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Abstract: We introduce a new wavelet tool, the windowed scale index, to study the degree of
non-periodicity of time series. The windowed scale index is based on some recently defined tools, such as
the windowed scalogram and the scale index. This novel measure is appropriate for non-stationary
time series whose characteristics change over time and, therefore, it can be applied to a wide variety of
disciplines. Furthermore, we revise the concept of the scale index and pose a theoretical problem: it is
known that if the scale index of a function is not zero then it is non-periodic, but if the scale index of a
function is zero, then it is not proved that it has to be periodic. This problem is solved for the particular
case of the Haar wavelet, reinforcing the interpretation of the windowed scale index as a useful tool
to quantify non-periodicity. In addition, the applicability of this wavelet-based measure is illustrated
through several examples, including an economic application which compares the non-periodicity of
two major commodities in the world economy, such as crude oil and gold. Finally, we discuss the
relationship between non-periodicity and unpredictability, comparing the windowed scale index with
the sample entropy.

Keywords: non-periodicity; scale index; wavelets; chaotic dynamical systems

1. Introduction

A large part of the analysis of a time series or signal consists of the determination of its main features
and whether those features remain constant over time, so that this series can be considered stationary.
A very important type of stationary time series are the periodic signals. In fact, it is obvious that the more
periodic a signal is, the more easy and reliable the forecasts of this signal will be. However, in practice,
a time series will be rarely periodic because, for example, it may be affected by a random noise, it may
be a quasi-periodic signal arising from a dynamical system, or even a chaotic signal. The analysis of the
irregularity of a signal is a topic that has been considered in the literature in many occasions. For instance,
some examples of tools used for measuring the degree of complexity of a time series are the sample
entropy [1], the approximate entropy [2], and the permutation entropy [3], which has been recently used
in analysing nonlinear dynamical time-series [4].

The scale index is a wavelet tool designed to measure the degree of non-periodicity of a time series
through its wavelet scalogram, allowing to quantify how much chaotic a signal is. This tool was introduced
in [5] and has been used in a wide variety of recent works applied in many different scientific disciplines,
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such as the study of speech signals [6], pseudo random number generators [7–12], images encryption [9,13],
meteorology [14], biomedicine [15], robotics [16], engineering [17], mechanical fault identification [18], etc.
The scale index is based on a result, proved in [5], according to which the continuous wavelet transform of
a periodic function, which is associated with a compactly supported wavelet, vanishes when the scale
is twice the period (for all times). From this result, the scale index vanishes for all periodic signals and
depends continuously on the signal itself. Therefore, when a signal is close to a periodic one, its scale
index will take a value close to zero.

Nevertheless, the scale index simply provides a global or average measure of non-periodicity for
the entire time series, and hence it does not consider the time location. This feature could be a serious
handicap for the study of non-stationary signals whose behaviour varies substantially over time and,
consequently, their non-periodicity may not be constant. For these cases, we introduce the windowed
scale index, which is a new wavelet tool that inherits the properties of the scale index for measuring the
non-periodicity of a time series centered at a given point with a given time radius, preserving in this way
the time location. Moreover, using the time radius as a parameter makes this tool much more versatile.
In addition, we would like to emphasize that the windowed scale index is not just a simple rolling-window
application for the scale index proposed in [5], but is is based on the windowed scalogram measured
developed in [19], which constitutes a non-trivial extension of the wavelet scalogram.

This paper is organized as follows. In Section 2 we introduce the wavelet mathematical background,
refresh the concept of the scale index and present a new theoretical result (see Proposition 1) that reinforces
the interpretation of the scale index (windowed or not) as a non-periodicity measure. In Section 3 we define
the windowed scale index and, in Section 4, we give examples and an application in economics. Moreover,
we discuss the relationship between non-periodicity and unpredictability, comparing the windowed scale
index with the sample entropy, a well-known complexity measure. Finally, in Section 5 we provide some
concluding remarks.

2. The Scale Index Revisited

2.1. Basic Concepts of Wavelets

A wavelet is a function ψ ∈ L2 (R) with zero average (i.e.,
∫
R ψ = 0), normalized (‖ψ‖ = 1) and

“centered” in the neighborhood of t = 0 (see [20]). Scaling ψ by s > 0 and translating it by u ∈ R, we can
create a family of time–frequency atoms (also called daughter wavelets), ψu,s, as follows

ψu,s(t) :=
1√

s
ψ

(
t− u

s

)
. (1)

Given a time series f ∈ L2 (R), the continuous wavelet transform (CWT) of f at time u and scale s
with respect to the wavelet ψ is defined as

W f (u, s) := 〈 f , ψu,s〉 =
∫ +∞

−∞
f (t)ψ∗u,s(t)dt, (2)

where ∗ denotes the complex conjugate. The CWT allows us to obtain the frequency components (or
details) of f corresponding to scale s and time location u, thus providing a time-frequency decomposition
of f .

The scalogram of a time series f at a given scale s > 0 is given by

S(s) :=
(∫ +∞

−∞
|W f (u, s) |2 du

)1/2
. (3)
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The scalogram of f at s is the L2-norm of W f (u, s) (with respect to the time variable u) and captures
the “energy” of the CWT of the time series f at this particular scale. Note that we use the definition of
scalogram given in [5,19], that is not the one commonly acknowledged: usually it is the squared magnitude
of the CWT. This definition of scalogram allows for the identification of the most representative scales of a
time series, i.e., the scales that contribute most to its total energy. Moreover, given a function f ∈ L2 (R) it
can be decomposed into a sum of CWTs computed at base 2 power scales

f = ∑
j,k∈Z

W f
(

2k j, 2k
)

ψ2k j,2k , (4)

under some conditions on the wavelet (see [20]). So, with respect to the representation of the scalogram
and taking into account (4), it is convenient to use a binary logarithmic re-scalation in the abscissa axis,
making base 2 power scales equidistant (see [19]).

2.2. The Scale Index

In this section, we define the scale index, a wavelet tool for measuring non-periodicity through the
scalogram, which was previously introduced in [5]. However, first we need some previous results.

The next theorem ensures that if a function f has details at every scale (i.e., the scalogram of f does
not vanish at any scale), then it is non-periodic. For a detailed proof see [5].

Theorem 1. Let ψ be a compactly supported wavelet. If f : R → C is a T-periodic function in L2 ([0, T]), then
W f (u, 2T) = 0 for all u ∈ R.

Note that if f is a T-periodic function in L2 ([0, T]), and ψ is a compactly supported wavelet, then
W f (u, s) is well-defined for u ∈ R and s > 0, although f is not in L2 (R).

In Theorem 1, f is defined over the entire R, but, in practice, time series have a finite time domain and
produce “border effects” when the wavelet exceeds the domain limits. So, given a T-periodic time series
with finite time domain, these border effects cause the scalogram not to vanish at scale 2T. Therefore,
we are going to define a special type of scalogram for precisely avoiding the undesired border effects.

Definition 1. Given a time series f defined over a finite time interval I = [a, b], the inner scalogram of a f at a
scale s is given by

S inner (s) := ‖W f (s, u) ‖J(s) =

(∫ d(s)

c(s)
|W f (s, u) |2du

) 1
2

,

where J(s) = [c(s), d(s)] ⊆ I is the maximal subinterval in I for which the support of ψu,s is included in I for all
u ∈ J(s). Obviously, the length of I must be big enough for J(s) not to be empty or too small, i.e., b− a � sl,
where l is the length of the support of ψ.

Since the length of J(s) depends on the scale s, the values of the inner scalogram at different scales cannot be
compared. To avoid this problem, we can normalize the inner scalogram:

S inner
(s) =

S inner (s)

(d(s)− c(s))
1
2

.

From Theorem 1 and Definition 1 we obtain the following corollary, that can be also found in [5].

Corollary 1. Let ψ be a compactly supported wavelet. If f : I = [a, b] → C is a T-periodic function in
L2 ([a, a + T]), then the (normalized) inner scalogram of f at scale 2T is zero.
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Remark 1. The concept of inner scalogram can be extended to wavelets that do not have compact support like Morlet
wavelets, taking a compact “effective support” outside of which the magnitude of the wavelet can be considered
negligible. However, in this case, some theoretical results like Corollary 1 may not hold exactly. According to [21],
the effective support is defined by the e-folding time for the autocorrelation of wavelet power spectrum at each scale s
that, for Morlet wavelets, is equal to

√
2s.

These results constitute a valuable tool for detecting periodic and non-periodic signals as a signal
with details at every scale must be non-periodic. Moreover, since the scalogram of a T-periodic signal
vanishes at all 2kT scales (for all k ∈ N), it is sufficient to analyse only scales greater than a fundamental
scale s0. Thus, a signal which has details at arbitrarily large scales will be non-periodic.

On the other hand, we can ask if a function f with W f (u, 2T) = 0 for all u ∈ R is really a T-periodic
function. In general, it is not proved and it remains as an open question. Nevertheless, this result can be
proved in the particular case of Haar wavelets assuming that f is bounded:

Proposition 1. Let ψ be the Haar wavelet and let f : R→ R be a continuous and bounded function. Given T > 0,
if W f (u, 2T) = 0 for all u ∈ R, then f is T-periodic.

Proof. Without loss of generality we may assume that T = 1. Let us define

g(u) :=
∫ u+1

u
f (t)dt

for all u ∈ R. Then, using the Haar wavelet

ψ(t) =


1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1
0 otherwise,

we have

W f (u, 2) =
∫ u+1

u
f (t)dt−

∫ u+2

u+1
f (t)dt = 0 =⇒ g(u) = g(u + 1)

for all u ∈ R and hence g is 1-periodic.
We are going to prove that g is in fact a constant function by reductio ad absurdum. Supposing g is

not constant, we can find u1, u2 ∈ [0, 1[ with c1 := g (u1) 6= c2 := g (u2). If M is an upper bound for | f |,
then we take N ∈ N such that N |c2 − c1| > 2M. Thus,

∫ u1+N

u1

f (t)dt =
N

∑
j=1

∫ u1+j

u1+j−1
f (t)dt =

N

∑
j=1

g (u1) = Nc1, (5)

since g is 1-periodic. Analogously, ∫ u2+N

u2

f (t)dt = Nc2. (6)

So, from (5) and (6), we have∣∣∣∣∫ u2+N

u2

f (t)dt−
∫ u1+N

u1

f (t)dt
∣∣∣∣ = N |c2 − c1| > 2M. (7)



Mathematics 2020, 8, 844 5 of 18

On the other hand, supposing u1 < u2, we have∣∣∣∫ u2+N
u2

f (t)dt−
∫ u1+N

u1
f (t)dt

∣∣∣ = ∣∣∣∫ u1+N
u2

f (t)dt +
∫ u2+N

u1+N f (t)dt−
∫ u2

u1
f (t)dt

−
∫ u1+N

u2
f (t)dt

∣∣∣ ≤ ∫ u2+N
u1+N | f (t)| dt +

∫ u2
u1
| f (t)| dt ≤ 2(u2 − u1)M < 2M.

(8)

Since (7) contradicts (8), g must be a constant function and then,

0 = g′(u) =
d

du

∫ u+1

u
f (t)dt = f (u + 1)− f (u)

for all u ∈ R, concluding that f is a 1-periodic function.

Taking into account these results, we are going to define the scale index, that was previously
introduced in [5]. However, we present a slightly different definition.

Definition 2. The scale index of a time series f in the scale interval [s0, s1] is given by the quotient

iscale :=
S(smin)

S(smax)
, (9)

where smax ∈ [s0, s1] is the smallest scale such that S(s) ≤ S(smax) for all s ∈ [s0, s1], and smin ∈ [smax, 2s1] is the
smallest scale such that S(smin) ≤ S(s) for all s ∈ [smax, 2s1]. Note that for compactly supported signals, the use of
the normalized inner scalogram is recommended in order to fulfil Corollary 1 and to avoid border effects.

From its definition, iscale ∈ [0, 1] and it can be interpreted as a measure of the degree of non-periodicity
of a signal in the scale interval [s0, s1]: the scale index will be numerically close to 0 for periodic and
quasi-periodic signals, and close to 1 for highly non-periodic chaotic signals.

The difference between Definition 2 and the definition given in [5] is that in Definition 2 the scale
smin is sought in [smax, 2s1] instead of [smax, s1]. This change is motivated by Theorem 1 and Corollary 1,
because given a T-periodic signal (being T the least period) its most representative scale is usually near T,
and the scalogram vanishes at scale 2T. So, we need to compute the scalogram up to the scale 2s1 in order
to detect periodicities in [s0, s1]. As a consequence of this fact, if there are scales in [s1, 2s1] at which the
scalogram takes a greater value than at smax, then s1 should be increased if we want to take into account
these important scales in our analysis. Or, from another point of view, taking the definition of the scale
index given in [5], if the scale smax is in [s1/2, s1], then we should take a bigger s1, at least up to 2smax,
but only if we have no objection to include larger scales in our study of non-periodicity.

For example, Figure 1 plots the scalogram and the scale index of a given signal, taking s0 = 4 and
varying s1 from 4 to 64. It can be seen that iscale = 1 for s1 ∈ [4, 5.5] ∪ [13.3, 17] approximately, but there
are scales in [s1, 2s1] at which the scalogram takes a greater value than at smax. So, as it is indicated above,
if we want to make a wider scale study of non-periodicity, then s1 should be increased in these cases.
Nevertheless, if we are interested in measuring non-periodicity only in a determined scale interval [s0, s1]

with s1 ∈ [4, 5.5] ∪ [13.3, 17], then we can conclude that the signal is highly non-periodic in [s0, s1], and the
reason in this case is that there are significant scales outside the range of study.
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Figure 1. (a) Scalogram (using Morlet wavelet) of the signal ∑6
i=1 sin

(
2π
Ti

t
)

with t ∈ [0, 1000] and
Ti = 8, 16, 20, 24, 28, 32 for i = 1, . . . , 6 respectively, i.e., a combination of several signals of periods Ti.
(b) The same scalogram as above (dotted), jointly with S (smax) (dashed) and S (smin) (dash-dotted) taking
s0 = 4 and s1 = s. (c) The corresponding scale index (i.e., S (smin) /S (smax)) taking s0 = 4 and s1 varying
from 4 to 64.

At this point, it is clear that the choice of the scale interval [s0, s1] is an important issue in the
non-periodicity analysis. Since the non-periodic character of a signal is given by its behaviour at large
scales, there is no need for s0 to be very small. In general, we can choose s0 such that smax = s0 + ε where
ε is positive and small. On the other hand, s1 must be greater than all the relevant scales that we want
to study. Moreover, if smin ' 2s1, then the scalogram decreases at large scales and it is recommended to
increase s1 in order to distinguish between a non-periodic signal and a periodic signal with a very large
period. In general, it is recommended to make an study varying s1 as in Figure 1c in order to visualize the
evolution of the scale index.

Remark 2. It is known that the wavelet power spectra and, consequently, the scalogram of a signal are biased
in favor of large scales (see [22]). This feature has to be taken into account by some wavelet tools that quantify
the “energy density” based on the scalogram, such as the wavelet squared coherency (see [21,23]) or the windowed
scalogram difference (see [19]). In these tools, the scalogram is multiplied by the factor 1√

s for normalizing the weight
of each scale (see Figure 2), or, from another point of view, the mother and daughter wavelets are normalized using
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the L1-norm instead of the L2-norm. However, in the case of the scale index, this correction would not be necessary
because the scalogram of a white noise signal is more or less constant at all scales giving a scale index close to 1 for
any s1, and this is the property that we want to preserve. If, on the other hand, we apply the correction for converting
the scalogram into an “energy density” measure, the scale index of a white noise signal would tend to zero as we
increase s1 (see Figure 3) and this is not desirable.

4 8 16 32
0

1

2

3

4

4 8 16 32
0

0.2

0.4

0.6

0.8

1(a) (b)

Figure 2. (a) Scalogram (using Morlet wavelet) of the signal sin
(

2π
8 t
)
+ sin

(
2π
16 t
)

with t ∈ [0, 1000], i.e.,
a combination of two signals of period 8 and 16 respectively with the same amplitude. There are two local
maxima at the scales corresponding with the periods 8 and 16 respectively, but the scalogram takes different
maximum values at these scales. (b) The same scalogram multiplied by the factor 1√

s . Now, the scalogram
takes the same maximum values, showing that both scales contribute with the same “energy”.

8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25(a) (b)

Figure 3. (a) Mean of the scalograms of 100 random uniform series in [−1, 1] of 10,000 data points, using
Morlet wavelet. It can be seen that it is more or less constant and so, the corresponding scale index would
be close to 1 for any s1. (b) Mean of the 100 scalograms of the same random uniform series but multiplied
by the factor 1√

s . It tends to zero for large scales and so, the scale index computed from this modified
scalogram would also tend to zero as we increase s1.

3. The Windowed Scale Index

The scale index given by (9) provides an estimate of the degree of non-periodicity of an entire time
series. However, non-stationary signals may pass through different stages in which their behaviour
varies considerably and therefore their non-periodicity may not be constant over time. For these cases,
we introduce the next definitions.



Mathematics 2020, 8, 844 8 of 18

Definition 3. The windowed scalogram of a time series f centered at time t with time radius τ is given by

WSτ(t, s) :=
(∫ t+τ

t−τ
|W f (u, s) |2 du

)1/2
. (10)

The windowed scalogram was previously introduced in [19] and it is just the scalogram given by (3) restricted to a
finite time interval [t− τ, t + τ].

Definition 4. The windowed scale index of a time series f in the scale interval [s0, s1] centered at time t with time
radius τ is defined as

wiscale,τ(t) :=
WSτ(t, smin)

WSτ(t, smax)
, (11)

where, analogously to Definition 2, smax is the smallest scale such thatWSτ(t, s) ≤ WSτ(t, smax) for all s ∈ [s0, s1],
and smin is the smallest scale such thatWSτ(t, smin) ≤ WSτ(t, s) for all s ∈ [smax, 2s1].

Although in the computation of the scale index it is recommended the use of normalized inner
scalograms in order to avoid border effects, this recommendation is less important in the case of the
windowed scale index. This is because for long series and relatively small time radii there would be no
border effects in most of the windowed scalograms.

As the original scale index, the windowed scale index is also in the interval [0, 1] and it inherits
the properties of the scale index that make it a tool for measuring the degree of non-periodicity of a
signal around a given time. Precisely, this time dependence makes it a suitable tool for the study of
non-stationary signals.

With respect to the choice of the time radius τ, it depends on the nature of the time series f and
the objective of the study. In general, it must be big enough so that the windowed scalograms conserve
desired (not noisy) information about f , but a too large τ produces inaccuracy in the location of events for
non-stationary time series. Usually, if [a, b] is the support of f , then τ = (b− a) /20 is a good choice.

4. Examples and Applications

In this section we illustrate the application of the windowed scale index to different scenarios of
non-stationary time series such as chaotic time series, signals affected by non-stationary random noises,
and economic and financial time series which present both chaos and noise.

Computations are performed using a self-developed R package [24] called wavScalogram [25], which
can be freely downloaded from CRAN.

4.1. The Bonhoeffer-van der Pol Oscillator

As it was done in [5], the applicability of the windowed scale index is illustrated by studying some
time series generated by the Bonhoeffer–van der Pol oscillator (BvP), which is given by the following
non-autonomous planar system

x′ = x− x3

3
− y + I(t)

y′ = c(x + a− by)

 , (12)

being a = 0.7, b = 0.8, c = 0.1, and I(t) = A cos (2πt) an external periodic force. This oscillator is
employed for modelling cardiac pulse (see [26]), and hence it is very useful to examine the non-periodicity
of a signal without loosing the time location.
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Taking the amplitude of the external force A as a parameter, we can construct time series by means of
the x coordinate of the solution of (12) with initial conditions (0, 0). Specifically, we have created two time
series for A = 0.74 and A = 0.76, with t from 20 to 400 using a time step of ∆t = 0.05, which are called
“series 1” and “series 2”, respectively. Moreover, we have constructed another time series, designated by
“series 3”, using A = 0.74 for t ∈ [20, 400] and A = 0.76 for t ∈ ]400, 780]. The normalized inner scalograms
of these series are displayed in Figure 4, using Daubechies eight–wavelet function and scales running from
0.05 to 12.8.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

Scale
0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale
0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Scale

(a) (b) (c)

Figure 4. Normalized inner scalograms of series 1, 2 and 3 (see (a), (b) and (c) respectively), using
Daubechies eight–wavelet. The scale runs from 0.05 to 12.8.

For the computation of the windowed scale indices of these series (see Figure 5), we choose a time
radius τ = 50 (i.e., 1000 data points), s0 = 0.05, s1 = 6.4 and we utilize windowed normalized inner
scalograms. This means that we have not taken into account CWTs where the corresponding wavelet
overlaps the extremes of the time domain ([20, 400] for series 1 and 2, and [20, 780] for series 3), and the
scalograms are normalized as it is shown in Definition 1. As a curiosity, the global scale index of series 3
is approximately 0.4494, which is greater than the scale index of series 1 (0.0768 approx.) and series 2
(0.4116 approx.). Figure 6 depicts the different stages for obtaining the windowed scale indices of series 3
for a wide set of values of s1, ranging from 0.4 to 6.4. In this way, we can see the importance of the choice
of s1. Note that Figure 5 only plots the windowed scale indices for s1 = 6.4.

As can be seen in Figure 5, the windowed scale index clearly shows the evolution of the scale index
over time, which is an important improvement, and is more appropriate for studying non-stationary
signals than the global scale index. Specifically, Figure 5c illustrates the usefulness of the windowed scale
index in detecting the jump in the non-periodicity due to the change in the amplitude of the external force,
while the global scale index described in [5] only gives an overall value for the whole time span.
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Figure 5. Windowed scale indices of series 1, 2 and 3 (see (a), (b) and (c) respectively), centered at different
times with time radius τ = 50. The scale parameters run from s0 = 0.05 to s1 = 6.4 and we use Daubechies
eight–wavelet function. The corresponding global scale index is represented with a dashed line.

(a) |CWT|
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(b) Windowed scalograms
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(c) Windowed scale indices
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1

Figure 6. Different stages for obtaining the windowed scale indices of series 3. (a) Moduli of the CWT.
(b) Windowed scalograms centered at different times with time radius τ = 50. (c) Windowed scale indices
centered at different times with time radius τ = 50, taking s0 = 0.05 and different values of s1 from 0.4 to
6.4. The cone of influence outside which there are border effects is also represented with a black line in
all plots.

4.2. A Signal with Increasing Noise

The windowed scale index is not only useful to study chaotic signals, as the one seen in the above
example, but it also enables analysing other non-stationary signals such as those affected by non-stationary
random noises. For example, we may consider a signal of the form

f (t) = sin (2πt) + εt, εt ∼ N
(

µ = 0, σ2 = 0.1t
)

, (13)
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which corresponds to a 1-periodic signal plus a Gaussian noise term εt with increasing variance. Figure 7
depicts the average of the windowed scale indices of 1000 series of the form described by (13) taking
s0 = 0.02 and different s1 values, using Morlet wavelets and time radius τ = 5. Since there is a 1-periodic
term, s1 must be greater or equal than 1 in order to detect this periodicity. However, choosing a too large s1

has drawbacks: the larger s1 is, the lower the noise sensitivity will be, as shown in Figure 7. This figure also
illustrates how the windowed scale index succeeds in describing the nature of signals with non-stationary
noises, as it gets larger over time as the noise of the signal increases, according to what would be expected.
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Figure 7. Average of the windowed scale indices of 1000 series of the form (13) taking s0 = 0.02 and
different values for s1, using Morlet wavelets and time radius τ = 5. The cone of influence outside which
there are border effects is represented with a black line (a) and dots (b).

4.3. An Economic Application: Crude Oil and Gold Prices

An interesting application of the windowed scale index in the field of economics consists of
quantifying the degree of non-periodicity of the price of two major commodities such as crude oil and
gold at different points in time and for certain ranges of scale. This analysis allows one to determine to
what extent these time series have a periodical or repetitive behaviour.

Crude oil and gold are the most actively traded mineral commodities in the world and play a critical
role in human civilization. As mentioned by [27], oil is by far the most strategic commodity and the most
sizable source of energy for the modern economy as it constitutes a vital input in the production process of
many goods and services. The importance of crude oil is so great that changes in oil price affect strongly
global economic growth, inflation and asset values. Meanwhile, gold is the leader in precious metal
markets and is demanded for jewelry purposes and for many other industries such as dental, electronics
and chemicals. Furthermore, gold has had a unique historic function as a means of exchange and a store of
value for millennia and, more recently, as an alternative investment that hedges against inflation, a falling
U.S. dollar or other forms of uncertainty. Due to its singular nature, gold is widely considered to be an
effective safe haven asset against losses in financial markets, especially in times of financial and economic
instability [28–30].

The dataset used in this application consists of daily closing prices of futures contracts for gold and
crude oil. Specifically, for oil the prices from nearby contracts of crude oil futures traded on the New York
Mercantile Exchange (NYMEX) are utilized. For gold, the nearby contract prices of gold futures traded on
the COMEX division of the NYMEX, which is the most liquid gold contract in the world, are employed.
Changes in prices of oil and gold futures contracts are used in order to better capture the possible repetitive
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or periodical nature of these two series. The sample period spans from 24 June 1988 until 20 June 2017,
with a total of 7564 daily observations. All data are collected from Thomson Reuters DataStream.

Figure 8 displays the windowed scalograms and windowed scale indices of changes in the price
of crude oil and gold futures contracts. The windowed scalograms use a time radius τ = 300 days and
the windowed scale indices are calculated from these windowed scalograms taking s0 = 8 days and a
wide range of scales s1, from 32 to 512 days. We have not used inner scalograms in this case. Therefore,
the corresponding cones of influence outside which there are border effects have been plotted.
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Figure 8. (a) Windowed scalograms and (b) windowed scale indices of crude oil futures contracts price
returns. (c) Windowed scalograms and (d) windowed scale indices of gold futures contracts price returns.
The windowed scalograms are centered at different times with time radius τ = 300 days. The windowed
scale indices are centered at different times with time radius τ = 300 days, taking s0 = 8 days and different
values of s1 from 32 to 512 days. The cone of influence outside which there are border effects is also
represented with a black line in all plots.

It is shown that the windowed scale indices for oil futures contracts take very high values in the
time period between 2007 and 2010 for scale intervals with s1 between 150 and 300 days, which are
representative of the medium term. This finding may be closely related to an important shift in the
behaviour of oil price from 2007. In particular, as can be seen in the windowed scalograms for crude oil
futures contracts in plot (a) of Figure 8, the scales between 256 days (approximately one year) and 512 days
(two years) become the scales that contribute most to the energy of the oil price series during the period
2007–2010, and by taking s1 less than 300, these important scales are not taken into account. Hence, these
high values of the windowed scale indices for oil futures can be interpreted as an evident symptom of
unpredictability (see Section 4.4) in oil price at the medium term during the period around the financial
crisis that started in mid-2007 in the U.S. subprime mortgage market and spread throughout the world
from September 2008 following the collapse of the U.S. investment bank Lehman Brothers. During this
period, crude oil price experienced drastic rises and falls mostly driven by positive and negative shifts in
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global aggregate demand. For example, as noted by [31], the rapid increase in the spot price per barrel of
West Texas Intermediate (WTI) crude oil from USD 58 in January 2007 to USD 140 in June 2008 may be
associated with a strong global economic activity. In turn, the decline in oil price to USD 41.68 in January
2009 may be attributed to the global financial crisis and the subsequent great recession. However, the WTI
oil price rebounded to USD 133.93 in April 2011, even though global economic activity remained moderate.
Therefore, the abnormally volatile development of crude oil price over the last years may have largely
contributed to the high degree of unpredictability of oil price at the medium term around the recent global
financial crisis, which is captured by the windowed scale indices.

In contrast, the windowed scale indices for gold futures contracts do not take generally high values
despite the fact that during the global financial crisis period, there were also significant changes in the
energies contributed by most of the scales, as depicted in plot (c) of Figure 8. This result indicates a more
predictable behaviour of the price of gold for all time scales over the last few decades in comparison with
oil prices. One possible explanation for this finding is related to the fact that gold price has followed a
secular upward trend, which has been only interrupted sporadically and for very short periods of time.
In this regard, unlike conventional financial assets such as stocks or bonds, gold price tends to increase
notably even during periods of increased economic uncertainty, such as the global financial crisis that
started in 2008 or the COVID-19 pandemic since March 2020. Therefore, the safe haven nature of gold,
particularly in times of market turbulence, seem to play a key role in its more predictable (periodic)
behaviour compared to that of crude oil over the past few decades.

Apart from the case of these two major commodities, there may be many other potentially meaningful
applications of the windowed scale index in economics and finance. For example, it could be very
interesting to assess the degree of unpredictability of the cryptocurrency market, paying special attention
to the main cryptocurrencies, including bitcoin, ripple and ethereum. The analysis of the regularity of price
fluctuations in currency markets appears as another promising application of the new wavelet-based tool
in order to identify the particular exchange rates which exhibit a more irregular behaviour. In the same
vein, the windowed scale index could be also used to measure the level of unpredictability or randomness
of some conventional financial markets such as stock or bond markets. Given the huge total market
capitalization of these traditional markets, this knowledge will have important practical implications for
investors and policy makers.

4.4. Non-Periodicity and Unpredictability

So far, we have showed how the windowed scale index can be used to assess the degree of non-periodicity
of a time series over time and thus it has been proven useful for determining shifts in the periodicity regime.
Since periodicity and predictability represent closely related concepts, it seems reasonable to compare the
windowed scale index with a standard measure of the level of unpredictability of a time series.

The sample entropy (SampEn) [2] is a measure of the signal’s complexity and ultimately of its
unpredictability, in the sense that the higher the SampEn is, the more unpredictable the signal will be.
In essence, the SampEn is a modification of the approximate entropy (AppEn) [1], which was designed to
measure the unpredictability of time series, but it overcomes some of the limitations of the AppEn, such as
the signal length dependence. Both measures are based on the Kolmogorov-Sinai statistic [32] and have
been mainly used in the analysis of biomedical data (e.g., EEG signals). Similarly, the scale index (global
or windowed) may also be seen as a measure of a time series unpredictability in so far as the degree of
non-periodicity intuitively gives us an insight into how the future values of a signal may be predicted
from the past ones.

In order to compare the SampEn with the windowed scale index, the sample entropies are computed
on a rolling window of the same radius as the one employed for the windowed scale indices estimation.
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The computations are performed using the R statistical software and the SampEn functions provided by the
package pracma [33]. For the artificial signals generated by the Bonhoeffer-van der Pol chaotic dynamical
system, Figure 9 depicts the sample entropies for a rolling window of radius τ = 50 observations and
the global SampEn calculated for the whole signal. Although the overall value of the SampEn is slightly
higher for time series 2, which corresponds to a more chaotic signal than time series 1, the difference is
so small that it can be considered negligible. By contrast, when comparing Figure 9 with Figure 5, it can
be seen that the windowed scale index is able to clearly distinguish between different degrees of chaos
or non-periodicities.
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Figure 9. Sample entropies of series 1, 2 and 3 (see (a), (b) and (c) respectively) considering subseries
centered at different times with time radius τ = 50. The corresponding global SampEn is represented with
a dashed line.

Likewise, the sample entropies are estimated for the crude oil and gold futures contracts in Figure 10,
plots (a) and (b), using a rolling window of radius τ = 300 days. The global SampEn for the oil futures
contracts series yields overall higher values than for the gold futures contracts (dashed lines), but the
differences are again very small. On the other hand, the sample entropies estimated on a rolling window
(solid line) take, for certain time intervals, larger values for the crude oil futures than for the gold futures
contracts, and vice versa. In order to compare with the windowed scale index, in Figure 10, plots (c)
and (d), we also show the sections at s1 = 256 days (a scale representative of the medium term) of the
windowed scale indices plots of Figure 8, in which a time radius of τ = 300 days was also employed.
Moreover, the corresponding global scale index is represented by a dashed line. It can be seen that the
windowed scale indices of crude oil futures contracts increase considerably during the global financial
crisis, unlike what happens with the gold futures contracts. Besides, the global scale index of the gold
futures contracts is slightly greater than the global scale index of the crude oil futures contracts, showing
that in this case, the windowed scale index provides more reliable and detailed information than the global
scale index.
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Figure 10. Sample entropies and windowed scale indices of crude oil and gold futures contracts price
returns. For the sample entropies (see (a,b)), we have considered subseries centered at different times with
time radius τ = 300 days. With respect to the windowed scale indices (see (c,d)), they are centered at
different times with time radius τ = 300 days, taking s0 = 8 days and s1 = 256 days. The corresponding
global SampEn and scale index are represented with dashed lines.

Therefore, according to this example, the windowed scale index has demonstrated to be a valuable
tool for the analysis of the level of unpredictability since it is able to detect changes in the time series that
go unnoticed for other tools such as the SampEn. In essence, the windowed scale index presents two
major advantages over the SampEn and the AppEn. The first one is about the interpretability. Specifically,
the windowed scale index takes values between 0 and 1 and this boundedness allows us to clearly state
how non-periodic a time series is. Meanwhile, the SampEn and AppEn are not bounded, so it is harder to
say whether a given entropy value is high or low and, consequently, whether a given time series is highly
unpredictable or not. A second advantage of the windowed scale index over the entropy parameters is its
sensitivity. In particular, the windowed scale index presents a higher sensitivity to distinguish between
different levels of non-periodicity. For instance, while the windowed scale index is able to clearly identify
that time series 1 in the BvP oscillator example is much less non-periodic than time series 2, the SampEn
values are almost identical.

5. Conclusions

The scale index proposed by [5] has proved to be a helpful wavelet tool to assess the degree of
non-periodicity of a time series. This usefulness is based on the result according to which the wavelet
transform of a periodic time series vanishes when the scale is twice the period. From a theoretical point
of view, it is very interesting to study whether the converse is true or not. In this paper, it is shown
that, at least for the Haar wavelet, the vanishing of the wavelet transform at a certain scale (for all times)
guarantees the periodic character of the time series.
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The windowed scale index introduced in this paper has its origin in the scale index and is particularly
adequate to measure the degree of non-periodicity of non-stationary signals, whose characteristics may
vary over time. Moreover, the use of the windowed scale index as a measure of unpredictability has
advantages in terms of interpretability and sensitivity over some standard unpredictability measures
such as the SampEn or the AppEn. Furthermore, in order to facilitate the use of this and other related
wavelet-based tools, we have developed an R package named wavScalogram [25], which provides
researchers unfamiliar with wavelet analysis a user-friendly framework for identifying the non-periodicity
characteristics of time series.

This paper also includes an economic application of this novel wavelet tool in which the level
of unpredictability of two crucial commodities for the world economy, such as crude oil and gold,
is quantified. The results reveal that oil futures contracts exhibit a higher degree of non-periodicity
than gold futures contracts, particularly in the medium term during the period around the global financial
crisis. One possible explanation for the greater unpredictability of oil is related to the abrupt fluctuations in
crude oil prices caused by positive and negative changes in global aggregate demand since 2007. However,
the more predictable behaviour of the price of gold regardless of the specific time interval and scale can be
attributed to its secular upward trend, which can be seen as a consequence of the traditional consideration
of gold as a safe haven asset, especially during episodes of financial turmoil.

Given the steady growth in the number of research articles and fields of knowledge that have
applied the scale index over the last few years, we strongly believe that the windowed scale index has
a great potential to be widely used in future work. On the one hand, this tool can be particularly useful
in numerous scientific disciplines, such as physics, seismology, climatology, medicine or engineering,
to shed more light on the non-periodicity features of non-stationary signals or time series. For example,
the windowed scale index can play a critical role in the field of pseudo random number generators (PRNG),
not only to assess the degree of non-periodicity of the PRNG, but also to check for stationarity, which could
be a relevant indicator of the goodness of the algorithm. On the other hand, the windowed scale index
also has a high applicability in the area of economics and finance. For instance, the proper identification
of the level of unpredictability of several major financial markets, such as the exchange rate, stock or
cryptocurrency markets, can have valuable economic implications for investors, portfolio managers
and policy makers. In addition, the wavelet tools proposed in this paper can be of interest for anyone
working with long enough time series, such as those typically handled by national and international
statistical institutions.
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