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Tribological performance of three ionic liquids (ILs), trihexyltetradecylphosphonium bis(2-ethylhexyl)
phosphate (IL1), tributylethylphosphonium diethylphosphate (IL2) and trihexyltetradecylphosphonium
bis(2,4,4-trimethylpentyl)phosphinate (IL3) combined with graphene nanoplatelets (GnP) as hybrid addi-
tives for a polyalphaolefin (PAO 32) base oil was studied. For this purpose, several dispersions were pre-
pared by mixing, stirring, and then sonicating according to the following combinations: PAO 32 + (a wt%)
IL + (b wt%) GnP, where a and b represent the concentration of the additives added to the PAO 32 base oil.
In this study a is 0 or 1 and b is 0.05 or 0.1. Three PAO 32 + 1 wt% IL mixtures were also prepared.
Thermophysical properties and stability against sedimentation of the dispersions were studied by means
of a rotational viscometer and visual observation, respectively. Furthermore, friction and wear behaviors
were analyzed using a ball-on-disk configuration tribometer operating in rotational mode and both a 3D
optical profiler and a scanning electronic microscope, respectively. Confocal Raman microscopy was used
to identify compounds in the tribofilms formed on the wear tracks. The hybrid combinations of PAO 32/
ILs/GnP improved the friction reduction of the corresponding binary PAO 32/GnP nanolubricants and PAO
32/IL mixtures. Interestingly, the hybrid dispersions with low concentrations of GnP (with 0.05 wt% GnP)
are more effective than those of 0.1 wt% GnP. Results also show that the addition of both 0.05 wt% gra-
phene nanoplatelets and 1 wt% IL led to friction reductions up to 36% and wear reductions up to 27%,
compared with the capabilities of neat PAO 32. IL1 and IL3, containing the trihexyltetradecylphospho-
nium cation, generate the hybrid lubricants with the best combined properties (stability, viscosity and
tribological properties) of all the lubricants tested.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tribological properties such as friction and wear are directly
related to energy consumption in several industrial sectors (trans-
portation, energy generation, manufacturing, . . .) [1]. These proper-
ties are considered important in classical and innovative
machinery due to their influence in enhancing energy efficiency
and life span. A good lubrication helps to minimize friction and
wear between two surfaces in contact.

Due to their special properties, several nanomaterials are con-
sidered excellent additives to enhance lubricant performance [2–
5]. Graphene, the first 2D crystal ever isolated, is a single graphite
layer with exceptional properties. Nevertheless, mass-production
methods to obtain defect-free monolayer graphene have not been
developed yet. Contrastingly, graphene nanoplatelets, GnP, short
stacks of graphene sheets in a platelet shape, are commercially
available and less expensive [6]. Several authors [7–12] found that
GnPs have excellent properties as lubricant additives. Different
mechanisms were identified to explain how nanoadditives
enhance the tribological performance of neat lubricants. These
mechanisms can be classified into two main groups [4]. The first
one involves the direct effect of nanoadditives including the ball
bearings effect or protective tribo-film formation. Ball bearing is
discarded in the case of GnP additives due their non-spherical
shape. The second group is related to surface improvements by
mending (by nanoparticle deposition in the valleys of the contact
surfaces) or polishing effects. Different studies concerning 2D addi-
tives [5,13] revealed that these materials can easily enter between
friction surfaces due to their ultra-thin layer structure and extre-
mely low shear strength between the layers, consequently pre-
venting the direct contact of the rubbing surfaces and decreasing
friction. The main lubrication mechanisms related to 2D materials
are both film formation and mending effects [14]. Through tribo-
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logical measurements of graphene platelets dispersed in a mineral
oil, Lin et al. [7] concluded that these additives form protective
deposited films to prevent the rubbing surfaces from coming into
direct contact and improve the tribological behavior of the oil. Nev-
ertheless, agglomeration problems limit the varied applications of
2D materials in the field of lubrication [15].

Moreover, ionic liquids (ILs), which were used as neat lubricants
[16], are also proposed as oils additives [17]. Phosphonium ILs are
considered potential lubricant additives because of their interest-
ing properties (good miscibility in oils, and their antiwear and anti-
corrosion performances) being their organic phosphorus relevant
in tribo-chemistry [17–25]. In addition, phosphonium salts do
not react with most organic compounds, and are compatible with
most commonly used lubricant additives and are reliable as such
[26]. When used as lubricant additives, ILs tend to form protective
tribofilms on the rubbing contact areas [17]. It was pointed out
that the protective tribofilm formation is through the tribochemi-
cal reaction of ILs and/or their decomposition products with the
contact surfaces and/or wear debris at the lubricating interfaces
[17]. Furthermore, due to the positive charge induced on rubbing
surfaces by tribo-stress, anions interact strongly with oppositely
charged surfaces [27]. As a result, when surfaces lubricated with
an IL are compressed, lubricating films will remain in place at
higher forces than with a comparable molecular lubricant [27].

Polyalphaolefins (PAOs) are saturated hydrocarbons synthe-
sized by polymerization of alphaolefins followed by hydrogena-
tion, which are classified as group IV base oils according to API
classification [28–30]. PAOs are used for automotive engines, in
formulating hydraulic fluids, compressor oils and high tempera-
ture gear and bearing industrial lubricants [30–32]. There are sev-
eral studies on the tribological performance of either nanoparticles,
NPs, or ILs as additives in PAO 4 [33–35], PAO 6 [36–43], PAO 8
[44,45] PAO 10 [46–48], PAO 32 [49], and PAO 40 [42,50].

The hybrid combinations of ILs and nanomaterials as additives
in lubricant oils may lead to interesting positive synergies. In this
regard, adding ILs to nanolubricants may improve both the stabil-
ity and the tribological behavior [11,49,51–54]. Nevertheless, stud-
ies on the combined effects of ILs and NPs as oil additives are
uncommon. Sanes et al. [53] evaluated a 5 wt% dispersion of
0.1 wt% graphene in an IL as friction-reducing and antiwear hybrid
additive of an additive-free isoparaffinic base oil. These authors
concluded that there are synergistic effects between both addi-
tives, concluding that the IL presence would prevent oxidation
while the graphene may increase the load-carrying ability of the
lubricant.

Regarding polyalphaolefins oils, there are only two articles that
studied the synergies of NPs and ILs. In the first one, Seymour et al.
[51] studied the possible antifriction synergies between hairy silica
NPs (HNP) and an oil-miscible phosphonium-phosphate ionic liq-
uid (IL) dispersed in PAO 4. These authors obtained a friction
decrease with the hybrid combinations of up to 23% compared
with 2% HNP alone in PAO and of up to 35% compared to the
PAO mixed with 2% IL. Furthermore, Nasser et al. [49] studied
the tribological synergies of hybrid nanostructure combinations
of three phosphonium ionic liquids and hexagonal boron nitride
Table 1
Main information of materials used in this work.

Chemical name

Polyalphaolefin 32
Graphene nanoplatelets
Trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate (IL1)
Tributylethylphosphonium diethylphosphate (IL2)
Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (IL3)

* Provided by the supplier.
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(h-BN) as additives of PAO 32 base oil. It was observed that the
hybrid additives improve, in general, the tribological performance
of the lubricant rather than being used separately, being the max-
imum reductions at 353.15 K of 28% and 65% in friction and wear,
respectively, in comparison to the neat oil. Hence, the combina-
tions of ILs and nanomaterials forming hybrid structures as addi-
tives of PAOs are hardly known, and the synergistic effects are
not yet clear due to limited investigations in this field.

Aiming to contribute to a better knowledge of these combina-
tions, in this work the tribological performance, thermophysical
properties and dispersion stability of several combinations of both
NPs and ILs as hybrid additive of PAO 32 are studied. Thus, gra-
phene nanoplatelets (GnP) and trihexyltetradecylphosphonium
bis(2-ethylhexyl)phosphate (IL1), tributylethylphosphonium
diethylphosphate (IL2) or trihexyltetradecylphosphonium bis(2,4,
4-trimethylpentyl)phosphinate (IL3) were chosen as hybrid addi-
tives of a polyalphaolefin (PAO 32). The effect of the structure of
ILs and concentration of GnP in all the properties were analyzed.
PAO 32 was chosen since it is the base oil of the current lubricant
formulations in wind turbine gearboxes.

2. Experimental section

2.1. Materials

Table 1 presents the base oil, the nanoadditive and the ILs
investigated in this study. PAO 32 was supplied by Repsol. Both
Fourier transform infrared (FTIR) and Raman spectra of aliquots
of this oil were reported previously [49]. Graphene nanoplatelets
having CAS number 1034343-98-0, 99.5% purity, average particle
diameter of 15 lm and 11 to 15 nm thickness were supplied by
Iolitec. Liñeira del Río et al. [8] and Guimarey et al. [55] character-
ized two samples of these nanoplatelets by means of energy-
dispersive X-ray, Raman spectroscopies as well as transmission
and scanning electron microscopies, showing bent and wrinkled
shapes.

The ionic liquids trihexyltetradecylphosphonium bis(2-
ethylhexyl)phosphate (IL1), tributylethylphosphonium
diethylphosphate (IL2) and trihexyltetradecylphosphonium bis(2,
4,4-trimethylpentyl)phosphinate (IL3) were supplied by Iolitec. In
a previous work [49], FTIR and Raman spectra of these ILs were
reported.

2.2. Sample preparation

Using a two-step method, two binary dispersions were pre-
pared: PAO 32 + 0.05 wt% GnP, PAO 32 + 0.1 wt% GnP. In addition,
the following hybrid dispersions: PAO 32 + 1 wt% IL1 + 0.05 wt%
GnP, PAO 32 + 1 wt% IL2 + 0.05 wt% GnP, PAO 32 + 1 wt%
IL3 + 0.05 wt% GnP, PAO 32 + 1 wt% IL1 + 0.1 wt% GnP, PAO
32 + 1 wt% IL2 + 0.1 wt% GnP and PAO 32 + 1 wt% IL3 + 0.1 wt%
GnP, were prepared using Sanes et al. [53] method. Thus, IL1, IL2
or IL3 samples were separately mixed with GnP nanopowders in
an agate mortar and continuously stirred for 10 min. Each GnP/IL
sample was mixed with PAO 32 base oil to obtain the hybrid dis-
Reduced name Supplier CAS number Purity*

PAO 32 Repsol 533903–84-3
GnP Iolitec 1034343–98-0 0.95
[P6,6,6,14][DEHP] Iolitec 1092655–30-5 >0.98
[P2,4,4,4][DEP] Iolitec 20445–94-7 >0.95
[P6,6,6,14][(iC8)2PO2] Iolitec 465527–58-6 >0.9
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persions. PAO 32 + 1 wt% IL1, PAO 32 + 1 wt% IL2 and PAO 32 + 1 wt
% IL3 mixtures were also prepared. A Sartorius MC 210P high accu-
rate balance (precision of 0.00001 g) was used to determine the
mass concentrations of PAO 32, GnP and ILs. Finally, the mixtures
and dispersions were continuously sonicated for four hours in a
Fisherbrand TM 11203 ultrasonic bath at effective power of
180 W and frequency of 37 kHz. Two replicates of mixtures and
dispersions were made, one for visual stability analysis and the
other for tribological study.

2.3. Thermophysical characterization

Density and viscosity at atmospheric pressure over a tempera-
ture ranging from 278.15 K to 373.15 K of PAO 32/GnP and PAO
32/IL/GnP dispersions were measured by means of a SVM 3000
rotational Stabinger viscometer from Anton Paar [56]. The viscosity
index was also experimentally determined according to ASTM
D2270 using this device. Expanded uncertainties (k = 2) are
0.0005 g�cm�3 for density, 0.02 K for temperatures from 288.15
to 378.15 K and 0.05 K outside this range, and 1% for dynamic vis-
cosity. Details of the device and procedure were reported previ-
ously [57,58].

2.4. Tribological tests

Friction tests for PAO 32 neat lubricant, the three mixtures (PAO
32/IL), the two nanolubricants (PAO 32/GnP) and the six hybrid
nanolubricants (PAO 32/ILs/GnP) were performed using a CSM
Standard tribometer with a ball-on-disk configuration. During
tests, a fixed AISI 52100/535A99 chrome steel ball (6 mm diameter
and hardness 58–66 Rockwell Scale) contacts with an AISI
Fig. 1. Samples photos: (a) PAO 32 + 0.1 wt% GnP, (b) PAO 32 + 1 wt% IL1 + 0.1 wt% G
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52100/535A99 chrome steel disk (surface finish Ra < 0.02 lm,
hardness 190–210 Hv30 and diameter 10 mm) which rotates with
a linear speed of 0.10 m s�1 (3 mm radius) for 3400 s, at room tem-
perature, ~294 K and under a normal load of 20 N. Hexane and hot
air were used to clean and dry the specimens before these tests.
0.15 mL of the lubricant were placed on the disk surface. Three
replicates of each test were performed and the mean values
reported as the friction coefficients. After friction tests, the disks
were cleaned in an ultrasonic bath containing hexane for one min-
ute and then dried with hot air. Wear on disks was analyzed with a
3D optical profiler (Sensofar S neox) through width, cross section
area, depth, and roughness measurements of the worn surfaces.
The cross-sectional area was determined using the section profile
by subtracting the sum of areas of the profiles for the material dis-
placed on both sides of the worn track from the worn area. A Carl
Zeiss FESEM ULTRA Plus Scanning Electron Microscope (SEM) was
also used to analyze the worn surface, as well as a WITec
alpha300R + confocal Raman microscope to obtain composition
information at the wear scar.

3. Results and discussion

3.1. Stability of the mixtures and nanodispersions

The eight dispersions were kept at room temperature and
observed weekly after the preparation. For both PAO 32 + GnP dis-
persions no signs of sedimentation appear for 240 days after prepa-
ration, as shown in Figs. 1 and 2. In contrast, for both
nanodispersions containing IL2, stability worsening was observed.
In fact, for PAO 32 + 1 wt% IL2 + 0.1 wt% GnP sample, sedimentation
was visualized 60 days after preparation, whereas for PAO
nP, (c) PAO 32 + 1 wt% IL2 + 0.1 wt% GnP, (d) PAO 32 + 1 wt% IL3 + 0.1 wt% GnP.



Fig. 2. Samples photos: (a) PAO 32 + 0.05 wt% GnP (b) PAO 32 + 1 wt% IL1 + 0.05 wt% GnP, (c) PAO 32 + 1 wt% IL2 + 0.05 wt% GnP, (d) PAO 32 + 1 wt% IL3 + 0.05 wt% GnP.

Fig. 3. Percentage average absolute density increase, 100 Dq/q, of the nanodispersions containing PAO 32 respect to density of PAO 32 in the temperature range from
278.15 K to 373.15 K.
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32 + 1 wt% IL2 + 0.05 wt% GnP sample, it occurred after 150 days.
Regarding IL1 and IL3 nanodispersions, no signs of sedimentation
appeared for 240 days after preparation. As in previous work
[49] in which h-BN is used instead GnP, the poorest time stability
also corresponded to the hybrid nanodispersions containing IL2,
but the h-BN/IL2 dispersion stability is not worse than that of
the h-BN nanodispersion. Thus, concerning stability, negative syn-
ergies were found between IL2 and GnP as hybrid additives in PAO
32.
4

3.2. Thermophysical characterization

Dynamic viscosity (g) and density (q) values at several temper-
atures together with viscosity index (VI) of the eight dispersions
are reported in Tables S1-S3, g and q experimental data were
reported previously [49] for PAO 32 as well as for PAO 32 + 1 wt
% IL1, PAO 32 + 1 wt% IL2 and PAO 32 + 1 wt% IL3 mixtures. The
average increase in density values of dispersions in comparison
to PAO 32 due to GnP and to both GnP and ILs addition ranged



Fig. 4. Percentage average absolute dynamic viscosity increase, 100Dg/g, of the nanodispersions containing PAO 32 respect to the in the temperature range from 278.15 K to
373.15 K.

Fig. 5. Average friction coefficient (l) and its corresponding reduction using different lubricants compared to PAO 32 base oil at room temperature.

Table 2
Average values of the friction coefficient (m), wear scar width (WSW), cross-section area, and maximum depth of the wear track together with their standard deviations (r) and %
reductions compared with PAO 32 for all lubricants at room temperature.

Lubricant m r % friction
reduction

WSW/
lm

r % width
reduction

Area /
lm2

r % Area
reduction

Max depth/
l m

r % depth
reduction

PAO 32 0.0932 0.0046 – 260 3 – 160 3 – 1.301 0.014 –
PAO 32 + 1 wt% IL1 0.0823 0.0082 11 249 1 4.2 150 2 6.3 1.183 0.013 9.2
PAO 32 + 1 wt% IL2 0.0749 0.0043 19 248 2 4.6 142 3 11 1.112 0.012 15
PAO 32 + 1 wt% IL3 0.0788 0.0041 15 250 2 3.8 155 3 3.1 1.223 0.010 6.0
PAO 32 + 0.05 wt% GnP 0.0770 0.0033 17 243 1 6.5 140 3 12 1.110 0.009 15
PAO 32 + 1 wt% IL1 + 0.05 wt% GnP 0.0690 0.0049 25 229 2 12 126 2 21 0.993 0.005 24
PAO 32 + 1 wt% IL2 + 0.05 wt% GnP 0.0591 0.0031 36 226 3 13 124 3 23 0.951 0.018 27
PAO 32 + 1 wt% IL3 + 0.05 wt% GnP 0.0684 0.0071 27 230 3 12 128 3 20 1.010 0.012 23
PAO 32 + 0.1 wt% GnP 0.0884 0.0007 5.2 245 1 5.8 150 2 6.3 1.190 0.014 8.5
PAO 32 + 1 wt% IL1 + 0.1 wt% GnP 0.0714 0.0061 23 240 1 7.7 136 3 15 1.053 0.013 18
PAO 32 + 1 wt% IL2 + 0.1 wt% GnP 0.0704 0.0073 24 235 3 9.6 130 3 19 1.000 0.018 23
PAO 32 + 1 wt% IL3 + 0.1 wt% GnP 0.0783 0.0039 15 241 3 7.3 131 3 18 1.100 0.018 15
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Fig. 6. 3D-Optical micrographs (10x) of the wear track at the disk surface lubricated by PAO 32 (a) and PAO 32 + 1 wt% IL2 + 0.05 wt% GnP (b) at room temperature.

Fig. 7. Wear scar width (lm) at the surface of the disks using different lubricants, and the corresponding reduction (%) compared with PAO 32 base oil performance at room
temperature.
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between 0.05 and 0.24%, i.e., one to four times the density uncer-
tainty. The average absolute rise in density over the whole temper-
ature range is plotted in Fig. 3, where it can be seen that the largest
contribution to this increase is due to the hybrid additive GnP/IL2,
the IL with the shortest anion and cation alkyl chains ([P2,4,4,4]
[DEP]).

Fig. 4 shows the average absolute rise in viscosity over the
whole temperature range. For all dispersions, the viscosity values
were slightly greater than those of PAO 32 values. The average
increase due to GnP and to both GnP and ILs addition, ranged
between 2.2% and 6.6% (the uncertainty of the viscosity values is
1%). The highest average relative dynamic viscosity increment cor-
responds to PAO 32/IL2/0.1%wt GnP nanodispersion. Table S3
reports the viscosity index, VI, of PAO 32, the mixtures and nan-
odispersions. VI changes were small, ranging from �1.7% to 0.53%.
3.3. Friction behavior and lubrication regime

The average friction coefficient values (l) of the three trials
measured for each lubricant at room temperature are plotted in
Fig. 5 and reported in Table 2. All additives enhanced the antifric-
tion behavior of PAO 32, specifically friction coefficient values
6

range from 0.059 to 0.088 corresponding to reductions of 36 to
5%, respectively. 0.1 wt% GnP individual addition resulted in the
lowest efficient nanolubricant with 5% reduction, whereas the
most effective antifriction nanolubricant was PAO 32 + 1 wt%
IL2 + 0.05 wt% GnP (36% reduction). The hybrid combinations of
PAO 32/ILs/GnP improved the friction reduction of the correspond-
ing binary PAO 32/GnP nanolubricants. Interestingly, the hybrid
dispersions with low concentrations of GnP (with 0.05 wt% GnP)
are more effective than those of 0.1 wt% GnP. Optimal graphene
derivative concentrations in oils have been found in recent years
[8,59–62].
3.4. Surface analysis and wear behavior

3D optical images of disk wear scar tested with PAO 32 and PAO
32 + 1 wt% IL2 + 0.05 wt% GnP at room temperature obtained with
the 3D optical profiler are shown in Fig. 6. As can be observed, the
wear scar on the plate is slightly wavy, indicating that plastic flow
occurs [8]. Table 2 displays the averages of wear scar width
(WSW), cross-section area, and of the maximum depth of the wear
track (WTD) calculated from the disk surface analysis. All the aver-
age values were obtained from three repetitions. Fig. 7 shows the



Fig. 8. Wear track cross section profile at the lubricated disk surfaces for PAO 32
and PAO 32/1 wt% IL/0.05 wt% GnP.
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average WSW values and the reductions for all the mixtures and
nanodispersions with respect to the WSW corresponding to the
wear scar lubricated with PAO 32 without additives. This base oil
showed the maximum WSW, 260 lm, followed by lower values
for all the lubricants containing one type of additive with 243,
245, 248, 249 and 250 lm corresponding to PAO 32 + 0.05 wt%
GnP, PAO 32 + 0.1 wt% GnP, PAO 32 + 1 wt% IL2, PAO 32 + 1 wt%
IL1, and PAO 32 + 1 wt% IL3, respectively.

The hybrid combination of ILs and GnP resulted in additional
reductions of WSW, cross section area, and maximum depth. This
performance was enhanced when low concentrations of GnP were
added to the lubricant. Thus, in terms of WSW, the addition of
0.05 wt% GnP instead of 0.1 wt% GnP slightly improved anti-wear
capabilities from 7.7%, 9.6% and 7.3% to 12%, 13% and 12% for nan-
odispersions containing IL1, IL2 and IL3, respectively. Fig. 8 shows
the 2D profiles of the grooves inside the lubricated disks for PAO 32
and the hybrid nanolubricants PAO 32/1 wt% IL/0.05 wt% GnP, with
the lower scar corresponding to PAO 32/IL2/GnP.

SEM images of the worn disks lubricated with PAO 32, the mix-
tures and hybrid nanodispersions are shown in Figs. S1-S3. In all
Fig. 9. Average Roughness values (Ra) at the contact surface of the d
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the cases smooth surfaces without signs of plowing or abrasion
were obtained, although plastic deformation is observed in agree-
ment with the 3D profiles (Fig. 6). This fact agrees with previous
results obtained by Pamies et al. [63], who studied the antiwear
performance of ionic liquid + graphene dispersions finding that
graphene prevents the formation of large abrasive particles.

The 3D Optical Profiler, under 4287 ISO standard and Gaussian
filter of long wavelength cut-off equals 0.25 mm, was also used to
measure the average roughness (Ra) value of the wear scar surface
of the lubricated disks. Ra measured values are plotted in Fig. 9. As
shown, the worn surfaces lubricated with the three mixtures and
the eight nanolubricants displayed lower roughness than that of
PAO 32. The most significant Ra reductions were achieved by using
1 wt% ILs/ 0.05 wt% GnP as hybrid additives into the base oil. Ra
was reduced in comparison to PAO 32 37, 36 and 35% for IL2, IL1
and IL3, respectively. Hence for smoothing the contact surfaces,
1 wt% ILs/0.05 wt% GnP as hybrid additives present better positive
synergies than 1 wt% ILs/0.1 wt% GnP (Fig. 9).

Raman spectra and elemental mapping of the compounds found
on the worn surfaces lubricated with the base oil, the mixtures and
the nanodispersions were performed at a wavelength of 532 nm.
PAO 32 and the three ILs have very similar spectrum shapes [49].
Therefore, to analyze exactly which material is presented at the
worn surface, the most dissimilar peaks were identified to distin-
guish between PAO 32 and the ILs. All mappings (Figs. 11 and S4-
S13) showed areas where the spectrum coincides with that of PAO
32 (blue areas), areas where the spectrum corresponds to carbon
(in red)whichwouldbedue to carbonizationof thebase oil at sliding
surfaces, resulted from local high temperature [64] or during Raman
spectrum tests, as well as areas corresponding to iron oxides (in
green). Generally, oxides were observed for all the worn surfaces.

Neat PAO 32. Raman spectra reveals formation of boundary tri-
bofilms composed of iron oxides, carbon, and the oil itself. This
result is compatible with that obtained by Ratoi et al. [65] who per-
formed tribological tests in a ball-on-disk setup test rig, using a
similar tribo-pair. These authors concluded that, among other
effects, a tribofilm is built through oxide formation and lubricant
degradation on the wear track leading to smoother wear. Through
X-ray photoelectron spectroscopy they observed that those tri-
bofilms are mainly formed by carbon, iron, and oxygen. Khodor
isks lubricated by the different lubricants at room temperature.



Fig. 10. Raman spectra and element map combination at the worn surface lubricated by: (a) PAO 32 and (b) PAO 32 + 1 wt% IL2 + 0.05 wt% GnP at room temperature.
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et al. [49] also found, using Raman mappings for a worn surface
tested with PAO 32, areas with iron oxides and carbon for different
specimens tested at 353.15 K.

PAO 32/IL mixtures. The three PAO 32/IL mixtures improve the
tribological performance of neat PAO 32. The best antifriction
and antiwear capabilities correspond to the mixture with IL2,
[P2,4,4,4][DEP]. From the three ILs evaluated, IL2 has the shortest
alkyl chains in both anion and cation, being linear for both ions.
As regards to Raman results (Figs. S4-S6), IL protective tribofilms
(pink areas) were observed and likely formed through the tribo-
chemical reaction with rubbing surfaces. No stronger differences
on these area sizes were observed either in the worn surface lubri-
cated with mixtures containing IL2 and IL3, being smaller for IL1.
Furthermore, IL addition to PAO 32 reduces the presence of iron
oxides (green areas of the mappings) on the worn surface. The fol-
8

lowing trend was observed for the size of these areas IL3 < IL2 < IL1.
Hence, the most significant mechanisms of the tribological behav-
ior of PAO 32/IL mixtures is the tribofilm formation due to the IL
and the iron oxides. Similar behavior was obtained by Nasser
et al. [49], who performed similar tests at 353.15 K, finding iron
oxide areas slightly higher for IL2 and IL3 mixtures and slightly
lower for IL1.

PAO 32/GnP nanodispersions. GnP nanoadditives improve the tri-
bological performance of PAO 32. This enhancement is nonetheless
higher in the case of the dispersion with the lower GnP content.
Thus, the optimum composition in GnP is 0.05 wt%. However, the
size of the GnP areas (yellow, Figs. S7 and S8) of the Raman map-
pings of worn surfaces tested with PAO 32/0.1 wt% GnP are higher
than the corresponding areas for the disk lubricated with PAO
32/0.05 wt% GnP. The mechanisms of the tribological enhance-
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ments of GnP are the tribofilm and mending effects, which reduce
the roughness of the worn surface around 30% (Fig. 9) in compar-
ison to that tested with neat PAO 32.

IL/GnP synergies as hybrid additives. As aforementioned, PAO 32/
IL/GnP hybrid dispersions enhance the tribological performances of
both, the corresponding mixtures, and the corresponding binary
dispersions. A similar behavior was obtained by Liñeira del Río
et al. [11]. These authors found positive synergies between IL2
and GnP or h-BN nanoparticles. As regards Raman mappings
(Fig. 10b and S9-S13), the presence of hybrid additives reduces
the oxide area sizes (green), especially for PAO 32 + 1 wt%
IL1 + 0.05 wt% GnP and PAO 32 + 1 wt% IL2 + 0.05 wt% GnP. For
nanoadditive distribution (yellow areas) on the worn surfaces
lubricated by PAO 32/IL/GnP, the higher the GnP content, the
greater the area. Regarding IL tribofilms (pink) no strong differ-
ences in area sizes were observed, being slightly higher for PAO
32 + 1 wt% IL2 + 0.05 wt% GnP.

Boundary tribofilms composed of ILs, iron oxides, carbon and
the oil itself evidenced by Raman microscopy, prevent the direct
contact of the mating surfaces, acting as outstanding stress reduc-
ers by producing smoother wear tracks during friction tests, due to
the presence of GnP which act as an efficient stress releaser when
load is applied and easily slides due to weak interlayer bonds with-
out fracture [66], but also due to phosphonium ILs which react
with the surface to form protective tribofilms [67–69].
4. Conclusions

The hybrid combination of different concentrations of GnP
nanoparticles and three phosphonium based ILs as additives to
PAO 32 base oil for a steel-steel contact at room temperature and
mixed conditions was investigated. Stability, and both thermo-
physical and tribological properties were analyzed. The Raman
analyses performed on the worn surfaces of the plates reveal the
presence of protective tribofilms that contain GnP and ILs.

The final goal of these fundamental studies is to provide the
industry with knowledge about reliable additives that can be used
in real applications. With this goal in mind, PAO 32/IL2/0.05 wt%
GnP dispersion is not the best option since it worsens the stability
of the corresponding PAO 32/GnP dispersions. Moreover, IL2 is the
additive that led to the most viscosity rises. Furthermore, IL2 has
another weakness: it is corrosive in humid environments [49].
Results show that the addition of both 0.05 wt% graphene nanopla-
telets and 1 wt% of any of the ILs (IL1 or IL3) containing the cation
[P6,6,6,14]+ gives rise to the hybrid lubricants with the best com-
bined capabilities. Consequently, and considering that the tribolog-
ical performance of hybrid dispersions PAO 32/IL/0.05 wt% GnP
containing IL1 and IL3 (both with the cation [P6,6,6,14]+) also
improve the tribological behavior of PAO 32, either one could work
as potential anti-friction and anti-wear additives for PAO 32.
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