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ABSTRACT

Supporting Fault-Tolerant

Communication in Networks. (December 2008)

Khushboo Kanjani, B.Tech., Indian Institute of Technology Roorkee, India

Co–Chairs of Advisory Committee: Dr. Jennifer Welch
Dr. Alex Sprintson

We address two problems dealing with fault-tolerant communication in networks.

The first one is designing a distributed storage protocol tolerant to Byzantine failure of

servers. The protocol implements a multi-writer multi-reader register which satisfies

a weaker consistency condition called MWReg. Most of the earlier work gives multi-

writer implementations by simulating m copies of a single-writer protocol where m

is the number of writers. Our solution gives a direct multi-writer implementation

and thus has bounded message and time complexity independent of the number of

writers. We have simulated the complete protocol to test its performance and also

proved its correctness theoretically.

The second problem we address is of providing a reliable communication link

between two nodes in a network. We present a capacity reservation algorithm in the

case for upper bounds on edge capacities and costs associated with using per unit

capacity on any edge. We give a flow based approximation algorithm with cost at

most four times optimal.

To conclude, we design a distributed storage protocol and a capacity reservation

algorithm which are tolerant to network failures.
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CHAPTER I

INTRODUCTION

A. Overview

With the ever increasing applications of computer networks, there is a need to design

better algorithms for communication. Fault-tolerance is one important design aspect

as the network components become more prone to failures with the increase in size

and usage. A network can be modeled as a graph with nodes and edges. Any node or

edge in the network may fail. These failures are broadly divided into two categories :

(a) crash (b) Byzantine. In crash failures the component becomes unresponsive, but

in Byzantine failures the component can return corrupted data.

We deal with both kind of failures in two independent problems. The first one is

designing a distributed storage system tolerant to Byzantine failure of some nodes. A

distributed storage system stores data at multiple nodes and can be accessed concur-

rently by multiple clients. The nodes and clients can be geographically at different

locations. With the increase in internet bandwidth, clients can communicate with the

nodes in real time. This makes a distributed storage system most suitable for large

scale data storage, retrieval and search.

We implement the distributed storage system by a set of servers. One way to

formulate this system is as an implementation of a multi-writer multi-reader register.

The semantics of such a register are defined by a consistency condition. Two of

the common consistency conditions are atomicity and regularity. There is a tradeoff

between the strength of a condition and the cost of implementing it. We discuss

this in more detail in Chapter II. Atomicity is a strong condition and so multi-writer

The journal model is IEEE Transactions on Automatic Control.
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atomic protocols are often complicated and expensive. One way to alleviate this

problem is to look at weaker consistency conditions like regularity which are still

potentially useful. There has been previous work on multi-writer regularity but it

was not fault-tolerant. The objective of our research is to develop a fault-tolerant

implementation of one multi-writer regularity definition. Intuitively because a weaker

condition is being implemented, the new algorithm is cheaper than the known multi-

writer atomic algorithms.

The second problem we address is of reserving capacities on edges in a network

to provide a resilient communication path between two nodes in the network. There

is copious literature in the area of finding min-cost flows, capacity reservation, etc.,

but very few results are tolerant to failures. In this work, we deal with crash failure

of edges. The challenge is to minimize the total cost of capacities reserved as each

edge has a per unit cost of usage. This problem has lately gained attention in the

design of virtual private networks [1].

B. Contributions

The contribution of our research is to give a fault-tolerant implementation of a multi-

writer multi-reader regular register. To the best of our knowledge, this is the first

direct implementation of a multi-writer register which satisfies one of the definitions

of regularity for multiple writers and is tolerant to Byzantine failure of servers. Our

solution has bounded message and time complexity and can tolerate Byzantine read-

ers. There is no upper bound on the number of writers and the storage cost at the

servers is constant. Simulation and theoretical analysis proved the correctness and

desired behavior of the algorithm.

We also present an approximation algorithm to reserve capacities on edges in a



3

network. The aim is to ensure a reliable communication link of two units of capacity

between a source and a destination. At most one edge in the network can fail at any

time. Also each edge has an upper bound on the amount of capacity that can be

reserved and the capacities are to be reserved in integral amounts. Our solution had

a total cost of at most 4 times the optimal solution. To the best of our knowledge,

this is the best know algorithm for this problem.
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CHAPTER II

DISTRIBUTED STORAGE

Distributed storage systems have become a de-facto standard for handling the enor-

mous amount of data on the internet. Some of the issues in these systems are availabil-

ity, high throughput and fault-tolerance. Highly available systems aim to maximize

the time the system is accessible during a given measurement period while through-

put is a measure of the amount of requests handled per unit of time. We focus on the

fault-tolerant aspect in this work. A fault-tolerant storage system guarantees data

availability and integrity in the presence of failures. The two main approaches for de-

signing fault-tolerant systems are replication and erasure coding which are described

below.

Replication: In a scheme using replication, complete data is stored at multiple

servers. When the register value is changed, it has to be updated at all servers

which adds to the communication cost. One of the approaches to reduce this

communication cost is to use Quorum systems. Quorums are subsets of servers

such that the intersection of any two subsets is non-empty. Each read or write

chooses a quorum and accesses only the servers in that quorum.

Erasure Coding: Erasure codes split data into blocks such that a fraction of those

blocks can be used to reconstruct the original data. In a storage scheme based

on erasure coding, each server stores exactly one block of data. Since servers

do not store complete data, this scheme has less storage cost as compared to

a replication based scheme. But it is more difficult to implement especially in

the case of Byzantine failures.
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A distributed storage system can be formulated as an implementation of a shared

read/write register over an underlying network of server nodes. A shared register can

be accessed by multiple processes at the same time.

The behavior of such a shared register is defined by a consistency condition

which is a set of constraints on values returned by data accesses when those accesses

may be interleaved or overlapping. A strong consistency condition like atomicity (or

linearizability) [2] gives an impression of sequential behavior and so it has a high

implementation cost in terms of message and time complexity. Weaker consistency

conditions have lesser implementation cost but can be difficult to program with.

For the case of single writer, Lamport [2] defined three consistency conditions in

increasing order of strengths which are safe, regular and atomic. A safe register

returns the value of the latest preceding write in case of no ongoing writes. There

is no guarantee on what value the register will return when a write is concurrent

with the read. A regular register returns either an ongoing write’s value or the

last completed write’s value. An atomic register gives an impression of sequential

behavior. The consistency conditions safe and regular cannot trivially be extended to

the multi-writer case because the definition of “latest preceding write” is not clear.

Shao et al. in [3] formally extend the definition of regularity in many possible ways

for multiple writers. Our objective is to implement a multi-writer register satisfying

one of those weaker consistency conditions and tolerant to failures. The underlying

model is a set of servers which communicate by message passing. A fraction of these

servers could become non-responsive (i.e. crash failure) or arbitrarily corrupted (i.e.

Byzantine failure). Our approach for fault-tolerance is replication based.

A multi-writer register is more challenging to implement than a single-writer

because of the following issues
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• Deciding timestamp of a new value to be written is not trivial unlike the single

writer case.

• With more than one writer updating the server’s data concurrently and also a

fraction of servers being Byzantine, the reader’s protocol gets complicated.

Because of these reasons, the majority of the fault-tolerant implementations of

multi-writer registers are simulations of a single-writer protocol. In such a simulation

each writer’s written value is stored as a separate variable at the server side. Cor-

respondingly a reader reads values from all these variables and chooses the one with

the latest timestamp. So the communication cost for the read is O(m×R) where m

is the number of writers and R is the reader’s communication cost in the single-writer

protocol. In addition to that, the storage cost at the servers is O(m) as compared

to the single writer case where it is O(1). It is apparent that there are two major

limitations of this scheme:

• Implementation cost is proportional to the number of writers.

• There is an upper bound on the number of writers allowed.

To overcome these limitations, we focus on the direct implementation of a multi-writer

register in this thesis.

The next section discusses the preliminaries and definitions of terms used in

subsequent sections.

A. Background

A multi-writer multi-reader register supports two operations, read and write which

can be executed by any client process. The response to a read operation is the

returned value and to a write operation is the acknowledgment (ack).
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The behavior of a shared register in the presence of multiple accesses is defined

with respect to the desired behavior of the sequential register. The sequential specifi-

cation of a read/write register is the set of all sequences of read and write operations

such that each read operation returns the value of the latest preceding write oper-

ation; if there is no preceding write, then the read returns the initial value of the

register.

Following are the definitions of terms from [3] which are used in the subsequent

sections.

Definition 1. A sequence of operations on a shared object is legal if it belongs to

the sequential specification of the shared object.

If σ is a sequence of operation invocations and responses, σ|i denotes the sub-

sequence of σ including only all the invocations and responses performed by process

pi.

Definition 2. A sequence σ of invocations and responses is a schedule if, for each i,

0 ≤ i < n, the following hold:

• σ|i consists of alternating invocations and matching responses, beginning with

an invocation; and

• if the number of steps taken by pi is finite, then the last step by pi is a response,

i.e., every invocation has a matching response.

Finally, let writes(σ) denote the set of all write operations in schedule σ. A

partial order <σ on operations in σ is defined as follows: For two operations o1 and

o2 in σ, o1 <σ o2 if and only if the response of o1 precedes the invocation of o2 in σ.

Definition 3. σ-consistent: Given a schedule σ, a permutation π of a subset of
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Fig. 1. A schedule that satisfies MWReg

ops(σ) is σ-consistent if, for any operations o1 and o2 in π, o1 precedes o2 in π

whenever o1 <σ o2.

Some more terms need to be explained in order to define MWReg. A write is

relevant to a read if the invocation of the write is before the response of the read. For

example, in the schedule in Fig. 1 the writes “relevant” to the read R4 are W(x,1),

W(x,2) and W(x,4). Informally MWReg requires that any pair of read operations

agree only on the ordering of write operations that are “relevant” to both of them.

writes←r(σ) = {w|w ∈ writes(σ) and w begins before r ends in σ }.

Definition 4. MWReg: A schedule σ satisfies MWReg if there exists a permutation

π of ops(σ) such that, for all read operations r in ops(σ), the projection πr of π onto

writes←r(σ)
⋃
{r} satisfies :

• πr is legal, and

• πr is σ-consistent.

A shared memory object satisfies MWReg if all schedules on that object satisfy MWReg.
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Fig. 1 gives an example of a schedule that satisfies MWReg. The permutations

of “relevant” writes for all read operations is as follows:

R1: W(1), W(2), R1(2)

R2: W(1), W(2), R2(2)

R3: W(1), W(2), R3(2)

R4: W(1), W(2),W(4), R4(4)

R5: W(1), W(2), R5(2), W(3), W(4)

R6: W(1), W(2), W(3), W(4), R6(4)

MWReg conforms with the singler-writer definition of regularity because the two

conditions on the projection πr for all read operations ensure that any read operation

returns a value written by either an overlapping write or a precdeing write. MWReg

can be seen as a multi-version of regularity because it makes sure that any pair of

read operations have a common view of the write operations which are concurrent

or preceding both of them. The read operations need not agree on the ordering

of the write operations which happened later and so this condition is weaker than

atomicity. The example schedule in Fig. 1 does not satisfy atomicity because there

is no permutation of the operations R4(4), R5(2), W(3) and W(4) which is legal and

σ-consistent.

B. Related Work

Distributed storage systems have been an important subject of research. Some pa-

pers prove impossibility or lower bound results. Others give protocols that can be

categorized based on the communication model, assumptions and desired behavior.

We look mainly at fault tolerant protocols. In the replication based approach, there
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are two directions of study. The first one is complete replication in which the results

aim at achieving Byzantine tolerance optimally (i.e. for n ≤ 3f + 1), while in the

quorum based approach more focus is given to high availability.

The lower bound results proved in the area of fault-tolerant shared registers are

discussed here:

Number of Servers: Any fault-tolerant storage protocol requires at least 3f + 1

servers to ensure safe semantics and liveness. This lower bound was proved in

[4] and it holds true for randomized protocols and self-verifying data (data that

cannot be undetectably altered, e.g. digitally signed data) also.

Time Complexity: In the asynchronous model, we measure time complexity in

terms of rounds. One round is defined as the maximum time delay in one round-

trip of communication between any two nodes. A lower bound of 2 rounds has

been proved for both the read and write protocols for n ≤ 4f .

• It is impossible to emulate the READ operation of a safe Single-Writer

Single-Reader (SWSR) wait-free storage by invoking a single round of op-

eration on base objects when n ≤ 4f [5].

• It is impossible to emulate the WRITE operation of a safe SWSR wait-

free storage by invoking a single round of operation on base objects when

n ≤ 4f [6].

In Table I, we compare the relevant papers based on the following parameters:

• Wait-Free: Implies that the client protocol is wait-free i.e. any client can

complete any of its operations regardless of the failures of other clients.

• StoS: “Yes” in the table column implies that no server to server communication

is required by the protocol.
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• Atomic: Indicates the protocols which satisfy atomicity.

• 3f+1: It has been proved that 3f+1 is the minimum number of servers required

to design a fault-tolerant protocol where f could be Byzantine. So a “Yes” in

the corresponding column indicates that the solution is optimally resilient.

• Multi-Writer: This indicates whether the solution can handle concurrent

writes.

• BRounds: This stands for Bounded Rounds. Some of the earlier results had

unbounded message and time complexity in the worst case.

Most of these papers like [7, 8] give multi-writer register implementations by

simulating m copies of the single-writer protocol where m is the number of writers.

We focus on designing a multi-writer register directly without using multiple copies

of a single writer register. Another aspect is that the majority of the work focuses

on implementing atomic registers. Atomicity is the strongest consistency condition

and so has higher implementation cost compared to weaker conditions like regularity.

In this work we focus on designing a register which satisfies a multi-writer version of

regularity called MWReg.

C. Model

The model we consider is a network of servers and clients connected by an asyn-

chronous message passing layer as shown in Fig. 2. An asynchronous network does

not expect any synchrony between the network components and puts no upper bound

on message delays. There are n servers and unbounded number of clients. Servers

store the data and the clients communicate with servers to read and write the data.

Such a model is suitable for wide-area networks, since there are no timing assump-
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Table I. Related work in fault-tolerant distributed storage

Paper Wait− Free StoS Atomic 3f + 1 Multi−Writer BRounds

MAD02[4] - - Yes Yes - -

BD04[8] - - Yes - Yes -

ACKM04[6] Yes - - Yes - -

BD06[9] Yes - Yes - - -

CT05[10] Yes - Yes Yes Yes Yes

AAB07[7] Yes Yes Yes Yes Yes Yes

RQS07[11] Yes Yes Yes Yes - -

tions on the delay in passing a message. We assume reliable, FIFO channels between

clients and servers and at most f servers can be Byzantine where n > 3f .

D. Algorithm

We modify the algorithm in [7] to give an efficient multi-writer implementation for

a weaker consistency condition called MWReg (Definition 4 ). The algorithm is

wait-free, tolerant to Byzantine servers and can handle unbounded number of clients.

It cannot tolerate Byzantine writers. The earlier solutions for multiple writers had

storage and communication costs proportional to the number of writers. Our solution

has a constant storage cost at the servers.

The value accessed from the register is represented as a tuple 〈v, ts, wid〉 where

v is the value, ts is the timestamp value and wid is the writer id. Since the register

is accessed by multiple writers, we use the pair 〈ts, wid〉 to get a unique ordering of

the timestamps. A timestamp TS1 = 〈ts1, wid1〉 is greater than TS2 = 〈ts2, wid2〉 if
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Fig. 2. Communication model
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Fig. 3. Overview of the algorithm

and only if:

ts1 > ts2 OR (ts1 == ts2 AND wid1 > wid2) (2.1)

An overview of the communication between the servers and clients in shown in

Fig. 3. The figure demonstrates the messages exchanges that take place between the

reader/writer and the servers. In what follows, we give a detailed description of the

reader, writer and server protocol.

1. Reader

A client reader maintains three arrays timeStamps, Fwd and Values during the

execution of the read protocol. It resets these arrays when a read returns. The

read protocol described in Algorithm 1 is two phase. In the first phase, the reader

requests timestamp by sending a GET TS message to all servers. When it receives

n− f responses, the reader goes to Phase 2. If in Phase 1, a reader receives a FWD
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message, it accepts it and updates its Values and Fwd array.

In Phase 2, the reader requests values from servers by sending a GET VAL

message. It continues to update its Values and Fwd arrays when it receives a FWD

or VAL message. The reader continues to accept all messages till the termination

condition (mentioned in Algorithm 2) is satisfied. Termination is possible in two

ways:

notOld() and valid() The notOld() condition makes sure that an old timestamp

is not chosen. This is done by choosing a timestamp which is greater than

or equal to at least 2f received timestamps. Why 2f ? Because any writer

waits for acknowledgment from n − f servers. So f good servers might not be

updated with the last completed write. And since at most f faulty servers can

send an old timestamp to mislead the reader, choosing the (2f + 1)st smallest

timestamp rejects all old values. But this condition is not enough because a

faulty server can send a higher timestamp too which was never written. The

valid() condition deals with this case. Valid(〈v, ts, wid〉) ensures that a chosen

value is not a corrupted one sent by a Byzantine server. This is done by checking

if this value was sent by at least f + 1 servers. This implies that at least one

non-faulty server sent this value and so it is not a corrupt value.

notOld() and fwded() This condition helps the read return a value which is cur-

rently being written. The Readers set maintained by each server is used in

this part. When a server receives the second phase WRITE TS message from a

writer, it sends a FWD and TS message to all ongoing reads. If a reader receives

f + 1 messages with the same value 〈v, ts, wid〉, it can be concluded that it is

a valid value currently being written. Again waiting for f + 1 same responses

implies that at least one correct server forwarded this value. But only checking
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Fig. 4. An execution with a slow writer forwarding messages

for validity is not enough because it is possible that a slow writer is now sending

FWD messages for value which has an older timestamp. An example of such

an execution is in Fig. 4. To avoid such situations, we add the notOld() check

for timestamp.

2. Writer

When a writer starts writing a new value, it has to first decide the timestamp value

of the new write. In case of a single writer, this is not an issue as the writer can

keep a counter of the number of writes done and use it as a timestamp. For the

multi-writer case, one option is to do a read to get the last written timestamp. We

use that scheme in our protocol. Since more than one writer could be writing at the

same time, the timestamp could be the same and so we include the writer-id to form

a pair 〈ts, wid〉.

The writer’s protocol is described in Algorithm 3. In phase 1, the writer sends

a WRITE VAL message to all servers and waits for n− f acknowledgments. At the

server side, the variable Rval is updated if the received timestamp is greater than its

timestamp. The server sends an acknowledgment even if it does not update Rval. In
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Read()

∀ s: timeStamps[s]=⊥ , Fwd[s]=⊥, Values[s]= ∅

//Phase R1: Send(GET TS) to all servers

On receive Message from server s

Message: (TS, 〈ts, wid〉)

timeStamps[s]=〈ts, wid〉

Message: (FWD, 〈v, ts, wid〉, Vals)

Fwd[s]=〈v, ts, wid〉

Values[s].add(Vals)

if( |{s : timeStamps[s] 6= ⊥}| ≥ n− f )

Go to Phase R2

//Phase R2 : Send (GET VAL) to all servers

On receive Message from server s

Message: (TS, 〈ts, wid〉)

timeStamps[s]=〈ts, wid〉

Message: (VAL, Val)

Values[s].add(Val)

Message: (FWD, 〈v, ts, wid〉, Vals)

Fwd[s]=〈v, ts, wid〉

Values[s].add(Vals)

if( termination condition is true for any 〈v, ts, wid〉 )

Send REMOVE READER to all servers

return 〈v, ts, wid〉

Algorithm 1: Reader’s protocol
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Termination Condition

fwded(〈v, ts, wid〉) ≡ |{s : Fwd[s] = 〈v, ts, wid〉}| ≥ f + 1

valid(〈v, ts, wid〉) ≡ |{s : 〈v, ts, wid〉 ∈ V alues[s]}| ≥ f + 1

notOld(〈v, ts, wid〉) ≡ |{s : timeStamps[s] ≤ 〈ts, wid〉}| ≥ 2f + 1

A read returns if either of the two conditions is true for any value

1. valid(〈v, ts, wid〉) AND notOld(〈v, ts, wid〉)

2. fwded(〈v, ts, wid〉) AND notOld(〈v, ts, wid〉)

Algorithm 2: Reader’s termination condition

phase 2, the writer sends WRITE TS message to all servers. Each server updates the

Rts variable and also sends FWD and TS message to ongoing reads.

3. Server

The server’s protocol is described in Algorithm 4. Each server stores two variables

Rval and Rts corresponding to the most recently written value and timestamp.

Rval holds the value,timestamp, writer id triplet and Rts represents the timestamp

pair 〈ts, wid〉. In case of no ongoing write, all non-faulty servers will have the same

timestamp pair in Rts and Rval. When there are ongoing writes, the time stamp

could be different in Rval and Rts. The key reason for storing value and timestamp

separately is that the read and write protocols are two phase. A write first writes

the value and then the timestamp but a read first reads the timestamp and then the

value. This two phase scheme makes sure that if a reader receives a timestamp, the

value corresponding to it is already written at the servers.

Each server also maintains a list of ongoing readers in the Readers set. It
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Write(v)

//A complete read is done to decide the timestamp

〈w, ts, wid〉=Read()

ts = ts + 1

//Phase W1

Send(WRITE VAL,〈v, ts, ID〉) to all servers

wait for (n− f) WRITE ACK1.

//Phase W2

Send (WRITE TS,〈v, ts, ID〉) to all servers

wait for (n− f) WRITE ACK2

Return ACK

Algorithm 3: Writer’s protocol
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uses this set to help readers terminate in case of concurrent writes. When a write

reaches second phase and sends WRITE TS message to the server, the server updates

it Rts variable and also sends FWD and TS message to all active readers. A new

reader is inserted into the Readers set when the server receives a GET TS message.

A reader is removed from the Readers set when the read terminates and sends a

REMOVE READER message to the server.

The changes we made in the algorithm in [7] were :

Last Three Values: The protocol in [7] stored the last three written values at each

server which were Rval, Rprev and Rprev2. This was required in their case as

they were implementing atomicity. In our protocol, only the most recent value

(Rval) is stored at each server.

GetConcurrentReaders: In [7], Aiyer et al. design a GetConcurrentReaders()

protocol used by a writer to get the reads concurrent with it. A write executes

this protocol in first phase to get the set CR of reads concurrent with it. In

the second phase of write protocol, the writer sends the set CR to each server

asking it to forward messages to readers in CR.

In our protocol, a writer just signals every server to forward messages to all

readers in the Readers set maintained by each server. The difference here is

that each correct server might not necessarily forward messages to the same set

of readers. But the advantage is we save on time and message complexity. We

are yet to figure out if the GetConcurrentReaders() protocol was required in

their case.

Forwarded Value: When a server receives Write TS message from a writer w, it

forwards the value being written by the writer w to the ongoing readers. In the
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Server()

Readers=∅, Rts=〈0, 0, 0〉 , Rval=〈0, 0, 0〉

//Write Protocol Messages

On receive(WRITE VAL,〈v, ts, wid〉) from writer w

if (Rval.ts< ts)

Rval=〈v, ts, wid〉

Send WRITE ACK1 to writer w

On receive(WRITE TS, 〈v, ts, wid〉) from writer w

if (Rts.ts< ts)

Rts=〈ts, wid〉

for each r in Readers

Send (FWD, s, 〈v, ts, wid〉, {〈v, ts, wid〉, Rval}) to r

Send (TS, s, Rts) to r

Send WRITE ACK2 to writer w

//Read Protocol Messages

On receive (GET TS) from reader r

Readers.insert(r)

Send (TS, s, Rts) to r

On receive(GET VAL) from reader r

Send(VAL, s, Rval ) to r

On receive(REMOVE READER) from reader r

Readers.erase(r)

Algorithm 4: Server’s protocol



22

algorithm in [7], the server sends the latest value stored at the server instead

of the value being written by the writer. This was the key change in the algo-

rithm as it helped us develop the multi-writer solution without any bounds on

the number of concurrent writers. In case of concurrent writes Rval could be

different at the correct servers. While this change helps in terminating a read

in case of concurrent writes, it compromises on atomicity.

Forwarding Timestamp: We make one more change in the forwarded part of the

algorithm. The server also sends a TS message including the latest timestamp

to ongoing reads. This is in addition to the FWD message it sends. This change

was required as the reader had a notOld() check on forwarded values too.

E. Analysis

This section discusses the results of simulation and theoretical analysis of the algo-

rithm.

1. Simulation

In order to test the correctness and performance of the algorithm we have simulated

it in C++. A simulator class controls the communication between the servers and

clients. The protocol is implemented in an event-driven way. Specifically, a new event

is created when a message is to be sent and each event is assigned an occurrence

time. The events are executed by the simulator in order of their occurrence times.

To simulate an asynchronous behavior, random delay was added in the occurrence

time of each event. The message is received by the receiver when the corresponding

event is executed. The Byzantine behavior of the servers is modeled by randomly

picking up f servers which send random values in response to request for timestamp
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and value. The input parameters to the code are number of servers, readers, writers

and the maximum number of server failures.

The protocol was tested for different schedules and varying network sizes to

test termination and correctness. The simulation helped us fix small errors in the

algorithm and test it robustly for varying set of parameters. All schedules generated

by the simulation satisfied MWReg.

2. Proof of Correctness

a. Wait-Free

The protocol is wait-free in the sense that every client operation completes indepen-

dent of the behavior of other clients. The following theorems prove that the read/write

operation terminate.

Lemma 1. If no write is concurrent with a read operation, the read operation termi-

nates.

Proof. At all non-faulty servers, Rval and Rts are updated when a writer writes a

value with timestamp greater than Rts. A writer updates Rval in Phase 1 and then

Rts in Phase 2. So if there is an ongoing write operation which has completed Phase

1 but not Phase 2, then Rval and Rts could hold different values. But if there is

no ongoing write operation, Rval and Rts hold the value of the last completed write

with highest timestamp . So when the reader r receives responses from all correct

servers for GET TS and GET VAL messages, valid() and notOld() will be true for

Rval. Thus the reader will terminate and return Rval.

Theorem 1. A read operation always terminates.

Proof. A read operation r will not terminate if neither of these conditions is ever true

for any variable val =〈v, ts, wid〉
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1. notOld(val) AND valid(val)

2. notOld(val) AND fwded(val)

It follows from Lemma 1 that a read operation terminates if no write is concurrent

with it.

In case of concurrent writes, let W be the set of writes concurrent with this read

and V be the set of values being written by these writers. Since the read has not

terminated yet, the writes will ask the servers to send FWD and TS messages to

the read r. The FWD messages include the ongoing write’s value and Rval, while

the TS message includes Rts. Since all correct servers will send the FWD and TS

messages, the reader will receive at least f + 1 FWD message for each value vi ∈ V .

So fwded(val) will be true for all these values. The only way read r cannot terminate

is when notOld(val) is false for all values forwarded by ongoing writes.

This is possible only when the timestamp value(Rts) sent by correct servers is

not equal to any of TS(wi) for wi ∈ W . This will happen only when Rts > TS(wi)

for ∀wi ∈ W at all correct servers. Since Rts was not updated with timestamps of

ongoing writes, Rval was not updated either. So the reader will terminate because it

will get enough messages for Rval to make it valid and notOld.

Theorem 2. A write operation always terminates.

Proof. A write operation first does a read to decide timestamp. We have already

proved that a read operation always terminates. So here we will prove termination

of the two phases of the write protocol. In each phase the writer waits for n − f

responses from servers. When a non-faulty server receives a message from a writer it

sends an acknowledgment even if it does not update its variables. Similarly for phase

W2, the server sends FWD messages to readers but does not wait for any response

and sends an acknowledgment to the writer. Since at most f servers can be faulty
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and may not respond, it is evident that a write operation receives n− f responses in

each phase and terminates.

b. Correctness

In this section, we prove that all executions generated by the algorithm satisfy

MWReg.

Theorem 3. For any read operation r and any write operation w: if w <σ r, then

TS(w) ≤ TS(r).

Proof. After a write operation w has completed, n−f servers will have Rts ≥ TS(w).

This implies that at most f correct servers can have timestamp TS< TS(w). Also f

Byzantine servers can send old value. So any TS < TS(w) will be received from at

most 2f servers. So notOld(TS) will never be true for any TS < TS(w).

A read operation r returns a value with timestamp TS only when notOld(TS) is

true and so r’s timestamp is no less than w’s.

Theorem 4. For any two write operations w1 and w2 : if w1 <σ w2, then TS(w1) <

TS(w2).

Proof. Since a writer does a complete read to decide timestamp, from Theorem 3,

TS(r) ≥ TS(w1). The writer increments this timestamp to write the new value and

so it follows that TS(w2) > TS(w1).

Theorem 5. The write operations performed using Algorithm 3 are totally ordered

by timestamp and this total order extends <σ.

Proof. Every writer stores the last timestamp value it wrote and also does a read to

get the latest timestamp value. It then chooses the maximum of these two values

and increments it to assign the timestamp to the new write. So the timestamp of
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every writer is unique because the writer appends its ID also to the timestamp. The

ordering of these timestamps is defined in 2.1. From Theorem 4, it follows that the

ordering of timestamps is consistent with <σ.

Theorem 6. The algorithm implements MWReg.

Proof. It has been proved in Theorem [3] that an algorithm that has the properties

proved in Theorems 3, 4, 5 implements MWReg.

In Fig. 5, we show how the algorithm generates the schedule shown in Fig. 1.

Since the schedule in Fig. 1 satisfies MWReg, but not atomicity, it follows that our

algorithm is not as strong as atomicity.

c. Boundedness

The following two theorems prove that the protocol has bounded complexity. We

measure time complexity in terms of rounds where one round represents the maximum

time delay in one round trip of communication between a source and a destination.

Table II summarizes the time and message complexity.

Theorem 7. The read protocol has bounded complexity.

Proof. Theorem 1 proves that the two phases of the read protocol terminate. It

follows that the time complexity is 2 rounds. The number of messages generated

in each phase is 2n and so the total message complexity is 4n. Since only constant

variables of type 〈v, ts, wid〉 are included in any message, the size of messages is

constant.

Theorem 8. Any write operation has bounded message and time complexity.

Proof. It is proved in 2 that the two phases of the write protocol terminate. Since the

time complexity of each phase is 1 round, it follows that any write operation takes 2
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Fig. 5. An execution of the algorithm that generates the schedule in Fig. 1
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rounds. The size of any message generated during the execution of the write operation

is constant because only variables of type 〈v, ts, wid〉 are passed as a parameter in

any message. The number of messages generated by a write operation is 4n + 2|R|

where |R| is the number of read operations concurrent with the write. Since a writer

first does a read, the total complexity of a write operation includes that of a read

operation too.

Table II. Complexity of the read/write operations

− read() write()

Rounds 2 4

Messages 4n 8n + 2|R|

Size of Message Constant Constant

The storage cost at the servers is constant in our protocol as each server stores

only the last written value. Most of the multi-writer register simulations store the last

written value by each writer at all servers, and thus have storage cost proportional

to the number of writers.
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CHAPTER III

CAPACITY RESERVATION

Establishing a connection of a given bandwidth between a source s and a destination

d in a communication network is an important network design problem. The related

literature gives many approaches to solve this problem. One of the possibilities is to

use flow-based algorithms [12] for capacity reservation. However, such algorithms are

not designed with a reliability in mind, so the resulting topology might include one

or more edges whose failure disconnects the network. In particular, this solution may

reserve capacities on only one path between the source and destination. So if any edge

on this path fails, the communication link between the source and the destination is

broken. Thus, capacities reserved by a min-cost flow algorithm are not resilient to

edge failures.

We address this problem in our work and present a resilient capacity reservation

algorithm. Our solution is tolerant to crash failure of edges. We assume that at

most one edge can fail at any time which is a common assumption in practice. The

motivation for resilient capacity reservation is to minimize the loss of network traffic

in the event of an edge failure. Our capacity reservation scheme can be combined

with network coding [13] to provide instantaneous recovery from edge failures. Fig. 6

shows an example of applications of network coding for instantaneous recovery from

edge failures.

Our goal is to minimize the total cost of reserved capacity at all links in the net-

work under the assumption that the cost of each edge is proportional to the capacity

used on it. The total cost of a capacity reservation algorithm is the sum of the cost of

capacities reserved on all edges in the network. An optimal solution in such a setting

reserves capacities on edges in a way that the total cost is minimized, while ensuring
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Fig. 6. A network which shows how network coding provides instantaneous recovery

from edge failures

that the traffic demand between s and d are met even when an edge fails.

If there are no constraints on the capacities that can be reserved on any edge,

there are combinatorial algorithms [14] which give the optimal solution. However,

real world networks have upper bounds on capacities and require the capacities to be

reserved in integral amounts only. In [14], Brightwell et al. prove that the capacity

reservation problem with the integrality constraint is NP-complete. This result also

holds for the case with no upper bounds on edge capacities.

We focus on the case of provisioning two units of flow from s to d subject to both

the constraints i.e. upper bounds and integrality. It is not known whether this case

of the problem is NP-compelete, but to the best of our knowledge, we give the first

algorithm to solve this problem and prove that the total cost of our solution is at most

four times the optimum. Our solution uses the min-cost flow algorithm from [12] as a

building block. We observe that if the upper bound on each edge is one unit, then the

optimal solution is to find a flow of value three between the source and destination as

it will give three disjoint paths. So if an edge on any path fails in this case, the other

two paths are not affected. But when the upper bound on edge capacity is two units
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Fig. 7. A network with upper limit on edge capacities and costs (in squares)

or more, then a min-cost flow of value three might not include three disjoint paths as

in the example network in Fig. 7. This example shows that finding a flow of three

units will not always allow to send two units of flow with instantaneous recovery from

a single edge failure.

A. Related Work

There are many approaches to the general problem of capacity reservation in networks.

Some of them are theoretically optimal but do not ensure polynomially bounded

running time like in [15, 16]. Chekuri at al. [17] approach the resilience issue in

a slightly different way by giving a primary and backup path. In a recent work,

Grosan et al. [18] extend this approach while optimizing multiple objectives. In [14],

Brightwell et al. give combinatorial algorithms for reserving edge capacities in case

of no upper bounds on edge capacities. They also discuss many sub-problems for the
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case of upper bounds on edge capacities in the paper [19].

B. Model

We model the communication network by a directed graph G = (V, E) with a given

source s ∈ V and destination d ∈ V . Each edge ei has upper bound on capacity

denoted as λi. The cost of using one unit of capacity on edge ei is ci. The capacity

reserved on any edge is termed ri. The capacity reservation problem can be formulated

as the following integer problem :

Min (Total Cost =
∑
ei∈E

ciri) (3.1)

subject to:

ri ≤ λi (3.2)

ri ∈ Zi (3.3)

where Zi is the set of integers and for every cut C in the network,

∑
ei∈C

ri ≥ 2 + max(ri) (3.4)

C. Algorithm

The capacities on network edges are reserved in four steps which are summarized in

Algorithm 5. The idea is to treat an edge of two units as two separate arcs, that can

transmit one unit each. Failure of an edge implies failure of the corresponding arcs.

The first step is to find a min-cost flow of value three. This flow is then decomposed

into three arc-disjoint paths P1, P2, P3. An example network in Fig. 8 shows an

example of such a decomposition.

A flow of three units is required because we loose at least flow of one unit when an
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Step 0: Substitute each edge of capacity two by two parallel arcs, and each

edge of capacity one by one arc

Step 1: Find a min-cost flow of value three from s to d. Decompose it into

three arc-disjoint paths P1, P2, P3

Step 2: Goal: Protect edges in P1, P2

Reverse arcs in P1, P3 and arcs in P2 which share an edge with P1. Set the

cost of reversed arcs to zero. Let the resulting graph be G′. Find a flow of

value one in G′.

Step 3: Goal: Protect edges in P2, P3

Reverse arcs in P2, P1 and arcs in P3 which share an edge with P2 . Set the

cost of reversed arcs to zero. Let the resulting graph be G′. Find a flow of

value one in G′.

Step 4: Goal: Protect edges in P3, P1

Reverse arcs in P3, P2 and arcs in P1 which share an edge with P3. Set the

cost of reversed arcs to zero. Let the resulting graph be G′. Find a flow of

value one in G′.

Algorithm 5: Capacity reservation algorithm to provide resilient flow of two

units
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Fig. 8. An example network to show how flow of value three is decomposed into three

paths

edge fails. If the capacity reserved on any edge ei is 2, the failure of that edge results

in loss of two units of flow. So we need to reserve additional capacity to tolerate the

failure of edge ei. We refer to this as “protecting” edge ei.

Steps 2, 3 and 4 protect all edges of capacity 2. Such an edge is included in any

2 of the three paths P1, P2, P3. Step 2 deals with edges that appear in both P1 and

P2, Step 3 deals with edges that appear in both P2 and P3, and Step 4 deals with

edges that appear in P1 and P3. The idea behind protecting an edge is to reverse a

set of edges and then find a flow of 1 unit in the residual graph. Fig. 9 shows which

set of edges are reversed to protect edges common in P1 and P2. An example with 1

unit of flow in the residual graph is depicted in Fig. 10. The solution graph includes

the edges added in each step of the algorithm.
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Fig. 9. An example graph G′

Fig. 10. An example network to demonstrate step 2 of algorithm 5
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D. Proof of Correctness

We show that the total cost of the capacities reserved by our algorithm is at most

four times that of the optimal solution. Let the total cost of the capacities reserved

be OPT in the optimal solution. C(P ) denotes the total cost of edges in path P and

GOPT represents the optimal graph. The optimal graph is formed from the edges that

were assigned positive capacities in the optimal solution.

The main idea of the proof is to show that the cost of the edges we add in each

step is at most OPT. The capacities are reserved in a way that a flow of two units is

guaranteed between the source s and the destination d even when an edge fails. In

the worst case, one edge failure could result in loss of 1 unit of flow from s and d.

So the optimal graph will at least have a flow of value three from s and d. The step

1 of our algorithm is to find a min-cost flow of value three. So the cost of capacity

reservation performed in Step 1 is at most OPT. In what follows, we give an analysis

of Step 2 of the Algorithm and show that the cost of additional capacity in Step 2 is

at most OPT. The same reasoning can be applied for Steps 3 and 4.

Lemma 2. In the graph G′ in Step 2 of the algorithm, there exists a path P with

C(P ) ≤ OPT.

Proof. Consider a sub-graph G′′ ⊆ G′ defined as follows :

G′′ = (E(P1 ∪ P2 ∪ P3) ∪GOPT ) ∩G′∪ {all edges in G′ of zero cost } where GOPT is

the optimal graph. The graph G′′ includes all zero cost edges from G′ and the edges

which are common in G′ and GOPT . It follows that the cost of the edges in G′′ will be

less than OPT because it only includes zero cost edges and an intersection of edges

in GOPT .

We need to prove that there is a path from source s to destination d in the graph

G′′. This part is proved in the next lemma.
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Lemma 3. G′′ has a path from source s to destination d.

Proof. We prove that in the graph G′′, every (s, d)-cut has a flow of value one in

the forward direction which is also part of the optimal graph. We consider the three

following cases:

Case 1: C does not include any edge which contains an arc from P1 and P2 or P2

and P3.

This case is trivial because edges of P2 are in the forward direction with flow of

value one. Also these edges belong to the optimal solution and so we are not

paying more than OPT.

Case 2: C includes only one edge e that contains an arc from P1 and an arc from

P2.

This case has three possible sub-cases related to the intersection of P3 :

Case 2a : C intersects P3 only once as shown in Fig. 11. In this case, the

optimal graph GOPT will also have an edge in the forward direction with

capacity 1 to make it robust to failure of edge P1 ∩ P2 of capacity 2.

Case 2b: C intersects P3 more than once as in Fig. 12. In this case, since flow

P3 is reversed, it must intersect the cut in the forward direction once to

ensure a continuous flow.

Case 2c: C includes at least one edge that contains an arc from P2 and an

arc from P3 as in Fig. 13

In this case, since we did not reverse the edges of P2 which were intersecting

with P3, we have a flow of value one in the forward direction in P2 which

belongs to optimal graph.

Case 3: C includes more than one edge that contains an arc from P1 and P2 as in
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Fig. 11. Cut of Case 2a

Fig. 12. Cut of Case 2b
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Fig. 13. Cut of Case 2c

Fig. 14.

In this case, since flow P1 is reversed, it must intersect the cut in the forward

direction once to ensure a continuous flow.

Theorem 9. Algorithm 5 is an approximate solution with cost at most four times

optimal.

Proof. It follows from lemmas 2 and 3 that the edges we add in Step 2 of the algorithm

have cost at most OPT. The same logic applies to Steps 3 and 4. So the total cost of

the solution is 4 · OPT.
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Fig. 14. Cut of Case 3
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CHAPTER IV

CONCLUSION

With the increasing importance of secure communication, research in the direction

of fault-tolerant algorithms has gained considerable attention. In this thesis, we give

fault-tolerant algorithms for two models.

The first one is a distributed storage protocol, which implements a multi-writer

multi-reader register over a set of servers, a fraction of which can be Byzantine. Our

solution is optimally resilient (i.e. it works for n ≥ 3f +1 which has been proved to be

minimal), has bounded message and time complexity and does not put a constraint

on the number of writers. The client protocols for both readers and writers are wait-

free and no communication is required between the servers. Theoretical analysis and

simulation were done to prove the correctness of the protocol and test its performance.

The second model is a network with a given source and a destination and costs

associated with per unit bandwidth usage on any edge. Each edge also has a maximum

capacity limit. We give a capacity reservation algorithm which is tolerant to crash

failure of one edge and achieves approximation ratio four.

A. Future Work

A replication-based multi-writer implementation which satisfies atomicity and does

not put a bound on the number of writers is still an open problem. It would be

interesting to investigate a hybrid scheme combining replication and erasure coding.

Along the direction of results in [3], adding the WriteBack block to the protocol might

result in an algorithm satisfying a stronger consistency condition. This could give

some insight for proving a separation with respect to complexity between multi-writer

atomicity and multi-writer regularity. Also using Byzantine quorums to plug into the
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algorithms from [3] to give fault-tolerant versions of all the consistency conditions is

an interesting direction.

In the area of resilient capacity reservation, proving that the problem we address

is NP-complete or designing a polynomial time algorithm which gives optimal solution

is an open issue. Another issue is to design algorithms tolerant to Byzantine failure

of edges. Extending the protocol to the case of providing 3 units or more of reliable

communication link between a source and a destination is an open problem. Another

interesting direction is to extend the algorithm to the multi-cast case where there are

multiple destinations.
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