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Abstract: In the last few decades, the field of nanomedicine applied to cancer has revolutionized
cancer treatment: several nanoformulations have already reached the market and are routinely being
used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene
therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because
of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the
lack of models that would allow for an improvement in the understanding of how nanocarriers
can be tailored to overcome them. Zebrafish has important advantages as a model species for the
study of anticancer therapies, and have a lot to offer regarding the rational development of efficient
delivery of genetic nanomedicines, and hence increasing the chances of their successful translation.
This review aims to provide an overview of the recent advances in the development of genetic
anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on
their mechanisms of action and overall potential in oncology.
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1. Nanotechnology Provides Innovative Approaches to Cancer Management

In recent decades, an increasing understanding of the molecular and biological basis of cancer and
the discovery of novel technologies has led to improvements in cancer survival. The development of
early detection tools and targeted treatments, as well as changes in patients’ lifestyle, have contributed
to this higher rate of cancer survival. The development of new nanomedicines for cancer treatment is
an interdisciplinary research field that includes biology, chemistry, engineering, and medicine, with a
clear goal: advancing cancer detection, diagnosis, and treatment.

Different types of nanocarriers, including liposomes and other lipid-based nanosystems,
polymer-based nanoparticles, micelles, polyplexes, dendrimers, polymersomes and drug/protein
conjugates have been proposed during the last few decades in cancer research [1–11]. For cancer
treatment, the goal is to enhance the efficacy and decrease the toxicity of the current therapeutics
by altering their pharmacokinetic profile, increasing their solubility and stability in biological fluids,
augmenting their accumulation in tumors, and reducing their toxicity. Biological drugs, such as gene
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therapies, peptides and proteins, can also benefit greatly from the application of nanotechnology
that could protect them from premature degradation and facilitate their access to the intracellular
compartment [12–15]. Liposomes are the most common type of nanostructure that have translated
into marketed products [16–21]. Back in 1995, the US Food and Drug Administration (FDA)
approved the first nanoparticle for cancer treatment, Doxil©, a liposomal nanoparticle loaded with
the chemotherapeutic drug doxorubicin [22]. Since then, other nanotherapeutics based on liposomes
have reached the market such as Pegylated liposomal doxorubicin (Doxil©/Caelyx©), liposomal
cytarabine (DepoCyt©), Daunorubicin citrate Liposomes (DaunoXome©), liposomal doxorubicin
(Myocet©), Vincristine Sulfate Liposomes (Marqibo©), liposomal irinotecan (Onivyde©). Paclitaxel
polymeric nanoparticles (Opaxio©), pegylated L-asparaginase polymeric nanoparticles (Oncaspar©),
leuprolide acetate polymeric micelles (Eligard©), oxaliplatin micelles (Eloxatin©), polymer–protein
conjugate pegfilgrastim (Neulasta©), albumin-paclitaxel (Abraxane©), Denileukin diftitox (Ontak©),
Brentuximab-Monomethyl auristatin E (MMAE) (Adcetris™), and Trastuzumab-Emtansine (Kadcyla©)
are examples of different types of nanostructures that have led to products already in clinical use.

Apart from their use in the possible development of nanotherapeutics, nanoparticles are also
useful tools in the diagnosis field, due, in the case of inorganic nanoparticles, to their intrinsic
properties that allow a direct tracking, and, in the case of organic nanoparticles, to their ability
to accommodate/encapsulate different molecules and contrast agents for imaging applications.
Many contrast agents are currently being studied with this goal in mind, including super-paramagnetic
iron oxide nanoparticles and ultra-small super-paramagnetic iron oxide nanoparticles, heavy
metal (i.e., gold, lanthanide, and tantalum) nanoparticles, technetium-99m (99mTC) sulphur
colloid nanoparticles, I-labeled cRGDY silica nanoparticles, surface-enhanced Raman scattering
nanoparticles, and single-walled carbon nanotubes. Organic nanoparticles such as liposomes, micelles,
and nanoemulsions can, for example, encapsulate super-paramagnetic iron oxide nanoparticles, or be
radiolabeled with radioisotopes such as 89Zr, 111In, 18F, 64Cu or 68Ga for molecular imaging [23–26].
The imaging modalities currently available experimentally are: ultrasound, magnetic resonance
imaging (MRI), optical imaging, molecular imaging, computed tomography (CT), positron emission
tomography (PET), and single-photon emission computed tomography (SPECT). However, in
clinics, the most used modalities for whole-body imaging are CT, MRI, PET and SPECT. For
organ-specific examinations, ultrasounds are of preference since they are faster and less expensive,
while, for superficial lesions, endoscopic, and intraoperative procedures, optical and photo-acoustic
applications are more suitable [27,28].

Finally, nanoparticles also have a great potential as nanotheranostics, i.e., multifunctional
nanoparticles that combine, into a single entity, elements for therapy and for diagnosis.
Nanotheranostics have been explored for applications combining different imaging modalities
and therapeutic applications, such as photodynamic therapy, photothermal, phototriggered
chemotherapeutic release, ultrasound triggered, electro-thermal, magnetothermal, X-ray,
and radiofrequency therapies [27,29]. Moreover, nanotheranostics are gathering great interest
because they might provide a deeper understanding of key aspects that could make a nanoparticle
formulation successful—such as drug release kinetics and penetration of nanocarriers within
tumors—monitoring therapeutic responses, as well as allowing the implementation of novel strategies,
such as imaging-guided local therapy [30,31]. To date, there is only one formulation undergoing clinical
trials (Phase I) for the treatment of multiple brain metastases, AGuIX® (Activation and Guidance
of Irradiation by X-ray), a gadolinium-based nanoparticle of around 5 nm diameter, developed
mainly for imaging applications due to its magnetic resonance contrast properties. However, when
it is combined with X-ray radiation, it increases three-fold the radiotherapy effectiveness in mice,
playing a double role, as radiosensitizer and as imaging agent (NCT02820454) [32,33]. We believe
that nanotheranostics have a lot of potential in cancer management, and could definitively make an
impact in the clinical practice by, concurrently, diagnosing the disease, helping patients stratification,
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guiding focal therapy, tracking drug release and penetration within tumors, monitoring response, and,
if required, switching treatments.

2. Genetic Nanomedicines and the Main Challenges for Their Translation to the Clinic

Advances in genetics and molecular biology have led to the development of new therapies that
can specifically modulate the expression of relevant genes in order to correct abnormalities and restore
their original biological function. Some of the strategies of gene therapy include (i) silencing oncogene
expression, (ii) promoting tumor-suppressor genes, (iii) correcting mutations, (iv) suicide gene therapy,
(v) suppressing tumor angiogenesis, and (vi) activating an immune response against tumor cells.
For these purposes, plasmid DNA (pDNA), minicircles (supercoiled circular DNA), oligonucleotides
(ASOs, decoys, aptamers), RNA interference (short-hairpin (shRNA), small interfering RNA (siRNA)
and microRNA (miRNA)) are being extensively explored [34]. However, because naked nucleic acids
are vulnerable to enzymatic degradation, rapid clearance, and non-specific biodistribution, only low
gene expression efficiencies can be achieved. Hence, the primary challenge of gene therapy is to
develop effective carriers able to protect the nucleic acids and facilitate their internalization into the
targeted cells at the targeted site [35].

Traditionally, vectors for gene therapy applications are divided into viral and non-viral carriers.
Most gene vectors (~69%) currently undergoing clinical trials involve viruses (i.e., retroviruses,
lentiviruses, adenoviruses, and adeno-associated viruses). In August 2017, the FDA approved
the first gene therapy in the United States, Tisagenlecleucel (Kymriah©) from Novartis Pharma
AG (Basel, Switzerland), for certain pediatric and young adult patients with a form of acute
lymphoblastic leukemia whose first-line drugs have failed [36]. This pioneer gene therapy—based
on a self-inactivating lentiviral vector that contains extensively modified sequences from HIV-1 so
as to deliver chimeric antigen receptor (CAR)-encoding sequences into T cells to target and kill
leukemia cells with specific antigen (CD19) on the surface—achieves an overall remission rate of
83% (52/63) in this patient population [37]. Despite these advances, many concerns still remain
regarding the use of viral vectors, such as their potential immunogenicity, the possibility of reversion
to the virulent form or the viruses, and also their high production costs [35]. Alternative synthetic
vectors, made out of natural, semi-synthetic or synthetic materials, offer a safer alternative to introduce
genetic materials into the targeted cells. Numerous non-viral gene delivery systems for different
types of nucleic acids (mainly pDNA, siRNA and miRNA) have been described to date [34,38].
Different applications for the development of novel anticancer genetic nanomedicines have similarly
being explored, including suicide gene therapies, anti-angiogenic gene therapies, immunotherapies,
restoration of oncosuppressor RNAs, or gene silencing of oncogenes, or specific non-coding RNAs
(antagomirs), or proteins involved in resistance to chemo- and radio-therapies, anti-apoptotic proteins,
epigenetic regulation, etc., as recently reviewed by Bottai et al. [39]. The main preclinical studies of
the different applications of nanoparticles for gene therapy reported successful in mice models are
summarized in Table 1 (reporter genes and experiments referring to over expression/silencing of
housekeeping genes are not included).

Table 1. Main studies to date of genetic nanomedicines that have had relevant therapeutic effects on
different types of cancer in mice models.

Nanocarrier Gene Vector Target Indication Administration
Route Ref

Liposomes

miRNA Restoration of oncossuppressor Breast cancer Tail vein [40]
siRNA EpCAM silencing Breast cancer Tumor adjacent [41]
siRNA Anti-angiogenesis Breast cancer Intratumoral [42]

miRNA Restoration of oncosuppressor Hepatocellular
carcinoma Intratumoral [43]

shRNA WT1 silencing Melanoma Tail vein [44]
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Table 1. Cont.

Nanocarrier Gene Vector Target Indication Administration
Route Ref

Polymeric
nanoparticles

pDNA Anti-angiogenesis Colon cancer Tail vein [45]
pDNA Induce apoptosis Ovarian cancer Intraperitoneal [46]
pDNA Suicide gene therapy Ovarian cancer Intraperitoneal [47]
pDNA Immunotherapy Colorectal cancer Intratumoral [48]
pDNA Suicide gene therapy Colon cancer Intratumoral [49]

Lipid
nanoparticles

siRNA Androgen receptor silencing Prostate cancer Tail vein [50]

miRNA Restoration of microRNA-26a Lymphocytic
leukemia Intraperitoneal [51]

Dendrimers si/shRNA ITCH silencing Pancreatic cancer Tail vein [52]

siRNA, small interference RNA; shRNA, short-hairpin RNA; pDNA, plasmid DNA; miRNA, microRNA; EpCAM,
epithelial cell adhesion molecule; WT1, Wilms Tumor 1.

Recent advances in non-viral gene vectors regarding efficiency, specificity, safety and gene
expression durability have led to an increase in the number of nanoparticle-based gene delivery vectors
in clinical trials while the number of viral vectors have dropped significantly [53]. Some examples in
cancer are related to liposomes for siRNA, microRNA or pDNA delivery (NCT01591356, NCT01829971,
NCT01489371, NCT02340156); lipid nanoparticles (NCT02314052, NCT01437007) or polymeric
nanoparticles (NCT02956317) [54]. Unfortunately, non-viral vectors have not reached the market yet.

The design of successful synthetic nanovectors poses a big challenge since they need to
overcome important biological barriers. Nanovectors need (i) to be safe and adequate for parenteral
administration, (ii) efficiently protect nucleic acids from degradation, and (iii) promote their access
to the target intracellular compartment in the target cell (depending on the selected gene therapeutic
system, i.e., plasmid DNA, RNAi, non-coding RNA (ncRNAs), oligonucleotides, etc.), in enough
amounts to mediate a therapeutic effect (depending on the potency of the molecule, specificity, and
stability) [34,55–58]. All these aspects should be taken into consideration from early development
to increase the chances of translation into early-phase clinical trials [11,59–61]. The development of
functional assays and the selection of adequate animal models for therapeutic evaluation are also key
steps that critically affect the outcome of the preclinical evaluation.

Although a number of gene-delivery nanovectors have been claimed to be efficient, most
of the studies have been done in vitro, on immortalized cancer cell lines, and only a few
have actually addressed the therapeutic outcome in vivo. While in vitro experiments include
evaluation of toxicity (e.g., MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide),
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)
or trypan blue staining assays), transfection efficiency (e.g., internalization of fluorescent
nanoparticles/nucleic acids by confocal microscopy or/and flow cytometry), gene expression (e.g.,
RT-PCR, western blot, or ELISA assays), and sometimes functional assays (e.g., evaluation of cell
proliferation, migration and invasion, colony formation, angiogenesis, and apoptosis), in vivo reports
in animal models (mainly rodents) are mostly limited to measuring a therapeutic effect in terms of
tumor growth, providing only a yes or no answer. Therefore, the causes behind the therapeutic failure
are not well understood. In our opinion, it is necessary to learn more about the in vivo performance
of genetic nanomedicines, and to incorporate functional assays in animal models, in order to speed
up the translation of genetic nanomedicines to a clinical setting. Novel tools and models that would
allow fast and low-cost comparative studies for the rational optimization of genetic nanomedicines are
urgently needed.

3. Zebrafish as a Model Species

Zebrafish (Danio rerio) is a freshwater fish belonging to the Cyprinidae family, common in the
river Ganga basin on the Indian sub-continent. Zebrafish has some well-known characteristics that
makes it really attractive as a model for human diseases [62–65]. In fact, it has achieved the status
of model species, and been presented as an extraordinary complement to murine models, and a
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promising alternative [64]. For one, zebrafish’s maintenance is affordable in terms of feasibility and
costs. Moreover, adult individuals are small in size (2.5–4 cm), which makes the space requirements
not very demanding. In addition, it has high fecundity and fertilization rates (up to 200 fertilized eggs
per mating pair and week), and presents external fertilization, which allows for performing directed
crosses, as well as in vitro fertilization. It also presents relatively short generation times—around three
months. Finally, the genome of zebrafish, whose complete DNA sequence was published in 2013 [66],
shows approximately 70% of homology with the human genome, and 82% of orthologous human
disease-related genes.

Zebrafish embryos are particularly interesting for biomedical applications [67,68]. As early as
48 h post fertilization (hpf), embryos raised at 28.5 ◦C hatch from the chorion (external and acellular
protective membrane), and become free-living animals with a complete body pattern, and almost
completely functional organs [69]. At this time, the innate immune system is already active [70],
but the adaptive immune system will not be fully operating until 4–6 weeks post fertilization (wpf) [71],
although expression of some genes of the adaptive immune system starts as early as eight days post
fertilization (dpf) [72]. Therefore, the results of analyses carried out during the embryo-larval phases
can be traced back to the innate immune system.

Zebrafish embryos are robust and can survive different procedures right after fertilization,
including genetic manipulation, morpholino [73–75] or ribonucleoprotein (CRISPR/Cas) [76–79]
microinjection at single cell stage, as well as cancer cell xenotransplants [80–85]. In addition, they are
transparent, which gives them a definite advantage in many fields of study, because it makes
possible, for example, to examine the development of internal structures, and the tracking of the
movements and biodistribution of labeled particles (microorganisms, cells, nanoparticles . . . ) in real
time [85–88]. Visualization can be hampered by the early production of melanin during their embryonic
development, as early as 24 hpf (prim5 developmental stage). However, melanin production can be
easily blocked by treating the embryos with 1-phenyl 2-thiourea (PTU) [69]. Additionally, the small
size of zebrafish embryos (assays can be performed in 96 or, less suitably, in 384 multi-well plates),
and the fact that they can live in small volumes (so that low quantities of the tested compounds are
required) make this a suitable model for high-throughput analyses [89,90]. An adult also transparent
line (casper) was developed [91], which allows for carrying out similar analyses in adults [92–94].

Finally, the European Food Safety Administration [95] has stated that fish in these early
developmental stages, up to 5 dpf, are less likely to experience pain, suffering, distress, or suffer
lasting harm, in accordance with the 3Rs Principles (replacement, reduction, and refinement) for
humane animal research [96].

Therefore, taking all these facts into consideration, zebrafish has been accepted as a suitable model
for biomedical purposes, for it could provide results faster than research on non-transparent, less
prolific, more time-consuming, and expensive rodents, and improve the biological interpretation of the
results compared to working on invertebrate models, which are phylogenetically further from human
beings, and from in vitro analyses, which lack body interactions.

4. Zebrafish Is Currently Being Used for the Development of Anticancer Therapeutics

The pathological mechanisms underlying cancer are some of the most challenging processes to
understand because of their variety and complexity. Zebrafish is considered a complementary model
to murine and other previous models for the study of the genetic basis of cancer and for the evaluation
of carcinogenic and novel antitumoral compounds in drug discovery [97–108].

Zebrafish has proven to be a good model to predict adverse drug effects during animal preclinical
and human clinical data [109]. This is because many of the cellular and molecular mechanisms involved
in zebrafish’s response to toxicity or stress are similar to those of mammals [110,111]. The publication
of the DNA sequence of the zebrafish genome confirmed that relevant molecular pathways, including
those implicated in cancer, are similar to those of mammals [66], which made zebrafish an attractive
choice for cancer research [67,106,112,113]. A parallel approach for modeling cancer has been the (xeno)
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transplant of human cancer cells into zebrafish embryos, which led to the development of the so-called
xenografted embryos. The proliferation, spreading and metastasizing of microinjected cancer cells is
possible because the zebrafish embryos lack an adaptive immune system. Since the first successful
model in 2005 and further improvements in 2006 [80,114], different xenograft zebrafish models have
been reported bearing either commercial human cancer cell lines or primary tumor cells, including
cancers from different origins (i.e., melanoma, breast carcinoma, colorectal, pancreatic, ovarian, kidney,
lung, oral, prostate, leukemia, etc.) [80,82,85,115–119].

As indicated above, zebrafish cancer models have been used for novel drug screening, as well as
for reanalysis of known drugs [97,100,105–108,113,120]. Nevertheless, due to the nanotechnology
revolution on anticancer drug delivery, as stated in Section 1, recent studies also highlight the
potential of zebrafish for the evaluation of novel anticancer nanomedicines. Most studies measured the
toxicity and safety of blank nanoparticles (i.e., prior to drug incorporation) using different procedures,
but also covered morphological descriptions of zebrafish after administration of sub lethal doses,
and experiments of gene expression [68,121–123]. Taking advantage of the embryo transparency,
biodistribution studies have also been performed to determine the ability of the nanocarriers to reach
the target site, and even surpass complex biological barriers, such as the blood–brain barrier [124–126].
Apart from determining these critical parameters, the zebrafish xenograft model has also been
proven useful in the study of the interaction between drug-loaded nanocarriers and xenografted
cells, for example when studying a possible reduction in the population of cancer cells [68,127–129].
Among others, it is worth mentioning Yang and collaborators’ studies [129] that describe the interaction
of targeted doxorubicin-loaded liposomes with HeLa cells, and the efficiency of this strategy in a
xenograft model of zebrafish, and also the work of Evensen and collaborators [127] that describes the
ability of PEGylated nanocarriers to avoid uptake by macrophages, a fact that translates in improved
circulation times and increased accumulation into the tumors. Figure 1 depicts a visual example
of liposomes labeled in green and distributed along the fish blood vessels upon injection into the
circulation (A) and their subsequent uptake by macrophages labeled in red (yellow dots).
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Figure 1. Green-labeled liposomes, injected into the circulatory system of wild type zebrafish embryos
(A), allows the visualization of the fluorescent liposomes in the fish vasculature. On the right, the tg
(mpeg1mecherry) model (B) shows the uptake of the fluorescent green liposomes by fluorescent
red circulating macrophages (yellow dots). Imaging adapted from the work of Evensen et al. [127]
with permission.

5. The Potential of Zebrafish for Increasing the Translation of Genetic Anticancer Nanomedicines:
Barriers and Models

Apart from the use of zebrafish for the development of novel cancer therapeutics, including
nanotherapeutics, only a few studies have been reported using this model to test preclinical genetic
nanomedicines [130–132]. The first study found in the literature evaluates a synergistic therapy based
on the co-encapsulation of a pigment-epithelium-derived factor (PEDF) plasmid with paclitaxel, a small
molecular chemotherapeutic drug, into poly(lactic-co-glycolic acid) (PLGA) nanoparticles, in a transgenic
zebrafish model Flk-1:eGFP. The results showed an active targeting that translates into an effective
and safe antiangiogenic therapy [130]. The second example covers the development of a retro-inverse
amphipathic RICK (retro-inverse form of the CADY-K peptide) peptide as novel non-covalent siRNA
carrier. The designed nanoparticles show an effective siRNA protection, based on the specific protease
resistant peptide sequence. The authors investigated the effect of a polyethylene glycol (PEG) grafting to
RICK nanoparticles on their in vitro and in vivo capacity to deliver siRNA. In vivo assays performed in
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Casper zebrafish followed the biodistribution of fluorescent-labeled nanoparticles after injection at the
one-cell stage in zebrafish embryos. The authors described a modular, easy-to-handle drug delivery system
that could be adapted to other types of functional moieties in order to develop safe and biocompatible
delivery systems for the clinical application of RNAi-based cancer therapeutics [131]. Finally, Cordeiro
et al. [132] reported the design of a gold nanobeacon able to silence enhanced green fluorescence protein
(EGFP) in embryos of a fli-EGFP transgenic zebrafish line. Results in this model allowed the authors to
conclude that they have developed a biocompatible and efficient nanoplatform for gene silencing purposes.

As illustrated in Figure 2, a closer evaluation of the in vivo performance of genetic nanomedicines
and a detailed study of their ability to overcome the critical barriers that might hamper a successful
therapy are key factors in order to speed up their translation to clinic.

Next, we describe the most relevant barriers to gene delivery, and the zebrafish models that, in our
understanding, can be useful for a rational design of successful anticancer genetic nanomedicines (compiled
in Table 2).
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performing several assays of interest such as (i) evaluation of the toxicological profile, (ii) determination
of the stability and half-life circulation of nanomedicines inyected in the fish circulation system,
(iii) study of the ability of nanomedicines to extravasate, difuse, penetrate into the tumor, and interact
with the targeted cells, and (iv) functional assays to test the potential and the efficacy of the proposed
nanomedicines. The two images on top correspond to a zebrafish embryo (left), and to nanometric
(~100 nm) lipidic nanoemulsions observed by atomic force microscopy (AFM) (right). Images in the
low part of the figure correspond, from left to right, to 48 hpf malformed zebrafish embryo due to toxic
effects of nanocapsules (image reproduced with permission from Teijeiro-Valiño et al. [88], fluorescent
DiD-labelled lipidic nanoemulsions (blue) injected into the fish circulation system and observed under
a fluorescence microscope (images adquired at 48 h post-injection), fluorescent nanoparticles (red) able
to extravasate blood vessels (green) in a zebrafish model (image obtained by confocal microscopy by
Zou et al. [133], and reproduced with permission), and fluorescent DiD-labelled lipidic nanoemulsions
(red) able to interact with cancer cells (green) in xenotransplanted zebrafish embryos (HCT116-GFP)
after yolk microinjection.
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5.1. Toxicity

Despite the ability of the nanoparticles to reduce the side effects of the associated drugs, adverse
effects due to the nanoparticles themselves have been reported in some clinical studies, including
immunotoxicity (allergy, hyper-sensitivity, and immunosuppression), acute toxicity (i.e., single-dose
studies), subacute toxicity (i.e., repeated-dose studies or semi-chronic toxicity studies), carcinogenicity,
reproductive toxicity, developmental toxicity, genotoxicity, hepatotoxicity or epigenotoxicity [134–139].
Nanoparticles may also activate innate immunity responses in the body and, as a consequence, they can
mediate an uncontrolled delivery of pro-inflammatory mediators (anaphylatoxins) that could nullify
the therapeutic effect of the nanocarrier and, even worse, promote tumor growth [140]. In the case
of genetic nanomedicines, they typically contain cationic elements to improve their association with
the anionic nucleic acids. These positively charged biomaterials have also been related to toxicity and
off-target unspecific effects after transfection. Toxicity in preclinical studies relies mainly on simple
and conventional tests (e.g., MTT assay), and, in some cases, systemic toxicity in vivo (e.g., serological
and biochemical analysis of blood samples in mice). Therefore, it is clear that toxicity needs further
attention before we can proceed to clinical studies.

As mentioned in Section 4, zebrafish is widely used for the evaluation of the adverse effects
of drugs, and to determine the activity of antitumor compounds [97–108]. It could also be used to
determine the preclinical toxicity of nanocarriers for gene delivery purposes. The most common and
simple toxicity studies in wild type zebrafish relate to acute and chronic effects. Protocols for these
studies have already been approved by the Organization for Economic Co-operation and Development
(OECD). To determine zebrafish embryo toxicity, post fertilization embryos are placed in a static plate
and exposed to the compound. The rate of morphological changes is one of the endpoints used to
generate dose response curves [141,142]. The toxicity of several types of nanoparticles, mainly inorganic
nanoparticles, has already been determined in zebrafish using this test [68,104,127,143,144]. One
important parameter for toxicity evaluation is the hatching efficiency because nanoparticles can interact
with hatching enzymes [145]. Zebrafish is also a versatile organism for genotoxicity studies [146–149],
developmental and behavioral analysis [150–153], immunotoxicity [154,155], neurotoxicity [156,157],
and reproductive toxicity studies [158]. For example, in experiments with transgenic lines, such as
Tg(flk1:eGFP), Tg(cmlc2:eGFP), Hsp70:eGFP, ARE:eGFP, FLI-1, and Nacre/fli1:EGFP, it was possible
to observe the chemical-induced toxicity of nanocomposites and metal oxide nanoparticles in real
time [159–163].

Zebrafish is also an excellent model to provide novel insights on the interaction between the
immune system and tumor cells [164,165]. Because in zebrafish, macrophages play an important
role in angiogenesis, this model could also be used to develop functional assays related to the
angiogenic process (Section 5.4). A transgenic zebrafish line, mpo:GFP, which expresses GFP under the
neutrophil-specific myeloperoxidase promoter, has also been described and used to study neutrophil
response [166], including the evaluation of oxidative stress and inflammatory responses in neutrophils
following the administration of silica nanoparticles [167]. In addition, studies regarding cardiotoxicity
are also of great importance, among them is worth mentioning the evaluation of effects occurring
immediately after administration and their consequences [153].

5.2. Stability and Half-Life While in Circulation

Preclinical studies sometimes ignore the fact that the electrostatic stability of nanocarriers in vitro
does not guarantee their stability in vivo. Moreover, in many cases, the nanocarrier and the gene
vector are associated by electrostatic interactions. Upon contact with a biological media of high ionic
strength, this system may aggregate, resulting in the displacement of the nucleic acids that could
be prematurely released into the circulation before reaching the target cells. The presence of serum
proteins (e.g., glycosaminoglycans) could have the same effect. Therefore, a thorough study, relevant
in vivo models, of the stability and interactions of the nanocarrier under study could be necessary to
ensure that the associated nucleic acids are not prematurely released into the circulation [168–170].
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On the other hand, nanosystems should also be able to avoid recognition by macrophages, and a rapid
clearance by the mononuclear phagocyte system (MPS), which would lead to their fast removal from
circulation [136].

As stated in Section 2, one of the main advantages of zebrafish embryos and adults from the Casper
line is that they are transparent, and therefore suitable for direct and real-time tracking of fluorescent
nanoparticles into the fish circulation, using high-resolution confocal microscopy [91]. Importantly,
a recent study shows a good correlation among pharmacokinetic data obtained in zebrafish, rat,
and mice, and highlights the potential of zebrafish for this purpose [126]. Different studies carried
out with model nanoparticles, FluoSpheres® and Quantum Dots®, highlight the influence of the
exposure route (waterborne, injection and oral), and surface properties of the nanoparticles on their
biodistribution and tumor uptake [35,171].

One model useful for tracking the circulation of nanoparticles is the transgenic line Fli1:eGFP [127].
This line has allowed for following the distribution and tumor accumulation of PEGylated
nanoparticles. In the same study, the Tg(mpeg1:mCherry) line was selected to evaluate the interaction
of these nanoparticles with macrophages, which led to the conclusion that PEG coating actually
decreased the interaction of the nanoparticles with macrophages. Transgenic lines of macrophages,
neutrophils, and endothelial cells expressing fluorescent markers (see Table 2) have also been used to
watch the interaction between lipid nanoparticles and immune cells [87].

5.3. Extravasation, Penetration into the Tumor, and Interaction with the Target Cells

Nanocarriers should be able to exit the systemic circulation at the action site. Recently, it has
been reported that current animal models fail to predict the accumulation of nanocarriers inside the
tumor, which is actually about 0.7% of the injected dose [172,173]. Thus, animal models that would
allow us to better study the ability of nanocarriers in this step are crucial to ensuring an effective
therapeutic effect [174]. The complexity of the tumor extracellular matrix (ECM) may also restrict
the extravasation of the nanocarriers. Additionally, even if the nanocarriers could cross the tumor
vasculature, they might not be able to penetrate deep enough inside the tumor mass due to the high
interstitial fluid pressure, and might accumulate instead in the peripheral areas, or in the surrounding
healthy tissue [15,175]. Finally, the nanoparticles need to interact with the target cells. Typically,
therapies are directed at tumor cells, but they can also be designed to target cells of the stroma or to
infiltrate immune cells, cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), tumor-associated
macrophages (TAMs), pericytes, endothelial cells, etc. [15,176].

To date, an extensive list of improved zebrafish cancer models has been reported, including
models to study neuroblastoma, brain cancer, eye cancer, leukemia, melanoma, uveal melanoma,
and liver cancer, among others [177]. More complex models to study the mechanisms of tumor cell
dissemination and metastases formation have also been reported [178,179]. For example, the model
Flk1:EGFP has been used to study the metastatic spread after injection of red fluorescent protein
(RFP)-labeled Hela cells in the caudal artery [180]. Other results show how metastatic cell lines have
improved abilities to migrate and proliferate compared to cells isolated from primary tumors [181].
The study of CSC has also been considered in zebrafish models [182,183]. Regarding the study of
the tumor microenvironment (TME), Zhao et al. [184] showed that transforming growth factor beta
(TGF-β) induced a pro-tumor neutrophil cytokine expression pattern in zebrafish, and concluded that
essential mechanisms in the constitution of the TME are conserved in this model.

Regarding the particular evaluation of nanomedicines, several works cover the evaluation of
their ability to accumulate in tumor cells after injection in zebrafish xenografts [125,127,185–187].
Zebrafish can therefore be considered as a dynamic model to study the transport and accumulation
of nanoparticles.
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5.4. Functional Assays

We believe that, when performing functional assays, zebrafish models are very useful for
determining the efficacy of the therapy. Importantly, it is feasible to use xenografts of patient-derived
tumor cells in zebrafish embryos, to perform patient-specific drug screens, and analyze critical
aspects of the tumor, such as growth and proliferation [80], invasion and intravasation [180,188,189],
formation of metastasis [82,190], angiogenesis [190,191], and immune cell response [107]. Hundreds
of embryos can be injected in a single day, and it is possible to exploit the imaging capabilities of the
zebrafish. Cell injections in fish can be performed in the duct of Cuvier, vein, and yolk sac, as well
as pericardially, intracardiaally, and in the brain parenchyma, in order to obtain different read-outs.
For example, since the yolk sac does not communicate with the vasculature directly, it would be a good
model to study metastasis by either invasion or blood borne spreading [118]. Additionally, to study
specific phenomena such as angiogenesis, there are useful transgenic lines, such as Tg(Flk1:EGFP) and
Tg(Fli1:EGFP) with green vasculature, and Tg(Gata1:DsRed) with red fluorescent blood cells [107].
These models allow the study of the distribution and functionalities of nanoscale drug delivery
systems [180]. As an example, one study used curcumine-loaded micelles to test the potential of
zebrafish for developing novel anti-angiogenic and antitumoral therapies [187]. In a different work
using silica nanoparticles, it was possible to observe inhibition of angiogenesis via vascular endothelial
growth factor receptor 2 (VEGFR2)-mediated mitogen-activated protein kinase (MAPK) signaling
pathway [192]. Other authors have claimed a reduction in the number of tumor cells transplanted
into fish, upon delivery of anti-tumor nanomedicines [127,185,186]. Additionally, it would be possible
to determine whether nanoparticles carrying the proposed therapy induce apoptosis: a fluorescent
probe designed to characterize patterns of apoptosis in living zebrafish larvae has recently been
described [193].

Table 2. Selected zebrafish models of potential interest for the biological evaluation of
genetic nanomedicines.

Model Features Application Ref

Wild type From nature, with pigmentation according
to sex, without fluorescence Toxicity, biodistribution, xenograft [194]

Flk-1:eGFP

Fluorescent vascular system Toxicity, biodistribution, xenograft,
angiogenesis, extravasation,

half-life circulation, metastasis

[107,130]
Fli-1:eGFP [107,127,162]

Gata1:DsRed [107]
Nacre/fli1:eGFP [163]

Casper fli Without pigmentation (transparent) and
fluorescent vascular system [91]

Casper Without pigmentation (transparent) Toxicity, biodistribution,
xenograft, metastasis [91]

ARE:eGFP Fluorescence of reactive oxygen species
(ROS) Toxicity [162]

Cmlc2:eGFP Fluorescence in the heart Cardiotoxicity [167]

Mpo:GFP Fluorescent neutrophils Interaction, half-life circulation,
immuno response

[167]
Mpeg1:mcherry Fluorescent macrophages [127]

Hsp70:eGFP Fluorescence of the protein HSP70 stress
product Toxicity [195]

6. Conclusions

We have summarized here the main advances in the field of cancer nanomedicine, and the
increasing interest in the nanotechnology field for the development of safe and efficient anticancer
gene therapies, and highlighted the main limitations of this approach. We have described several
models of zebrafish and discussed assays that, to date, have been applied mainly for other purposes,
such as in cancer biology, toxicology, and drug screening studies, but that, in our opinion, hold an
enormous potential for speeding up the translation of genetic nanomedicines for cancer treatment.
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We are confident that, in the next few years, great advances in the fight against cancer will be made
thanks to this versatile animal model.
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