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ABSTRACT 

 

Size-Selected 2, 5, and 10 nm Gold Nanoparticles for Laser Desorption/Ionization Mass 

Spectrometry. (December 2008) 

Katherine Anne Stumpo, B.S., University of Northern Iowa 

Chair of Advisory Committee: Dr. David H. Russell 

 

  The analytical utility of gold nanoparticles (AuNPs) for laser 

desorption/ionization mass spectrometry (LDI-MS) is examined here. An evaluation of 

the parameters that affect desorption/ionization show that careful treatments of AuNPs is 

needed, as subtle changes in the solution environment can result in subsequent changes 

in the mass spectra. A thorough evaluation of the parameters that affect 

desorption/ionization of peptides is presented here, and these parameters include: (i) 

AuNP-to-analyte ratio, (ii) AuNP size, (iii) solvent, (iv) AuNP surface composition, (v) 

pH and buffer effects, (vi) amino acid sequence, and (vii) additives such as fructose or 

glycerol. Specifically, controlling the AuNP-to-analyte ratio, pH, peptide composition, 

and AuNP size are important parameters for ionization. Additionally, effects of 

passivating the AuNP surface with halides or oxyanions was investigated. The presence 

of NaF, NaCl, NaBr, and NH4X (X = F, Cl, Br, I) were shown to not significantly affect 

analyte ion abundances, whereas addition of NaI strongly suppressed analyte ion yields. 

Further physical characterization of the NPs showed that etching had occurred, which 

suggests that the surface chemistry of the NPs is important for desorption/ionization. 
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Throughout these investigations, questions remain as to what the internal energies of 

peptides are after the desorption/ionization event, and how energy is deposited. Peptide 

ion fragmentation is examined under different solution conditions to evaluate the relative 

internal energies of peptides, and the fragmentation pattern examined for insight into 

fragmentation mechanisms. The data suggest that radical species are important for 

fragmentation of peptides when using AuNPs. However, it is likely that multiple 

processes are actually directing the fragmentation. Finally, based on the data presented 

in this dissertation, a thermal desorption mechanism of pre-formed ions is proposed.  

This fundamental research is intended to lay foundations for optimizing the use of 

nanoparticles in routine LDI-MS analysis as well as giving insight into nanoparticle 

ionization mechanisms. Since very little work has been done in this area, this dissertation 

investigates, in detail, many of the subtle characteristics that affect desorption/ionization 

of biomolecules when using NPs. 
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CHAPTER I 

INTRODUCTION 

 

Mass spectrometry (MS) has long been a powerful tool in biomolecule structural 

analysis. However, until the advent of  “soft” ionization techniques such as electrospray 

ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI), analysis of 

intact biomolecules has been difficult. Both of these methods result in ions having low 

internal energies and very little fragmentation occurs during the ionization process. 

MALDI was pioneered by Karas and Hillenkamp, where they used small organic acid 

matrices to facilitate energy transfer to biomolecules, resulting in subsequent desorption 

and/or ionization.1 Concurrently, Tanaka et al. developed a method by which small 30 

nm cobalt particles suspended in glycerol promoted desorption and/or ionization of 

large, thermally labile proteins and protein aggregates.2  

Since that time, much work has been done exploring the use of organic acid 

matrices, and determining optimum conditions for desorption/ionization of 

biomolecules,3-10 and only a relatively few studies have been done using nanoparticulate 

materials. Early experiments with nanomaterials used graphite or other species 

suspended in glycerol. For example, Sunner et al. utilized large (2 – 150 µm) graphite 

particles suspended in glycerol, and successfully laser desorbed peptides with low limits- 
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of-detection (pmol-nmol range), but low mass resolution (300). The authors claimed a 

thermal desorption/ionization mechanism similar to what Tanaka originally suggested.2, 

11 Dale and co-workers also investigated graphite particles (2 µm)  in combination with a 

liquid matrix. They were able to ionize proteins, oligosaccharides, and synthetic 

polymers with detection limits as low as 50 fmol; the mechanism proposed was again 

thermal desorption.12 Schürenberg et al. used several different nanomaterials suspended 

in glycerol, with the best results from 35 nm titanium nitride in glycerol, 19-55 nm 

tantalum in glycerol, and nano-soot in glycerol. The most important findings of this 

study were that mass spectra of cytochrome c (13 kDa) were obtained with comparable 

quality to organic acid matrices, detection limits were as low as a few tens of 

femtomoles for peptides, and desorption/ionization was achieved over a large range of 

wavelengths (337, 500-760, 1064 nm).13 

Other nanomaterials, such as silicon nanopores or nanoparticles have also been 

shown to promote LDI.14-19 While this is an alternative method for LDI-MS, these 

experiments typically involve surfaces that have been etched to create nanofeatures, and 

none of the surface is desorbed/ionized. Therefore, the mechanistic considerations from 

these experiments are less relevant, and will not be discussed further unless directly 

applicable.  

Very few examples of noble metal (copper, silver, gold) particles or thin films 

exist. Lai et al.  deposited a sample overlayer on a thin silver film substrate,  and then 

illuminated the sample by backside irradiation, resulting in desorption/ionization of 

small biomolecules.20 Li et al. determined that desorption/ionization from thin gold films 
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was possible.21 Finally, Chen and co-workers described LDI of biomolecules on gold-

coated porous silicon and gold nanorods (~15 nm diameter with lengths from 50-200 

nm). They were able to desorb/ionize small peptides and sugars and primarily observed 

the [M + Na]+ ion, which they suggested was a result of gas-phase cationization.22 In a 

related study using dissociation spectroscopy, large metal clusters irradiated with a laser 

resulted in desorption of atoms or photoemission of electrons. Whole clusters were even 

evaporated from the surface owing to thermal heating. Desorbed species were detected 

using a quadrupole mass spectrometer.23 

All of these studies used nanomaterials larger than 35 nm or thin films. 

Interestingly, noble metal nanoparticles exhibit unique optical and electronic properties 

at smaller sizes, specifically in the 2 – 5 nm size regime. Therefore, the studies discussed 

in this dissertation use 2, 5, and 10 nm gold nanoparticles (AuNPs) in order to 

investigate size-related effects on LDI of biomolecules. 

 

Nanoparticle Optical and Electronic Properties 

 The unique optical properties of AuNPs have been used for coloration of glass, 

ceramics, and pottery24 dating back to the middle ages. The Lycurgus cup was crafted by 

the Romans in the 4th century BC25 and changes color from green in reflected light to red 

in transmitted light as a result of the colloidal material in it. In 1857 Faraday reported the 

synthesis of gold colloidal solutions with colors varying from ruby red to amethyst. He 

correctly postulated that the color indicated the presence of aggregates of gold atoms and 

his work is now marked as the beginning of colloid science.26 
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The physical origin for the color observed in small metal NPs is the coherent 

oscillation of the conduction band electrons interacting with an electromagnetic field. 

This resonance is known as a surface plasmon resonance (SPR) band. The electric field 

of an incoming light wave induces polarization of the electrons with respect to the heavy 

core of the NP. A net charge difference only occurs at the NP surface, and interaction of 

the electrons with the electric field creates a dipolar oscillation of the electrons, as Figure 

1 depicts. When the frequency of electromagnetic radiation is resonant with the electron 

motion, a strong absorption band in the UV-Visible absorption spectrum is observed (see 

Figure 2), and this is the origin of the NP color. A number of factors influence the 

frequency and width of the SPR band, including: size, shape, monodispersity, 

composition, the dielectric constant of the surrounding medium, stabilizing ligands, and 

interactions between the ligands. 24, 27 

 
 

 
Figure 1. Pictoral representation of NP electron motion in an electric field. 
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Figure 2. Pictoral representation of a surface plasmon resonance band (*). 

 
 
 

 Noble metals have very strong plasmon resonances, making them widely used in 

optical and electronics applications. Most other transition metals have only a broad and 

poorly resolved absorption band.28 This difference is due to the “free” motion of the 

electrons in the conduction band, giving the electrons a higher polarizability, which in 

turn makes the plasmon resonance shift to lower frequencies. 

The optical properties that account for surface plasmon resonance were theorized 

by Mie in 1908.29 Mie’s solution for Maxwell’s equations of electromagnetism aimed to 

describe the optical absorption and scattering of light by a cluster, and was broken into 

two parts: the electromagnetic and the material part. Mie’s solution treated the material 

properties in a new way where only the complex dielectric constants entered the 

calculation. He also introduced the phenomenological dielectric functions ε(ω, R), which 

incorporated the radius of a particle into the equation. These phenomenological optical 

material functions resulted in wide applicability, as they can incorporate all important 
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cluster effects for many different materials (e.g., metal NPs, ionic crystals, 

semiconductor materials).30,31 

For NPs much smaller than the wavelength of light (< 20 nm), Mie’s theory 

reduces to the following expression: 

 

2
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where V is the particle volume, ω is the angular frequency of the exciting light, and c is 

the speed of light. The dielectric function of the surrounding medium and the metal are 

εm and ε(ω) = ε1(ω) + iε2(ω), respectively. The dielectric function of the metal is 

complex and depends on the frequency. This equation does have limitations; it does not 

accurately describe effects for NPs less than ~2 nm, which are better treated as 

molecular clusters with discrete electronic states.27 Secondly, it only takes into account 

dipolar resonances, and while multipolar oscillations can occur as Mie predicted, they 

are typically only of importance when dealing with non-spherical or very large 

particles.27 

As NPs become smaller the energy level spacing within the system is affected, 

specifically for particles smaller than 2 nm. Similarly to particle-in-a-box, as NP 

dimension decreases the energy spacing between adjacent levels increases. Eventually 

this leads to quantum size effects owing to the quantization of energy levels, but in order 

to observe localization of the energy levels the size must be well below 2 nm. A 
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theoretical investigation of quantum size effects is beyond the scope of this research and 

will not be discussed further.  

The dynamics of electrons in NPs < 2 nm have been investigated by various 

groups, and have some relevance here. Using ultrashort laser pulses electrons of metal 

NPs can be selectively excited, and electron processes followed in real time.32 A 

discussion on the role of electrons emitted from NPs is discussed in detail in Chapter VI. 

  

Time-of-Flight Mass Spectrometry  

 The concept of time-of-flight (TOF) mass spectrometry was first proposed in 

1946 by W.E. Stephens33 and the first instrument of this type was built in 1948 by 

Cameron and Eggers.34 In 1955 Wiley and McLaren introduced a pulsed ion extraction 

TOF instrument that specifically addressed issues relating to mass resolution, and the 

first commercial TOF instrument was produced.35 There was not much progress in TOF 

development from this time until the 1980s, when improved electronics simplified data 

handling. The discovery of LDI and MALDI techniques in the late 1980s1, 2 also 

renewed interest in TOF, as the pulsed nature of these ionization techniques are well 

suited to TOF.  

 In a basic LDI-TOF instrument, ions are formed at the surface of the backing 

plate, accelerated through the entire source-extraction region to the same final kinetic 

energy, enter the field-free drift region where they separate based on their mass-to-

charge ratio (m/z), and are then detected (see Figure 3). The kinetic energy of the ions is 

described by: 
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which depend on the square root of their masses. 

Mass resolution in a TOF instrument depends on a number of factors, including: 

time resolution (and therefore laser pulse widths), detector response, digitizing rates, and 

ion initial kinetic energies. Mass resolution is defined as: 

t
t

m
mR

∆
=

∆
=

2
. 

TOF instruments have long been considered low resolution instruments and several 

factors contribute to this; however, new instrument designs have significantly improved 

resolution in TOF instruments. The major contributors to low resolution are time, space, 

and kinetic energy distributions.36 
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Figure 3. Basic schematic of a time-of-flight mass spectrometer. 

 
 
 

Temporal distributions include differences in the time of ion formation, as well 

as differences in ion detection time. Ions of the same m/z that are formed at different 

times can enter the drift region at different times, but maintain a constant time 

difference, ∆t, as they approach the detector. Since mass resolution is dependent on 

t/2∆t, longer flight tubes result in longer flight times, and will increase t while 

maintaining a constant ∆t.36  

 Spatial distributions include ions that are formed in different regions of the 

source and are thereby accelerated through different distances in the extraction field, 

resulting in a distribution of final kinetic energies. For example, ion A is formed directly 

on the surface of the sample plate and ion B at some distance above the surface of the 

sample plate. Ion B will exit the source region sooner and with a lower velocity, and will 

arrive at the detector later than ion A. This appears in the mass spectrum as peak tailing. 

Delayed extraction can help correct spatial distributions, and is illustrated in Figure 4. 

With continuous extraction ions are immediately pulsed into the drift region and reach 

the detector at slightly different times because of the difference in kinetic energy, these 
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ions are focused at some point in the drift region (Figure 4A). Delayed extraction allows 

the ions to expand into a field free region in the source, and after a certain time delay 

(typically hundreds of nanoseconds) a voltage pulse is applied to extract the ions from 

the source; ions have a narrower final kinetic energy distribution and are focused just 

before entering the detector (Figure  4B).36, 37 

 

 
Figure 4. Schematic of (A) a continuous extraction source and (B) a delayed extraction source. 

 
 
 

Initial kinetic energy distributions arise from 2 main sources: (i) the ionization 

process,38-40 and (ii) in instruments where spatial distributions dominate, as delayed 

extraction can increase the final kinetic energy spread.36 The best way to improve mass 
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resolution and to counteract the energy spread is by using an electrostatic reflector, or a 

reflectron. The reflectron is an ion mirror which reverses the direction of ion motion by 

means of a retarding electric field. This corrects the kinetic energy distribution of ions 

leaving the source with the same m/z, as ions with higher kinetic energy will spend more 

time in the reflectron, thereby allowing them to reach the detector at the same time as ion 

with lower kinetic energies, which spend less time in the reflectron.36  

 

 

 
Figure 5. Schematic of a reflectron time-of-flight instrument. 

  
 
 
 The total flight time of ion is now represented by: 

]4[
2 21
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where L1 is the distance from the exit of the source to the entrance of the reflectron, L2 is 

the distance from the exit of the reflectron to the detector, and d is the penetration depth 

into the reflectron, which will vary with kinetic energy. 
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Peptide Fragmentation  

 As previously stated, MALDI typically results in low ion internal energies and 

little fragmentation occurs during desorption/ionization. However, ions can be 

collisionally activated which results in ion fragmentation. LDI of analytes using AuNPs 

also produces a similar effect, as Chapters IV and V describe. Therefore, it is useful to 

have a description of peptide fragmentation here. Ion dissociation typically occurs 

through the lowest energy pathways and for peptides this typically results in breaking 

bonds along the backbone. Fragment ion nomenclature is illustrated in Figure 6, as given 

by Roepstorff and Fohlman.41 Cleavage of the peptide amide backbone that results in 

charge retention at the N-terminus yields a-, b-, and c-type ions; charge retention at the 

C-terminus results in x-, y-, and z-type ions. Ions that result from simple bond cleavage 

are denoted with capital letters (e.g.,  Bn-, Yn-type ions). The addition of 2 hydrogens to 

a Yn- type ion results in a yn-, type ion; the y-type product ion is more commonly 

observed than the Y-type ion. Odd-electron species can also be observed, and ions are 

denoted here with a radical symbol (e.g., a˙). Further to this work, Biemann identified 

other fragment ions which consist of cleavage of the amino acid side chain.42 Partial or 

complete elimination of side chains yields d-, v-, and w-type ions (see Figure 6). Partial 

side chain loss of an a-type ion yields a d-type ion, complete side chain loss of a y-type 

ion results in a v-type ion, and partial side chain loss of a z-type ion yields a w-type ion. 

The amino acids isoleucine and threonine are branched at the β-carbon and ions are 

labeled depending on which brand is cleaved (e.g., da-, db-, wa-, and wb-type ions). 
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Figure 6. Peptide fragmentation nomenclature. 

  

 

 Peptides typically fragment in a predictable manner depending on the excitation 

method. Low-energy activation methods such as collision induced dissociation (CID) 

involves accelerating ions into a neutral background gas. Low energy collisions (1 keV) 

typically yield b- and y-type ions, as the carbonyl-amide bond is the most labile. Other  

techniques have been shown to induce unique peptide ion fragmentation of other 

backbone bonds. Electron transfer dissociation (ETD) and electron capture dissociation 

(ECD) typically result in cleavage of the N-Cα bonds of the peptide backbone, yielding 

c- and z-type ions.43-45 Photodissociation utilizes high energy photons (e.g., 157 nm or 
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193 nm) to directly excite the peptide backbone, and yields a variety of fragment ions, 

with x-type ions and side chain cleavages typically dominating the mass spectra. 46-49 

A physical description of peptide ion dissociation (or unimolecular ion 

decomposition) is given by quasi-equilibrium theory.50 Upon ionization the ion is in an 

excited state and does not initially have a change in bond length. Energy is rapidly 

redistributed throughout the degrees of freedom of the molecule and a “quasi-

equilibrium” among the energy states is established before ion fragmentation occurs. 

Rice-Ramsperger-Kassel-Marcus (RRKM) theory states that the rate constant for a 

particular reaction is the population of energy states of the excited molecule relative to 

the population of all the other energy states of the decomposing ions. This is simplified 

to the expression:     

1
0)(

−

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

E
EE

vEk , 

where v is the frequency factor, E is the internal energy of the ion, E0 is the critical 

energy of the reaction required for bond dissociation, and n is the number of vibrational 

degrees of freedom.51 

 The relationship between internal energy of the ion and dissociation is shown in 

Figure 7 (adapted from McLafferty and Turecek51). The energy deposition function ρ(E), 

describes the distribution of internal energy in an ensemble of ions after the ionization 

event. As the internal energy of the ion increases, fragment ion products (e.g., AB+ and 

CD+) may become favored to form. The relationship between ion internal energy and 

rate of dissociation is illustrated by the lower half of Figure 7. As the internal energy of 
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the ion increases, the pathway for dissociation of the ion into the products A+ and B 

becomes more favorable. At even higher internal energies,  the rate of dissociation to C+ 

and D becomes greater than that of A+ and B.  

 

 

 
Figure 7. Wahrhaftig diagram describing the relationship between internal energy of ions and rate of 

dissociation. 
 
 

Research Direction 

Many aspects of mass spectrometry and NP chemistry are relevant to the 

research in this dissertation. The purpose of this research is fourfold: (i) to investigate 

the utility of AuNPs as matrices for LDI-MS and parameterize the factors that affect 

desorption/ionization, (ii) to determine the effects of passivating the AuNP surface, (iii) 

to determine how changing the solution conditions can affect internal energy deposited 
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in peptides, and (iv) to propose a mechanism of ion formation. Chapter II details the 

solution parameters that affect ionization, including how to enhance ionization of the [M 

+ H]+ ion. Chapter III focuses on conditions that passivate the AuNP surface and the 

subsequent effects on the mass spectra. Chapters IV and V describe energy transfer to 

the analyte and peptide ion fragmentation mechanisms. Chapter VI broadly focuses on 

the mechanism of desorption/ionization.  



 

 

17

CHAPTER II 

PARAMETERIZATION OF IONIZATION OF BIOMOLECULES USING GOLD 

NANOPARTICLES FOR LDI-MS* 

 

Introduction 

 In order to determine parameters that may be important for desorption/ionization 

of biomolecules using AuNPs in laser desorption/ionization (LDI) mass spectrometry, 

one can first look to traditional matrix-assisted LDI (MALDI) mass spectrometry 

experiments to identify variables in sample preparation that affect ion yield and mass 

spectral complexity in TOF instruments. A number of factors have been identified that 

are important for ionization of biomolecules using MALDI, such as: (i) sample 

preparation and deposition method,1, 7, 52-59 (ii) choice of matrix or mixed matrices,10, 59-64 

(iii) presence of impurities such as detergents or buffers,59, 65-70 (iv) solution pH,10, 59, 64, 71 

(v) solvent composition,9, 59, 70 (vi) various matrix additives,72-74 and (vii) biomolecule 

composition.  

Of the parameters listed above that can affect ionization in MALDI, only a few 

have been investigated with regards to NPs. First, AuNPs can be synthesized in a variety 

of different solvents and with different surfactants, some of which are not compatible 

with LDI. For example, the two most common synthesis methods are the Brust75 and  

____________ 

*Parts of this chapter are reprinted from “Size-Selected (2-10 nm) Gold Nanoparticles 
for Matrix Assisted Laser Desorption Ionization of Peptides” by J. A. McLean, K. A. 
Stumpo, and D. H. Russell, J. Am. Chem. Soc., 2005, 127, 5304-5305, Copyright [2005] 
American Chemical Society. 
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the Turkevich76 methods. The Brust method is a two-phase synthesis that transfers 

AuCl4
- to toluene using tetraoctylammonium bromide, and is then reduced using sodium 

borohydride in the presence of dodecanethiol. There are several issues that may 

complicate the use of NPs from the Brust method in LDI: (i) the presence of detergents 

can complicate the mass spectrum or suppress analyte ion signal and (ii) the resultant 

NPs are in toluene, which is not a compatible solvent with many biological samples. In 

contrast to this, the Turkevich method is an aqueous reduction of AuCl4
- with sodium 

citrate. Citrate capped AuNPs are readily miscible with biological samples and do not 

have surfactants; the main complicating factor is excess sodium. Most of the 

experiments in this dissertation utilize citrate capped AuNPs.  

A number of the additives that are used in MALDI (e.g., sugars, ammonium 

salts, etc.) have been used in different NP syntheses, but are typically involved in NP 

formation, not as stabilizing ligands for the NPs. Also, aqueous environments are not 

always used in NP syntheses, as discussed above, making the effects of additives 

difficult to understand at times. Specific cases are discussed where relevant. 

Next, the effects of pH on NPs have been investigated somewhat. Several studies 

have focused on ordered assembly processes by pH manipulation, which is typically a 

result of hydrogen-bonding interactions.25, 77  Since analyte is also present with AuNPs 

in an LDI experiment, H-bonding interactions between AuNPs and analyte are already 

complicated. Therefore, it is initially unclear what affect lowering the pH may have. 

Aggregation of AuNPs as the pH is lowered may be an issue, as the stability of citrate 
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capped AuNPs is dependent on the electrostatic repulsion between NPs that arises from 

the charged citrate molecules.  

This chapter will detail basic parameters of ionization, including, (i) AuNP-to-

analyte ratio, (ii) effects of peptide composition, (iii) effects of solution pH, (iv) AuNP 

surface modification, and (v) effects of methanol addition. In MALDI analyses a number 

of solution additives (e.g., ammonium,78, 79 fructose80, 81) have been found to improve 

spectral clarity and promote higher abundances of [M + H]+ ions, so a brief evaluation of 

some common MALDI additives is also presented in this chapter. 

 

Experimental 

 LDI-MS experiments were performed on an Applied Biosystems Voyager DE-

STR ( Framingham, MA) equipped with a N2 laser (Spectra-Physics) for irradiation at 

337 nm. Positive and negative mode experiments were performed in the reflected mode 

using 200 laser shots with internal calibration. All of the mass spectra shown used laser 

energies at 7-12% above the threshold for desorption/ionization.  

 Samples were prepared by mixing solutions containing the AuNPs with solutions 

containing analyte. Any other additions were then added to this solution. Typically, 

solutions were allowed to sit for 5 to 10 minutes prior to depositing an aliquot of sample 

on to a stainless steel plate, which was then vacuum dried and analyzed. 

Modification of Angiotensin I to Angiotensin I methyl ester was done according 

to literature procedures.82 Briefly, 800 µL of acetyl chloride was added very slowly to 5 

mL of anhydrous methanol and stirred. After approximately 5 minutes, 500 µL of the 
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resulting solution was added to 5 mg of peptide and stirred at room temperature for 2 

hours. The peptide was then dried by lyophilization. The modification of free acid on the 

C-terminus and aspartic acid side chain to the methyl ester was confirmed by tandem 

mass spectrometry. Acetylation of the N-terminus consisted of very slowly adding 200 

µL of acetic anhydride to a peptide solution consisting of 200 ng of peptide in 200 µL 

water:acetonitrile (1:1 v/v) and allowing this to react for 10 minutes at 37oC, and was 

then dried by lyophilization.83 This reaction results in two products, N-terminal 

acetylation, and double acetylation (N-terminus and arginine side chain). By quenching 

the reaction at the proper time, a high abundance of only the N-terminal acetylated 

product is produced, with minimal doubly acetylated product. The two products were 

separated by fast performance liquid chromatography (FPLC), where samples were 

applied in 50 mM ammonium bicarbonate and eluted with 500 mM sodium chloride. 

Modification site(s) were confirmed using tandem mass spectrometry. See Figures 8 and 

9 for structures of peptide modification. 

Protein digestion was done according to standard procedures. Briefly, 10 µL of 

protein solution in water was added to 50 µL of a 50 mM ammonium bicarbonate 

solution and heated to 90oC for 15 minutes. Protein denaturation was quenched by 

cooling the solution at 0oC for 10 minutes. Next, 5 µL of trypsin was added and the 

solution warmed at 37oC for 4 hours.  
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Figure 8. Reaction scheme for modification of a peptide to the methyl ester. 

 
 
 
 
 

 
Figure 9. Reaction scheme for modification of the N-terminus to an acetyl group. 
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The pH of citrate capped AuNP solutions was adjusted to 3, 4, and 5.2 using 

citric acid. These pH values were chosen because they bracket the pKa values of citrate, 

(pKa1 = 3.13, pKa2 = 4.76, pKa3 = 6.4)  giving different charge states on the surface of 

the AuNP, as is shown in Table 1. 

 

Table 1. Citrate chemical formulae at varying pH values. 
Solution pH Citrate formula 

3 HOCCH2(COOH)3 
4 HOCCH2(COOH)2COO- + H+ 

5.2 HOCCH2(COOH)(COO-)2 + 2H+ 
7 HOCCH2(COO-)3 + 3H+ 

 

 

AuNPs were modified using standard gold-thiol chemistry.84 Tiopronin (TP), 

glutathione (GSH), and β-mercaptoethanol (β-me) were chosen for these studies because 

of differences in ligand bulk. In each case the modified NPs were prepared by mixing an 

aqueous solution containing the modifying reagent (ranging in concentration from 10-15 

mM) with a solution of AuNPs 1:1 (v/v), and allowed the resulting solution to sit for 0.5 

to 2 hours at room temperature. Excess modifying reagent was removed by using 

Millipore Microcon Centrifugal Filters (Billerica, MA); however, no significant 

differences in the mass spectral data for filtered versus non-filtered NP solutions were 

observed. LDI mass spectra of the modified AuNPs contain primarily Aux
+ cluster 

species and low abundance signals for AuxS+ and fragment ions of the modifying reagent 

adducted to Au. Although exact surface coverage has not been determined, estimates 

based on molecule size and unit packing efficiency were used to give an upper limit of 
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bound ligands. For example, using 20 Å2 as the approximate size for TP, it is estimated 

that there are ~60 TP molecules attached to the gold surface, assuming that there are 

about 150 surface gold atoms in a 2 nm AuNP. Using a similar approach for GSH, with 

estimated molecule size of ca. 120 Å2, it is estimated that 10 GSH molecules per 2 nm 

AuNP and about 120 β-me molecules (10 Å2) per 2 nm AuNP. 

 UV-Vis spectroscopy and TEM were used to characterize the modified AuNPs. 

Absorption spectra were obtained on an Agilent 8453 UV-Visible Spectrophotometer 

(Foster City, CA) to monitor changes in the surface plasmon band of the AuNPs. 

Samples of AuNPs and any additives were mixed and spectra recorded at t = 0 min, 2 

min, and 5 min. Electron microscopy images were obtained on a JEOL 2010 Hi-

Resolution Transmission Electron Microscope with an acceleration voltage of 200 kV. 

 2 nm, 5 nm, and 10 nm citrate capped gold nanoparticles were purchased from 

Ted Pella, Inc. (Redding, CA). Val4-Angiotensin III (RVYVHPF), Angiotensin I 

(DRVYIHPFHL), Substance P (RPKPQQFFGLM-NH2), Dynorphin A (1-6) 

(YGGFLR), Oxytocin (CYIQNCPLG-NH2), Bradykinin 2-9 (PPGFSPFR), Dynorphin A 

(1-13) (YGGFLRRIRPKLK), C-telopeptide (EDAHDGGR), [Ala-Pro-Gly-(Ile3,Val5)] 

Angiotensin II (APGDRIYVHPF), Cys8-Renin Substrate (DRVYIHPCHLLYYS), and 

Flag peptide (DYKDDDK) were purchased from American Peptide Co. (Sunnyvale, 

CA) and were prepared in water. RVGVAGG was synthesized in-house using standard 

solid phase Fmoc chemistry. HPLC grade methanol, citric acid, p-toluenesulfonic acid, 

ascorbic acid, acetic acid, tris(hydroxymethyl)aminomethane (Tris), hydrochloric acid, 

ammonium acetate, glycerol, ammonium chloride, N-(2-mercaptopropionyl)glycine 
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(tiopronin), glutathione, and β-mercaptoethanol were obtained from Sigma (St. Louis, 

MO) and used as received. Water used was distilled and deionized using a Barnstead 

water purification system (Dubuque, IA).  

 

Results and Discussion 

 The absorption spectra of 2 nm, 5 nm, and 10 nm AuNPs are shown in Figure 10. 

An SPR band is present for 5 nm and 10 nm AuNPs at 522 nm and 524 nm, respectively; 

2 nm AuNPs do not have an SPR band. LDI is typically performed using a UV laser 

(e.g., nitrogen laser at 337 nm), and while there is not a plasmon band at this 

wavelength, there is still some absorption by the NPs. LDI at the plasmon band is 

beyond the scope of this research.  

 

 
Figure 10. UV-Visible absorption spectra of 2, 5, and 10 nm citrate capped AuNPs. 

 
 
 
The utility of AuNPs for LDI using size distributions of 2, 5, and 10 nm was 

examined. Figure 11 shows transmission electron microscopy images and size 
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distribution measurements of 2, 5, and 10 nm AuNPs. When co-deposited with peptide, 

both positive- and negative-ion LDI spectra are observed for all three size distributions 

(Figure 12). In the positive ion spectra [M + H]+, [M + Na]+, and [M + K]+ are observed, 

as well as peaks corresponding to Au-cluster species (e.g., Au3
+, Au5

+). The relatively 

high abundances of cationized analytes are attributed to the metal salts used to prepare 

the NPs. The negative ion spectra contain abundant [M – H]- as the AuNP size decreases 

(i.e., 2 nm > 5 nm > 10 nm), whereas the abundances of higher order Au-clusters 

increase as the AuNP size increases (i.e., 10 nm > 5 nm > 2 nm). 

 
 

 
Figure 11. Transmission electron micrographs and size distribution of (A) 2 nm (B) 5 nm and (C) 10 nm 

citrate capped AuNPs. 
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Figure 12. Positive and negative ion LDI-TOF mass spectra of substance P (RPKPQQFFGLM-NH2, Mr = 1347.64 Da) obtained by using citrate capped 

AuNPs: (A) 2 nm, (B) 5 nm, and (C) 10 nm. 
 



 

 

27

The molar AuNP-to-analyte ratio (AuNP:A) used here is 1 AuNP: 107 peptide 

molecules. It is especially interesting to compare the AuNP:A to the matrix-to-analyte 

ratio for conventional UV-MALDI using organic acid matrices.1 The molar matrix-to-

analyte ratio for organic acid matrices is 103-105 matrix molecules:1 analyte molecule.  

As the spectra in Figure 12 show, 2 and 5 nm AuNPs yield high relative 

abundances of analyte in the positive ion spectra, with little chemical noise in the 

background. Further work in this dissertation will focus on 2 and 5 nm AuNPs.  

Desorption/ionization of a biomolecule is represented by the cartoon illustration 

in Figure 13 using citrate capped AuNPs. The AuNP is mixed with analyte, and 

depending on the chemical properties, some may adsorb to the AuNP surface. Since 

peptides have amines or carbonyl oxygens, it is reasonable to claim affinity for the 

AuNP surface.77 Next, the sample is irradiated with a laser and either positive or 

negative ions can be detected using the mass spectrometer. This cartoon model will be 

used throughout this dissertation as different solution or NP conditions are used. 

 
 
 

 
Figure 13. Cartoon illustration of desorption/ionization using citrate capped AuNPs. 
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AuNP-to-analyte ratio 

Peptides follow a general trend of ionization within the range of 1 AuNP: 104 

analyte molecules to 1 AuNP: 109 analyte molecules, with the best results occurring for 

1 AuNP: 105-108 peptide molecules. Figure 14 shows the peptide Angiotensin I methyl 

ester at solution pH 7 using 2 nm citrate capped AuNPs at varying AuNP: A. For the 

ratios 1 AuNP: 105 analyte molecules and 1 AuNP: 106 analyte molecules, [M + alkali]+ 

ions are predominate in the spectra. Using ratios of 1 AuNP: 107 analyte molecules and 1 

AuNP: 108 analyte molecules, the protonated molecule, [M + H]+, dominates. The data 

shown is representative of several peptides that were examined. The spectra shown are 

normalized to each other, so 100% relative abundance is 1200 counts for each spectrum. 

The enhancement of the [M + H]+ ion is of interest, as numerous [M + alkali]+ ions 

complicates the mass spectrum, and partitions the ion signal into multiple channels; this 

is not ideal because it can make spectral interpretation more difficult and time 

consuming. The main contribution of alkali in solution is from the AuNPs (a 

consequence of the synthesis), and so by increasing the AuNP-to-analyte ratio, the 

amount of alkali per peptide in a given area is reduced, resulting in less alkali adduction, 

i.e., the salt concentration is reduced, resulting in fewer [M + alkali]+ ions being 

observed. Issues pertaining to sample cleanup are discussed later in this chapter. 
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Figure 14. LDI-TOF mass spectra of Angiotensin I Methyl Ester using 2 nm citrate capped AuNPs at pH 
7 with a ratio of (A) 1 AuNP: 105 analyte molecules, (B) 1 AuNP: 106 analyte molecules, (C) 1 AuNP: 107 

analyte molecules, and (D) 1 AuNP: 108 analyte molecules. 
  
 
 
Peptide composition 
 
 The two analytes shown so far (Substance P and Angiotensin I methyl ester) both 

have high ionization efficiencies, meaning that a high relative abundance of the peptide 

is observed. In traditional MALDI experiments it has been shown that peptide sequence 

can affect how well a peptide is ionized.85-89 Basic amino acids, or peptide with a high 

isoelectric point (pI) tend to desorb/ionize more readily than acidic peptides, or those 

with low pI values. A small library of peptides has been investigated in order to evaluate 

any ionization trends based on physical parameters or peptide composition. 
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Table 2. Peptide library information 
Peptide Sequence Peptide Name/Abbreviation Mr

1 pI1 
RVYVHPF Val4-Angiotensin III 917.1 8.75 
RVGVAGG Peptide 1 614.7 9.75 
YGGFLR Dynorphin A (1-6) 711.8 8.75 
CYIQNCPLG-NH2 Oxytocin2,3 1007.2 5.51 
(D-OMe)RVYIHPFHL-OMe Angiotensin I Methyl Ester2,4 1324 > 6.92 
PPGFSPFR-OMe Bradykinin 2-9 Methyl Ester2,4 918.5 > 10.18 
RPKPQQFFGLM-NH2 Substance P2 1347.7 > 11 
PPGFSPFR Bradykinin 2-9 904.02 10.18 
DRVYIHPFHL Angiotensin I 1296.4 6.92 
YGGFLRRIRPKLK Dynorphin A (1-13) 1604.2 11.73 
APGDRIYVHPF Peptide 2 1271.6 6.79 
EKAHDGGR C-telopeptide 868.9 6.85 
DVGVAGG Peptide 3 573.6 3.80 
DRVYIHPCHLLYYS Cys8-Renin Substrate 1779.4 6.91 
DYKDDDDK Flag peptide 1013 3.97 
1calculated by the ExPASy ProtParam tool, found at http://ca.expasy.org/tools/protparam.html 
2values are approximate; calculation does not take modified termini or disulfide bonds into consideration 
3Peptide has a disulfide bond between Cys1 and Cys6 
4acidic residues and C-terminus modified to the methyl ester 
  
 
 

As Table 2 shows, the peptides analyzed have been grouped into three categories. 

Group 1 (green) peptides are defined as: (i) having high relative abundances at the 

threshold for desorption/ionization, where the analyte is often the dominant peak, (ii) 

maintaining a high analyte ion abundance as laser fluence increases, and (iii) counts 

increase to over 10,000 when the laser fluence is 10% above the threshold laser fluence 

for desorption/ionization. Group 2 (yellow) peptides typically have: (i) low relative 

abundances at the desorption/ionization threshold (often lower than 40%), (ii) have an 

increase in relative abundances as laser fluence increases, but counts do not go above 

10,000, and (iii) the intact analyte may or may not be the dominant peak in the spectrum. 
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Group 3 (red) peptides have very low analyte ion abundances (often less than 20%) at 

any laser fluence, or do not desorb/ionize at all. Figure 15 shows an example mass 

spectrum for a peptide from each of these groupings. At higher laser fluence, 

fragmentation of the peptide may occur and this is discussed further in Chapter IV.  

 
 

 
Figure 15. LDI-TOF mass spectra using 2 nm citrate capped AuNPs of (A) Group 1 peptide Val4-

Angiotensin III, (B) Group 2 peptide Bradykinin 2-9, and (C) Group 3 peptide Cys8-Renin substrate. 
 
 
 

These peptide groupings were made based on qualitative aspects because very 

little commonality exists based on physical parameters of the peptides (e.g., pI, aliphatic 

index, hydrophobicity). The only correlation to physical parameters is that peptides with 

a basic and acidic site near each other do not desorb/ionize well (e.g., Angiotensin I, 
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Bradykinin 2-9, C-telopeptide, Flag). To determine if desorption/ionization could be 

improved, peptides with basic and acidic sites near each other were modified to the 

methyl ester. The methyl ester peptides have a lower threshold for desorption/ionization, 

and at a comparable laser fluences, the methyl ester peptides exhibit much higher analyte 

ion abundances, as Figure 16A and 16B shows. This suggests that the acid-base 

properties of the peptides are important for ionization. Angiotensin I modified to N-

terminal acetylation was also investigated to further evaluate the acid-base properties of 

the peptide. As Figure 16C shows, similar sample loading of Acetylated Angiotensin I 

does not result in desorption/ionization of the peptide. The general trend of ionization 

efficiency for these three peptides is Angiotensin I methyl ester > Angiotensin I > 

Acetylated Angiotensin I. The preferential desorption/ionization of the methyl ester and 

free acid Angiotensin support the idea that basic sites are important for ionization,85 

especially with pre-formed ions, which will be discussed in detail in Chapter VI.  

 

Peptide mixtures and protein digests 

The utility of AuNPs for ionization of a mixture was also evaluated.  A peptide 

mixture composed of 3.33 pmol each of Ac-Angiotensin I, Angiotensin I, and 

Angiotensin I methyl ester results in desorption/ionization of all three analytes, as is 

shown in Figure 16D. This is markedly different to analysis of each peptide separately, 

where the free acid and methyl ester of Angiotensin are the only two peptides that 

desorb/ionize (see Figure 16A-C). The interaction of the three different peptides may 

enhance overall desorption/ionization due to simple acid-base interactions and proton 
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transfer in solution. The observation of increased analyte ion abundances is in contrast to 

traditional MALDI matrices, where multi-component mixtures often result in lower 

internal energies of all analyte ions, and less ionization.90 

 

 

 
Figure 16. LDI-TOF mass spectra using 2 nm citrate capped AuNPs of (A) Angiotensin I methyl ester, 
(B) Angiotensin I, (C) Acetylated Angiotensin I, and (D) mixture of Angiotensin I methyl ester (black 

labels), Angiotensin I (green labels), and Acetylated Angiotensin I (blue labels). 
 

 

An even more complex mixture is a tryptic digest, which was also analyzed. The 

proteins cytochrome c, bovine serum albumin, β-casein, and aldolase were evaluated 

using a series of AuNP-to-analyte ratios. No identifiable peptide peaks were observed 

for any of these proteins; Figure 17A shows the LDI-TOF mass spectrum of a tryptic 

digest of cytochrome c using 2 nm citrate capped AuNPs. Several control experiments 

were done to determine if the buffer or trypsin were interfering with 
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desorption/ionization. Figure 17B shows a standard peptide (Angiotensin I) with 

addition of ammonium bicarbonate at pH 8. Figure 17C shows a Angiotensin I with 

added trypsin, and Figure 17D shows Angiotensin I with both components added. The 

ammonium bicarbonate does not reduce ion signal compared to none added, in fact it 

enhances the protonated molecule, which may be due to the additional proton source 

from the ammonium ion. Addition of trypsin reduces the resolution and overall ion 

signal, suggesting this maybe affecting the desorption/ionization process. However, 

addition of trypsin and ammonium bicarbonate again has improved ion signal, making 

the effects of trypsin unclear. There is difficulty in getting a larger component mixture to 

work, and addition of enzymes complicates the issue even more. While peptide digests 

have not been a major focus of research, this experiment represents an area where the 

utility of citrate capped AuNPs is limited, and further investigation is needed in order to 

understand these effects. 

 

pH and buffer effects 

Solution pH was found to affect ionization of peptides when using AuNPs in 

LDI. Citrate capped AuNP solutions were modified from pH 7 to pH 5, 4, and 3 using 

citric acid. These values were chosen because they bracket the three pKa values of 

citrate, the NP surface capping agent (see Table 1). A significant change was noted 

between the spectra for pH 7 and 5 vs. pH 4 and 3. As is shown in Figure 14, at pH 7 the 

mass spectrum is predominately [M + alkali]+ ions, and at pH 3 (Figure 18), the  
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Figure 17. LDI-TOF mass spectra using 2 nm AuNPs of (A) cytochrome c digest, (B) Angiotensin I with 
added ammonium bicarbonate, (C) Angiotensin I with added trypsin, and (D) Angiotensin I with added 

trypsin and ammonium bicarbonate. 
 
 

protonated molecule dominates. The increase of [M + H]+ is attributed to the addition of 

a proton source. To confirm the effects of an additional proton source, several other 

acids were used to lower the pH. Acetic acid, ascorbic acid, and p-toluenesulfonic acid 

(see Figure 19) all yield higher analyte ion abundances for the protonated molecule. 

AuNPs were also treated with buffers to determine compatibility for biological 

mass spectrometry. As previously shown for the peptide Angiotensin I, addition of 

ammonium bicarbonate increased analyte ion abundances (see Figure 17B). AuNP 

solutions were adjusted to pH 6.5, 7.5, and 8.5 using Tris-HCl. Solutions of AuNPs were 

lowered to pH 5.91 and 4.12 using ammonium acetate-acetic acid. Figure 20 shows LDI 

mass spectra of these solutions, where analyte is marked with an asterisk, which is 
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present at all of these solution conditions. The cartoon in Figure 21 depicts how the ions 

near the surface of the AuNP may change when the pH is lowered. 

 
 

 
Figure 18. LDI-TOF mass spectra of Angiotensin I methyl ester using 2 nm citrate capped AuNPs at pH 3 
with a ratio of (A) 1 AuNP: 105 analyte molecules, (B) 1 AuNP: 106 analyte molecules, (C) 1 AuNP: 107 

analyte molecules, and (D) 1 AuNP: 108 analyte molecules.  
 

 
 

 
Figure 19. LDI-TOF mass spectra of Angiotensin I using 2 nm citrate capped AuNPs (A) without and (B) 

with p-toluenesulfonic acid. 
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Figure 20. LDI-TOF mass spectra of Angiotensin I using 2 nm citrate capped AuNPs at (A) pH 4.12, (B) 

pH 5.91, (C) pH 6.5, (D) pH 7.5, (E) pH 8.5, and (F) at all pH values. 
 
 
 

 
Figure 21. Cartoon of AuNP surface with pH adjustment. 

 
 

Reducing salt content 
 

As many of the mass spectra in this chapter have shown, [M + alkali]+ ions are 

very abundant when using citrate capped AuNPs. As previously mentioned, having the 



 

 

38

ion signal partitioned is less than desirable because it can complicate the mass spectrum 

and make peak assignment difficult. Several experiments were done to attempt to reduce 

the contribution of [M + alkali]+ ions. Dialysis, size-exclusion chromatography, and 

centrifugal filters of AuNPs all resulted in little improvement in the ion signal, and 

AuNP concentration was difficult to determine after all of these experiments, which is a 

significant issue because AuNP:A is important. The ‘cold water sling’, a method shown 

to decrease salt content in traditional MALDI experiments was also tried.91 The method 

consists of first depositing and drying the sample (1-2 µL), and then placing a 0.5-1 µL 

drop of cold water over the dried sample, and slinging the water off quickly. As Figure 

22A shows, significant alkali adduction is present in the control sample, and Figure 22B 

(cold-water sling applied) shows some reduction in alkali adduction. However, owing to 

the solubility of the AuNPs and analyte, significant sample loss is observed, most likely 

accounting for the reduction in Au-cluster species and overall ion abundances. None of 

the described methods were successful in significantly depleting [M + alkali]+ ions. 

 
 

 
Figure 22. LDI-TOF mass spectra of Val4-Angiotensin III using 2 nm citrate capped AuNPs (A) without 

any further sample treatment and (B) using the cold water sling method. 
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Methanol addition 

 Methanol was added to determine (i) if hydrogen-bonding between the analyte, 

solvent, and NP are important for ionization, (ii) if alkali adduction could be reduced, 

and (iii) if similar results occur for different AuNP-to-analyte ratios. Angiotensin I 

methyl ester was analyzed using a ratio of 1 AuNP: 106 analyte molecules. With no 

methanol present, [M + H]+ and [M + alkali]+ ions are present (see Figure 16A). As 

methanol content increases from 20% to 40%, [M + alkali]+ ions are still present, as is 

shown in Figure 23. At 50% methanol content only traces of [M + alkali]+ ions are 

present, and the [M + H]+ ion dominates the mass spectrum. At 60% and 70% methanol 

content, [M + H]+ remains the dominant ion, but overall analyte ion abundances decrease 

compared to 50% methanol content.  

 Using 1 AuNP: 107 analyte molecules, very little [M + alkali]+ ions are present to 

begin with, as has previously been demonstrated with changing AuNP: A (see Figure 

14C). Methanol addition results in further reduction of [M + alkali]+ ions starting with 

20% methanol addition, as Figure 24 shows. Analyte ion abundances are greatest with 

40% methanol addition, and no [M + alkali]+  ions are present with 70% methanol 

content. 
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Figure 23. LDI-TOF mass spectra of Angiotensin I methyl ester using citrate capped 2 nm AuNPs with 

varying percentages of methanol. AuNP: analyte ratio is 1 AuNP: 106 analyte molecules; 20 pmol of 
peptide deposited on the sample plate. 

 
 
 
 
 

 
Figure 24. LDI-TOF mass spectra of Angiotensin I methyl ester using citrate capped 2 nm AuNPs with 

varying percentages of methanol. AuNP: analyte ratio is 1 AuNP: 107 analyte molecules; 20 pmol of 
peptide deposited on the sample plate. 
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These data suggest that if any disruption of hydrogen bonding between the 

various solution components occurs during the drying process, it does not affect the 

overall desorption/ionization process. Methanol is effective at reducing [M + alkali]+ 

ions, perhaps due to a partitioning of the alkali into the methanol, resulting in less alkali 

per peptide in a given area, similar to the effect with AuNP-to-analyte. Alternately, 

alkali cations have a high affinity for methanol, resulting in the alkali drying away from 

the peptide as methanol dries faster. 

Mixtures of peptides with methanol addition were also investigated to determine 

if changes in desorption/ionization occur. For the peptides Angiotensin I and 

Angiotensin I methyl ester, with no methanol addition the methyl ester dominates the 

spectrum, and only very low relative abundances of Angiotensin I is observed, as is 

shown in Figure 25A. With 10% methanol content, the abundances of [M + alkali]+ ions 

for Angiotensin I methyl ester is decreased, and no change in abundances for 

Angiotensin I occurs, as is shown in Figure 25B. At 20% methanol content (Figure 25C), 

a significant increase in analyte abundances is observed for Angiotensin I with respect to 

Angiotensin I methyl ester, and [M + alkali]+  ions are reduced significantly compared to 

10% methanol content. At 30% - 60% methanol content, only trace amounts of [M + 

alkali]+  ions are present; 60% methanol addition is shown in Figure 25D. As discussed 

with previous peptide mixtures, it appears that peptide-peptide interactions are affecting 

analyte desorption/ionization. 
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Figure 25. LDI-TOF mass spectra of Angiotensin I (green labels) and Angiotensin I methyl ester (black 

labels) (A) with no methanol, (B) with 10% methanol, (C) with 20% methanol, and (D) with 60% 
methanol. AuNP: analyte ratio is 1 AuNP: 106 analyte molecules; 20 pmol of peptide deposited on the 

sample plate. 
 
 
 
Glycerol addition 

 The addition of glycerol in LDI stems from fast atom bombardment (FAB) MS, 

and early experiments done by Tanaka and coworkers.2 Here, differing amounts of 

glycerol have been added to determine if ionization is affected. The relative abundances 

of the [M + H]+ ion for the peptide Angiotensin I methyl ester  in glycerol compared to 

no addition (see Figure 16A) increases, but there is little effect on reduction of [M + 

alkali]+  ions, as is shown in Figure 26. The ratio of [M + H]+ to [M + alkali]+  ions does 

not dramatically change from 10% - 50% glycerol content; also, overall ion abundances 

decrease at higher glycerol content. Glycerol can serve as an additional proton source, 

accounting for the increase in the [M + H]+ ion.  
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Figure 26. LDI-TOF mass spectra of Angiotensin I methyl ester using citrate capped 2 nm AuNPs with 

different percentages of glycerol solution composition. 
 
 
 
 As previously suggested with liquid matrices, analyte at the surface of the droplet 

is desorbed/ionized, making pre-formed ions a possibility here.92 With glycerol present 

the sample spot is not actually dry, so the amount of alkali per given area is also fluid, 

most likely accounting for the lack of reduction of [M + alkali]+ ions compared to 

previous conditions discussed here. 

 
Fructose addition 

Fructose has previously been used as an additive for MALDI to reduce the 

amount of internal energy of ions, i.e., to lessen the amount of in-source fragmentation. 

A small amount of fragmentation is observed when using AuNPs for LDI (see Figure 

18C), but it is not the dominant pathway. Figure 27 shows the LDI mass spectra of Val4-
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Angiotensin III with and without fructose addition. Overall ion signal is decreased, and 

fewer [M + alkali]+ ions are observed. Fructose addition will be revisited in Chapter IV. 

 
 

 
Figure 27. LDI-TOF mass spectra of Val4-Angiotensin III using 2 nm citrate capped AuNPs (A) without 

fructose added and (B) with fructose added. 
 
 
 
Ligand effects 

Capping reagents play important roles in the chemical and physical properties of 

NPs, owing to the fact that NPs need stabilization of some type to prevent aggregation to 

the thermodynamically favorable bulk material.32 NPs are typically stabilized in one of 

three ways: (i) electrostatically via charged species (e.g., citrate), (ii) by steric hindrance 

(e.g., dodecanethiol), or (iii) through encapsulation (e.g., within a dendrimer).25, 32, 93 

Most of the AuNPs used in this dissertation are citrate capped, however here AuNPs 

were modified using standard gold-thiol chemistry.84 Tiopronin (TP), glutathione (GSH), 

and β-mercaptoethanol (β-me) were chosen for these studies because of differences in 

ligand bulk, the possibility of proton donation, and some peptide like structure (for 

tiopronin and glutathione). Figure 28 shows the structures of these ligands. LDI of 



 

 

45

Angiotensin I using citrate capped AuNPs (see Figure 19A) results in multiple [M + 

alkali]+ ions, while TP modified AuNPs (Figure 28A) result in higher abundances of the 

[M + H]+ ion, but still with a significant amount of [M + alkali]+  ions present. LDI of 

Angiotensin I using GSH modified AuNPs yield much higher abundances of [M + H]+ 

than citrate capped AuNPs, as is shown in Figure 28B. Finally, β-me capped AuNPs (see 

Figure 28C) does not significantly improve the abundance of the protonated molecule, 

however spectra obtained when using this ligand are not always repeatable, as some 

results have shown improvement in the ion signal of the [M + H]+ ion. The higher 

abundances of [M + H]+ for tiopronin and glutathione addition can be attributed to the 

availability of protons: the pKa of tiopronin is estimated to be 5.2 and the pKa of the 

glutamic acid side chain in glutathione is 4.07. The pKa of β-me is 9.4, making it less 

likely to be a proton donor.  

 

 

 
Figure 28.  Structure of (A) tiopronin, (B) glutathione, and (C) β-mercaptoethanol. 
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Figure 29. LDI-TOF mass spectra of Angiotensin I using (A) 2 nm tiopronin modified AuNPs, (B) 2 nm 

glutathione modified AuNPs, and (C) 2 nm β-mercaptoethanol modified AuNPs. 
 
 
 
 Different synthesis methods use different thiol ligands, and some NP extraction 

procedures from dendrimers use long chain alkanethiols. Here, several different thiols 

were mixed with citrate capped AuNPs to determine any affects on 

desorption/ionization. Figure 30 shows LDI-TOF mass spectra of the peptide 

Angiotensin I with hexanethiol, dodecanethiol, mercaptoundecanol, and 

mercaptoundecanoic acid modified AuNPs. The two alkanethiols (Figure 30A and 30B) 

do not result in analyte desorption/ionization. The two ligands with potential proton 

donors (mercaptoundecanol in Figure 30C and mercaptoundecanoic acid in Figure 30D) 

do result in desorption/ionization, although with relatively low ion yield. While the 

peptide Angiotensin I typically results in low ion yields, other peptides (Substance P and 

Val4-Angiotensin III) were also evaluated and similar results were observed. 
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Figure 30. LDI-TOF mass spectra of Angiotensin I using (A) 2 nm hexanethiol modified AuNPs, (B) 2 

nm dodecanethiol modified AuNPs, (C) 2 nm mercaptoundecanol modified AuNPs, and (D) 2 nm 
mercaptoundecanoic acid modified AuNPs. 

 
 
 Figure 31 shows a cartoon representation of the AuNP surface with ligand 

modification. The ligands discussed in this section are all thiols, which form a covalent 

bond with the Au surface.94-98 A peptide can not displace a bound ligand, and so will 

interact with the ligand. Ligands such as hexanethiol or dodecanethiol are not miscible 

with aqueous analyte solutions, making interaction between the AuNP and analyte 

difficult, and may be part of the reason that desorption/ionization does not occur. 
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Figure 31. Cartoon of citrate capped AuNPs modified with a ligand and possible surface composition. 

 

 

Summary 

 Three key points have been highlighted in this chapter: ionization of 

biomolecules using AuNPs varies dramatically depending on (i) analyte, (ii) solution 

conditions, and (iii) NP surface ligands. Analyte composition, specifically amino acid 

composition, can affect desorption/ionization when using AuNPs, just as in regular 

MALDI experiments. Peptides that are more basic (i.e., have a high pI) generally tend to 

desorb/ionized more easily than acidic peptides (i.e., have a low pI), as the pI values in  

Table 2 shows; the Angiotensin series of peptides that is contained in Figure 16 supports 

this statement as well. This is a result of the basic sites of the peptide (e.g., N-terminus, 

arginine side chain, or lysine side chain) having a higher affinity for protons or alkali 

cations than other amino acids. A model peptide (e.g., Angiotensin I methyl ester, 

Angiotensin I) was used to determine effects of solution conditions and NP surface 

conditions. Changes in solution conditions or composition, such as AuNP-to-analyte 
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ratio, pH, or addition of buffers or methanol, can be tuned to result in higher analyte ion 

abundances. The optimum AuNP-to-analyte ratio was determined to vary from peptide 

to peptide, but generally the highest analyte ion abundances are observed for 1 AuNP: 

106-107 analyte molecules (Figure 14). Lowering the pH results in less 

desorption/ionization of the [M + Na]+ or [M + K]+ ions, and higher abundances of the 

[M + H]+ ion (see Figure 18). Methanol additions reduces the abundances of the [M + 

Na]+ and [M + K]+ ions (Figure 23). Changes to the surface of the AuNP can also affect 

ionization. For example, covalent attachment of ligands, such as tiopronin or glutathione 

generally increase analyte ion yield compared to citrate capped AuNPs (see Figure 29). 

Conversely, alkanethiols do not result in desorption/ionization of analyte, but an 

alkanethiol with a terminal carboxylic acid or alcohol does result in 

desorption/ionization of analyte (Figure 30). These results suggest that interaction of the 

analyte with the AuNP is important for desorption/ionization, but can still occur if a 

viable proton source (e.g., proton from a carboxylic acid, alcohol, amine) is present. 

There are important implications for a desorption/ionization mechanism here, and that 

topic is explored further in Chapter VI. Differences in desorption/ionization based on 

peptide composition is also important to that discussion, and highlighted more in 

Chapter VI. Finally, there are several examples in this chapter where 

desorption/ionization does not occur. While some of these effects are not fully 

understood, they can still provide insight into the overall mechanism of 

desorption/ionization of biomolecules. 
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CHAPTER III 

ANION EFFECTS ON IONIZATION OF BIOMOLECULES USING GOLD 

NANOPARTICLES AS MATRICES FOR LDI-MS 

 

Introduction 

 Although LDI mass spectra obtained using AuNPs are less congested in the low 

mass range and a greater range of sample deposition conditions (e.g., pH, solvents) can 

be used, it has also been observed that specific changes in the solution environment can 

dramatically affect LDI ion yields. For example, in some cases the presence of salts and 

buffers do not significantly affect analyte ion abundances, whereas small amounts of 

alkali metal salts and/or buffers and changes in the amino acid composition of the 

peptide strongly suppresses analyte ion yields. It is unclear if these effects are the result 

of a change in the physicochemical properties of the NPs or if they arise solely from 

alteration of analyte-NP interactions. Therefore, this chapter presents a systematic study 

as to how specific changes in the composition of the solution, and thereby changes in the 

physicochemical NP surface environment, affects ion yields for size-selected AuNPs. 

It is quite possible that the sample preparation methods that are essential for LDI 

of biomolecules could alter the surface capping and/or lead to aggregation of the NPs. 

Therefore, examination of NPs by TEM is necessary to determine if any aggregation has 

occurred. In addition, the presence of impurities (e.g., buffers or detergents) as well as 

polar amino acids that comprise the peptide could displace the capping group and lead to 

changes in the physical/chemical properties of the NP. Here, the effects of various salts 
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on the physical properties of the AuNPs and on LDI ion yields are examined, as well as 

the sensitivity of “salt effects” on the chemical nature of the capping group. 

 

Experimental 

All mass spectrometry experiments were performed on an Applied Biosystems 

Voyager DE-STR (Foster City, CA) with a Spectra-Physics (Irvine, CA) N2 laser (337 

nm). Positive and negative mode experiments were performed in the reflected mode 

using 200 laser shots with internal calibration. All of the mass spectra shown used laser 

energies at 7-12% above the threshold for ionization. The positive and negative ion 

spectra within each figure are all normalized to each other, i.e., the relative ion 

abundance at 100% represents the same number of counts. 

As previously discussed in Chapter II, the optimum AuNP-to-analyte ratio for 

LDI from AuNPs is approximately 1 AuNP: 106 analyte molecules, and for the studies in 

this chapter that ratio was used because this gives consistent results for the selected 

analyte. While only data for Val4-Angiotensin III is shown here several analytes were 

tested; Val4-Angiotensin III is representative of the trends observed here. 

 Samples were prepared by mixing solutions containing the AuNPs with salt 

solutions and solutions containing analyte and let sit for 5 to 10 minutes to allow time 

for equilibration between NP and salt. Under optimum conditions, meaning samples 

contain minimum amounts of salt content, peptide ion detection levels of 10-50 

femtomoles can be achieved; however, for the studies reported here relatively high 

sample loadings (~9 pmol of total analyte) were used to minimize data acquisition times. 
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It is estimated that this sample loading corresponds to approximately 8-10 attomoles of 

analyte (105 molecules) per NP. The final salt concentration of the sample solution was 

0.44 M. A 1 µL aliquot of the solution was deposited on to a stainless steel plate (9 pmol 

peptide), vacuum dried, and analyzed. A positive ion spectrum of a control sample 

consisting of AuNPs and peptide (9 pmol peptide deposited) contains abundant [M + 

alkali]+ ions, and very low analyte ion abundances in the negative ion spectrum (data not 

shown). Previous work has also shown that [M + alkali]+ ions dominate the mass 

spectrum. Several sample cleanup methods have been investigated, but as Chapter II 

described, sample loss and decrease in ion signal are problematic. AuNPs were modified 

using standard gold-thiol chemistry, and the procedure was reported in Chapter II.84  

UV-Vis spectroscopy and TEM were used to characterize the modified AuNPs, 

and AuNPs with salts added. Absorption spectra were obtained (Agilent 8453 UV-

Visible Spectrophotometer (Foster City, CA)) to monitor changes in the surface plasmon 

band of the AuNPs. Samples of AuNPs and salts were mixed and spectra recorded at t = 

0 min, 2 min, and 5 min. TEM images were obtained on a JEOL 2010 Hi-Resolution 

Transmission Electron Microscope with an acceleration voltage of 200 kV. The 

absorption spectra of the modified NPs shows a slight red-shift in the surface plasmon 

band with no change in the plasmon band width, indicating a change in the NP 

environment consistent with a change in ligand, as opposed to particle aggregation (see 

Figure 32). Results from TEM do not indicate any significant changes in particle size 

upon ligand adsorption (Figure 33) or particle aggregation. 
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Figure 32. UV-Visible absorption spectra of citrate capped and tiopronin modified 5 nm AuNPs. 
 
 
 

 
Figure 33. TEM images of (A) 2 nm citrate capped AuNPs and (B) 2 nm tiopronin modified AuNPs. 

 
 
 

99% Sodium fluoride, ≥ 99% sodium chloride, 99% sodium bromide, ≥ 99.5% 

sodium iodide, 99% ammonium fluoride, 99% ammonium chloride, ≥ 99.5% ammonium 

bromide, ≥ 99% ammonium iodide, 99% sodium nitrate, 99% sodium sulfate, 99% 

sodium carbonate, N-(2-mercaptopropionyl)glycine (tiopronin), glutathione, and β-
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mercaptoethanol were obtained from Sigma (St. Louis, MO) and used as received. 2 nm, 

5 nm, and 10 nm citrate capped gold nanoparticles were purchased from Ted Pella, Inc. 

(Redding, CA). Val4-Angiotensin III (RVYVHPF) was purchased from American 

Peptide Co. (Sunnyvale, CA) and was prepared in water. 

 

Results 

 We first examined the electronic and physical properties of the AuNPs using 

UV-Vis absorption measurements and TEM. For example, shifts in the surface plasmon 

resonance (SPR) band for the 5 nm particles would indicate possible changes in NP size, 

shape, capping molecules, and dielectric environment, but similar measurements cannot 

be performed on 2 nm particles owing to the absence of an SPR band. Figure 34 contains 

absorption spectra for 5 nm AuNPs with halide salt addition, and we observe a slight 

red-shift in the SPR band upon addition of F– and Cl–. Br– addition results in a 

broadening of the SPR band, and the SPR band is absent for I– treated particles. We 

assume that similar effects occur for the 2 nm AuNPs owing to the fact that TEM images 

for 2 nm citrate capped AuNPs (Figure 35A) with added chloride ( Figure 35B), bromide 

(Figure 35C), and iodide (Figure 35D) support the observations for UV-Vis of 5 nm 

AuNPs with halides added. In the TEM images for 2 nm AuNPs with halides added it 

appears that addition of Cl– or Br– does not result in changes of particle size or induce 

any aggregation; conversely, addition of I– results in dramatically different particle sizes, 

shapes, and aggregation does occur. 
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Figure 34. UV-Visible absorption spectra of 5 nm citrate capped AuNPs with the addition of NaF, NaCl, 

NaBr, and NaI. 
 
 
 

 
Figure 35. TEM images of (A) 2 nm citrate capped AuNPs, (B) 2 nm citrate capped AuNPs with NaCl 
added, (C) 2 nm citrate capped AuNPs with NaBr added, and (D) 2 nm citrate capped AuNPs with NaI  

added. 
 
 
 
Figure 36 contains positive and negative ion 337 nm LDI mass spectra for citrate 

capped 2 nm AuNPs mixed with Val4-Angiotensin III and NaF, NaCl, NaBr, or NaI. 

Although positive ion spectra for samples containing F– and Cl– are very similar to 

spectra from untreated samples, the yield for [M – H]– ions is increased. Addition of Br– 
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has little affect on the positive ion spectrum, but Br– addition completely suppresses the 

[M – H]– ion yield.  

Addition of I– (as NaI) results in complete loss of positive and negative analyte 

ion signals; however, abundant analyte ion signals are observed upon addition of I– (as 

NH4I). Figure 37 contains AuNP LDI mass spectra for Val4-Angiotensin III with 

addition of NH4X (X = F, Cl, Br, and I). Note that analyte ion signals are observed from 

samples containing NH4X salts in both positive and negative ion spectra. In fact, we 

observe an increase in the abundance of [M + H]+ ions compared to citrate capped 

AuNPs.  

The UV-Visible absorption spectra in Figure 38A show plasmon bands for all 

salt additions, whereas previously addition of iodide as NaI resulted in loss of the SPR 

band. Also, TEM of NH4I addition (Figure 38B) shows very little NP aggregation or 

dissolution. 
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Figure 36. Positive and negative LDI-TOF spectra of Val4-Angiotensin III using 2 nm citrate capped 

AuNPs with the addition of (A) NaF, (B) NaCl, (C) NaBr, and (D) NaI. (*) denote salt clusters. 
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Figure 37. Positive and negative LDI-TOF spectra of Val4-Angiotensin III using 2 nm citrate capped 

AuNPs with added (A) NH4F, (B) NH4Cl, (C) NH4Br, and (D) NH4I. 
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Figure 38. (A) UV-Visible absorption spectra of 5 nm citrate capped AuNPs with added NH4F, NH4Cl, 

NH4Br, and NH4I. (B) TEM image of 2 nm citrate capped AuNPs with NH4I added. 
 
 

Positive and negative ion spectra for Val4-Angiotensin III from citrate capped 

AuNPs treated with TP and NaX (X = F, Cl, Br, I) were also examined as Figure 39 

shows. Similar ion yields are found for 2 nm and 5 nm AuNPs modified with GSH and 

β-me. There is enhancement in the [M – H]– ion yield with added F– and Cl– similar to 

that for citrate capped AuNPs, and abundant [M – H]– ion yields are observed if Br– is 

added. Interestingly, analyte signal is observed for AuNPs treated with I–, in marked 

contrast to results for I– addition to citrate capped AuNPs. The UV-Visible absorption 

spectra in Figure 40A show plasmon bands for all salt additions, in contrast to citrate 

capped AuNPs where addition of NaI resulted in loss of the SPR band. Also, TEM of TP 

modified AuNPs with NaI addition (Figure 40B) shows very little NP aggregation or 

dissolution. 
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Figure 39. Positive and negative LDI-TOF spectra of Val4-Angiotensin III using 2 nm tiopronin modified 

AuNPs with the addition of (A) NaF, (B) NaCl, (C) NaBr, and (D) NaI. 
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Figure 40. (A) UV-Visible absorption spectra of 5 nm tiopronin modified AuNPs with addition of NaF, 

NaCl, NaBr, and NaI. (B) TEM image of 2 nm tiopronin modified AuNPs with NaI addition. 
 

 
Figure 41. Positive and negative ion LDI mass spectra of Val4-Angiotensin III using 2 nm citrate capped 

AuNPs with the addition of (A) NaNO3 and (B) Na2SO4. 
 
 
 
 Figure 41 contains LDI spectra for Val4-Angiotensin III citrate capped AuNPs 

with added NaNO3 and added Na2SO4. Although there is an overall decrease in analyte 

ion abundances in the positive ion spectra, there is a pronounced enhancement in the 

abundance of the [M – H]– ion in the negative ion spectra. Similar trends are observed 
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for 5 and 10 nm AuNPs. UV-Visible absorption spectra in Figure 42 shows no loss of 

plasmon band. 

 
 

 
Figure 42. UV-Visible absorption spectra of 5 nm citrate capped AuNPs with addition of NaNO3 and 

Na2SO4. 
 
 
 
 It is also interesting to compare the effects of oxyanions on citrate capped AuNPs 

versus TP, GSH, and β-me modified AuNPs.  For example, Figure 43 contains positive 

and negative LDI mass spectra for Val4-Angiotensin III with added NaNO3 using β-me 

modified AuNPs (the data is representative of TP and GSH modified AuNPs as well as 5 

nm AuNPs modified with all three ligands). Note the dramatic decrease in the negative 

ion signal and the abundance of positive ion signal, specifically [M + H]+, [M + Na]+ 

and [M + K]+ ions. Figure 44 contains UV-Visible absorption spectra, which show the 

SPR band is still present. 

Modified AuNPs were also treated with ammonium halide salts. The data 

included in Figure 45 are for GSH modified AuNPs, and this is representative of data for 

TP and β-me modified AuNPs as well as 5 nm AuNPs modified with all three ligands. 
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Analyte ions are observed for all the ammonium halide salts; the increase in [M + H]+ 

ions is attributed to the additional proton source from the ammonium cation. F– and Cl– 

addition result in an enhancement of the [M – H] – ion. Finally, UV-Visible absorption 

spectroscopy (Figure 46) shows that the SPR band is retained. 

 
 

 
Figure 43. Positive and negative ion LDI mass spectra of Val4-Angiotensin III using 2 nm β-me modified 

AuNPs with the addition of NaNO3. 
 
 

 

 
Figure 44. UV-Visible absorption spectra of 5 nm tiopronin modified AuNPs with NaNO3 and Na2SO4. 
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Figure 45. Positive and negative ion LDI mass spectra of Val4-Angiotensin III using 2 nm glutathione 

modified AuNPs with the addition of (A) NH4F, (B) NH4Cl, (C) NH4Br, and (D) NH4I. 
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Figure 46. UV-Visible absorption spectra of 5 nm tiopronin modified AuNPs with added NH4F, NH4Cl, 

NH4Br, and NH4I. 
 
 

Discussion 

It has previously been shown that size-selected (2 nm, 5 nm, 10 nm) citrate 

capped AuNPs serve as effective matrices for LDI-MS,99 and that various solution 

parameters, i.e., buffer anions, surfactants, solution pH, and other common additives, 

influence both positive and negative ion yields. These effects are clearly illustrated in the 

data presented above; additionally, these data highlight three important points: (i) the 

addition of species that do not interact with the AuNPs or species that interact but are 

unreactive do not affect the LDI process, (ii) species which interact and are reactive with 

the AuNP have dramatic effects on the LDI ion yields, and (iii) capping the AuNP with 

organic ligands such as TP, β-me, and GSH minimize or even eliminate the effects of 

species that possess high affinity for or react with AuNPs. Also, addition of capping 

reagents such as oxyanions, NH4
+, or thiourea enhance the relative abundances of [M – 

H]– and [M + H]+ ions, respectively. These effects on ion yield appear to be the result of 

reaction chemistry with the analyte, i.e., oxyanions react with peptides to enhance the 
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yield of [M – H]– and NH4
+ and thiourea enhance the yields for [M + H]+ ions. These 

trends in LDI ion yields are independent of AuNP size. That is, similar results are 

obtained with 2 nm, 5 nm, and 10 nm citrate capped AuNPs and modified (β-me, GSH 

and TP) AuNPs.  

UV-Vis absorption spectra and TEM of NaX addition to citrate capped AuNPs 

shown in Figures 34 and 35 confirm that no significant change in particle size occurs for 

F– and Cl– addition. A slight red-shift in the absorption spectrum for F– and Cl– addition 

is expected, as the ionic strength and dielectric environment of the solution changed.24 

The UV-Vis absorption spectrum of AuNPs with Br– addition shows a broadening of the 

SPR band, suggesting that aggregation may be occurring, but TEM shows only a very 

small amount of change in AuNP size. UV-Vis absorption spectrum of I– added to citrate 

capped AuNPs shows loss of the SPR band, indicating aggregation or dissolution of the 

particles. TEM shows extensive networking of particles treated with I–. Given the 

reduced size of the AuNPs, it seems most likely that the NPs were fragmented via 

reactions with the surrounding medium, and then formed a network, versus fusing into a 

network structure first, which would appear as larger NPs. 

 The spectra contained in Figure 36 show that addition of F– and Cl–  has little 

effect on the positive ion spectra of Val4-Angiotensin III, but addition of F– and Cl– 

significantly enhances the yield of [M – H]– ions. The results for positive ion LDI are not 

surprising because F– does not efficiently bind to gold,100  thus displacement of citrate is 

unlikely. Although Cl– has a significant affinity for gold surfaces and most likely 

displaces citrate, Cl– does not disrupt the surface morphology100, 101 owing to similar 
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ionic and atomic radius, chloride ion (1.81Å)102 and gold (1.74Å), respectively.103 On the 

other hand, the results for negative ion LDI suggests that both F- and Cl- promote 

formation of [M – H]– ions, thus these anions must be interacting with the AuNP or 

influencing the peptide-AuNP interactions in a manner that enhances negative ion 

formation. It is feasible that [M + F–]– or [M + Cl–]– species, which can be formed in 

relatively high yields by electrospray ionization and dissociate by loss of HF or HCl, 

may also be formed as transient species by LDI. Breuker et al. have also investigated the 

dissociation chemistry of [M + F]– and [M + Cl]– ions104 and we are continuing this 

work.105   

 The spectra obtained for Br– treated and untreated AuNPs show some differences 

(Figure 36C); Br– has a high affinity for gold and displaces citrate from the AuNP 

surface.101 Although the positive ion spectra for untreated and treated AuNP are similar, 

the negative ion spectra are quite different because [M – H]– ions are not detected. We 

see evidence of small changes in size for AuNP treated with Br–  in both TEM and UV-

Vis data, but such small changes should not have a strong effect on ion yields. By 

analogy with the explanation for [M + F–]– and [M + Cl–]–, we do not observe any 

product from formation of [M + Br–]–.   

Addition of I– to the AuNPs has the strongest effect on [M + H]+ and [M – H]– 

ion yields. I– has a high affinity for gold and can cause aggregation as well as dissolution 

of the particles.106-109 Cheng and co-workers107 interpreted TEM and UV-Vis absorption 

data as evidence that I– displaces citrate from the AuNPs owing to a weakened and 

broadened SPR band. They also propose that reactions occur on the NP surface, resulting 
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in etching or fragmentation of the AuNPs, followed by aggregation. Wanner and 

Gerthson108 also showed that citrate is displaced from AuNPs by I–, and suggested that 

the product of reaction is I3
–, which then acts as a capping agent. The I3

– on the NP 

surface reacts further with I– to yield [AuI2]– and I2. Singh et al.109 suggest that AuI 

forms on the surface after iodide adsorption, causing a mismatching lattice structure of 

the NP surface and AuI, leading to deformation of the particles. Figure 47 is a cartoon 

that illustrates how the different halide additives may displace the citrate on the AuNP 

surface. 

 
 

 
Figure 47. Cartoon illustration of the effects of anion addition to citrate capped AuNPs. 
 

 

Addition of I– presents the most dramatic change in ion signal, with Figure 36D 

showing no analyte signal detected, however addition of I– as NH4I results in abundant 

analyte ion signals (see Figure 37D). With this quaternary ammonium ligand the anion 

interacts with the AuNP surface, and the ammonium cation coordinates with the anion, 

this interaction is termed anion-induced cation adsorption.110, 111 Fink and co-workers112 
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proposed that AuNPs capped with ammonium salts (i.e., R4N+Br–) exist as Br– adsorbed 

directly to the surface, with R4N+ electrostatically coordinated to the bromide. Such ion 

pairs stabilize the Au surface in solution. Addition of ammonium halide salts (NH4X, X= 

F, Cl, Br, I) results in analyte ion signals for all the salts. There is also an increase in [M 

+ H]+ ion abundances, which may be the result of additional proton source from the 

ammonium ion because similar effects are observed for samples treated with thiourea. 

Note that even though I– is adsorbing to the surface, it does not appear to cause 

significant amounts of etching or aggregation, as suggested by the change in the SPR 

band in the UV-Vis data. The TEM image in Figure 38B shows that NPs are still present 

with I- addition as NH4I, compared to complete particle etching with addition of NaI. 

The difference in NP morphology is probably the result of the I– being capped on the 

surface of the AuNP by the ammonium cation, making it difficult for secondary 

reactions that are responsible for the destructive etching of the surface to occur, or the 

kinetics of surface etching has been altered.107-109  

Addition of NaX (X = F, Cl, Br, I) to modified AuNPs results in analyte ion 

signals in the positive ion spectra for all halide salts (see Figure 39). The ionization of 

analyte in the presence of I– suggests that the covalently bound ligands protect the NP 

surface from complete halide adsorption. However, the analyte ion abundances are still 

low, meaning that competing processes may be occurring. In contrast to halide addition 

to citrate capped AuNPs, [M – H]– ion signal is enhanced upon addition of F–, Cl–, and 

Br–. It is unclear why [M – H]– ion signal is enhanced for Br– addition, but in contrast to 

citrate capped AuNPs with Br– addition fewer salt clusters are observed, which would 



 

 

70

result in less ion suppression. Figure 48 is a cartoon that illustrates AuNPs covalently 

modified with a ligand, addition of halide salts, and the subsequent effects of halide 

addition.  

 
 

 
Figure 48. Cartoon illustration of halide addition to ligand modified AuNPs. 

 
 

Figure 41 contains addition of oxyanions to citrate capped AuNPs and results in 

an enhancement of the [M – H]– ion. Cumberland and Strouse113 and Enusten and 

Turkevich76 have shown that oxyanions can coordinate with metal surfaces through 

electrostatic interaction of the anion, specifically by coordination of the oxygen donor 
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atoms which back-bond with the metal surface. As with I– and Br–, such interactions can 

displace citrate from the AuNP surface. The red-shift in the UV-Vis absorption spectra 

(see Figure 42) suggest a change in the electronic interactions between the ligand and the 

NP, most likely due to displacement of the citrate, and the broadening of the SPR band 

suggest some aggregation or dissolution of the NPs.24 TEM confirms that there is a 

limited amount of aggregation or fusing of the NPs. The peptide reacts with the 

oxyanion coordinated on the AuNP surface and produces a deprotonated peptide 

molecule and oxyanion acid. The enhancement of [M – H]– supports this reaction 

scheme, as does the aggregation or fusing of the NPs, as loss of charge on the NP surface 

would result in some aggregation. Enhancement of the [M – H]– ion is not observed for 

oxyanion addition to modified NPs (see Figure 43). While the oxyanion is still 

interacting with the peptide, the addition of a ligand that is chemically peptide-like on 

the NP surface results in a competing process for deprotonation. Figure 49 is a cartoon 

depicting oxyanion addition to citrate capped AuNPs. 

 
 

 
Figure 49. Cartoon illustration of oxyanion addition to AuNPs. 
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Summary 

This chapter illustrates three key issues regarding surface chemistry of AuNPs on 

LDI ionization efficiency. First, species that don’t interact with the AuNP or interact but 

are unreactive toward the AuNP surface do not affect the LDI process, which is 

demonstrated by the addition of fluoride and chloride, respectively. Second, species that 

are reactive with the AuNP surface have dramatic effects on the LDI ion yields, both 

increase and decreases in ion yields. Increase in ion yield is observed upon addition of  

oxyanions, and decreases in ion yields is observed with addition of iodide and to some 

extent bromide. Third, modification of the AuNP surface with organic ligands such as 

TP, GSH, or β-me minimize or eliminate the effects of said reactive species. There are 

two additional points of interest that are observed. Iodide addition as NH4I instead of 

NaI results in no loss of ion signal, indicating that (i) the effects on the ionization 

process are not just of initial ligand reactivity, i.e., the etching effects of iodide alone are 

not responsible for the loss of ion signal, but the secondary reactions or kinetics of the 

secondary reactions are what ultimately affect the ionization process, and (ii) the 

increase in ion abundances of [M + H]+ suggests that NH4
+ may be interacting with the 

analyte to make a pre-formed ion. The results from oxyanion addition also suggests that 

ionization may be occurring from pre-formed ions. These results show the utility of 

subtle changes in the AuNP environment for general use, i.e., non-specific selectivity.  
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CHAPTER IV 

RADICAL DRIVEN IN-SOURCE DECAY FRAGMENTATION OF PEPTIDES 

USING GOLD NANOPARTICLES AS MATRICES FOR LDI-MS 

 

Introduction 

Peptide ion fragmentation is a important tool in mass spectrometry-driven 

proteomics experiments. There are numerous techniques that induce fragmentation of 

biomolecules, and most produce distinctive ion types. Collision induced dissociation 

(CID) is the most common method of activation used to gain sequence information of 

peptides and proteins. The internal energy transferred during collisions is vibrationally 

redistributed throughout the molecule, resulting in ion dissociation occurring through 

low energy pathways; i.e., the amide backbone in the case of peptides. All backbone 

fragment ions (i.e., a-, b-, c-, x-, y-, and z- type ions) are a result of cleavage along the 

amide backbone of the peptide, but the most commonly observed fragment ions in CID 

are b- and y-type ions. Furthermore, most of the ions that are observed involve H-

transfer from even electron species. Extensive research has been done to investigate how 

peptide composition and charge site affects the CID fragmentation process.114-118 The 

most common charge-directed fragmentation process in CID is typically referred to as 

the “mobile proton” model, where charge transfer of the ionizing proton initiates 

fragmentation.114, 118 Charge-remote fragmentation typically requires higher internal 

energies of peptide ions, and is accomplished by high-energy CID, photodissociation, or 

collisions with surfaces. Other techniques have been shown to induce unique peptide ion 
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fragmentation, including electron-based methods (e.g., electron transfer dissociation 

(ETD) and electron capture dissociation (ECD)), photodissociation, and collisions with 

surfaces.119-121 Of the methods of ion activation listed here, photodissociation and 

collisions with surfaces, along with high-energy CID, can deposit more internal energy 

into the peptide ion, and charge-remote fragmentation processes can occur.  

The ion types that are generated from the ion activation methods listed above 

differ from CID. ETD and ECD typically result in cleavage of the N-Cα bonds of the 

peptide backbone, yielding c- and z-type ions.43-45 Often the c- and z- ions are 

complementary, with the c-ion observed as an even-electron species and the z-ion as a 

radical species, denoted as z˙. Recent photodissociation experiments have shown that 

peptides with a charge sequestered at the N-terminus yield a nearly complete a-ion series 

along with some side chain cleavages, and peptides with the charge sequestered at the C-

terminus yield complete sequence coverage in the form of x-type ions.47, 122 Radical 

fragment ions have also been observed in photodissociation of peptide ions, with 

secondary reactions occurring to yield d-, w-, or v-type ions, possibly accounting for the 

relatively high abundance of these side chain fragment ions.46, 47  

Fragmentation of parent odd-electrons species (e.g., M+˙, [M + nH](n-1)+˙) has 

also been studied. Siu and coworkers have suggested in a number of papers that distonic 

ions, where the radical site is separated from the charge site, play an important role in 

fragmentation of peptide radical cations.123-126 Wee et al. have described radical-initiated 

reactions that occur in small glycine-containing peptides, and they suggest that 

fragmentation is a competitive process between charge-directed processes and radical-
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driven processes.127 Karnezis et al. further demonstrated that radical-driven processes 

dominate when peptides incorporate a fixed-charge group.128 Laskin et al. have also 

suggested that charge-remote radical-driven fragmentation pathways occur in the 

fragmentation of odd-electron peptide ions.129 

Fragmentation of peptide ions can also occur in the source of the mass 

spectrometer, instead of in a collision cell, and is termed in-source decay (ISD). ISD has 

been demonstrated for sequencing of peptides and proteins, but is less common as the 

yield of fragment ions is low.130-132 Interestingly, the primary ion types that have been 

observed are c- and z-type ions, which is similar to ECD and ETD. Köcher et al. 

suggested that ISD is a radical initiated event, with the radicals generated from a 

photochemical reaction of the matrix upon laser irradiation.133  

It is important to note that much of the research that has been done on peptide 

fragmentation has focused on dissociation of the [M + H]+ ion, however, metal ions can 

induce conformational changes and affect the stability of the biomolecule, thus altering 

the fragmentation pattern of a peptide or protein. A substantial amount of  research has 

been done to determine metal ion binding sites, metal ion binding energies,134 and 

fragmentation mechanisms.135-138 ISD experiments have typically also focused on the [M 

+ H]+ ion as the parent ion, and so effects that may be a result of cation adduction have 

not been explored.  

Our interest in fragmentation of peptides stems from the observation that AuNPs, 

esp. 5 nm AuNPs in LDI readily facilitate ISD. The use of AuNPs in LDI has recently 

been established, and there is evidence for a thermally driven desorption/ionization 
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mechanism.2, 139 This chapter aims to (i) determine the extent of ISD that can be 

achieved using AuNPs, (ii) determine if amino acid sequence affects fragmentation of 

[M + Na]+ ions, and (iii) propose a mechanism for fragmentation using AuNPs.  

 

Experimental 

Mass spectrometry experiments using AuNPs were performed on an Applied 

Biosystems Voyager DE-STR (Foster City, CA) with a Spectra-Physics (Irvine, CA) N2 

laser (337 nm). Experiments were performed in the positive ion reflected mode 

averaging spectra from 200 laser shots; each spectrum was internally calibrated. All of 

the mass spectra shown used laser energies 10-15% above the threshold for ionization. 

Tandem mass spectrometry was performed on an Applied Biosystems 4700 Proteomics 

Analyzer (Foster City, CA). Collision-induced dissociation spectra were acquired using 

10-20% greater laser power than MS acquisition in order to generate sufficient ion 

signal. Collision gas (air) was used at the medium air pressure setting with 1 kV 

collision energy. 

AuNP-to-analyte ratios are important to achieve analyte ionization; the optimum 

ratio determined for these peptides is 1 AuNP: 106 analyte molecules, which is 

consistent with previous reports.99, 139 Samples were prepared by mixing solutions 

containing the AuNPs with solutions containing analyte and any additives, and 

immediately deposited onto a stainless steel plate and vacuum dried. Relatively high 

sample loadings were used in order to observe in-source decay (~10-20 pmol of analyte). 
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Fructose was added to give a final ratio of 1 AuNP: 106 analyte molecules: 101 fructose 

molecules. 

Derivitization of free acid peptides to produce the methyl ester was performed 

according to literature procedures,82 and was described in detail in Chapter II. 

Modification of AuNPs was done according to previously published procedures.139 

Peptide fragmentation nomenclature proposed by Roepstorff and Fohlmann41 and 

later modified by and Johnson and co-workers140 is employed here. Briefly, for 

clarification, a Y-type ion is defined as the product of the simple bond cleavage between 

the carbonyl carbon and the amide nitrogen with the charge retained on the C-terminus, 

to yield a radical species. A y-type ion is defined as a Y-type ion with addition of 2 

hydrogen atoms, with a mass of Y + 2H, see Chapter I for a more detailed review of 

nomenclature. Data analysis of fragmentation efficiency was performed by taking the 

peak area of the desired fragment ion or group of fragment ions divided by the peak area 

of all peaks in the fragment ion area, i.e., the area of all peaks with a lower m/z than the 

intact parent ion. 

Fructose, glycerol, N-(2-mercaptopropionyl)glycine (tiopronin), glutathione, 

acetic anhydride, acetonitrile, acetyl chloride, and anhydrous methanol were obtained 

from Sigma (St. Louis, MO) and used as received. 2 nm and 5 nm citrate capped gold 

nanoparticles were purchased from Ted Pella, Inc. (Redding, CA). Angiotensin I 

(DRVYIHPFHL), Bradykinin (RPPGFSPFR), Bradykinin 1-8 (RPPGFSPF), and 

Bradykinin 2-9 (PPGFSPFR) were purchased from American Peptide Co. (Sunnyvale, 

CA) and was prepared in 18 MΩ deionized water (Barnstead, Dubuque, IA).  
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Results 

 We first examined the in-source decay (ISD) fragmentation pattern for a series of 

Angiotensin peptides (Ac-Angiotensin I, Angiotensin I, Angiotensin I methyl ester) 

using 2 and 5 nm AuNPs. ISD of peptides using 2 nm AuNPs (data not shown) give very 

few peptide fragment ions compared to ISD of peptides using 5 nm AuNPs. 

Fragmentation efficiency increases as the basicity of the peptide increases (i.e., Ac-

Angiotensin I < Angiotensin I < Angiotensin I methyl ester); we and other groups have 

previously suggested that peptide composition is important for ionization.85, 139 ISD of 

Ac-Angiotensin I yields very few fragment ions (data not shown). LDI mass spectra of 

Angiotensin I obtained using 5 nm AuNPs is shown in Figure 50, and Figure 52 contains 

spectra for Angiotensin I methyl ester. ISD of Angiotensin I shows a moderate amount 

of fragmentation; the parent ion spectrum contains numerous [M + alkali]+ ions (see 

inset). Although most of the fragment ions appear to arise from the [M + Na]+ ion, i.e., 

the most abundant species contain Na+. Fragment ions consist primarily of a- and y- type 

ions, with some side chain cleavages, and a few other ions. The highest abundance peaks 

are the y9 + Na and b9 + Na + K – H ions. See Figure 51 for a more detailed view of the 

mass spectrum.   
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Figure 50. Positive ion ISD fragment ion LDI-TOF mass spectrum of Angiotensin I using 5 nm citrate capped AuNPs, with parent ion region of the 

mass spectrum inset. 
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Figure 51. Detail zoom views of positive ion ISD fragment ion LDI-TOF mass spectrum of Angiotensin I 

using 5 nm citrate capped AuNPs. 
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Figure 52A shows the fragment ion region of the mass spectrum for Angiotensin 

I methyl ester. The parent ion spectrum (Figure 52B) consists primarily of the [M + Na]+ 

ion, which has an overall abundance four times that of the signal from fragment ions. All 

of the fragment ions in Figure 52A are indentified as either sodium or potassium 

adducts, likely because the intact peptide exists as either [M + Na]+ or [M + K]+. The 

fragment ion spectrum shows a nearly complete a-, y-, and v- ion series, along with b-, 

c-, d-, Y-, x-, z-, w- type ions, and a few radical species. As this spectrum is congested, 

detailed views of the spectrum are provided in Figure 53; peaks denoted “#” represent 

contaminants from the AuNPs. In general, the most abundant peaks in the mass spectrum 

are w-, y- and a-type ions, with radical species and c- and x-type ions having the lowest 

relative abundances. Specifically, fragment ions with the highest abundances are 

centered around the proline residue (y4 + Na and wa4 + Na), the isoleucine residue (wa6 + 

Na, y6 + Na, a5 + Na, and da5 + Na), and the valine residue (y8 + Na and a3 + Na). 

Figures 52C and 52D show an expanded view of  the a5 + Na and z3 + Na ions, 

respectively (black line). The red line represents the calculated isotopic distribution for 

the ion. The 13C peak for the a5 + Na and z3 + Na ions are significantly higher than the 

predicted distribution, suggesting that another ion is present of the mass a5 + Na + 1, and 

z3 + Na + 1, which corresponds to the radical species of these ions.  
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Figure 52. Positive ion LDI-TOF mass spectra of Angiotensin I methyl ester using 5 nm citrate capped AuNPs. (A) ISD fragment ion region of the mass 
spectrum, (B) parent ion region of the mass spectrum, (C) experimental (black line) and theoretical (red line) isotopic distribution of the a5 + Na ion, (D) 

experimental (black line) and theoretical (red line) isotopic distribution of the z3 + Na ion. 
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Figure 53. Detail zoom views of positive ion fragment ion LDI-TOF mass spectrum of Angiotensin I 

methyl ester using 5 nm citrate capped AuNPs. 
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 Interesting fragmentation behavior is observed for the peptide Angiotensin I 

methyl ester and further work shown here will focus on this peptide. Figure 54 shows the 

fragment ion spectrum of Angiotensin I methyl ester using 5 nm AuNPs with fructose 

added. Detailed views of the spectrum are provided in Figure 55; peaks denoted “#” 

represent contaminants from the AuNPs. Figure 54B shows the parent ion region of the 

mass spectrum, and Figures 54C and 54D show the zoom region of the a5 + Na and x6 + 

Na ions (black line), with the calculated isotopic distribution shown by the red line. 

Some significant changes with respect to no fructose addition are observed. Fewer side 

chain cleavages, specifically v-type ions, are observed. No radical species are observed 

and more Y-type ions are observed. In general, ions that are formed by multiple 

reactions (e.g., a- and Y-type ions, side chain cleavages) are decreased from 71% of the 

fragment ion peak area with no fructose to 47% with fructose added.  

 A series of Bradykinin peptides was also examined (e.g., RPPGFSPFR, 

RPPGFSPF, PPGFSPFR), and ISD spectra using 5 nm citrate capped AuNPs are shown 

in Figure 56; peaks denoted “#” represent contaminants from the AuNPs. In the initial 

experiment done the intact ion was primarily the [M + H]+ ion, so the data shown have 

added NaCl in order to generate more [M + Na]+ ions, which results in increased ISD. 

Very few differences are observed in the fragmentation pattern of these three peptides. 

Location of the arginine has very little effect on fragmentation efficiency; a nearly 

complete a-ion series, and numerous y-ions are present for both Bradykinin 1-8 and 

Bradykinin 2-9. 
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Figure 54. (A) Positive ion ISD fragment ion LDI-TOF mass spectrum of Angiotensin I methyl ester using 5 nm citrate capped AuNPs with fructose 
added, (B) the parent ion region of the mass spectrum, (C) expanded view of the a5 + Na ion, with theoretical isotopic distribution (red line), and (D) 

expanded view of the x6 + Na ion, with theoretical isotopic distribution (red line). 
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Figure 55. Detail zoom view of positive ion ISD fragment ion LDI-TOF mass spectrum of Angiotensin I 

methyl ester using 5 nm citrate capped AuNPs with fructose added. 
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Figure 56. LDI-TOF mass spectra using 5 nm citrate capped AuNPs of (A) Bradykinin 1-8, (B) 

Bradykinin 2-9, and (C) Bradykinin. 
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We have also investigated desorption/ionization from Teflon, with glycerol 

added, and using derivitized AuNPs. Desorption/ionization from a Teflon surface 

produces intact [M + Na]+ and [M + K]+, but no ISD is observed (see Figure 57, peaks 

denoted “#” represent contaminants from the AuNPs). AuNPs with surfaces modified 

from citrate to tiopronin or glutathione give intact alkali-adducted peptide, and small 

numbers of fragment ions (see Figure 58, peaks denoted “#” represent contaminants 

from the AuNPs). Finally, addition of 5% glycerol to the AuNP-peptide solution results 

in few fragment ions compared to no glycerol added. Interestingly, if 5% glycerol and 

fructose are combined, more fragmentation is observed than with 5% glycerol, but less 

than if fructose is added (see Figure 59). 

 

 

 
Figure 57. Positive ion LDI-TOF ISD mass spectrum of Angiotensin I methyl ester using 5 nm citrate 

capped AuNPs on a Teflon surface, with inset of parent ion region of the mass spectrum. 
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Figure 58. Positive ion LDI-TOF ISD mass spectrum of Angiotensin I methyl ester using 5 nm tiopronin 

modified AuNPs, with inset of parent ion region of mass spectrum. 
 
 
 
 

 
Figure 59. Positive ion ISD fragment ion LDI-TOF mass spectrum of Angiotensin I methyl ester using 5 

nm citrate capped AuNPs, in 5% glycerol and the parent ion region of the mass spectrum inset. 
 
 

 For comparison, Figure 60 shows the CID mass spectrum of the [M + Na]+ ion of 

Angiotensin I methyl ester. A nearly complete a- and y- ions series are observed, with a 
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few side chain cleavages. Table 3 shows a comparison of fragment ion peak areas for the 

peptide Angiotensin I methyl ester for: (i) CID of the [M + Na]+ ion, (ii) ISD using 2 nm 

AuNPs, (iii) ISD using 5 nm AuNPs, and (iv) ISD using 5 nm AuNPs with fructose 

added. For all methods a- and y- type ions and side chain cleavages are the 3 most 

abundant ion types; however, subtle differences ion type and abundance are present. For 

example, side chain cleavages are the most abundant ion type for 5 nm AuNPs: 39.1% 

are v-type ions, 41.4% are w-type ions, and 19.5% are d-type ions.  

 
 

 
Figure 60. CID mass spectrum of Angiotensin I methyl ester. 

 
 
 
Table 3. Ion current component analysis, percentages of peak area by component. 
 a ions b ions c ions x ions y ions z ions Side chain 
CID 37 .1 5.0 4.6 2.5 28.1 0 22.7 
2 nm AuNPs 21.7 3.9 1.1 2.6 36.3 0.4 24.1 
5 nm AuNPs 28.3 1.2 3.4 3.4 21.6 2.9 37.5 
5 nm AuNPs 
w/ fructose 

13.5 4.8 8.0 3.0 35.8 3.6 25.56 
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Discussion 

 We show here the first example of ISD fragmentation using AuNPs for LDI-MS. 

The fragmentation pattern observed is atypical in terms of the variety of different ion 

types are occurring together. For example, CID spectra typically yield a-, b-, and y- type 

ions, whereas photodissociation and SID result in a- and x- type and side chain fragment 

ions, and ECD/ETD yield almost exclusively c- and z- type ions. While our previous 

reports have generally shown that trends in LDI ion yields are independent of AuNP 

size,99, 139 that is not the case here. Spectra obtained from 2 nm AuNPs contain very low 

abundances of ISD (data not shown), whereas 5 nm AuNPs yield a high abundance of 

ISD. There are a number of important points represented here: (i) NP induced ISD of [M 

+ Na]+ ions yield more fragment ions than do [M + H]+ ions, (ii) the type of ions that are 

present in high abundance (i.e., unexpected fragment ion types dominate the mass 

spectrum, specifically the wa4 + Na ion), and (iii) the presence radical species. There are 

a number of mechanistic issues that are relevant to each of these points, as peptide 

fragmentation behavior has been well studied, and we will draw on previous 

mechanisms.42, 121, 141-143 Of particular interest are experiments that have investigated 

alkali metal cationized peptides,144-147 and experiments that generate radical ions, such as 

ETD/ECD43-45 and photodissociation.46-49, 122, 148 There have also been a number of 

recent articles that have focused on derivitizing peptides to generate specific radical 

sites, which then induce radical dominated dissociation reactions and selective 

cleavage.149-151 While the fragmentation that we observe is largely non-selective 

(meaning a nearly complete series of a-, y-, and v-type ions are observed which do not 
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appear to be residue specific or charge-directed fragmentation processes), we do observe 

a number of product ions that appear to be derived by radical initiated reactions.  

 The issue of ISD fragmentation from metal cationized species will be addressed 

first. Most of the fragment ions that are observed here are identified as either sodium or 

potassium adducts, which can be a result of the intact peptide existing as either [M + 

Na]+ or [M + K]+ or the energy for dissociation of [M + Na]+ is lower than the energy for 

dissociation of [M + H]+. Since most fragmentation mechanisms in the literature focus 

on the [M + H]+ ion, comparisons made herein will be made to the [M + H]+ ion, 

provided the mechanism is still logical for a [M + Na]+ or [M + K]+ ion. One of our key 

observations is that ISD of Angiotensin I methyl ester is more prominent than that for 

the free acid Angiotensin I (Figures 50 and 52). . With the free acid it is most likely that 

the Na+ or K+ will be sequestered at the carboxylate terminus,146, 152 or complexed by the 

amide backbone oxygens.153 Since the methyl ester does not have a carboxylate 

terminus, the Na+ or K+ is likely sequestered by the amide backbone. Multiple [M + 

alkali]+ ions are observed for Angiotensin I, and a limited amount of fragmentation is 

observed (Figure 50). For the methyl ester, an extensive amount of fragment ions are 

observed, and many have the charge on the C-terminus; these data suggest that even 

though the peptide is a methyl ester, the cation is localized near or at the C-terminus. 

This is in contrast to experiments done by Dongré et al.114 and Shields et al.137 where a 

complete ion series was only observed when the terminal amino acid acts as a fixed 

charge site, i.e., when the terminus strongly binds the charge, the majority of ions in the 

fragment ion spectrum will be derived from that terminus. In other experiments done 



 

 

93

with a series of Bradykinin peptides (e.g., RPPGFSPFR, RPPGFSPF, PPGFSPFR) we 

found that when the parent ion is primarily the protonated peptide, poor ISD occurs. 

Addition of NaCl results in more [M + Na]+, and also better ISD. Location of the 

arginine has very little effect on fragmentation efficiency; as Figure 56 showed, a nearly 

complete a-ion series, and numerous y-ions are present for both Bradykinin 1-8 and 

Bradykinin 2-9.  

Next, the issue of several interesting fragment ions that are observed in the ISD 

spectrum of Angiotensin I methyl ester (Figure 52A). First, the presence and high 

relative abundance of the wa4 + Na ion, which is perhaps one of the most significant 

results reported here. This ion is a result of two bonds being cleaved, the N-Cα bond in 

the proline reside, and the C-C bond in the proline side chain. This fragment ion has only 

been reported in one other instance, by Cooper et al., who utilized hot-ECD (3 -13 eV 

electrons) to fragment peptides, 154 although the ion was not observed as a sodium 

adduct. Also of interest is the y4 + Na ion which has a high relative abundance. This 

fragment ion occurs C-terminal to the proline, and preferential cleavage near a proline 

residue has been extensively investigated, and is termed the proline effect.141, 155-157  
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Figure 61. Bond cleavage site for wa4 and y4 fragment ions from the peptide Angiotensin I methyl ester. 

 

 

Also relevant is a study by Ly and Julian, who suggest that abstraction of an H atom 

from proline will be followed by homolytic cleavage of the peptide bond, which results 

in a y-type ion (which is stable), and a b-type radical that is not stable and will rapidly 

lose CO to yield a radical a-type ion. They conclude that radical directed dissociation at 

proline residues will give a- and y- type ions, not b- and y- type ions, which are 

characteristic of CID.149 This explanation also accounts for the presence of y4 + Na. We 

do observe a7 + Na and b7 + Na, which are the corresponding proline containing 

fragment ions, so it is difficult to say if this radical directed mechanism is most likely, or 

if it is simply a result of the proline effect. 

The Y4 + Na ion is present with high relative abundance, and other Y-type ions 

are observed as well. Several mechanisms for Y-type ion formation have previously 

been proposed. Han and co-workers have shown that a radical driven fragmentation 

process of z˙-ions results in Y-ions.158 They suggest that the z˙-ions undergo a 
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McLafferty rearrangement, and then have homolytic cleavage of the amide bond which 

results in Y- and b˙-type ions. They also suggest that proline-containing z˙-ions have a 

characteristic cleavage at the amide bond N-terminal to the proline, resulting in Y- or y-

type ions that contain proline. This is a possible mechanism for the Y4- ion, and the 

preferential cleavage accounts for the high relative abundance of this ion.  

Other fragment ions with high abundances occur near the isoleucine residue (wa6 

+ Na, y6 + Na, a5 + Na, and da5 + Na), and the valine residue (y8 + Na and a3 + Na). Both 

of these amino acids have been shown to be involved in radical directed cleavage. 

Hodyss et al. suggest that hydrogen abstraction from an aliphatic side chain (e.g., 

isoleucine, valine, leucine, alanine) followed by β-cleavage along the backbone can 

produce c- and z-type ions, as well as a- and x-type fragments. They also postulate that 

many hydrogen atoms in a peptide (both along the backbone and in side chains) have 

low bond dissociation energies, and may be abstracted readily,150 and other radical 

driven processes can follow. This mechanism fits wells with our observation of y- and a-

type ions near isoleucine and valine. The side chain cleavages that occur near the 

isoleucine and valine residue could be the result of several different reactions. Johnson et 

al.140, 159 and Cui et al.122 have both proposed d-ion formation as the result of secondary 

reactions of a˙ species. While none of the d-ions here have corresponding possible a˙ 

precursors, all d-ions have a-ion precursors. Johnson et al. also suggested that a˙ species 

rapidly dissociate into a-ions, which explains the lack of  a˙-ions. Both authors also 

proposed w-ion formation from either z- or z˙-type ions. The wa6 + Na and wa8 + Na ions 

both have possible z˙-ion precursors present in the mass spectrum. 
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 ISD of Angiotensin I methyl ester with addition of fructose (Figure 54) results in 

several key changes in the mass spectrum: (i) no radical species are observed and (ii) 

fewer secondary reactions are observed overall. These two observations are likely 

related to each other, as we have suggested that radical species initiate a number of these 

secondary reactions. Fructose has traditionally been added to MALDI samples to reduce 

ISD fragmentation. Beavis and co-workers suggested that rapid decomposition of the 

sugar molecule into CO and H2O results in rapid collisional cooling, yielding fewer 

fragment ions.80 Within the framework of the cluster ionization model as well,160, 161 

addition of fructose may decrease the amount of internal energy within a peptide ion, 

giving fewer secondary fragment ions. A recent study on electron attachment to fructose 

suggested that fructose can form a stable radical species, especially with some loss of 

water to the molecule.162 During ionization using AuNPs, loss of water to a fructose 

molecule will make it more susceptible to accepting an electron and forming a stable 

radical specie, thereby reducing the amount of radicals that are reactive towards the 

peptide. 

 Experiments that were done using modified AuNPs, on Teflon surface, and with 

glycerol addition (see Figures 57-59) are important because they all suggest that thermal 

heating is a necessary part of the desorption/ionization process. Citrate capped AuNPs 

are electrostatically stabilized, and citrate can readily be displaced by other species that 

may have an affinity for the AuNP surface (e.g., amines and carbonyl oxygens),77 or 

thiols can covalently bind to the AuNP surface.25 Covalent modification of the surface 

with tiopronin makes it difficult for analyte to displace the tiopronin, resulting in little to 
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no direct contact of analyte with the AuNP surface. Thus, direct electronic interactions 

between the peptide and NP are less likely, and heating is the main contribution for 

desorption/ionization. Additionally, AuNPs modified with glutathione (data shown for 

AuNPs modified with tiopronin is also representative of AuNPs modified with 

glutathione) do not result in any peptide fragmentation. However, it is difficult to 

separate these variables and determine if fragmentation is suppressed because of a 

change in NP surface chemistry or the radical scavenging ability of glutathione. LDI 

done from a Teflon coated target reduces the amount of photoelectrons163, 164 and will 

also likely reduce electronic processes occurring from the AuNP. Additionally, since 

Teflon is an insulator, heat will be localized near the AuNP resulting in prompt NP 

fragmentation. Less energy will available to transfer to the nearby analyte molecules, 

resulting in no peptide fragmentation. The mass spectrum for LDI from a Teflon coated 

target also shows several Au-cluster species, which is in contrast to LDI from a stainless 

steel target; this also supports the statement of an increase in AuNP fragmentation. 

Finally, glycerol is a good heat dissipater, and since we only observe ionization with 

very little fragmentation, this suggests that only enough energy for desorption/ionization 

is getting to the peptides, with much of the heat being dissipated to the surrounding 

medium. 

 

Summary 

 This chapter illustrates three key issues regarding ISD of peptides when using 

AuNPs for LDI. First, metal cationized peptides fragment better than protonated 



 

 

98

peptides; specifically, the methyl ester peptide fragments better than the free acid 

peptide, and more C-terminal fragment ions are produced, suggesting that the metal is 

sequestered near the C-terminus. Second, fragment ions that are not typically present in 

ISD are observed here, and several interesting fragment ions (e.g., wa4 + Na) are 

observed in high abundance. Third, in the methyl ester ISD spectrum, numerous radical 

species are observed. When fructose is added, a reduction in radical species and overall 

ISD is observed, suggesting that fructose is reducing the amount of reactive radicals. 

These data suggest that radical species are important for fragmentation of peptides when 

using AuNPs. However, unique types of fragmentation are observed (i.e., x-type ions 

and side chain cleavages) that are similar to prompt photodissociation experiments done 

in our laboratory. The abundant v-type ions that are observed here for [M + Na]+ ions 

has also been demonstrated in our lab for [M + alkali]+ using CID. Therefore, it is likely 

that multiple processes are actually directing the fragmentation described in this chapter. 

In order to gain a better understanding of what is initiating these processes further work 

needs to be done. Specifically, the fragmentation pattern of the peptide used in this 

chapter (Angiotensin I methyl ester) needs to be determined using photodissociation and 

further investigation is needed using radical scavenging species and a better 

understanding of their interaction with AuNPs. 
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CHAPTER V 

IN-SOURCE DECAY FRAGMENTATION OF COPPER-ADDUCTED PEPTIDES 

USING GOLD NANOPARTICLES AS MATRICES FOR LDI-MS 

 

Introduction 

Previous chapters in this dissertation have focused on various physico-chemical 

properties relating to AuNPs and the subsequent effects on desorption/ionization of 

biomolecules. The effects of NP size have been addressed in several chapters, with 

evidence for differences in desorption/ionization trends and peptide ion internal energies 

presented. Specifically, in Chapter V peptide ion energetics with regard to NP size and 

sample preparation were investigated. The addition of reactive or unreactive species on 

the AuNP surface, namely halides and oxyanions, was described in Chapter IV. Here we 

investigate the addition of transition metal cations to AuNPs, with interest in cation-NP 

interactions and peptide ion energetics. 

Little is known about the interaction of copper cations with gold surfaces, but 

several studies have investigated the addition of copper ions on NP formation and 

provide some insight. Singh and coworkers reported that addition of Cu during AuNP 

synthesis catalyzes the formation of unique thin flat ordered structures; copper was not 

incorporated into the final NP material.109 Sun et al. showed that cuboid and decahedral 

AuNPs can be formed and controlled by addition of Cu2+; the adsorption of Cu2+ to 

different facets of the growing AuNP crystal was suggested as the mechanism of 

formation.165 Leonard et al. and Sra et al. suggested that during formation of 
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intermetallic AuCu or AuCuSn2 materials excess Cu2+ is associated with the AuNP 

surface. As the material is reduced, the Cu2+ is incorporated into the intermetallic 

species.166, 167 Lastly, a recent report from Shlyahovsky et al. describes association of 

Cu2+ ions with the AuNP surface and subsequent reduction of the Cu2+ by NADH, which 

results in deposition of Cu0 on the AuNP surface.168 Overall we conclude from these 

studies that Cu2+ likely associates with the AuNP surface. 

Also pertinent to this study are the effects of transition metal cations on LDI or 

MALDI-MS experiments. A significant amount of research has been done regarding Cu-

ion addition in MALDI.137, 169-175 Typically, Cu2+ is added, but only a singly charged ion 

is observed in the mass spectrum. Either reduction of the metal ion and addition to a 

neutral molecule (Equation 1) or deprotonation of the molecule and addition to a doubly 

charged cation (Equation 2) must occur.  

M + Cu+  [M + Cu]+   (1) 

[M – H]- + Cu2+  [(M – H)- + Cu2+] (2)  

Different explanations have been given for gas-phase charge reduction of Cu2+ to Cu+ in 

MALDI. Karas et al. suggest that electron capture by the metal cation results in 

reduction; this model assumes that photoelectrons are produced from the MALDI target 

during the ionization event.161 Knochenmuss et al. and Zhang et al. have both suggested 

that gas-phase charge exchange between the metal cation and other neutral species result 

in metal reduction.176,177 

The previous chapter discussed fragmentation of [M + alkali]+ species, and some 

information about location of the metal cation was determined. Determination of Cu-ion 
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complexation site has been well studied by mass spectrometry170-172, 174, 178-180 and other 

techniques, so the primary focus of this chapter is (i) to determine if/how Cu addition 

affects the desorption/ionization process when using AuNPs, (ii) to determine if peptide 

ion fragmentation is affected by Cu addition, and (iii) use any peptide fragmentation 

information to infer peptide ion energies.  

 

Experimental 

Mass spectrometry experiments using AuNPs were performed on an Applied 

Biosystems Voyager DE-STR (Foster City, CA) with a Spectra-Physics (Irvine, CA) N2 

laser at 337 nm. Experiments were performed in the positive ion reflected mode 

averaging spectra over 200 laser shots with internal calibration. All of the mass spectra 

shown used laser energies at 10-15% above the threshold for ionization.  

The molar matrix-to-analyte ratios of AuNP to analyte was 1:106-108, which has 

previously been determined to be within the optimum range.99, 139 Samples were 

prepared by mixing solutions containing the AuNPs with solutions containing analyte 

and any additives, and immediately deposited onto a stainless steel plate and vacuum 

dried. Relatively high sample loadings were used in order to observe in-source decay 

(~10-20 pmol of analyte).  

Copper salts were added in experimentally determined optimum ratios. For Val4-

Angiotensin III and Bradykinin 1-8 using 2 nm AuNPs, the ratio was 3800 Cu ions:1 

peptide molecule. For Bradykinin 1-8, Angiotensin I methyl ester, and ACTH(18-39) 

using 5 nm AuNPs, the ratio was 35000 Cu ions:1 peptide molecule, and for Val4-
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Angiotensin III using 5 nm AuNPs, the ratio was 80000 Cu ions:1 peptide molecule. 

Other metal salts were added in the same ratios. 

Modification of peptides was done according to literature procedures, and has 

been previously described in Chapter II.82,83 Modification of AuNPs was done according 

to previously published procedures.139 

Roepstorff41 and Biemann140 fragmentation nomenclature is employed here and 

can be reviewed in Chapter I. Data analysis of fragmentation efficiency was performed 

by taking the peak area of the desired fragment ion or group of fragment ions divided by 

the peak area of all peaks in the fragment ion area, i.e., the area of all peaks with a lower 

m/z than the intact parent ion. 

Copper sulfate, copper acetate, copper acetylacetonate, silver nitrate, nickel 

acetate, fructose, acetic anhydride, acetonitrile, acetyl chloride, and anhydrous methanol 

were obtained from Sigma (St. Louis, MO) and used as received. 2 nm and 5 nm citrate 

capped gold nanoparticles were purchased from Ted Pella, Inc. (Redding, CA). Val4-

Angiotensin III (RVYVHPF), Bradykinin 1-8 (RPPGFSPF), ACTH(18-39) 

(RPVKVYPNGAEDESAEAFPLEF) and Angiotensin I (DRVYIHPFHL) were 

purchased from American Peptide Co. (Sunnyvale, CA) and were prepared in 18 

MΩ deionized water (Barnstead, Dubuque, IA).  

 

Results and Discussion 

 Figure 62 contains the UV-Visible absorption spectra for 5 nm citrate capped 

AuNPs with added CuSO4 and added CuSO4 and peptide. Addition of Cu2+ results in a 
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significant red shift of the SPR band. This is expected if Cu2+ adsorbs to the surface, as 

ion adsorption would result in a change in the electronic density of the NP which would 

change the SPR band.24, 181 The addition of peptide and CuSO4 results in a very slight 

red-shift (less than 1 nm) compared to just CuSO4 addition. 

 

 

 
Figure 62. UV-Visible absorption spectra of 5 nm citrate capped AuNPs with added CuSO4 and peptide. 

 
 

 Addition of Cu2+ to a peptide-AuNP mixture yields abundant peptide fragment 

ions. ISD of Angiotensin I methyl ester with added CuSO4 using either 2 or 5 nm AuNPs 

was evaluated. Consistent with previous results (Chapter VI), the yield of fragment ions 

using 2 nm AuNPs is relatively low, and data are not shown here. Figure 63 shows the 

ISD spectrum for addition of CuSO4 to Angiotensin I methyl ester using 5 nm AuNPs. 

The inset shows the parent ion region of the mass spectrum and the [M + Cu]+ ion is the 

dominant peak, with small amounts of  [M + alkali]+, [M + H]+ and [M + 2Cu – H]+ 
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ions. Figure 64 contains detailed zoom spectra with all peaks labeled, as the spectrum 

shown in Figure 63 is congested.  

 
 

 
Figure 63. LDI-TOF ISD mass spectrum of Angiotensin I methyl ester with added CuSO4 using 5 nm 

citrate capped AuNPs, inset is the parent ion spectrum.  
 
 

 
 Interestingly, very few fragment ions contain copper, only 22.7% of the fragment 

ion current. Of the copper-complexed fragment ions, 80% of the peak area corresponds 

to C-terminal fragment ions. This suggests that the Cu ion is sequestered near the C-

terminus, which is not consistent with previous reports where the Cu ion was 

sequestered at the arginine side chain, the amino acid with the highest affinity for Cu.137, 

173 Compared to ISD of [M + Na]+ (see Figure 52) there are some significant changes in 

the ISD spectrum with Cu addition. Table 4 lists the differences in ion type that are 

present; the main differences are the decrease in a- and y-type ions and the increase in x-

type ions.  
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Figure 64. Detail zoom views of positive ion ISD fragment ion LDI-TOF mass spectra of Angiotensin I 

methyl ester with added CuSO4. 
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Table 4. Percentage of ion current by ion type for Cu addition and no Cu addition. 
 a-ions b-ions c-ions x-ion y-ions z-ions Side chain 
no Cu2+ addition 28.35 1.21 3.4 3.37 21.63 2.87 37.5 
Cu2+ addition 12.87 0 1.8 26.06 14 2.65 32.38 
 
 
 
 ISD of the peptide ACTH(18-39) (RPVKYPNGAEDESAEAFPLEF) with added 

Cu2+ also results in an increase in x-type ions, and also a partial series of a-type ions (see 

Figures 65 and 66; the spectra contained in Figure 66 are the detailed views of Figure 

65). There are very few Cu containing fragment ions here, but more than 90% of the Cu 

containing fragment ions have the charge retained on the N-terminus, which is consistent 

with previous work.137, 175  

 

 

 
Figure 65. Positive ion ISD LDI-TOF mass spectrum of ACTH (18-39) using 5 nm citrate capped AuNPs 

with added CuSO4. 
 
 



 

 

107

 
Figure 66. Detail zoom views of positive ion ISD LDI-TOF mass spectrum of ACTH (18-39) using 5 nm 

citrate capped AuNPs with added CuSO4. 
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 Interestingly, the peptides Bradykinin 1-8 (RPPGFSPF) and Val4-Angiotensin III 

(RVYVHPF) do not show an increase in x-type ions, and fewer Cu containing fragment 

ions are observed compared to Angiotensin I methyl ester and ACTH(18-39). Chapter 

IV discussed radical initiated cleavage reactions, and that is also likely here, as x-type 

ions typically only are observed in photodissociation experiments which can generate 

large numbers of radicals.122 Also note that the Cu-ion may be directing the cleavage, 

and when reduction of Cu2+ to Cu+ occurs, over 12 eV of energy is released that may 

contribute to the fragmentation process.177 Further discussion pertaining to the 

mechanism of ion formation and fragmentation is held until Chapter VI, as the 

mechanism for ion formation is discussed in length there. 

 The following experiments describe changes in experimental conditions to 

evaluate the efficiency of fragmentation and what factors influence fragmentation.  

 

Cu2+ vs. Cu+ effects 

The effects of the solution charge of the added copper salt was also investigated. 

Figures 67A and 67B show the ISD mass spectra of Bradykinin 1-8 with addition of 

Cu2+ and Cu+, respectively, using 5 nm AuNPs. The main differences observed between 

the two copper oxidation states are: (i) very few fragment ions overall are observed for 

Cu+ addition compared to Cu2+ addition and (ii) no peptide fragment ions contain Cu 

with Cu+ addition, even though there is more [M + Cu]+ present compared to Cu2+ 

addition.  
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 As mentioned previously, the oxidation state of a Cu ion complexed to the 

peptide is typically Cu+, suggesting that a reduction process must occur when Cu2+ is 

added initially. The process by which Cu2+ is reduced to Cu+ may be important, as the 

reduction process may lead to the generation of radical species, as Equation 3 shows. 

Alternatively, radical species may be responsible for the reduction, as Equation 4 shows. 

 M + Cu2+  M+· + Cu+  (3) 

 M· + Cu2+  M+ + Cu+  (4) 

The absence of radical species in the Cu2+ and Cu+ spectra do not confirm either 

reduction process, however as Chapter IV suggested, radical initiated cleavage events do 

not always show high abundances of radical species. It is unlikely that much Cu+ 

survives the reduction process, which accounts for the low abundances of parent and 

fragment ions for Cu+ addition. 

 

 

 
Figure 67. LDI-TOF mass spectra of Bradykinin 1-8 using 5 nm citrate capped AuNPs with (A) CuSO4 

added and (B) CuCH3COO added.  
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Copper ligand effects  
 
 Just as the charge of Cu in solution can affect the fragmentation pattern, the 

ligand is also of interest. Copper (II) acetylacetonate (CuAcac) stabilizes the Cu2+ ion 

and reduces the likelihood of reduction in solution; the structure is shown in Figure 68.  

 
 

 
Figure 68. Structure of Copper Acetylacetonate. 

 
 
 

Figure 69 shows the fragmentation pattern of Val4-Angiotensin III using 5 nm 

AuNPs with added CuSO4 and CuAcac, respectively. For addition of CuAcac (Figure 

69B), fragment ion abundances do not differ significantly from CuSO4 addition (Figure 

69A). However, ion abundances of the protonated fragment ions are dramatically 

decreased with CuAcac addition compared to CuSO4 addition. This is likely because the 

abundance of the [M + H]+ ion is high for CuSO4 addition, and only low abundances are 

present for CuAcac addition. Since fragmentation still occurs with CuAcac addition it 

appears that this ligand does not protect the Cu2+ ion from being reduced. Martinez-Diaz 

and Torres observed that in fast-atom bombardment MS processes, reduction of Cu2+ 

was also accompanied by ligand loss (fragmentation) of the molecule that was 

complexed to the Cu.182 Fragmentation of the acetylacetonate ligand would allow the Cu 

ion to be reduced more readily, and participate in peptide fragmentation reactions.  
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Figure 69. LDI-TOF mass spectrum of Val4-Angiotensin III using 5 nm citrate capped AuNPs with (A) 

added CuSO4 and (B) added copper acetylacetonate. 
 
 
 

In the negative ion LDI spectrum of Val4-Angiotensin III with CuAcac addition 

(Figure 70) AuxCu- species and several analyte ions are observed, including the [M – 2H 

+ Cu]- ion. It is not clear why this phenomenon is occurring here, as Cu2+ as CuSO4 does 

not produce this effect. However, this is further evidence for Cu2+ ion being on the 

AuNP surface and participating in reduction-oxidation reactions. 

 

 

 
Figure 70. Negative ion LDI-TOF mass spectrum of Val4-Angiotensin III with added copper 

acetylacetonate using 5 nm citrate capped AuNPs. 
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Continuous extraction mode 
 

Given the results from Cu(I) and Cu(II) salts, and reports from other researchers, 

it appears that electrons may be playing a part in fragmentation efficiency. Figure 71 

shows the positive ion LDI mass spectrum of Val4-Angiotensin III using 2nm AuNPs 

and added CuSO4 in continuous extraction mode (see Figure 4A, Chapter I). Here, 

positive ions are extracted from the source immediately after the laser pulse (in contrast 

to delayed extraction, where ions are extracted up to a few hundred nanoseconds after 

the laser pulse) and electrons will go back to the sample plate.91 No fragmentation is 

observed, suggesting that electrons may play a role in fragmentation or reduction 

processes. Zhang et al. showed that under continuous extraction conditions no 

significant decrease in copper reduction was observed compared to delayed extraction 

conditions.177 Given that we still observe [M + Cu]+, this is consistent with their work. 

ISD takes place on a short timescale which can not be monitored by continuous 

extraction. 

 
 

 
Figure 71. LDI-TOF mass spectrum of Val4-Angiotensin III using 5 nm citrate capped AuNPs with added 

CuSO4 in continuous extraction mode. 
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Effects of other metal salts 

Other salts that were investigated are Ni(CH3COO)2 and AgNO3. Figure 72 

shows Ag+ addition to Val4-Angiotensin III using 2 and 5 nm AuNPs. LDI using 2 nm 

AuNPs (Figure 72A) results in low abundances of  a-ions and a few side chain cleavages 

are observed. LDI using 5 nm AuNPs yields a-, b-, y-ions and side chain cleavages. 

Overall, silver addition results in less fragmentation than either nickel or copper salts, 

and very little silver adduction to fragment ions is observed. Silver has previously been 

shown to complex with sulfur and non-sulfur containing peptides, but with a higher 

affinity for sulfur containing amino acids; CID showed a high abundance of silver 

containing fragment ions.183 It is unclear why so few silver adducted peptides are 

observed here when there is a relatively high abundance of the [M + Ag]+ ion. Several 

other interaction may be occurring, such as Ag+ interaction with the AuNP or gas-phase 

charge transfer reactions during fragmentation that neutralize the Ag+ ion. 

 

 

 
Figure 72. LDI-TOF mass spectra of Val4-Angiotensin III with added AgNO3 using (A) 2 nm citrate 

capped AuNPs and (B) 5 nm citrate capped AuNPs. 
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Figure 73 shows LDI spectra of Bradykinin 1-8 with Ni2+ addition, using 2 nm (Figure 

73A) and 5 nm (Figure 73B) citrate capped AuNPs. For LDI using 2 nm AuNPs, [M + 

Ni]+ ions are observed, but very few fragment ions contain nickel. LDI using 5 nm 

AuNPs results in no [M + Ni]+ ions. Very little is known about Ni-peptide complexes in 

the gas-phase 184, 185 as most studies have been done in the solution-phase. The data 

presented here does not give any significant results for the fragmentation of Ni-adducted 

peptides. 

 

 

 
Figure 73. LDI-TOF mass spectra of Bradykinin 1-8 with added NiCH3COO using (A) 2 nm citrate 

capped AuNPs and (B) 5 nm citrate capped AuNPs. 
 
 
 
 
Summary 

 The addition of Cu salts to AuNPs for LDI-MS results in ISD and is similar ISD 

of [M + alkali]+ ions, with the exception of an increase in x-type ions for some peptides. 

The charge state of Cu was shown to change fragmentation efficiencies, with a lower 
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abundance of fragment ions for Cu+ compared to Cu2+. The fragmentation mechanism 

relates closely to topics in Chapter VI and will be discussed more thoroughly there. 

 There are differences observed in peptide fragmentation for Ag+ and Ni+ addition 

compared to Cu2+ and Cu+ addition. For Ag+, a substantial amount of Ag-peptide 

complex is observed, but few fragment ions that contain Ag are observed. This suggests 

that enough Ag+ survives the initial reduction process to form a complex with the 

peptide, but none stays complexed during fragmentation. Either these peptide complexes 

are more stable and do not fragment, or the Ag+ is reduced during that process. For Ni+, 

very little peptide is complexed with the metal, suggesting that most of the Ni+ is 

reduced during the desorption/ionization event, or the metal-peptide complex is not as 

stable and does not survive the desorption/ionization event.  Overall this chapter has 

shown that transition metal cations can also affect the desorption/ionization process, and 

promote ISD similarly to no transition metal addition.  
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CHAPTER VI 

EVIDENCE FOR PRE-FORMED IONS USING GOLD NANOPARTICLES AS 

MATRICES FOR LDI-MS 

 

Introduction 

 A number of questions must be addressed when discussing desorption/ionization 

mechanisms using NP materials. What happens to the NPs upon laser irradiation? How 

do NP and analyte interact upon laser irradiation? How do materials leave the surface of 

the LDI target? While the exact details of what happens during the desorption/ionization 

are difficult to determine, there are a number of reports that when taken together can 

provide a general model. Note that this is not a unified model and not all observations 

that occur during ionization can be explained by the proposed model. The use of NPs 

complicates a desorption/ionization mechanism, as not as much is known about NP 

behavior in this type of system, but there are a few reports that can help to define a 

general model. 

 Since the late 1980s when Tanaka and coworkers2 and Karas and Hillenkamp1 

introduced MALDI as an ionization method there has been discussion centered around 

how ionization occurs. Experiments done to determine initial ion velocity are of interest, 

as they can provide some evidence as to what happens after laser irradiation. Upon laser 

irradiation some of the electronic excitation energy is converted into translational and 

vibrational energy of the matrix analyte molecules. Several groups have shown that the 

initial ion velocity is in the direction normal to the sample surface, suggesting that ions 
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are rapidly leaving the surface of the MALDI target. 186-190 When the matrix is excited 

by the laser, a rapid expansion of material occurs and forms a dense plume. Zhigilei and 

Garrison191-193 have performed several molecular dynamics simulations on velocity and 

directions of clusters emitted from a surface, and as laser fluence increases, the amount 

of material increases. Large clusters of material can be ablated and neutral evaporation 

occurs during cluster emission.191-194 Mechanisms proposed for desorption/ionization 

(DI)195, 196 and laser desorption/ionization (LDI)197 also use the ideas of cluster formation 

and desolvation. Taken together, these data suggest that clusters of material are 

generated and that MALDI is fundamentally an ablation process, with the role of the 

matrix to transfer energy to the analyte. While large clusters of material have not been 

detected in any MALDI experiments, one experiment has detected analyte ions clustered 

with matrix molecules by changing the pressure in the source. This suggests that at 

higher gas pressures (where collisional cooling of the ions or clusters can occur), cluster 

decay can be stopped at an intermediate stage.160, 198 Additionally, high molecular weight 

clusters generated by MALDI have been trapped in a quadrupole ion trap and shown to 

be weakly bound molecules that readily dissociate.199, 200 Figure 74 shows a cartoon of 

matrix molecules (blue hexagons) and analyte molecules (green circles) on a surface 

together; upon laser irradiation, small charged clusters of matrix and analyte are formed, 

and are held together by hydrogen bonds and coulombic interactions.161 The clusters that 

result are in an excited state and contain enough energy to desolvate into molecular 

species by way of evaporation of neutral molecules, or chemical reactions may occur 

that result in more stable molecular species.195-197 If any clusters exist that are initially 
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highly charged, they will not survive in the plume, but will undergo charge reduction by 

trapped electrons with are formed upon matrix photoionization processes.161 This general 

picture of the cluster model accounts for most of the observations made during the 

MALDI process, and further discussion can be found in an article by Karas and 

coworkers.161 

 
 

 
Figure 74. Cartoon of MALDI cluster ionization model. 

 
 
 
 Beuhler et al. and Winkler et al. suggest another model for desorption/ionization 

that came from studies using field desorption mass spectrometry.201, 202 Both papers state 

that a certain amount of energy is required to break the bonds that attach analyte 

molecules (or ions) to a solid surface. If energy from the desorption/ionization event is 

deposited solely in the surface attachment bonds and does not get distributed into the 

internal degrees of freedom of the analyte, then a molecule (or ion) is desorbed from the 

surface. If the energy from desorption/ionization does get distributed to the internal 

degrees of freedom of the analyte molecule (or ion), then fragmentation or surface 
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decomposition processes can occur because of the increased internal energy of the ion. 

Beuhler et al. also concludes that molecules that exist as ions of the surface (i.e., pre-

formed ions) desorb more readily than molecules that must undergo gas-phase charge 

exchange to be ionized.201 

 However, the work in this dissertation utilizes NPs and not organic acid matrices 

or field desorption from surfaces, so consideration of the behavior of NPs upon laser 

irradiation is also important. When a NP is irradiated with a laser, electrons are 

photoejected from the NP203-206 and some accumulation of electrons at or near the NP 

surface occurs.204 The electrons that are immediately ejected from the NP are “hot” 

electrons, with estimated energies of 1-3 eV.206 Any electrons that are not photoejected 

from the NP are rapidly thermalized by electron-phonon scattering, a process which 

occurs within a few picoseconds.204, 205 Electron accumulation or ejection leads to 

charging of the NP surface which results in rapid (< 50 ps) fragmentation of the NP.204 

Energy that is put into phonon modes is transferred into the surrounding media over 10-

100 ps.203, 204  

 Throughout this dissertation there has been mention of possible 

desorption/ionization mechanisms, with specific reference to the cluster ionization 

model and desorption of pre-formed ions. This chapter reviews the previous experiments 

that are relevant to these models, and presents several more experiments which further 

support these statements. Finally, the various desorption/ionization theories that have 

been discussed are brought together at the end of this chapter to present a mechanism for 

desorption/ionization when using NPs. 
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Experimental 

Mass spectrometry experiments using AuNPs were performed on an Applied 

Biosystems Voyager DE-STR (Foster City, CA) equipped with a Spectra-Physics 

(Irvine, CA) N2 laser (337 nm). Experiments were performed in the positive ion reflected 

mode using 200 laser shots with internal calibration. All of the mass spectra shown used 

laser energies 10-15% above the threshold for ionization. Tandem mass spectrometry 

was done on an Applied Biosystems 4700 Proteomics Analyzer (Foster City, CA). 

Collision-induced dissociation tandem mass spectra were acquired using 10-20% greater 

laser power than MS acquisition. Collision gas was used was at the medium air pressure 

setting (4 x 10-7 torr) with 1 kV collision energy.  

Laser energy measurements were taken using an Ophir Nova Power/Energy 

meter coupled to a PE-10 Ophir Pyroelectric head (Ophir Laser Measurement Group, 

North Logan, UT). Measurements were taken in increments of 50 arbitrary units on the 

rotatable variable neutral density filter wheel of the Voyager DE-STR. Values were 

recorded every 200 shots from a total of 1400 laser shots per setting point in the lower 

energy region (0.77 - 1.92 µJ) of the laser, and every 100 arbitrary units on the higher 

energy region of the laser (1.92 - 51.89 µJ). The process was repeated twice and the 

average calculated. Data shown here uses laser energy instead of laser fluence (laser 

energy/area · time), as accurate laser spot size data is very difficult to acquire. 

AuNP-to-analyte ratios were optimized for each peptide and was determined to 

be 1 AuNP: 106 analyte molecules for these peptides, which is consistent with previous 

reports.99, 139 Samples were prepared by mixing solutions containing the AuNPs with 
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solutions containing analyte and any additives, and immediately deposited onto a 

stainless steel plate and vacuum dried. Sample loadings of 10-20 pmol of analyte were 

used.  

Modification of Angiotensin I to Angiotensin I methyl ester was done according 

to literature procedures, and was reported in detail in Chapter II.82,83 Modification of 

AuNPs was done according to previously described procedures.139 Modification of 

Leucine-Enkephalin to a fixed-charge derivative [trimethylammonium acetyl (TMAA)] 

was done according to literature procedures.114 Briefly, the peptide was iodoacetylated 

by dissolving 1 mg of peptide in 1 mL of water and reacting it with a 10-fold molar 

excess of iodoacetic anhydride for 15 minutes in an ice bath; the resulting solution was 

allowed to warm back up to room temperature. The peptide was lyophilized and then 

dissolved in 500 µL of a 25% wt solution of trimethylamine and reacted for 30 minutes 

at room temperature. The resulting product was lyophilized and re-suspended in water at 

a concentration of 1 mg/mL. The reaction scheme is shown in Figure 75. 

Acetic anhydride, acetonitrile, acetyl chloride, anhydrous methanol, iodoacetic 

anhydride, trimethylamine, and crystal violet were obtained from Sigma (St. Louis, MO) 

and used as received. 2 nm and 5 nm citrate capped gold nanoparticles were purchased 

from Ted Pella, Inc. (Redding, CA). Angiotensin I (DRVYIHPFHL) and Leucine-

Enkephalin (YGGFL) were purchased from American Peptide Co. (Sunnyvale, CA). 
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Figure 75. Reaction scheme for modification of the peptide N-terminus to a trimethylammonium acetyl 

group. 
 

 

Results and Discussion 

 Several of the experimental results already shown in this dissertation support the 

theory that desorption/ionization when using AuNPs is a thermal desorption of pre-

formed ions. The differences in analyte desorption/ionization for 2, 5, and 10 nm AuNPs 

are an important observation. 2 nm AuNPs desorb/ionize analyte readily, with little 

peptide fragmentation observed (see Figures 12A, 14, 16 for examples of this). 5 nm 

AuNPs ionize peptides, but do result in some peptide fragmentation; it is very difficult to 

desorb/ionize peptides with 5 nm AuNPs and not get some fragmentation (see Figures 50 

and 52). When using 10 nm AuNPs, only low relative abundances of intact peptide 
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molecules desorb/ionize and ISD is not observed (see Figure 12C). Different amounts of 

thermal energy are produced from each of the size distributions of AuNPs, and the radius 

of heating is different. This means that different amounts of energy will be deposited 

into the peptide, and some will be desorbed/ionized intact, and some will undergo 

fragmentation. For fragmentation to occur, higher internal energies are needed (see 

Figure 7). If too much energy is present, then very little intact or fragment ions may be 

observed. We suggest that this is why differences in ionization are observed for 2, 5, and 

10 nm AuNPs. 

 The importance of AuNP-to-analyte ratios was discussed in Chapter II. As Figure 

14 shows, ion signal from [M + alkali]+ ions decreases as AuNP-to-analyte ratio 

increases. The main contribution of alkali in solution is from the AuNPs (a consequence 

of the synthesis), and so by increasing the AuNP-to-analyte ratio, the amount of alkali 

per peptide in a given area is reduced, resulting in less alkali adduction. The distribution 

of ions that are desorbed/ionized reflect the composition of ions in solution, suggesting 

that desorption/ionization of pre-formed ions is occurring. 

 Differences in ionization of similar peptide species also suggest a pre-formed ion 

mechanism. As stated in Chapter II (Figure 16), the desorption/ionization efficiency of a 

series of Angiotensin peptides (Angiotensin I, Angiotensin I methyl ester, acetylated 

Angiotensin I) increases with peptide basicity. Previous work done in MALDI-MS 

experiments has shown that the amino acid composition is important for 

desorption/ionization and since arginine having the highest proton affinity it is likely the 

site of protonation.85, 86 Also, modifying the peptide to increase or reduce its overall 
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basicity will likely affect desorption/ionization, as Chapter II showed (see Figure 16). 

The effects of pH can also be attributed to a pre-formed ion mechanism. As Figure 18 

shows, when the solution pH drops, more [M + H]+ ions are desorbed/ionized. With a 

lower pH additional protons are available as a source for protonation, and more 

molecules are likely protonated on the LDI target, and are thus desorbed/ionized. 

Finally, most mass spectra obtained using AuNPs show some abundance of small gold 

cluster species (i.e., Au2
+, Au3

+, Au5
+). This observation fits well with the previously 

mentioned study by Kamat and coworkers,204 who showed that NPs fragment upon laser 

irradiation. 

 Chapter III also presented data that supports the theory of pre-formed ions (see 

Figures 36 and 41). The enhancement of the [M – H]- ion with F-, Cl-, and oxyanion 

addition likely occurs because of reactions that happen in solution prior to the NP-

peptide sample being deposited on the LDI target plate.  

 Peptide ion fragmentation was observed in Chapters IV and V. As discussed 

earlier, the model proposed by Beuhler et al. suggests that desorption of molecules (or 

ions) depends on how tightly bound the molecule is to the surface of a sample target.201 

When more energy is present in the system, then molecules and ions can undergo 

fragmentation or surface decomposition reactions. Data was shown in Chapter V where 

the addition of  Cu2+ ions to the AuNPs results in increased peptide ion fragmentation, 

specifically for x-type ions. The Cu2+ ions likely adsorb to the AuNP surface and peptide 

molecules will also likely interact with the Cu ions. Increases in fragmentation may be 
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the result of the peptide being folded around the Cu2+ ions in a specific manner or more 

efficient energy transfer to the peptide molecule through the Cu2+ ion. 

 

Crystal violet 

The dye molecule crystal violet was chosen to investigate desorption/ionization 

of an ion with a fixed charge site. Figure 76 shows the UV-Visible absorption spectrum 

and structure of crystal violet. Figure 77 shows a representative mass spectrum of 

desorption/ionization of crystal violet using 2 nm and 5 nm AuNPs, where the M+ ion is 

the dominant peak.  

 
 

 
Figure 76. UV-Visible absorption spectrum and structure of crystal violet. 
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Figure 77. LDI-TOF mass spectrum of crystal violet using 5 nm AuNPs. 

 
 
 
Different AuNP-to-analyte ratios were mixed to determine if the viable range for 

desorption/ionization differs from peptides, which was shown in Chapter II. The lowest 

ratio where analyte was detected was 1 AuNP: 102 analyte molecules, although a 

significant amount of chemical noise is present, and analyte abundances are low. A 

series of mass spectra were collected using different laser energies to determine the trend 

of ionization. Figure 78 shows a plot of peak area (for the M+ ion of crystal violet) vs. 

laser energy per pulse. The greatest increase in peak area is observed for a ratio of  1 

AuNP: 104 analyte molecules. This is in contrast to peptides, where 1 AuNP: 106 analyte 

molecules typically gives the highest peak areas. This may be occurring because crystal 

violet is a much smaller molecule than a peptide, which would require less energy for 

desorption/ionization of the molecule. This observation fits with the Beuhler et al. theory 

of energy required to break the bonds of the molecule interacting with the target plate, 
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which was discussed earlier.201 A smaller molecule like crystal violet does not have as 

many interactions holding it to the surface compared to a larger peptide molecule, which 

would result in less energy required for desorption of the ion. 

 Figure 79 shows a plot of peak area vs. laser energy using 5 nm AuNPs. Here, 

the greatest increase in peak area is observed using a ratio of 1 AuNP: 105 analyte 

molecules. Also, several AuNP-to-analyte ratios show a drop in peak area. The mass 

spectra from 1 AuNP: 105 analyte molecules and lower ratios are more congested, 

meaning more peaks are present in the low mass region, but no peaks correspond to 

fragment ions of crystal violet.  

 
 

 
Figure 78. Peak areas of crystal violet at varying AuNP-to-analyte ratios and laser energies using 2 nm 

citrate capped AuNPs. 
 
 
  



 

 

128

 
Figure 79. Peak areas of crystal violet at varying AuNP-to-analyte ratios and laser energies using 5 nm 

citrate capped AuNPs. 
 
 
 
 Figure 80 is a plot of peak areas vs. laser energy at different AuNP-to-analyte 

ratios using 2 nm AuNPs when fructose has been added. As discussed previously, 

fructose can act to cool ions and reduce internal energy. The green line shows peak areas 

for 1 AuNP: 105 analyte molecules and no fructose addition. The other three lines are for 

addition of 101, 102, and 103 molecules of fructose to 1 AuNP: 105 analyte molecules, 

respectively. There is a significant decrease in peak area when fructose is added, 

suggesting overall fewer ions are desorbed/ionized, which could be correlated to the 

internal energy of the analyte molecule. 
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Figure 80. Peak areas of crystal violet for different laser energies at 1 AuNP:105 analyte molecules using 

2 nm citrate capped AuNPs, with fructose added. 
 

 
 
TMAA modified peptide 

 Given the differences in energies for desorption/ionization of a small pre-formed 

ion such as crystal violet and peptides, we have modified a peptide to have a fixed 

charge on the N-terminus for better comparison. Figure 81 shows a representative mass 

spectrum for trimethylammonium acetyl (TMAA) modified YGGFL using either 2 or 5 

nm AuNPs. The intact molecule is the dominant peak in the mass spectrum, with some 

gold-cluster peaks also present. 
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Figure 81. LDI-TOF mass spectrum of TMAA-YGGFL using 2 nm AuNPs at a ratio of 1 AuNP: 106 

analyte molecules, where 10 pmol was deposited on the sample plate. 
 
 
 
 Figure 82 shows a comparison of peak areas vs. laser energy for YGGFL and 

TMAA-YGGFL using 2 nm and 5 nm AuNPs. Figure 82A shows desorption/ionization 

of YGGFL using 2 nm AuNPs with ratios of 1 AuNP: 106 – 107 analyte molecules. 

Using 5 nm AuNPs (Figure 82B) desorption/ionization occurs for ratios of 1 AuNP: 106 

– 107 analyte molecules. Figure 82C and 82D shows desorption/ionization of TMAA-

YGGFL using 2 nm and 5 nm AuNPs, respectively for ratios of 1 AuNP: 105 – 107 

analyte molecules. Modification of the peptide YGGFL to the fixed charge TMAA-

YGGFL results in three key differences: (i) desorption/ionization occurs at lower AuNP-

to-analyte ratios for TMAA-YGGFL, (ii) lower laser energies are needed for 

desorption/ionization of TMAA-YGGFL, and (iii) TMAA-YGGFL results in larger peak 

areas compared to YGGFL. Figure 83 shows a direct comparison of peak area vs. laser 

energy for YGGFL and TMAA-YGGFL at various AuNP-to-analyte ratios. An increase 

in peak area is observed for the fixed charge peptide derivative compared to the 
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unmodified peptide. Compared to crystal violet, laser energies needed for 

desorption/ionization of YGGFL and TMAA-YGGFL are significantly higher, which 

was discussed previously. 

 Lastly, laser energies were increased to determine if any ISD occurs with 

TMAA-YGGFL. No ISD was observed; this result is reasonable, as fragmentation would 

have to occur by charge-remote homolytic bond cleavages, which require higher 

activation energies.114, 142  

 
 

 
Figure 82. Peak areas of YGGFL for different laser energies at varying AuNP-to-analyte ratios using (A) 
2 nm citrate capped AuNPs and (B) 5 nm citrate capped AuNPs and peak areas of TMAA-YGGFL using 

(C) 2 nm citrate capped AuNPs and (D) 5 nm citrate capped AuNPs. 
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Figure 83. Comparison of peak areas at different laser energies for YGGFL (dashed lines) and TMAA-

YGGFL (solid lines) at various AuNP-to-analyte ratios using 5 nm citrate capped AuNPs. 
 
 
 
Proposed mechanism for ion formation 

 Based on the findings of various researchers who have described the cluster 

model and other pre-formed ion mechanisms, along with the data presented in this 

chapter, a general mechanism of ion formation can be proposed. Figure 84 shows a 

cartoon of the possible interaction of analyte molecules with a NP (left), where a large 

number of analyte molecules are present for each NP. Upon laser irradiation (right) 

smaller clusters of the NP, analyte, and possibly electrons or other species (water, salt, 

etc.) may be present. Several key things happen during laser irradiation: (i) the NPs are 

heated and eject electrons which eventually results in fragmentation of the NP, (ii) 

energy (as heat) from the NP is transferred to the analyte molecules/ions, which can 

simply be desorbed from the surface as a pre-formed ion, or if enough internal energy is 

present, the molecules/ions can fragment, (iii) clusters of material that are composed of 

NP, analyte, and other species present in the sample leave the surface of the LDI target, 
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and (iv) the clusters of material become smaller via neutral evaporation or further 

transfer of energy between components of the cluster which results in single ions that are 

detected by the mass spectrometer. 

 

 

 
Figure 84. Cartoon of desorption/ionization with NPs. 

 

 

Summary 

 Throughout this dissertation results have suggested that desorption of pre-formed 

ions is occurring. This chapter aimed to summarize those results, and add a few select 

experiments that support this theory. The desorption of a molecule with a fixed charge 

provides strong evidence for this. Differences in ion abundances and laser energies 

required for desorption (e.g., for the peptide YGGFL and the modified peptide TMAA-

YGGFL) also support this theory. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

 Gold nanoparticles (AuNPs) have emerged as valuable and versatile research 

tools in chemistry and related fields. In particular, NPs have become useful for laser 

desorption/ionization mass spectrometry (LDI-MS) to facilitate desorption/ionization of 

biomolecules. The initial goal of the research presented in this dissertation was to define 

parameters that are important for desorption/ionization of biomolecules. Many different 

solution parameters were explored, and some were found to enhance ionization, while 

others proved detrimental. Specifically, controlling the AuNP-to-analyte ratio, pH, 

peptide composition, and AuNP size are important parameters for ionization.  

 A better understanding of basic conditions for ionization led to investigation of 

effects of passivating the AuNP surface using halides and oxyanions. The presence of 

NaF, NaCl, NaBr, and NH4X (X = F, Cl, Br, I) were shown to not significantly affect 

analyte ion abundances, whereas addition of NaI strongly suppressed analyte ion yields. 

The LDI ion yields from AuNPs treated with β-mercaptoethanol, glutathione or 

tiopronin were much less sensitive to the presence of NaI, suggesting that covalently 

bound ligands protect the NP from halide adsorption. In addition, peptide [M - H]- ion 

yields were significantly higher from AuNPs treated with oxyanions (NO3
- and SO4

2-); 

however, thiolate functionalized AuNPs did not show increased negative ion yields, 

suggesting that these ligands also protect the NP surface from oxyanion physisorption.  
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The results from Chapters II and III on modifying solution and NP conditions led 

to further questions about the desorption/ionization process. In-source decay (ISD) of 

peptides using gold nanoparticles (AuNPs) for laser desorption/ionization mass 

spectrometry (LDI MS) was investigated in Chapter IV with the goal of gaining insight 

into internal energy distributions of peptide molecules, and peptide fragmentation 

mechanisms. Fragment ions were observed for a series of Angiotensin peptides, with the 

highest ion abundances for Angiotensin I methyl ester (compared to Angiotensin I (free 

acid) and acetylated Angiotensin I), and many different types of fragment ions were 

observed including side-chain cleavages and radical species. Addition of fructose 

reduced the number of radical species and in general less ISD was observed. These 

results suggest that peptide molecules have a distribution of internal energies, with intact 

and fragment ions being observed. A radical initiated mechanism for fragmentation was 

proposed. Next, questions regarding how the energy is deposited in analyte molecules 

were addressed. Chapter VI reiterated numerous points that suggest a pre-formed ion 

desorption mechanism (e.g., AuNP-to-analyte ratios, pH, peptide composition, and 

AuNP size), and additional experiments showed that molecules with a fixed charge 

desorb/ionize more readily than those without. 

Overall, the data presented in this dissertation have provided insight on a number 

of important issues: (i) sample preparation is extremely important for consistent results 

and ion type, (ii) NPs must be intact for desorption/ionization to occur, (iii) differing 

amounts of energy are imparted to biomolecules based on NP size and surface structure, 

(iv) in general desorption/ionization appears to be of pre-formed ions. 
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  Future work using AuNPs for LDI-MS could proceed in many different 

directions. Many of the experiments that were done in this dissertation that pertain to 

energy transfer and internal energy of peptide ions were done using 5 nm AuNPs, and all 

of the work in this dissertation was done using a laser at 337 nm. The effects of pumping 

the plasmon band would provide more information about energy transfer into peptides 

and perhaps help to refine the desorption/ionization mechanism proposed here. Other 

experiments that pertain to ion energetics would involve comparing photodissociation 

data to that presented here. Also, using a so-called ‘thermometer ion’ under strictly 

controlled experimental conditions for desorption/ionization would further the 

understanding of fragmentation processes and ion energetics. 

 Also of interest are other transition metals, or expansion of the work started here. 

Silver is known to complex with sulfur containing ligands, and thiols also have an 

affinity for gold surfaces. While thiols will not typically dissociate from gold surfaces, 

bridging interactions between the NP and cation could be achieved, and more ordered 

analyte-NP structures could be investigated, and perhaps shed more light on how 

interaction between the peptide and AuNP is important. Interaction between the AuNP 

and transition metal cations also begs the question of how different alloy materials may 

affect the desorption/ionization process. 

 Several experiments in this dissertation were not successful, such as alkanethiol 

coated AuNPs or mixtures with a tryptic digest. While biomolecules are not miscible 

with alkanethiols, there is potentially utility for analysis of other molecule classes (e.g., 

lipids, organic molecules). The ability to desorb/ionize a complex mixture such as a 
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tryptic digest would also be useful for biological mass spectrometry, and any selective 

ionization that may occur when using AuNPs could also be investigated. Modification of 

the AuNP surface was briefly explored in this dissertation, but because of the versatile 

chemistry of AuNPs, selective analyte capture experiments could easily be designed for 

a specific purpose.  
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