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ABSTRACT 

 

Improving the Quality of Multiple Sequence Alignment. (December 2008) 

Yue Lu, B.S., Peking University 

Chair of Advisory Committee: Dr. Sing-Hoi Sze 

 

Multiple sequence alignment is an important bioinformatics problem, with applications 

in diverse types of biological analysis, such as structure prediction, phylogenetic analysis 

and critical sites identification. In recent years, the quality of multiple sequence 

alignment was improved a lot by newly developed methods, although it remains a 

difficult task for constructing accurate alignments, especially for divergent sequences. 

 

In this dissertation, we propose three new methods (PSAlign, ISPAlign, and NRAlign) 

for further improving the quality of multiple sequences alignment.  

 

In PSAlign, we propose an alternative formulation of multiple sequence alignment based 

on the idea of finding a multiple alignment which preserves all the pairwise alignments 

specified by edges of a given tree. In contrast with traditional NP-hard formulations, our 

preserving alignment formulation can be solved in polynomial time without using a 

heuristic, while still retaining very good performance when compared to traditional 

heuristics. 
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In ISPAlign, by using additional hits from database search of the input sequences, a few 

strategies have been proposed to significantly improve alignment accuracy, including the 

construction of profiles from the hits while performing profile alignment, the inclusion 

of high scoring hits into the input sequences, the use of intermediate sequence search to 

link distant homologs, and the use of secondary structure information.  

 

In NRAlign, we observe that it is possible to further improve alignment accuracy by 

taking into account alignment of neighboring residues when aligning two residues, thus 

making better use of horizontal information. By modifying existing multiple alignment 

algorithms to make use of horizontal information, we show that this strategy is able to 

consistently improve over existing algorithms on all the benchmarks that are commonly 

used to measure alignment accuracy. 
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CHAPTER I 

 

INTRODUCTION 

 

A. Overview of Multiple Sequence Alignment 

 

Introduction 

The goal of multiple sequence alignment (MSA) is to bring functionally or structurally 

similar regions across different biological sequences as close as possible, with 

applications in diverse types of biological analysis, such as structure prediction, 

phylogenetic analysis and critical sites identification (Taylor, 1987; Carillo and Lipman, 

1988; Thompson et al., 1994; Gotoh, 1996; Morgenstern et al., 1996; Stoye, 1998; 

Notredame et al., 2000; Lee et al., 2002; Edgar, 2004; Van Walle et al., 2004; Do et al., 

2005). In recent years, a lot of multiple sequence alignment methods have been 

developed and many of them successfully improved the quality of multiple alignment, 

however, these purely automatic methods are still not good enough when comparing to 

manually refined alignments, especially for divergent sequences. 

 

Computational Approaches for Multiple Sequence Alignment 

The traditional formulation of multiple sequence alignment is to identify the alignment 

that has the maximal sum-of-pairs (SP) score.  The sum-of-pairs score of an alignment is  

____________ 
This dissertation follows the style of Journal of Computational Biology. 
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typically defined as the sum of substitution matrix scores for each aligned pair of 

residues minus gap penalties. Usually, this mathematically optimal alignment can be 

obtained in seconds for a pair of sequences by dynamic programming techniques, 

however, the computational time and memory required by dynamic programming is too 

expensive for multiple sequences. The best known exact algorithm employs dynamic 

programming techniques is with time complexity O(nk) (Carillo and Lipman, 1988), 

where n is the maximum sequence length and k is the number of sequences, and thus is 

useful only when k is very small. Stoye (1998) proposed a divide-and-conquer heuristic 

to limit the search space by subdividing the input sequences into shorter segments, but it 

is still not efficient enough for large-scale alignments. 

 

The inherent difficulty of the multiple alignment problem leads naturally to the 

development of heuristic approaches. The most popular approach to construct multiple 

sequence alignments is by employing a progressive alignment algorithm (Figure 1.1), in 

which each sequence is treated initially as an alignment and the next two most similar 

alignments are repeatedly combined until a single multiple alignment is obtained (Feng 

and Doolittle, 1987; Thompson et al., 1994; Notredame et al., 2000; Edgar 2004; Do et 

al., 2005; Pei and Grishin, 2006; Roshan and Livesay, 2006). Alternatively, other non-

progressive approaches assemble a final multiple alignment from short alignments of 

local similarities (Morgenstern et al., 1996; Van Walle et al., 2004). 

 

Since progressive alignment approach cannot correct errors that may happen during each 
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Figure 1.1: Representation of progressive alignment algorithm. First a guide tree is 

constructed according to the similarity scores of the input sequences, then following the 

guide tree, each sequence is treated initially as an alignment and the next two most 

similar alignments are repeatedly combined until a single multiple alignment is obtained. 

In this case, there are five input sequences. Following the guide tree, sequence 3 and 

sequence 5 are aligned first, and then sequence 1 and sequence 4 are aligned. Then the 

alignment of sequence 3 and 5 is aligned to the alignment of sequence 1 and 4. Finally 

the alignment of sequence 3, 5, 1 and 4 are aligned to sequence 2 to obtain the final 

multiple alignment. 

 

 

progressive alignment step, two techniques are often used to minimize the errors and 

further improve the alignment: performing iterative refinements after the initial 
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alignment is constructed (Gotoh, 1996; Edgar, 2004; Do et al., 2005; Roshan and 

Livesay, 2006; Yamada et al., 2006) and using consistency-based pairwise alignments 

during progressive approach (Notredame et al., 2000; Do et al., 2005; Pei and Grishin, 

2006; Roshan and Livesay, 2006). There are a variety of subtly different methods for 

iterative refinements. Generally, iterative refinements are carried out by repeatedly 

dividing the alignment into two sub-alignments and realigning these two sub-alignments 

until the score of the alignment can’t be improved anymore. The goal of consistency-

based approach is to improve the quality of the initial pairwise alignments by aligning 

through other sequences to increase their agreement with the final multiple alignment. 

This is often achieved by adjusting the residue pair scores of two sequences by their 

alignments to other sequences. For example, given three sequences x, y and z, instead of 

using the original residue pair scores directly, consistency-based approach adjusts the 

matching score for a residue pair xi − yj according to support from some residue zk that 

aligns to both xi and yj in the respective x − z and y − z pairwise comparisons. 

 

Other recent efforts that lead to significant improvement of alignment accuracy also 

include using maximal expected accuracy alignment instead of the less accurate Viterbi 

alignment (Do et al., 2005; Pei and Grishin, 2006; Roshan and Livesay, 2006), 

incorporating secondary structure predictions (Zhou and Zhou, 2005; Pei and Grishin, 

2007), incorporating local structural information (O’Sullivan et al., 2004; Van Walle et 

al., 2004; Pei et al., 2008), incorporating additional sequences from database search 

(Marti-Renom et al., 2004; Simossis et al., 2005; Zhou and Zhou, 2005; Pei and Grishin, 
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2007) and combining alignments from existing methods to obtain an improved 

alignment (Bucka-Lassen et al., 1999; Wallace et al., 2006). 

 

Benchmarks and Evaluation of Alignment Quality 

Two types of quality scores are often used to evaluate multiple sequence alignments: 

reference-dependent scores and reference-independent scores. Reference-dependent 

scores are computed by comparing a test alignment to its corresponding reference 

alignment, which is considered as a gold standard. Reference alignments are generated 

from protein structural alignments, which are constructed without any sequence 

information. To increase the quality of reference alignments, they are often manually 

refined or only the regions that are agreed by several different structural alignment 

methods are considered. Commonly used reference alignment benchmarks include 

BAliBASE (Thompson et al., 2005), which contains manually refined structural 

alignments that are subdivided into five categories, HOMSTRAD (Mizuguchi et al., 

1998), which contains a collection of manually edited structure-based alignments, 

PREFAB (Edgar, 2004), which contains structural alignments of two sequences and 

automatically generated alignments that are obtained from adding high scoring hits of 

the two sequences from database search, and SABmark (Van Walle et al., 2004), which 

contains alignments that are derived from the SCOP classification (Murzin et al., 1995). 

 

Although reference alignments are often in very high quality, it is still possible that they 

contain errors, especially for divergent sequences. Reference-independent scores can 
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avoid this problem. When structures are available, reference-independent scores are 

computed as structural similarity scores by comparing two structures using the aligned 

residues in the test alignment (Pei and Grishin, 2006; Pei and Grishin, 2007; Pei et al., 

2008). Reference-independent scores can be classified as intra-molecular based scores 

and inter-molecular based scores. Inter-molecular based scores require superimposition 

of the two structures. Previous studies show that reference-independent scores are 

consistent with reference-dependent scores when using large alignment benchmarks (Pei 

and Grishin, 2006; Pei and Grishin, 2007; Pei et al., 2008). 

 

Multiple Alignment Methods 

ClustalW (Thompson et al., 1994) is probably the most widely used multiple alignment 

method. It employs a classic progressive alignment approach, and to our best knowledge, 

it has not been improved significantly for a long time. Current popular and accurate 

methods include TCoffee (Notredame et al., 2000), MUSCLE (Edgar, 2004), ProbCons 

(Do et al., 2005) and MUMMALS (Pei and Grishin, 2006). TCoffee is the first multiple 

alignment tool that utilizes consistency-based pairwise alignments (Figure 1.2). 

MUSCLE is one of the most efficient multiple alignment methods that also have high 

accuracy (Figure 1.3). ProbCons is the first multiple alignment tool that utilizes the 

maximal expected accuracy alignment based on a pair-HMM model (Figure 1.4). 

MUMMALS uses secondary structure information during pair-HMM training to further 

improve alignment accuracy (Figure 1.4). An alignment method can outperform other 

methods statistically based on large benchmarks. However, there is no guarantee that 
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Primary Library for seq1 and seq2:

Seq1 GARFIELD THE LAST FAT CAT
|||||||| ||| |||| |||

Seq2 GARFILED THE FAST CAT

Seq1 GARFIELD THE LAST FAT CAT
|||||||| ||| |||| || \ \\\

Seq3 GARFIELD THE VERY FAS T CAT
|||||||| |||      ||| | |||

Seq2 GARFILED THE      FAS T CAT

Seq1 GARFIELD THE LAST FAT CAT
|||      ||| |||

Seq4               THE      FAT CAT
|||      || \ \\\

Seq2 GARFIELD THE      FAS T CAT

Extended Library for seq1 and seq2:

Seq1 GARFIELD THE LAST FA T CAT
||||||||          || | |||

Seq2 GARFILED THE      FAST CAT

 

 

 

 

 

 

 

 

 

Figure 1.2: Consistency-based strategy called “library extension” from TCoffee 

(Notredame et al., 2000). The primary library is constructed from global and local 

alignment methods such as ClustalW (Thompson et al., 1994) and Lalign (Huang and 

Miller, 1991). The library is extended by using a triplet approach, which modifies the 

score of two residues from two sequences according to their alignments to residues from 

a third sequence. The extended library is then used in progressive alignment to obtain the 

multiple sequence alignment. 

 

 

one method is always better than the others on all individual cases. It is highly 

recommended to try several methods together for a specific alignment, and the regions 

that are agreed by different methods are more likely to be reliable.  

 



 8

Final MSA

unaligned sequences

k-mer
counting

tree1

progressive 
alignment

MSA2

kimura
distances 

tree2

progressive 
alignmentRefinements

MSA1

 

 

 

 

 

 

 

 

Figure 1.3: The flow of MUSCLE (Edgar, 2004). A draft multiple alignment is first 

constructed by progressive alignment from a tree estimated by k-mer distances of the 

input sequences. Then a second progressive alignment is performed using a re-estimated 

tree by kimura distances from the first multiple alignment. Iterative refinements are 

performed to the second multiple alignment to obtain the final alignment. By avoiding 

the time-consuming pairwise comparisons of all the input sequences, MUSCLE is one of 

the most efficient methods for large-scale multiple alignments. 

 

 

B. Our Contribution 

 

In despite of the noticeable improvement in alignment accuracy, current available 

multiple alignment methods are far from perfect, especially for divergent sequences and  
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Figure 1.4: Pair-HMM models used by ProbCons (Do et al., 2005) and MUMMALS 

(Pei and Grishin, 2006). (a) Basic pair-HMM model used by ProbCons. Basic HMM 

contains three different states. State M emits an aligned pair of residues, states X and Y 

emit a residue in the first and the second sequences respectively that is aligned to a gap. 

(b) The HMM_1_3_1 model used by MUMMALS. The state M in the basic model is 

further divided into 4 states (state H, state S, state C and state U) in this model. State H, 

state S and state C represent helix, strand and coil respectively according to the 

secondary structure types of the first sequence. State U represents unaligned regions. 

 

 

large sequence datasets. In Chapter II – Chapter IV, we propose three new multiple 

alignment methods, which improve multiple sequence alignment using three different 

approaches. 

X 

M 

Y 

H 

S 

C 

U 

X 

Y 

(a) (b) 
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Since traditional multiple alignment formulations are NP-hard, heuristics are commonly 

employed to find acceptable alignments with no guaranteed performance bound. This 

causes a substantial difficulty in understanding what the resulting alignment means and 

in assessing the quality of these alignments. In Chapter II, we propose an alternative 

formulation of multiple alignment based on the idea of finding a multiple alignment of k 

sequences which preserves k − 1 pairwise alignments as specified by edges of a given 

tree. Although it is well known that such a preserving alignment always exists, it did not 

become a mainstream method for multiple alignment since it seems that a lot of 

information is lost from ignoring pairwise similarities outside the tree. In contrast, by 

using pairwise alignments that incorporate consistency information from other sequences, 

we show that it is possible to obtain very good accuracy with the preserving alignment 

formulation. We show that a reasonable objective function to use is to find the shortest 

preserving alignment, and, by a reduction to a graph-theoretic problem, that the problem 

of finding the shortest preserving multiple alignment can be solved in polynomial time. 

We demonstrate the success of this approach on three sets of benchmark multiple 

alignments by using consistency-based pairwise alignments from the first stage of two of 

the best performing progressive alignment algorithms TCoffee (Notredame et al., 2000) 

and ProbCons (Do et al., 2005) and replace the second heuristic progressive step of these 

algorithms by the exact preserving alignment step. We apply this strategy to TCoffee 

and show that our approach outperforms TCoffee on two of the three test sets. We apply 

the strategy to a variant of ProbCons with no iterative refinements and show that our 
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approach achieves similar or better accuracy except on one test set. We also compare our 

performance to ProbCons with iterative refinements and show that our approach 

achieves similar or better accuracy on many subcategories even without further 

refinements. The most important advantage of the preserving alignment formulation is 

that we are certain that we can solve the problem in polynomial time without using a 

heuristic. A software tool implementing this approach (PSAlign) is available at 

http://faculty.cs.tamu.edu/shsze/psalign. 

 

In Chapter III, by using additional hits from database search of the input sequences, a 

few strategies have been proposed to significantly improve alignment accuracy, 

including the construction of profiles from the hits while performing profile alignment, 

the inclusion of high scoring hits into the input sequences, the use of intermediate 

sequence search to link distant homologs, and the use of secondary structure information. 

We develop an algorithm that integrates these strategies to further improve alignment 

accuracy by modifying the pair-HMM approach in ProbCons to incorporate profiles of 

intermediate sequences from database search and utilize secondary structure predictions 

as in SPEM (Zhou and Zhou, 2005). We test our algorithm on a few sets of benchmark 

multiple alignments, including BAliBASE, HOMSTRAD, PREFAB and SABmark, and 

show that it significantly outperforms MAFFT (Katoh et al., 2005) and ProbCons, which 

are among the best multiple alignment algorithms that do not utilize additional 

information, and SPEM, which is among the best multiple alignment algorithms that 

utilize additional hits from database search. The improvement in accuracy over SPEM 
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can be as much as 5 to 10% when aligning divergent sequences. A software tool that 

implements this approach (ISPAlign) is at http://faculty.cs.tamu.edu/shsze/ispalign. 

 

While most of the recent improvements in multiple sequence alignment accuracy are due 

to better use of vertical information, which include the incorporation of consistency-

based pairwise alignments and the use of profile alignments, we observe that it is 

possible to further improve accuracy by taking into account alignment of neighboring 

residues when aligning two residues, thus making better use of horizontal information. 

By modifying existing multiple alignment algorithms to make use of horizontal 

information, In Chapter IV, we show that this strategy is able to consistently improve 

over existing algorithms on four sets of benchmark alignments that are commonly used 

to measure alignment accuracy, and the improvements in accuracy can be as much as a 

few percent. Unlike previous algorithms, consistent improvements can be obtained 

across all identity levels. A software tool that implements this approach (NRAlign) is 

available at http://faculty.cs.tamu.edu/shsze/nralign. 
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CHAPTER II 

 

PSAlign: A POLYNOMIAL TIME SOLVABLE FORMULATION OF 

MULTIPLE SEQUENCE ALIGNMENT* 

 

 
A. Introduction 

 

The goal of the multiple alignment problem is to bring similar regions from different 

sequences as closely together as possible, with applications in diverse types of 

biosequence analysis (Taylor, 1987; Carillo and Lipman, 1988; Thompson et al., 1994; 

Gotoh, 1996; Morgenstern et al., 1996; Stoye 1998; Notredame et al., 2000; Lee et al., 

2002; Edgar, 2004; Van Walle et al., 2004; Do et al., 2005). Since traditional multiple 

alignment formulations are NP-hard (Just, 2001), it is unreasonable to expect that one 

will ever be able to find an efficient approach that always returns an optimal alignment. 

The best known exact algorithm employs dynamic programming techniques with time 

complexity O(nk) (Carillo and Lipman, 1988), where n is the maximum sequence length 

and k is the number of sequences, and thus is useful only when k is small. Stoye (1998) 

proposed a divide-and-conquer heuristic to limit the search space by subdividing the 

input sequences into shorter segments, but it is not efficient enough for large-scale  

____________ 
*Part of the data reported in this chapter is reprinted with permission from “A 
Polynomial Time Solvable Formulation of Multiple Sequence Alignment” by Sze, S.-H., 
Lu, Y. and Yang, Q., 2005, RECOMB'2005, Lecture Notes in Computer Science, 3500, 
204-216. Copyright 2005 with kind permission of Springer Science+Business Media. 
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applications. 

 

The inherent difficulty of the multiple alignment problem leads naturally to the 

development of heuristic approaches. Among the most successful of these are 

progressive approaches, which combine the given sequences in some order to obtain a 

multiple alignment (Feng and Doolittle, 1987; Thompson et al., 1994; Notredame et al., 

2000; Edgar, 2004; Do et al., 2005). These heuristics are often coupled with iterative 

refinement of the initial multiple alignment to obtain improved performance (Gotoh, 

1996; Edgar, 2004; Do et al., 2005). Alternatively, other non-progressive approaches 

assemble a final multiple alignment from short alignments of local similarities 

(Morgenstern et al., 1996; Van Walle et al., 2004). Although in most cases, a scoring 

scheme and an accompanying objective function can be defined for these heuristics, it is 

often unclear how close the final alignment is to the optimal. Some efforts have been 

spent to develop approximation algorithms for multiple alignment with guaranteed 

performance bound, but the theoretical bound is usually too weak to reflect the actual 

performance (Gusfield, 1993). 

 

We propose an alternative formulation of multiple alignment that is solvable in 

polynomial time. Such a formulation is very important as it makes it possible to know 

what the alignment means and also ensures that the optimal solution can be found. 

Instead of employing objective functions that are very difficult to optimize, the 

formulation is based on the idea of finding a multiple alignment of k sequences which 
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preserves k − 1 pairwise alignments as specified by edges of a given tree. In particular, 

one can use the optimum spanning tree that includes the best k − 1 pairwise alignments 

covering all the sequences. Although it is well known that such a preserving alignment 

always exists (Feng and Doolittle, 1987; Gusfield, 1993; Pevzner, 2000), it did not 

become a mainstream method for multiple alignment since it seems that a lot of 

information is lost from ignoring pairwise similarities outside the tree. 

 

The preserving alignment approach can be seen as a restricted version of a broader class 

of consistency based approaches, which aim to maximize the consistency between the 

resulting multiple alignment and a given set of pairwise alignments on aligned residue 

pairs (Kececioglu, 1993; Notredame et al., 1998). A distinct advantage of these 

consistency-based approaches is that once the pairwise alignments are fixed, the multiple 

alignment follows logically without the need to define a multiple alignment score 

(Notredame et al., 1998). Since the pairwise alignments are not restricted to be on a tree 

in this more general formulation, they can be conflicting, and thus the objective function 

is likely to be more accurate, but it is also likely to be intractable to optimize. In another 

direction, by incorporating consistency information from other sequences when 

computing individual pairwise alignments, these consistency-based pairwise alignments 

have been successfully used in the pairwise stage of progressive approaches to give 

some of the best performing multiple alignment approaches to date (Notredame et al., 

2000; Edgar 2004; Do et al., 2005). By employing these consistency-based pairwise 

alignments, we will show that it is possible to obtain very good accuracy even with the 
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more restrictive preserving alignment formulation. Other studies that made use of the 

notion of consistency include Gotoh (1990) and Vingron and Argo (1991). 

 

A complication with the preserving alignment formulation is that there may be many 

multiple alignments which preserve the given k − 1 pairwise alignments and previous 

studies did not suggest how to choose among them. Ideally, one would like to maximize 

the similarity level over all columns. However, many of the objective functions that 

attempt to exploit these similarities are likely to be intractable to optimize. One natural 

way that allows us to develop a tractable approach is to find the shortest preserving 

multiple alignment with the smallest number of columns, corresponding to adding as few 

gaps as possible while preserving the pairwise alignments along the tree edges. Without 

being able to control the similarity level in each individual column, this formulation 

discourages gaps (similarly to other traditional formulations) while making sure that the 

resulting multiple alignment resembles the given pairwise alignments. One important 

advantage of the preserving alignment formulation is that once the tree and the pairwise 

alignments are fixed, no additional parameters or a scoring scheme for multiple 

alignment are needed. This makes it possible to use any tree or pairwise alignments 

directly from other approaches, including ones that have made use of structural 

information. Similar ideas of utilizing structural pairwise alignments have been proposed 

by a few studies (O’Sullivan et al., 2004; Van Walle et al., 2004).  
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We will show, by a reduction to a graph-theoretic problem, that the problem of finding 

the shortest preserving multiple alignment can be solved in polynomial time, and, by 

using consistency-based pairwise alignments, that the accuracy of this exact approach is 

comparable to the best heuristic multiple alignment approaches on three sets of 

benchmark multiple alignments from Thompson et al. (1999), Edgar (2004), and Van 

Walle et al. (2004), thus justifying the use of the proposed polynomial time formulation 

over other NP-hard formulations. In particular, we reduce the multiple alignment 

problem to finding a topological partial ordering in a directed acyclic graph where each 

vertex represents a partially aligned column and unordered vertices are allowed to share 

the same label. The label assigned to each vertex from the ordering specifies its position 

in the multiple alignment, and the ordering itself represents a preserving multiple 

alignment. 

 

 

B. Problem Formulation 

 

Let S = {s1, . . . , sk} be a given set of sequences. Assume that we are given a tree T with 

k vertices where each vertex of T is labeled by a distinct sequence and each edge (i, j) of 

T represents a pair of sequences si and sj, and we are also given a pairwise alignment Pij 

between sequences si and sj for each edge (i, j) of T. A multiple alignment M of S is said 

to preserve all the k − 1 pairwise alignments on T if for each edge (i, j) of T, the induced 

pairwise alignment on sequences si and sj is the same as Pij when the columns containing 
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only gap characters are removed. Since the tree T specifies pairwise alignments that can 

be simultaneously preserved, it is obvious that such a preserving multiple alignment M 

always exists (Feng and Doolittle, 1987; Gusfield, 1993; Pevzner, 2000). Likewise, a 

multiple alignment M of S is said to preserve all matches and mismatches (or just the 

matches) in the k − 1 pairwise alignments on T if for each edge (i, j) of T, each column 

containing a match or a mismatch (or just a match) has to stay in the same column in M. 

We formulate the multiple alignment problem as follows: given a tree T and a pairwise 

alignment Pij for each edge (i, j) of T, find a preserving multiple alignment M with the 

smallest number of columns. 

 

The simplest way to obtain pairwise alignments is by applying standard techniques, 

including global (Needleman and Wunsch, 1970) and local (Smith and Waterman, 1981) 

approaches, or a combination of these approaches. However, we found that it is often 

better to use other kinds of pairwise alignments such as those that have incorporated 

consistency information from other sequences. These consistency-based pairwise 

alignments can be obtained from the pairwise stage of a few progressive approaches 

(Notredame et al., 2000; Do et al., 2005). From these pairwise alignments, one 

reasonable tree T to use is an optimum spanning tree on the complete graph Ck where 

each vertex is labeled by a distinct sequence and each edge (i, j) is labeled by the score 

of Pij, which can either be the pairwise alignment score of Pij or other scores given by 

the approach generating the pairwise alignments. To compute the optimum spanning tree 

from Ck, Prim’s algorithm can be used, which has time complexity O(k2log k) (Cormen 
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et al., 2001). Alternatively, one can use a star tree with a central vertex and k−1 leaves 

(Gusfield, 1993; Pevzner, 2000). Although computational results show that using a star 

tree works well when all the given sequences are closely related, it does not give very 

good performance when none of the given sequences can act as the center, such as when 

there is more than one cluster of closely related sequences. In contrast, by using a 

general tree, it is possible to utilize the best non-conflicting pairwise alignments. 

 

Note that the tree used here represents each sequence as a vertex, which is different from 

the phylogenetic tree (Morrison, 1996) or the guide tree (Thompson et al., 1999) used in 

traditional progressive approaches in which sequences are represented only at the leaves. 

As a result, only alignments between sequences are needed in the preserving alignment 

formulation, which is similar to the comparisons made between sequences during the 

greedy extension step of the multiple alignment algorithm of Taylor (1987, 1988), while 

progressive approaches need to consider alignments between alignments (Altschul and 

Lipman, 1989). However, it is possible to make use of a phylogenetic tree when one is 

given. Instead of using pairwise alignment scores, we can use the distances between 

sequences si and sj on the phylogenetic tree to compute an optimum spanning tree. In this 

case, we only need to compute k − 1 pairwise alignments along the spanning tree. 
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C. Exact Algorithm 

 

For simplicity of analysis, assume that each of the input sequences is of the same length 

n. Given a tree T and a pairwise alignment Pij for each edge (i, j) of T, we give an 

algorithm to solve the shortest preserving multiple alignment problem in linear time by 

two successive graph reductions. Gusfield (1993) gave an algorithm to solve the problem 

in the important special case when the given tree is a star. We first consider preserving 

only the matches and mismatches instead of entire pairwise alignments. We will show 

that this strategy also preserves the indel columns under normal situations. Let sij be the 

letter at the jth position of sequence si. The first reduction constructs an undirected graph 

G = (V, E) as follows (see Figure 2.1 a–d): 

 

Let V = {vij}, where vij represents the jth position of sequence si, and E = 

{{vip, vjq} | (i, j) ∈ T and (sip, sjq) is a match or a mismatch column in Pij}. 

 

Intuitively, E contains all the match and mismatch columns within the pairwise 

alignments along the edges of T and thus specifies exactly all the preservation 

constraints. The observation below follows directly from T being a tree and Pij being 

pairwise alignments. 

 

Proposition 2.1. Each connected component C in G is a tree and contains at most one 

vertex from each sequence si. 
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To obtain a preserving multiple alignment, letters within each connected component in G 

must be put into the same column. On the other hand, we are free to put two different 

connected components in the same column as long as they do not contain vertices from 

the same sequence. Also, when assigning components to different columns to obtain a 

multiple alignment, the order of the letters within each sequence must be maintained. To 

represent these constraints precisely, the second reduction constructs a directed graph G’ 

= (V’, E’) from G as follows (see Figure 2.1 e for a transitively reduced version of G’): 

 

Let V’ be the set of all connected components C in G and let s(C) be the 

set of sequences in which the vertices in C reside. Connect a component 

C1 to another component C2 by a directed edge in E’ if s(C1) ∩ s(C2) ≠ φ  

and for every sequence si ∈  s(C1) ∩ s(C2) shared by C1 and C2, the vertex 

vip in C1 appears before the vertex viq in C2 (i.e., p < q).  (2.1) 

 

Note that two connected components that contain vertices from the same sequence are 

strictly ordered and thus will be connected by an edge (in one of the directions), since if 

there are two vertices vip and vjq in C1 and two vertices vir and vjs in C2 with p < r, then 

we must have q < s. The reasoning is as follows. Let vip = u1, . . . , ut = vjq be the unique 

path between vip and vjq in C1 and vir = w1, . . . , wt = vjs be the unique path between vir 

and vjs in C2. For 1 ≤  l < t, since ul and wl are on the same sequence, the adjacent pairs 

(ul, ul+1) and (wl, wl+1) represent two match or mismatch columns within one single  
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Figure 2.1: Illustration of the exact algorithm. (a) Set of sequences S. (b) Tree T. (c) 

Pairwise alignments P12 and P13. (d) Undirected graph G constructed from S, T, P12, and 

P13. (e) Directed graph G’ (transitively reduced) constructed from G by taking connected 

components in G as vertices. Labels of vertices in G’ are assigned by the topological 

partial ordering algorithm. (f) Shortest preserving alignment by interpreting labels as 

columns. 

 

 

pairwise alignment. The fact that p < r and q ≥  s contradicts these being columns in the 

pairwise alignments. A more elaborate argument gives the following. 
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Proposition 2.2. G’ is a directed acyclic graph. 

 

Proof. Let C1, . . . , Ct be a cycle in G’. Then there exist sequences 1is , . . . , tis  such that 

11 piv  is in C1 and 11qiv  is in C2 with p1 < q1, 22 piv  is in C2 and 22qiv  is in C3 with p2 < q2, 

and so on, until finally, ttpiv is in Ct and ttqiv  is in C1 with pt < qt. Between these vertices, 

there is a unique path 11qiv , . . . , 22 piv  on C2, 22qiv , . . . , 33 piv  on C3, and so on, until 

finally, ttqiv  , . . . , 11 piv  on C1. Thus the cycle can be represented by the path 11 piv  ⎯→⎯ j  

11qiv  ⎯→⎯w  22 piv  ⎯→⎯ j  22qiv  ⎯→⎯w  . . .  ⎯→⎯w  ttpiv  ⎯→⎯ j  ttqiv  ⎯→⎯w  11 piv , where 

⎯→⎯ j  denotes a jump to a later connected component on the same sequence, and ⎯→⎯w  

denotes walking along the tree edges in T within a connected component which visits 

each sequence at most once. On this path, whenever a sequence s is visited again, the 

position of visit on s must increase, since a jump increases the position of visit on the 

same sequence from pl to ql , at least one jump has to occur before s is visited again, and 

whenever a walk moves from s to another sequence t along a tree edge in T, the only 

way to return to s is through t along the same edge in T. Walking along T this way with 

no increase in the position of visit on s when s is revisited contradicts the given pairwise 

alignments. In particular, this is true for sequence 1is , a contradiction to the above cycle 

which keeps the position of visit on 1is  at p1. 

 

Since the primary purpose of G’ is to specify ordering constraints, a transitively reduced 

version of G’ suffices (see Figure 2.1 e). Instead of performing the transitive reduction 

step, such a graph G’ can be obtained directly from G by requiring further that there 
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exists a sequence si such that p + 1 = q in (2.1). This reduces the number of edges in G’ 

substantially, and we will be using this definition in what follows. The above results 

suggest that a multiple alignment can be obtained by finding a topological partial 

ordering in G’. 

 

Definition 2.3. A topological partial ordering of a directed acyclic graph G’ = (V’, E’) 

is an assignment of an integer label l(v) to each vertex v ∈V’ such that for each edge (u, 

v) ∈  E’, l(u) < l(v). 

 

Since it is possible that two vertices are assigned the same label, the result is not 

necessarily a total order (a total order corresponds to a topological sorting [Knuth, 

1997]). Without loss of generality, assume that the labels are consecutive integers from 1 

to m. From a given graph G’, there are many ways to realize such an ordering. For each 

fixed ordering, a multiple alignment can be obtained by putting each letter within a 

connected component C in G (C is a vertex in G’) in column l(C) and filling other 

unassigned spaces by gap characters (see Figure 2.1 f). The set of all possible ways to do 

this represents the solution space of all preserving alignments. 

 

Proposition 2.4. Each topological partial ordering of G’ specifies a multiple alignment 

preserving all matches and mismatches in the k − 1 pairwise alignments on T. 
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By making additional assumptions, it is possible to ensure that the resulting multiple 

alignment preserves the given pairwise alignments entirely, which includes the indel 

columns in addition to the match and the mismatch columns, without requiring an 

algorithm change. The observation below follows directly from the constraints imposed 

on the placement of gap characters between two match or mismatch columns that must 

be preserved and are separated only by indel columns. 

 

Proposition 2.5. If for each pairwise alignment Pij on T, there do not exist two adjacent 

indel columns (without match or mismatch columns in between) such that the gap 

character is on sequence si in column l and on sequence sj in column l−1 or l+1, then 

each topological partial ordering G’ specifies a multiple alignment preserving the k − 1 

pairwise alignments on T.                      

 

It is very rare to be given pairwise alignments that violate the condition given in 

Proposition 2.5, and thus in most cases the resulting multiple alignment also preserves 

the given pairwise alignments entirely. In the other direction, one can relax the 

constraints by requiring only the match columns (or the columns with a positive score 

with respect to a given substitution matrix) to be preserved, which can be achieved by 

allowing only edges representing these columns to be added to G. Computational results 

show that simply finding the shortest preserving multiple alignment in this case does not 

give very good performance since the flexibility in the placements of the resulting 
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smaller connected components in G becomes excessive. The following observation 

completes the reduction. 

 

Proposition 2.6. A topological partial ordering of G’ that uses the smallest number of 

labels specifies a shortest preserving multiple alignment. 

 

Since edges in G correspond to match or mismatch columns in the given k − 1 pairwise 

alignments along the given tree T and each pairwise alignment is of length O(n), there 

are O(kn) vertices and edges in G. Thus, there are O(kn) connected components in G 

which make the vertices in G’. These connected components can be obtained in O(kn) 

time by a depth-first search on G. In the simplest case, each connected component in G 

is of size one (which represents one position on a single sequence), and edges in G’ are 

constructed between components that represent adjacent positions within the same 

sequence, resulting in a total of O(kn) edges in G’. The graph G’ in any other case with 

larger connected components can be obtained from this simplest case by merging the 

corresponding vertices and collapsing each resulting multiedge into a single edge, and 

thus the number of edges in G’ is O(kn) in all cases. To find a topological partial 

ordering that uses the smallest number of labels in G’, an algorithm very similar to the 

standard topological sorting algorithm (Knuth, 1997) can be used: initially, all vertices 

are unmarked. Repeatedly find an unmarked vertex v with all its incoming vertices 

marked. Set the label of v to be one plus the maximum label among all its incoming 

vertices and mark v (see Figure2.1 f). If a count is kept in each vertex representing the 
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number of remaining unmarked incoming vertices, the algorithm can be implemented in 

time linear in the number of edges in G’. Thus, with appropriate data structures, the 

overall time complexity of the entire procedure is O(kn), which is linear in the input size. 

If it is not important to obtain a totally ordered multiple alignment, it is possible to return 

the graph G’ directly as a partially ordered multiple alignment, which is similar in 

concept but different in structure to the notion of partial order multiple alignment 

proposed by Lee et al. (2002). In this case, there is no need to define any objective 

function.  

 

 

D. Performance 

 

We evaluate the accuracy of the preserving alignment algorithm (PSAlign) on three sets 

of benchmark multiple alignments: BAliBASE from Thompson et al. (1999), PREFAB 

from Edgar (2004), and SABmark from Van Walle et al. (2004). We compare our 

performance to TCoffee (Notredame et al., 2000) and ProbCons (Do et al., 2005), which 

are currently considered to be among the best multiple alignment algorithms. To make 

fair comparisons, we compare our performance (PSAlign[TCoffee]) to TCoffee when 

pairwise alignments from TCoffee are used, and we compare our performance 

(PSAlign[ProbCons]) to ProbCons when pairwise alignments from ProbCons are used. 

For TCoffee, we use pairwise alignments computed from the extended library that have 

incorporated consistency information from other sequences (Notredame et al., 2000). 
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For ProbCons, we use pairwise alignments computed after consistency transformation 

(Do et al., 2005). All these pairwise alignments incorporate consistency information 

from other sequences, and it has been shown that this significantly improves the quality 

of the pairwise alignments with respect to the overall consistency. We then compute an 

optimum spanning tree from these consistency-based pairwise alignments using pairwise 

scores given by the two algorithms (normalized by the length of each pairwise alignment) 

and apply the preserving alignment step. Since our main goal is to show that the 

heuristic progressive step of these approaches can be replaced by the exact preserving 

alignment step, we compare to a variant of ProbCons with no iterative refinements. We 

also compare our performance (without performing further refinements) to ProbCons 

with iterative refinements. 

 

Following Thompson et al. (1999), two score measures are used to evaluate the accuracy 

of each algorithm in finding the core blocks in BAliBASE (which are annotated regions 

that can be reliably aligned): the sum-of-pairs score (SPS) measures how well an 

algorithm can align pairs of residues within the same column correctly, while the column 

score (CS) measures how well an algorithm can align entire columns correctly. For 

PREFAB, we follow Edgar (2004) and use the Q score, which has the same meaning as 

SPS used in BAliBASE. For SABmark, we define the Q score for each test case as the 

average Q score over all pairs of reference sequences. For both PREFAB and SABmark, 

the reference alignments are based on pairwise comparisons, and thus the CS score is not 

applicable. For each test set, we compare average accuracy over meaningful subsets and 
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use the Wilcoxon matched-pairs signed-ranks test (Wilcoxon, 1947) to check whether 

there are significant performance differences with p = 0.05 as cutoff. Note that in the 

preserving alignment computation, the shortest solution is not necessarily unique and we 

simply report an arbitrary one. 

 

Tables 2.1, 2.2 and 2.3 show performance comparisons of the various algorithms on 

BAliBASE, PREFAB, and SABmark, respectively. A general trend was that ProbCons 

tends to perform better than TCoffee, whether PSAlign is used or not. When we consider 

the ability of PSAlign[TCoffee] to replace TCoffee and the ability of PSAlign[ProbCons] 

to replace ProbCons, PSAlign was a much better replacement when used in conjunction 

with TCoffee than with ProbCons and the only case where PSAlign[TCoffee] is worse 

than TCoffee was in reference 4 of BAliBASE. Also, PSAlign was a better replacement 

when used on SABmark than on BAliBASE, but PSAlign[ProbCons] was not an 

adequate replacement when used on PREFAB. 

 

On BAliBASE, when compared to TCoffee and ProbCons (ir = 0) that do not perform 

iterative refinements, PSAlign had better accuracy on references 1V1 and 5, but this was 

offset by worse accuracy on references 3 and 4. Although there were no noticeable 

differences in the overall accuracy, the Wilcoxon matched-pairs test revealed that 

ProbCons (ir = 0) performed better than PSAlign[ProbCons] in the SPS score with p = 

0.02. The differences in all the other cases on the overall accuracy were insignificant 

with TCoffee or in the CS score. We did not apply the Wilcoxon test to any of the  
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Table 2.1: Average SPS and CS scores (in %) of PSAlign on BAliBASE 2.01. 

Reference 1 is further subdivided into three subsets: V1 (< 25% identity), V2 (20%–40% 

identity) and V3 (> 35% identity). Comparisons are made between TCoffee 1.37 and 

PSAlign utilizing TCoffee pairwise alignments (PSAlign[TCoffee]) and between 

ProbCons 1.10 and PSAlign utilizing ProbCons pairwise alignments 

(PSAlign[ProbCons]). No iterative refinements are performed for ProbCons (ir = 0). 

Default parameters are used otherwise, with ProbCons (ir = 100) performing 100 rounds 

of iterative refinements. 

SPS 1V1 1V2 1V3 1(Overall) 2 3 4 5 Overall

TCoffee 64.1 95.2 98.5 87.6 93.5 78.6 93.9 96.0 89.1 

PSAlign[TCoffee] 67.3 95.1 98.4 88.4 93.6 78.5 89.1 97.3 89.2 

ProbCons(ir = 0) 69.1 96.6 98.5 89.5 94.2 84.0 90.8 97.4 90.6 

ProbCons(ir = 100) 74.5 96.8 98.5 91.1 94.2 84.0 93.7 97.4 91.8 

PSAlign[ProbCons] 71.5 96.6 98.4 90.1 94.0 80.9 90.1 98.0 90.7 

CS 1V1 1V2 1V3 1(Overall) 2 3 4 5 Overall

TCoffee 41.5 90.9 96.8 79.1 58.4 50.9 80.4 90.3 74.4 

PSAlign[TCoffee] 47.3 90.6 96.5 80.5 58.3 54.8 68.4 90.0 74.5 

ProbCons(ir = 0) 49.6 93.4 96.9 82.3 61.6 63.5 72.1 89.3 77.1 

ProbCons(ir = 100) 59.6 94.0 96.9 85.3 61.6 63.5 81.1 89.3 79.6 

PSAlign[ProbCons] 55.8 93.5 96.6 84.0 61.7 52.2 69.7 93.6 77.2 
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Table 2.2: Average Q scores (in %) of PSAlign on PREFAB 4.0. Each subset includes 

all structure pairs with identity within the specified range. 

 0–20% 20–40% 40–70% 70–100% Overall 

TCoffee 49.2 82.9 93.8 95.1 66.5 

PSAlign[TCoffee] 51.0 84.6 95.2 97.9 68.3 

ProbCons(ir = 0) 55.6 87.2 95.4 97.3 71.7 

ProbCons(ir = 100) 55.6 87.2 95.4 97.3 71.7 

PSAlign[ProbCons] 52.1 85.2 93.0 94.2 68.8 

 

 

 

subsets of BAliBASE due to their small sizes. When compared to ProbCons (ir = 100) 

that performs iterative refinements, PSAlign[ProbCons] still maintained better accuracy 

on reference 5, but it no longer had better accuracy on reference 1V1. The Wilcoxon test 

revealed that ProbCons (ir = 100) had significantly better overall accuracy than 

PSAlign[ProbCons] in both the SPS and the CS scores with p < 0.001, which was 

mainly due to large accuracy improvements on references 1V1 and 4 from iterative 

refinements (no noticeable improvements were observed on the other references). 

 

On PREFAB, PSAlign[TCoffee] had better accuracy than TCoffee in all five categories 

and these improvements were significant with p < 0.001 for the subsets with 0% to 20% 

identity, with 20% to 40% identity, with 70% to 100% identity, and for the entire set. On  
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Table 2.3: Average Q scores (in %) of PSAlign on SABmark 1.65. The FP variant of the 

two subsets includes false positive sequences. 

 Superfamily Superfamily-FP Twilight Twilight-FP Overall

TCoffee 52.9 45.6 23.7 17.0 39.8 

PSAlign[TCoffee] 54.8 54.1 25.8 25.4 45.0 

ProbCons(ir = 0) 56.7 52.5 28.6 23.0 45.2 

ProbCons(ir = 100) 57.1 53.2 29.3 24.0 45.8 

PSAlign[ProbCons] 56.1 53.6 28.1 25.1 45.6 

 

 

 

the other hand, ProbCons (ir = 0) performed significantly better than PSAlign[ProbCons] 

in all five categories with p < 0.001, while no noticeable improvements were observed 

with ProbCons (ir = 100) over ProbCons (ir = 0). 

 

On SABmark, PSAlign[TCoffee] showed highly significant improvements over TCoffee 

with p < 0.001 in all five categories. However, on the Superfamily and Twilight subsets, 

ProbCons (ir = 0) performed significantly better than PSAlign[ProbCons] (with p < 

0.001 for the Superfamily subset and p = 0.03 for the Twilight subset). The situation was 

reversed on the Superfamily-FP and Twilight-FP subsets when PSAlign[ProbCons] 

performed significantly better than ProbCons (ir = 0) (with p = 0.01 for Superfamily-FP 

subset and p < 0.001 for Twilight-FP subset), while the difference between ProbCons (ir 

= 0) and PSAlign[ProbCons] on the overall accuracy was insignificant. Although 
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ProbCons (ir = 100) further increased the performance differences from 

PSAlign[ProbCons] on the Superfamily and Twilight subsets to p < 0.001 in both cases, 

PSAlign[ProbCons] was able to maintain significantly better accuracy than ProbCons (ir 

= 100) on the Twilight-FP subset with p < 0.001 while having an insignificant difference 

in accuracy on the Superfamily-FP subset. Although ProbCons (ir = 100) performed an 

significantly better than PSAlign[ProbCons] on the overall accuracy with p = 0.003, one 

important advantage of PSAlign is that it had a much smaller accuracy decrease when 

either the Superfamily or Twilight subset is replaced by its FP variant with false positive 

sequences. 

 

Overall, PSAlign[TCoffee] performed at least as well as TCoffee on BAliBASE and was 

much better than TCoffee on PREFAB and SABmark. When compared to ProbCons (ir 

= 0), PSAlign[ProbCons] achieved similar or better accuracy on BAliBASE and 

SABmark, but did not perform as well on PREFAB. When compared to ProbCons (ir = 

100), PSAlign[ProbCons] achieved similar or better accuracy on many subcategories 

even without further refinements, but had worse overall accuracy. These results did not 

lead to a conclusive statement that shows that using PSAlign has a definite advantage or 

disadvantage, and thus it is hard to predict whether there will be significant accuracy 

differences if we replace the heuristic progressive step of some given multiple alignment 

algorithm by the exact preserving alignment step. Nevertheless, the most important 

advantage of the preserving alignment formulation is that we are certain that we can 

solve the problem in polynomial time without using a heuristic. Since the time 
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complexity is dominated by the computations of the pairwise alignments, the preserving 

alignment step does not add much to the running time. What we actually observe was at 

most a two times slowdown when PSAlign was used to replace TCoffee or ProbCons, 

due to the need to compute all consistency-based pairwise alignments to obtain the 

optimum spanning tree. 

 

 

E. Discussion 

 

The proposed multiple alignment formulation divides the multiple alignment problem 

into two sub-problems. The first sub-problem requires the computation of pairwise 

alignments and a tree, which can be defined systematically so that optimal solutions can 

be computed in polynomial time. For example, one can use a technique similar to that 

used by Notredame et al. (2000) to compute consistency-based pairwise alignments 

based on comparisons of three sequences so that each of them can be computed in O(kn2) 

time. It is especially important to obtain high quality pairwise alignments in this stage, 

since we found that good accuracy cannot be obtained when simple non-consistency-

based pairwise alignments are used. This was confirmed by a much bigger decrease in 

accuracy and a much worse performance of PSAlign[ProbCons] in most cases as 

compared to ProbCons(ir = 0) when the consistency transformation in ProbCons was 

disabled (Table 2.4). The second stage computes a shortest preserving multiple  
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Table 2.4: Performance of ProbCons (ir = 0) and PSAlign[ProbCons] when consistency 

transformation in ProbCons is disabled. Both algorithms use ordinary pairwise 

alignments instead of consistency-based pairwise alignments. (a) Average SPS and CS 

scores (in %) on BAliBASE 2.01. (b) Average Q scores (in %) on PREFAB 4.0. (c) 

Average Q scores (in %) on SABmark 1.65. 

(a) BAliBASE 

SPS 1V1 1V2 1V3 1(Overall) 2 3 4 5 Overall

ProbCons(ir = 0) 63.2 95.5 98.3 87.4 93.3 82.4 88.6 94.7 88.7 

PSAlign[ProbCons] 65.2 93.3 97.1 86.7 90.8 76.6 85.2 93.0 86.9 

CS 1V1 1V2 1V3 1(Overall) 2 3 4 5 Overall

ProbCons(ir = 0) 42.7 91.1 96.5 79.4 56.4 50.9 64.7 81.2 72.1 

PSAlign[ProbCons] 44.6 86.7 94.1 77.4 47.7 44.5 57.1 80.6 68.3 

(b) PREFAB 

 0–20% 20–40% 40–70% 70–100% Overall 

ProbCons(ir = 0) 52.6 85.1 95.5 97.6 69.4 

PSAlign[ProbCons] 41.5 80.0 92.2 96.0 61.4 

(c) SABmark 

 Superfamily Superfamily-FP Twilight Twilight-FP Overall

ProbCons(ir = 0) 54.8 50.5 26.3 20.3 43.1 

PSAlign[ProbCons] 51.5 50.8 24.3 23.0 42.2 
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alignment from this information, which can be used to replace the progressive step of 

any approach in which unified pairwise alignments are available before the progressive 

step, or as a second step to construct multiple alignments for algorithms that only 

produce a set of pairwise alignments from the given sequences (Heger et al., 2003; Van 

Walle et al., 2004), without requiring additional parameters. 

 

The graph-theoretic technique employed allows further extensions to consider more 

general models of pairwise similarity. In its full generality, all we need from each 

pairwise comparison is an ordered list of non-intersecting connections (representing 

matches or mismatches) that reflect significant pairwise similarities. With these inputs, 

the preserving alignment approach naturally returns either local or incomplete multiple 

alignments. To further improve accuracy, it is possible to consider formulations other 

than finding the shortest solution, although many of these objective functions may be 

intractable to optimize. One possible strategy is to employ various heuristics to find a 

preserving alignment from G’ that tries to assign related connected components in G to 

the same column as much as possible. Other directions include improving the quality of 

the pairwise alignments and devising strategies to perform iterative refinements (Gotoh, 

1996; Edgar, 2004; Do et al., 2005) after the preserving multiple alignment is obtained. 
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CHAPTER III 

 

ISPAlign: MULTIPLE SEQUENCE ALIGNMENT BASED ON PROFILE 

ALIGNMENT OF INTERMEDIATE SEQUENCES* 

 

A. Introduction 

 

Although many algorithms have been proposed for multiple sequence alignment 

(Thompson et al., 1994; Morgenstern et al., 1996; Stoye, 1998; Notredame et al., 2000; 

Lee et al., 2002; Edgar, 2004; Van Walle et al., 2004; Do et al., 2005; Katoh et al., 2005; 

Lassmann and Sonnhammer, 2005; Pei and Grishin, 2006; Roshan and Livesay, 2006; 

Yamada et al., 2006), it remains difficult to obtain accurate alignments. Common 

techniques to improve alignment accuracy include performing iterative refinements after 

the initial alignment is constructed (Gotoh, 1996; Edgar, 2004; Do et al., 2005; Roshan 

and Livesay, 2006; Yamada et al., 2006), using consistency-based pairwise alignments 

in progressive approaches (Notredame et al., 2000; Do et al., 2005; Pei and Grishin, 

2006; Roshan and Livesay, 2006), and incorporating structural alignments (O’Sullivan et 

al., 2004; Van Walle et al., 2004). A few other strategies combine alignments from 

existing algorithms to obtain an improved alignment (Bucka-Lassen et al., 1999;  

Wallace et al., 2006). 
____________ 
*Part of the data reported in this chapter is reprinted with permission from “Multiple 
sequence alignment based on profile alignment of intermediate sequences” by Lu, Y. 
and Sze, S.-H., 2007, RECOMB'2007, Lecture Notes in Computer Science, 4453, 283-
295. Copyright 2007 with kind permission of Springer Science+Business Media. 
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With the rapidly increasing number of sequences in biological databases, it has been 

observed that the use of additional sequences from database search can significantly 

improve alignment accuracy. Among the most successful approaches that use this 

strategy are profile alignment algorithms that use database search to find related 

sequences for each input sequence, construct a profile from the hits, and then align the 

profiles instead of the sequences, including algorithms that start from two sequences 

(Marti-Renom et al., 2004), and algorithms that start from multiple sequences (Simossis 

et al., 2005; Zhou and Zhou, 2005). Alternatively, Heger et al. (2004) identified clusters 

of residues to form columns of a multiple alignment by linking distant homologs through 

the hits. 

 

We observe that instead of constructing a profile for each input sequence from the hits, 

which only compares each hit to the input sequence that generates it, it may be more 

accurate to perform a more extensive multiple alignment of the hits together with the 

input sequences, which allows comparisons among all the sequences involved. The 

usefulness of such a strategy has been demonstrated during the construction of the 

PREFAB database (Edgar, 2004), in which the incorporation of additional hits from 

database search into the input sequences significantly improves accuracy as opposed to 

aligning the input sequences alone. One drawback of this approach is that the inclusion 

of hits that are not intermediate between the input sequences can introduce noise, since 

these hits do not contribute to defining a better alignment between them. We will show 

that a careful definition of intermediate sequences from database search in addition to 
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the computation of profiles for these sequences will significantly improve alignment 

accuracy. 

 

By defining an intermediate sequence as a common hit from database search that links 

two input sequences, an intermediate sequence search technique has been used 

successfully to establish distant homologs (Park et al., 1997; Gerstein, 1998). The 

strategy was later generalized to multiple intermediate sequence search (Salamov et al., 

1999; Li et al., 2000), in which chains of intermediate sequences found through iterative 

database search are used to link very distant homologs. Bolten et al. (2001) used such 

transitive homologies to cluster protein sequences for structure predictions. Heger et al. 

(2004) used a graph-theoretic approach to link intermediate sequences through transitive 

homologies to detect short active site motifs, while Margelevičius and Venclovas (2005) 

used the intermediate sequence search strategy to distinguish between reliable and 

unreliable regions in alignments. Instead of defining intermediate sequences as common 

hits, we will develop a more relaxed definition to maximize the amount of information 

that can be extracted from the hits. 

 

Since the number of hits that are also intermediate sequences can be very large, it is not 

practical to simply add them to the input sequences and perform a multiple alignment on 

the combined sequence set. Motivated by the fact that similar sequences are likely to 

contain redundant information, our algorithm uses a greedy strategy to choose a small 

subset of intermediate sequences that are far away from each other, which, together with 
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the original sequences form a combined set of input sequences. Instead of aligning these 

sequences directly, we construct a profile for each sequence in the combined set by 

incorporating information from other intermediate sequences and aligning the profiles by 

modifying the pair–Hidden Markov Model (HMM) approach (Durbin et al., 1998) in 

ProbCons (Do et al., 2005). This is in contrast with the strategy used in Simossis et al. 

(2005) and Zhou and Zhou (2005), which constructs a profile from the hits of an input 

sequence. We will show that our strategy of constructing profiles from intermediate 

sequences instead of from the hits helps to prevent the introduction of excessive noise 

when aligning closely related sequences. To further improve alignment accuracy, we 

obtain a secondary structure prediction for each sequence in the combined set and 

incorporate these predictions into the pair-HMM alignment. While this strategy of using 

secondary structure predictions is similar to the one employed in Zhou and Zhou (2005), 

it is different from the technique used in Pei and Grishin (2006) which employs 

secondary structure information during HMM training without explicitly using 

secondary structure predictions in alignments. 

 

We compare the performance of our algorithm to MAFFT (Katoh et al., 2005) and 

ProbCons (Do et al., 2005), which are among the best multiple alignment algorithms that 

do not utilize additional information, and SPEM (Zhou and Zhou, 2005), which is 

among the best multiple alignment algorithms that utilize additional hits from database 

search, on benchmark multiple alignments from BAliBASE (Thompson et al., 2005), 

HOMSTRAD (Mizuguchi et al., 1998), PREFAB (Edgar, 2004), and SABmark (Van 
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Walle et al., 2004).We will show that our algorithm outperforms MAFFT, ProbCons, 

and SPEM in almost all situations, with very significant improvements when aligning 

divergent sequences. Before presenting the algorithm in detail, we first describe the 

general strategies employed in each stage in the next few sections. 

 

 

B. Finding Intermediate Sequences 

 

Although most intermediate sequence search strategies define an intermediate sequence 

either as a common hit from database search that links two input sequences (Park et al., 

1997; Gerstein, 1998), or as hits that form a chain linking two input sequences (Salamov 

et al., 1999; Li et al., 2000), such a requirement is very stringent since it may not be 

possible to link very divergent sequences together even if the database search is 

performed iteratively. We consider the following relaxed definition of an intermediate 

sequence which only requires that it is intermediate between the two input sequences. 

 

Definition 3.1. Given two sequences s1 and s2, and a distance score d(s1, s2) between 

them, a sequence r is intermediate between s1 and s2 if d(r, s1) < d(s1, s2) and d(r, s2) < 

d(s1, s2). 

 

The problem of finding intermediate sequences between multiple input sequences is 

defined as follows. 
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Definition 3.2. Given n input sequences s1, . . . , sn, and m hits r1, . . . , rm from database 

search of these sequences, find all hits rk that are intermediate between some pair of 

input sequences si and sj. 

 

Similar to previous approaches, our goal is to find an appropriate subset of sequences 

that contain useful information between the input sequences s1, . . . , sn. We do not 

require that these intermediate sequences have a phylogenetic interpretation or have an 

appropriate evolutionary relationship to the input sequences. Also, since any hit that is 

intermediate between some pair of input sequences is potentially useful, it is included in 

the definition. Note that there is no need to compute pairwise distances between the 

potentially very large number of hits. The number of pairwise distance score 

computations that are needed to identify the intermediate sequences from among the hits 

is O(mn+n2), while the number of score comparisons is O(mn2). 

 

 

C. Choosing Intermediate Sequences 

 

The next problem of choosing a small subset of intermediate sequences to add to the 

input sequences is defined as follows. Our goal is to identify a combined set of 

sequences that are as divergent as possible. 
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Input:  n input sequences s1, . . . , sn, m intermediate sequences r1, . . . , rm,  

distance score d(r, s) between two sequences r and s. 

Output: k intermediate sequences sn+1, . . . , sn+k added to s1, . . . , sn. 

 

R ←{ r1, . . . , rm }; 

for each ri in R do { di ←  min nj≤≤1 d(ri, sj); }  

for j ←  1 to k do {  

sn+j ←  ri with the maximum di; remove ri from R; 

for each ri in R do { di ←  min(di, d(ri , sn+j )); } } 

 

Figure 3.1: Greedy algorithm to choose a small subset of intermediate sequences to add 

to the input sequences. 

 

 

Definition 3.3. Given n input sequences s1, . . . , sn, m intermediate sequences r1, . . . , rm, 

add k intermediate sequences from among r1, . . . , rm, denoted by sn+1, . . . , sn+k, so that 

the minimum distance between sequences in the combined set s1, . . . , sn+k is the largest 

possible when distances between the input sequences s1, . . . , sn are ignored. 

 

Figure 3.1 shows a greedy algorithm that iteratively adds an intermediate sequence sn+j 

that is farthest away from the current sequence set s1, . . . , sn+j−1, in which the minimum 



 44

distance between sn+j and  s1, . . . , sn+j−1 is the largest possible. Although the greedy 

strategy does not guarantee optimum divergence of the sequences s1, . . . , sn+k, they 

should be reasonably far away from each other. The total number of pairwise distance 

score computations needed is O(m(n + k)), and there is no need to compute distances 

between all pairs of the potentially very large number of intermediate sequences. 

 

 

D. Constructing Sequence Profiles 

 

Instead of aligning the sequences s1, . . . , sn+k directly, a profile is constructed for each 

of these sequences as follows: for each intermediate sequence ri from among r1, . . . , rm, 

assign it to the sj from among s1, . . . , sn+k that is most similar to ri. For each sequence sj 

with assigned sequences 1ir , . . . , tir , we combine all the pairwise alignments between sj 

and each pir  into a star alignment with sj as the center (Gusfield, 1993). For each column 

in the star alignment that contains a residue of sj, the relative frequency of each residue 

within the column is then used to construct a profile as a probability distribution of 

residues (gap characters are ignored). Here the choice of scoring functions for the profile 

is not very important since Edgar and Sjölander (2004) showed that most scoring 

functions do not have significant performance differences. One caution is that we need 

to make sure that the number of very closely related sequences assigned to each sj is not 

excessively large to avoid over-contribution of these sequences to the profile. This can 

be achieved by removing sequences from the original set of intermediate sequences so 
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that none of the remaining sequences are very similar to each other before choosing the 

subset of intermediate sequences. Different from the approach in Simossis et al. (2005) 

and Zhou and Zhou (2005), hits that are not intermediate sequences are not used to avoid 

noise from these hits. 

 

 

E. Alignment via Modified Pair-HMM 

 

We modify the pair-HMM approach in Durbin et al. (1998) to incorporate profiles and 

secondary structure predictions. The original model consists of three states: M emits an 

aligned pair of residues (x, y) with probability e(x, y), X emits a residue x in the first 

sequence that is aligned to a gap with probability e(x), while Y emits a residue y in the 

second sequence that is aligned to a gap with probability e(y) (Figure 3.2). In addition to 

the original residue, each position is now associated with a probability distribution of 

residues which corresponds to the profile at that position. Let p1(x, i) be the probability 

of finding the residue x at position i in the first sequence and let p2(y, j) be the 

probability of finding the residue y at position j in the second sequence. We modify the 

model to incorporate profiles as follows: define the emission probability of state M as 

e’(i, j) = yx∑∑ p1(x, i)p2(y, j)e(x, y) if the emission is at position i in the first sequence 

and at position j in the second sequence, the emission probability of state X as e’(i) = 

x∑ p1(x, i)e(x) if the emission is at position i in the first sequence, and the emission 

probability of state Y as e’(j) = y∑ p2(y, j)e(y) if the emission is at position j in the 
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Figure 3.2: The original and the modified pair-HMM models. In the original model, 

state M emits an aligned pair of residues, states X and Y emit a residue in the first and the 

second sequences respectively that is aligned to a gap, δ  is the gap opening probability, 

and ε  is the gap extension probability (Durbin et al., 1998). In the modified model, the 

state M(α ) is obtained from M with emission probability e(x, y) by defining the 

emission probability to be ),( yxeα  if the paired residues (x, y) have the same secondary 

structure type and ( α−1 )e(x, y) otherwise. The factor β  is applied to δ  and ε  to 

compensate for the change. To incorporate profiles, the residue emission probabilities 

are replaced by the average emission probabilities over a distribution of residues. 

 

 

second sequence. These changes replace the original emission probabilities of the single 

residues by the average emission probabilities over a distribution of residues so that in 
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the degenerate case when the profiles represent simple sequences, the effect is the same 

as before. 

 

We incorporate secondary structure predictions into the pair-HMM model as follows: in 

state M, we introduce an additional parameter α  and subdivide the emission probability 

e’(i, j) into two cases to obtain a modified state M(α ) with emission probability α e’(i, j) 

if the original paired residues (x, y) at position i in the first sequence and at position j in 

the second sequence have the same secondary structure type, and with emission 

probability (1–α )e’(i, j) otherwise. Since this decrease in emission probability will tend 

to allow more gaps than before in the ideal case in which every aligned residue pair has 

the same secondary structure type, we apply the factor β  to the gap opening and 

extension probabilities to compensate for it while keeping the ratio between the two 

probabilities unchanged to preserve the affine gap model (Figure 3.2). This modified 

pair-HMM can then be utilized within a progressive alignment strategy to obtain a 

multiple alignment (Do et al., 2005). 

 

 

F. Detailed Algorithm 

 

We now describe a procedure and the associated parameters that give very good results 

for our algorithm. Note that this is only among one of the many possible ways to 

implement the algorithm. 
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Following SPEM (Zhou and Zhou, 2005), for each input sequence, we use PSI-BLAST 

(Altschul et al., 1997) to perform database search on a filtered version of the non-

redundant protein database (NR) that excludes low complexity regions, transmembrane 

regions and likely coiled-coil regions (Jones, 1999), and retain hits that have less than 

98% identity to the input sequence and have e-value less than 0.001. One advantage of 

using PSI-BLAST is that it performs iterative database search automatically to look for 

distant homologs. Instead of keeping the entire sequence of a hit, only the regions within 

a PSI-BLAST local alignment are retained to avoid the introduction of noise from 

unrelated regions. Note that if there are more than one PSI-BLAST local alignment that 

satisfy the above condition within a hit, they are considered to be separate hits. 

 

We then extract intermediate sequences from among these hits according to Definitions 

3.1 and 3.2. To obtain an accurate distance score d(s1, s2) between two sequence s1 and 

s2, we use SSEARCH (Smith and Waterman, 1981) to obtain an optimal alignment 

between s1 and s2 and define d(s1, s2) as the e-value of the alignment. Note that the use of 

e-values here does not pose any problems since no addition operations are performed. 

 

To avoid over-contribution of very similar intermediate sequences in the later profile 

construction step, we use CD-HIT (Li et al., 2002) to remove some of the closely related 

sequences so that the identity between the remaining intermediate sequences is less than 

85%. We then use Definition 3.3 and the algorithm in Figure 3.1 with k = 5 to add at 
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most five intermediate sequences to the input sequences to obtain s1, . . . , sn+k. We 

choose k = 5 so that the final multiple alignment step will not become much slower than 

simply aligning the original input sequences. The identity of a pairwise alignment from 

SSEARCH is used to obtain an accurate distance score d(s1, s2) between two sequences 

s1 and s2 by defining d(s1, s2) as 1 – identity (note that this distance is different from 

what we use above). Note that CD-HIT cannot be used for this purpose since it initially 

uses counts of short tuples to estimate pairwise similarity, which is inaccurate when the 

identity level between the sequences s1, . . . , sn+k is low. 

 

We then construct profiles according to the algorithm in Section D in which an 

intermediate sequence ri is assigned to the sequence from among s1, . . . , sn+k that has the 

best SSEARCH alignment to ri. To obtain a secondary structure prediction for each of 

the sequences s1, . . . , sn+k, we follow SPEM (Zhou and Zhou, 2005) and use PSIPRED 

(Jones, 1999) to assign one of the three possible types (helix, strand, or coil) to each 

residue. 

 

With the profiles and secondary structure predictions, we modify ProbCons (Do et al., 

2005) by changing its pair-HMM model according to Section E. The parameters in 

Figure 3.2 are as follows: the original residue emission probabilities and the transition 

probabilities δ  and ε  are from ProbCons. The parameter α  that modifies the emission 

probabilities is 0.65, while the parameter β  that modifies the transition probabilities is 

0.75. These two parameters are determined by testing a few combinations and choosing 
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one that gives satisfactory performance in PREFAB (Edgar, 2004). We use the default 

setting in ProbCons that utilizes two sets of gap states with the same modifying 

parameter β  for both sets. There is no change in the later progressive alignment or the 

iterative refinement steps and the alignment on the original input sequences is returned. 

 

 

G. Performance 

 

We test our algorithm (ISPAlign) on benchmark multiple alignments from BAliBASE 

3.0 (Thompson et al., 2005), HOMSTRAD (Mizuguchi et al., 1998), PREFAB 4.0 

(Edgar, 2004), and SABmark 1.65 (Van Walle et al., 2004). We compare our 

performance to MAFFT 5.8 (using the most accurate linsi strategy, Katoh et al., 2005), 

ProbCons 1.10 (Do et al., 2005) and SPEM (Zhou and Zhou, 2005). 

 

For BAliBASE and HOMSTRAD, two score measures are used to perform accuracy 

assessment of each multiple alignment on the original input sequences: the sum-of-pairs 

score (SPS) evaluates the percentage of residue pairs that an algorithm can align 

correctly in the reference alignment, while the column score (CS) evaluates the 

percentage of entire columns that an algorithm can align correctly (Thompson et al., 

1999). For PREFAB, evaluations are made on the original pairs of input sequences using 

the Q score defined in Edgar (2004), which has the same meaning as the SPS score. For 

BAliBASE and PREFAB, evaluations are made only on the core regions that are 
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assigned to the reference alignments. While we test MAFFT and ProbCons both on the 

original pairs in PREFAB and on the full set of sequences that includes random hits from 

database search, we test SPEM and ISPAlign only on the original pairs since these 

algorithms utilize hits from database search automatically. For SABmark, reference 

sequences are specified in pairs and evaluations are based on the fD and the fM scores in 

Van Walle et al. (2004), in which fD has the same meaning as SPS and fM evaluates the 

percentage of correctly aligned residue pairs in the test alignment. We define the fD score 

and the fM score for each alignment as the average fD score and the average fM score 

respectively over all these pairs. For each test set, we use the Wilcoxon matched-pairs 

signed-ranks test (Wilcoxon, 1947) over large enough subsets with 0.05 as the p-value 

cutoff for significance. 

 

Table 3.1 and Table 3.2 shows performance comparisons on the full length sequence set 

in BAliBASE 3.0. For both reference 1 and the entire set, ISPAlign improved over 

MAFFT, ProbCons and SPEM very significantly, with the biggest improvements in the 

1V1 subset when identity is very low (improvement in the CS score was over 5%). 

SPEM improved over MAFFT and ProbCons very significantly for the SPS score. For 

the CS score, SPEM significantly improved over MAFFT and ProbCons for reference 1, 

but the overall improvement was not significant for the entire set. 
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Table 3.1: Average SPS scores (in %) of ISPAlign on the full length sequence set in 

BAliBASE 3.0. Reference 1 is further subdivided into two subsets: 1V1 (< 25% identity), 

and 1V2 (20–40% identity). The number in braces denotes the number of alignments in 

each subset. Within each subset, the best accuracy value is in bold. The values in 

parentheses denote the p-values, with — indicating insignificant differences. Since most 

of the subsets are very small, p-values are computed only for reference 1 and the entire 

set. Twenty-two cases are omitted due to unavailability of results from SPEM. 

 SPS 

 MAFFT ProbCons SPEM ISPAlign 

1V1{38} 64.8 64.5 73.1 76.0 

1V2{42} 92.8 93.4 92.1 93.5 

1 (V1-V2){80} 79.5 79.7 83.1 85.2 

(vs MAFFT)   (4e-5) (5e-8) 

(vs(ProbCons)   (7e-4) (2e-6) 

(vs SPEM)    (0.002) 

2{37} 91.8 89.7 88.0 91.9 

3{29} 81.4 78.8 82.8 83.5 

4{36} 89.2 86.8 87.5 90.3 

5{14} 88.2 87.5 87.0 90.3 

All (1–5){196} 84.5 83.3 85.0 87.5 

(vs MAFFT)   (0.005) (2e-11) 

(vs ProbCons)   (5e-4) (2e-13) 

(vs SPEM)    (3e-7) 
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Table 3.2: Average CS scores (in %) of ISPAlign on the full length sequence set in 

BAliBASE 3.0. Twenty-two cases are omitted due to unavailability of results from 

SPEM. 

 CS 

 MAFFT ProbCons SPEM ISPAlign 

1V1{38} 44.6 40.4 51.6 56.9 

1V2{42} 83.9 85.6 82.6 85.8 

1 (V1-V2){80} 65.2 64.2 67.9 72.1 

(vs MAFFT)   (0.01) (2e-7) 

(vs(ProbCons)   (0.01) (2e-5) 

(vs SPEM)    (9e-5) 

2{37} 46.0 40.8 47.1 53.8 

3{29} 56.8 54.3 51.4 59.9 

4{36} 67.9 60.9 55.4 63.3 

5{14} 57.6 59.4 55.9 63.9 

All (1–5){196} 60.3 57.3 58.3 64.6 

(vs MAFFT)   (—) (2e-10) 

(vs ProbCons)   (—) (4e-10) 

(vs SPEM)    (5e-11) 
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Table 3.3: Average SPS and CS scores (in %) of ISPAlign on HOMSTRAD. Each 

subset includes all alignments with average pairwise identity within the specified range, 

with * indicating worse performance in p-value. Since ProbCons consistently performs 

better than MAFFT, comparisons are made only between ProbCons, SPEM and 

ISPAlign.  

 SPS CS 

 ProbCons SPEM ISPAlign ProbCons SPEM ISPAlign 

0-20%{156} 49.7 67.2 68.5 43.1 61.0 62.7 

(vs ProbCons)  (2e-23) (3e-24)  (4e-23) (5e-24) 

(vs SPEM)   (0.0002)   (4e-5) 

20–40%{459} 80.5 85.6 86.8 74.7 80.4 81.9 

(vs ProbCons)  (5e-33) (2e-55)  (2e-29) (2e-53) 

(vs SPEM)   (2e-06)   (7e-7) 

40–70%{348} 94.8 94.9 95.5 92.2 92.3 93.2 

(vs ProbCons)  (0.03) (1e-09)  (0.03) (2e-9) 

(vs SPEM)   (0.003)   (0.003) 

70–100%{69} 99.1 98.5 99.0 99.1 98.4 98.9 

(vs ProbCons)  (0.008*) (—)  (0.007*) (—) 

(vs SPEM)   (—)   (—) 

All{1032} 81.9 86.8 87.8 77.4 82.7 84.0 

(vs ProbCons)  (4e-51) (1e-89)  (2e-46) (8e-87) 

(vs SPEM)   (6e-12)   (1e-12) 
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Table 3.3 shows performance comparisons on HOMSTRAD. Except for 70–100% 

identity, all the p-values of ISPAlign over SPEM, ISPAlign over ProbCons, and SPEM 

over ProbCons were highly significant. For 70–100% identity, SPEM performed 

significantly worse than ProbCons, while the differences between ISPAlign and 

ProbCons or SPEM were not significant. In general, as identity increases, less 

improvements were observed for both SPEM and ISPAlign. 

 

Table 3.4 shows performance comparisons on PREFAB 4.0 using two versions of 

MAFFT and ProbCons: MAFFT2 and ProbCons2 use the original input pair, while 

MAFFT50 and ProbCons50 use the full sequence set that includes random hits from 

database search and has at most 50 sequences. For 0–20% identity and 20–40% identity, 

the improvements of SPEM or ISPAlign over MAFFT50 were highly significant, while 

the improvements of ISPAlign over SPEM were significant but not as much. For 40–

70% identity, SPEM performed significantly worse than MAFFT50, while the differences 

between ISPAlign and MAFFT50 or SPEM were not significant. For 70–100% identity, 

ISPAlign performed significantly better than SPEM but did not improve over MAFFT50, 

while SPEM performed significantly worse than MAFFT50. For the entire set, all the p-

values of ISPAlign over MAFFT50, ISPAlign over MAFFT50 and SPEM over MAFFT50 

were highly significant. 

 

Table 3.5 shows performance comparisons on the Twilight and Superfamily subsets of 

SABmark 1.65. While the improvements of SPEM or ISPAlign over ProbCons for both  
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Table 3.4: Average Q scores (in %) of ISPAlign on PREFAB 4.0. Each subset includes 

all structure pairs with identity within the specified range. Comparisons are made 

between MAFFT and ProbCons using two sequences (MAFFT2, ProbCons2) and using 

all (at most 50) sequences (MAFFT50, ProbCons50), SP2 (which is a specialized version 

of SPEM for two sequences), and ISPAlign2 (ISPAlign starting from two sequences). 

Since MAFFT50 has the best accuracy among MAFFT and ProbCons, p-value 

comparisons are made only against MAFFT50. 

 MAFFT2 ProbCon2 MAFFT50 ProbCons50 SP2 ISPAlign2

0-20%{887} 36.2 38.9 56.7 55.6 64.6 64.8 

(vs MAFFT50)     (3e-36) (5e-46) 

(vs SP2)      (0.03) 

20–40%{588} 81.0 82.8 87.1 87.2 89.7 90.1 

(vs MAFFT50)     (2e-16) (6e-28) 

(vs SP2)      (0.01) 

40–70%{112} 96.2 96.4 96.0 95.4 95.3 97.6 

(vs MAFFT50)     (0.02*) (—) 

(vs SP2)      (—) 

70–100%{95} 97.9 97.8 98.0 97.3 97.2 98.0 

(vs MAFFT50)     (6e-4*) (—) 

(vs SP2)      (0.005) 

All{1682} 59.4 61.4 72.3 71.7 77.3 77.7 

(vs MAFFT50)     (1e-46) (7e-69) 

(vs SP2)      (2e-4) 
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Table 3.5: Average fD and fM scores (in %) of ISPAlign on the Twilight and Superfamily 

subsets of SABmark 1.65. Four cases are omitted in the Twilight subset and three cases 

are omitted in the Superfamily subset since no reference alignments of sufficiently good 

quality are available. None of these subsets include false positive sequences. Since 

ProbCons consistently performs better than MAFFT, comparisons are made only 

between ProbCons, SPEM and ISPAlign. 

 fD fM 

 ProbCons SPEM ISPAlign ProbCons SPEM ISPAlign

Twilight{205} 29.3 44.2 46.1 21.0 30.8 32.0 

(vs ProbCons)  (2e-26) (6e-29)  (1e-27) (3e-29) 

(vs SPEM)   (0.01)   (0.005) 

Superfamily{422} 57.1 68.3 69.0 43.6 50.9 51.6 

(vs ProbCons)  (4e-49) (1e-51)  (1e-48) (1e-51) 

(vs SPEM)   (0.02)   (7e-4) 

 

 

 

subsets were highly significant, the improvements of ISPAlign over SPEM were 

significant but not as much. 

 

In all the subsets that we have assessed, ISPAlign always performs at least as well as 

ProbCons and SPEM and is much better in many cases, especially when the input 

sequences are divergent in which the improvements are always significant and in many  
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Figure 3.3: Running time of SPEM and ISPAlign on PREFAB 4.0. The upper line 

denotes the region in which SPEM and ISPAlign have the same speed. The lower line 

denotes the region in which ISPAlign is two times slower than SPEM. 

 

 

cases highly significant. Also, the improvements in the CS scores are sometimes more 

significant than the improvements in the SPS scores. In general, the contribution from 

utilizing additional sequences from database search decreases as the input sequences 

become more closely related. When the input sequences become very similar, while 

SPEM has significant accuracy decreases in many cases, ISPAlign still always performs 

at least as well. Since not many intermediate sequences are added to the input sequences 

before performing the profile alignment step, ISPAlign is efficient enough to perform an  
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Table 3.6: Average CS scores (in %) of ISPAlign on HOMSTRAD using a few methods 

that are of increasing levels of complexity. Method 1 constructs a profile from the hits of 

each input sequence and performs profile alignment using the modified HMM model 

that incorporates profiles but not secondary structure predictions. Method 2 removes the 

hits that are not intermediate sequences before performing profile alignment. Method 3 

adds intermediate sequences to the input sequences, constructs profiles based on the 

intermediate sequences and performs profile alignment on the combined sequence set. 

Method 4 is the full ISPAlign algorithm that also utilizes secondary structure predictions. 

The p-value comparisons are made against the previous method to the left, with * 

indicating worse performance. 

 HOMSTRAD CS 

 ProbCons Method1 Method2 Method3 Method4 

0-20% 43.1 59.1 59.2 59.4 62.7 

(vs previous)  (3e-22) (—) (0.04) (6e-8) 

20-40% 74.7 79.1 79.6 81.4 81.9 

(vs previous)  (2e-24) (0.003) (7e-14) (0.005) 

40-70% 92.2 92.1 92.5 93.1 93.2 

(vs previous)  (—) (8e-4) (0.001) (—) 

70-100% 99.1 98.2 99.1 99.2 98.9 

(vs previous)  (6e-4*) (1e-4) (—) (0.003*) 

All 77.4 81.7 82.2 83.2 84.0 

(vs previous)  (5e-38) (1e-6) (1e-14) (1e-6) 
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Table 3.7: Average Q scores (in %) of ISPAlign on PREFAB 4.0 using a few methods 

that are of increasing levels of complexity (described in Table 3.6).  For PREFAB, 

ProbCons uses the original input pair while all the methods start from this input pair. 

The p-value comparisons are made against the previous method to the left, with * 

indicating worse performance. 

 PREFAB Q 

 ProbCons Method1 Method2 Method3 Method4 

0-20% 38.9 58.2 58.6 61.3 64.8 

(vs previous)  (2e-103) (—) (6e-12) (7e-29) 

20-40% 82.8 88.7 89.0 89.7 90.1 

(vs previous)  (9e-45) (—) (2e-4) (0.004) 

40-70% 96.4 94.4 96.6 97.8 97.6 

(vs previous)  (—) (0.002) (—) (0.008*) 

70-100% 97.8 97.0 96.9 98.1 98.0 

(vs previous)  (0.04*) (0.02) (—) (—) 

All 61.4 73.5 73.9 75.7 77.7 

(vs previous)  (7e-146) (—) (2e-15) (4e-28) 

 

 

 

individual multiple alignment of moderate size in a reasonable time. Figure 3.3 shows 

that ISPAlign was at most two times slower than SPEM in most cases. 
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Table 3.8: Average CS scores (in %) of ISPAlign on HOMSTRAD by varying the 

parameter k that specifies the maximum number of intermediate sequences that are 

added to the input sequences. (α , β ) is fixed to (0.65, 0.75). The p-value comparisons 

are made against the previous entry to the left, with * indicating worse performance. 

 k 

 5 10 15 20 25 

0-20% 62.7 63.5 63.2 63.4 62.9 

(vs previous)  (0.02) (—) (—) (0.02*) 

20-40% 81.9 81.9 81.9 81.9 81.9 

(vs previous)  (—) (—) (—) (—) 

40-70% 93.2 93.0 92.9 93.0 93.1 

(vs previous)  (—) (—) (—) (—) 

70-100% 98.9 98.9 98.9 98.9 98.9 

(vs previous)  (—) (—) (—) (—) 

All 84.0 84.0 83.9 84.0 84.0 

(vs previous)  (—) (—) (—) (—) 

 

 

 

To evaluate the contributions from various components of the algorithm to the alignment 

accuracy under different identity levels, we compare the performance of a few methods 

that are of increasing levels of complexity on HOMSTRAD and PREFAB 4.0 (Table 3.6 

and Table 3.7). When the identity is low, the biggest improvements were from the use of  
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Table 3.9: Average CS scores (in %) of ISPAlign on HOMSTRAD by varying the 

parameters α  and β  that modify the pair-HMM probabilities. k is fixed to 5 and a few 

(α , β ) pairs that give the best performance are shown. 

 (α , β ) 

 (0.55,0.55) (0.65,0.55) (0.65,0.65) (0.55,0.65) (0.65,0.75) (0.55,0.75)

0-20% 61.3 62.7 63.3 62.8 62.7 62.8 

(vs previous)  (0.004) (0.002) (—) (—) (—) 

20-40% 81.4 81.5 81.8 81.8 81.9 82.0 

(vs previous)  (—) (2e-4) (—) (—) (—) 

40-70% 93.0 93.0 93.1 93.1 93.2 93.2 

(vs previous)  (—) (0.04) (0.03) (—) (—) 

70-100% 99.0 98.9 98.9 99.0 98.9 99.1 

(vs previous)  (—) (—) (—) (—) (—) 

All 83.4 83.7 84.0 83.9 84.0 84.0 

(vs previous)  (—) (5e-7) (—) (—) (0.02) 

 

 

 

profiles, while significant improvements were obtained from the addition of intermediate 

sequences to the input sequences and from the use of secondary structure predictions. 

When the identity is high, improvements were mainly from the removal of hits that are 

not intermediate sequences. 
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To evaluate the effect of different parameter settings on the algorithm, we vary the 

parameter k that specifies the maximum number of intermediate sequences that are 

added to the input sequences and the parametersα and β that modify the pair-HMM 

probabilities. While Table 3.8 and Table 3.9 shows that the parameters k = 5 and (α , β ) 

= (0.65, 0.75) that were determined from testing on PREFAB gave very good 

performance on HOMSTRAD, they did not always produce the best possible 

performance on HOMSTRAD. For 0–20% identity, it was better to use larger values of k 

such as k = 10, but the performance started to decrease when k = 25 and the overall 

performance across all identity levels was not significantly different for these values of k. 

The algorithm had the best performance when α  is 0.55–0.65 and when β  is 0.55–0.75, 

showing that α  and β  should be close in magnitude. For 0–20% identity, the best 

performance was obtained when (α , β ) = (0.65, 0.65), although it was not significantly 

different from the performance obtained from a few other settings. Overall, the best 

performance on HOMSTRAD was obtained when (α , β ) = (0.55, 0.75), with (α , β ) = 

(0.65, 0.75) performing slightly worse. 

 

 

H. Discussion 

 

While we have described a procedure for ISPAlign that gives very good performance, 

there are still many opportunities to further improve its accuracy. Instead of adding a 

fixed number of intermediate sequences to the input sequences, it may be better to add 
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more sequences as the number of input sequences increases. Alternatively, intermediate 

sequences can be added until all the minimum distances between each of the remaining 

intermediate sequences and the current set of sequences fall below a threshold. Also, 

instead of modifying the parameters used by ProbCons by applying the factors α  andβ , 

it may be better to re-train the pair-HMM using a set of confirmed secondary structures. 

This can be done in a framework suggested by Do et al. (2006). It is also possible to use 

other multiple alignment algorithms to perform the profile alignment step as long as 

profiles and secondary structure predictions can be incorporated, which can lead to 

further improvements as better multiple alignment algorithms become available. It may 

also be beneficial to utilize three-dimensional structures when they are available. 
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CHAPTER IV 

 

NRAlign: MULTIPLE SEQUENCE ALIGNMENT BASED ON  

ALIGNMENT OF NEIGHBORING RESIDUES 

 

A. Introduction 

 

The construction of multiple sequence alignments is among the most important 

techniques to perform biological sequence analysis, with important applications to many 

areas of computational biology. The most popular strategy to construct multiple 

sequence alignments is by employing a progressive alignment algorithm, in which each 

sequence is treated initially as an alignment and the next two most similar alignments are 

repeatedly combined until a single multiple alignment is obtained (Thompson et al., 

1994; Notredame et al., 2000; Edgar, 2004; Do et al., 2005; Pei and Grishin, 2006; 

Roshan and Livesay, 2006). This is often followed by iterative refinements that improve 

the accuracy of the final alignment (Gotoh, 1996; Edgar, 2004; Do et al., 2005; Roshan 

and Livesay, 2006). 

 

There are many recent efforts that lead to significant improvement of alignment 

accuracy, including the incorporation of consistency-based pairwise alignments that 

improve the quality of the initial pairwise alignments by aligning through other 

sequences to increase their agreement with the final multiple alignment (Notredame et 
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al., 2000; Do et al., 2005; Pei and Grishin, 2006; Roshan and Livesay, 2006), the use of 

maximal expected accuracy alignment instead of the less accurate Viterbi alignment (Do 

et al., 2005; Pei and Grishin, 2006; Roshan and Livesay, 2006), the incorporation of 

secondary structure predictions (Zhou and Zhou, 2005; Pei and Grishin, 2007), the use 

of local structural information (O’Sullivan et al., 2004; Van Walle et al., 2004; Pei et al., 

2008), and the incorporation of additional sequences from database search (Marti-

Renom et al., 2004; Simossis et al., 2005; Zhou and Zhou, 2005; Pei and Grishin, 2007). 

 

While most of these algorithms are able to significantly improve alignment accuracy by 

making better use of vertical information, either by incorporating consistency-based 

pairwise alignments or by using profiles in which each column of an alignment is 

modeled independently, we observe that most of these algorithms do not make use of 

horizontal information when constructing alignments, and it may be useful to take into 

account alignment of neighboring residues when aligning two residues. 

 

There are a few previous approaches that use neighboring information to obtain 

significant performance improvements in other applications. Spang et al. (2002) 

obtained a jumping alignment that is suitable for remote homology detection between a 

given sequence and a multiple alignment by aligning each position in the given sequence 

to one of the sequences in the multiple alignment while penalizing each vertical jump 

between horizontal moves. Panchenko et al. (2004) used average conservation scores 

across spatial neighboring sites in the local structural environment to improve functional 
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site prediction, while Capra and Singh (2007) used conservation scores from 

neighboring residues to improve the prediction of functionally important residues in 

aligned sequences. 

 

To incorporate horizontal information in alignments, we develop a window-based 

method that adjusts the pairwise score of a residue pair between two sequences (or a 

column pair between two sub-alignments) by incorporating the scores of neighboring 

residue pairs (or column pairs). This method can be applied to any multiple alignment 

algorithm that uses pairwise scores during the construction of a multiple alignment. We 

test this strategy by modifying existing multiple alignment algorithms to make use of 

horizontal information and show that consistent improvements can be obtained for these 

algorithms on all sets of benchmark alignments that we have tested. By using a statistical 

test that pairs the alignments before and after algorithm modification, we show that 

highly statistically significant improvements are obtained not just in relative 

performance but also in paired performance. 

 

 

B. Methods 

 

Incorporating Horizontal Information into Pairwise Scores 

Given a residue (or column) at position x in the first sequence (or sub-alignment) s = 

s1 . . . sm, a residue (or column) at position y in the second sequence (or sub-alignment) s’  
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Figure 4.1: Illustration of the window on two sequences s and s’ with ω  = 2. (a) The 

offsets in ωN (x, y) = {−2, −1, 1, 2} are included. (b) Since y + 1 is the last position in s’, 

only one position is used to the right of (x, y) and the offsets in ωN (x, y) = {−2, −1, 1} 

are included. 

 

 

= s’1 . . . s’n, and a parameter ω , define the window that includes at most ω  positions to 

the left and to the right of (x, y) by the following set of valid offsets in the neighborhood 

of (x, y) (see Figure 4.1): 

ωN (x, y) = {i | 0 < |i| ≤ ω   , 1 ≤  x + i  ≤  m, 1 ≤  y + i ≤  n}. 

We use the following equation to incorporate the scores of the neighboring pairs at 

position (x + i, y + i) over all offsets i in ωN (x, y) into the score of the given pair (x, y): 

|),(|1

),(),(
),( ),(

yxN

iyixSyxS
yxS yxNi

oldold
new

ωβ

β
ω

+

+++
=

∑∈ , (4.1) 

where Sold is the original score, Snew is the adjusted score, and β  is a parameter that 

specifies the weight of the neighboring scores during the adjustment. 
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Table 4.1: Parameter settings for the modified version of each algorithm that uses 

horizontal information. 

 TCoffee MUSCLE ProbCons MUMMALS 

ω  3 2 5 1 

β  0.7 1.0 1.0 0.8 

 

 

We apply this strategy to TCoffee 5.31 (Notredame et al., 2000) without using structural 

information, which is among the first multiple alignment algorithms that utilize 

consistency-based pairwise alignments, to MUSCLE 3.6 (Edgar 2004), which is among 

the most efficient multiple alignment algorithms that also have high accuracy, to 

ProbCons 1.10 (Do et al., 2005), which is among the first multiple alignment algorithms 

that utilize the maximal expected accuracy alignment based on a pair-HMM model, and 

to MUMMALS 1.01 (Pei and Grishin, 2006), which uses secondary structure 

information during pair-HMM training to further improve alignment accuracy. In each 

case, we evaluate the performance of each of the modified algorithms (called NRAlign) 

against each of the original algorithms while using the same parameter setting across 

different benchmark alignments for each modified algorithm (Table 4.1). Horizontal 

information is incorporated into each of the algorithms either during the computation of 

consistency-based pairwise alignments or during the progressive alignment step. 
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Modification of TCoffee 

The TCoffee algorithm consists of the following steps: construct a library of pairwise 

alignments from the input sequences by using global alignments from ClustalW 

(Thompson et al., 1994) and local alignments from Lalign (Huang and Miller, 1991), 

assign a weight to each pair of aligned residues in the library according to sequence 

identity, apply library extension to all the weights in the library to obtain an extended 

library that utilizes consistency-based information by using a triplet approach, and 

perform progressive alignment according to a guide tree by aligning two groups of pre-

aligned sequences using the average scores between column pairs in the extended library. 

In NRAlign, we apply equation (4.1) to adjust the average extended library scores 

between column pairs before each progressive alignment step. 

 

Modification of MUSCLE 

The MUSCLE algorithm consists of the following steps: compute the k-mer distance for 

each pair of input sequences to produce an initial tree and perform progressive alignment 

according to the tree by utilizing log-expectation scores between two aligned columns to 

obtain an initial multiple alignment, re-estimate the tree using Kimura distances (Kimura, 

1983) computed from the multiple alignment and perform progressive alignment 

according to the new tree, then perform iterative refinements to obtain the final 

alignment. In NRAlign, we apply equation (4.1) to adjust the log-expectation scores 

before each progressive alignment step. 
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Modification of ProbCons 

The ProbCons algorithm consists of the following steps: compute the posterior 

probability matrix for each pair of input sequences according to the pair-HMM model, 

compute maximal expected accuracy alignment for each sequence pair by dynamic 

programming, re-estimate the match quality score matrix for each sequence pair by 

performing probabilistic consistency transformation, construct a guide tree according to 

the maximal expected accuracy alignments, perform progressive alignment according to 

the guide tree by using the transformed scores, and perform iterative refinements to 

obtain the final alignment. In NRAlign, we apply equation (4.1) to adjust the match 

quality scores for each sequence pair before consistency transformation is performed. 

 

Modification of MUMMALS 

The MUMMALS algorithm consists of the following steps: compute the k-mer distance 

for each pair of input sequences to produce an initial tree and perform progressive 

alignment according to the tree to obtain an initial multiple alignment, re-estimate the 

tree using sequence identities computed from the multiple alignment, perform a two-

stage progressive alignment in which highly similar sequences are first aligned by using 

weighted sum-of-pairs BLOSUM62 scores (Henikoff and Henikoff 1992), and a 

representative is chosen from each pre-aligned group to perform progressive 

consistency-based multiple alignment based on transformed pairwise maximal expected 

accuracy alignments that are obtained from a pair-HMM model that also includes 

secondary structure states, then merge the pre-aligned groups according to the alignment 
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of the representatives to obtain the final alignment. In NRAlign, we apply equation (4.1) 

to adjust the scores between column pairs before each progressive alignment step. 

 

 

C. Benchmark Alignments 

 

We evaluate the performance of NRAlign on benchmark multiple alignments from 

BAliBASE 3.0 (Thompson et al., 2005), which contains manually refined structural 

alignments that are subdivided into five categories, from HOMSTRAD (Mizuguchi et al., 

1998), which contains a collection of manually edited structure-based alignments, from 

PREFAB 4.0 (Edgar 2004), which contains structural alignments of two sequences and 

automatically generated alignments that are obtained from adding high scoring hits of 

the two sequences from database search, and from SABmark 1.65 (Van Walle et al., 

2004), which contains alignments that are derived from the SCOP classification (Murzin 

et al., 1995). 

 

Two reference-dependent scores are used to evaluate the accuracy of each algorithm, 

including the sum-of-pairs score (SPS), which measures the percentage of residue pairs 

that are aligned correctly in the reference alignment, and the column score (CS), which 

measures the percentage of entire columns that are aligned correctly (Thompson et al., 

1999). For BAliBASE and PREFAB, evaluations are made only on the core regions that 

are specified in the reference alignments. For PREFAB and SABmark, the reference 
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alignments are based on sequence pairs and the CS score is not used. For PREFAB, the 

Q score in Edgar (2004) is computed on the original input sequence pair, which has the 

same meaning as the SPS score. For SABmark, reference alignments are specified for 

each sequence pair, and the fD score, which is a sensitivity score that has the same 

meaning as the SPS score, and an additional fM score, which is a specificity score that 

measures the percentage of residue pairs that are aligned correctly in the test alignment, 

are computed by averaging the scores over all sequence pairs for each multiple 

alignment (Van Walle et al., 2004). 

 

In addition to reference-dependent scores, four reference-independent scores are used in 

the presence of known three-dimensional structures to evaluate the structural agreement 

between aligned sequence pairs, including the Dali Z-score (Holm and Sander, 1998), 

which computes a structural similarity score as a weighted sum of similarities of intra-

molecular distances between residues in aligned columns normalized according to 

alignments of random structure pairs (see equations (2) to (4) in Holm and Sander 

(1998)), the GDT_TS score (Zemla et al., 1999; Venclovas et al., 2003), which 

computes the average of the maximum number of aligned residue pairs that can be 

superimposed within four different distance thresholds of 1, 2, 4 and 8 Å (see the 

equation in Venclovas et al. (2003)), and two LiveBench contact scores ContactA and 

ContactB (Rychlewski et al., 2003; Wallner and Elofsson, 2003), which compute an 

overlap score that is the lower of two contact scores, one for each structure, computed 

based on intra-molecular distances between residues in aligned columns that are 
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separated by at least five residues (see equation (2) in Wallner and Elofsson (2003)), 

with ContactA normalized for each residue and ContactB normalized over the entire 

contact map. 

 

To compute the GDT_TS score, multiple superpositions of aligned residue pairs are 

needed that optimize the individual score components, and the software from Zhang and 

Skolnick (2004) is used with the set of aligned residue pairs as input while omitting the 

final normalization step. Following the procedure in Pei and Grishin (2006), each score 

is further weighted and normalized against the reverse alignment that represents a 

random model. For SABmark, three-dimensional coordinates are extracted from the 

given PDB files (Berman et al., 2000), and the scores for each multiple alignment are 

computed by averaging the scores over all sequence pairs. 

 

To evaluate whether the use of NRAlign leads to significant improvements, we use the 

Wilcoxon matched-pairs signed-ranks test (Wilcoxon 1947) over subsets that are large 

enough with p = 0.05 as significance cutoff, in which the alignments before and after 

algorithm modification are paired to evaluate whether the improvements are consistent 

not just in relative performance but also in paired performance. 
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D. Performance 

 

Table 4.2 and Table 4.3 show performance comparisons on full length sequences in 

BAliBASE 3.0. Among all the subsets that are large enough, NRAlign always performed 

as least as well as the original algorithm. Except for MUSCLE, the improvements for 

NRAlign were more significant in the CS score when compared to the SPS score, and 

this is especially evident on TCoffee. The improvements in the CS score were more than 

2% in references 1V2, 2, 3 and 4 over MUSCLE and in reference 1V2 over MUMMALS, 

more than 4% in reference 5 over MUMMALS, and more than 1% in the entire set over 

MUSCLE and MUMMALS. 

 

Table 4.4 and Table 4.5 show performance comparisons on HOMSTRAD. Except for 70 

to 100% identity when the improvements for NRAlign were significant only over 

MUMMALS, all improvements at other identity levels were significant (except for 0 to 

20% over MUMMALS). The improvements were especially significant when the 

identity is moderately low (20 to 40%), while the overall improvements were highly 

significant over all algorithms. 

 

Table 4.6 and Table 4.7 show performance comparisons on PREFAB 4.0. When only the 

original input sequence pair are aligned, the performance improvement characteristics of 

NRAlign were similar to those of HOMSTRAD, except that the improvements for 

NRAlign were significant also over ProbCons for 70 to 100% identity. The 
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Table 4.2: Average SPS scores (in %) of NRAlign on full length sequences in 

BAliBASE 3.0. Reference 1 contains alignments of sequences that are subdivided into 

two subsets 1V1 (< 20% identity) and 1V2 (20–40% identity). Reference 2 contains 

alignments that include orphan sequences. Reference 3 contains alignments of clusters of 

sequences from different families. Reference 4 contains alignments of sequences with 

large terminal extensions, while reference 5 contains alignments of sequences with 

internal insertions. The number in braces denotes the number of alignments in each 

subset. For each algorithm, the first number shows the performance of the original 

algorithm that does not use horizontal information. The second number shows the 

performance of the modified algorithm NRAlign that makes use of horizontal 

information, with the higher accuracy value in bold. The third number shows the p-value, 

with — indicating insignificant differences. Since many of the subsets are small, p-

values are computed only for reference 1 and for the entire set. 

SPS TCoffee SPS MUSCLE 

1V1{38} 53.81 54.21  1V1{38} 56.21 56.98  

1V2{44} 91.55 91.98  1V2{44} 90.62 91.50  

1{82} 74.06 74.48 0.02 1{82} 74.67 75.50 0.003 

2{41} 89.04 88.82  2{41} 88.08 88.24  

3{30} 71.09 71.19  3{30} 75.01 76.27  

4{49} 82.21 82.37  4{49} 84.83 85.64  

5{16} 81.94 80.98  5{16} 82.69 82.83  

All{218} 78.88 78.97 0.04 All{218} 80.11 80.82 0.006 
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Table 4.2: Continued. 

SPS ProbCons SPS MUMMALS 

1V1{38} 64.46 64.48  1V1{38} 64.41 64.23  

1V2{44} 93.50 93.65  1V2{44} 93.53 94.00  

1{82} 80.05 80.13 — 1{82} 80.03 80.20 — 

2{41} 89.93 89.94  2{41} 89.18 89.39  

3{30} 78.62 78.30  3{30} 80.76 80.79  

4{49} 87.43 87.25  4{49} 83.69 83.97  

5{16} 87.69 87.87  5{16} 86.33 87.40  

All{218} 83.93 83.89 — All{218} 83.14 83.39 — 

 

 

 

improvements were more significant in this case than in the case when the full set of at 

most 50 sequences are aligned, although using the full set of sequences gives better 

performance for each of the original and modified algorithms on divergent sequences (0 

to 40% identity). 

 

Table 4.8 and Table 4.9 show performance comparisons on the Twilight and 

Superfamily subsets of SABmark 1.65. Unlike previous algorithms that have 

improvements mostly on divergent sequences, the improvements for NRAlign were 

more significant on the Superfamily subset than on the more divergent Twilight subset. 

Similar to the results in Pei and Grishin (2006), there are strong correlations between the 
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Table 4.3: Average CS (in %) scores of NRAlign on full length sequences in BAliBASE 

3.0.  

CS TCoffee CS MUSCLE 

1V1{38} 31.34 32.21  1V1{38} 35.63 33.95  

1V2{44} 81.64 82.68  1V2{44} 80.75 82.93  

1{82} 58.33 59.29 1e−4 1{82} 59.84 60.23 0.01 

2{41} 37.85 38.88  2{41} 35.27 37.61  

3{30} 36.00 36.83  3{30} 40.57 42.73  

4{49} 48.20 48.78  4{49} 47.37 49.67  

5{16} 50.63 49.31  5{16} 47.94 44.94  

All{218} 48.56 49.27 7e−9 All{218} 48.89 50.07 0.002 

CS ProbCons CS MUMMALS 

1V1{38} 40.45 41.00  1V1{38} 41.61 41.39  

1V2{44} 85.52 85.77  1V2{44} 83.98 86.41  

1{82} 64.63 65.02 0.02 1{82} 64.34 65.55 — 

2{41} 40.63 40.49  2{41} 42.83 43.46  

3{30} 54.37 54.80  3{30} 49.40 49.57  

4{49} 53.67 53.14  4{49} 48.55 49.76  

5{16} 57.38 57.31  5{16} 52.88 57.00  

All{218} 55.71 55.77 0.04 All{218} 53.85 55.02 0.001 
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Table 4.4: Average SPS scores (in %) of NRAlign on HOMSTRAD. Each subset 

includes all alignments with average pairwise identity within the specified range. 

SPS TCoffee SPS MUSCLE 

0−20%{156} 46.68 47.21 0.005 0−20%{156} 48.08 50.18 4e−4

2−40%{459} 79.19 79.71 4e−13 20−40%{459} 78.86 80.11 1e−10

40−70%{348} 94.48 94.80 2e−11 40−70%{348} 94.45 94.77 1e−4

70−100%{69} 99.10 99.16 — 70−100%{69} 99.02 99.07 — 

All{1032} 80.76 81.19 2e−22 All{1032} 80.82 81.80 6e−16

SPS ProbCons SPS MUMMALS 

0−20%{156} 49.67 50.67 6e−8 0−20%{156} 54.39 54.44 — 

2−40%{459} 80.55 81.44 3e−22 2−40%{459} 82.67 82.71 4e−4

40−70%{348} 94.75 95.19 7e−12 40−70%{348} 95.04 95.14 9e−4

70−100%{69} 99.10 99.08 — 70−100%{69} 98.94 99.14 0.005

All{1032} 81.91 82.60 6e−38 All{1032} 83.65 83.72 5e−8

 

 

 

reference-dependent and reference-independent results, which indicate that the 

improvements are not only at the sequence level but also at the structural level. 

 

When comparisons were made on the improvements among the different algorithms, we 

found that MUMMALS was the hardest to improve on HOMSTRAD and on PREFAB 

when using the original input sequence pair for moderate to low identity. ProbCons was 
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Table 4.5: Average CS scores (in %) of NRAlign on HOMSTRAD.  

CS TCoffee CS MUSCLE 

0−20%{156} 39.97 40.64 2e−4 0−20%{156} 41.77 43.70 0.003

2−40%{459} 72.97 73.76 9e−17 20−40%{459} 73.01 74.61 2e−11

40−70%{348} 91.79 92.33 2e−13 40−70%{348} 91.90 92.28 8e−5

70−100%{69} 99.03 99.10 — 70−100%{69} 98.98 99.03 — 

All{1032} 76.07 76.71 1e−30 All{1032} 76.39 77.53 8e−16

CS ProbCons CS MUMMALS 

0−20%{156} 43.12 44.15 3e−7 0−20%{156} 47.94 48.00 — 

2−40%{459} 74.67 75.80 5e−24 2−40%{459} 77.31 77.43 0.001

40−70%{348} 92.20 92.84 6e−13 40−70%{348} 92.61 92.77 3e−5

70−100%{69} 99.06 99.02 — 70−100%{69} 98.87 99.08 0.007

All{1032} 77.44 78.32 6e−40 All{1032} 79.47 79.60 4e−8

 

 

 

the hardest to improve on BAliBASE, the easiest to improve on HOMSTRAD except for 

70 to 100% identity and on PREFAB when using the original input sequence pair, while 

the improvements on TCoffee and MUSCLE varied across different benchmarks. This is 

in contrast with the better performance of ProbCons and MUMMALS over TCoffee and 

MUSCLE for moderate to low identity. The improvement characteristics were especially 
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Table 4.6: Average Q(2) scores (in %) of NRAlign on PREFAB 4.0. Each subset 

includes all structure pairs with identity within the specified range, with * indicating 

worse performance in p-value. The Q(2) scores are obtained from aligning only the 

original input sequence pair.  

Q(2) TCoffee Q(2) MUSCLE 

0−20%{887} 37.92 38.27 1e−5 0−20%{887} 38.22 39.69 8e−8

2−40%{588} 82.60 82.92 4e−8 2−40%{588} 81.75 83.87 1e−29

40−70%{112} 96.37 96.51 0.005 40−70%{112} 96.24 96.58 0.01 

70−100%{95} 97.94 98.04 — 70−100%{95} 97.97 97.91 — 

All{1682} 60.82 61.13 1e−12 All{1682} 60.68 62.21 7e−29

Q(2) ProbCons Q(2) MUMMALS 

0−20%{887} 38.95 40.17 7e−31 0−20%{887} 43.59 43.62 0.005

2−40%{588} 82.84 84.30 4e−39 2−40%{588} 85.39 85.45 2e−4

40−70%{112} 96.41 96.83 5e−6 40−70%{112} 96.59 96.75 5e−4

70−100%{95} 97.76 98.05 3e−4 70−100%{95} 97.75 97.93 0.03 

All{1682} 61.44 62.64 3e−71 All{1682} 64.79 64.85 5e−8

 

 

 

different on PREFAB depending on whether the original input sequence pair or the full 

set of sequences are aligned, when it was easier to improve on MUMMALS than on 

MUSCLE in the latter case. 

 



 82

Table 4.7: Average Q(50) scores (in %) of NRAlign on PREFAB 4.0. Each subset 

includes all structure pairs with identity within the specified range, with * indicating 

worse performance in p-value. The Q(50) scores are obtained from aligning the full set 

of sequences (at most 50) that also includes random hits from database search and 

evaluations are made on the original input sequence pair. 

Q(50) TCoffee Q(50) MUSCLE 

0−20%{887} 49.67 50.00 6e−6 0−20%{887} 50.71 50.95 — 

2−40%{588} 83.94 84.20 8e−7 2−40%{588} 85.09 85.13 — 

40−70%{112} 95.99 95.55 0.02* 40−70%{112} 94.72 96.46 — 

70−100%{95} 97.97 98.04 — 70−100%{95} 97.50 97.69 — 

All{1682} 67.46 67.70 2e−9 All{1682} 68.30 68.57 — 

Q(50) ProbCons Q(50) MUMMALS 

0−20%{887} 55.63 55.72 0.02 0−20%{887} 57.68 57.91 0.02 

2−40%{588} 87.24 87.38 3e−7 2−40%{588} 87.24 87.30 0.02 

40−70%{112} 95.39 95.48 0.004 40−70%{112} 95.34 95.41 — 

70−100%{95} 97.26 97.40 0.001 70−100%{95} 96.68 97.04 0.005

All{1682} 71.68 71.79 1e−7 All{1682} 72.73 72.89 5e−4

 

 

 

In all the subsets that we have assessed, NRAlign always performed at least as well as 

the original algorithm (except for one case). The overall improvements were highly 

significant in most cases, even when the improvements in accuracy can sometimes be 
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Table 4.8: Average fD and fM scores and average normalized Dali Z-score, GDT_TS 

score, and ContactA and ContactB scores (in %) of NRAlign on the Twilight subset of 

SABmark 1.65. The Twilight subset contains alignments that represent a SCOP fold (≤  

25% identity). Four cases are omitted in the Twilight subset since no high quality 

reference alignments are available. 

Twilight{205} TCoffee Twilight{205} MUSCLE 

fD 24.07 23.99 — fD 24.07 25.29 0.008 

fM 18.08 18.08 — fM 16.47 16.84 — 

Dali Z-score 11.10 11.19 0.02 Dali Z-score 13.14 13.68 0.02 

GDT_TS 10.67 10.78 0.007 GDT_TS 12.45 12.91 0.03 

ContactA 6.72 6.76 — ContactA 7.62 7.95 0.03 

ContactB 8.98 9.03 — ContactB 10.06 10.47 — 

Twilight{205} ProbCons Twilight{205} MUMMALS 

fD 29.26 29.72 0.01 fD 31.57 31.63 0.04 

fM 21.00 21.02 — fM 22.87 22.97 0.009 

Dali Z-score 13.88 14.32 3e−5 Dali Z-score 15.32 15.38 0.03 

GDT_TS 13.38 13.68 5e−4 GDT_TS 14.52 14.54 — 

ContactA 8.67 8.87 0.01 ContactA 9.41 9.45 — 

ContactB 12.10 12.37 0.01 ContactB 12.59 12.61 — 
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Table 4.9: Average fD and fM scores and average normalized Dali Z-score, GDT_TS 

score, and ContactA and ContactB scores (in %) of NRAlign on the Superfamily subset 

of SABmark 1.65. The Superfamily subset contains alignments that represent a SCOP 

superfamily (≤  50% identity). Three cases are omitted in the Superfamily subset since 

no high quality reference alignments are available. 

Superfamily{422} TCoffee Superfamily{422} MUSCLE 

fD 52.91 53.30 2e−5 fD 53.12 53.91 0.008

fM 41.30 41.52 5e−4 fM 39.87 40.26 0.04 

Dali Z-score 33.09 33.25 0.04  Dali Z-score 35.34 35.85 0.002

GDT_TS 31.07 31.23 0.01 GDT_TS 32.98 33.47 5e−4

ContactA 23.07 23.14 — ContactA 24.23 24.54 0.001

ContactB 28.91 28.94 — ContactB 30.30 30.59 0.007

Superfamily{422} ProbCons Superfamily{422} MUMMALS 

fD 57.06 57.30 8e−8 fD 59.50 59.65 0.004

fM 43.57 43.61 0.03 fM 45.15 45.25 0.01 

Dali Z-score 35.84 36.26 9e−21 Dali Z-score 37.79 37.87 0.001

GDT_TS 33.67 33.92 1e−17 GDT_TS 35.05 35.11 0.01 

ContactA 25.29 25.45 2e−9 ContactA 26.41 26.45 — 

ContactB 32.10 32.22 1e−4 ContactB 33.11 33.17 0.04 
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small. Unlike previous algorithms that have improvements mostly on divergent 

sequences, consistent improvements can be obtained across all identity levels, and it is 

not always the case that the most improvements were obtained on highly divergent 

sequences. 

 

 

E. Discussion 

 

Pairwise Alignment versus  Multiple Alignment 

The above results on PREFAB show that the improvements for NRAlign were more 

significant on pairwise alignments. Since the reference alignments for SABmark are 

based on sequence pairs, we investigate this further by performing pairwise alignments 

over all sequence pairs instead of obtaining a single multiple alignment, and computing 

the scores for each multiple alignment by averaging the scores over all sequence pairs. 

When compared to Table 4.8 and Table 4.9, Table 4.10 and Table 4.11 shows that the 

improvements in SABmark were more significant when pairwise alignments are 

performed, and this is especially evident on the Superfamily subset, although obtaining a 

single multiple alignment gives better performance on both the Twilight and 

Superfamily subsets for each of the original and modified algorithms of ProbCons and 

MUMMALS, and on the Superfamily subset for each of the original and modified 

algorithms of MUSCLE. 
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Table 4.10: Average fD and fM scores and average normalized Dali Z-score, GDT_TS 

score, and ContactA and ContactB scores (in %) of NRAlign on the Twilight subset of 

SABmark 1.65 when pairwise alignments are performed over all sequence pairs instead 

of obtaining a single multiple alignment. 

Twilight{205} TCoffee Twilight{205} MUSCLE 

fD 24.88 25.06 0.005 fD 25.30 26.50 4e−5 

fM 16.78 16.85 — fM 17.05 17.68 3e−4 

Dali Z-score 13.41 13.60 1e−4 Dali Z-score 13.83 14.40 3e−5 

GDT_TS 12.74 12.89 7e−8 GDT_TS 13.16 13.69 2e−7 

ContactA 7.70 7.79 0.002 ContactA 8.01 8.34 4e−4 

ContactB 10.17 10.29 0.01 ContactB 10.75 10.98 — 

Twilight{205} ProbCons Twilight{205} MUMMALS 

fD 26.23 26.49 4e−4 fD 29.13 29.17 0.02 

fM 17.92 17.96 0.04 fM 19.64 19.65 — 

Dali Z-score 13.46 13.74 4e−10 Dali Z-score 15.06 15.10 0.03 

GDT_TS 12.88 13.10 5e−11 GDT_TS 14.24 14.26 — 

ContactA 8.09 8.15 5e−4 ContactA 8.93 8.94 — 

ContactB 10.99 10.94 — ContactB 11.90 11.92 — 
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Table 4.11: Average fD and fM scores and average normalized Dali Z-score, GDT_TS 

score, and ContactA and ContactB scores (in %) of NRAlign on the Superfamily subset 

of SABmark 1.65 when pairwise alignments are performed over all sequence pairs 

instead of obtaining a single multiple alignment. 

Superfamily{422} TCoffee Superfamily{422} MUSCLE 

fD 50.73 51.01 1e−13 fD 50.79 51.79 3e−16

fM 38.09 38.24 5e−9 fM 38.16 38.85 3e−11

Dali Z-score 33.82 33.98 3e−11 Dali Z-score 33.80 34.60 2e−19

GDT_TS 31.81 31.95 2e−13 GDT_TS 31.84 32.52 2e−22

ContactA 23.11 23.19 2e−6 ContactA 23.21 23.74 9e−20

ContactB 28.85 28.91 0.003 ContactB 29.10 29.51 3e−9

Superfamily{422} ProbCons Superfamily{422} MUMMALS 

fD 51.60 52.27 1e−28 fD 54.79 54.83 3e−6

fM 39.10 39.45 7e−19 fM 41.06 41.08 5e−5

Dali Z-score 33.56 34.23 7e−45 Dali Z-score 35.67 35.64 1e−5

GDT_TS 31.72 32.18 3e−39 GDT_TS 33.34 33.36 1e−5

ContactA 23.29 23.63 3e−25 ContactA 24.65 24.64 0.01 

ContactB 29.28 29.53 4e−9 ContactB 30.74 30.73 — 
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Table 4.12: Average SPS scores (in %) of NRAlign on HOMSTRAD. Each subset 

includes all alignments with number of sequences within the specified range. 

SPS TCoffee SPS MUSCLE 

2 seqs{630} 80.88 81.17 1e−6 2 seqs{630} 80.40 81.55 1e−11

3 seqs{169} 80.52 81.29 2e−9 3 seqs{169} 81.26 82.52  1e−5 

4-5 seqs{122} 79.78  80.45 1e−9 4-5 seqs{122} 80.97 81.23 — 

≥  6seqs{111} 81.55  81.94 4e−4 ≥  6seqs{111} 82.34 82.72 0.04 

SPS ProbCons SPS MUMMALS 

2 seqs{630} 81.65 82.42 1e−20 2 seqs{630} 83.50 83.56 6e−6 

3 seqs{169} 81.50 82.20 2e−8 3 seqs{169} 83.33 83.43 0.002 

4-5 seqs{122} 82.26 82.89 2e−9 4-5 seqs{122} 83.53 83.59 0.04 

≥  6seqs{111} 83.64 83.95 1e−7 ≥  6seqs{111} 85.15 85.27 — 

 

 

 

To further investigate the effect of the number of sequences on the performance of 

NRAlign, we group the results on HOMSTRAD according to the number of sequences 

in each alignment. Table 4.12 and Table 4.13 shows that except for TCoffee, the 

improvements on HOMSTRAD were more significant when the number of sequences is 

small, and the differences are especially evident when comparing pairwise alignments to 

multiple alignments. 

 

 



 89

Table 4.13: Average CS scores (in %) of NRAlign on HOMSTRAD. Each subset 

includes all alignments with number of sequences within the specified range. 

SPS TCoffee SPS MUSCLE 

2 seqs{630} 80.88 81.17 1e−6 2 seqs{630} 80.40 81.55 1e−11

3 seqs{169} 74.51 75.50 1e−9 3 seqs{169} 75.41 77.14 6e−6 

4-5 seqs{122} 68.38 69.48 1e−10 4-5 seqs{122} 70.17 70.69 — 

≥  6seqs{111} 59.59 61.23 8e−10 ≥  6seqs{111} 62.03 62.80 0.04 

SPS ProbCons SPS MUMMALS 

2 seqs{630} 81.65 82.42 1e−20 2 seqs{630} 83.50 83.56 6e−6 

3 seqs{169} 75.54 76.43 1e−6 3 seqs{169} 77.92 78.06 0.007 

4-5 seqs{122} 71.69 72.94 2e−10 4-5 seqs{122} 73.58 73.74 0.02 

≥  6seqs{111} 62.77 63.79 3e−8 ≥  6seqs{111} 65.47 65.93 0.04 

 

 

 

Effect of Parameters ω  and β  

While the same parameters ω  and β  are used for each modified algorithm across 

different benchmarks, we found that not only different algorithms have different 

preferences of ω  and β , different benchmarks also have different preferences of ω  and 

β , even when the same algorithm is used. Table 4.14 shows that the effect of varying ω  

that specifies the maximum number of horizontal positions that are included to the left 

and to the right was much more pronounced than varying β  that specifies the weight of  
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Table 4.14: Average SPS and CS scores (in %) of NRAlign on HOMSTRAD by varying 

the parameter ω  that specifies the maximum number of horizontal positions that are 

included to the left and to the right, and the parameter β  that specifies the weight of the 

neighboring scores. For each modified algorithm and each score measure, the highest 

accuracy value and the values of ω  and β  that correspond to our chosen parameter 

setting that is the same across different benchmarks are in bold. 

ProbCons MUMMALS SPS 

ω=1 ω=3 ω=5 ω=7 ω=9

SPS 

ω=1 ω=3 ω=5 ω=7 ω=9

β =0.2 81.97 82.27 82.50 82.61 82.54 β =0.2 83.72 83.72 83.64 83.49 83.18

β =0.4 82.02 82.36 82.56 82.62 82.48 β =0.4 83.70 83.70 83.60 83.34 82.94

β =0.6 82.06 82.38 82.59 82.62 82.45 β =0.6 83.72 83.72 83.54 83.27 82.84

β =0.8 82.07 82.40 82.60 82.61 82.44 β =0.8 83.72 83.72 83.52 83.24 82.78

β =1.0 82.08 82.40 82.60 82.59 82.44 β =1.0 83.73 83.70 83.50 83.21 82.75

ProbCons MUMMALS CS 

ω=1 ω=3 ω=5 ω=7 ω=9

CS 

ω=1 ω=3 ω=5 ω=7 ω=9

β =0.2 77.51 77.89 78.17 78.33 78.28 β =0.2 79.60 79.61 79.56 79.39 79.03

β =0.4 77.58 78.01 78.27 78.34 78.24 β =0.4 79.57 79.61 79.52 79.22 78.74

β =0.6 77.63 78.04 78.30 78.35 78.21 β =0.6 79.59 79.64 79.44 79.13 78.62

β =0.8 77.64 78.06 78.30 78.34 78.20 β =0.8 79.60 79.63 79.41 79.08 78.55

β =1.0 77.66 78.07 78.32 78.32 78.20 β =1.0 79.60 79.61 79.39 79.04 78.51
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the neighboring scores on HOMSTRAD, and our chosen parameter setting was not the 

one that gives the best performance. It is possible to further improve performance 

significantly if another parameter setting is chosen that is different across benchmarks, 

even when no significant differences in performance were obtained with our chosen 

parameter setting. 

 

 

F. Conclusion 

 

We have developed a strategy that incorporates horizontal information in alignments that 

proves to be useful in all situations. Unlike previous algorithms, consistent 

improvements can be obtained that are mostly not dependent on the identity level, even 

for very high identity. To further improve performance, it may be useful to utilize 

different weights for neighboring scores that are at different distances from the given 

pair (x, y). In addition to using horizontal information from neighboring scores in 

sequences, it is also possible to utilize spatial neighboring information in the local 

structural environment when such information is available and combine the scores from 

both types of neighbors. 
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CHAPTER V 

 

SUMMARY AND FUTURE WORK 

 

In this dissertation, we develop three different methods to further improve the quality of 

multiple sequence alignment.  

 

In Chapter II, we propose an alternative formulation of multiple sequence alignment 

based on the idea of finding a multiple alignment of k sequences which preserves k-1 

pairwise alignments as specified by edges of a give tree. Although it seems that a lot of 

information is lost from ignoring pairwise similarities outside of the tree, by using 

pairwise alignments that incorporate pairwise consistency information from other 

sequences, we show that it is possible to obtain very good accuracy with the preserving 

alignment formulation. We show that a reasonable objective function to use is to find the 

shortest preserving alignment, and, by a reduction to a graph-theoretic problem, that the 

problem of finding the shortest preserving multiple alignment can be solved in 

polynomial time. Such a formulation is very important as it makes it possible to know 

what the alignment means and also ensures that the optimal solution can be found. A 

software program implementing this approach (PSAlign) is available at http: 

//faculty.cs.tamu.edu/shsze/psalign. To further improve accuracy from current version of 

PSAlign, it is possible to consider formulations other than finding the shortest solution, 

although many of these objective functions may be intractable to optimize. Other 
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directions include improving the quality of the pairwise alignments and devising 

strategies to perform iterative refinements after the preserving multiple alignment is 

obtained. A minor application of PSAlign is to identify critical sites of a multiple 

sequence alignment, by choosing highly scored connected components in G 

(corresponding to reliable columns in the final multiple alignment). 

 

In Chapter III, we propose a few strategies for using additional hits from database search 

of the input sequences to significantly improve alignment accuracy. These strategies 

include the construction of profiles from the hits while performing profile alignment, the 

inclusion of high scoring hits into the input sequences, the use of intermediate sequence 

search to link distant homologs and the use of secondary structure information. We 

develop an algorithm that integrates these strategies to further improve alignment 

accuracy by modifying the pair-HMM model to incorporate profiles of intermediate 

sequences from database search and utilize secondary structure predictions. We show 

that our algorithm significantly outperforms current best multiple alignment algorithms 

with and without using additional information from database search. A software program 

that implements this approach (ISPAlign) is at http://faculty.cs.tamu.edu/shsze/ispalign. 

There are still many opportunities to further improve the accuracy of ISPAlign. Instead 

of adding a fixed number of intermediate sequences to the input sequences, it may be 

better to add more sequences as the number of input sequences increases. Alternatively, 

intermediate sequences can be added until all the minimum distances between each of 

the remaining intermediate sequences and the current set of sequences fall below a 
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threshold. Also, instead of modifying the parameters used by ProbCons, it may be better 

to re-train the pair-HMM using a set of confirmed secondary structures. It is also 

possible to use other multiple alignment algorithms to perform the profile alignment step 

as long as profiles and secondary structure predictions can be incorporated, which can 

lead to further improvements as better multiple alignment algorithms become available. 

It may also be beneficial to utilize three-dimensional structures when they are available. 

Besides ISPAlign, some of the strategies proposed here may also be helpful in other 

applications. For example, the definition of intermediate sequence may help some 

approaches which need database search for remote homolog detection, and the idea of 

using profiles may be utilized in multiple sequence alignment approaches without 

additional information, by summarizing the horizontal information that is along a single 

sequence instead of vertical information that is across different sequences. 

 

In Chapter IV, instead of making better use of vertical information, which include the 

incorporation of consistency-based pairwise alignments and the use of profile alignments, 

we propose a strategy to further improve accuracy of multiple alignment by taking into 

account alignment of neighboring residues when aligning two residues, thus making 

better use of horizontal information. By modifying existing multiple alignment 

algorithms to make use of horizontal information, we show that this strategy is able to 

consistently improve over existing algorithms. A software program that implements this 

approach (NRAlign) is available at http://faculty.cs.tamu.edu/shsze/nralign. To further 

improve NRAlign, it may be useful to utilize different weights for neighboring scores 
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that are at different distances from the given pair. In addition to using horizontal 

information from neighboring scores in sequences, it is also possible to utilize spatial 

neighboring information (or predictions) in the local structural environment when such 

information is available and combine the scores from both types of neighbors. 

 

It is also possible to combine the three methods we propose to further improve multiple 

sequence alignment. For example, we can combine the strategy of using horizontal 

information from NRAlign with the strategies of using vertical information from 

ISPAlign. Although it is possibly useful to use the predicted contact maps of input 

sequences when employing NRAlign, contact maps prediction is very time-consuming 

and not suitable for large number of sequences. By applying NRAlign strategy to 

PSAlign, it is possible to only predict one contact map instead of predicting all the 

contact maps, thus making it possible for large scale alignments. 
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