syringe 

with vigorous stirring.  Then pyridine (0.7 mL, 8 mmol) was slowly added to the 

heterogeneous mixture.  After the mixture was stirred for 15 min at 0 ºC, a solution of 

PIB-acid chloride (from PIB-acid 58, 2 g, 2 mmol) in 25 mL of dichloromethane was 

added dropwise to the flask via a syringe.  The resulting mixture was stirred for 15 min 

at 0 ºC and 24 h at room temperature.  The solvent was removed under reduced pressure 
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and the residue was dissolved in 40 mL of hexanes.  The hexane phase was washed with 

6 M HCl (10 mL x 2), DMF (10 mL x 4) and 90% EtOH (10 mL x 3).  After drying over 

sodium sulfate, the solvent was removed under reduced pressure to give 2.0 g, (85.5%) 

of product.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.43 (m, 461H), 2.26 (s, 3H), 2.5-2.7 

(m, 2H), 17.43 (s, 1H). 

PIB-CH2CH2COCH2COCH3 (62).   

The tricarbonyl compound 61 (1 g, 0.83 mmol) was treated with methanesulfonic acid (2 

mL) in 20 mL of DCM at 30-40 °C for 16 h.  Then the DCM was removed and the 

residue was dissolved in 50 mL of hexane.  The hexane solution was washed with 90% 

EtOH (10 ml x 3), water (10 mL x 3), and dried over Na2SO4.  Removal of hexane led to 

isolation of 0.75 g (82%) of product.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.49 (m, 

330H), 2.05 (s, enol CH3), 2.15 (s, keto CH3), 2.25 (m, PIB-CH2-CO- of the enol 

tautomer), 2.46 (m, PIB-CH2-CO- of the keto tautomer), 3.56 (s, -COCH2CO- of the 

keto tautomer), 5.48 (s, =CH- of the enol tautomer), and 15.5 (br s, -OH of the enol 

tautomer). 

PIB-CH2CH2COCH2COC(CH3)3 (63).  

To a solution of diisopropylamine (1.3 mL, 9 mmol, freshly distilled) in 10 mL of dry 

THF was added dropwise 5.3 mL of a 1.6 M solution of n-BuLi (8.4 mmol) in hexane at 

-78 ºC.  After 30 min, pinacolone (1.1 mL, 9 mmol) was added dropwise to the solution 

of LDA in THF above made at -78 ºC (a white solid was precipitated, which is the 

enolate of pinacolone).  After another 30 min, when deprotonation of pinacolone was 

complete, the reaction mixture was warmed up to room temperature to form a 
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homogeneous solution.  Then 15 mL of a THF solution of PIB-acid chloride (from the 

acid 57, 3 g, 2.8 mmol) was added dropwise to this enolate solution using a syringe.  The 

reaction mixture was then cooled to 0 ºC with an ice-water bath and stirred overnight.  

The reaction mixture was quenched with 6 M HCl, and the solvent was removed under 

reduced pressure.  The residue was dissolved in 60 mL of hexanes and washed with 90% 

EtOH (15 mL x 2), DMF (15 mL x 3) and 90% EtOH (15 mL x 3).  The resulting 

solution was dried over Na2SO4 overnight.  The solvents were removed under reduced 

pressure and the residue was dried in vacuum for 24 h to give 2.8 g (88%) of product 63 

as a viscous yellow liquid.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 341H), 2.27 (m, 

PIB-CH2-CO- of the enol tautomer), 2.48 (m, PIB-CH2-CO- of the keto tautomer), 3.62 

(s, -COCH2CO- of the keto tautomer), 5.6 (s, =CH- of the enol tautomer), 15.82 (s, -OH 

of the enol tautomer).  The principle species present (ca. 93%) was the enol form of the 

β-diketone.  Diketone 62 was prepared following a procedure analogous to that shown 

above for 63. 

PIB-COCH3 (64).  

Polyisobutylene (PIB) (18.3 g, 18.3 mmol) was dissolved in 150 mL of toluene in a 500-

mL flask.  This reaction mixture was then cooled to -78 ºC and treated with ozone in an 

ozonolysis apparatus for 30 min.  After the residual ozone was removed by degassing 

with N2 for 20–30 min, triphenylphosphine (24 g, 91 mmol) was added to the cold 

reaction mixture.  To insure complete reduction of the ozonide, this reaction mixture was 

allowed to stir at room temperature for 12 h.  At this point, the absence of peroxides was 

verified with a peroxide test.  Then most of the toluene was removed under reduced 



 130

pressure and the residue was taken up with 150 mL of heptane.  Filtration was used to 

remove the solid (triphenylphosphine and triphenylphosphine oxide).  To the resulting 

heptane phase was added 150 mL of DMF.  To facilitate removal of any residual 

triphenylphosphine, this solvents mixture was heated to reflux in air for 12 h (to oxidize 

the triphenylphosphine) and finally cooled to room temperature.  The heptane phase of 

the biphasic mixture was separated.  If any triphenylphosphine remained in this solution, 

more DMF was added and the reflux was continued.  Otherwise, the heptane phase 

containing 64 was washed with DMF (20 mL x 2), water (20 mL x 2), brine (20 mL), 

dried over Na2SO4.  Finally the solvent was removed under reduced pressure to give 17 

g (93%) of product 18.  1H NMR (300 MHz, CDCl3, δ): 0.84-1.48 (m, 180H), 2.10 (s, 

3H), 2.42 (s, 2H); IR (neat, cm-1) 1722. 

PIB-COCH2COCF3 (65).  

To a solution of diisopropylamine (4.6 mL, 32.6 mmol) in 35 mL of dry THF was added 

dropwise 19 mL of 1.6 M solution of n-BuLi (30.4 mmol) in hexane at -78 ºC.  After 30 

min, 10.2 g (10.2 mmol) of PIB methyl ketone 64 in 25 mL of THF was added dropwise 

at -78 ºC to the solution of LDA in THF above made.  After another 30 min, when 

deprotonation was completed, ethyl trifluoroacetate (2.4 mL, 20.4 mmol) was slowly 

added to the reaction mixture via a syringe.  The reaction mixture was kept at -78 ºC for 

2 h and then warmed up to room temperature overnight.  The reaction mixture was 

quenched with 6 M HCl.  After the reaction, the solvents were removed at reduced 

pressure, the residue was dissolved in 100 mL of hexanes and the hexane solution was 

washed with 90% EtOH (20 mL x 2), DMF (20 mL x 2) and 90% EtOH (20 mL x 3).  
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The final hexane phase was dried over Na2SO4 and the hexane was removed to yield 

10.3 g (96.6%) of product 28.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.43 (m, 292H), 2.35 

(s, 2H), 5.82 (s, 1H); 13C NMR (CDCl3, δ): 97.95 (s), 117.2 (q, J = 284.12 Hz), 177.5 (q, 

J = 36.21 Hz), 195.45 (s); IR (neat, cm-1) 1697, 1599. 

PIB-CH2COCH2COC(CH3)3 (66). 

This compound was prepared from PIB methyl ketone 64 and pivaloyl chloride using the 

procedure used to prepare diketone 65.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.5 (m, 

288H), 2.29 (s, 2H), 3.71 (s, unknown), 5.53 (s, 1H), 15.01 (s, 1H). 

PIB-CH2COOH (67) by oxidation of PIB-CH2OH 53.  

In a 100-mL flask equipped with a stir bar, PIB-CH2OH 53 (0.5 g, 0.49 mmol) was 

dissolved in 15 mL of dichloromethane, and then 15 mL of 3% acetic acid aqueous 

solution, KMnO4 (0.3 g, 2 mmol) and PEG5000 (0.05 g, 0.01 mmol) were added to the 

flask.  The resulting two-phase reaction mixture was vigorously stirred for 24 h at room 

temperature.  The byproduct MnO2 was removed by filtration, and the organic phase was 

separated from aqueous phase.  After evaporation of dichloromethane, the residue was 

dissolved in 30 mL of hexanes and washed with 3 M HCl (10 mL x 2), 90% EtOH (10 

mL x 5), and water (10 mL x 2).  The hexane phase was then dried over Na2SO4 and the 

solvent was removed under reduced pressure to yield 0.5 g of PIB oligomer, which was a 

mixture of starting material and oxidized product (68.7% conversion) based on 1H NMR 

spectroscopy.  1H NMR (300 MHz, CDCl3, δ): 0.8-2.0 (m, 244H), 2.55 (m, 2H, -

CH2COOH). 
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PIB-COOH (68) from iodoform reaction.  

To a solution of 64 (1.35 g, 1.35 mmol) in 40 mL of THF in a 250-mL flask was added 

30 mL of 5 M KOH and of tetrabutylammonium bromide (TBAB, 0.3 g, 1 mmol).  The 

resulting mixture was stirred for 1.5 h at room temperature.  Then 10 mL of 0.5 M I2/KI 

(5 mmol) in water was added to the reaction mixture.  After 48 h, the reaction mixture 

was separated and the organic solvent was removed under reduced pressure.  The residue 

was taken up in 40 mL of hexanes and then filtrated to remove TBAB.  The organic 

phase was first washed with 6 M HCl (10 mL x 2), DMF (15 mL x 3) and 90% EtOH 

(15 mL x 3).  The organic phase was finally dried over Na2SO4 and the solvent was 

removed under reduced pressure to yield 1.28 g (94.1%) of product.  1H NMR (300 

MHz, CDCl3, δ): 0.8-1.9 (m, 231H), 2.33 (s, 2H); IR (neat, cm-1) 1706. 

PIB-supported Ni(II) β-diketonate (69a).  

PIB-β-diketone 62 (109.3 mg, 0.1 mmol) was dissolved in 15 mL of heptane.  EtONa 

(10 mg, 0.15 mmol) was added to this solution and the resulting mixture was stirred for 

20 min at room temperature.  Then a solution of Ni(OAc)2.4H2O (13.6 mg, 0.05 mmol) 

in 15 mL of absolute alcohol was added to the flask containing the PIB-diketonate and 

the reaction mixture was heated to reflux for 20 h.  After cooling down to room 

temperature, about 2 mL of water was added to the reaction mixture to effect the phase 

separation.  The heptane phase was washed with 90% EtOH (5 mL x 3) and dried over 

Na2SO4.  Evaporation of the solvent afforded 100.6 mg of product as green oil. 

(*Note: The PIB-Ni(II) complex used in catalysis was prepared using a 1 to 1 ratio of 

PIB-diketone and nickel acetate, so some low molecular weight carboxylate ligand 
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might be present in the formed PIB-supported Ni species.  The nickel loading of 69a was 

1.2 mmol/g based on ICP-MS analysis.  IR (neat, cm-1) 1592, 1515. 

PIB-supported Co(II) β-diketonate (69b).  

This polymer-supported catalyst was prepared from Co(OAc)2 using the above 

procedure except the reaction was conducted at room temperature and with a 1 to 1 ratio 

of PIB-β-diketone and Co(OAc)2.  The desired product was obtained as dark yellow-

green viscous oil in 79% yield. 

General procedure for Mukaiyama olefin epoxidation.  

The Mukaiyama olefin epoxidation reaction was carried out in heptane under 1 atm of 

molecular oxygen using 1 mol % of a PIB-supported catalyst.  For one equivalent of 

olefin, three equivalents of isobutyraldehyde were employed as coreagent.  After the 

reaction was complete (4 h for Co(II) complex and 8 h for Ni(II) complex), the heptane 

phase was extracted with acetonitrile three times.  The heptane phase was used in the 

next cycle directly and the combined acetonitrile phase was analyzed by GC. 

General procedure for preparation of PIB-supported Rh(II) carboxylates (117 and 

135). 

The PIB-supported Rh(II) carboxylates were prepared according to a procedure 

previously published.  To a toluene solution of PIB carboxylic acid 57 or 134 (4 

equivalents) was added a solution of Rh2(OAc)4 (1 equivalent) in EtOH.  The reaction 

mixture was kept under reflux for 3 h.  Then the EtOH was gradually removed by 

distillation and the resulting toluene solution was allowed to reflux for 2 d.  Evaporation 

of toluene afforded a blue-green viscous oil which was dissolved in hexane for work-up.  
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Low molecular weight Rh species could be efficiently removed by liquid/liquid 

extraction of a hexane phase containing PIB-supported Rh species with 90% EtOH. 

(PIB-COO)2Rh (117). 

This compound was prepared from PIB-acid 58 and Rh2(OAc)4 using the procedure 

above.  This rhodium complex was made twice and metal loading was 0.36 mmol/g (first 

batch) and 0.35 mmol/g (second batch, after column chromatography, DCM/MeOH = 

95/5 to 90/10).  IR (neat, cm-1) 1697, 1573.   

PIB-tert-butyl chloride (118). 

To a solution of PIB2300-alkene (1.73 g, 0.75 mmol) in 15 mL of toluene was added 

acetyl chloride (0.92 mL, 14 mmol), EtOH (0.7 mL, 12.5 mmol) slowly and 

sequentially.  The resulting reaction mixture was allowed to stir at room temperature for 

2 d.  Then, the toluene was removed under reduced pressure, and the residue was 

dissolved in 50 mL of hexane.  After washing with 90% EtOH twice, the hexane solution 

was dried over Na2SO4.  Evaporation of hexane afforded the desired product.  1H NMR 

(300 MHz, CDCl3, δ): 0.8-1.5 (m, 396H), 1.67 (s, 6H), 1.97 (s, 2H). 

PIB-tert-butanol (120).  

To a solution of the ethyl ester of PIB-acid 119 (1.1 g, 1 mmol) in 10 mL of THF was 

added MeMgBr (3M in diethylether, 1.4 mL, 4.2 mmol) at 0 ºC.  The reaction mixture 

was then allowed to warm up to 40 ºC and stirred overnight.  The THF was removed and 

the residue was dissolved in 50 mL of hexane.  The hexane solution was washed with 

90% EtOH for three times and dried over Na2SO4.  The conversion was 100% complete 
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based on 1H NMR spectrum.  There were no characteristic signals showing up except 

those signals from PIB-backbone. 

PIB-tert-butylbenzene (121).  

PIB-tert-butanol (120) (210.8 mg, 0.2 mmol) was dissolved in 3 mL of benzene.  To this 

solution was added anhydrous FeCl3 (110 mg, 0.68 mmol), and the resulting reaction 

mixture was stirred overnight at room temperature.  After removing benzene, the residue 

was dissolved in 30 mL of hexane and washed with 0.5 M HCl (10 mL x 1), 90% EtOH 

(10 mL x 3), and dried over Na2SO4.  Conversion was 100% complete based on 1H 

NMR spectrum.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 362), 7.18 (m, 1H), 7.24-

7.33 (m, 4H). 

PIB-tert-butylbenzene-sulfonylamide (122).  

This compound was prepared using the same procedure used to prepare the compound 

133 except use of morpholine instead of methyl prolinate.  Conversion was 100% 

complete based on 1H NMR spectrum.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.8 (m, 

252H), 2.97 (m, 4H), 3.73 (m, 4H), 7.47 (d, J = 9.3 Hz, 2H), 7.63 (d, J = 9.3 Hz, 2H). 

PIB-phenylacetonitrile (123).  

A reaction mixture containing PIB-OMs 54 (1 g, 0.91 mmol), phenylacetonitrile (158 

µL, 1.37 mmol), NaH 60% in mineral oil (51 mg, 1.27 mmol) and 8 mL of toluene and 8 

mL of DMF was heated to reflux for 2 d.  The toluene was removed under reduced 

procedure, and 50 mL of hexane was added to the residue.  The hexane phase was 

separated and washed with DMF (10 mL x 1), 90% EtOH (10 mL x 3).  The yield was 

not recorded, but the conversion was almost complete based on 1H NMR spectrum.  
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Moreover, trace amount of PIB-OMs, PIB-OH byproduct (7 %), and some PIB-alkene 

were also observed.  1H NMR (300 MHz, CDCl3, δ): 0.8-2.0 (m, 375H), 3.68-3.73 (t, J = 

7.91 Hz, 1H), 3.74-3.81 (dd, J = 4.84, 11.84 Hz, 1H), 7.25-7.39 (m, 5H).  (Note: Two 

diastereomers were observed corresponding to syn- and anti-product respectively.) 

PIB-methyl-phenylacetonitrile (124).  

A LDA solution (0.48 mmol in 3 mL of THF) was prepared according to the procedure 

above.  To this solution was added a solution of PIB-phenylacetonitrile 123 (312.8 mg, 

0.28 mmol) in 7 mL of THF at -78 ºC and the reaction mixture was allowed to warm up 

to room temperature.  After 20 min, methyl iodide (0.1 mL, 1.6 mmol) was added to the 

reaction solution, and the resulting reaction mixture was stirred overnight.  The THF was 

evaporated and the residue was dissolved in hexane and washed with 90% EtOH for 

three times and dried over Na2SO4.  After removing the solvent, 270 mg (86%) crude 

product was obtained.  1H NMR (300 MHz, CDCl3, δ): 0.8-2.0 (m, 312H), 7.26-7.31 (m, 

1H), 7.33-7.38 (m, 2H), 7.38-7.43 (m, 2H). 

PIB-methyl-phenylacetaldehyde (125).  

To a solution of PIB-methyl-phenylacetonitrile (124) (0.62 g, 0.55 mmol) in 5 mL of 

toluene was added DIBAL-H (1 M in toluene, 0.83 mL, 0.83 mmol) at 0 ºC.  The 

reaction solution was allowed to warm up to room temperature and stirred overnight.  

The toluene was removed under reduced pressure, and the residue was dissolved in 50 

mL of hexane.  The hexane phase was washed with 0.5 M HCl (10 mL) and 90% EtOH 

(10 mL x 3) and dried over Na2SO4.  1H NMR (300 MHz, CDCl3, δ): 0.8-2.0 (m, 438), 
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7.24-7.37 (m, 5H), 9.46 (s, 1H), 9.48 (s, 1H). (Note: Two diastereomers were observed 

corresponding to syn- and anti-aldehyde respectively.) 

PIB-C6H4OH (126).  

To a 500-mL of flask was added polyisobutylene (10 g, 10 mmol) and phenol (19 g, 200 

mmol) in 100 mL of dichloromethane.  The reaction mixture was cooled to 0 ºC, 6 mL 

of concentrated H2SO4 was added slowly, and the resulting mixture was stirred first at 0 

ºC for 1 h and then at room temperature for 60 h.  The solvent was removed under 

reduced pressure and the crude product was dissolved in 200 mL of hexane.  This 

hexane-rich phase was washed with 90% EtOH (30 mL x 2), DMF (30 mL x 2), and then 

washed with 90% EtOH until no phenol residue left in hexane phase.  After drying over 

Na2SO4, the hexane was removed under reduced pressure to yield 9 g (82%) of product 

after drying for 24 h under vacuum.  1H NMR (300 MHz, CDCl3, δ): 0.79-1.49 (m, 

180H), 1.81 (s, 2H), 4.99 (br s, 1H), 6.72 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H). 

PIB-C6H4-OMs (127a). 

This compound was prepared from PIB-phenol 126 using the procedure used to prepare 

the PIB-OMs 54.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 210H), 1.85 (s, 2H), 3.17 

(s, 3H), 7.21 (d, J = 9.76 Hz, 2H), 7.42 (d, J = 9.76 Hz, 2H). 

PIB-C6H4-OTs (127b). 

This compound was prepared from PIB-phenol 126 using the procedure used to prepare 

the PIB-OMs 54.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.4 (m, 206H), 1.75 (s, 2H), 2.40 

(s, 3H), 6.79 (d, J = 8.21 Hz, 2H), 7.20 (d, J = 8.05 Hz, 2H), 7.22 (d, J = 8.21 Hz, 2H), 

7.61 (d, J = 8.05 Hz, 2H). 
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PIB-OPh (128).  

A reaction mixture containing phenol (660 mg, 7 mmol), PIB-OMs 54 (4.03 g, 3.68 

mmol), toluene (30 mL), DMF (25 mL), and K2CO3 (5.5 g, 40 mmol) was heated at 100-

110 ºC for 2 d.  After cooling down to room temperature, toluene was removed under 

reduced prssure and, 100 mL of hexane and 10 mL of water was added to the residue.  

The DMF phase was separated and the hexane phase was washed with 90% EtOH (15 

mL x 5) and dried over Na2SO4.  3.42 g of crude product was obtained after removing 

solvent.  1H NMR (300 MHz, CDCl3, δ): 0.8-2.0 (m, 255H), 3.57-3.64 (t, J = 8.4 Hz, 

1H), 3.72-3.79 (dd, J = 5.4, 9.0 Hz, 1H), 6.83-6.91 (m, 3H), 7.20-7.28  (m, 2H). 

(*Note: Phenol was purified using azeotropic method to remove water before use.  Trace 

amounts of PIB-OMs were still left after two days reaction time and PIB-OH was also 

found as an elimination product.  The PIB-OPh was used without further purification.) 

PIB–C6H4OCH3 (132).  

A solution of polyisobutylene (10 g, 10 mmol) in 100 mL of anisole was carefully 

combined with 5 mL of concentrated H2SO4 at 0 ºC and this reaction mixture was stirred 

first at 0 ºC for 1 h and then at room temperature for 60 h.  The excess anisole was 

removed under reduced pressure.  The resulting organic product was dissolved in 200 

mL of hexane and washed with 90% EtOH (30 mL x 2), DMF (30 mL x 2), 90% EtOH 

(30 mL x 3), and finally dried over Na2SO4.  After the solvent was removed and the 

product was dried under vaccum for 12 h, 10 g (90%) of product 132 was obtained.  1H 

NMR (300 MHz, CDCl3, δ): 0.82-1.49 (m, 180H), 1.81 (s, 2H), 3.79 (s, 3H), 6.84 (d, J = 

9.0 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H). 
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PIB-anisolesulfonyl-methyl prolinate (133).  

To a solution of PIB-anisole 132 (1 g, 0.9 mmol) in 10 mL of DCM was added ClSO3H 

(0.18 mL, 2.7 mmol).  The resulting solution was stirred overnight at room temperature.  

DCM was removed under reduced pressure and 15 mL of THF and K2CO3 (1.11 g, 9 

mmol) was added to the flask.  Then the reaction mixture was heated to 50 ºC for 1 d.  

The THF was removed and the residue was redissolved in 60 mL of hexane.  The hexane 

phase was washed with 90% EtOH (10 mL x 3) and dried over Na2SO4.  After removing 

hexane, a total yield of 0.88 g (75%) of product was obtained.  1H NMR (300 MHz, 

CDCl3, δ): 0.75-1.7 (m, 200H), 1.79 (s, 3H), 2.02 (m, 3H), 3.22-3.29 (m, 1H), 3.50-3.58 

(m, 1H), 3.67 (s, 3H), 3.92 (s, 3H), 4.59 (dd, J = 4.2, 7.5 Hz, 1H), 6.89 (d, J = 9.0 Hz, 

2H), 7.46 (dd, J = 2.7, 9.0 Hz, 1H), 7.91 (d, J = 2.7 Hz, 1H). 

PIB-anisolesulfonyl-proline (134).  

PIB-supported prolinate 133 (0.8 g, 0.62 mmol) and LiOH (26 mg, 0.62 mmol) were 

dissolved in a solvent mixture containing THF (8 mL) and water (2 mL).  The resulting 

reaction mixture was stirred for 24 h at room temperature.  The THF was then removed 

under reduced pressure, and the residue was redissolved in 50 mL of hexane and washed 

with 90% EtOH (10 mL x 3) and dried over Na2SO4.  Evaporation of hexane yielded 

0.79 g (98%) of product.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.7 (m, 227H), 1.73-1.9 

(m, 4H), 2.01-2.16 (m, 1H), 2.21-2.35 (m, 1H), 3.19-3.32 (m, 2H), 3.93 (s, 3H), 4.68 

(dd, J = 8.4, 3.3 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H), 7.52 (dd, J = 2.4, 8.7 Hz, 1H), 7.92 

(d, J = 2.4 Hz, 1H). 
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(*Note: the product can be further purified by column chromatography (flush sequence: 

hexane, DCM, DCM/MeOH = 9/1) 

PIB-benzenesulfonyl-methyl prolinate (129).  

This compound was prepared from PIB phenyl ether 128 using the procedure used to 

prepare the compound 133 except running the reaction at room temperature and using 

Et3N as base.  The desired product was obtained in 72% yield.  1H NMR (300 MHz, 

CDCl3, δ): 0.8-1.8 (m, 396H), 1.81-2.12 (m, 5H), 3.22-3.31 (m, 1H), 3.40-3.48 (m, 1H), 

3.62-3.73 (m, 4H), 3.77-3.84 (dd, J = 5.7, 8.7 Hz, 1H), 4.27 (dd, J = 8.2, 3.4 Hz, 1H), 

6.94 (d, J=8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H). 

PIB-benzenesulfonyl-proline (130).  

This compound was prepared from PIB-methyl prolinate 129 using the procedure used 

to prepare the compound 134.  The desired product was obtained in 64% yield after 

column chromatography (flush sequence: hexane, DCM, DCM/MeOH 90/10).  1H NMR 

(300 MHz, CDCl3, δ): 0.8-1.6 (m, 372H), 1.64-1.78 (m, 2H), 1.78-1.94 (m, 2H), 1.97-

2.1 (m, 1H), 2.17-2.28 (m, 1H), 3.14-3.23 (q, J = 8.4 Hz, 1H), 3.46-3.56 (m, 1H), 3.66-

3.71 (t, J = 8.3 Hz, 1H), 3.82 (dd, J = 5.7, 9.0 Hz, 1H), 4.19 (dd, J = 8.1, 3.3 Hz), 6.98 

(d, J = 9.0 Hz, 2H), 7.78 (d, J = 9.0 Hz, 2H). 

PIB-supported p-benzenesulfonyl Rh(II)-L-prolinate (131).  

The PIB-supported p-benzenesulfonyl-L-proline (130) (0.57 g, 0.45 mmol) was 

dissolved in 30 mL of toluene.  To this solution Rh2(OAc)4 (40 mg, 0.18 mmol) was 

added as a solution in 20 mL of EtOH.  The reaction mixture was heated to reflux for 2 

h, and then the EtOH was distilled out.  The resulting toluene solution was kept refluxing 
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for 24 h.  Toluene was removed under reduced pressure and the dark green residue was 

redissolved in 60 mL of hexane and washed with 90% EtOH until the washings were 

colorless.  The hexane solution was dried over Na2SO4 and filtrated through cotton.  

After evaporation of hexane, 0.61 g of product was obtained as blue-green viscous oil 

with metal loading 0.32 mmol/g based on ICP-MS analysis.  

PIB-supported anisolesulfonyl Rh(II)-L-prolinate (135).  

This compound was prepared from PIB-anisolesulfonyl-proline 134 using the procedure 

above except running the reaction in refluxing chlorobenzene.  The metal loading was 

0.34 mmol/g based on ICP-MS analysis. 

PIB-CH2Br (136). 

PIB-CH2OH (53) (7.1 g, 7 mmol) and Et3N (2.5 mL, 18 mmol) were dissolved in 80 mL 

of CH2Cl2.  The mixture was cooled to 0 °C.  To this mixture was added MsCl (1.1 mL, 

14 mmol) dropwise.  Then the temperature was allowed to warm up to room temperature 

and the reaction mixture was stirred for 6 h.  After evaporation of CH2Cl2, 50 mL of 

heptane, 50 mL of actone, and LiBr (6.46 g, 74 mmol) were added to the flask.  The 

resulting reaction mixture was heated to reflux for 18 h.  Then the solvent was removed 

under reduced pressure.  The residue was taken up in 120 mL of hexane.  The insoluble 

salts were removed by filtration.  The hexane phase was washed with 90% EtOH (30 mL 

x 3), water (20 mL x 3), and dried over Na2SO4.  Evaporation of hexane yielded 6.3 g 

(84%) of product.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.5 (m, 205H), 3.22-3.28 (dd, J = 

9.6, 6.9 Hz, 1H), 3.37-3.41 (dd, J = 9.6, 4.8 Hz, 1H).  
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PIB-CH2Ph (137). 

A mixture containing phenylmagnesium bromide (5.6 mmol), N,N,N’,N’-tetramethyl-

ethylenediamine (TMEDA) (0.76 mL, 5.7 mmol), PIB-CH2Br (0.97 g, 0.9 mmol), and 

15 mL of THF was cooled to -78 °C.  Anhydrous FeCl3 (10 mg, 0.06 mmol) was added 

to this cold solution.  The resulting reaction mixture was then immersed in an ice-water 

bath and stirred for 1 h at 0 °C.  Then the ice-bath was removed and the reaction mixture 

was stirred at room temperature for 18 h.  THF was then removed under reduced 

pressure and the residue was dissolved in 50 mL of hexane.  The insoluble inorganic 

salts were removed by filtration.  The resulting hexane solution was washed with DMF 

(10 mL x 2), 90% EtOH (10 mL x 4), and dried over Na2SO4.  In addition to the desired 

PIB-benzene 137 PIB-alkene was also formed as an elimination byproduct in 22% yield 

based on peaks at δ 4.8 and 5.3 in the 1H-NMR spectrum of the product.  The reaction 

product was also contaminated with biphenyl.  1H-NMR (300 MHz, CDCl3, δ): 0.8-1.6 

(m, 374H), 2.26-2.37 (dd, J = 12.8, 8.8 Hz, 1H), 2.58-2.64 (dd, J = 12.8, 6.4 Hz, 1H), 

7.15-7.31 (m, 5H). 

Decyl-(S)-2-Pyrrolidinone-5-carboxylate (141). 

(a)  Fischer method.   

A reaction mixture containing decyl alcohol (420 mg, 2.65 mmol), (S)-2-pyrrolidone-5-

carboxylic acid (330 mg, 2.56 mmol), H2SO4 (1 drop), and 30 mL of toluene was heated 

reflux for 24 h.  After evaporation of toluene, the residue was purified by column 

chromatography (EtOAc/petroleum = 4/3) and afforded 524 mg (76%) of product.  1H 

NMR (300 MHz, CDCl3, δ): 0.85 (t, J = 7.2 Hz, 3H), 1.18-1.34 (br s, 14H), 1.56-1.66 
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(m, 2H), 2.15-2.28 (m, 1H), 2.30-2.40 (m, 2H), 2.41-2.52 (m, 1H), 4.13 (t, J = 6.6 Hz, 

2H), 4.22 (dd, J = 8.7, 5.1 Hz, 1H), 5.86 (br s, 1H). [α]21.6
D -0.69° (c 1.00, EtOH). 

(b)  Dicyclohexylcarbodiimide (DCC)-1-hydroxybenzotriazole (HOBt) coupling method. 

A reaction mixture containing decyl alcohol (420 mg, 2.65 mmol), (S)-2-pyrrolidone-5-

carboxylic acid (331 mg, 2.56 mmol), DCC (792 mg, 3.84 mmol), HOBt (519 mg, 3.84 

mmol), and 25 mL of DCM was allowed to stir at room temperature for 3 d.  The 

reaction mixture was then filtrated to remove solid.  The DCM was evaporated and the 

residue was dissolved in 50 mL of hexane.  The hexane solution was filtrated again to 

remove insoluble byproducts.  The resulting solution was concentrated and purified by 

column chromatography (EtOAc/petroleum = 4/3) and yielded 432 mg (61%) of 

product.  [α]20.7
D -0.49° (c 1.00, EtOH). 

PIB-CH2CH2CH2-OH (139) from PIB-CH2CH2COOH 58.  

A solution of PIB-acid 58 (2.1 g, 2 mmol) in 15 mL of THF was cooled to 0 ºC with an 

ice-water bath.  To this solution 1.5 mL (3 mmol) of 2M BH3-SM2 in THF was added 

drowise and the solution was then stirred overnight.  The excess of BH3 was 

decomposed by addition of 10 mL of wet THF (containing 0.5 mL of H2O).  The 

resulting solution was dried over Na2SO4 and concentrated to afford 1.95 g (95%) of 

desired product.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 265H), 3.61 (t, J = 6.9 Hz, 

2H). 

PIB-C6H4O-allyl (142). 

A reaction mixture containing PIB-phenol 126 (2.71 g, 2.48 mmol), allyl bromide (1.07 

mL, 12.4 mmol), Cs2CO3 (1.62 g, 4.96 mmol), DMF (15 mL), and heptane (15 mL) was 
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heated to reflux for 48 h.  After standard liquid/liquid extraction work-up, the desired 

product 142 was obtained.  Yield was not recorded.  1H NMR (300 MHz, CDCl3, δ): 

0.78-1.5 (m, 298H), 1.78 (s, 2H), 4.49 (d, J = 5.7 Hz, 2H), 5.25 (d, J = 10.0 Hz, 1H), 

5.38 (d, J = 16.8 Hz, 1H), 6.15 (m, 1H), 6.83 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.7 Hz, 

2H). 

PIB-C6H4O-CH2CH2OH (144). 

This compound was prepared from PIB-phenol 126 and ethylene carbonate using the 

procedure above except using toluene/DMF mixture as reaction media.  Yield was not 

recorded.  1H NMR (300 MHz, CDCl3, δ): 0.78-1.6 (m, 219H), 1.83 (s, 2H), 3.97 (m, 

2H), 4.12 (t, J = 4.5 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). 

PIB-C6H4O-(CH2)6OH (145). 

This compound was prepared from PIB-phenol 126 and 6-chloro-1-hexanol using the 

procedure above.  Yield was not recorded.  1H NMR (300 MHz, CDCl3, δ): 0.78-1.65 

(m, 364H), 1.78 (s, 2H), 3.63 (q, J = 4.4 Hz, 2H), 3.93 (t, J = 6.4 Hz, 2H), 6.79 (d, J = 

8.7 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H). 

1-oxo-1,2,3,4-tetrahydroisoquinoline-3-methyl-carboxylate (149a).  

To a solution of the methyl ester of L-phenylalanine (2 g, 9.3 mmol) in 40 mL of DCM 

was added 40 mL of saturated NaHCO3 solution and triphosgen (0.95 g, 3.2 mmol) at 0 

ºC.  The resulting biphasic reaction mixture was allowed to stir for 15 min at 0 ºC, and 

then the DCM phase was separated and the aqueous phase was extracted with DCM (10 

mL x 2).  The combined organic phase was dried over Na2SO4.  After removing DCM, 

the isocyanate intermediate 148 was used in the next step without further purification.  
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1H NMR (300 MHz, CDCl3, δ): 2.98-3.07 (dd, J = 7.5, 14.1 Hz, 1H), 3.12-3.18 (dd, J = 

4.8, 14.1 Hz, 1H), 3.79 (s, 3H), 4.23-4.28 (dd, J = 4.8, 7.5 Hz, 1H), 7.18 (m, 2H), 7.24-

7.36 (m, 3H). 

The isocyanate intermediate 148 was dissolved in 100 mL of dried DCM and the 

resulting solution was then cooled down to 0 ºC with an ice-water bath.  To this solution 

AlCl3 (4.35 g, 32.6 mmol) was added in one portion and the reaction mixture was 

allowed to warm up to room temperature and to stir for 4 d.  After cooling the reaction 

mixture down to 0 ºC, 20 mL of 0.5 M HCl was added to the mixture and the mixture 

was stirred for 1 h at this temperature.  The DCM phase was separated and washed with 

0.5 M HCl (20 mL x 1).  All the aqueous phase was back extracted with DCM (10 mL x 

2).    The combined organic phase was dried over Na2SO4 and then concentrated and 

purified by column chromatography (hexane/EtOAc = 3/4).  A total yield of 0.9 g (47%) 

of pure product was obtained as light yellow solid.  1H NMR (300 MHz, CDCl3, δ): 

3.14-3.23 (dd, J = 10.2, 15.9 Hz, 1H), 3.26-3.34 (dd, J = 5.4, 15.6 Hz, 1H), 3.79 (s, 3H), 

4.37-4.42 (m, 1H), 6.34 (br s, 1H), 7.23 (d, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 

7.46 (dt, J = 7.5, 1.5 Hz, 1H), 8.62 (dd, J = 7.8, 1.5 Hz, 1H).  [α]21
D +78° (c 0.90, 

MeOH). 

1-oxo-1,2,3,4-tetrahydroisoquinoline-3-ethyl-carboxylate (149b).  

This compound was prepared from ethyl ester of L-proline in 58% yield using the 

procedure above.  1H NMR (300 MHz, CDCl3, δ): 1.25 (t, J = 7.1 Hz, 3H), 3.13-3.21 

(dd, J = 10.2, 15.9 Hz, 1H), 3.24-3.33 (dd, J = 5.4, 15.9 Hz, 1H), 4.18-4.27 (q, J = 7.1 
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Hz, 2H), 4.33-4.4 (m, 1H), 6.57 (br s, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 

1H), 7.43 (t, J = 7.5 Hz, 1H), 8.03 (dd, J = 7.5, 1.5 Hz, 1H). 

PIB-tetrahydroisoquinoline-carboxylate (150).  

To a solution of PIB-CH2OH 53 (3.05 g, 3 mmol) in 50 mL of toluene was added 

tetrahydroisoquinoline-3-methyl-carboxylate (492 mg, 2.4 mmol) and four drops of 

H2SO4.  The resulting solution was heated to reflux for 48 h.  After the reaction was 

complete, the toluene was removed under reduced pressure and the residue was 

redissolved in 80 mL of hexane and washed with DMF (15 mL), 90% EtOH (15 mL x 

4), and dried over Na2SO4.  The solution was concentrated and purified by column 

chromatography (flush sequence: hexane, DCM) to yield 1.78 g (63%) of product.  1H 

NMR (300 MHz, CDCl3, δ): 0.8-1.8 (m, 209H), 1.9 (m, 1H), 3.17-3.23 (dd, J = 9.9, 15.6 

Hz, 1H), 3.26-3.35 (dd, J = 5.7, 15.6 Hz, 1H), 3.83-3.92 (m, 1H), 3.98-4.07 (m, 1H), 

4.36-4.42 (m, 1H), 6.32 (br s, 1H), 7.23 (d, J = 6.6 Hz, 1H), 7.36 (t, J = 6.6 Hz, 1H), 

7.46 (dt, J = 7.2, 1.5 Hz, 1H), 8.07 (dd, J = 7.5, 1.5 Hz, 1H).  

PIB-tetrahydroisoquinoline-carboxylate (151).  

This compound was prepared from PIB-(CH2)3OH 139 in 34% yield using the procedure 

above. (Column chromatography, flush sequence: hexane, DCM, DCM/EtOAc = 7/3; 

PIB-alcohol contain two much PIB-alkene and other unknown unfunctionalized PIB 

derivatives).  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 231H), 3.12-3.21 (dd, J = 9.9, 

15.6 Hz, 1H), 3.23-3.32 (dd, J = 5.7, 15.6 Hz, 1H), 4.18 (t, J = 6.3 Hz, 2H), 4.34-4.4 (m, 

1H), 6.37 (br s, 1H), 7.22 (d, J = 6.5 Hz, 1H), 7.34 (t, J = 6.5 Hz, 1H), 7.43 (dt, J = 7.4, 

1.5 Hz, 1H), 8.05 (dd, J = 7.5, 1.5 Hz, 1H). 
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PIB-(S)-2-Pyrrolidinone-5-carboxylate (138).  

This compound was prepared from PIB-alcohol 53 and (S)-2-pyrrolidinone-5-carboxylic 

acid using the procedure used to prepare compound 150.  Conversion was higher than 

90% based on 1H NMR spectrum.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.6 (m, 210H), 

1.89 (m, 1H), 2.18-2.27 (m, 1H), 2.32-2.4 (m, 2H), 2.41-2.5 (m, 1H), 3.78-3.87 (m, 1H), 

3.95-4.04 (m, 1H), 4.21-4.27 (dd, J = 8.7, 5.1 Hz, 1H), 6.22 (br s, 1H). 

PIB-(S)-2-Pyrrolidinone-5-carboxylate (140).  

This compound was prepared from PIB-alcohol 139 and (S)-2-pyrrolidinone-5-

carboxylic acid or its methyl ester in 41% to 45% yield (reaction was not complete) 

using the procedure used to prepare compound 150.  1H NMR (300 MHz, CDCl3, δ): 

0.8-1.6 (m, 221H), 2.17-2.27 (m, 1H), 2.31-2.39 (m, 2H), 2.41-2.52 (m, 1H), 4.21 (t, J = 

6.5 Hz, 2H), 4.23 (dd, J = 8.6, 5.1 Hz, 1H), 5.83 (br  s, 1H). 

PIB-supported Rh2(S-MEPY)4 (146). 

PIB-(S)-2-pyrrolidinone-5-carboxylate 140 (1.33 g, 1.14 mmol) and (S)-methyl-2-

pyrrolidinone-5-carboxylate (S-MEPY) (172 mg, 1.2 mmol) were dissolved in 80 mL of 

freshly distilled chlorobenzene.  To this solution was added Rh2(OAc)4 (159 mg, 0.36 

mmol).  The resulting reaction mixture was refluxed under a nitrogen atmosphere in a 

Soxhlet extraction apparatus.  The extractor thimble was charged with oven-dried 

Na2CO3 and sand in a 2:1 ratio.  The reaction mixture was refluxed for 6 d.  Then the 

chlorobenzene was removed under reduced pressure, leaving a purple viscous oil.  This 

residue was dissolved in 100 mL of hexane.  The resulting dark pink solution was 

washed with 90% EtOH (20 mL x 5) and dried over Na2SO4.  The hexane solution was 
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then concentrated and purified by column chromatography (flush sequence: hexane, 

DCM/MeOH 95/5 to 90/10) and afforded 1.22 g of dark pink viscous oil. 

General procedure for olefin cyclopropanation.  

In a typical cyclopropanation reaction, 1 mol % of the PIB-supported catalyst was used 

and the reaction was carried out in heptane or cyclohexane with a 5- to 10-fold excess of 

alkene substrate at room temperature.  The solution of ethyl diazoacetate in the same 

nonpolar solvent was added to the reaction mixture via a syringe pump over 5-8 h 

period.  After each cycle, the nonpolar phase was extracted with ethyleneglycol diacetate 

(EGDA) or acetonitrile to separate the cyclopropanation product from the PIB-supported 

catalyst.  After that, a portion of the nonpolar solvent was evaporated and fresh substrate 

was added for the next cycle.  The yield in each cycle was determined by analyzing the 

isolated polar phase containing the cyclopropanation product with GC using an internal 

standard (dodecane or undecane).  For copper catalyzed cyclopropanation reactions, the 

active copper(I) species were generated in situ by reducing copper(II) with 

phenylhydrazine (5% in DCM, v/v), and EGDA was used to extract the 

cyclopropanation products from the heptane phase.  The enantiomeric excess of product 

was determined using a chiral cyclodextrin-β-CD column.  

General procedure for digestion.  

The sample that was to be analyzed (10-30 mg) was added to a 20 mL vial along with 4 

g of concentrated nitric acid (68%).  The mixture was heated to 120-130 ºC until 

everything dissolved.  At this point, 4 g of concentrated sulfuric acid (98%) was added to 

the solution.  The resulting acidic solution was then heated up to 120-130 ºC for 24 
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hours.  After cooling down to room temperature, the concentrated acidic aqueous 

solution was transferred to a 50 mL plastic bottle and diluted to c.a. 50 mL with 1% 

nitric acid solution.  If the metal content in the sample is too high, it can be diluted again 

to ensure the ion concentration is within the range of standard curve.  Then, the diluted 

sample solution was analyzed by ICP-MS. 

PhCH2CH((CO)NH-CH(i-Pr)-CH2OH)2 (153a).  

A mixture of diethyl benzylmalonate (4.38 g, 17.5 mmol) and L-valinol (3.8 g, 36.9 

mmol) was heated at 100-110 ºC for 48 h.  The reaction mixture was solidified on 

cooling.  The yellow solid so formed was then dissolved in 15-20 mL of hot EtOH.  To 

this hot solution was added 180 mL of cold hexane.  The resulting mixture was cooled to 

room temperature and kept in a freezer overnight.  Filtration of the mixture yielded 4.65 

g (73%) of diamide as white solid. 1H NMR (300 MHz, DMSO-d6, δ): 0.63 (d, J = 8.7 

Hz, 3H), 0.68 (d, J = 8.7 Hz, 3H), 0.8 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H), 1.8 

(m, 2H), 2.94-3.08 (m, 2H), 3.23-3.4 (m, 4H), 3.47-3.53 (dd, J = 6.9, 8.1 Hz, 1H), 3.54-

3.62 (m, 2H), 4.58 (t, J = 5.1 Hz, 1H), 4.62 (t, J = 5.1 Hz, 1H), 7.16-7.27 (m, 5H), 7.49 

(dd, J = 2.1, 9.3 Hz, 2H). 

PhCH2CH((CO)NH-CH(Et)-CH2OH)2 (153c).  

This compound was prepared from diethyl benzylmalonate and (R)-(-)-2-amino-1-

butanol using the procedure above.  The desired product was ontained as white solid in 

77% yield. 1H NMR (300 MHz, DMSO-d6, δ): 0.61 (t, J = 7.2 Hz, 3H), 0.76 (t, J = 7.2 

Hz, 3H), 1.11-1.29 (m, 2H), 1.39-1.58 (m, 2H), 2.97 (d, J = 7.8 Hz, 2H), 3.05-3.37 (m, 
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5H), 3.47-3.61 (m, 2H), 4.61-4.90 (m, 2H), 7.10-7.23 (m, 5H), 7.47 (d, J = 8.4 Hz, 2H), 

7.51 (d, J = 8.4 Hz, 1H). 

CH3CH((CO)NH-CH(Ph)-CH2OH)2 (153b).  

This compound was prepared from diethyl methylmalonate and (R)-(-)-2-phenylglycinol 

using the procedure above.  The desired product was ontained as white solid in 90% 

yield. 1H NMR (300 MHz, DMSO-d6, δ): 1.18 (d, J = 7.2 Hz, 3H), 3.4 (q, J = 7.2 Hz, 

1H), 3.48-3.61 (m, 4H), 4.77-4.86 (m, 2H), 4.98 (t, J = 5.1 Hz, 2H), 7.19-7.35 (m, 10H), 

8.34 (dd, J = 2.1, 7.5 Hz, 2H). 

CH3CH((CO)NH-CH(i-Bu)-CH2OH)2 (153d).  

This compound was prepared from diethyl methylmalonate and (S)-(+)-leucinol using 

the procedure above.  The desired product was ontained as white solid in 92% yield after 

column chromatography (DCM/MeOH = 9/1).  1H NMR (300 MHz, DMSO-d6, δ): 0.79-

0.87 (m, 12H), 1.18 (d, J = 7.3 Hz, 3H), 1.2-1.35 (m, 4H), 1.44-1.58 (m, 2H), 3.0.8 (q, 

1H, J = 7.2 Hz), 3.11-3.25 (m, 4H), 3.70-3.81 (m, 2H), 4.65 (q, J = 6.9 Hz, 2H), 7.43 (d, 

J = 9.2 Hz, 1H), 7.51 (d, J = 9.2 Hz, 1H). 

Box-Ph (154b).  

To a solution of dihydroxymalonodiamide (153b) (6.5 g, 18.2 mmol) and DMAP (222 

mg, 1.82 mmol) in 60 mL of DCM was added dropwise Et3N (11.2 mL, 80.1 mmol) and 

p-TsCl (7.37 g, 37.9 mmol).  The bright yellow solution was stirred at room temperature 

for 24 h.  A white crystalline solid (ammonium salts) was formed during the reaction.  

After one day reaction time, the reaction mixture was diluted with 100 mL of DCM.  

The white crystalline formed was completely dissolved again.  The resulting light yellow 
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solution was washed with saturated aqueous NH4Cl (60 mL), water (30 mL).  The 

combined aqueous NH4Cl and water phase was extracted with DCM (30 mL x 3).  The 

combined organic phase was washed with 50 mL of saturated aqueous NaHCO3, dried 

over Na2SO4, filtered through cotton, and concentrated in vacuum to give a yellow-white 

solid.  The resulting solid was purified by column chromatography twice (MeOH/DCM 

= 5/95, hexane/EtOAc = 3/2) and yielded 5.55 g (95%) of product (containing some 

unknown impurities which did not affect the next step reaction) as light pink oil which 

was found polymerized upon standing. 1H NMR (300 MHz, CDCl3, δ): 1.62 (d, J = 7.8 

Hz, 3H), 3.81 (q, J = 7.8 Hz, 1H), 4.11-4.19 (m, 2H), 4.61-4.70 (dd, J = 10.2, 7.8 Hz, 

2H), 5.28 (dd, J = 8.7, 9.6 Hz, 2H), 7.2-7.36 (m, 10H). 

Box-i-Pr (154a).  

This compound was prepared from diamide 153a using the procedure above.  The 

desired product was obtained in 91% yield (crude).  1H NMR (300 MHz, CDCl3, δ): 0.74 

(d, J = 6.9 Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H), 0.82 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.9 

Hz, 3H), 1.55-1.80 (m, 2H), 3.16-3.31 (m, 2H), 3.79 (t, J = 8.1 Hz, 1H), 3.84-4.0 (m, 

4H), 4.16-4.25 (m, 2H), 7.12-7.28 (m, 5H). 

Box-i-Bu (154d).  

This compound was prepared from diamide 153d using the procedure above.  The 

desired product was obtained in 73% yield.  1H NMR (300 MHz, CDCl3, δ): 0.87 (d, J = 

6.9 Hz, 6H), 0.89 (d, J = 6.9 Hz, 6H), 1.19-1.29 (m, 2H), 1.43 (d, J = 7.5 Hz, 3H), 1.52-

1.63 (m, 2H), 1.64-1.75 (m, 2H), 3.46 (q, J = 7.5 Hz, 1H), 3.8 (dt, J = 8.1, Hz, 2H), 4.05-

4.16 (m, 2H), 4.29 (dd, J = 8.4, 1.8 Hz, 1H), 4.32 (dd, J = 7.8, 1.8 Hz, 1H). 
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Box-Et (154c).  

This compound was prepared from diamide 153c using the procedure above.  The 

desired product was obtained in 81% yield (crude).  1H NMR (300 MHz, CDCl3, δ): 0.61 

(t, J = 8.1 Hz, 3H), 0.79 (t, J = 8.1 Hz, 3H), 1.35-1.65 (m, 4H), 3.21-3.36 (m, 2H), 3.78 

(t, J = 8.1 Hz, 1H), 3.85-3.94 (m, 2H), 3.98-4.11 (m, 2H), 4.28-4.36 (m, 2H), 7.2-7.34 

(m, 5H). 

Box-t-Bu (154e).  

Methyl diethyl malonate (295 mg, 1.69 mmol) and (S)-tert-leucinol (405 mg, 3.38 

mmol) were dissolved in 14 mL of xylene.  The resulting solution was heated to reflux 

for 4 h with a Dean-Stark trap.  Then 13 mg (0.06 mmol) of dichlorodimethyl stannane 

was added to the solution and the reaction mixture was allowed to reflux for 48 h.  Most 

of xylene was removed under reduced pressure and the concentrated residue was 

purified by column chromatography on neutral alumina (EtOAc/hexane = 3/2) to afford 

329 mg (69%) of the desired product as colorless oil.  1H NMR (300 MHz, CDCl3, δ): 

0.85 (s, 9H), 0.86 (s, 9H), 1.45 (d, J = 7.5 Hz, 3H), 3.52 (q, J = 7.5 Hz, 1H), 3.8-3.87 (m, 

2H), 4.02-4.08 (m, 2H), 4.12-4.19 (m, 2H). 

PIB-CH2O-C6H4-COOCH2CH2CH3 (155).  

PIB-OMs 54 (6.92 g, 6.3 mmol) and 4-hydroxyl n-propylbenzoate (1.7 g, 9.45 mmol) 

were dissolved in a solvent mixture of toluene (60 mL) and DMF (40 mL).   After 

addition of K2CO3 (4.35 g, 31.5 mmol), the reaction mixture was heated up to 110-120 

ºC and kept at that temperature for 2 d (5 d for PIB-2300).  Toluene was evaporated 

under vacuum and the residue was extracted with hexane (50 mL x 3).  The combined 
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hexane phase was washed with 90% EtOH (15 mL x 4) and then dried over Na2SO4.  

Evaporation of hexane gave rise to 7.3 g (98%) of product as viscous oil.  1H NMR (300 

MHz, CDCl3, δ): 0.8-1.6 (m, 219H), 1.77 (q, J = 7.3 Hz, 2H), 1.97-2.07 (m, 1H), 3.63-

3.69 (dd, J = 8.7, 7.2 Hz, 1H), 3.78-3.83 (dd, J = 8.7, 6.0 Hz, 1H), 4.23 (t, J = 7.3 Hz, 

2H), 6.88 (d, J = 8.7 Hz, 2H), 7.97 (d, J = 8.7 Hz, 2H). 

PIB-CH2O-C6H4-CH2OH (156).  

PIB-benzoate 155 (7.3 g, 6.2 mmol) was dissolved in 25 mL of anhydrous THF.  After 

the solution was cooled to 0 ºC, LiAlH4 (324 mg, 8.1 mmol) was added to the solution 

carefully.  The reaction mixture was then allowed to reflux overnight.  After the reaction 

was complete, the excess LiAlH4 was decomposed by addition of small amount of water.  

The mixture was stirred at room temperature until the color of the mixture turned to 

white.  Then the mixture was diluted with 50 mL of hexane.  The white precipitate was 

removed by filtration and the resulting solution was dried over Na2SO4.  Evaporation of 

solvent yielded 6.45 g (93%) of the desired product as colorless viscous oil.  1H NMR 

(300 MHz, CDCl3, δ): 0.8-1.6 (m, 206H), 2.96-2.08 (br s, 1H), 3.60 (dd, 1H, J = 9.0, 

8.2Hz), 3.76 (dd, J = 9.0, 5.7 Hz, 1H), 4.59 (d, J = 6 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 

7.26 (d, J = 8.4 Hz, 2H). 

PIB-CH2O-C6H4-CH2Cl (157).  

To a solution of PIB-benzylalcohol (5.2 g, 4.63 mmol) in 20 mL of DCM was added 

dropwise SOCl2 (1 mL, 13.9 mmol) and two drops of DMF at 0 ºC.  The resulting 

solution was stirred at room temperature for 2 h.  After decomposing the excess SOCl2 

with small amount of water (ca. 0.5 mL), the solution was then diluted with 100 mL of 
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DCM and transferred to a separation funnel.  The DCM phase was washed with water 

(10 mL x 5), NaHCO3(sat.) (10 mL x 2) and water (10 mL x 3). (Note: During the work-

up, if serious emulsion is formed, it will be better to use centrifuge to get good 

separation.)  The organic phase was then dried over Na2SO4, and 5.25 g (99%) of 

product was obtained after removal of solvent: 1H NMR (300 MHz, CDCl3) δ 0.8–1.8 

(m, 214H), 1.9-2.3 (m, 1H), 3.58-3.64 (dd, J = 7.5, 9.0 Hz, 1H), 3.73-3.79 (dd, J = 5.7, 

9.0 Hz, 1H), 4.54 (s, 2H), 6.84 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H). 

PIB2300-benzylchoride.  

This compound was prepared from PIB2300 using the procedure used above to prepare 

PIB1000-benzylchloride 157. 

PIB-Box-(Ph) (158b).  

A solution of Box-Ph (1.45 g, 4.52 mmol) in 6 mL of THF was cooled to -78 ºC with a 

dry ice-acetone bath.  To the cold solution was added dropwise 1.58 M n-BuLi (2.86 

mL, 4.52 mmol).  After stirring for 30 min, the solution was allowed to warm to room 

temperature.  Then a solution of PIB2300-benzylchloride (8.18 g, 3.35 mmol) in 25 mL of 

THF was added to this lithio anion.  The resulting reaction mixture was allowed to reflux 

for 36 h.  Then the THF was removed under reduced pressure, and the residue was 

redissolved in 150 mL of hexane.  The hexane phase was washed with water (15m), 

DMF (15 mL x 3), 90% EtOH (20 mL x 3) and dried over Na2SO4.  Evaporation of the 

solvent afforded 8.71 g (95%) of PIB-supported Box ligand as light yellow viscous oil. 

1H NMR (300 MHz, CDCl3) δ 0.8-2.0 (m, 700H), 3.37 (s, 2H), 3.54-3.61 (t, J = 7.8 Hz, 

1H), 3.7-3.77 (dd, J = 8.7, 5.4 Hz, 1H), 4.07 (t, J = 8.1 Hz, 1H), 4.15 (t, J = 8.1 Hz, 1H), 



 155

4.62-4.69 (m, 2H), 5.14-5.24 (m, 2H), 6.78 (d, J = 8.7 Hz, 2H), 7.02 (m, 2H), 7.11 (d, J 

= 8.7 Hz, 2H), 7.18-7.32 (m, 8H); 13C NMR (CDCl3, δ): 22.9, 25.5, 29.4, 31.5, 32.7, 

34.9, 36.1, 38.4, 41.6, 44.1, 50.0, 57.0, 59.6, 69.7, 74.4, 75.4, 114.4, 126.9, 127.0, 127.7, 

127.8, 128.4, 128.8, 128.9, 131.7, 142.4, 142.6, 158.6, 169.4, 169.6. 

PIB-Box-(Et) (158c).  

This compound was prepared from PIB1000-benzylchloride 157 and Box ligand 154c 

using the procedure used to prepare PIB-supported Box ligand 158b.  The desired 

product was obtained in 66% yield.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.9 (m, 235H), 

1.95-2.1 (m, 1H), 3.22-3.38 (m, 4H), 3.61 (t, J = 7.7 Hz, 1H), 3..75-3.89 (m, 3H), 3.95-

4.08 (m, 2H), 4.25-4.13 (m, 2H), 6.81 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H ), 7.2-

7.31 (m, 5H); 13C NMR (CDCl3, δ): 20.7, 28.5, 29.3, 29.5, 31.4, 32.6, 32.8, 36.1, 38.4, 

48.5, 49.9, 57.0, 59.7, 67.7, 72.2, 74.5, 114.1, 126.8, 128.1, 128.2, 128.8, 130.6, 130.7, 

131.6, 137.2, 158.3, 166.6. 

PIB-Box-(i-Pr) (158a).  

This compound was prepared from PIB1000-benzylchloride 157 and Box ligand 154a 

using the procedure used to prepare PIB-supported Box ligand 158b.  The desired 

product was obtained in 67% yield.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.8 (m, 256H), 

1.98-2.11 (m, 1H), 3.22 (d, J = 14.1, 1H), 3.26 (d, J = 14.1, 1H ), 3.37-3.46 (t, J = 14.4 

Hz, 2H), 3.59-3.64 (t, J = 7.2 Hz, 1H), 3.78-3.83 (m, 1H), 3.84-98 (m, 4H), 4.12-4.23 

(m, 2H), 6.82 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 7.24-7.35 (m, 5H); 13C NMR 

(CDCl3, δ): 18.2, 19.2, 20.6, 29.4, 31.3, 31.5, 32.8, 36.1, 38.4, 38.8, 39.5, 48.6, 49.9, 
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57.0, 58.4, 59.0, 59.7, 69.9, 72.1, 74.4, 114.1, 126.7, 128.0, 128.9, 130.7, 131.6, 137.3, 

158.2, 166.5. 

PIB2300-Box-(i-Bu) (158d).  

This compound was prepared from PIB2300-benzylchloride 157 and Box ligand 154d 

using the procedure used to prepare PIB-supported Box ligand 158b.  The desired 

product was obtained in 89% yield.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.85 (m, 694H), 

1.92-2.03 (m, 1H), 3.16 (d, J = 13.8 Hz, 1H), 3.24 (d, J = 13.8 Hz, 1H), 3.52-3.6 (t, J = 

7.8 Hz, 1H), 3.69-3.76 (m, 1H), 3.84 (t, J = 7.5 Hz, 2H), 4.06-4.16 (m, 2H), 4.28-4.35 

(m, 2H), 6.76 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H); 13C NMR (CDCl3, δ): 14.3, 

20.7, 21.2, 21.6, 23.0, 23.4, 25.8, 31.5, 34.8, 36.1, 38.6, 43.9, 45.8, 59.5, 64.7, 73.6, 

73.8, 74.3, 114.1, 128.6, 131.7, 158.2, 167.8, 167.9. 

PIB2300-Box-(t-Bu) (158e).  

This compound was prepared from PIB2300-benzylchloride 157 and Box ligand 154e 

using the procedure used to prepare PIB-supported Box ligand 158b.  The desired 

product was obtained in 89% yield.  1H NMR (300 MHz, CDCl3, δ): 0.8-1.8 (m, 586H), 

1.91-2.03 (m, 1H),  3.14 (d, J = 13.5 Hz, 1H), 3.3 (d, J = 13.5 Hz, 1H), 3.52-3.6 (m, 1H), 

3.69-3.76 (m, 1H), 3.77-3.92 (m, 2H), 3.98-4.19 (m, 4H), 6.74 (d, J = 8.7 Hz, 2H), 7.06 

(d, J = 8.7 Hz, 2H); 13C NMR (CDCl3, δ): 14.2, 20.5, 21.1, 21.7, 23.0, 25.9, 26.1, 31.6, 

32.4, 34.1, 34.7, 36.0, 38.3, 43.9, 59.6, 68.9, 75.9, 114.2, 128.7, 131.9, 158.2, 167.8, 

170.1. 
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PIB-Box-(i-Pr)-Cu(II)(OTf)2 (159a).  

A reaction mixture containing PIB-Box-(i-Pr) 158a (0.89 g, 0.59 mmol), Cu(OTf)2 (213 

mg, 0.59 mmol), and DCM (7 mL) was stirred at room temperature for 24 h.  

Evaporation of DCM afforded a blue-green viscous oil.  Then this crude product was 

dissolved in 30 mL of anhydrous heptane.  The resulting suspension was allowed to pass 

through a short celite column (1.5 cm) to remove unreacted copper salt.  The desired 

copper complex was obtained as blue-green viscous oil (1.07 g, containing some heptane 

solvent) after removal of heptane under reduced pressure (this process was carried out 

below 50 ºC to avoid the decomposition of the copper complex). 

PIB-Box-(Ph)-Cu(II)(OTf)2 (159b) and PIB-Box-(Et)-Cu(II)(OTf)2 (159c) were also 

prepared from the PIB-supported Box ligands 158b and 158c, respectively, using the 

procedure used to prepare PIB-supported copper complex 159a. 
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CHAPTER V 

SUMMARY 

 

Various PIB-supported transition metal catalysts were synthesized.  Two specific 

reactions, Mukaiyama olefin epoxidation and olefin cyclopropanation, were chosen as 

the model reactions to study the catalytic activity and recyclability of these polymeric 

catalysts.  In a standard procedure, the reactions were carried out in heptane.  Recovery 

and recycling of these polymeric catalysts were accomplished via a simple post reaction 

extraction with a polar solvent such as ethyleneglycol diacetate and acetonitrile.  The 

excellent nonpolar phase selective solubility of PIB supports enables the PIB-supported 

catalysts retain in the heptane phase and separate from the products that were partioned 

into the polar phase.   

Our preliminary results showed that all these PIB-supported catalysts were 

comparable to their low molecular weight analogs in activity and selectivity, and could 

be easily recovered and reused multiple times in both selected reactions.  However, 

metal leaching was still a major problem for these PIB-supported catalysts, especially for 

PIB-supported Cu catalysts.  In that case, the relatively higher molecular weight of the 

polar part (Box ligated Cu triflates) in comparation with the nonpolar PIB chain 

decreased the nonpolar phase selective solubility of the PIB-supported Cu catalyst.  As a 

result, higher metal leaching was observed.  This problem can be partially solved by 

either using a longer PIB chain as support or attaching multiple PIB chains on one 

catalyst. 
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