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ABSTRACT 

 

The Role of Histones and Histone Modifying Enzymes in Ribosomal DNA Silencing in 

Saccharomyces cerevisiae. (December 2008) 

Chonghua Li, B.S., Tsinghua University; M.S., Tsinghua University 

Chair of Advisory Committee: Dr. Mary Bryk 

 

 In S. cerevisiae, the ribosomal DNA locus is silent for RNA polymerase II (Pol 

II) transcription and recombination (rDNA silencing). Our goal is to understand how 

histones and histone-modifying enzymes regulate the silent chromatin at the rDNA 

locus. 

Sir2, a NAD+-dependent histone deacetylase, is required for rDNA silencing. To 

understand how Sir2 regulates rDNA silencing, we performed chromatin 

immunoprecipitation to measure the association of modified histones across the rDNA 

repeat in wild-type and sir2Δ cells. We found that in sir2Δ cells, histone H3 at the rDNA 

became hyperacetylated and hypermethylated. High levels of K4-methylated H3 

correlate with Pol II transcription. Consistent with this, we found that the nontranscribed 

spacer (NTS) region was transcribed by Pol II in sir2Δ cells. To investigate if 

transcription of the NTS region regulates rDNA silencing, we overexpressed this region 

both in trans and in cis. Our data showed that overexpression of the NTS region in cis 

caused Pol II silencing defect and hyperrecombination at the rDNA. These data suggest 

that Sir2 contributes to maintain the silent chromatin at the rDNA by repressing Pol II 
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transcription in the NTS region. We also found that the NTS transcripts could be 

translated in vitro and that they copurified with polysomes, suggesting that the 

transcripts may encode proteins or that the transcripts are somehow involved in the 

process of translation. 

Additionally, we examined the role of linker histone H1 in regulating rDNA 

silencing. We found that, unlike Sir2 that represses both Pol II transcription and 

recombination, histone H1 only represses recombination at the rDNA. The 

hyperrecombination defect at the rDNA is more severe in sir2Δ hho1Δ double mutant 

than in either single mutant, suggesting histone H1 and Sir2 act independently. 

Consistently, hho1Δ cells did not accumulate extrachromosomal rDNA circles (ERCs) or 

the Holliday junction intermediates, which accumulate in sir2Δ cells. These data suggest 

that histone H1 and Sir2 regulate different recombination pathways. 

In summary, my research has provided insight into the mechanism of how silent 

chromatin at the rDNA locus is regulated, which will help us understand how 

fundamental components of chromosomes affect gene expression and genome stability. 
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CHAPTER I 

INTRODUCTION 

 

Eukaryotic cells contain nuclear DNA filaments known as chromosomes that 

carry genetic information. Combined end-to-end, the DNA in a human cell stretches to 

~2 meters. In order to fit within the nucleus with a diameter about 5 μm, DNA molecules 

are compacted into a nucleoprotein structure named chromatin. Chromatin compaction 

starts with nucleosome, the fundamental subunit of chromatin with DNA wrapping 

around a histone octamer, forming a “beads-on-a-string” structure (Figure 1-1) (Luger et 

al., 1997; White et al., 2001; Davey et al., 2002; Richmond and Davey, 2003). 

Nucleosomal chromatin is packed into a 30 nm fiber and later folded into 300 nm giant 

loops (Finch and Klug, 1976). The loops are then condensed into 700 nm fibers and 

finally form chromosomes with a diameter of 1400 nm (Figure 1-2).  

The compaction and folding of chromatin is not uniform. There are loosely 

assembled regions known as euchromatin, and highly condensed regions known as 

heterochromatin. The degree of chromatin folding influences the level of various cellular 

processes, such as transcription, recombination, replication, and DNA repair (Aguilera et 

al., 2000; Morales et al., 2001; Verger and Crossley, 2004; Razin et al., 2007). For 

example, genes located in the euchromatin are more likely to be transcribed due to the  

_______________ 
This dissertation follows the style and format of Molecular Biology of the Cell. 
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Figure 1-1 Crystal structure of the nucleosome core particle. The structure shows 146-bp DNA (brown 
and turquoise) wrapped around a histone core octamer with eight histone proteins (blue: H3; green: H4; 
yellow: H2A; red: H2B) (Cited from Luger et al. 1997). 
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Figure 1-2 The compaction of DNA. DNA double helix wraps around histone octamers to form the lowest 
chromatin structure unit nucleosomes. Nucleosomes are packed into 30 nm chromatin fibers, which form 
higher level chromatin structures (Felsenfeld and Groudine, 2003).  
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accessibility to the transcriptional machinery, while genes located in heterochromatin are 

repressed (or silenced) because of the closed chromatin confirmation that is less 

accessible to the transcriptional machinery (Strathern et al., 1982; Terleth et al., 1989; 

Gottschling, 1992; Loo and Rine, 1994). Chromatin structure is regulated by histone 

proteins as well as non-histone proteins. My dissertation research focuses mainly on the 

regulation of gene expression and mitotic recombination in silent chromatin domains by 

histones and histone-modifying enzymes. 

1.1. NUCLEOSOME, HISTONES AND HISTONE MODIFICATIONS 

1.1.1.  The Nucleosome Structure 

The structure of a nucleosome particle has been solved by X-ray crystallography 

by several groups (Luger et al., 1997; Harp et al., 2000; White et al., 2001; Davey et al., 

2002; Richmond and Davey, 2003). As shown in Figure 1-1, each nucleosome particle 

consists of 146 bp of DNA wrapped around a histone octamer in 1.65 turns of a left-

handed superhelix. The central histone octamer can be divided into four dimers defined 

by two sets of H3-H4 and H2A-H2B histone pairs. The majority of histone octamer is 

protected by the superhelical DNA gyre, yet there are N-terminal or C-terminal residues 

of each core histone protruding out of the nucleosome disk. These N- or C-terminal 

residues are called “histone tails”, which are believed to be relatively unstructured 

because they are not amenable to X-ray analysis (Luger et al., 1997).  

1.1.2. Post-Translational Modifications of Histones 

Histone proteins are subjected to a variety of post-translational modifications 

including acetylation and methylation of lysines (K) and arginines (R), phosphorylation 
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of serines (S) and threonines (T), ubiquitylation and sumoylation of lysines, as well as 

ribosylation (Turner, 2005; Millar and Grunstein, 2006). These modifications to histone 

proteins play essential roles in many aspects of chromatin function. A summary of the 

amino acid residues of the histones H2A, H2B, H3 and H4 in yeast that are known to be 

modified is shown in Figure 1-3. 

1.1.2.1. Histone Acetylation/Deacetylation 

Histone acetylation/deacetylation is best characterized of all known histone 

modifications. The acetylation state of histones affects many cellular activities, such as 

nucleosome assembly, chromatin folding, gene transcription and repression, and 

heterochromatin formation (Shahbazian and Grunstein, 2007). For example, newly 

synthesized histones are acetylated transiently and deacetylated after deposition onto 

DNA. Acetyl groups on histones may provide recognition sites for the chaperone 

proteins (Smith and Stillman, 1991; Ma et al., 1998; Ai and Parthun, 2004; Poveda et al., 

2004). These acetyl groups must be removed after the histones are incorporated into 

chromatin, to allow the compaction of the chromatin into higher-order structures. It has 

been suggested that the acetylation of lysine residues on histones assembled in 

nucleosomes can neutralize the positive charge of lysine residues, thereby disrupting 

electrostatic interactions between histones and DNA and allowing a more opened 

chromatin confirmation (Mathis et al., 1978; Simpson, 1978; Vidali et al., 1978; Imai et 

al., 1986; Annunziato et al., 1988; Tse et al., 1998), which is a prerequisite for activation 

of transcription. Hence, hyperacetylated histones are correlated with active transcription,  
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Figure 1-3 Known histone modifications in yeast (Downs et al., 2000; Roth et al., 2001; Suka et al., 2001; 
Ahn et al., 2005; Foster and Downs, 2005; Hyland et al., 2005; Ye et al., 2005; Krishnamoorthy et al., 
2006; Parra et al., 2006; Krebs, 2007). 
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while hypoacetylated histones are associated with chromatin in a more closed 

confirmation, equivalent to a transcriptionally repressed state. 

The enzymes responsible for acetylation of histones are called histone 

acetyltransferases (HATs). HATs modify the histones by transferring an acetyl group 

from acetyl coenzyme A (acetyl-CoA) to the ε-amino group of a lysine residue. This 

type of modification is reversible. The acetyl group can be removed by enzymes called 

histone deacetylases (HDACs) (Marmorstein and Roth, 2001; Roth et al., 2001). One 

group of HDACs that is associated with silent chromatin is the Sir2 family of histone 

deacetylases, which is conserved from bacteria to humans (Blander and Guarente, 2004). 

The name of Sir2 stands for Silent information regulator 2, reflecting the role of the 

founding member of the Sir2 family in regulating silent chromatin in S. cerevisiae. 

Known targets of Sir2 include K9, K14 and K56 of histone H3, and K16 of histone H4 

(Imai et al., 2000; Xu et al., 2007). What makes this HDAC family unique from other 

HDACs is that the Sir2 family members require the metabolic cofactor NAD+ for their 

deacetylase activity (Imai et al. 2000; Landry et al. 2000a; Landry et al. 2000b). For each 

acetyl lysine that is deacetylated by Sir2, one NAD+ molecule is cleaved to produce 

nicotinamide and O-acetyl-ADP-ribose (AAR) (for review, see Blander and Guarente, 

2004). AAR was found to have a direct role in regulating the assembly of the 

Sir2/Sir3/Sir4 silencing complex in S. cerevisiae (Liou et al., 2005). In S. cerevisiae, 

Sir2 regulates transcriptional silencing, mitotic recombination, DNA replication and 

aging, which will be discussed later. 
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1.1.2.2. Histone Methylation 

Methylation is another type of histone modification that has been extensively 

studied. This modification occurs on lysine or arginine residues. Lysine residues can be 

mono-, di- or trimethylated on the ε-nitrogen by enzymes called histone 

methyltransferases (HMTs) that use S-adenosylmethionine as the donor of the methyl 

group. Arginine residues can be mono- or dimethylated by enzymes known as protein 

arginine methyltransferases (PRMTs) (Shilatifard, 2006).  In budding yeast, the lysine 

residues on histone H3 that are known to be methylated are K4, K36 and K79. The 

enzymes that catalyze methylation of these lysine residues are Set1, Set2 and Dot1, 

respectively (for review, see Klose and Zhang, 2007). In S. pombe and higher eukaryotic 

cells, K9 on histone H3 is a target for methylation, which is required for heterochromatin 

formation (for review, see Martin and Zhang, 2005; Horn and Peterson, 2006). However, 

K9 of histone H3 is not methylated in budding yeast. Histone methylation had been 

thought to be irreversible until histone demethylases were identified recently (for review, 

see Klose and Zhang, 2007). 

In budding yeast, high levels of methylated histones are found in the coding 

regions of genes (Bernstein et al., 2002; Santos-Rosa et al., 2002). In fact, the enzymes 

responsible for methylation of H3K4 and H3K36 have been shown to physically 

associate with RNA polymerase II (Pol II) during transcription elongation, resulting in 

hypermethylation of the histones in the coding regions of genes (Krogan et al., 2003b; Li 

et al., 2003; Ng et al., 2003c; Xiao et al., 2003). Paradoxically, methylation of H3K4 
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and H3K79 is also important for maintaining silent chromatin. A discussion of the roles 

of methylated histone H3 in gene silencing is provided below. 

1.1.2.3. Histone Phosphorylation and Ubiquitylation 

Histones are also subjected to other modifications, such as phosphorylation and 

ubiquitylation. Phosphorylation of histones is known to occur on serine residues. For 

example, histone H3 can be phosphorylated on serine 10. Serine 10 phosphorylated H3 

is crucial for chromosome condensation and cell cycle progression as well as 

transcriptional activation (Nowak and Corces, 2004). However, it is not clear if 

phosphorylation of H3S10 is involved in transcriptional silencing. 

Ubiquitylation can occur on lysine residues of histones. In budding yeast, the 

K123 residue of histone H2B has been found to be ubiquitylated in chromatin (Jentsch et 

al., 1987; Robzyk et al., 2000). Ubiquitylation of H2B on K123 is required for di- and 

trimethylation of H3 on K4 and K79, indicating a possible interaction between different 

histone modifications (for review, see Weake and Workman, 2008). 

1.2. THREE SILENT DOMAINS IN Saccharomyces cerevisiae 

In S. cerevisiae, genes located in heterochromatin domains are silenced at the 

transcriptional level due to silent chromatin structure. This phenomenon is known as 

gene silencing, a form of transcriptional repression that acts in a regional manner rather 

than a promoter-specific manner. Three silent loci have been discovered in S. cerevisiae: 

the telomeres, the silent mating-type (HM) loci and the ribosomal DNA locus (rDNA). 

Among these silent loci, silencing at the HM loci and the telomeres has been studied 

extensively.  
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1.2.1. Silencing at the Silent Mating Type Loci 

Gene silencing was first discovered at the silent mating-type loci (Klar et al., 

1981; Nasmyth et al., 1981). In budding yeast, haploid cells have two mating types, a or 

α. Haploid budding yeast cells respond to the mating pheromone produced by haploid 

cells of the opposite mating type to commence mating and the formation of a diploid cell. 

The mating type of a cell is determined by a cassette of genetic information present at 

the mating type locus, MAT (MATa or MATα), on chromosome III.  Cells carry extra 

copies of the a and α genetic information at the silent mating type loci, HMR (a) and 

HML (α) (Figure 1-4A).  In wild-type cells, the genetic information at the two silent 

mating type loci is silenced, so that the mating type of budding yeast cells is determined 

by the genetic information present at the MAT locus (Moazed, 2001). 

The silencing of HML and HMR is mediated by cis-acting DNA elements known 

as silencers. Each HM locus contains two silencer elements, E and I. The chromatin 

between the two elements acquires a repressive structure that prevents expression of Pol 

II transcribed genes in that region (for reviews, see Rusche et al., 2003; Fox and 

McConnell, 2005). The establishment of silent chromatin starts at the E elements, which 

contain binding sites for several proteins including members of the origin replication 

complex (ORC), Rap1, and Abf1. These proteins then recruit Silent information 

regulator (Sir) proteins (Sir1-4) to the HMR-E region in an ordered manner (Rusche et 

al., 2002). Sir2, an NAD+-dependent histone deacetylase, is brought to the HM loci 

through interaction with Sir4 (Moazed et al., 1997; Ghidelli et al., 2001), and 

deacetylates histone H3 and H4 in nearby nucleosomes (Hoppe et al., 2002). It has been 
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Figure 1-4 The HM silent mating type loci. (A) Relative locations of the silent HML and HMR loci, and 
the active MAT locus on yeast chromosome III. The HML and HMR loci contain the E and I silencers and 
the open reading frames of the α1, α2, and a1, a2 mating type genes. (B) A model illustrating silent 
chromatin assembly at HMR (adapted from Fox and McConnell, 2005).  (I) The E element binds silencer 
protein complex (SPC), which contains ORC, Rap1 and Abf1. (II) The SPC recruits Sir1 and the Sir2-4 
complex. Sir2 removes acetyl groups from the neighboring nucleosomes through its NAD+-dependent 
HDAC activity. (III) The hypoacetylated nucleosomes recruit additional Sir2-4 complex. (IV) Repetition 
of this process allows the spreading of the silent chromatin. 
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shown that Sir3 and Sir4 can interact with the N-terminal tails of histone H3 and H4, 

preferentially deacetylated forms of H3 and H4 (Hecht et al., 1995; Carmen et al., 2002). 

The deacetylation of histone H3 and H4 by Sir2 creates more binding sites for Sir3 and 

Sir4 (Rusche et al., 2002), which allows the spreading of the silent chromatin. A model 

for silent chromatin spreading in HMR-E is shown in Figure 1-4B. The direct interaction 

between Sir3 and Sir4 also helps the spreading of the silent chromatin (Rudner et al., 

2005).  

It was believed that the repression of Pol II transcription in the HM loci was due 

to the repressive chromatin structure that is less accessible to the Pol II transcriptional 

machinery. However, a recent study proposed a model that challenges this idea. In this 

study, Gao and colleagues found that the promoters of the silenced HMRa1 and 

HMLα1/α2 are permissive to the binding of the pre-initiation complex (PIC) of Pol II 

transcriptional machinery, while the association of elongation factors and the capping 

enzymes with these regions was restricted in a Sir2-dependent manner (Sekinger and 

Gross, 2001; Gao and Gross, 2008).  

1.2.2. Telomere Silencing 

Telomeres located at the ends of the chromosomes represent another group of 

sequences in the S. cerevisiae genome where silent chromatin is located. A typical S. 

cerevisiae telomere consists of short tandem DNA repeats that are about 300 bp in 

length and two classes of sub-telomeric repeats, the X and Y’ elements (Wright et al., 

1992). Over 50 proteins have been implicated in telomere silencing. Among these 

proteins, Sir2, Sir3, Sir4 (Sir2-3-4), Rap1 and Ku70/80 heterodimer are absolutely 
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required (Aparicio et al., 1991; Kyrion et al., 1992; Boulton and Jackson, 1998; Laroche 

et al., 1998). There are several Rap1 binding sites at the telomere, and the initiation of 

the silent chromatin starts with recruitment of Rap1 to these binding sites (Buchman et 

al., 1988). The Sir2/Sir4 complex is then recruited to the telomere through the 

interaction between Sir4 and Rap1 (Moretti et al., 1994). The Ku70/Ku80 heterodimer 

also interacts with telomeric DNA and assists Rap1 in recruiting the Sir2/Sir4 complex 

(Mishra and Shore, 1999). Like silent chromatin at HM loci, Sir2 deacetylates histone 

tails and Sir3 is recruited via interactions through Rap1, Sir4 and the hypoacetylated 

histone tails. The spreading of silent chromatin at the telomeres is similar to the 

spreading that occurs at the HM loci (Moazed, 2001). 

1.2.3. Ribosomal DNA Silencing 

In a study to determine whether the chromosomal position of a Ty1 

retrotransposon affects its expression, Bryk et al. (1997) found that when a Ty1 element 

was integrated into the ribosomal DNA locus (rDNA), it was silenced at the 

transcriptional level. At the same time, Smith et al. (1997) showed that other Pol II 

transcribed genes are silenced when inserted into the rDNA. This phenomenon is known 

as rDNA silencing. In addition, silencing at the rDNA includes repression of mitotic 

recombination (Szstak and Wu, 1980; Zamb and Petes, 1982) and silencing of 

replication origins (Walmsley et al., 1984; Saffer and Miller, 1986). The mechanism of 

silencing at the rDNA is different from that at the other silent loci. In our lab we use the 

rDNA as a model system to study gene silencing and I will discuss silencing at the 

rDNA locus below. 
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1.3. MODEL SYSTEM: RIBOSOMAL DNA SILENCING 

1.3.1.  Structure of Ribosomal DNA Locus 

The rDNA is a highly repeated locus, containing about 150-200 copies of the 

tandem rDNA repeats that make up about two-thirds of chromosome XII (Warner, 1989). 

The rDNA repeats form a unique structure called the nucleolus (Dammann et al., 1995). 

Each rDNA repeat is about 9.1 kb in length and contains two nontranscribed spacers 

(NTS1 and NTS2), a 35S ribosomal RNA gene (rRNA) and a 5S rRNA gene (Figure 1-

5). The 35S rRNA gene is transcribed by RNA polymerase I (Pol I), and the Pol I 

transcript is processed into the 18S, 5.8S and 25S rRNAs. The 5S rRNA gene is 

transcribed by RNA polymerase III (Pol III) (Venema and Tollervey, 1999). These 

rRNAs serve as structural and catalytic components of ribosomes. The NTS region 

contains several cis-acting regulatory sequences including: a promoter, enhancer and 

terminator that direct Pol I transcription of the 35S rRNA gene (Paule and White, 2000); 

a replication fork barrier (RFB) in NTS1 that prevents bidirectional replication of the 

rDNA (Brewer et al., 1992; Kobayashi et al., 1992); and an origin of DNA replication 

(ARS) in NTS2 (Figure 1-5) (Brewer and Fangman, 1991). Despite the fact the rRNA 

genes are actively transcribed by Pol I and Pol III, with the ribosomal RNA making up 

more than 60% of total RNA (Warner, 1989), Pol II transcribed genes are repressed 

when inserted into the rDNA. This indicates that the chromatin at the rDNA locus forms 

a specialized structure that allows Pol I and Pol III transcription but represses Pol II 

transcription. 
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Figure 1-5 Structure of S. cerevisiae rDNA locus. The rDNA locus covers about 60% of chromosome XII 
in Saccharomyces cerevisiae. The 35S and 5S rRNA genes, the autonomous replication sequence (ARS), 
the replication fork barrier (RFB), the non-transcribed spacers 1 and 2 (NTS1 and NTS2), and the TAR1 
gene located within the coding region of 35S rRNA gene are indicated. Black lines above the RFB and 
ARS, the E and I elements that are cis-acting sequences essential to HOT1-stimulated recombination. The 
35S rRNA gene is not drawn to scale. Arrows indicate the direction of gene transcription. 
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1.3.2. Factors Involved in Transcriptional Silencing in Ribosomal DNA 

Locus 

1.3.2.1. The RENT Complex 

Since the discovery of rDNA silencing in 1997, a growing number of factors 

have been identified that participate in rDNA silencing. Unlike silencing at the HM loci 

and telomeres, silencing at the rDNA does not require the Sir2-Sir3-Sir4 complex. 

Instead, it requires a complex called RENT (regulator of nucleolar silencing and 

telophase exit), which contains Net1, Sir2 and Cdc14. The RENT complex was 

identified by Straight et al. (1999) in an attempt to identify proteins that associate with 

Sir2. Deletion of either Net1 or Sir2 results in disruption of rDNA silencing (Bryk et al., 

1997; Fritze et al., 1997; Smith and Boeke, 1997; Straight et al., 1999).  

As the core component of the RENT complex, Net1 associates with the rDNA, 

serving as an anchor to recruit the other two subunits of the RENT complex, Sir2 and 

Cdc14 (Straight et al., 1999; Huang and Moazed, 2003). It has been shown that the 

RENT complex binds the rDNA at two distinct regions, NTS1 and the Pol I promoter 

region in NTS2, including the 5’ end of 35S rRNA coding region (Huang and Moazed, 

2003). The association of Net1 with the NTS1 region requires the RFB-binding protein 

Fob1, which is required for the replication fork blocking and recombination hotspot 

activities (See Chapter I, 4.3). In the absence of Fob1, the RENT complex is not 

recruited to NTS1 and the silencing of Pol II transcription is abolished in NTS1 (Huang 

and Moazed, 2003). The recruitment of the RENT complex to the Pol I promoter region 

may be mediated through Pol I since both Net1 and Sir2 were found to physically 
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interact with Pol I (Shou et al., 2001; Huang and Moazed, 2003). This is also consistent 

with the finding that Pol I transcription directs the spreading of silent chromatin (Buck et 

al., 2002; Cioci et al., 2003). Sir2 deacetylates histones at the rDNA (Bryk et al., 2002; 

Huang and Moazed, 2003). Deletion of Sir2 results in a significant increase in the levels 

of K9-acetylated H3 and K14-acetylated H3 in NTS1 and NTS2, but has minor effects, 

if any, on the levels of acetylated H4 (K5, K8, K12, and K16) (Bryk et al., 2002; Buck et 

al., 2002). Sir2 also regulates physical chromatin structure of the rDNA. In cells lacking 

Sir2, the number of micrococcal nuclease sensitive sites in the rDNA is increased, 

consistent with a more accessible chromatin structure (Fritze et al., 1997; Cioci et al., 

2002; Li et al., 2006a). The function of Cdc14 in rDNA silencing has not been studied.  

1.3.2.2. The Compass Complex 

Another multiprotein complex that is important for rDNA silencing is the 

COMPASS complex (Complex Proteins Associated with Set1), whose members include 

Set1, Bre2, Sdc1, Shg1, Spp1, Swd1, Swd2 and Swd3 (Roguev et al., 2001; Krogan et 

al., 2002; Nagy et al., 2002). The COMPASS complex is required for mono-, di- and 

trimethylation of K4 of histone H3 in S. cerevisiae (Briggs et al., 2001; Roguev et al., 

2001; Krogan et al., 2002; Nagy et al., 2002; Santos-Rosa et al., 2002). The catalytic 

and core component of this complex is Set1, a histone methyltransferase that contains a 

conserved SET domain (Roguev et al., 2001; Krogan et al., 2002; Nagy et al., 2002). 

Most advances in our understanding of Set1 are related to its function at euchromatin in 

association with Pol II. It has been shown that COMPASS is recruited to the promoter of 

actively transcribed genes by the Paf1 complex (Krogan et al., 2003a; Ng et al., 2003c). 
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High levels of K4-trimethylated histone H3 are associated with the genes that have been 

recently transcribed by Pol II (Bernstein et al., 2002; Santos-Rosa et al., 2002; Boa et al., 

2003). However, a Set1-dependent low level of K4-methylated histone H3 is also 

required for gene silencing at the three silent loci in S. cerevisiae (Nislow et al., 1997; 

Briggs et al., 2001; Bryk et al., 2002; Nagy et al., 2002; Krogan et al., 2003a). While 

deletion of the SET1 gene does not alter the association of Sir2 or the acetylation state of 

histone H3 within rDNA, an increase of K4-methylated histone H3 is observed at this 

locus in sir2Δ cells (Bryk et al., 2002). The result was unexpected because high levels of 

K4-methylated H3 are not predicted to be associated with a genomic region that is free 

of Pol II-transcribed genes. This observation indicates that Sir2 is involved in repressing 

Set1-mediated methylation of histone H3 on K4 at the rDNA, and perhaps the 

localization of Pol II to the rDNA. These are two issues that will be addressed in this 

dissertation. 

1.3.2.3. Chromatin Remodeling Complex 

Chromatin remodelers are complexes that can change the chromatin structure 

through their enzymatic activity that alters histone-DNA interactions.  It is not surprising 

that chromatin remodelers are involved in regulating transcriptional silencing at the 

rDNA. In fact, two chromatin remodelers, Swi/Snf complex and Isw1 complex, were 

found to be required for rDNA silencing (Dror and Winston, 2004; Mueller and Bryk, 

2007). Swi/Snf is an ATP-dependent multi-subunit complex that can activate as well as 

repress transcription (Sudarsanam and Winston, 2000). Snf2 is the catalytic member of 

this complex. Deletion of the SNF2 gene results in loss of silencing at the rDNA and 
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telomeres. The repressive activity of Swi/Snf at the rDNA has been shown to be 

independent of Sir2 and Set1. It is proposed that Swi/Snf may regulate the rDNA 

chromatin structure at a higher-order level, but this has not been investigated and it is not 

known if the effect of Swi/Snf is direct or indirect (Dror and Winston, 2004). The 

Imitation Switch (ISWI) class of chromatin remodelers is another type of ATP-

dependent chromatin remodeling complex known to be involved in the ordering and 

spacing of nucleosomes after DNA replication as well as transcriptional activation and 

repression (for review see Tsukiyama, 2002; Saha et al., 2006). In S. cerevisiae, the 

ISWI class of chromatin remodeler has two members, Isw1 and Isw2. The Isw1 complex 

is required for gene silencing at the HMR locus, but not at the telomeres (Cuperus and 

Shore, 2002). A recent study from our lab showed that Isw1is also required for 

transcriptional silencing at the rDNA locus (Mueller and Bryk, 2007). Deletion of ISW1 

results in loss of Pol II gene silencing and changes in the chromatin structure in the 

NTS1 region of the rDNA. Since Isw1 physically associates with the rDNA, it is likely 

that Isw1 functions directly on rDNA silencing (Mueller and Bryk, 2007). In another 

study from our lab, we also showed that, Isw2 is required for silencing at the rDNA but 

not at the telomeres (Mueller et al., 2007). Unlike Isw1, deletion of ISW2 does not affect 

chromatin structure at the rDNA (Mueller et al., 2007). This is likely to reflect different 

mechanisms between Isw1 and Isw2 in regulating silent chromatin. 

1.3.2.4. Histones and Histone Modifying Enzymes 

Histones, the basic components of the chromatin structure, play direct roles in 

regulating gene silencing. The link between histones and their modifications with 
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silencing at the telomeres and the HM loci has been studied extensively. For instance, it 

has been shown that the N-terminal tails of H3 and H4 are required for silencing at 

telomeres and the HM loci (Johnson et al., 1990; Megee et al., 1990; Park and Szostak, 

1990; Thompson et al., 1994; Hecht et al., 1995; Martin et al., 2004). All of the tested 

lysine residues on the tails of histone H3 (K9, 14, 23, 27) and H4 (K5, 8, 12, 16) are 

hypoacetylated within the telomeres and HM loci (Braunstein et al., 1993; Braunstein et 

al., 1996; Suka et al., 2001; Martin et al., 2004). These findings favor a model that the 

Sir proteins preferentially bind the hypoacetylated histone tails, which promotes the 

spreading of the silent chromatin. Modifications of histone proteins at sites other than 

the tails also regulate the silent chromatin. Several other studies have identified residues 

located at a specific nucleosome surface of histone H3 that are required for all three 

forms of silencing in budding yeast (Park et al., 2002; van Leeuwen et al., 2002; Ng et 

al., 2003c). This region is involved in interaction between nucleosomes and the silencing 

proteins (Park et al., 2002). Hyland et al. (2005) and Xu et al. (2005) demonstrated that 

amino acid substitutions within the nucleosome core domain of histone H3 or H4 can 

influence transcriptional silencing as well. 

Studies looking for factors required for rDNA silencing also identified histones 

and histone-modifying enzymes as key players at this heterochromatic domain. Global 

analysis indicates that the levels of acetylated histone H3 (K9, K14), acetylated H4 (K5, 

K8, K12, K16) and the methylated histone H3 (K4) are significantly lower at all the 

three silent loci, including the rDNA locus, than the global average level (Bernstein et al., 

2002). Deletion of SET1, the histone methyltransferase of H3K4, and replacement of K4 
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of histone H3 with arginine cause loss of silencing at the rDNA (Briggs et al., 2001; 

Bryk et al., 2002). It is not clear whether the effect of H3K4 methylation on rDNA 

silencing is direct or indirect. One possibility is that deletion of SET1 leads to genome 

wide loss of methylation on K4 of histone H3, which may result in mislocalization of 

Sir2 proteins. This model is supported by the finding that Sir3 spreads away from 

telomeres in cells lacking Set1 (Santos-Rosa et al., 2004). However, this does not hold 

true for the rDNA. First of all, Sir3 is not required for rDNA silencing. Secondly, 

deletion of SET1 does not affect the association of Sir2 or Net1 with the rDNA (Bryk et 

al., 2002). Perhaps a low level of K4-methylated H3 is directly required for forming a 

specialized chromatin structure, which is refractory for Pol II transcription at the rDNA. 

Interestingly, methylation of another lysine residue of histone H3 (K79) by Dot1 is also 

required for silencing at all three silent loci, although the effect is relatively modest at 

the rDNA locus (Singer et al., 1998; van Leeuwen et al., 2002). It was proposed that one 

of Dot1’s roles in maintaining the silent loci is to prevent the Sir proteins from binding 

indiscriminately along the chromosomes via methylating most of the total histone H3 in 

the cells (van Leeuwen et al., 2002). Both H3K4 methylation and H3K79 methylation 

indicate that although histone methylation is correlated to active Pol II transcription, it 

also participates in regulating silent chromatin directly or indirectly.  

It is well known that highly acetylated histones are associated with active Pol II 

transcription, while deacetylated histones are found in silent chromatin. However, there 

are some exceptions, too. The MYST family HAT Esa1was found to play a key role in 

transcriptional silencing at telomeres and the rDNA (Clarke et al., 2006). As a HAT, 
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Esa1 primarily acetylates histone H4, and to a less extent H3 and H2A (Smith et al., 

1998a; Clarke et al., 1999). It is surprising that the catalytically inactive temperature-

sensitive mutants of Esa1 cause telomere and rDNA silencing defects at the non-

permissive temperature. Further analysis indicated that Esa1 physically binds to the 

rDNA and mutations of Esa1 result in hypoacetylation of histone H3 and H4 at this locus. 

More interestingly, overexpression of Esa1 can bypass the requirement of Sir2 in rDNA 

silencing (Clarke et al., 2006). These data suggest that the opposing chromatin 

modifying activities of Sir2 and Esa1 contribute to repressing Pol II transcription at the 

rDNA locus. In addition, another MYST family HAT, Sas10, was shown to be involved 

in transcriptional silencing. Overexpression of Sas10 disrupted silencing at all the three 

silent loci (Kamakaka and Rine, 1998), although the mechanism behind this phenotype 

remains unknown.  

In addition to histones H3 and H4, the histones H2A and H2B are also important 

in regulating rDNA silencing. Reducing the copy number of genes encoding histone 

H2A and H2B can cause silencing defects at the rDNA locus (Bryk et al., 1997), while 

mutations in Hir3, a subunit of the HIR complex that controls the level of histone 

expression, cause an increase in rDNA silencing (Smith et al., 1999). This may be due to 

the higher levels of H2A and H2B when Hir3 is mutated (Spector et al., 1997). These 

findings imply that histone stoichiometry is critical for gene silencing.  In addition, it is 

known that histone H2B can be ubiquitylated at the K123 residue. This modification is a 

prerequisite for methylation of histone H3 on K4 and K79 (Briggs et al., 2002; Dover et 

al., 2002; Ng et al., 2002b; Sun and Allis, 2002; Zhang, 2003; Shahbazian et al., 2005). 
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Deletion of UBC2/RAD6, the histone H2B ubiquitin-conjugating enzyme, results in loss 

of gene silencing at the rDNA in S. cerevisiae (Bryk et al., 1997). On the other hand, 

UBP10, an ubiquitin protease whose targets include histone H2B, was shown to 

associate with the rDNA locus (Emre et al., 2005). In cells lacking Ubp10, the level of 

Sir2 at the NTS region was reduced, resulting in hyperacetylation of H4K16 and 

hypermethylation of H3K4 and H3K79 at this region (Emre et al., 2005; Calzari et al., 

2006). These data together suggest that ubiquitylation of histone H2B on K123 may be 

required for rDNA silencing. However, whether H2B K123 ubiquitylation is involved in 

rDNA silencing is not shown yet.  

1.3.2.5. Other Factors 

Most of the factors mentioned above are either components of chromatin or 

enzymes that modify chromatin. There are many other factors that are required for 

rDNA silencing. In a screen to identify factors other than Sir2 that affect rDNA silencing, 

Smith and colleagues identified several genes that are usually involved in DNA 

replication and modulation of chromatin structure, such as DNA polymerase α and ε, 

replication factor C (CDC44), Cac1 (subunit of nucleosome assembly complex during 

replication) (Smith et al., 1999).  Mutations in the genes encoding these proteins result in 

loss of rDNA silencing, indicating a possible interaction between DNA replication and 

rDNA silencing. Alternatively, because some DNA replication factors also function in 

DNA repair, the finding suggests a link between rDNA silencing and DNA repair. 

DNA topoisomerase I (Top1) is an enzyme that modifies the superhelicity of 

DNA that has been found to be involved in several cellular processes, such as DNA 
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replication, transcription, recombination and chromatin remodeling. Studies have 

demonstrated that Top1 is essential for rDNA silencing (Bryk et al., 1997; Smith et al., 

1999). In top1Δ cells, the level of acetylated histones at the rDNA locus is increased, and 

the rDNA chromatin becomes more accessible to MNase (Cioci et al., 2002), consistent 

with previous finding that Top1 is required to maintain the normal structure of the rDNA 

locus (Christman et al., 1993). Thus, the rDNA-silencing defect in cells lacking Top1 

may be due to the altered chromatin structure that favors the binding of Pol II 

transcription machinery. 

1.3.3. Repression of Replication at the Ribosomal DNA Locus 

As shown in Figure 1-5, each rDNA repeat contains two cis-acting elements that 

regulate rDNA replication, the autonomously replicating sequence (ARS) in NTS2 

(Skryabin et al., 1984) and the replication fork barrier (RFB) in NTS1 (Brewer and 

Fangman, 1988; Linskens and Huberman, 1988). In S phase of the cell cycle, replication 

in the rDNA initiates bidirectionally from the ARS. Replication forks moving in the 

direction that is opposite of that of Pol I transcription are arrested at the RFB in NTS1. 

Forks moving in the same direction as Pol I transcription are not blocked and replicate 

several rDNA repeats. This unidirectional mode of replication is a unique feature of 

rDNA replication. The RFB is a polar block that blocks the replication forks 

approaching from its right side, without affecting the forks coming from its left side 

(Fangman and Brewer, 1991).  The blocking activity of RFB requires a nucleolar protein 

called Fob1 (Kobayashi and Horiuchi, 1996); (Gadal et al., 2002). Fob1 associates with 

the RFB sequence in an unusual “wrapping structure” that is dependent on its zinc finger 
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motif (Kobayashi, 2003). One of the roles of the RFB is thought to be in preventing the 

collision between replication and the Pol I transcription machineries (Brewer et al., 1992; 

Kobayashi et al., 1992). The RFB and Fob1 also play a role in rDNA recombination 

(See Chapter I, 4.4).  

Although the sequence of each rDNA repeat is identical, not all ARSs in the 

rDNA locus are active. Actually, only twenty percent of the rDNA ARSs fire in any 

single S phase, while the rest of the rDNA ARSs remain inactive or silenced (Saffer and 

Miller, 1986; Brewer and Fangman, 1988). Just like the transcriptional silencing at the 

rDNA, the repression of rDNA ARS firing also requires the histone deacetylase Sir2. 

Using BrdU incorporation and DNA combing to visualize replication origins on single 

rDNA molecules, Pasero and colleagues showed that in cells lacking Sir2, the number of 

active ARSs increased about 2-fold compared to wild-type cells (Pasero et al., 2002). 

This indicates that Sir2 represses the use of rDNA ARSs in wild-type cells. Interestingly, 

Sir2 also has a repressive role in regulating DNA replication at several ARSs outside of 

the rDNA locus (Palacios DeBeer and Fox, 1999; Pappas et al., 2004; Crampton et al., 

2008).  Deletion of SIR2 rescues the growth of some pre-replication complex (pre-RC) 

mutants, presumably through rescuing loading of the MCM complex at these ARSs 

(Pappas et al., 2004; Crampton et al., 2008). Although Sir2 binding is not detectable at 

these ARSs, mutation of the H4K16 which is one of Sir2’s targets to glutamine to mimic 

the acetylated state of histone H4 on K16 could also rescue the growth defect of the pre-

RC mutants (Crampton et al., 2008). This suggests that the inhibitory effect of Sir2 on 

these ARSs requires its histone deacetylase activity. 
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The mechanism of how Sir2 represses the rDNA replication is not clear. It is 

known that Sir2 physically associates with the rDNA (Gotta et al., 1997), and deletion of 

Sir2 results in hyperacetylation of the rDNA chromatin as well as altered chromatin 

structure in the nontranscribed spacer region, making the region more accessible to 

MNase digestion (Fritze et al., 1997; Cioci et al., 2002; Li et al., 2006a). Therefore it is 

possible that Sir2 acts as a structural component of the rDNA chromatin, which is 

repressive for ARS firing. Alternatively, since Sir2 is a histone deacetylase, it might 

exert its inhibitory effect via its deacetylation activity or via a crosstalk between other 

histone modifying enzymes such as Set1.  

1.3.4. Repression of Mitotic Recombination at the Ribosomal DNA Locus 

By definition, recombination is a process by which a strand of DNA is broken 

and then joined to a different DNA molecule. It plays important roles in many cellular 

processes, such as DNA repair, chromosome segregation, rescuing stalled replication 

forks and it is also one of the driving forces of evolution (Haber, 1999; McGlynn and 

Lloyd, 2002; San Filippo et al., 2008). On the other hand, improper recombination can 

cause genome instability (Hartwell and Kastan, 1994). Thus, tight control of genetic 

recombination is a critical issue for all living organisms. There are four general types of 

recombination, including homologous recombination, site-specific recombination, DNA 

transposition and non-homologous recombination. In budding yeast, homologous 

recombination is very active (Christman et al., 1988) and occurs preferentially within 

repetitive sequences. The rDNA is a highly repetitive locus and is considered to be one 

of the most fragile regions in the S. cerevisiae genome, because the density of repeated 
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sequences makes the rDNA a hot spot for homologous recombination. The consequence 

of this could be fatal, leading to deletion or expansion of the rDNA repeats, and resulting 

in unwanted genome instability and cell death. Fortunately, S. cerevisiae cells have 

developed mechanisms to protect the rDNA locus from excessive and inappropriate 

recombination events that help the cell maintain a stable number of the rDNA repeats. 

1.3.4.1. Mitotic Recombination at the rDNA Locus 

Mitotic recombination at the rDNA locus has been studied since the 1980s’ 

(Szostak and Wu, 1980). The most commonly used method for studying mitotic 

recombination at the rDNA is achieved by introducing a marker gene into one of the 

rDNA repeats, and then assaying the rate of loss of the marker gene per generation. With 

this method, the rate of mitotic recombination at the rDNA was estimated to be 5x10-4 

per cell division in wild type cells (Szostak and Wu, 1980). There are several cis-acting 

elements and trans-acting factors involved in stimulating rDNA recombination.  

Recombination at the rDNA requires a sequence called HOT1 (Keil and Roeder, 

1984; Lin and Keil, 1991). It was originally identified as a region encompassing the 

entire NTS region. When placed elsewhere in the genome, the HOT1 sequence can 

stimulate mitotic recombination both between and within chromosomes (Keil and 

Roeder, 1984). Subsequently, the HOT1 sequence was narrowed down to two essential 

cis-acting elements, the E and I elements (Figure 1-5) (these two elements are different 

from the “E” and “I” elements in HM loci). The E element overlaps with the RFB and 

the Pol I transcription enhancer in NTS1 and the I element corresponds to the Pol I 

promoter region in NTS2 (Elion and Warner, 1984; Voelkel-Meiman et al., 1987). It was 
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shown that Pol I transcription is required for HOT1 mediated recombination activity 

(Voelkel-Meiman et al., 1987; Huang and Keil, 1995). One possible cause of this may 

be the unwinding of the DNA duplex and changes in the DNA supercoiling or in the 

chromatin structure during transcription, exposing the DNA to the damaging agents 

which provide source of mitotic recombination (Aguilera et al., 2000). Besides Pol I 

transcription, Fob1 is also critical for the rDNA recombination (Kobayashi and Horiuchi, 

1996; Johzuka and Horiuchi, 2002). Since Fob1 was shown to be involved in blocking 

the replication fork through RFB, it was proposed that the replication forks arrested at 

the RFB were prone to double strand breaks (DSB) that initiate recombination 

(Kobayashi and Horiuchi, 1996; Kobayashi et al., 1998; Defossez et al., 1999; Rothstein 

and Gangloff, 1999; Weitao et al., 2003b; Burkhalter and Sogo, 2004; Kobayashi et al., 

2004).  

1.3.4.2. Factors Involved in Regulating rDNA Recombination 

Many factors have been shown to repress rDNA recombination. The most well 

characterized protein is Sir2, which is also required for transcriptional silencing and 

repression of rDNA replication. It was shown that deletion of SIR2 results in 

hyperrecombination at the rDNA locus, with a 10-fold increase in the rate of marker loss 

(Gottlieb and Esposito, 1989). Kobayashi et al. showed that deletion of SIR2 reduces the 

association of the cohesin subunit Mcd1 with rDNA, which would allow unequal paring 

of sister chromatids. When sister chromatids are unequally aligned, recombination 

events between replicated chromatids causes contraction and/or expansion of the rDNA 

locus (Kobayashi et al., 2004). 
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Other factors, including DNA topoisomerases Top1, Top2 and Top3 (Christman 

et al., 1988; Gangloff et al., 1994; Bryk et al., 1997), Hpr1 (Aguilera and Klein, 1990; 

Merker and Klein, 2002) and Sgs1 (a RecQ helicase required for genome stability) (Bryk 

et al., 2001; Weitao et al., 2003a) have been implicated in repressing recombination at 

the rDNA. Since these factors are not the focus of this dissertation and I will not discuss 

them in detail here. 

1.3.4.3. Maintenance of the rDNA Copy Number and Genome 

Stability 

As a result of recombination, the copy number of the rDNA repeats can change, 

leading to expansion or contraction of the rDNA array. Expansion of the rDNA array is 

an outcome of repairing the DSB generated at the RFB via gene conversion, which 

introduces additional repeats into the rDNA array (Gangloff et al., 1996). While unequal 

recombination events could cause deletion of rDNA repeats, resulting in a shortened 

rDNA array or expansion of rDNA repeat number and leading to a lengthened array. 

However, each organism is known to maintain a specific copy number of the rDNA 

repeats (Long and Dawid, 1980), indicating that the copy number of the rDNA repeats is 

tightly regulated. 

Several lines of evidence suggest the factors involved in chromatin architecture 

play important roles in maintaining the rDNA copy number (Kobayashi et al., 2004; 

Kobayashi and Ganley, 2005; Huang et al., 2006; Johzuka et al., 2006; Johzuka and 

Horiuchi, 2007). One of these factors is cohesin, the complex that holds sister 

chromatids together during S and G2 phase in the cell cycle. Cohesin associates with the 
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rDNA in the NTS in a Sir2-dependent manner (Laloraya et al., 2000; Kobayashi et al., 

2004). Huang and colleagues have demonstrated that cohesin complex is clamped to the 

rDNA by Fob1, the RENT complex (including Sir2, Net1 and Cdc14), and the 

Lrs4/Csm1 complex. These proteins act together to repress the unequal sister-chromatid 

recombination (Huang et al., 2006). Kobayashi and Ganley (2005) showed that in cells 

lacking Sir2, a region in NTS1 became transcriptionally active. Interestingly, they also 

found that the level of cohesin in NTS1 was reduced compared to wild-type cells. By 

integrating the bidirectional GAL1/10 promoter in NTS1 and growing the cells in 

galactose-containing media, they showed that cohesin levels were reduced as well, just 

like in sir2Δ cells. These data suggest that Pol II transcription could induce dissociation 

of cohesin, increasing the chances for improper alignment of the two sister chromatids 

and unequal sister-chromatid recombination, which causes changes in the rDNA copy 

number (Kobayashi and Ganley, 2005). Hence, Sir2 may contribute to maintain proper 

alignment of the two sister chromatids and repress unequal sister-chromatid exchange at 

the rDNA locus through repressing Pol II transcription at the NTS1 region.  

It is worth mentioning that another outcome of the unequal sister-chromatid 

recombination at the rDNA is the generation of extrachromosomal rDNA circles (ERCs). 

Accumulation of ERCs has been related to genome instability and premature aging of 

yeast cells (Sinclair and Guarente, 1997). Because Sir2 has a role in repressing rDNA 

recombination, it is not surprising that deletion of Sir2 causes accumulation of ERCs and 

aging phenotypes (Kaeberlein et al., 1999). 
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1.4. DISSERTATION OVERVIEW 

Chapter II of this dissertation describes my investigation of the role of the NAD+-

dependent histone deacetylase Sir2 in regulating the level of K4-methylated histone H3 

and the function of Pol II at the ribosomal DNA locus in S. cerevisiae. My work showed 

that in cells lacking Sir2, a high level of K4-methylated histone H3 is associated with the 

rDNA, primarily at the NTS2 region. Consistent with the notion that high levels of K4 

methylated histone H3 correlates with active Pol II transcription, I discovered novel 

endogenous Pol II transcription units in NTS2 whose transcription is repressed in a Sir2-

dependent manner.  

Chapter III focuses on my work to understand the function of transcription by Pol 

II in NTS2. I found that overexpression of the NTS2 transcription units from a plasmid 

does not disrupt rDNA silencing. In contrast, overexpression of the NTS2 transcripts at 

their endogenous location by introducing a GAL7 promoter into one of the rDNA repeats 

causes loss of transcriptional silencing as well as an increase in mitotic recombination 

leading to loss of a marker gene located at the same repeat. The result suggests that 

repressing Pol II transcription in the NTS2 region supports transcriptional silencing and 

repression of mitotic recombination at the rDNA. It is also consistent with the idea 

proposed by Ganley and Kobayashi (2005) that Sir2 represses mitotic recombination at 

the rDNA by inhibiting an endogenous transcription unit at NTS1.  

Chapter IV describes a study that I did in collaboration with other scientists in 

our lab to examine the role of histone H1 in regulating silent chromatin at the rDNA. 

Our results indicate that histone H1 does not regulate Pol II gene silencing at the rDNA. 
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However, it is required to repress mitotic recombination at the rDNA. Our 

recombination assays showed that histone H1 and Sir2 repress different pathways of 

recombination at the rDNA. We followed up our recombination experiments with 

physical and aging studies and found that, unlike cells lacking Sir2, cells lacking histone 

H1 do not accumulate ERCs and they do not exhibit a premature aging phenotype. These 

results indicate that cells lacking histone H1 form different recombination intermediates 

than those formed in cells lacking Sir2. These studies are now being pursued by others in 

the lab to identify the specific recombination pathways that histone H1 represses at the 

rDNA. 

Finally, the Appendix includes three parts. The first part presents the work 

showing that Isw2, a chromatin remodeling protein, is required for rDNA silencing. The 

second part shows some of the work I performed to investigate the relationship between 

mitochondria DNA (mtDNA) and cell division. In this part, I showed that increasing the 

amount mtDNA in cells by overexpressing ABF2 promotes dissociation of Sir2 from the 

rDNA locus. The last part shows that the histone variant H2A.Z does not regulate rDNA 

silencing. 

1.5. SIGNIFICANCE 

Studying how modified histones and chromatin structure regulate gene silencing 

will contribute to the general understanding of gene regulation in eukaryotes. The 

mechanisms that regulate gene expression and gene silencing in S. cerevisiae are 

conserved in higher eukaryotes. As our understanding of higher eukaryotes, e.g. human, 
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has benefited by the study of simple organisms, my findings may provide valuable 

insight into the human situation as well.  
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CHAPTER II 

SIR2 REPRESSES ENDOGENOUS POLYMERASE II TRANSCRIPTION 

UNITS IN THE RIBOSOMAL DNA NONTRANSCRIBED SPACER* 

 

Silencing at the rDNA, HM loci, and telomeres in Saccharomyces cerevisiae 

requires histone-modifying enzymes to create chromatin domains that are refractory to 

recombination and RNA polymerase II transcription machineries. To explore how the 

silencing factor Sir2 regulates the composition and function of chromatin at the rDNA, 

the association of histones and RNA polymerase II with the rDNA was measured by 

chromatin immunoprecipitation. We found that Sir2 regulates not only the levels of K4-

methylated histone H3 at the rDNA but also the levels of total histone H3 and RNA 

polymerase II. Furthermore, our results demonstrate that the ability of Sir2 to limit 

methylated histones at the rDNA requires its deacetylase activity. In sir2Δ cells, high 

levels of K4-trimethylated H3 at the rDNA nontranscribed spacer are associated with the 

expression of transcription units in the nontranscribed spacer by RNA polymerase II and 

with previously undetected alterations in chromatin structure. Together, these data 

suggest a model where the deacetylase activity of Sir2 prevents euchromatinization of 

the rDNA and silences naturally occurring intergenic transcription units whose 

expression has been associated with disruption of cohesion complexes and repeat 

amplification at the rDNA. 

___________________________ 
*Reprinted with permission from “Sir2 represses endogenous polymerase II transcription units in the 
ribosomal DNA nontranscribed spacer” by Li, C., Mueller, J.E., and Bryk, M., (2006), Mol Biol Cell 
17(9):3848-59. Copyright © 2006 by The American Society for Cell Biology. Note that supplemental 
figures S1-S3 in the original paper have been renamed as Figure 2-2, 2-3 and 2-6. 
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2.1. INTRODUCTION 

Modified histones at silent genomic domains contribute to a chromatin 

environment that is refractory to gene expression and genetic recombination (reviewed 

in Strahl and Allis, 2000; Turner, 2000; Jenuwein and Allis, 2001). In Saccharomyces 

cerevisiae, chromatin at the homothallic mating-type loci HML and HMR, telomeres, 

and the ribosomal DNA locus (rDNA) silences genetic recombination and expression of 

native and ectopic genes transcribed by RNA polymerase (Pol) II. Silencing at the HM 

loci and telomeres has been studied extensively, whereas the mechanisms of Pol II 

silencing at the rDNA are not well characterized (reviewed in Moazed, 2001; Rusche et 

al., 2003). Increasing our understanding of the factors and mechanisms that regulate 

silencing at the rDNA will provide insight into the pathways that regulate gene 

expression and genome stability. 

In S. cerevisiae, the rDNA contains ~150-200 tandem copies of a 9.1-kilobase 

(kb) repeat, with each repeat containing a Pol I-transcribed 35S rRNA gene and a 

nontranscribed spacer (NTS) that is subdivided into NTS1 and NTS2 by the Pol III-

transcribed 5S rRNA gene (reviewed in Warner, 1999; Figure 2-1). Despite high levels 

of transcription by Pol I and Pol III in the rDNA locus, Pol II-transcribed genes 

integrated into the rDNA are silenced (referred to as rDNA silencing) (Bryk et al., 1997; 

Fritze et al., 1997; Smith and Boeke, 1997). Additionally, silent chromatin at the rDNA 

is essential for repression of genetic recombination (Gottlieb and Esposito, 1989; Davis 

et al., 2000; Kobayashi et al., 2004) and extension of replicative life span (reviewed in 

Guarente, 2000). 
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Chromatin-associated proteins and modified histones regulate silencing of Pol II 

transcription at the rDNA (Bryk et al., 1997; Fritze et al., 1997; Smith and Boeke, 1997; 

Smith et al., 1999; Straight et al., 1999; Hoppe et al., 2002; Park et al., 2002; Dror and 

Winston, 2004; Kobayashi et al., 2004; Kuzuhara and Horikoshi, 2004; Machin et al., 

2004; Ye et al., 2005). Net1 and the NAD-dependent histone deacetylase Sir2 are 

members of the RENT complex, which functions in silencing at the rDNA (Shou et al., 

1999; Straight et al., 1999). The RENT complex is the functional equivalent of the Sir2-

3-4 complex necessary for silencing at the HM loci and telomeres. In addition to being 

required for the association of Sir2 with the rDNA, Net1 interacts with Pol I and 

regulates the structure of the nucleolus (Straight et al., 1999; Shou et al., 2001). The 

histones H3 and H4 are substrates for the deacetylase activity of Sir2. At the HM loci 

and telomeres, hypoacetylated H3 and H4 promote the interaction of Sir3 and Sir4 with 

nucleosomes, thereby facilitating the formation and spread of silent chromatin 

(Braunstein et al., 1993; Hecht et al., 1995; Braunstein et al., 1996; Wu and Grunstein, 

2000; Carmen et al., 2002; Liou et al., 2005). Hypoacetylated histones are present at the 

rDNA (Bryk et al., 2002; Buck et al., 2002; Sandmeier et al., 2002; Huang and Moazed, 

2003), although how they contribute to rDNA silencing remains unclear. 

Cells lacking K4-methylated histone H3 exhibit defects in transcriptional 

silencing at the rDNA and telomeres (Nislow et al., 1997; Briggs et al., 2001; Bryk et al., 

2002; Nagy et al., 2002; Mueller et al., 2006). Set1 is the catalytic subunit of the 

COMPASS complex that is required for mono-, di-, and trimethylation of histone H3 on 

K4. In set1Δ cells, the lack of K4-methylated histone H3 is associated with the aberrant 
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spreading of Sir proteins from telomeres into adjacent sequences. Reduced concentration 

of Sir complexes at telomeres in cells lacking Set1 is hypothesized to cause the loss-of-

telomeric-silencing defect in set1Δ cells (Ng et al., 2002a; Meneghini et al., 2003; Ng et 

al., 2003a; Martin et al., 2004; Katan-Khaykovich and Struhl, 2005). In contrast, at the 

rDNA, the levels of the silencing factors Sir2 and Net1 are equivalent in set1Δ and wild-

type cells (Bryk et al., 2002). Moreover, in set1Δ cells, the levels of acetylated histone 

H3 and H4 remain low, indicating that Sir2 maintains its deacetylase function at the 

rDNA in the absence of K4-methylated H3. Thus, the mechanism by which silencing is 

lost at the rDNA in set1Δ cells is not equivalent to that at telomeres and has yet to be 

discovered. 

In wild-type cells, silent chromatin at the rDNA contains low levels of acetylated 

H3 and H4 and low levels of K4-methylated histone H3. In cells lacking Set1 where 

rDNA silencing is impaired, histones at the rDNA remain hypoacetylated but are 

unmethylated. In contrast, in cells lacking Sir2, the levels of acetylated histone H3 and 

H4 are increased at several positions in the rDNA repeat and the level of K4-

dimethylated H3 is increased at the NTS (Bryk et al., 2002). Together, these 

observations indicate that rDNA silencing is controlled by a specific combination of 

hypoacetylated and hypomethylated histones and that perturbations that alter the profile 

of modified histones disrupt rDNA silencing. To gain insight into the relationship 

between Sir2 and K4-methylated histone H3, we used chromatin immunoprecipitation 

(ChIP) and real-time PCR analysis to generate high-density profiles of K4-methylated 

histone H3 and Pol II across the rDNA repeat in wild-type and sir2Δ cells. Here, we 
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show that novel changes occur at the rDNA in sir2Δ cells that reveal the central role of 

deacetylase activity of Sir2 in preventing aberrant Pol II transcription and protecting the 

structure and function of the unique chromatin domain present at the rDNA in S. 

cerevisiae. Furthermore, our findings provide mechanistic insight into the recent 

observation that high levels of transcription in the rDNA NTS are associated with 

amplification of rDNA repeats (Kobayashi and Ganley, 2005). 

 

2.2. MATERIALS AND METHODS 

2.2.1. Yeast strains, plasmids, and media 

Standard media recipes were used (Rose, 1990). YPADT is YPD medium 

supplemented with adenine sulfate (40 mg/l) and l-tryptophan (20 mg/l). Yeast strains 

MBY1198 (wild type), MBY1217 (set1Δ), and MBY1238 (sir2Δ) have been described 

previously (Briggs et al., 2001; Bryk et al., 2002). The XhoI-NotI fragment containing 

SIR2 or sir2H364Y from plasmids pAR455 (SIR2 HIS3 CEN) or pAR456 (sir2H364Y 

HIS3 CEN) (Rudner et al., 2005) were subcloned into pRS415 (LEU2 CEN; Stratagene) 

by using standard techniques. The resulting plasmids, MBB406 (pSIR2 LEU2 CEN) and 

MBB407 (psir2H364Y LEU2 CEN), were verified by DNA sequencing. pSIR2 and 

psir2H364Y were transformed into MBY1238 (Bryk et al., 2002). pSIR2 was also 

transformed into MBY1249 (MATα his3Δ200 ade2Δ::hisG leu2Δ0 trp1Δ63 ura3Δ0 

met15Δ0 Ty1his3AI-236 Ty1ade2AI-515 set1Δ1::TRP1 sir2Δ::KANMX4). The integrity 

of the pSIR2 and psir2H364Y plasmids was verified in silencing assays and by 

measuring the level of K9, K14-acetylated histone H3 at the rDNA by ChIP (our 
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unpublished data). ChIP experiments (Figure 2-6) using an anti-Sir2 antibody showed 

that the level of Sir2 protein at the rDNA in sir2Δ cells containing psir2H364Y was 0.5- 

to 1.6-fold of wild type, consistent with previously published reports (Tanny et al., 1999; 

Hoppe et al., 2002). Constructs for NTS-specific RNA probes were made by cloning 

PCR-generated NTS1 or NTS2 fragments into pSP70 (Promega, Madison, WI) to make 

MBB419 (pSP70-NTS1) or MBB413 (pSP70-NTS2). In vitro transcription reactions 

with SP6 or T7 RNA polymerase and linearized plasmid in the presence of [γ-32P]CTP 

were performed to generate strand-specific RNA probes. Yeast strains with wild-type 

(wt) or temperature-sensitive (ts) Pol II used in temperature-shift experiments were made 

by genetic crosses: MBY1987 [MATα his3Δ200 leu2Δ0 ura3Δ0 lys2-128δ 

rpb1Δ187::HIS3 (pRP114 RPB1 LEU2 CEN)]; MBY1988 [his3Δ200 leu2Δ0 ura3-52 

lys2-128 δ rpb1Δ187::HIS3 sir2Δ::KANMX4) (pRP114 RPB1 LEU2 CEN)]; MBY1989 

[MATα his3Δ200 leu2Δ0 ura3Δ0 rpb1Δ187::HIS3 (pRP1-1 rpb1-1 URA3 CEN)]; and 

MBY1992 [his3Δ200 leu2Δ0 lys2-128δ met15Δ0 trp1Δ63 ura3-52 sir2Δ::KANMX4 

rpb1Δ187::HIS3 (pRP1-1 rpb1-1 URA3 CEN)]. 

2.2.2. Oligonucleotides for ChIP 

For analysis of histone H3 at HMR and TEL-VIR by real-time PCR, 

oligonucleotides were designed to amplify ~250- to 300-base pair products (sequences 

available upon request). The primers used to analyze the rDNA (Huang and Moazed, 

2003), RPS16A, and the intergenic region on chr VIII (Ng et al., 2003c) have been 

described previously. For analysis of the promoter and 5’ end of the rDNA-Ty1 element 
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by quantitative radioactive PCR, the primers annealed to the Ty1A region and 

downstream of the 5S rRNA gene (Bryk et al., 2002). 

2.2.3. Chromatin immunoprecipitation 

Cells were grown and lysates prepared as described previously (Strahl-Bolsinger 

et al., 1997; Bryk et al., 2002) with the following modifications. Strains containing 

pSIR2 or psir2H364Y were grown in synthetic complete media lacking leucine with 2% 

glucose. Chromatin solutions were sonicated 12 times for 20 s each at 4°C by using a 

Branson Sonifier 250 at power setting 1.5 and 100% duty cycle to shear the chromatin to 

an average length of <500 base pairs. For each ChIP, 200 μl of sheared chromatin was 

incubated in a volume of 500 μl with specific antibodies for ~12 h at 4°C. The antisera 

used were anti-histone H3, 5 μl (ab1791; Abcam, Cambridge, MA); anti-K4monoMeH3, 

6 μl (ab8895; Abcam); anti-K4diMeH3, 15 μl (07-030; Upstate Biotechnology, Lake 

Placid, NY); anti-K4triMeH3, 5 μl (ab8580; Abcam); anti-Sir2, 1 μl (gift from Danesh 

Moazed, Department of Cell Biology, Harvard Medical School, Boston, MA); and anti-

RNA Pol II carboxy-terminal domain (CTD) (4H8), 10 μl (ab5408; Abcam). The 

specificity of the antisera for K4-methylated H3 was verified by peptide blots by using 

unmodified and K4-methylated H3 peptides (our unpublished data).  

2.2.4. Analysis of ChIPs 

Quantitative radioactive PCRs were performed as described previously (Bryk et 

al., 2002) to determine the level of K4-di- and -trimethylated H3 at the rDNA-Ty1 

element in wild-type (MBY1198), sir2Δ (MBY1238), and set1Δ (MBY1217) cells. 
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ChIP experiments shown in Figures 2-1 to 2-4 and Figure 2-6 to 2-8 were analyzed by 

quantitative real-time PCR (qPCR). Duplicate reactions containing 1 μl of input DNA 

(1:100) or immunoprecipitated DNA (1:10) were amplified in 20 μl containing 1.25 μM 

of each oligonucleotide and 1× SYBR Green Dynamo Hot Start PCR mix (Finnzymes, 

Espoo, Finland) by using an iCycler Iq real-time PCR machine (Bio-Rad, Hercules, CA). 

The PCR parameters were 1 cycle of 95°C, 15 min; 40 cycles of 95°C for 30 s, 60°C for 

30 s, 72°C for 30 s; 1 cycle at 95°C, 1 min; 1 cycle at 55°C, 1 min; and 80 cycles starting 

from 55°C with an increasing gradient of 0.5°C for 10 s each cycle to acquire a melting 

curve for each primer pair. The threshold cycle value was detected at the 72°C 

elongation step. Percentage of immunoprecipitation (%IP) was calculated by dividing 

the signal from IP DNA by the signal from input DNA. The %IP values from wild-type 

and sir2Δ cells analyzed by ChIP for K4-monomethylated H3, K4-dimethylated H3, and 

K4-trimethylated H3 were corrected for background by subtracting the %IP value 

obtained for set1Δ cells. For the 33 pairs of rDNA oligonucleotides, the range of 

average %IP values obtained from set1Δ cells were 0.031-0.128 for K4-monomethylated 

H3, 0.086-0.384 for K4-dimethylated H3, and 0.012-0.207 for K4-trimethylated H3. 

Graphs showing %IP data obtained for K4-methylated forms of histone H3 at the rDNA 

and two control loci before normalization to total histone H3 levels are shown in Figure 

2-3. The %IP values of K4-di- and -trimethylated H3 from cells containing pSIR2 or 

psir2H364Y were corrected for background by subtracting the %IP values obtained from 

set1Δ sir2Δ cells (MBY1249) containing pSIR2. The %IP values from wild-type and 
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sir2Δ cells analyzed by ChIP for RNA Pol II and total histone H3 were corrected for 

background by subtracting the %IP value from a no-antibody control.  

2.2.5. Northern analysis 

Total RNA was isolated from yeast cells as described previously (Bryk et al., 

1997). Northern analyses were performed as described previously (Swanson et al., 1991). 

Strand-specific 32P-labeled RNA probes were used to detect NTS transcripts and PYK1 

RNA. An ACT1 (+564 to +1200) probe and 35S rRNA probe were made by PCR 

amplification of yeast genomic DNA and then purified from an agarose gel and labeled 

with [α-32P]dATP by random priming (Ausubel and K., 1988). Growth conditions for 

the Pol II shut-off experiments (Figure 2-10) were as described previously (Herrick et al., 

1990). Briefly, for each strain (MBY1987, MBY1988, MBY1989, and MBY1992), a 50-

ml culture in YPADT was grown at 24°C to 1-2×107 cells/ml before being split into two 

25-ml cultures. Twenty-five milliliters of fresh YPADT at 24°C was added to one 

culture, and growth was continued at 24°C for 30 min. To the other culture, 25 ml of 

YPADT at 48°C was added, and the culture was incubated at 36°C for 30 min. For time-

course experiments, the volumes of the initial culture and fresh YPADT added were 

increased so that RNA was isolated from 50 ml of culture at each time point (0, 15, 30, 

and 60 min). Northern blots were quantified on a GE Healthcare (Little Chalfont, 

Buckinghamshire, United Kingdom) Storm 860 PhosphorImager by using ImageQuant 

software.  
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2.2.6. Primer extension 

Total RNA (30-50 μg) from MBY1198, MBY1217, and MBY1238 was annealed 

to 1 pmol of 32P-labeled oligonucleotide (OM454; 5’-GTTGGTTTTGGTTTCGGTTG- 

3’) at 58°C for 20 min. Extension reactions were performed using the Primer Extension 

System-AMV Reverse Transcriptase kit (Promega) according to the manufacturer’s 

protocol. Sequencing reactions with oligonucleotide OM454 and double-stranded DNA 

template were performed using Sequenase Version 2.0 (USB, Cleveland, OH). Primer 

extension products and sequencing ladders were separated on 8 M urea, 8% 

polyacrylamide gels in 1× Tris borate-EDTA. Dried gels were visualized using a GE 

Healthcare Storm 860 PhosphorImager with ImageQuant software and autoradiography.  

2.2.7. Analysis of Chromatin Structure with Micrococcal Nuclease 

Yeast cells MBY1198, MBY1217, and MBY1238 were grown in 100 ml of 

YPADT medium to ~1.2 × 107/ml and harvested by centrifugation. Preparation of 

spheroplasts and digestion with micrococcal nuclease (MNase; Worthington, 

Biochemicals, Freehold, NJ) was performed as described previously with slight 

modifications (Kent and Mellor, 1995). Spheroplasts (~1.7 × 108) were incubated with 

MNase (0, 2.15, 4.3, 6.45, or 8.6 U/ml) for 4 min at 37°C and then the DNA was 

purified. Purified DNA that had not been treated with MNase was digested with 0.86 U 

of MNase for 2 min at 37°C to control for MNase sequence preferences. All DNAs were 

digested to completion with EcoRI or PvuII, separated on 1.5% agarose gels, transferred 

to nylon membranes, and analyzed by indirect end labeling. Blots of DNA digested with 

EcoRI were hybridized with a 32P-labeled probe that anneals to +2229 to +2496 of the 
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rDNA locus (beginning of NTS1 is +1), and blots with DNA digested with PvuII were 

hybridized with a 32P-labeled probe that anneals to +1015 to +1268 of the rDNA. 

Positions of MNase cleavages and nucleosomes were calculated using restriction 

fragments as a reference. 

 

2.3. RESULTS 

2.3.1. Sir2 Excludes K4-Methylated Histone H3 from Silent Chromatin 

Cells lacking Sir2 have high levels of acetylated histones at the HM loci and 

telomeres and the rDNA (Braunstein et al., 1993; Braunstein et al., 1996; Bryk et al., 

2002; Buck et al., 2002; Sandmeier et al., 2002; Huang and Moazed, 2003). We 

observed that K4-dimethylated histone H3 was also increased at the rDNA NTS in sir2Δ 

cells (Bryk et al., 2002), suggesting that Sir2 regulates the levels of K4-methylated 

histone H3 at the rDNA. Specific antisera against three forms of K4-methylated H3, K4-

mono-, di-, and -trimethylated histone H3 have been used in numerous studies 

investigating the association of K4-methylated H3 with genes that are actively 

transcribed by RNA Pol II. These studies, in S. cerevisiae, have shown that K4-

dimethylated H3 is enriched at euchromatin and that K4-trimethylated H3 is present at 

high levels at genes transcribed by Pol II (Bernstein et al., 2002; Santos-Rosa et al., 

2002; Krogan et al., 2003a; Ng et al., 2003b; Ng et al., 2003c; Santos-Rosa et al., 2004). 

Therefore, high levels of K4-methylated H3 at the rDNA NTS were unexpected due to 

the lack of Pol II-transcribed genes at the rDNA. 
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We examined the effect of Sir2 on the association of each of the three forms of 

K4-methylated H3 across the rDNA repeat. ChIPs using antisera against histone H3 as 

well as K4-mono-, di-, or -trimethylated histone H3 were analyzed by qPCR by using 33 

primer pairs that amplify 260- to 280-base pair regions at intervals of ~300 base pairs 

across the 9.1-kb rDNA repeat and two sets of primers that amplify control loci. Samples 

from cells lacking Set1 that are devoid of K4-mono-, di-, and -trimethylated histone H3 

were included to provide a measurement of background that was subtracted from the 

signal obtained from wild-type and sir2Δ cells (see Materials and Methods). To 

determine whether Sir2 affected the level of total histone H3 at the rDNA, ChIP 

experiments were performed with antisera that recognize the C-terminal tail of histone 

H3. The interaction of the anti-histone H3 antisera with histone H3 is independent of 

modifications present at the N terminus of H3. The results of these experiments revealed 

that the level of total histone H3 was significantly lower at several positions in the rDNA 

repeat in sir2Δ cells compared with wild-type cells (Figure 2-2). To control for 

differences in the amount of total histone H3 at the rDNA, in Figure 2-1, we have 

normalized data examining the levels of K4-methylated histones at the rDNA to the level 

of total histone H3 in wild-type and sir2Δ cells.  

The results of ChIP experiments using antisera specific for K4-mono, di-, and -

trimethylated H3 showed significant changes in the profile of K4-methylated histone H3 

at the rDNA in sir2Δ cells compared with wild-type cells (Figure 2-1 and Figure 2-3). 

We observed that K4-methylated histone H3 was excluded from the rDNA repeat in a 

Sir2-dependent manner. The profile of each form of K4-methylated H3 across the rDNA  
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Figure 2-1. Altered distribution of K4-methylated histone H3 at the rDNA in sir2Δ cells relative to wild-
type cells. Graphical representations of the average ratio of %IP of K4-monomethylated (top; ± SE; n = 2 
or 3), K4-dimethylated (middle; ± SE; n = 3), and K4-trimethylated (bottom; ± SE; n = 4) histone H3 in 
sir2Δ cells (MBY1238) relative to wild-type cells (MBY1198) at the rDNA, the RPS16A gene, and an 
intergenic region on chr VIII. Data presented were normalized to total histone H3 to correct for reduced 
levels of H3 in sir2Δ cells at some regions of the rDNA repeat (see text and Figure 2-2). The structure of a 
9.1-kb rDNA repeat unit is shown below the bottom panel, indicating the location of the Pol I-transcribed 
35S rRNA (35S) gene and the NTS that is divided into NTS1 and NTS2 by the Pol III-transcribed 5S 
rRNA gene (5S). ARS, replication origin; bent line with arrow, transcription start site of the 35S rRNA 
gene; ▲, location of a silenced Ty1his3AI element present in one repeat, referred to as rDNA-Ty1 in text. 
Horizontal lines above the rDNA indicate PCR products generated during the analysis of ChIP 
experiments by qPCR. 
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Figure 2-2. Cells lacking Sir2 have significantly lower levels of histone H3 at several positions in the 
rDNA repeat. Graphical representation of the average ratio of %IP of histone H3 in sir2Δ cells 
(MBY1238) relative to wild type cells (MBY1198) at the rDNA. The structure of an rDNA repeat unit is 
shown below the bottom panel with the Pol I transcribed 35S ribosomal RNA (35S) gene and a non-
transcribed spacer divided into NTS1 and NTS2 by the Pol III-transcribed 5S rRNA gene (5S). ARS, 
replication origin; bent line with arrow, transcription start site of the 35S rRNA gene; ▲, location of a 
silenced Ty1his3AI element present in one repeat. Horizontal numbered lines above the rDNA indicate 
PCR products generated during the analysis of ChIP experiments by quantitative real-time PCR. The 
average ratio of % IP ± range from sir2Δ cells to wild-type cells from two independent experiments is 
plotted. 
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repeat in sir2Δ cells was distinct. In cells lacking Sir2, the level of K4-monomethylated 

histone H3 was increased over the 35S rRNA gene and the NTS1 portion of the NTS 

(Figure 2-1, top; and Figure 2-3, top). The level of K4-dimethylated H3 was higher 

across most of the rDNA repeat, including regions in NTS1, NTS2, and the 35S rRNA 

gene (Figure 2-1, middle; and Figure 2-3, middle). Strikingly, the level of K4-

trimethylated histone H3 was increased primarily at the NTS2 region of the rDNA with 

levels that were approximately five- to six fold higher in sir2Δ cells than wild-type cells 

(Figure 2-1, bottom and Figure 2-3, bottom). Sir2 also affected the level of K4-

trimethylated H3 at the beginning and end of the Pol I-transcribed 35S rRNA gene. The 

levels of K4-methylated H3 were similar in wild-type and sir2Δ cells at genomic loci 

that were analyzed as controls, RPS16A, a highly expressed Pol II-transcribed gene, and 

an intergenic region on chr VIII that is devoid of known Pol II-transcribed open reading 

frames (ORFs), indicating that Sir2 does not regulate K4-methylated H3 at these regions 

(Figure 2-1, right and Figure 2-3, right). In summary, our data indicate that in cells 

lacking Sir2, the rDNA is exposed to the Set1-containing complex COMPASS that is 

required for the methylation of histone H3 on K4. Moreover, because the K4-

trimethylated form of histone H3 has been found exclusively at genes that are actively 

transcribed by Pol II, our results suggest that Pol II may also be present at the rDNA 

NTS. 

To understand how Sir2 affected the distribution of K4-methylated histone H3 at 

other silent loci, we performed ChIP experiments using wild-type, sir2Δ, and set1Δ cells 

to obtain profiles of K4-methylated H3 at the HMR locus and near the telomere on the  
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Figure 2-3. The levels of K4 di- and trimethylated histone H3 in the rDNA repeat are increased 
significantly in sir2Δ cells. Graphical representations of % IP of K4-monomethylated (top; ± range; n = 2 
or 3), K4-dimethylated (middle; ± SE; n=3), and K4-trimethylated (bottom ; ± SE; n = 4) histone H3 with 
the rDNA, the RPS16A gene, and an intergenic region of chr VIII (VIII) in wild-type (black line and bars) 
and sir2Δ cells (gray lines and bars). The plotted values have not been normalized to total histone H3 
levels, which are reduced at the rDNA repeat in cells lacking Sir2 (See Figure 2-2). Asterisks, regions of 
the rDNA with significantly higher levels of K4-di- (middle panel) or trimethylated (bottom panel) H3 in 
sir2Δ cells compared to wild-type cells, as determined by Student’s t-test (P < 0.05). Levels of K4-
monomethylated H3 in wild type and sir2Δ cells are not significantly different. The structure of a 9.1 kb 
rDNA unit is shown below the bottom panel (labels as in legend to Figure 2-1). 
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right arm of chr VI (TEL-VIR). Experiments measuring histone H3 at HMR and TEL-VIR 

revealed that the average ratio of histone H3 in sir2Δ to wild-type cells was between 0.9 

and 1.2, indicating that the level of histone H3 was similar in wild-type and sir2Δ cells 

(our unpublished data). In contrast to the rDNA where we observed distinct profiles of 

K4-methylated H3, the levels of K4-di- and -trimethylated H3 were increased similarly 

across ~4 kb of the HMR locus and up to 2.8 kb from the right end of chr VI (Figure 2-4, 

A and B). At HMR, the highest levels of K4 di- and -trimethylated histone H3 were 

present at a region containing the Pol II-transcribed a1 and a2 genes (Figure 2-4A, 

primer pair X/Ya). The region of HMR where we detect changes in the association of 

K4-methylated histone H3 falls within the boundaries of the silent domain that were 

mapped in previous studies (Donze et al., 1999; Donze and Kamakaka, 2001). At TEL-

VIR, the highest levels of K4 di and-trimethylated histone H3 were present 1.0 -1.5 kb 

from the end of the chromosome. This region of chr VI contains the promoter and 5’ end 

of the Pol II-transcribed gene YFR057W, whose expression has been shown to be 

increased in cells lacking Sir2 or Ubp10 (Wyrick et al., 1999; Emre et al., 2005). In 

contrast, we did not observe an effect of Sir2 on the levels of K4-methylated H3 at 

YFR055W a Pol II-transcribed gene located 4.7 kb from the end of chr VI. In summary, 

in cells lacking Sir2, the rDNA, HMR, and TEL-VIR are exposed to factors that are 

required for the methylation of histone H3 on K4.  

2.3.2. K4-Methylated H3 at the Promoter of the rDNA-Ty1 Element Is 

Regulated by Sir2 

Several of the strains used in this study contain a single copy of a genetically 
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Figure 2-4. The levels of K4 di- and trimethylated histone H3 were increased at HMR and TEL-VIR in 
sir2Δ cells. (A) Diagram of HMR located on chr III with the positions of silencers (E and I), cis-sequences 
(X and Z1), Ty long terminal repeats (LTR), and the genes HMRa1 and HMRa2. Short lines labeled B, C, 
D, X/Ya, E, Z, F, and H indicate the location of the PCR products used in ChIP analysis. The graph shows 
the average ratio of %IP of K4-dimethylated H3 (black bars) and K4-trimethylated H3 (hatched bars) at 
HMR, the RPS16A gene, and an intergenic region on chr VIII in sir2Δ cells relative to wild-type cells. (B) 
Diagram of TEL-VIR (right telomere on chr VI) with the positions of ORFs (YFR057W and YFR055W) and 
telomeric repeats indicated. Short lines labeled 0.35, 0.6, 1.0, 1.5, 2.8, and 4.7 indicate regions analyzed by 
qPCR. The numbers indicate the distance (in kb) from the right end of the PCR product to the right end of 
chr VI. Graph shows the average ratio of %IP of K4-di and -trimethylated H3 at TEL-VIR in sir2Δ cells 
relative to wild-type cells. For both panels, the average ratio of % IP ± SE from sir2Δ cells to wild-type 
cells from three independent experiments is plotted. 
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 marked Ty1 element located in NTS1 in one of the repeats of the rDNA array (see 

Figure 2-1; Bryk et al., 1997). In previous work, we showed that expression of the 

rDNA-Ty1 element is increased in sir2Δ cells and that the promoter of the rDNA-Ty1 

element contains low levels of K4-dimethylated H3 in wild-type cells (Bryk et al., 1997; 

Bryk et al., 2002). It is unlikely that the rDNA-Ty1 element is responsible for the 

increased levels of K4-methylated H3 observed in sir2Δ cells because it is present in 

only one of the ~150-200 rDNA repeats. However, we wanted to determine whether Sir2 

affected the levels of K4-methylated H3 at the promoter and 5’ end of the Pol II-

transcribed rDNA-Ty1 element, which would be consistent with its increased expression 

in sir2Δ cells. Using ChIP and radioactive PCR, we compared the levels of K4-di- and -

trimethylated H3 at the rDNA-Ty1 element by using primers that amplify a 540-base 

pair fragment containing the promoter and 5’ end of the rDNA-Ty1 element (Figure 2-5). 

We found that the levels of K4-dimethylated H3 and total histone H3 present at the 

rDNA-Ty1 element were not significantly different in sir2Δ and wild-type cells (Figure 

2-5; our unpublished data). In contrast, the level of K4-trimethylated H3 at the rDNA-

Ty1 element was 1.8-fold higher in sir2Δ cells than wild-type cells, consistent with 

increased expression of the rDNA-Ty1 element in sir2Δ cells (Bryk et al., 1997). 

2.3.3. Deacetylase Activity of Sir2 Excludes K4-Di and -Trimethylated H3 

from the rDNA 

One model to account for increased levels of K4 methylated histone H3 at the 

rDNA is that the physical presence of Sir2 prevents the association of factors required 

for the methylation of histone H3. In this steric model, in the absence of Sir2, rDNA  
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Figure 2-5. sir2Δ cells have higher levels of K4-trimethylated H3 at the rDNA-Ty1 element. ChIP 
experiments were analyzed by quantitative radioactive PCR to measure K4-di- and -trimethylated H3 at 
the promoter region of the silent Ty1his3AI element in the rDNA in wild-type and sir2Δ cells. 
Immunoprecipitations using set1Δ cells were performed to provide a measure of background for the ChIP 
experiments. The average %IP ± SE of K4-dimethylated H3 at the rDNA Ty1 promoter region from three 
independent experiments in wild-type cells was 5.0 ± 1.1, in sir2Δ cells is 7.4 ± 1.4, and in set1Δ cells is 
0.08 ± 0.02. The average %IP ± SE of K4-trimethylated H3 at the rDNA-Ty1 promoter region from four 
independent experiments in wild-type cells was 3.4 ± 0.5, in sir2Δ cells is 6.1 ± 1.2, and in set1Δ cells is 
0.03 ± 0.02. Slanted triangles indicate a twofold increase in the amount of template DNA used in the PCR 
reactions. 
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chromatin would be more accessible, allowing higher levels of K4-methylated histone 

H3. An alternative model posits that the deacetylase activity of Sir2 contributes to a 

hypoacetylated chromatin domain at the rDNA that hinders the methylation of histone 

H3. 

To distinguish between these two modes of regulation by Sir2, we used a 

catalytically inactive allele of SIR2, sir2H364Y, which encodes a mutant Sir2 protein 

that retains the ability to bind to the rDNA but lacks histone deacetylase activity (Tanny 

et al., 1999; Hoppe et al., 2002; also see Figure 2-6). ChIP experiments were performed 

using antisera against K4-di- and -trimethylated H3 and cross-linked chromatin from 

sir2Δ cells containing a plasmid with either a wild-type copy of SIR2 (pSIR2) or the 

mutant allele of SIR2 (psir2H364Y). Signal obtained from set1Δ sir2Δ  double mutant 

cells containing the pSIR2 plasmid was subtracted as background in the analysis of these 

ChIP experiments (see Materials and Methods). The data revealed that the levels of K4-

di- and -trimethylated H3 were higher at the rDNA in cells expressing sir2H364Y 

compared with cells with pSIR2 (Figure 2-7). Our results indicate that the deacetylase 

activity of Sir2 is required to maintain low levels of K4-methylated H3 at the rDNA. In 

addition, whereas the mutant Sir2 protein did not affect the levels of methylated H3 at 

RPS16A or the intergenic region, the levels of K4-di- and -trimethylated histone H3 were 

increased significantly at a region 0.6 kb from the right end of chr VI (Figure 2-7, right). 

Together, our results indicate that the deacetylase activity of Sir2 is required to maintain 

low levels of K4-di- and -trimethylated H3 at the rDNA and TEL-VIR. 
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Figure 2-6. ChIP with anti-Sir2 antisera show that the levels of Sir2 protein are similar at the rDNA in 
cells containing pSIR2 and psir2H364Y. Graph showing the average ratio of %IP of Sir2 (± SE; n = 3) 
across a region of the rDNA repeat in psir2H364Y/pSIR2 cells. %IP values from sir2Δ cells containing an 
empty vector were subtracted from the %IP values to correct for background. The regions of the rDNA 
analyzed include the 2.5 kb NTS and 1.4 kb of the 35S rRNA gene. Labels for representation of rDNA 
repeat as in legend to Figure 2-1. 
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Figure 2-7. Deacetylase activity of Sir2 is required to exclude K4-di- and -trimethylated H3 from the 
rDNA. Graph showing the average ratio of %IP of K4-dimethylated H3 (H3 K4 diMe, black bars) and K4-
trimethylated H3 (H3 K4 triMe, hatched bars) across rDNA repeat (left) and control loci (right) in 
psir2H364Y/pSIR2 cells. The labels for the representation of rDNA repeat are defined in legend to Figure 
2-1. Average ratio of %IP ± SE for three independent experiments is shown. 
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2.3.4. Sir2 Excludes RNA Pol II from Silent Chromatin 

In sir2Δ cells, the average %IP value of K4-trimethylated H3 of 21-22% 

measured at NTS2 was similar to the value of 23% measured at the Pol II-transcribed 

RPS16A gene (Figure 2-3), suggesting that Pol II might be present at higher levels at the 

rDNA in sir2Δ cells. This idea is supported by several lines of evidence. First, in S. 

cerevisiae, K4-trimethylated histone H3 has been shown to be associated with genes 

transcribed by RNA Pol II (Bernstein et al., 2002; Santos-Rosa et al., 2002; Santos-Rosa 

et al., 2004). In addition, at HMR and TEL-VIR in sir2Δ cells, we observed the highest 

levels of K4-trimethylated H3 at regions that contain one or more Pol II-transcribed 

genes (Figure 2-4), whose expression is increased in sir2Δ cells (Wyrick et al., 1999; 

Rusche et al., 2003; Emre et al., 2005). To determine whether the higher level of K4-

trimethylated H3 observed over the rDNA NTS region in sir2Δ cells was associated with 

increased levels of Pol II, we performed ChIP experiments by using antisera that 

recognize the CTD of Pol II. We found that the association of Pol II with the NTS1 and 

NTS2 regions of the rDNA, the 5’ end of the rDNA-Ty1 element HMR, and TEL-VIR 

was higher in sir2Δ cells than in wild-type cells (Figure 2-8). In contrast, Pol II levels at 

RPS16A and the intergenic region were equivalent in sir2Δ and wild-type cells (Figure 

2-8A, right). Previous work has shown that Pol II was increased at HMR and TEL-VIR in 

silencing-defective cells (Chen and Widom, 2005). Our data reveal that Pol II was also 

increased at the rDNA in sir2Δ cells. Considering our observations of increased levels of 

K4-trimethylated H3 and Pol II at the rDNA, we wanted to determine whether Pol II 

transcription was occurring in the NTS in sir2Δ cells. 
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Figure 2-8. Association of Pol II with silent loci is increased in sir2Δ cells. Graphs show the average ratio 
of %IP of Pol II at the (A) rDNA (left), the promoter of the rDNA-Ty1 element and control loci (right); 
(B) HMR; and (C) TEL-VIR in sir2Δ cells relative to wild-type cells. The representation of the rDNA in A 
indicates the portion of the rDNA repeat analyzed. Labels for the representations of the rDNA, HMR, and 
TEL-VIR are in the legends to Figures 2-1 and 2-4. The average ratio (± range) of Pol II measured in 
sir2Δ:wild-type cells from two independent experiments is plotted. 
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2.3.5. Sir2 Regulates Expression of Endogenous Transcription Units in the 

rDNA NTS 

We detected high levels of Pol II at NTS1 and NTS2 consistent with Pol II 

transcription in the NTS region. A recent report has shown that bidirectional transcripts 

can be detected from NTS1 in sir2Δ cells (Kobayashi and Ganley, 2005). The 

observation of high levels of K4-trimethylated H3 in NTS2 suggested to us that Pol II 

transcription might be occurring in NTS2 as well. Northern analyses were performed 

using strand-specific probes to detect transcripts with the same polarity as the NTS1 top, 

NTS1 bottom, NTS2 top, or NTS2 bottom strand to determine whether transcription was 

occurring in the rDNA NTS region in sir2Δ cells or set1Δ cells, which both exhibit 

defects in rDNA silencing. To control for equivalent loading of RNA, we used a PYK1- 

specific RNA probe. NTS-specific transcripts, whose levels were increased significantly 

in sir2Δ and set1Δ cells, were identified using Northern blot experiments (Figure 2-9). 

Hybridization with a probe that detects transcripts with the same polarity as the top 

strand of NTS1 revealed transcripts in RNA from sir2Δ and set1Δ cells, similar to those 

previously identified by (Ganley et al., 2005) (Figure 2-9B, wild type, lane 1; sir2Δ, lane 

2; and set1Δ, lane 3). Likewise, a transcript of ~1.7 kb with the same polarity as the 

bottom strand of NTS1 was detected in RNA from sir2Δ (lane 5) and set1Δ cells (lane 6). 

On longer exposure of this blot, a faint 1.5-kb transcript could also be detected in RNA 

from sir2Δ and set1Δ cells. In lanes 7-9, by using a probe with the same polarity as the 

top strand of NTS2, we detected a faint smear in RNA from sir2Δ and set1Δ cells that  
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Figure 2-9. Endogenous transcription units in the rDNA NTS are expressed in rDNA silencing-defective 
mutants. (A) Schematic of rDNA NTS showing the polarity of transcripts detected by probes used in 
Figure 2-9B. Other labels, as in Figure 2-1. (B) Representative Northern blots of total RNA from wild-
type, sir2Δ, and set1Δ cells hybridized to strandspecific probes that are complementary to transcripts with 
the same polarity as the NTS1 top (lanes 1-3), NTS1 bottom (lanes 4-6), NTS2 top (lanes 7-9), and NTS2 
bottom (lanes 10-12) strands. For each blot, PYK1 RNA levels were used to normalize for the amount of 
RNA analyzed. Numbers on left, transcript length in kb. Asterisks or line with asterisks, position of NTS-
specific transcripts. (C) Primer extension analysis to map the 5’ ends of the NTS2 bottom-strand 
transcripts. Schematic at top represents an NTS2 transcript and the oligonucleotide (OM454, line with 
arrowhead) that was used to map the 5’ ends (not to scale). DNA sequence ladder and primer extension 
reactions revealed one major 5’ end within the consensus TSS (underlined in DNA sequence 
representation of the bottom strand of NTS2 at base of C) and three minor start sites upstream of the TSS. 
Asterisks and/or bent arrows indicate 5’ ends. 
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was likely to represent transcripts that ranged in length from ~0.8 to 1.5 kb. In lanes 10-

12, by using a probe to detect RNA with the same polarity as the bottom strand of NTS2, 

we identified three transcripts of ~1.7, 1.5, and 1.0 kb in RNA from sir2Δ and set1Δ 

cells. Although these 1.7-, 1.5-, and 1.0-kb transcripts could be detected at low levels in 

RNA from wild-type cells (lane 10), they were enriched significantly in RNA from sir2Δ 

(lane 11) and set1Δ cells (lane 12). Thus, these data show that, in addition to transcripts 

from NTS1 that have been characterized previously, transcripts can be detected from 

NTS2. 

The sequence of the rDNA NTS2 region was scanned by eye for the presence of 

Pol II-specific regulatory sequences. We identified a consensus Pol II transcription start 

site (TSS) sequence, 5’-A-(Arich)5-N-Py-A-(A/T)-N-N-(Arich)6-3’, where A is the TSS 

(Zhang and Dietrich, 2005), between the rDNA autonomously replicating sequence 

(ARS) in NTS2 and beginning of the 35S rRNA gene (Figure 2-9C, bottom). This 

sequence was recognized previously as a conserved sequence element (rCNS6) in the 

rDNA NTS of several yeasts related to S. cerevisiae (Ganley et al., 2005). No sequences 

with an exact match to a consensus TATA box sequence, 5’-TATA(A/T)A(A/T)-3’, 

were found upstream of the TSS sequence in NTS2. After narrowing down the endpoints 

of the transcripts by using Northern analysis with oligonucleotide probes that spanned 

the rDNA NTS (our unpublished data), we performed primer-extension reactions to map 

the 5’ ends of the transcripts with the same polarity as the bottom strand of NTS2 

(hereafter referred to as NTS2 transcripts). Total RNA from wild-type, sir2Δ, and set1Δ 

cells was subject to reverse transcription with a primer that was extended toward the 
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predicted 5’ end of the NTS2 transcripts (see schematic at top of Figure 2-9C). In RNA 

from sir2Δ cells, the major 5’ end of the NTS2 transcripts was detected within the TSS 

consensus sequence at the position corresponding to the A (Figure 2-9C), indicating that 

the major transcription start site for the NTS2 transcripts was at the same base that was 

identified for >200 Pol II-transcribed genes in S. cerevisiae (Zhang and Dietrich, 2005). 

Minor 5’ ends were detected upstream of the major TSS. Although longer exposures of 

the primer-extension gels revealed the presence of these bands in the set1Δ lane, they 

were barely or not at all detectable in the wild-type lane. Based on our Northern and 5’-

end mapping data, we conclude that the NTS2 transcripts initiate ~300 base pairs 

upstream of the 35S rRNA gene and extend across NTS2 and the 5S rRNA gene into 

NTS1. Consistent with this conclusion, we were able to detect the 1.7- and 1.5-kb 

transcripts in RNA from sir2Δ cells using a probe to the 5S rRNA gene (our unpublished 

data). 

To determine whether the NTS2 transcripts were made by Pol II, we used wild-

type and sir2Δ strains lacking the genomic RPB1 gene that encodes the largest subunit of 

Pol II with either the wt RPB1 gene or a ts mutant allele, rpb1-1 provided from a 

plasmid (see Materials and Methods). Strains with rpb1-1 make functional Pol II at 

24°C; however, upon shift of these cells to 36°C, Pol II becomes nonfunctional. RNA 

from cultures grown continuously at 24°C and from cultures shifted from 24 to 36°C for 

30 min was hybridized with probes specific for the NTS2 transcripts, Pol II-transcribed 

ACT1 RNA, and Pol I-transcribed rRNA (Figure 2-10A). In wild-type and sir2Δ cells 

with RPB1 (wt RNA Pol II), ACT1 and rRNA transcript levels were maintained in cells  
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Figure 2-10. NTS2 transcripts are made by RNA polymerase II. (A) Cultures of SIR2+ and sir2Δ cells 
containing a wild-type allele of RPB1 (wt RNA Pol II) or a ts allele rpb1-1 (ts RNA Pol II) were grown at 
24°C and either maintained at 24°C or shifted to 36°C for 30 min (see Materials and Methods). Northern 
analysis of total RNA shows that NTS2 and ACT1 transcript levels are stable at 24 and 36°C in cells with 
wt RNA Pol II (lanes 1-4, top and middle) but are depleted after 30 min at 36°C in cells with ts RNA Pol 
II (lanes 5-8). The levels of Pol I transcribed rRNA are stable at 24 and 36°C (lanes 1-8, bottom). (B) 
Time-course analysis reveals that NTS2 transcripts are depleted 15 min after inactivation of Pol II. 
Cultures of cells grown at 24°C were shifted to 36°C and aliquots were removed at 0, 15, 30, and 60 min. 
Total RNA was analyzed as described in A. Between 15 and 30 min after the shift to 36°C, the NTS2 
transcripts were depleted significantly in cells containing the ts RNA Pol II but continue to be made in 
cells with the wt RNA Pol II (compare lanes 13-16 to 5-8, top). By 60 min, the level of ACT1 RNA was 
reduced significantly in cells with ts RNA Pol II, whereas rRNA levels remain stable (compare lanes 1-8 
to 9-16, middle and bottom). Asterisks indicate positions of NTS2 transcripts. 
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shifted to 36°C (Figure 2-10A, lanes 1-4, middle and bottom), as were the NTS2 

transcripts in total RNA from sir2Δ cells (Figure 2-10A, lanes 3 and 4, top). However, in 

cells with rpb1-1 (ts RNA Pol II, Figure 2-10A, lanes 5-8), ACT1 RNA was present in 

cultures grown at 24°C but disappeared after 30 min at 36°C (compares lanes 5 and 6 or 

7 and 8). Likewise, the NTS2 transcripts present in the sir2Δ cells were gone after 30 

min at 36°C (compare lanes 7 and 8). The level of transcript from the Pol I-transcribed 

35S rRNA gene was stable at 36°C. These data suggest that the NTS2 transcripts were 

made by Pol II and not by Pol I. In addition, it is unlikely that the NTS2 transcripts were 

made by Pol III, as numerous polyT>5 stretches, which act as terminators for Pol III 

(Allison and Hall, 1985; Braglia et al., 2005), are present in the rDNA NTS. 

The stability of ACT1 and NTS2 transcripts in RPB1 and rpb1-1 cells was 

measured over time at 36°C. Cultures grown at 24°C were shifted to 36°C, and aliquots 

of culture were removed for isolation of total RNA at 0, 15, 30 and 60 min after the shift 

to 36°C. A representative Northern blot in Figure 2-10B shows that although the levels 

of NTS2 transcripts were maintained in sir2Δ cells with wt RNA Pol II (lanes 5-8), the 

NTS2 transcripts were depleted in the rpb1-1 cells 15-30 min after the shift to 36°C 

(lanes 13-16). Likewise, ACT1 transcript levels were decreased over the time course at 

36°C in rpb1-1 cells. Together, these data indicate that the NTS2 transcripts were made 

by Pol II. In further support of this conclusion, we found that the NTS2 and ACT1 

transcripts were enriched in RNA immunoprecipitations using antisera against the 

trimethylguanosine cap present at the 5’ end of Pol II-transcribed RNAs (our 

unpublished data). 
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2.3.6. Nucleosome Positioning at NTS2 Is Altered in Cells with rDNA-

silencing Defects 

Previous studies revealed that cells lacking Sir2 have altered chromatin structure 

in the rDNA (Fritze et al., 1997; Cioci et al., 2002); however, these studies did not focus 

on NTS2 where we predict changes in nucleosome positioning might occur because of 

increased transcription of the NTS2 by Pol II. To determine whether nucleosome 

positioning in the NTS2 region of the rDNA was altered in cells lacking Sir2 or Set1, we 

performed indirect end-labeling analysis of MNase digested chromatin. The rDNA 

repeats in S. cerevisiae exist in two configurations that are correlated with their 

accessibility to a cross-linking reagent psoralen and Pol I transcription activity 

(Dammann et al., 1993). Open rDNA repeats are accessible to psoralen and transcribed 

by Pol I, whereas closed repeats are inaccessible to psoralen and not transcribed. It is 

important to consider that similar to the ChIP analyses, MNase experiments at the rDNA 

evaluate populations of cells, with each cell containing 150-200 rDNA repeats that are in 

different conformations with variable MNase accessibilities. It is possible that there are 

stronger effects on individual repeat, however, the alterations we observed represent the 

average accessibility of all the rDNA repeats. Thus, the ability to see even modest 

alterations in MNase cleavage over 150-200 repeats is significant. 

Five positioned nucleosomes have been mapped in the NTS2 region of the rDNA 

(Figure 2-11, open circles labeled 1-5; Vogelauer et al., 1998). We detected alterations 

in MNase accessibility at several positions in the NTS2 region in sir2Δ cells and set1Δ  
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Figure 2-11. MNase accessibility of chromatin in the NTS2 region of the rDNA is altered in set1Δ and 
sir2Δ cells. DNA purified after MNase treatment of spheroplasts from wild-type, set1Δ, or sir2Δ cells was 
digested with EcoRI (A) or PvuII (B). Schematic of NTS2 with five positioned nucleosomes (numbered 
ovals) identified here and in a previous study (Vogelauer et al., 1998) is shown on the left of each panel 
and in C. Triangles, increasing amounts of MNase; N, naked DNA; arrows with lowercase letters, altered 
MNase accessibility (see text); other labels as in Figure 2-1. (C) The NTS2 region of the rDNA. 
Numbered circles, positioned nucleosomes; + and -, extent of MNase digestion in sir2Δ cells relative to 
wild-type cells. 
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cells (Figure 2-11, A-C). Between the ARS and the transcription start site of the 35S 

rRNA gene, in the region containing the TSS for the NTS2 transcripts, an MNase 

cleavage site was clearly missing in chromatin from sir2Δ cells and set1Δ cells that was 

present in wild-type chromatin (Figure 2-11, B and C, arrow marked e). This change 

may reflect protection by Pol II or its associated factors in sir2Δ and set1Δ cells. Other 

changes in MNase accessibility were detected in sir2Δ cells only, including a new 

cleavage site in NTS2 upstream of the Pol III-transcribed 5S gene (Figure 2-11, A-C, 

arrow marked a) and a missing cleavage site near the ARS (Figure 2-11, A and C, arrow 

marked d). In addition, we detected subtle changes in two MNase cleavage sites between 

nucleosomes 2 and 3 (Figure 2-11, A-C, arrows marked b and c). Our results indicate 

that rDNA chromatin structure was altered near the TSS sequence in the NTS2 region of 

the rDNA repeat in sir2Δ cells and set1Δ cells. These changes in chromatin structure are 

consistent with the observation that sir2Δ and set1Δ cells, which have profoundly 

different types of modified histones at the rDNA, both have defects in silencing of Pol 

II-transcribed genes at the rDNA. 

 

2.4. DISCUSSION 

Modified histones play a central role in regulating gene expression and gene 

silencing in eukaryotes. We have uncovered a functional relationship between Sir2, Pol 

II, and K4-methylated histone H3 at the rDNA in S. cerevisiae. Cells lacking Sir2 not 

only have high levels of acetylated histones but also high levels of K4-methylated H3 at 

the rDNA. Our data suggest that the change, from silent chromatin containing K4-
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hypomethylated H3 to active chromatin containing high levels of K4-methylated H3, 

reflects increased transcription by Pol II at the rDNA NTS in cells lacking Sir2. 

2.4.1. K4-Methylated Histone H3 and Pol II Are Excluded from Silent 

Chromatin by Sir2 

We have analyzed K4-methylated H3 at silent loci in wild-type and sir2Δ cells 

by ChIP. Our results show that Sir2 excludes K4 mono-, di- and -trimethylated histone 

H3 from silent chromatin domains, including HMR, TEL-VIR, and the rDNA (Figures 2-

1, 2-4 and 2-5). Using a catalytically inactive form of Sir2, we have determined that the 

deacetylase activity of Sir2 is required to exclude K4-di- and -trimethylated H3 from the 

rDNA (Figure 2-7). Consistent with the primary role of Sir2 at silent chromatin, no 

significant difference in the levels of K4-methylated H3 was detected at the euchromatic 

and non-rDNA intergenic regions in sir2Δ cells.  

In S. cerevisiae, high levels of K4-trimethylated histone H3 are associated with 

actively transcribed genes in euchromatic domains of the genome (Bernstein et al., 2002; 

Santos-Rosa et al., 2002). These observations are supported by work showing that the 

Pol II elongation complex Paf1C recruits the histone H3 K4-methylation complex 

OMPASS to genes being transcribed by Pol II (Krogan et al., 2003a; Ng et al., 2003b; 

Ng et al., 2003c). The results of experiments in Figures 2-8, 2-9 and 2-10 show that the 

level and activity of Pol II are increased at the rDNA NTS in sir2Δ cells. Interestingly, in 

cells lacking Paf1, the levels of K4-methylated H3 at the rDNA NTS are reduced, 

suggesting that even the low levels of K4-methylated H3 observed at the rDNA are 

dependent on transcription (Mueller et al., 2006). Finally, our MNase data show that the 
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structure of chromatin in NTS2 is altered in sir2Δ cells. Based on these results, we 

propose that the deacetylase activity of Sir2 prevents the conversion of silent chromatin 

at the rDNA, normally inaccessible to Pol II, to active chromatin with the potential to be 

transcribed. This conclusion is supported by results showing that the level of K4-

dimethylated H3, a mark of chromatin with the potential to be transcribed by Pol II, was 

increased over the rDNA repeat in cells lacking Sir2 and that the highest level of K4-

trimethylated H3 was in the NTS, where Pol II transcription was occurring. 

The observation of increased K4-methylated H3 and increased transcription at 

the rDNA in S. cerevisiae cells lacking Sir2 is reminiscent of recent reports regarding the 

role of modified histones in regulating Pol I transcription and rDNA chromatin structure 

in higher eukaryotes (reviewed in Grummt and Pikaard, 2003; McStay, 2006). In several 

Arabidopsis species, disruption of the histone deacetylase (HDAC) activities of HDT1, a 

plant-specific HDAC, or HDA6, a member of the RPD3 family of HDACs, caused 

normally silenced rDNA repeats to acquire characteristics of active rDNA repeats, 

including high levels of Pol I and K4-methylated H3, and low levels of K9-methylated 

H3 and DNA methylation (Lawrence et al., 2004; Probst et al., 2004; Earley et al., 2006). 

Unlike the Arabidopsis system, in S. cerevisiae, transcription by Pol I is not increased in 

cells that lack the histone deacetylase RPD3 (Oakes et al., 1999; Oakes et al., 2006b). 

Likewise, no changes in Pol I transcription have been observed in cells lacking Sir2 

(Oakes et al., 1999; Oakes et al., 2006b). Despite the differences, a common thread 

between the yeast and plant systems is that loss of specific HDACs results in rDNA that 

is more like euchromatin, and, subsequently, has altered function. 
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It is important to note that each rDNA repeat in S. cerevisiae contains an ARS; 

however, only a small fraction (~20%) of these replication origins fire during S phase to 

replicate the rDNA locus (Linskens and Huberman, 1988). Molecular imaging 

experiments have shown that a large proportion of rDNA origins (50%) are activated in 

cells lacking Sir2 (Pasero et al., 2002). The high level of K4-trimethylated H3 at the 

rDNA may be associated with increased firing of the rDNA ARS elements in sir2Δ cells. 

Experiments to address the role of K4-methylated H3 and NTS transcription in origin 

firing at the rDNA are currently underway. 

2.4.2. Additional Factors May Limit K4-Methylated H3 at the rDNA 

In cells lacking Sir2, increased levels of K4-trimethylated histone H3 were 

observed across an ~4-kb region of HMR and up to 2.8 kb from TEL-VIR, whereas the 

increase at the rDNA was limited primarily to NTS2 (Figures 2-1 and 2-4). The region 

of HMR where we detect changes in the association of K4-methylated histone H3 falls 

within the boundaries of the silent domain mapped in previous studies (Donze et al., 

1999; Donze and Kamakaka, 2001). From these observations, we conclude that 

COMPASS has greater access to HMR and TEL-VIR than to the rDNA in sir2Δ cells. 

Given that Pol II transcription units have been identified in the 35S rRNA gene and 

NTS1 (see below), it is possible that Sir2-independent mechanisms exist that limit the 

association of Pol II and K4-methylated H3 with these other regions. One possibility is 

that transcription by Pol I excludes factors required for methylation of H3. This can be 

tested by measuring the levels of K4-methylated H3 at the rDNA in cells that lack Pol I 

and make rRNA from a plasmid-borne 35S rRNA gene under the control of a Pol II 
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promoter, similar to the cells used to demonstrate the requirement for Pol I transcription 

in rDNA silencing (Buck et al., 2002; Cioci et al., 2003). 

In addition, a trans-histone regulatory pathway has been identified where the 

ubiquitylation of histone H2B by Rad6 is required for the di- and trimethylation of 

histone H3 on K4 and K79 (Briggs et al., 2002; Sun and Allis, 2002; Shahbazian et al., 

2005). In cells lacking Ubp10, an enzyme required for the removal of ubiquitin from 

H2B at silent domains in S. cerevisiae, the level of K4-trimethylated H3 was increased at 

the 5S and 35S rRNA gene (Emre et al., 2005). We measured low levels of K4-

trimethylated H3 at these regions in sir2Δ cells, suggesting that Ubp10 limits K4-

methylated H3 even in the absence of Sir2. 

Silencing at the rDNA, HM loci, and telomeres requires the deacetylase activity 

of Sir2. The known protein targets of Sir2 are lysine residues in histones H3 and H4, 

including K9 and K14 of H3 and K16 of H4 (reviewed in Rusche et al., 2003). Recent 

work has demonstrated that O-acetyl-ADP-ribose (AAR), a product of the Sir2 

deacetylation reaction, promotes a conformational change in the Sir2-3-4 complex that 

may contribute to the formation of silent chromatin (Liou et al., 2005). Although we 

have determined that Sir2 restricts the access of Pol II and the K4-methylation 

machinery to silent chromatin, our in vivo studies do not separate the contributions of 

hypoacetylated histone tails and AAR. In vitro studies using purified factors and 

chromatin templates should distinguish between the functions of these products of Sir2. 

Cells lacking Set1 exhibit defects in silencing at the rDNA and telomeres 

(Nislow et al., 1997; Briggs et al., 2001; Bryk et al., 2002; Nagy et al., 2002; Mueller et 
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al., 2006). Unlike what has been observed at telomeres (Ng et al., 2002a; Meneghini et 

al., 2003; Ng et al., 2003a; Martin et al., 2004; Katan-Khaykovich and Struhl, 2005), 

silencing factors remain at the rDNA in set1Δ cells (Bryk et al., 2002), and thus the 

mechanism behind loss of silencing at the rDNA in set1Δ cells is not consistent with the 

model proposed to explain loss of silencing at telomeres. One model that we are 

currently testing is that release of Sir proteins from telomeres in set1Δ cells interferes 

with rDNA silencing. However, at this time, we are unable to determine whether the 

changes in chromatin accessibility or the loss of rDNA silencing seen in set1Δ cells are 

direct or indirect. 

2.4.3. Other Pol II Transcription Units in the rDNA 

In addition to the NTS2 transcripts that we have identified, the rDNA contains 

other Pol II transcription units. A naturally occurring Pol II-transcribed gene TAR1 has 

been identified on the antisense strand of the 35S rRNA gene ~3-4 kb away from NTS2 

(Coelho et al., 2002). Although its expression was shown to be responsive to Sir2, we 

did not observe high levels of K4-trimethylated H3 over the TAR1 ORF. Previous 

studies have characterized mutants that lack subunits of Pol I and survive by transcribing 

the 35S rRNA genes with Pol (Conrad-Webb and Butow, 1995; Vu et al., 1999). 

However, in RNA from sir2Δ cells, Pol II-derived 35S rRNA transcripts have not been 

detected (Oakes et al., 1999; Oakes et al., 2006b). Moreover, we did not detect high 

levels of K4-trimethylated H3 or Pol II over the 35S rRNA gene, which would be 

expected if the 35S rRNA gene was being transcribed by Pol II. 
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Recent work has shown that in sir2Δ cells, bidirectional transcripts from NTS1 

displace cohesin complexes from the rDNA leading to high levels of unequal sister 

chromatid exchange and rDNA repeat amplification (Kobayashi and Ganley, 2005). In 

addition to the transcripts from NTS1, we have identified transcripts from NTS2. 

Although transcription and the level of Pol II is increased clearly over both NTS1 and 

NTS2 in sir2Δ cells, we were surprised that the level of K4-trimethylated H3 over NTS1 

was increased only ~1.5- to 2.0-fold. Despite our efforts to correct for total histone H3, 

we suspect reduced levels of total H3 at NTS1 (Figure 2-2) may have contributed to the 

lower level of K4-trimethylated H3 measured at NTS1 in ChIP experiments (Figure 2-1 

and Figure 2-3). Nonetheless, the NTS transcription units display histone marks found 

on euchromatic genes, suggesting that not only Pol II but also Pol II-associated factors 

required for the trimethylation of H3 on K4 have access to the rDNA in sir2Δ cells. 

Three possible ORFs of 71, 65, and 60 amino acids were identified in the 

sequence of the 1.7-kb NTS2 transcript, but no significant matches to known eukaryotic 

proteins from the nonredundant protein database were identified using BLASTp searches. 

Likewise, significant conservation of S. cerevisiae NTS DNA sequences was noted in 

several yeast species related to S. cerevisiae by BLASTn, but not in nonyeast organisms. 

It is possible that the NTS RNAs are noncoding RNAs. Intergenic transcription has been 

associated with regulatory pathways involving chromatin and gene expression in several 

organisms (reviewed in Bernstein and Allis, 2005). Interestingly, intergenic transcripts 

from the rDNA spacer that are made by Pol I have recently been shown to regulate the 

heterochromatin structure of rDNA repeats in mouse cells (Mayer et al., 2006). 
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Experiments are currently underway to analyze the Pol II-transcribed NTS transcripts 

from S. cerevisiae in detail and to determine whether transcription through NTS2 alters 

rDNA recombination, silencing of Pol II marker genes, and/or DNA replication from the 

origin present in each rDNA repeat.  
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CHAPTER III 

FUNCTIONAL ANALYSIS OF THE ENDOGENOUS POLYMERASE II 

TRANSCRIPTION UNITS IN THE RIBOSOMAL DNA NONTRANSCRIBED 

SPACER 

 
3.1. INTRODUCTION 

Silent chromatin in the eukaryotic genome refers to regions of chromosomes 

where some cellular processes, such as gene transcription, genetic recombination and 

DNA replication, are repressed. In the budding yeast Saccharomyces cerevisiae, silent 

chromatin includes the HM loci, telomeres and the ribosomal DNA (rDNA) locus. The 

rDNA locus is located on chromosome XII and contains ~150-200 tandem copies of the 

RNA polymerase I (Pol I)-transcribed 35S ribosomal RNA (rRNA) gene, each separated 

by a non-transcribed spacer (NTS) that is subdivided into NTS1 and NTS2 by the RNA 

polymerase III (Pol III)-transcribed 5S rRNA gene (reviewed in Warner, 1999; Figure 1-

5). Although a subset of the rDNA repeats are actively transcribed by Pol I and Pol III 

(Dammann et al., 1993), Pol II-transcribed genes integrated into the rDNA are silenced 

(referred to as rDNA silencing) (Bryk et al., 1997; Fritze et al., 1997; Smith and Boeke, 

1997). In addition, genetic recombination is repressed at the rDNA locus, which 

contributes to the stability of the rDNA locus (Gottlieb and Esposito, 1989; Davis et al., 

2000; Kobayashi et al., 2004). 

The Silent information regulator 2 (Sir2) protein regulates silent chromatin at the 

rDNA locus. Sir2 is an NAD+-dependent histone deacetylase, whose targets include 

histone H3 and H4. Together with Net1 and Cdc14, Sir2 forms a complex called RENT, 
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which is required for rDNA silencing (Huang and Moazed, 2003). It has been shown that 

Sir2 is recruited to the rDNA by Net1 and deacetylates acetyl-lysine residues in the N-

terminal tail of histone H3 (Huang and Moazed, 2003). In cells lacking Sir2, Pol II-

transcribed genes inserted at the rDNA array are no longer silenced, and the accessibility 

of rDNA chromatin to micrococcal nuclease is altered (Bryk et al., 1997; Fritze et al., 

1997; Smith and Boeke, 1997; Li et al., 2006a). The rate of mitotic recombination at the 

rDNA is also increased significantly in sir2Δ cells (Gottlieb and Esposito, 1989).  

In our previous study to determine how Sir2 regulates the composition of silent 

chromatin at the rDNA locus, we identified several endogenous transcription units in 

both top strand and bottom strand of the rDNA NTS region (Li et al., 2006a).  These 

include NTS1 transcription units initiated from a promoter region called E-pro 

(Kobayashi and Ganley, 2005). In addition, novel transcripts of multiple sizes were 

identified with the same polarity as the top strand of NTS2 and three distinct transcripts 

of 1.0, 1.5 and 1.7 kb were identified with the same polarity as the bottom strand of 

NTS2 (Li et al., 2006a). The silencing of each of these NTS transcription units is 

dependent on Sir2 (Kobayashi and Ganley, 2005; Li et al., 2006a).  

In this study I focus on characterizing the function of the transcripts with the 

same polarity as the bottom strand of NTS2, referred to as the NTS2 bottom strand 

transcripts. Three potential open reading frames (ORFs) were identified in the1.7 kb 

NTS2 bottom strand transcript, with the longest ORF encoding a protein of 71 amino 

acids (aa). The hypothetic proteins encoded by these ORFs do not match any known 

proteins, suggesting that these RNAs may be non-coding RNAs (Li et al., 2006a). 
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Despite this, we can’t rule out the possibility that the NTS2 bottom strand RNAs encode 

novel proteins.  

Intergenic transcripts have been considered to be products of spurious 

transcription without biological function. However, recent evidence suggests that 

intergenic transcripts actively participate in fundamental processes in cells. In fact, most 

regions of the genome in eukaryotes are known to be transcribed into non-coding RNAs 

(Bertone et al., 2004; David et al., 2006; Yazgan and Krebs, 2007). 

The functions of the non-coding RNAs transcribed from intergenic regions are 

diverse. The most well characterized non-coding RNAs are small RNAs, including 

microRNAs (miRNAs) and short interfering RNAs (siRNAs). They are known to control 

mRNA stability as well as chromatin structure (Mathieu and Bender, 2004; Bernstein 

and Allis, 2005). In addition, there are large non-coding RNAs derived from introns or 

intergenic regions. The function of these large non-coding RNAs is not known 

specifically but it has been hypothesized that they are involved in various aspects of 

gene regulation (for review, see Yazgan and Krebs, 2007). For instance, the Xist (X 

inactive specific transcript) RNAs are transcribed from one of the two copies of the X 

chromosomes in female mammals. The Xist RNAs coat the X chromosome from where 

they were transcribed, resulting in silencing of this chromosome. This is known as X-

inactivation and the process acts to compensate for the extra dosage of X-linked genes in 

female cells (reviewed in Chow et al., 2005; Ng et al., 2007). 

While non-coding RNAs have been demonstrated to be a functional component 

in some regulatory mechanisms, there is also evidence that the act of transcription itself 
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can modulate transcriptional regulation and chromatin activities. One example is the 

regulation of the SER3 gene in S. cerevisiae. SER3 encodes a protein called 3-

phosphoglycerate dehydrogenase, which catalyzes the biosynthesis of serine and glycine. 

Martens et al. (2004, 2005) showed that under repressive conditions a regulatory 

sequence upstream of the SER3 gene is expressed at high levels. Transcription of this 

upstream regulatory element represses transcription of the downstream SER3 gene. An 

example of intergenic transcription regulating chromosomal processes was uncovered at 

the rDNA is the intergenic transcription of the rDNA NTS1 region. Kobayashi et al. 

(2005) suggested that bidirectional transcription of NTS1 that occurs in sir2Δ cells 

displaces cohesin complexes from the rDNA, thereby promoting mispairing of the 

replicated rDNA loci and deleterious unequal sister chromatin exchanges. These types of 

events can result in deletion or amplification of rDNA repeats. Similar events in repeat-

containing loci in human chromosomes are associated with X-linked color blindness 

(Vorallrath et al. 1988). 

Based on the fact that the non-coding RNAs and the act of transcription regulate 

gene expression and chromatin function, we have investigated the effects of transcription 

of the rDNA NTS2 region to determine if there is a discernable function in regulating the 

silent chromatin at the rDNA locus. To address this question, we overexpressed the 

NTS2 bottom strand RNAs either from a plasmid (“in trans”) or from the endogenous 

locus (“in cis”), and assayed the effects of overexpression on Pol II gene silencing and 

mitotic recombination at the rDNA locus. The result showed that overexpression of the 

NTS2 bottom strand RNAs in cis disrupts Pol II gene silencing and increases the rate of 
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mitotic recombination at the rDNA locus. In contrast, no silencing defects were observed 

when the transcripts were overexpressed in trans, which suggests that the act of 

transcription but not the RNA itself disrupts silent chromatin at the rDNA locus. These 

data provide insights into the mechanism of how Sir2 represses rDNA recombination 

and maintains rDNA stability. 

In addition, we tested the coding potential of the NTS2 bottom strand transcripts. 

Interestingly, our result showed that the NTS2 bottom strand transcripts could be 

translated in vitro. A polysome fractionation experiment also showed that these 

transcripts associate with polysomes in vivo. These data suggest that the NTS2 bottom 

strand transcripts may encode proteins or they may be involved in regulating protein 

synthesis. 

 
3.2. MATERIALS AND METHODS 

3.2.1. Yeast strains, plasmids, and media 

Standard media recipes were used (Rose, 1990). YPADT is YPD medium 

supplemented with adenine sulfate (40 mg/L) and L-tryptophan (0.4 mM). All media 

contain 2% glucose if not specified otherwise. In experiments requiring the transcription 

of the NTS2 bottom strand transcripts under the control of a GAL promoter, the media 

contained 2% galactose. Yeast strains used in this study are listed in Table 3-1.  

Plasmid MBB426 was constructed by amplifying the NTS fragment (-2481 to -

241 relative to the transcriptional start site of 35S rRNA precursor) using primers 

containing BamH I (OM714) and XhoI (OM692) restriction sites. The PCR product was 

digested with BamHI and XhoI, and ligated into the corresponding sites on MBB345 
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Table 3-1 Strains and plasmids 
Strain Genotype 
MBY30 MATα, ura3-167, his3Δ200, GAL+, Ty1his3AI-236   
MBY1447 MATα, his3Δ200, ura3-167, GAL+, Ty1HIS3-242 
MBY1487 MATα, his3Δ200, leu2:hisG, Ty1HIS3-236   
MBY1211 MATa, ura3Δ0, leu2Δ0, his3Δ200, ade2Δ::hisG, trp1Δ63, met15Δ0, Ty1ade2AI-515 
MBY1198 MATα, ade2Δ::hisG, his3Δ200, leu2Δ0, met15Δ0, trp1Δ63, ura3Δ0, Ty1his3AI-236 
MBY1238 MBY1198, sir2Δ::KANMX4 
MBY1290 MATα, ura3-167, his3Δ200, GAL+, Ty1his3AI-236, set1Δ::kanMX4#1 
MBY2067 MBY1447, MBB345 [pRS426-GAL1p, URA3, CEN] 
MBY2068 MBY1447, MBB426 [pRS426-GAL1p-NTS, URA3, CEN] 
MBY2069 MBY1487, MBB345 [pRS426-GAL1p, URA3, CEN] 
MBY2070 MBY1487, MBB426 [pRS426-GAL1p-NTS, URA3, CEN] 
MBY2206 MBY30, MBB345 [pRS426-GAL1p, URA3, CEN] 
MBY2207 MBY30, MBB426 [pRS426-GAL1p-NTS, URA3, CEN], isolate #1 
MBY2208 MBY30, MBB426 [pRS426-GAL1p-NTS, URA3, CEN], isolate #2 
MBY2352 MBY1290, MBB345 [pRS426-GAL1p, URA3, CEN] 

MBY2367 MBY1211, one of the rDNA repeats carries a HIS3 gene in NTS1 (PvuII; same orientation 
as 35S rRNA gene) and GAL7 promoter in NTS2 (SmaI; orientation as 35S rRNA gene ) #2 

MBY2368 MBY1211, one of the rDNA repeats carries a HIS3 gene in NTS1 (PvuII; same orientation 
as 35S rRNA gene) and GAL7 promoter in NTS2 (SmaI; orientation as 35S rRNA gene ) #3 

MBY2371 MBY1211, one of the rDNA repeats carries a HIS3 gene in NTS1 (Pvu II; same orientation 
as 35S rRNA gene) and GAL7 promoter in NTS2 (SmaI; orientation as 5S rRNA gene ) #1 

MBY2372 MBY1211, one of the rDNA repeats carries a HIS3 gene in NTS1 (PvuII; same orientation 
as 35S rRNA gene) and GAL7 promoter in NTS2 (SmaI; orientation as 5S rRNA gene ) #9 

MBY2373 MBY1211, one of the rDNA repeats carries a HIS3 gene in NTS1 (PvuII; same orientation 
as 35S rRNA gene) #2 

MBY2374 MBY1211, one of the rDNA repeats carries a HIS3 gene in NTS1 (PvuII; same orientation 
as 35S rRNA gene) #5 

MBY2377 MBY2373, sir2Δ::KANMX4, #11 
MBY2378 MBY2374, sir2Δ::KANMX4, #14 
Plasmids Description 
MBB345 pRS426 GAL1, URA3, 2μ, CEN 
MBB426 pRS426 GAL1-NTS, URA3, 2μ, CEN 
MBB413 pSP70-NTS2 
MBB511 pSP70-NTS, HIS3 at NTS1, GAL7p at NTS2 (towards 35S) 
MBB514 pSP70-NTS, HIS3 at NTS1, GAL7p at NTS2 (towards 5S) 
MBB515 pSP70-NTS, HIS3 at NTS1, no GAL7p 
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 (pRS426-GAL1promoter, 2μ). In MBB426, the NTS2 bottom strand transcripts are 

transcribed under the control of a GAL1 promoter. The plasmid MBB345 was 

transformed into MBY30 to make MBY2206, and the plasmid MBB426 was 

transformed into MBY30 to make MBY2207 and MBY2208 (two identical isolates from 

the same transformation). All of these strains carry a Ty1his3AI element integrated in the 

rDNA array, which was used to test if overexpression of the NTS2 bottom strand 

transcripts from a plasmid affects rDNA silencing. Alternatively, the two plasmids were 

transformed into MBY1487, which carries a Ty1HIS3 element at the rDNA locus, to 

make MBY2069 and MBY2070, respectively. These strains were used to test if 

overexpression of the NTS2 bottom strand transcripts from a plasmid affects mitotic 

recombination at the rDNA.  

To make the plasmids for integrating a GAL7 promoter as well as the HIS3 gene 

into the rDNA array, the sequence containing the entire rDNA NTS with part of the 35S 

rRNA gene (-2481 to +519 relative to the transcriptional start site of 35S rRNA 

precursor) was amplified using primers containing XhoI sites  (OM692 and OM717).  

The PCR product was digested with XhoI and cloned into the corresponding site of 

plasmid pSP70 to make MBB425. The GAL7 promoter sequence was amplified with 

primers containing SmaI sites (OM723 and OM724) and cloned into the corresponding 

site on MBB425.  The orientation of the GAL7 promoter in the resulting plasmids was 

determined by PCR. A construct with the GAL7 promoter in the same orientation as the 

35S rRNA gene was assigned as MBB430, while the one with the GAL7 promoter in the 

opposite orientation was assigned as MBB431. The HIS3 sequence (-248 to +689) was 
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amplified using primers containing PvuII sites (OM986 and OM987) from genomic 

DNA, and cloned into the corresponding site in NTS1 of MBB430 and MBB431 to 

make MBB511 and MBB514, respectively. MBB515 was constructed by inserting a 

HIS3 fragment into the PvuII site in NTS1 region of MBB425, and it does not contain 

the GAL7 promoter. The orientation of the HIS3 gene in MBB511, MBB514 and 

MBB515 is the same as 35S rRNA gene as determined by PCR.  

Yeast strains MBY2367 and MBY2368 are two isolates obtained by integrating 

the XhoI fragment from plasmid MBB511 into the rDNA array of the parental strain 

MBY1211. MBY2371 and MBY2372 are two isolates obtained by integrating the XhoI 

fragment from plasmid MBB514 into the rDNA array of MBY1211. Finally, the strains 

MBY2373 and MBY2374 are two isolates obtained by integrating XhoI fragment from 

plasmid MBB515 into MBY1211. The SIR2 gene in MBY2373 and MBY2374 was 

deleted with KANMX4 to make MBY2377 and MBY2378, respectively (Brachmann et 

al., 1998). These strains carry a single copy of the XhoI fragment at the rDNA array, as 

identified by restriction digestion with agarose-embedded genomic DNA and CHEF gel 

analysis (see below). 

3.2.2. Contour-clamped homogenous electric fields electrophoresis (CHEF) 

Agarose-embedded genomic DNA was prepared as described (Gerring et al., 

1991; Bryk et al., 1997). Chromosomal DNA was digested with 8 units of AvrII (which 

is unique in the HIS3 gene, but not present in the rDNA array) at 37⁰C for 16 hours. The 

DNA was then separated on 1% agarose gel (BioRad, Pulsed Field Certificated) using 

BioRad CHEF Mapper apparatus in 0.5×TBE buffer. The electrophoresis was performed 
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under 6 v/cm at 14⁰C with 60- to 110-sec pulse time for 24 hours. The gel was stained 

with ethidium bromide, photographed, and treated with UV irradiation for 2 min. After 

denaturation and neutralization, the DNA was transferred onto a nylon membrane and 

probed with a 32P-labeled HIS3 specific DNA probe (from +271 to +615 region of the 

HIS3). The HIS3 probe was removed by stripping at 70⁰C for 2 hours in the presence of 

1×SSC and 50% formamide (v:v) and the blot was hybridized with an rDNA probe that 

recognizes the NTS region. If the XhoI-XhoI fragment is integrated only once in the 

rDNA, AvrII should cut the rDNA array into two pieces and the HIS3 probe should light 

up two bands. The same banding pattern should be seen with the rDNA probe. Using this 

method, I identified strains that have a single integration of the XhoI-XhoI fragment. 

3.2.3. Northern analysis 

Total RNA was isolated from yeast cells as described previously (Bryk et al., 

1997). Northern analyses were performed as described (Swanson et al., 1991). NTS2 

bottom strand transcripts, Ty1his3AI, total Ty1 and PYK1 mRNAs were detected using 

strand specific 32P-labeled riboprobes (Li et al., 2006a; Li et al., 2008). A 32P-labeled 

double-stranded DNA probe was used to detect the ACT1 mRNA (Li et al., 2006a). 

Northern blots were quantified on a Molecular Dynamics Storm 860 phosphorimager 

using ImageQuant software. 

3.2.4. Mitotic recombination analysis 

Mitotic stability of the Ty1HIS3 element in MBY2067, 2068, 2069 and 

MBY2070, and the HIS3 in MBY2367, 2368, 2371-2374, 2377 and MBY2378 was 

measured as described (Bryk et al., 1997) with some modifications. Cells of MBY2067-
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2070 were pregrown in 5 ml SC-Ura-His media for one overnight at 30⁰C. One 

microliter of each culture was then diluted into 10 ml fresh SC-Ura containing 2% 

galactose and grown to stationary phase (~ 48 hours) at 30⁰C. Cells of MBY2367, 

MBY2368, MBY2371-2374, MBY2377 and MBY2378 were pre-grown in 5 ml SC-His 

media for one overnight at 30⁰C, and 1μl of each culture was then diluted into 10 ml 

fresh YPAT media containing 2% galactose and grown to stationary phase (~ 48 hours) 

at 30⁰C. The dilution was repeated 8 times. Cells from the last culture were plated onto 

YPADT plates, and replicated to SC-His plates to determine the fraction of His- 

auxotrophs. 

3.2.5. Reverse transcription 

Total RNA was isolated from yeast cells as described previously (Bryk et al., 

1997). The RNA was treated with RQ1 RNase-free DNase (Promega) to remove 

genomic DNA contamination followed by phenol extraction. The RNA was then 

transcribed into first strand cDNA using M-MLV Reverse Transcriptase (Ambion) with 

Oligo-dT (Ambion) or a strand-specific primer (OM869) that hybridizes to the sense 

strand of the HIS3 gene.  

3.2.6. Quantitative real-time PCR (qPCR) 

One microliter of the diluted (1:5) cDNA was amplified in 20 μl reaction 

containing 1.25 μM of each oligonucleotide and 1× SYBR Green Dynamo Hot Start 

PCR mix (Finnzymes, Espoo, Finland) by using an iCycler Iq real-time PCR machine 

(Bio-Rad, Hercules, CA). The PCR parameters were described in (Li et al., 2006a). The 

HIS3 specific primers OM869 and OM879 were used to amplify a 293 bp PCR product, 
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and the LYS2 specific primers OM16 and OM17 were used to amplify a 285 bp PCR 

product. Each primer pair has its own standard curve.  

3.2.7. In vitro transcription and in vitro translation 

To prepare DNA templates for transcription of the NTS2 bottom strand RNA, the 

complete NTS2 sequence was amplified with OM679 and OM680 which contain XhoI 

site at one end and HindIII site at the other end. The PCR fragment was digested with 

XhoI and HindIII and cloned into the corresponding sites on pSP70 bearing the T7 

promoter upstream of HindIII site. The resulting plasmid is MBB413. The T7 promoter 

driven RNA in this construct is complementary to the NTS2 top strand. (The T7 

promoter can drive transcription of NTS2 bottom strand.) To prepare DNA template for 

in vitro transcription, MBB413 was linearized by XhoI digestion. Transcription was 

carried out in a volume of 20 μl by incubating 0.5 μg of DNA in the presence of 1 mM 

NTPs, 20 units of RNase inhibitor (Promega), 20 units of T7 RNA polymerase, and 

accompanying buffer (Roche) for 2 hours at 37⁰C. One unit of RNase-free DNase 

(Promega) was then added into the reaction to remove the template. The RNA product 

was purified by phenol extraction.  

All the purified in vitro transcribed RNA was used in a 50 μl reaction of Rabbit 

Reticulocyte Lysate in vitro translation system (Promega, Madison, WI) according to the 

manufacturer’s instruction. Five microliter of the in vitro translated product was resolved 

on 15% SDS-PAGE gels and visualized by autoradiography. 

 

 



86 
 

3.2.8. Polysome analysis 

The polysome fractions from MBY1198 and MBY1238 were isolated according 

to (Cigan et al., 1991) with minor modifications. Briefly, cells were grown in 1 L 

YPADT media to a final density of 3-4×106 cells/ml. Cycloheximide was added to the 

cultures to a final concentration of 50 μg/ml and the cultures were placed on ice water 

immediately. The cells were harvested by centrifugation, washed with 10 ml of pre-

chilled breaking buffer (10 mM Tris-HCl pH7.4, 100 mM NaCl, 30 mM MgCl2, 50 μg 

of cycloheximide/ml, and 200 μg of heparin/ml), and resuspended in 1 ml of breaking 

buffer. Glass beads were added to approximately one-fourth of the final volume. The 

cells were vortexed on ice for 8×15 sec with 15 sec intervals, followed by addition of 1 

ml of breaking buffer. The extract was cleared by two sequential centrifugations (5,000 g 

for 5 min and 12,000 g for 10 min). Twenty-five OD260 units of the supernatant was 

layered on 12 ml linear 7-47% sucrose gradients equilibrated with 50 mM Tris-acetate 

(pH 7.6), 50 mM NH4C1, 12 mM MgCl2, and 1 mM dithiothreitol and centrifuged at 4⁰C 

in an SW41 rotor (Beckman) at 39,000 rpm for 2 hours. The gradients were fractionated 

by pipetting 1 ml at a time.  One hundred microliters of each fraction were removed and 

combined with 400 μl of H2O to measure OD206 to generate a polysome profile. Total 

RNA of each fraction was precipitated and phenol extracted according to (Cigan et al., 

1991). Finally, the purified RNA was resuspended in 10 μl of H2O and half of the RNA 

was subjected to Northern analysis. 
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3.3. RESULTS 

3.3.1. NTS2 bottom strand transcripts do not regulate Pol II gene silencing 

and mitotic recombination at the rDNA locus 

Non-coding RNAs have been shown to be involved in establishing 

heterochromatin in the fission yeast Schizosaccharomyces pombe (S. pombe), plants, 

flies and mammals (for review, see Pezer and Ugarkovic, 2008). The mechanism of non-

coding RNA-mediated chromatin silencing is best studied in the centromeres of S. 

pombe, which consist of highly repeated DNA sequence. In S. pombe, a low level of 

double-stranded RNA is transcribed from the repeated satellite DNA sequence in the 

pericentromeric or centromeric regions. The RNA is processed by Dicer, and can guide 

the establishment of heterochromatin formation at the centromere via RNAi pathway 

(for reviews, see Grewal and Jia, 2007; Pezer and Ugarkovic, 2008). In this case, it is the 

RNA molecules but not the act of transcription that is important for establishing 

heterochromatin. Despite the fact that the components of RNAi pathway have not been 

identified in S. cerevisiae, it is possible that the RNAs arise from the rDNA NTS2 

bottom strand may hybridize to the NTS2 region, helping to open the chromatin 

structure and allowing Pol II transcription and genetic recombination to occur.  

To determine if the NTS2 bottom strand RNAs regulate Pol II gene silencing at 

the rDNA locus, a plasmid that contains the NTS2 region under the control of GAL1 

promoter to drive the transcription of the NTS2 RNAs in trans was constructed 

(MBB426; Figure 3-1A). The GAL1 promoter is an inducible promoter, which is 

repressed by glucose and activated by galactose (Johnston, 1987). The plasmid was  
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Figure 3-1. Overexpression of the NTS2 bottom strand transcripts in trans does not disrupt Pol II gene 
silencing at the rDNA locus. (A) Plasmid used to drive the transcription of NTS2 bottom strand RNAs. 
The GAL1 promoter is placed upstream of the NTS2 bottom strand transcription unit. (B) Northern blot 
analysis to verify the overexpression of NTS2 bottom stand RNAs from the plasmid shown in A. Total 
RNA from cells containing an empty vector (pGAL, lane 1) or the overexpression plasmid (pGAL-NTS, 
lane 2 and 3) were hybridized to a strand-specific probe that recognizes the NTS2 bottom strand RNAs 
(top panel). PYK1 RNA levels were measured to check equal loading of RNA in each lane (bottom panel). 
Asterisks, position of the NTS2 bottom strand transcripts. The average ratio of NTS2 RNA/PYK1 for the 
overexpression strains after normalization to the strain containing an empty vector are shown below the 
top panel. The normalized values of the average ratio ± range were 3.4±0.6 and 3.3± 0.6 for MBY2207 
and MBY2208, respectively (n=2). (C) Northern blot analysis of total RNA isolated from strains as shown 
in B. Strand specific probes were used to measure the steady-state mRNA levels of Ty1his3AI (top panel), 
total Ty1 (middle panel) or PYK1 (bottom panel). A set1Δ strain was used as a silencing-defect control 
(MBY2352, lane 4). The average ratio of Ty1his3AI/PYK1 and total Ty1/PYK1 after normalization to the 
strain containing an empty vector is shown below the top and middle panel. The normalized values of the 
average ratio ± range for Ty1his3AI/PYK1 were: MBY2207: 0.9 ± 0.1; MBY2208: 0.8 ± 0.2; MBY2352, 
2.6 ± 1.1. The normalized values of the average ratio ± range for total Ty1/PYK1 were: MBY2207: 1.1 ± 
0.1; MBY2208: 1.2 ± 0.2; MBY2352, 0.8 ± 0.2. 
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introduced into a strain that contains a genetically marked Ty1 element, Ty1his3AI, 

located in a single repeat of the rDNA array. The Ty1 element is transcribed by Pol II, 

and the level of the mRNA from the Ty1his3AI has been used as an indicator for Pol II 

gene silencing at the rDNA (Bryk et al., 1997). Cells containing an empty vector or the 

overexpression plasmid were grown in media containing galactose to activate the GAL1 

promoter, and total RNA was isolated and subjected to Northern analysis. As shown in 

Figure 3-1B, the level of NTS2 bottom strand RNA was increased about 3-fold when the 

transcription was driven by GAL1 promoter (Figure 3-1B, lane 2 and 3) compared to the 

level from cells containing an empty vector (Figure 3-1B, lane 1). However, the 

increased amount of NTS2 RNA did not affect Pol II gene silencing at the rDNA (Figure 

3-1C), since the level of Ty1his3AI mRNA from cells overexpressing NTS2 RNA (lane 

2 and 3, top panel) was similar to the level from cells containing an empty vector (lane 1, 

top panel). As a positive control, we also measured the Ty1his3AI mRNA from cells 

lacking SET1, a gene encoding the histone methyltransferase Set1 that is required for Pol 

II silencing at the rDNA (Nislow et al., 1997; Briggs et al., 2001; Bryk et al., 2002; 

Nagy et al., 2002; Krogan et al., 2003a). As expected, deletion of SET1 disrupted Pol II 

gene silencing at the rDNA and the level of Ty1his3AI mRNA was increased about 2.6-

fold (Figure 3-1C, lane 4, top panel). Because most S. cerevisiae strains carry about 30 

copies of Ty1 elements throughout the genome, we also measured the mRNA level of 

total Ty1 elements using a probe that recognizes all the Ty1 mRNA. The result indicated 

that overexpression of the NTS2 bottom strand RNA from a plasmid did not increase the 

mRNA of total Ty1elements significantly (Figure 3-1C, middle panel). These data 
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indicate that overexpression of the NTS2 bottom strand RNA does not affect Pol II gene 

silencing at the rDNA. 

It is known that the silent chromatin at the rDNA locus also represses 

homologous recombination between the rDNA repeats. We next tested if the NTS2 

bottom strand RNA plays a role in regulating mitotic recombination at the rDNA locus. 

To address this question, the empty vector and the overexpression plasmid were 

transformed in to a strain containing a Ty1HIS3 element located in a single repeat of the 

rDNA array. The cells containing the HIS3 gene are histidine prototrophs and can grow 

on media lacking histidine. If the cells lose the HIS3gene, which is caused by mitotic 

recombination between flanking rDNA repeats or by recombination between LTRs of 

Ty1 elements, they become histidine auxotrophs and will not be able to grow on media 

without histidine. The rate of loss of HIS3 marker in these strains is used as an indicator 

for the stability of the rDNA array. We grew the strains that harboring either the empty 

vector or the overexpression plasmid in SC-Ura media (to keep the selection for the 

plasmids) with 2% galactose for about 120 generations, and measured the rate of loss of 

the HIS3 marker. The result showed that the rate of loss of the HIS3 marker from the 

overexpression strain is about 1.1×10-4 per generation, and is not significantly different 

from the strain containing an empty vector (2.5×10-4 per generation) (P= 0.096). We also 

measured the rate of loss of a Ty1HIS3 element located outside of the rDNA array, and 

found that overexpressing NTS2 bottom strand RNAs did not affect the rate of loss of 

this HIS3 marker either (Table 3-2). These data indicate that the NTS2 bottom strand 

RNAs do not have a role in regulating mitotic recombination at the rDNA locus. 
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Table 3-2 Mitotic stability of Ty1HIS3 elements when NTS2 region is overexpressed in 
trans 

Strain (locationa) Relevant 
genotype 

Loss HIS3/generationb, 
average (± SE; n) 

Loss relative to 
pGAL strains 

MBY2069 (in rDNA) pGAL 2.52 (± 0.72; 3)×10-4 - 
MBY2070 (in rDNA) pGAL-NTS 1.12 (± 0.27; 4)×10-4 0.44c 
MBY2067 (outside rDNA) pGAL <5.13(± 0.66; 3)×10-6 - 
MBY2068 (outside rDNA) pGAL-NTS <5.63(± 0.81; 3)×10-6 1.1 

a. Location of Ty1HIS3 element: in rDNA, in NTS1 of a single rDNA repeat at position 460482; outside 
the rDNA, in YLR460C at position 1060536. 
b. Determined after 120 generations of growth in SC-URA medium containing 2% galactose. 
c. The rate of loss of HIS3 in pGAL-NTS cells is not significantly different from the one in pGAL cells, 
P=0.096 determined by Student’s t-test. 
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3.3.2. Overexpression of the NTS2 bottom strand transcripts in cis disrupts 

Pol II gene silencing and mitotic recombination at the rDNA locus 

The process of transcription in NTS1 in sir2Δ cells has been shown to disrupt 

silent chromatin at the rDNA (Kobayashi and Ganley, 2005). We want to test if the 

process of transcription of the NTS2 bottom strand would also have an effect on 

regulating the silent chromatin at the rDNA locus. The hypothesis is that the act of 

transcription opens the chromatin at the rDNA and a more open chromatin conformation 

will disrupt Pol II gene silencing as well as promote mitotic recombination. To test this 

idea, we overexpressed the NTS2 bottom strand RNA at its endogenous location to 

mimic the loss of silencing of the NTS2 transcription units in the sir2Δ strain. 

A series of strains were constructed for these experiments (Figure 3-2A). In the 

first strain, a galactose-inducible promoter, GAL7, was placed upstream of the TSS of 

the NTS2 bottom strand transcriptional unit of one of the rDNA repeats. The direction of 

the GAL7 promoter is towards 5S rRNA gene (Figure 3-2A, top panel). A HIS3 marker 

gene is also inserted into the NTS1 region of the same repeat (Figure 3-2A). This 

arrangement should allow transcription of the NTS2 bottom strand when the cells are 

grown in galactose-containing media. The second strain is similar to the first one, except 

that the GAL7 promoter is in the same direction as the 35S rRNA gene and will not drive 

transcription of the NTS2 bottom strain RNA (Figure 3-2A, bottom panel). As a control, 

we also constructed strains with the HIS3 gene inserted at NTS1 and lacking a GAL7 

promoter at NTS2 in a SIR2+ background and sir2Δ background. 
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Figure 3-2. Overexpression of the NTS2 bottom strand transcripts in cis disrupts Pol II gene silencing at 
the rDNA locus. (A) Representation of the DNA fragments that were integrated into the rDNA array to 
overexpress the NTS2 bottom strand in cis. The top construct has a GAL7 promoter inserted upstream of 
the NTS2 bottom strand transcription unit, with the direction in the same polarity as NTS2 bottom strand. 
The bottom construct has a GAL7 promoter inserted at the same position, but it drives transcription 
towards the 35S rRNA gene. Both constructs contain a HIS3 gene in the NTS1 sequences. (B) Northern 
blot analysis was performed to verify the overexpression of the NTS2 bottom strand transcripts in cis. 
Strains without a GAL7 promoter inserted at the NTS2 (lane 5 and 6) were used as silent controls, and 
strains lacking both GAL7 promoter and SIR2 were used as silencing defect controls (lane 7 and 8). 
Labels, as in Figure 3-1. (C) Graphical representation of data from reverse transcription and quantitative 
real-time PCR (RT-qPCR) analyses to determine if overexpression of the NTS2 bottom strand transcripts 
alters transcriptional silencing of the HIS3 gene inserted in NTS1. The signals from the HIS3 gene were 
normalized to the signals from the LYS2 gene (n=2).  
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First we tested if the GAL7 promoter would drive transcription of the NTS2 

bottom strand RNAs. Cells were grown in media containing 2% galactose, and the total 

RNA was isolated and analyzed by Northern analysis using a single-stranded probe to 

the NTS2 bottom strand RNA (Figure 3-2B, top panel). ACT1 mRNA was used as a 

loading control (Figure 3-2B, bottom panel). As shown in Figure 3-2B, when the 

orientation of the GAL7 promoter is towards 35S rRNA gene, the level of NTS2 RNA is 

similar to the level in the cells without GAL7 promoter (Figure 3-2B, compare lane 1, 2 

to lane 5, 6). However, when the GAL7 promoter has the same polarity as NTS2 bottom 

strand sequence, we observed an average of 2-fold increase in the level of the NTS2 

bottom strand RNA compared to the level from the strains without GAL7 promoter 

(Figure 3-2B, compare lane 3, 4 to lane 5, 6). Significantly the levels of NTS2 bottom 

strand RNAs from the GAL7 promoter- driven construct is similar to the levels observed 

in sir2Δ strains (Figure 3-2B, lane 7, 8). These data indicate that when placed in the 

correct orientation, the induced GAL7 promoter can drive transcription of the NTS2 

bottom strand RNAs. 

Next, we examined if overexpression of NTS2 bottom strand RNAs in cis 

disrupts Pol II gene silencing at the rDNA locus. The level of mRNA from the HIS3 

gene in NTS1 was used as an indicator of Pol II gene silencing. Cells were grown in 

galactose-containing media, and the total RNAs were isolated. The level of mRNA from 

the HIS3 gene originated from its own promoter was analyzed by reverse transcription 

using a HIS3-specific primer followed by quantitative real-time PCR analysis. As a 

normalization control, the level of mRNA from the LYS2 gene was determined. The 
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quantity of HIS3 mRNA obtained by RT-qPCR was normalized to the LYS2 mRNA. As 

shown in Figure 3-2C, the level of normalized HIS3 mRNA is low in cells lacking the 

GAL7 promoter in NTS2 (Figure 3-2C, “no GAL7p/SIR2+”). However, when 

transcription of the NTS2 bottom strand was driven by the GAL7 promoter, there was a 

3.1-fold increase in the level of the HIS3 mRNA (Figure 3-2C, “toward 5S”). We also 

measured the HIS3 mRNA level in cells lacking SIR2 as a silencing-defect control and 

found that the HIS3 mRNA level was increased about 2.5 fold (Figure 3-2C, “no 

GAL7p/sir2Δ”). These data suggest that overexpression of the NTS2 bottom strand RNA 

in cis disrupts Pol II gene silencing at the rDNA. 

Next, we performed experiments to determine the effect of overexpression of 

NTS2 bottom strand transcripts in cis on mitotic recombination at the rDNA locus. Cells 

were grown in non-selective media containing galactose for 120 generations, and the rate 

of loss of the HIS3 marker (integrated in the rDNA) was determined.  In wild-type cells 

without a GAL7 promoter, 5.7×10-4 to 6.14×10-4 His- colonies were observed per 

generation (Table 3-3). When the GAL7 promoter is placed in the direction towards the 

35S rRNA gene, the rate of loss of the HIS3 marker is very similar to the rate in wild-

type cells. In contrast, when the GAL7 promoter was used to drive the transcription of 

the NTS2 bottom strand RNAs, the rate of loss of HIS3 gene increased 2.8 to 3.7-fold 

over the rate in wild-type cells. As a control, the rate of loss of the HIS3 gene was also 

determined in the cells lacking SIR2. Consistent with the notion that Sir2 represses 

recombination at the rDNA locus, the rate of loss of HIS3 in sir2Δ cells was 6.2 to 6.6- 
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Table 3-3 Mitotic stability of a HIS3 marker when NTS2 region is overexpressed in cis 

Strain Relevant genotype Loss HIS3/generationa, 
average (± SE; n) 

Loss relative to no 
GAL7p  strainsb 

MBY2367 GAL7p towards 35S/SIR2+ 8.36 (± 0.72; 3)×10-4 1.41 
MBY2368 GAL7p towards 35S/SIR2+ 5.73 (± 1.32; 3)×10-4 0.97 
MBY2371 GAL7p towards 5S/SIR2+ 2.17 (± 0.21; 3)×10-3 3.66 
MBY2372 GAL7p towards 5S/SIR2+ 1.64 (± 0.19; 3)×10-3 2.76 
MBY2373 No GAL7p /SIR2+ 5.73 (± 0.98; 3)×10-4 - 
MBY2374 No GAL7p /SIR2+ 6.14 (± 0.49; 3)×10-4 - 
MBY2377 No GAL7p /sir2Δ 3.69 (± 0.12; 3)×10-3 6.21 
MBY2378 No GAL7p /sir2Δ 3.95 (± 0.39; 3)×10-3 6.66 
a. Determined after 120 generations of growth in YPAT medium containing 2% galactose. 
b. The rate of loss of HIS3 relative to no GAL7p strains was determined by comparing each rate of loss of 
HIS3 to the average rate of loss from MBY2373 and MBY2374.  
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fold higher than the rate in wild-type cells. These data suggest that the act of 

transcription in the NTS2 region can promote mitotic recombination at the rDNA. 

3.3.3. The NTS2 bottom strand RNA may encode proteins 

Although my results indicate that the overexpression of the NTS2 bottom strand 

RNAs in trans has no effect on Pol II gene silencing and mitotic recombination at the 

rDNA locus, it is also possible that the NTS2 bottom strand RNAs may have functions 

that I have not tested for. One of the possible functions is to encode one or more proteins. 

The longest RNA transcribed from this region is about 1,700 nucleotides (Li et al., 

2006a). When we examined the sequence of this RNA, we identified three small 

potential open reading frames (ORFs). These hypothetical ORFs could encode for 

proteins of 71, 65 and 60 amino acids, respectively (Figure 3-3A). To determine if the 

ORFs are capable of encoding proteins, we prepared NTS2 bottom strand RNA by in 

vitro transcription, and then the in vitro transcribed RNA was used as a template for in 

vitro translation using a rabbit reticulocyte translation system in the presence of [35S]-

methionine. The reactions were resolved on a 15% SDS-PAGE gel. Representative 

results are shown in Figure 3-3B, where lane 1 contains a control translation reaction to 

make luciferase protein with a major product of 62 kDa. Interestingly, in the reaction 

using the NTS2 bottom strand RNA as the template, one band of a size less than 10 kDa 

was observed (Figure 3-3B, lane 2) and this band is not present in the control reaction 

without addition of any RNA templates (Figure 3-3B, lane3) or in the luciferase control 

reaction. 
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A 
ORF1 (71 amino acids): 
MQKCKIITQNINNQNQPFPHLFLCPLSTVPPNVKWPIGIHFLHPNYYKTTF
RLTFATLMVSILPPTFCPTY 
 
ORF2 (65 amino acids): 
MLIGLLLLDMYKQYSPPIFLQKKKKKHSGFVLFPPFPSLLRLILSSSSFSTP
SFSCFLFLPAFLH 
 
ORF3 (60 amino acids): 
MLLAKYHTKKLFTTETKTNGYHTLHYHHSNFTTILPSVSLFLPFSVTEIRF
RDPKGKSMP 
 

B 
 

 
Figure 3-3. The NTS2 bottom strand RNA can be translated in vitro. (A) The amino acid sequences of 3 
hypothetic ORFs from the 1.7 kb NTS2 bottom strand RNA.  (B) Rabbit reticulocyte in vitro translation 
reactions were resolved on SDS-PAGE gel. A molecular weight marker is shown on the left. Lane 1, 
luciferase control; lane 2, the reaction using NTS2 transcripts as template; lane 3, no RNA control. 
Asterisk indicates the position of the specific band in the reaction containing NTS2 transcripts. 
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The results of the in vitro translation experiments suggest that the NTS2 bottom 

strand RNA may have the potential to code for a protein product, but it remains unclear 

if the RNA encodes proteins in vivo. To address this question, we used a technique 

called polysome profile analysis. In living cells with active protein synthesis, several 

ribosomes are attached to and translate a single mRNA molecule simultaneously, 

forming a protein synthesis unit called polysome. We reasoned that if the NTS2 bottom 

strand RNA encodes for proteins, it should be associated with the polysomes. To test this 

idea, we prepared cell extracts from wild-type and sir2Δ cells, separated the polysome 

fractions by sucrose-gradient ultracentrifugation, and the RNA from each fraction was 

purified and analyzed by Northern blotting. Fractions collected from lower percentage of 

sucrose contain free RNA and monosomes, while fractions collected from higher 

percentage of sucrose contain the polysomes. As shown in the top panel of Figure 3-4B, 

the NTS2 bottom strand RNAs from sir2Δ cells are present in the late fractions (lane 8-

11), but not in the early fractions (lane 1, 2, 4-7), similar to the profile of the ACT1 

mRNA control (Figure 3-4B, bottom panel), indicating these RNAs are associated with 

polysomes. To our surprise, although the NTS2 bottom strand RNAs are much less 

abundant in wild-type cells compared to sir2Δ cells, they were also found to associate 

with the polysomes (Figure 3-4A). The data suggest that NTS2 bottom stand RNAs are 

associated with polysomes in wild-type and sir2Δ cells.  
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Figure 3-4. Northern blot analysis showing the distribution of the NTS2 bottom strand transcripts in 
polysomes from cell extracts from wild-type (A) and sir2Δ cells (B). Extracts were separated by sucrose 
gradient ultracentrifugation and total RNA was isolated from 12 fractions of the sucrose gradient. A 32P-
labeled strand-specific probe was used to detect the NTS2 bottom strand transcripts (top panel). Note: An 
uncharacterized band with a higher molecular weight than the NTS2 bottom strand RNAs is present in 
lane 3 of both (A) and (B).The fractionation of ACT1 mRNA was used to identify the polysome-
containing fractions (bottom panel).  
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3.4. DISCUSSION 

The rDNA NTS region used to be known as a “nontranscribed spacer” region 

without any annotated genes. However, we and others recently identified Sir2-regulated 

endogenous Pol II transcription units from this region. In this work, the goals were to 

characterize the transcripts and to investigate the possible functions of the Sir2-regulated 

NTS2 bottom strand transcription in regulating the silent chromatin of rDNA locus. Our 

results showed that overexpression of the NTS2 bottom strand RNAs in trans did not 

interfere with Pol II gene silencing or mitotic recombination at the rDNA; while 

overexpression of the RNAs in cis resulted in higher levels of mitotic recombination at 

the rDNA locus as well as a defect in transcription silencing of a HIS3 gene inserted 

within the rDNA array. The results suggest that it is the act of Pol II transcription in 

NTS2 disrupts the function of silent chromatin at the rDNA. 

3.4.1. NTS2 bottom strand transcription and the silent chromatin at the 

rDNA locus 

How does the transcription of NTS2 bottom strand RNA regulate genetic 

recombination at the rDNA locus? We know that Sir2 modulates the chromatin structure 

at the rDNA NTS region (Fritze et al., 1997; Li et al., 2006a). A simple explanation 

would be that the chromatin structure at the NTS region is more ready for genetic 

recombination in sir2Δ cells, but how? One possibility is that the RNAs transcribed from 

the NTS2 region may form RNA-DNA hybrids (R-loops) with the NTS sequence and 

contribute to opening the chromatin structure. This type of recombination is implicated 

to direct the positioning of class switch recombination during B cell maturation in 
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mammals (Reaban and Griffin, 1990; Yu et al., 2003; Huang et al., 2007). However, the 

overexpression of the NTS2 RNAs from a plasmid had no effect on recombination at the 

rDNA (Table 3-2), suggesting that the RNA itself does not have a role in regulating the 

silent chromatin at the rDNA. Instead, it could be the process of transcription that 

modulates the higher order structure of the chromatin at the rDNA, facilitating 

recombination events to occur. This is likely to be the answer, since placing a GAL7 

inducible promoter upstream of the NTS2 bottom strand transcriptional units at one of 

the rDNA repeats can disrupt Pol II gene silencing and increase the rate of loss of a 

marker gene located in rDNA NTS1 region, even in SIR2+ cells (Table 3-3).  

Transcription has been linked to genetic recombination by several other studies 

(for review, see Aguilera et al., 2000). In yeast, Pol I transcription is required for the 

activity of a recombination hotspot called HOT1 that is located in the rDNA NTS region 

(Voelkel-Meiman et al., 1987; Lin and Keil, 1991; Huang and Keil, 1995) (also see 

Chapter I, section 3.4.1). Transcription by Pol I is believed to unwind double-stranded 

DNA thereby causing changes in DNA supercoiling or in the chromatin structure, which 

may increase the exposure of the DNA to the damaging agents. There is also evidence 

suggesting that Pol II transcription stimulates recombination (Dul and Drexler, 1988; 

Thomas and Rothstein, 1989; Nickoloff and Reynolds, 1990; Grimm et al., 1991; Datta 

and Jinks-Robertson, 1995). One of the examples is intergenic transcription from the 

rDNA NTS1 region (Kobayashi and Ganley, 2005). The NTS1 region can be transcribed 

using a bidirectional promoter called “E-pro” (Santangelo et al., 1988) in the absence of 

Sir2 or in cells with a reduced number of rDNA repeats (Ganley et al., 2005; Kobayashi 
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and Ganley, 2005). Overexpression of the NTS1 RNAs using a GAL1/10 bidirectional 

promoter resulted in the amplification of the rDNA repeat number, which is mediated by 

genetic recombination. High levels of transcription in NTS1 were found to be 

accompanied by dissociation of the cohesin subunits from the rDNA. Together these 

data contributed to the hypothesis that Pol II transcription at NTS1 region induces 

dissociation of the cohesin complex, increasing the chances of improper alignment of 

replicated sister chromatids and unequal sister-chromatid recombination, which causes 

change of the rDNA copy number (Kobayashi and Ganley, 2005). Our findings suggest 

that transcription in NTS2 has consequences that are similar to those observed in cells 

that have high levels of transcription in NTS1. When the NTS2 RNAs were 

overexpressed by placing a GAL7 promoter upstream of the transcription start sites 

(TSS), we observed a hyper-recombination phenotype when transcription in NTS2 was 

induced. It is possible that transcription in the NTS2 region in sir2Δ cells also causes 

dissociation of the cohesin complex, which increases the opportunities for unequal-sister 

chromatid exchange recombination events.  

We also observed a loss of silencing phenotype in cells overexpressing the NTS2 

region in cis (Figure 3-2C). This is not due to the read through transcription by the GAL7 

promoter placed at NTS2, because the orientation of the HIS3 marker gene is opposite to 

the GAL7 promoter. The silencing defective phenotype is likely due to a more open 

chromatin structure caused by transcription in NTS2 which allows the access of Pol II 

transcription machinery. In support of this, we found elevated Pol II levels at the NTS 

region in cells lacking Sir2 compared to the levels in wild-type cells (Li et al., 2006a). 
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3.4.2. The possible functions of the NTS2 bottom strand RNAs 

Although our “overexpression in trans” experiment showed that the NTS2 

bottom strand RNAs do not have a role in regulating rDNA silencing and recombination, 

the RNAs may still have other functions that have not been identified yet. One 

possibility is that they code for one or more proteins. The 1.7 kb NTS2 bottom strand 

RNA contains 3 hypothetical ORFs, with the potential of encoding proteins of 71, 65, or 

60 amino acids.  Although none of these hypothetical proteins has a significant match to 

known eukaryotic proteins from the non-redundant protein database, we found that 

NTS2 RNA could be translated into a small (<10 kDa) protein (or proteins) using an in 

vitro translation system (Figure 3-3B). The size of the in vitro translated product is close 

to the size of the predicted protein with 71 amino acids. The fact that the NTS2 bottom 

strand RNAs are associated with polysomes (Figure 3-4) supports the possibility that the 

NTS2 bottom strand RNAs are translated into proteins in vivo. 

Alternatively, the RNAs may not be translated, but they may exert their functions 

by interacting with other proteins or protein complexes. An example for this is the Pol I 

transcribed non-coding RNAs from the rDNA spacer region of the rDNA in mouse cells, 

which is found to interact with NoRC, a chromatin remodeling complex that mediates 

silent chromatin formation and repression of a fraction of rDNA repeats (Mayer et al., 

2006). In our system, we did not observe a growth defect in sir2Δ cells or in the cells 

overexpressing the NTS2 bottom strand transcripts, indicating that these RNAs are not 

likely to repress Pol I transcription in S. cerevisiae. The fact that these RNAs associate 

with polysomes suggests that they either are translated into proteins or are involved in 
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the process of translation. In support of the later case, we found that the 1.7 kb RNA 

molecule is able to form stable a secondary structure with a free energy of -309.7 

kcal/mol predicted by an RNA structure prediction method called RNAfold (Vienna 

RNA Secondary Structure Package, web server). More efforts are needed to test these 

possibilities. 

3.4.3. The transcription of NTS2 region and rDNA replication 

The transcription of NTS2 region may be linked to replication of the rDNA locus. 

It is known that each rDNA repeat contains an origin for DNA replication (ARS) (see 

Figure 1-5), but only 20% of the ARSs are active at a given time. One of the factors that 

has been shown to repress the rDNA ARS firing is Sir2 (Pasero et al., 2002). Since the 

5’ ends of the NTS2 bottom strand RNAs map to a region near the ARS elements of the 

rDNA (Li et al., 2006a; also see Chapter II), it is intriguing to speculate that the 

transcription of the NTS2 region may be involved in regulating the firing of ARS 

elements at the rDNA locus. In this scenario, in wild type cells, a low level of NTS2 

transcription would corresponds to a low level of ARS firing; while in sir2Δ cells, high 

levels of transcription in the NTS2 region would be expected to increase ARS firing. 

This hypothesis could be tested by measuring the amount of nascent DNA using a 

single-copy marker gene located at the rDNA array in cells overexpressing NTS2 in cis.  

In summary, we found that Sir2-regulated NTS2 bottom strand transcription is 

involved in regulating the silent chromatin at the rDNA locus. The data suggests that 

Sir2 contributes to maintaining genome stability by repressing endogenous transcription 

units at the rDNA “non-transcribed spacer” region. We are currently constructing a 
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strain with the TSS of the NTS2 transcripts deleted.  We hope to eliminate the NTS2 

transcription by deleting the TSS and then we will ask: 1) Does loss of NTS2 

transcription affect rDNA amplification/recombination? 2) Does loss of NTS2 

transcription affect rDNA replication? 3) Or does loss of NTS2 transcription disrupt Pol 

II gene silencing? These results of these experiments will help us better understand how 

silent chromatin is maintained and regulated in eukaryotic cells. 
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CHAPTER IV 

LINKER HISTONE H1 REPRESSES RECOMBINATION AT THE 

RIBOSOMAL DNA LOCUS IN Saccharomyces cerevisiae* 

 

Several epigenetic phenomena occur at ribosomal DNA loci in eukaryotic cells, 

including the silencing of Pol I and Pol II transcribed genes, silencing of replication 

origins and repression of recombination. In Saccharomyces cerevisiae, studies focusing 

on the silencing of Pol II transcription and genetic recombination at the ribosomal DNA 

locus (rDNA) have provided insight into the mechanisms through which chromatin and 

chromatin-associated factors regulate gene expression and chromosome stability. The 

core histones, H2A, H2B, H3 and H4, the fundamental building blocks of chromatin, 

have been shown to regulate silent chromatin at the rDNA; however, the function of the 

linker histone H1 has not been well characterized. Here, we show that S. cerevisiae 

histone H1 represses recombination at the rDNA without affecting Pol II gene silencing. 

The most highly studied repressor of recombination at the rDNA is the Silent 

information regulator protein Sir2. We find that cells lacking histone H1 do not exhibit a 

premature-ageing phenotype nor do they accumulate the rDNA recombination 

intermediates and products that are found in cells lacking Sir2. These results suggest that 

histone H1 represses recombination at the rDNA by a mechanism that is independent of  

_______________________ 
*Reprinted with permission from “Linker histone H1 represses recombination at the ribosomal DNA locus 
in the budding yeast Saccharomyces cerevisiae” by Li, C., Mueller, J.E., Elfline, M. and Bryk, M., (2008), 
Mol Microbiol 67(4):906-19. Copyright © 2008 by Blackwell Publishing Ltd. Author contributions: Li, C., 
Figure 4-1, 4-3 and 4-4B; Mueller, J.E., Figure 4-4A, 4-5 and Table 4-2; Bryk, M., Figure 4-2; Elfline, M., 
Table 4-2. 
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the recombination pathways regulated by Sir2. 

 

4.1. INTRODUCTION 

The fundamental unit of eukaryotic chromatin is the nucleosome, consisting of 

DNA wrapped around an octamer of histones containing two copies of each of the four 

core histones, H2A, H2B, H3 and H4. Neighbouring nucleosomes are separated by a 

segment of DNA that can interact with the linker histone allowing further compaction of 

chromatin (reviewed in Luger, 2006). In eukaryotic cells, the core histones H2A, H2B, 

H3 and H4 are highly conserved, while the linker histone, histone H1, is less well 

conserved (Wells and Brown, 1991). Saccharomyces cerevisiae histone H1, encoded by 

the HHO1 gene, is unusual, having two globular domains instead of the one found in 

linker histones from other eukaryotes (Landsman, 1996; Ono et al., 2003; Ali et al., 

2004). A number of observations are consistent with HHO1 encoding a linker histone. 

First, there is a relatively high degree of sequence identity and/or structural similarity 

when comparing S. cerevisiae histone H1 to linker histones in higher eukaryotes 

(Landsman, 1996; Ushinsky et al., 1997; Ali et al., 2004). Second, studies have shown 

that histone H1 localizes to the nucleus, copurifies with core histones, and protects DNA 

located at the entry and exit point of a nucleosome from micrococcal nuclease cleavage 

(Ushinsky et al., 1997; Patterton et al., 1998; Freidkin and Katcoff, 2001). Consistent 

with each globular domain being functional, S. cerevisiae histone H1 has been shown to 

interact simultaneously with two four-way junctions that may have a structure similar to 

the point on the nucleosome where DNA enters and exits (Schafer et al., 2005). This 
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result supports a model where a single histone H1 protein can bridge two nucleosomes 

and facilitate the compaction of chromatin. These properties of the S. cerevisiae H1 

mirror those of linker histones from higher eukaryotes (reviewed in Bustin et al., 2005), 

supporting its role as a bona fide linker histone. 

The in vivo functions of linker histones in higher eukaryotes have been difficult 

to assess owing to the large number of linker histone variants. Early studies showed that 

deletion of any one or two of the eight known genes encoding H1 variants in mice 

causes no obvious mutant phenotypes (Fan et al., 2001). Although, age-dependent 

differences in silencing of a human b-globin transgene have been observed in mice 

lacking a single H1 gene (Fan et al., 2001; Alami et al., 2003). More extensive mutant 

analyses have demonstrated an essential function for linker histones in mammals. Mice 

lacking three specific H1 variants have an embryonic lethal phenotype, with total histone 

H1 levels reduced to ~50% of normal, severe developmental defects, altered chromatin 

structure, andeither increased or decreased expression of a small number of genes (Fan 

et al., 2003; Fan et al., 2005).  

In contrast to mammalian cells, in several unicellular eukaryotes, including S. 

cerevisiae, A. nidulans and T. thermophila, histone H1 is not essential for viability (Shen 

and Gorovsky, 1996; Escher and Schaffner, 1997; Ushinsky et al., 1997; Ramon et al., 

2000). Although histone H1 has been shown to associate with chromatin in S. cerevisiae, 

cells lacking or overexpressing HHO1 exhibit wild-type growth characteristics (Escher 

and Schaffner, 1997; Ushinsky et al., 1997; Patterton et al., 1998; Freidkin and Katcoff, 

2001; Downs et al., 2003; Veron et al., 2006). Microarray analyses have revealed that 
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expression of very few genes is altered in cells lacking HHO1 (Freidkin and Katcoff, 

2001; Hellauer et al., 2001). Moreover, defects in gene silencing at the silent mating-

type loci or telomeres, phenotypes often associated with mutations that alter chromatin 

function, have not been observed in cells lacking histone H1 (Escher and Schaffner, 

1997; Patterton et al., 1998; Veron et al., 2006). Evidence supporting a role for S. 

cerevisiae histone H1 in chromatin function has been provided by two reports. First, 

overexpression studies have indicated that histone H1 regulates chromatin barriers 

located between euchromatin and heterochromatin-like domains (Veron et al., 2006). 

Second, S. cerevisiae cells that lack histone H1 exhibit increased tolerance to 

methylmethane-sulphonate and other related phenotypes, supporting a role for histone 

H1 in genetic recombination and/or DNA repair (Downs et al., 2003).  

RNA polymerase II (Pol II) transcription and genetic recombination are 

repressed at the ribosomal DNA locus in S. cerevisiae (reviewed in Moazed, 2001; 

Rusche et al., 2003). The maintenance of silent chromatin at the rDNA requires several 

types of factors with known roles in chromatin function. Sir2, an NAD-dependent 

histone deacetylase, and Ubp10, a histone H2B deubiquitylating enzyme, are required 

for the repression of Pol II transcription and recombination at the rDNA (Gottlieb and 

Esposito, 1989; Bryk et al., 1997; Smith et al., 1998b; Straight et al., 1999; Garcia and 

Pillus, 2002; Kobayashi et al., 2004; Emre et al., 2005; Gardner et al., 2005; Calzari et 

al., 2006; Cubizolles et al., 2006). Sir2 has been shown to associate with several regions 

of the rDNA and deacetylate histones H3 and H4 throughout the rDNA (Bryk et al., 

2002; Buck et al., 2002; Huang and Moazed, 2003; Li et al., 2006a). A second class of 
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rDNA silencing factors, including Set1, a histone H3 lysine 4 methyltransferase, silences 

Pol II gene transcription but not recombination at the rDNA (Briggs et al., 2001; Bryk et 

al., 2002; Krogan et al., 2002; Mueller et al., 2006). Members of a third class of rDNA 

silencing factors including Sgs1 and Hpr1, repress recombination at the rDNA without 

affecting Pol II gene silencing (Sinclair and Guarente, 1997; Bryk et al., 2001; McVey et 

al., 2001; Merker and Klein, 2002). 

Considering the role of histone H1 in compaction of chromatin and its function at 

barrier elements, we asked if histone H1 regulates silent chromatin at the rDNA. Our 

data show that histone H1 behaves similarly to Sgs1 and Hpr1, repressing recombination 

at the rDNA while having no effect on Pol II gene silencing. The results of genetic and 

molecular experiments suggest that histone H1 represses recombination at the rDNA 

through a mechanism that is largely independent of Sir2. For example, in hho1Δ cells, 

extrachromosomal rDNA circles (ERCs), a product of the Sir2 regulated recombination 

pathway, do not accumulate (reviewed in Rothstein and Gangloff, 1999; Kobayashi, 

2006). Based on our findings, we propose that histone H1 acts independently of Sir2 to 

prevent recombination events at the rDNA that if allowed to occur would contribute to 

genomic instability. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Media and yeast strains 

Yeast media were prepared according to Rose et al. (1990). YPADT consists of 

YPD media supplemented with 20 mg/L L-tryptophan and 20 mg/L adenine sulphate.  
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Saccharomyces cerevisiae strains used in this study are shown in Table 4-1. 

MBY1198, MBY1308, MBY1311, MBY1314 and MBY1317 have been described 

previously (Bryk et al., 2002). BY4742, BY4742 hho1Δ::kan r and BY4742 sir2Δ::kan r 

were purchased from Open Biosystems, Huntsville, AL. The HHO1 gene was deleted 

and replaced with the LEU2 gene from pRS405 or KANMX4 from pRS400 (Christianson 

et al., 1992; Brachmann et al., 1998) by PCR-mediated gene disruption (Baudin et al., 

1993). The sir2Δ hho1Δ double mutant was made by a genetic cross. The his3AI gene 

was replaced with the HIS3 gene by transformation of yeast cells with a 0.83 kb ClaI 

fragment from BJC38 (Curcio and Garfinkel, 1992). His+ transformants were verified by 

PCR amplification of genomic DNA. Histone H1 was tagged at the C-terminus with the 

myc epitope using the PCR-mediated tagging vector, pMPY-3×MYC (Schneider et al., 

1995). We determined that the tagged HHO1-myc allele behaved similarly to a wild-type 

HHO1 allele by measuring the rate of marker loss from the rDNA in wild-type 

(MBY1445, 6.3 × 10-4) and the HHO1-myc cells (MBY2191, 7.9 × 10-4). All strains 

containing gene deletions or insertions were checked by restriction digest of PCR 

amplified genomic DNA and genetic crosses to ensure Mendelian segregation of 

markers. 
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Table 4-1 Strains and plasmids 
Strain Genotype 
MBY21 MATα ura3-167 his3Δ200 GAL+ 
MBY221 MATα ura3-167 his3Δ200 GAL+ Ty1his3AI-234 leu2::hisG 
MBY228 MATα ura3-167 his3Δ200 GAL+ Ty1his3AI-242 leu2::hisG 
MBY320 MATα ura3-167 his3Δ200 GAL+ Ty1his3AI-272 leu2::hisG 

MBY1198 MATα ade2Δ::hisG his3Δ200 leu2Δ0 met15Δ0 trp1Δ63 ura3Δ0 Ty1his3AI-236 
Ty1ade2AI-515 

MBY1238 MBY1198 sir2Δ::KANMX4 
MBY1308 MATα his3Δ200 leu2Δ1 ura3-167 trp1Δ63 RDN1::mURA3-LEU2 
MBY1311 MBY1308 set1Δ::TRP1 
MBY1314 MATα his3Δ200 ura3-167 trp1Δ63 leu2Δ1::mURA3-LEU2 
MBY1317 MBY1314 set1Δ::TRP1 

MBY1445 MATα ade2Δ::hisG his3Δ200 leu2Δ0 met15Δ0 trp1Δ63 ura3Δ0 Ty1HIS3-236 
Ty1ade2AI-515 

MBY1447 MATα ura3-167 Ty1HIS3-242 

MBY1653 MATα his3Δ200 leu2Δ0 met15Δ0 trp1Δ63 ura3Δ0 Ty1his3AI-236 Ty1pTEF1b 
kanAI-2910 

MBY1961 MBY1653 hho1Δ8::LEU2 
MBY1962 MBY1653 hho1Δ18::LEU2 

MBY2038 MATa his3Δ200 leu2Δ0 met15Δ0 trp1Δ63 ura3Δ0 Ty1HIS3-236 Ty1pTEF1b 
kanAI-2910 

MBY2039 MBY2038 hho1Δ8::LEU2 
MBY2040 MBY2038 hho1Δ18::LEU2 
MBY2041 MBY2038 hho1Δ19::LEU2 
MBY2074 MBY1653 sir2Δ::LEU2 

MBY2141 MAT his3Δ200 leu2Δ0 met15Δ0 trp1Δ63 ura3Δ0 hho1Δ8::LEU2 
sir2Δ::KANMX4 Ty1HIS3-236 

MBY2144 MBY2038 hho1Δ::LEU2 fob1Δ::KANMX4 
MBY2146 MBY2038 fob1Δ::KANMX4 
MBY2156 MBY1653 set1Δ::TRP1 
MBY2191 MBY1198 HHO1-C-myc3 

MBY2238 MATα his3Δ200 ura3Δ0 trp1Δ63 Ty1HIS3-242 hho1Δ::LEU2 Ty1pTEF1b 
kanAI-2910 

MBY2239 MATa his3Δ200 ura3-167 Ty1HIS3-242 hho1Δ::LEU2 Ty1pTEF1b kanAI-2910 
MBY2290 MBY1198 HHO1-C-myc3 sir2Δ::KANMX4 
MBY2296 MBY1445 sir2Δ::LEU2 
MBY2343 MBY221 hho1Δ::LEU2 
MBY2345 MBY228 hho1Δ::LEU2 
MBY2347 MBY320 hho1Δ::LEU2 
MBY2353 MBY1308 hho1Δ::KANMX4 
MBY2354 MBY1314 hho1Δ::KANMX4 
BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0
13738 BY4742 sir2Δ::kan r 
12125 BY4742 hho1Δ::kan r 
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4.2.2. Northern blot analysis 

Total RNA was prepared according to Bryk et al. (1997), with blotting and 

hybridization performed as described (Swanson et al., 1991). Ty1his3AI, total Ty1 and 

PYK1 transcripts were detected with strand specific 32P-labelled riboprobes (Curcio and 

Garfinkel, 1992). Northern blots were quantified on a Molecular Dynamics (Sunnyvale, 

CA) Storm 860 phosphorimager using ImageQuant software. 

4.2.3. Plate assay for expression of the LEU2 and mURA3 

Wild-type, hho1Δ and set1Δ cultures were grown to saturation. Ten-fold serial 

dilutions of each culture were made in sterile water and 5 ml of each dilution was 

spotted onto SC, SC-Leu and SC + 5-FOA agar. Plates were photographed after 3 days 

of incubation at 30°C. 

4.2.4. Mitotic stability of Ty1HIS3 elements 

Mitotic stability was measured according to (Bryk et al., 1997) with minor 

modifications. His+ strains were grown overnight at 30°C in SC-His medium and 

counted prior to inoculation of 10 ml of YPADT media with equal numbers of cells. 

Cells of the His- auxotroph, MBY1653 with Ty1his3AI-236 (pregrown in YPADT) and 

the Ty1HIS3-236 derivative MBY2038 were mixed in 10 ml of YPADT to analyse the 

fraction of His- cells before and after 120 generations of growth. Two-tailed Student’s t-

tests were performed to determine the significance of the data. 

4.2.5. Analysis of extrachromosomal rDNA circles 

DNA was prepared according to Wu and Gilbert (1995) from logarithmically 

growing cells (2 × 107cells ml-1). Two-dimensional gel electrophoresis in the presence of 
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chloroquine was performed according to Sinclair and Guarente (1997) and Calzari et al. 

(2006). After electrophoresis, DNA was transferred to nylon membrane and blots were 

hybridized to a 5.4 kb probe (to the rDNA NTS and part of the 35S rRNA gene) labelled 

with 32P-dATP by random priming (Ausubel and K., 1988). ERCs and ribosomal DNA 

were visualized and quantified using a Molecular Dynamics (Sunnyvale, CA) Storm 860 

phosphorimager with ImageQuant software.  

4.2.6. Lifespan analysis  

Lifespan analyses were preformed as described previously (Kennedy et al., 1994). 

For statistical analysis, lifespan data from hho1Δ and sir2Δ cells were compared with 

data from wild-type cells using the Mann-Whitney U-test. 

4.2.7. Analysis of Holliday junction intermediates 

DNA was prepared from logarithmically growing cultures as described (Wu and 

Gilbert, 1995). DNA was cleaved with BglII producing a 4577 bp fragment containing 

the NTS region of the rDNA with the RFB in the middle. Cleaved DNA from wild-type, 

hho1Δ and sir2Δ cells was separated at 1.25 V cm-1 for 24 h through 0.4% (w/v) agarose 

gels in 1×Tris-Borate-EDTA (TBE) buffer (pH 8.0) (Ausubel and K., 1988). Following 

electrophoresis, gels were equilibrated in 1×TBE buffer containing 5 μg ml-1 ethidium 

bromide. Individual lanes were excised from the gel and sealed with molten agarose in 

0.9% (w/v) agarose gels containing 5 μg ml-1 ethidium bromide. DNA molecules were 

separated through the second dimension in 1×TBE buffer containing 5 μg ml-1 ethidium 

bromide at 4 V cm-1 for 18 h. Separated DNA was transferred to a nylon membrane and 

hybridized to a 32P-labelled 4.2 kb rDNA probe. Holliday junction intermediates, Y-
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shaped replication forks and linear ribosomal DNA were visualized and quantified as 

described for the ERC gels. 

4.2.8. Chromatin immunoprecipitation analysis 

ChIPs were performed as described (Li et al., 2006a). Antisera used were: 20 μl 

of α-Sir2 (sc-6666, Santa Cruz Biotechnology, CA); 10 μl of α-K9-K14-acetylated 

histone H3 (06-599, Upstate Biotechnology, NY); or 10 μl of α-myc (sc-789, Santa Cruz 

Biotechnology, CA). Quantitative real-time PCR analysis was performed according to Li 

et al. (2006). The per cent immunoprecipitation (%IP) was calculated by dividing the 

signal from immunoprecipitated chromatin by the signal from input DNA. For analysis 

of the Sir2 ChIPs (Figure 4-3A), the value of %IP from sir2Δ cells was subtracted to 

correct for background. For analysis of the α-K9-K14-acetylated histone H3 ChIP 

experiments (Figure 4-3B), the value of %IP from no-antibody samples was subtracted 

to correct for background. Slot blot analyses were performed as described (Mueller et al., 

2006). NTS sequences were detected by hybridization with a 32P-labelled probe to the 

rDNA NTS. Blots were quantified on a Molecular Dynamics (Sunnyvale, CA) Storm 

860 phosphorimager. Primer sequences are available upon request. 

4.2.9. Statistical analysis 

Student t-tests were performed using a two-tailed analysis. 

 

4.3. RESULTS 

The ribosomal DNA locus on chromosome XII in S. cerevisiae contains ~150-

200 tandem direct repeats of the ribosomal rRNA genes. The rDNA is located in the 
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nucleolus, a substructure near the periphery of the nucleus, where transcription and 

processing of the ribosomal RNA (rRNA) occurs (Warner, 1990). Each 9.1 kb rDNA 

repeat contains a 35S rRNA gene that is transcribed by RNA polymerase I, and a 5S 

rRNA gene that is transcribed by RNA polymerase III, which is located in the middle of 

the non-transcribed spacer (NTS), splitting it into NTS1 and NTS2 (Figure 4-1A). 

Considering the high levels of Pol I and Pol III transcription that occur at the rDNA, it is 

somewhat contradictory that this locus exhibits characteristics of silent chromatin. 

However, silencing at the rDNA maintains genome stability and cell longevity through 

the repression of Pol II transcription and homologous recombination. 

4.3.1. Histone H1 does not regulate transcriptional silencing at the rDNA 

Previous work has shown that histone H1 does not regulate transcriptional 

silencing at the silent mating-type loci and telomeres in S. cerevisiae (Escher and 

Schaffner, 1997; Patterton et al., 1998; Veron et al., 2006). However, a function for 

histone H1 at the rDNA has been suggested by the results of chromatin 

immunoprecipitation (ChIP) experiments showing that H1 associates with the rDNA 

(Freidkin and Katcoff, 2001; Downs et al., 2003). To determine if histone H1 is required 

for the silencing of Pol II genes at the rDNA, we analysed RNA from wild-type and 

hho1Δ cells that each contain a single copy of a genetically marked Ty1 element, 

Ty1his3AI, located in NTS1 (-236) or NTS2 (-272 or -234) of a single rDNA repeat 

(Figure 4-1). Ty1 elements are transcribed by Pol II and the level of mRNA from a 

Ty1his3AI element integrated at the rDNA is a sensitive indicator of Pol II gene 

silencing (Bryk et al., 1997). An RNA probe complementary to the his3 portion of  
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Figure 4-1. Cells lacking histone H1 do not exhibit transcriptional silencing defect. (A) The ribosomal 
DNA locus on chromosome XII is comprised of ~150-200 copies of the rDNA repeat. Two rDNA repeats 
are shown in the enlargement with each containing an intergenic spacer (NTS) and the Pol I transcribed 
35S rRNA gene (35S rRNA). The NTS is divided into NTS1 and NTS2 by the Pol III transcribed 5S 
rRNA gene (5S). Stacked triangles, replication fork barrier (RFB); open circle, origin of replication 
(ARS); bent arrows with numbers, location of the Ty1his3AI elements. B. Northern blot analysis of total 
RNA isolated from wild-type, hho1Δ and set1Δ cells. Strand-specific probes were used to measure the 
steady-state mRNA levels of Ty1his3AI (top panel), total Ty1 (middle panel) or PYK1 (bottom panel). The 
average ratio of Ty1his3AI/PYK1 mRNA and total Ty1/PYK1 mRNA for each strain analysed after 
normalization to the wild-type strain is shown below the top and middle panel respectively. The 
normalized values of the average ratio ± standard error for Ty1his3AI-236/PYK1 mRNA were: hho1Δ:WT, 
0.9 ± 0.1, n = 16; set1Δ:WT, 2.4 ± 0.2, n = 5; and for total Ty1/PYK1 mRNA were: hho1Δ:WT, 1.3 ± 0.1, 
n = 14; set1Δ:WT, 1.0 ± 0.2, n = 3. Average hho1Δ:WT for Ty1his3AI-272/PYK1 mRNA was 0.9 ± 0.04, 
n = 4; and for total Ty1/PYK1 mRNA was 0.7 ± 0.1, n = 4. Average hho1Δ:WT for Ty1his3AI-234/PYK1 
mRNA was 1.0 ± 0.1, n = 4; and for total Ty1/PYK1 mRNA was 0.8 ± 0.1, n = 4. Average hho1Δ:WT for 
Ty1his3AI-242/PYK1 mRNA was 0.8 ± 0.1, n = 4; and for total Ty1/PYK1 mRNA was 0.8 ± 0.1, n = 4. 
Total RNA from wild-type cells lacking the Ty1his3AI element (none) was analysed to provide a measure 
of non-specific binding of the radiolabelled probe. 
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Ty1his3AI was used to detect Ty1his3AI mRNA (Figure 4-1B, Ty1his3AI). As a control 

for loading, we measured the level of PYK1 transcript (PYK1). In the leftmost blot of 

Figure 4-1B, analysis of the ratio of Ty1his3AI-236:PYK1 mRNA showed that the level 

of Ty1his3AI-236 mRNA in the hho1Δ cells was similar to the level in wild-type cells, 

indicating that Pol II gene silencing at the rDNA does not require histone H1. As a 

positive control, we measured Ty1his3AI-236 mRNA in cells lacking the histone 

methyltransferase Set1 that is required for transcriptional silencing at the rDNA and 

telomeres (Briggs et al., 2001; Bryk et al., 2002; Krogan et al., 2002; Mueller et al., 

2006). Consistent with the requirement for Set1 in rDNA silencing, we observed a 

significant increase in Ty1his3AI-236 mRNA in set1Δ cells (Figure 4-1B). We analysed 

pairs of wild-type and hho1Δ cells with Ty1his3AI elements in NTS2 and found that 

silencing of these Ty1his3AI elements was not affected in cells lacking histone H1 

(Figure 4-1B, -272 and -234 lanes). 

Most S. cerevisiae strains contain about 30 Ty1 elements at different locations 

throughout the genome. Although expression of the Ty1his3AI element in the rDNA was 

not affected by deletion of HHO1, we checked the level of RNA from the genomic Ty1 

elements using a probe that hybridizes to all Ty1 mRNA. We did not detect a significant 

difference in the level of total Ty1 mRNA in wild-type and hho1Δ cells (Figure 4-1B, 

total Ty1). Likewise, we observed similar levels of Ty1his3AI mRNA from the 

Ty1his3AI-242 element located outside the rDNA on chromosome XII in wild-type and 

hho1Δ cells (Figure 4-1B, -242 lanes). In summary, our results indicate that histone H1 

is not required for the silencing of Pol II-transcribed genes integrated in the rDNA NTS. 
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To determine if histone H1 is required for silencing of Pol II genes inserted in the 

35S rRNA gene, we used a plate growth assay to assess silencing of a gene cassette 

containing a modified URA3 gene, mURA3 and the LEU2 gene in one of the 35S rRNA 

genes in the rDNA array. Cells with the mURA3-LEU2 cassette inserted at the leu2Δ1 

locus were also analysed (Smith and Boeke, 1997). Cultures of wild-type, hho1Δ and 

set1Δ cells containing the mURA3-LEU2 cassette were spotted on synthetic complete 

media (SC), SC media lacking leucine (SC-Leu) or SC media containing 5-fluoroorotic 

acid (SC + 5-FOA) (Figure 4- 2). Wild-type and hho1Δ cells containing mURA3-LEU2 

at the rDNA grew less well on SC-Leu than SC media, indicating that expression of the 

LEU2 gene is silenced by rDNA chromatin (Figure 4-2, middle panel). In contrast, set1Δ 

cells with mURA3-LEU2 at the rDNA grew considerably better than wild-type cells on 

SC-Leu media owing to the loss of silencing at the rDNA. Wild-type, hho1Δ and set1Δ 

cells containing the mURA3-LEU2 cassette at the euchromatic leu2Δ1 locus grew well 

on SC and SC-Leu media, indicating that the LEU2 gene was expressed at similar levels 

in these cells (Figure 4-2, top and middle panel). 

Silencing of mURA3 was measured by examining growth of cells on media 

containing 5-FOA. 5-FOA is converted to the toxic analogue 5-fluorouracil by the URA3 

gene product (Boeke et al., 1987). Wild-type and hho1Δ cells with mURA3-LEU2 at the 

rDNA exhibited robust growth on 5-FOA because mURA3 was silenced (Figure 4-2, 

bottom panel). However, set1Δ cells grew poorly on 5-FOA owing to loss of silencing of 

the mURA3 gene (Figure 4-2, bottom panel). When the mURA3-LEU2 cassette was 

located at leu2Δ1, growth of wild-type, hho1Δ and set1Δ cells was severely limited on  
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Figure 4-2. Histone H1 is not required for silencing of the mURA3-LEU2 cassette inserted in the 35S 
rRNA gene. Cultures of wild-type, hho1Δ and set1Δ cells containing the mURA3-LEU2 cassette at the 
rDNA or leu2Δ1 locus were grown to saturation, serially diluted and spotted onto SC, SC-Leu and SC+5-
FOA agar to evaluate Pol II gene silencing. Cells were plated on SC media to insure that similar numbers 
of wild-type and mutant cells were used in the assay. The results of a representative plate assay are shown 
(n = 3). 
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5-FOA media, owing to robust expression of the mURA3 gene at leu2Δ1 (Figure 4-2, 

bottom panel). Together, data from Northern studies and growth assays indicate that 

histone H1 is not required for transcriptional silencing of Pol II genes in several regions 

of the rDNA repeat. 

4.3.2. Histone H1 represses mitotic recombination at the rDNA 

In addition to silencing of Pol II-transcribed genes, silent chromatin at the rDNA 

represses homologous recombination between the rDNA repeats. To determine if histone 

H1 regulates mitotic recombination at the rDNA, we measured the rate of loss of a HIS3 

gene from the rDNA and another region of chromosome XII located outside of the 

rDNA array (Bryk et al., 1997). Strains containing Ty1HIS3 are histidine prototrophs 

with the ability to grow on media lacking histidine. Loss of the Ty1HIS3 element from 

the rDNA can be caused by recombination between rDNA repeats, recombination 

between the Ty1 long-terminal repeats or by ectopic recombination with an unmarked 

Ty1 element. Cells that lose the HIS3 marker are no longer able to grow on media 

lacking histidine. We measured the rate of loss of the HIS3 marker in wild-type cells 

with a single copy of Ty1HIS3 in the rDNA after 120 generations of growth in non-

selective media and observed 4.60 × 10-4 His- colonies per generation (Table 4-2). This 

rate of loss of the HIS3 marker was similar to that measured in cells containing a 

Ty1HIS3 element at another locus on chromosome XII outside of the rDNA (4.05 × 10-4). 

To determine if the stability of the Ty1HIS3 element was altered in cells lacking histone 

H1, we measured the rate of loss of Ty1HIS3 in hho1Δ cells. The rate of loss of the HIS3 

marker from the rDNA was increased 3.4-fold in the hho1Δ cells compared with  
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Table 4-2 Mitotic stability of Ty1HIS3 elements 

Strain (locationa) Relevant genotype Loss HIS3/genb, average 
(± SE; n) 

Loss relative to 
wild type 

MBY2038 (in rDNA) wild type 4.60 (± 0.55; 6)×10-4 - 
MBY2039c (in rDNA) hho1Δ 1.58 (± 0.20; 12d)×10-3 3.4 
MBY2296 (in rDNA) sir2Δ 4.19 (± 0.36; 3)×10-3 9.1 
MBY2141 (in rDNA) hho1Δsir2Δ 5.80 (± 0.75; 2e)×10-3 12.6 
MBY2146 (in rDNA) fob1Δ 2.07 (± 0.35; 3)×10-4 0.45 
MBY2144 (in rDNA) hho1Δfob1Δ 5.62 (± 0.55; 3)×10-4 1.2 
MBY1447 (chr XII) wild type 4.05 (± 3.06; 2e)×10-4 - 
MBY2238f (chr XII) hhot1Δ 3.33 (± 1.28; 3)×10-4 0.82 
a. Location of Ty1HIS3: in rDNA, in NTS1 of a single rDNA repeat at position 460482; chr XII, in 
YLR460C at position 1060536. 
b. Determined after 120 generations (gen) of growth in non-selective YPADT broth. Mixed cultures of 
isogenic His- and His+ cells were analysed to verify that His+ cells did not have a growth advantage. The 
mixed cultures contained a fraction of 787/1987 (0.467) His- cells prior to growth in YPADT broth and 
541/1223 (0.442) His- cells after 120 generations of growth in YPADT. 
c. Includes data from two additional hho1Δ strains, MBY2040 and MBY2041. 
d. Includes data from three isogenic hho1Δ isolates. 
e. Average (± range) determined from two independent experiments. 
f. Includes data from a second hho1Δ strain, MBY2239. 
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wild-type cells (P = 0.0016). In contrast, the rate of loss of HIS3 from the locus outside 

of the rDNA was decreased slightly in hho1Δ cells (Table 4-2). These results indicate 

that histone H1 represses recombination at the rDNA, but not at the locus outside of the 

rDNA on chromosome XII. 

The histone deacetylase Sir2 has been shown to repress recombination at the 

rDNA (Gottlieb and Esposito, 1989; Bryk et al., 1997; Kobayashi et al., 2004; 

Kobayashi and Ganley, 2005). We tested if histone H1 and Sir2 act in the same pathway 

to regulate recombination at the rDNA by comparing the rate of loss of the HIS3 marker 

from single mutants (sir2Δ or hho1Δ) and a double mutant (hho1Δ sir2Δ). We found that 

the rate of loss of Ty1HIS3 element from the rDNA in sir2Δ cells was 4.19 × 10-3, which 

was 9.1-fold higher than the rate in wild-type cells (P = 0.0005), and the rate of loss in 

the hho1Δ sir2Δ double mutant was 12.6-fold higher (P =0.0025) (Table 4-2). Loss of 

Ty1HIS3 from the rDNA in the hho1Δ sir2Δ double mutant was approximately equal to 

the sum of the rates observed for the two single mutants, suggesting that Sir2 and histone 

H1 act independently to regulate recombination at the rDNA. 

We also addressed possible genetic interactions between histone H1 and Fob1, 

the rDNA replication fork barrier protein that has been shown to recruit the Sir2-

containing RENT complex to NTS1 (Huang and Moazed, 2003). Consistent with 

previous work (Kobayashi and Horiuchi, 1996), the rate of marker loss from the rDNA 

was lower in fob1Δ cells than in wild-type cells (Table 4-2). In hho1Δ fob1Δ double 

mutants recombination rates were restored to wild-type levels, suggesting that histone 

H1 and Fob1 function antagonistically to regulate recombination at the rDNA.  
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4.3.3. Histone H1 associates with the NTS and the 35S regions of the rDNA 

locus 

The results of experiments examining recombination (Table 4-2) suggest that 

histone H1 and Sir2 function in independent pathways to regulate the mitotic stability of 

the rDNA array. To determine if histone H1 is required for the function of Sir2 at the 

rDNA NTS and if Sir2 affects the association of histone H1 with the rDNA, we 

performed a series of ChIP experiments. First, we examined the association of Sir2 with 

the rDNA in cells lacking histone H1. ChIPs were performed on wild-type, hho1Δ and 

sir2Δ cells using antisera specific for Sir2, and a slot blot containing the 

immunoprecipitated and input DNA was analysed after hybridization with a 

radiolabelled probe to the rDNA NTS. The analysis showed that the association of Sir2 

with the rDNA NTS is similar in wild-type and hho1Δ cells (Figure 4-3A). To assess the 

function of Sir2 at the rDNA in these cells, we measured the level of acetylated histone 

H3 at the rDNA NTS. The results showed that the level of K9-K14 acetylated histone 

H3 at the rDNA NTS is lower in wild-type cells than in sir2Δ cells (Figure 4-3B), 

reflecting the histone deacetylase activity of Sir2. We found that the level of K9-K14-

acetylated H3 at the rDNA NTS in hho1Δ cells was similar to the level in wild-type cells, 

suggesting that histone H1 does not affect the histone deacetylase function of Sir2 at the 

rDNA. 
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Figure 4-3. Histone H1 associates with the rDNA. (A) ChIPs were performed on wild-type (MBY1653), 
hho1Δ (MBY1961) and sir2Δ (MBY2074) cells using antisera that recognizes Sir2 and analysed by slot 
blot using a radiolabelled probe to the rDNA NTS. Data from sir2Δ cells provide a measure of background 
signal. Open triangle represents serial dilution of input DNA to verify that hybridization signal is linear 
with respect to the amount of DNA applied to the blot. The corrected average ratio of %IP (± range, n = 2) 
of Sir2 at the rDNA NTS for hho1Δ:wild-type cells was 1.2 (± 0.1). (B) ChIP analysis measuring the level 
of K9-K14 acetylated histone H3 at the rDNA NTS in wild-type, hho1Δ and sir2Δ cells (same strains as in 
A). No ab, samples to which no antibody was added. Other labels as in (A). The corrected ratio of %IP (± 
range, n = 2) of K9-K14 acetylated histone H3 at the NTS for hho1Δ:wild type cells, 1.10 (± 0.16); sir2Δ : 
wild type, 5.01 (± 0.46). (C) Schematic of the region of rDNA analysed by ChIP for H1 association. 
Numbered dashes represent the location of PCR products used for analysis of the ChIP. Other labels are as 
in Figure 4-1A. Bar graph shows the analysis of the ChIP using antimyc antisera and extracts from wild-
type (MBY2191, filled bars) and sir2Δ (MBY2290, hatched bars) cells expressing myc-tagged histone H1. 
Extracts from cells with an untagged version of H1 (MBY1198) were evaluated to provide a measurement 
of background signal (open bars). Input DNA and immunoprecipitated DNA were analysed by quantitative 
real-time PCR using primer pairs that span the NTS and the first 1344 bp of the 35S rRNA gene, the 
RPS16A gene and an intergenic region on chromosome VIII. Values of the average %IP (± range) for two 
independent experiments are shown on the bar graph. 
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Next, we asked if Sir2 affects the ability of histone H1 to associate with the 

rDNA. For these ChIPs, we utilized cells containing a myc-tagged version of histone H1 

and cells containing untagged histone H1 to obtain a measurement of background signal. 

After immunoprecipitation, we analysed immunoprecipitated and input DNAs by 

quantitative real-time PCR using 14 sets of primers that span the NTS and the 5′ end of 

the 35S rRNA gene (Figure 4-3C). Consistent with earlier work (Freidkin and Katcoff, 

2001), we detected histone H1 at the 35S rRNA gene. In addition, we found that histone 

H1 associates with the NTS region of the rDNA repeat (Figure 4-3C, black bars). In cells 

lacking Sir2, we detected reduced levels of histone H1 in several regions of the NTS, 

with the largest effect (approximately twofold) between the RFB and 5S rRNA gene. 

Interestingly, the level of histone H3 is also decreased in this region in sir2Δ cells (Li et 

al., 2006a), which may reflect loss of nucleosomes from, or changes in the stability or 

positioning of nucleosomes, at the rDNA NTS (Fritze et al., 1997; Bryk et al., 2002; Li 

et al., 2006a). We also examined the association of histone H1 with the actively 

transcribed RPS16A gene and an intergenic region on chromosome VIII in wild-type and 

sir2Δ cells. We found that the association of histone H1 with these loci was similar in 

wild-type and sir2Δ cells (Figure 4-3C), suggesting that the association of histone H1 

with chromatin is not regulated by Pol II activity. In summary, these data show that in 

cells lacking Sir2, histone H1 maintains the ability to interact with the NTS and the 5′ 

portion of the 35S rRNA gene, albeit at somewhat reduced levels. It is important to note 

that a significant amount of histone H1 remains at the rDNA in sir2Δ cells, a finding that 

is consistent with the higher level of mitotic recombination observed at the rDNA in the 
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hho1Δ sir2Δ double mutant in comparison to the level in either single mutant (hho1Δ or 

sir2Δ). 

4.3.4. Extrachromosomal rDNA circles do not accumulate in hho1Δ cells 

We wanted to determine if histone H1 acts in the same recombination pathway as 

Sir2 or through a different mechanism, as suggested by the additive effect on 

recombination that was observed in the hho1Δ sir2Δ double mutant (Table 4-2). ERCs, 

episomes containing one or more rDNA repeats, accumulate to high levels in sir2 

mutants owing to the failure to repress recombination at the rDNA. Because hho1Δ cells 

had a high level of recombination at the rDNA, we asked if these cells also accumulate 

ERCs. To measure ERCs, two-dimensional (2D) gel electrophoresis in the presence of 

chloroquine was performed. Chloroquine is a DNA intercalating agent that induces 

positive supercoiling in circular DNA and allows separation of circular molecules, such 

as ERCs, from linear molecules during 2D gel electrophoresis. We found that the level 

of ERCs in hho1Δ cells was equivalent to the level in wild-type cells (Figure 4-4A). In 

contrast, the level of ERCs in sir2Δ cells was almost sevenfold higher than the level in 

wild-type cells. In summary, despite an increase in mitotic recombination at the rDNA, 

cells lacking histone H1 do not accumulate ERCs. From this result, we conclude that 

reciprocal intrachromosomal recombination events that are proposed to generate ERCs 

are not increased in hho1Δ cells. 

The accumulation of ERCs due to high levels of recombination at the rDNA is 

associated with shortened lifespan in several S. cerevisiae mutants (Sinclair and 

Guarente, 1997) (reviewed in Piper, 2006). Lifespan in S. cerevisiae is defined as the 
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Figure 4-4. Analysis of ERCs and lifespan in hho1Δ cells. (A) Analysis of rDNA and ERCs isolated from 
wild-type (MBY2038), hho1Δ (MBY2039) and sir2Δ (MBY2296) cells. Two-dimensional gel 
electrophoresis in the presence of chloroquine was used to separate circular DNA molecules from linear 
molecules. ERCs that migrate as arcs below the linear rDNA (diagonal streak) are indicated with arrows. 
The average ratio (± range) of ERC DNA:linear rDNA after normalization to the wild-type strain for 
hho1Δ cells was 1.16 (± 0.03; n = 2) and for sir2Δ cells was 6.91 (± 1.86; n = 2). (B) Lifespan analysis 
was performed on wild-type (BY4742), hho1Δ (12125) and sir2Δ (13738) cells of the S288C genetic 
background. The average lifespan (± SE) for wild-type cells was 31.4 (±1.8; n = 51) with a maximum 
lifespan of 52; for hho1Δ cells was 29.8 (± 1.5; n = 49) with a maximum lifespan of 47; and for sir2Δ cells 
was 10.9 (± 0.4; n = 51) with a maximum lifespan of 17. The lifespan of hho1Δ cells was not significantly 
different from that of wild-type cells (P = 0.55). The lifespan of sir2Δ cells was significantly different 
from that of wild-type cells (P = 2 × 10-6). 
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 number of times a mother cell divides and produces a daughter cell. A previous study 

that measured the lifespan of cells of the W303 genetic background, a common 

laboratory strain of S. cerevisiae, reported that cells lacking histone H1 have a shortened 

lifespan (Downs et al., 2003). Thus, we expected that our cells lacking histone H1 would 

contain a high level of ERCs, yet the results presented in Figure 4-4A did not agree with 

that prediction. The yeast strains used in our study are from a different genetic 

background, S288C, another common laboratory strain of S. cerevisiae. Because we did 

not detect an accumulation of ERCs, we measured the average lifespan in our hho1Δ 

cells to address the possibility that the shortened lifespan of hho1Δ mutants is a strain-

dependent phenotype. Different phenotypes in W303 and S288C strains with the same 

mutant allele have been observed previously (for example, see Rogowska-Wrzesinska et 

al., 2001).We analysed lifespan in wild-type, hho1Δ and sir2Δ cells of the S288C 

genetic background (Figure 4-4B). The average lifespan of our wild-type cells was 31.4 

generations and that of hho1Δ cells was 29.8 generations. The difference in lifespan 

between wild-type and hho1Δ cells was not significant (P = 0.55). As expected, sir2Δ 

cells had a shorter lifespan than wild-type cells, with an average of 10.9 generations. 

These data indicate that histone H1 does not regulate lifespan in S288C cells. 

4.3.5. Cells lacking histone H1 form fewer Holliday junctions 

Increased reciprocal recombination occurs at the rDNA in cells lacking Sir2. 

These recombination events involve the formation of Holliday junction intermediates 

that can be visualized using 2D gel electrophoresis in the presence of ethidium bromide 

(Figure 4-5). A schematic of the expected migration of rDNA molecules is shown in the 
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Figure 4-5. Cells lacking histone H1 form fewer Holliday junction intermediates. Analysis of 
recombination and replication intermediates from wild-type (MBY2038), hho1Δ (MBY2039) and sir2Δ 
(MBY1238) cells using 2D gel electrophoresis. Left panel, schematic of 2D gel results. Large filled circle, 
1N linear rDNA; Y-arc, replicating branched DNA; RFB, stalled replication forks at the replication fork 
barrier; X spike, Holliday junction intermediates. Relative levels of Holliday junction intermediates were 
calculated by normalizing the signal in the X spike to that in the Y arc (Kobayashi et al., 2004). The 
normalized values of the average hho1Δ:WT ratio ± SE was 0.76 ± 0.08, n = 4, P = 0.02. The normalized 
values of the average sir2Δ:WT ratio ± SE was 1.16 ± 0.33, n = 3, P = 0.66. 
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 left panel of Figure 4-5 adjacent to the analysis of DNA from wild-type, hho1Δ and 

sir2Δ cells. We found that the average relative intensity of recombination intermediates 

in hho1Δ cells was significantly lower than in wild-type cells, indicating that cells 

lacking histone H1 form fewer Holliday junctions. As shown previously (Kobayashi et 

al., 2004), the levels of Holliday junctions formed in wild-type and sir2Δ cells were 

similar. These findings add further support to our model that histone H1 functions at the 

rDNA by repressing a recombination pathway that is independent of Sir2. 

 

4.4. DISCUSSION 

In S. cerevisiae, rDNA chromatin is associated with silencing proteins as well as 

hypoacetylated and hypomethylated histones that contribute to the repression of Pol II 

transcription and homologous recombination events (Straight et al., 1999; Bryk et al., 

2002; Buck et al., 2002; Huang and Moazed, 2003; Kobayashi et al., 2004; Huang et al., 

2006; Li et al., 2006a). Recent work suggests that silencing at the rDNA requires the 

stable association of cohesin and condensin proteins to promote the proper alignment 

and pairing of the replicated sister chromatids (Laloraya et al., 2000; Kobayashi et al., 

2004; Machin et al., 2004; Kobayashi and Ganley, 2005; Huang et al., 2006; Johzuka et 

al., 2006). In the absence of Sir2, the association of proteins required for cohesion is 

decreased at the rDNA, and it is hypothesized that unequal sister chromatid 

recombination causes the overproduction of ERCs, whose accumulation is linked to a 

shortened lifespan in S. cerevisiae, coupled with changes in the length of the rDNA array 

(reviewed in Kobayashi, 2006). Our studies on histone H1 highlight the existence of 
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another rDNA silencing pathway that represses recombination at the rDNA but does not 

involve the accumulation of ERCs or cause premature ageing. 

4.4.1. Histone H1, Sir2 and ERCs 

We investigated the role of the histone H1 in silencing at the rDNA. Our results 

indicate that histone H1 represses mitotic recombination but is not required for silencing 

of Pol II-transcribed genes at the rDNA (Table 4-2; Figures 4-1 and 4-2). We determined 

that the rate of marker loss from the rDNA in an hho1Δ sir2Δ double mutant is equal to 

the sum of the levels observed in the two single mutants, suggesting that histone H1 

regulates recombination at the rDNA through a Sir2-independent pathway. This 

conclusion is supported by the results of our ageing studies that indicate that hho1Δ cells 

of the S288C background do not exhibit a shortened lifespan (Figure 4-4B). Moreover, 

data from ChIP experiments revealed that cells lacking histone H1 maintain wild-type 

levels of Sir2 and low levels of K9, K14-acetylated histone H3 at the rDNA NTS (Figure 

4-3). Previous analyses of chromatin structure in cells lacking histone H1 did not 

identify changes in nucleosome positioning at several regions of the genome (Puig et al., 

1999; Freidkin and Katcoff, 2001). Likewise, we did not observe differences in the 

accessibility of rDNA chromatin from wild-type and hho1Δ cells to MNase (data not 

shown). Based on our findings, we conclude that histone H1 regulates silent chromatin at 

the rDNA in a manner that does not involve Sir2 or nucleosome positioning. 

Histone H1 can be classified with Hpr1 and Sgs1 as an rDNA silencing protein 

that represses mitotic recombination at the rDNA without affecting Pol II gene silencing. 

In contrast to several rDNA-silencing mutants, hho1Δ cells do not accumulate ERCs 
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(Figure 4-4A). Merker and Klein showed that cells lacking Hpr1, a protein that regulates 

recombination at the rDNA does so without an increase of ERCs (Merker and Klein, 

2002). As increased recombination at the rDNA in hho1Δ and hpr1Δ mutants is not 

associated with the accumulation of ERCs, one possibility is that histone H1 and Hpr1 

regulate the same recombination mechanism at the rDNA. 

4.4.2. Regulation of recombination by histone H1 

To obtain information about the effect of histone H1 on the mitotic stability of 

chromosomes, we measured the rate of loss of a marker from the rDNA and another 

locus on chromosome XII in cells lacking histone H1. Loss of the HIS3 marker from a 

Ty1HIS3 element could occur by recombination between repeated sequences at each end 

of the Ty1HIS3 element or by a non-reciprocal gene conversion event with one of the 30 

unmarked Ty1 elements in the S. cerevisiae genome. For the Ty1HIS3 in the rDNA, 

intrachromosomal recombination or interchromosomal (unequal sister chromatid 

exchange during or after replication of rDNA) between rDNA repeats could also 

contribute to the loss of the HIS3 marker. Our findings, comparing mitotic stability in 

wild-type and hho1Δ cells, indicate that there is not a significant difference in the rates 

of loss of the HIS3 marker from outside of the rDNA, suggesting that histone H1 does 

not regulate marker loss recombination events at the locus outside of the rDNA. 

However, when the marked Ty1HIS3 element is located in the rDNA array we observed 

a 3.4-fold increase in the rate of marker loss in cells lacking histone H1. 

Our data suggest that histone H1 plays a direct role in regulating recombination 

at the rDNA. Consistent with previous reports (Freidkin and Katcoff, 2001; Downs et al., 
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2003), we detect histone H1 at the rDNA at levels that are equal to or higher than levels 

observed at the actively transcribed Pol II gene RPS16A and an intergenic region on 

chromosome VIII (Figure 4-3C). In further support of a direct role for histone H1 at the 

rDNA, in affinity purification experiments performed to identify proteins involved in 

repressing recombination at the rDNA, histone H1 copurified with the RFB-interacting 

protein Fob1 (Huang et al., 2006). Our recombination data (Table 4-2) suggest that the 

hyper-recombinogenic activities of Fob1 are offset by the action of histone H1, an 

interaction that is likely to promote the mitotic stability of the rDNA. 

The rDNA is an unusual locus in S. cerevisiae; it is a highly transcribed region 

containing ~150-200 direct repeats, sequences that induce hyper-recombination, and 

silent chromatin. We expect that the factors governing recombination and the 

recombination events themselves are more numerous and complicated at the rDNA than 

at single-copy loci. Evidence suggests that several types of recombination events can 

occur within the rDNA, including gene conversion events, equal and unequal sister 

chromatid exchanges and single-strand annealing events (Gangloff et al., 1996; Paques 

and Haber, 1999; Kraus et al., 2001; Prado et al., 2003; Kobayashi, 2006). At the rDNA, 

intrastrand recombination events that involve a cross-over are predicted to give rise to 

ERCs (Defossez et al., 1999; Rothstein and Gangloff, 1999; Kobayashi et al., 2004; 

Kobayashi, 2006). Given that we do not detect an increase in the level of ERCs and that 

we observe fewer Holliday junction intermediates in cells lacking histone H1 (Figure 4-

4A and 4-5), we conclude that histone H1 does not regulate intrachromosomal 

recombination events that give rise to ERCs. This conclusion is supported by the finding 
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that we do not detect an increase in Pol II transcription at the rDNA or a loss of Sir2 

from the rDNA, two events that are associated with the accumulation of ERCs (reviewed 

in Kobayashi, 2006). 

We hypothesize that in cells lacking histone H1, there is an increase in the 

formation of lesions that are repaired by recombination pathways that are associated 

with marker loss yet do not produce ERCs. Examples of such recombination events are 

shown in Figure 4-6. Gene conversion events between repeated Ty1 sequences or rDNA 

sequences that are resolved in a non-reciprocal manner would result in marker loss 

without the generation of ERCs (Figure 4-6A). Likewise, single-strand annealing events 

used to repair a double-strand break in the rDNA could result in loss of a marker during 

resection of the broken strand prior to repair of the break (Figure 4-6B). Additionally, 

break-induced replication using an unequal rDNA repeat as template, such that the 

marker is not replicated in the newly made DNA, could also lead to marker loss without 

the production of ERCs (Figure 4-6C, pathway on right). Ongoing and future 

experiments that combine the hho1Δ mutation with mutations in factors required for 

specific recombination pathways, such as RAD1, which is required for the single-strand 

annealing mechanism, should provide insight into the specific recombination pathways 

that are regulated by histone H1. 
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Figure 4-6. Recombination models to account for marker loss events that do not generate ERCs. (A) 
Intrachromosomal repair of a double-strand break (DSB) by synthesis-dependent strand annealing 
(SDSA). SDSA is consistent with an intrachromosomal break repair process that leads to marker loss 
without the generation of ERCs because Holliday junctions and cross-over products, which generate 
ERCs, are not formed. 1, schematic representation of eight rDNA repeats. Thick lines, 35S rRNA gene; 
thin lines, NTS sequences; vertical hash mark, marker gene. In 2, 3 and 4, only the rDNA repeats involved 
in the repair event are shown. 2, a DSB is generated near the marker gene followed by exonucleolytic 
removal of marker sequences. 3, the 3′ end of a broken strand invades the homologous sequences of 
another rDNA repeat to initiate repair synthesis (thin line with arrowhead). 4 and 5, the newly synthesized 
strand is released and serves as a template for synthesis of the opposite strand and repair of the DSB. (B) 
Repair of a DSB by the single-stranded annealing (SSA) pathway. 1, the top and bottom strands of two 
rDNA repeats are shown with half arrows representing the 3′ ends. Other labels as in (A). 2, a DSB is 
generated near the marker gene. 3, 5′ exonucleolytic degradation results in removal of the marker gene 
from the top strand and the generation of substantial 3′ extensions on the top and bottom strands. 4 and 5, 
homologous pairing and nucleolytic processing leads to repair of the DSB, loss of the marker gene and a 
decrease in the number of rDNA repeats. (C) Break-induced replication (BIR). 1, the top and bottom 
strands of three rDNA repeats on two sister chromatids are shown. Labels, as in (A) and (B). 2, a DSB is 
generated near the marker gene on one chromatid. 3, 5′ exonucleolytic processing leads to loss of the 
chromosomal fragment. 4a, if sister chromatids are equally aligned, invasion and annealing of a 3′ end 
from the broken duplex with the homologous sister chromatid leads to the initiation of repair synthesis. 5a, 
completion of repair maintains the marker gene on both chromatids. 4b and 5b, if sister chromatids are 
unequally aligned the repair process leads to an unequal sister chromatid exchange and loss of the marker 
gene from the broken chromatid. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

The major function of the ribosomal DNA cluster (rDNA) on chromosome XII in 

S. cerevisiae is to encode the ribosomal RNAs. Despite a high level of RNA polymerase 

I activity at the rDNA, it is a region of the yeast genome where Pol II gene transcription, 

mitotic recombination and DNA replication are silenced. Many factors that are involved 

in regulating chromatin structure regulate the repressive state of the rDNA locus, 

supporting the model that aspects of chromatin play an essential role in regulating the 

heterochromatin-like nature of the rDNA. During my PhD thesis research, I investigated 

how the basic building blocks of chromatin, histones, and their modifying enzymes 

contribute to the specialized silent chromatin at the rDNA locus. 

5.1. Sir2 represses endogenous Pol II transcription units in the rDNA NTS 

region 

Silent chromatin domains are enriched with hypoacetylated and hypomethylated 

histones, while euchromatin is associated with hyperacetylated and hypermethylated 

histones. A key enzyme that regulates histone acetylation and protects silent chromatin 

from euchromatinization is Sir2. Sir2 is a NAD+-dependent histone deacetylase that is 

required for silencing at the three known silent chromatin domains in S. cerevisiae: the 

rDNA, telomeres and the HM loci. The known targets of Sir2 include the acetylated 

lysine residues on histone H3 (at K9 and K14) and histone H4 (at K16).  Interestingly, 

deletion of SIR2 not only causes an increase in the levels of acetylated histone H3, but 
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also allows an elevation in the levels of K4-methylated histone H3 at the rDNA (Bryk et 

al., 2002).  This result suggested that Sir2 controls the composition of rDNA chromatin 

by regulating the levels of modified histones that are not direct substrates of its 

deacetylase activity. 

My first project was to determine how the histone deacetylase Sir2 affects the 

levels of modified histones at the rDNA. First, I examined the distribution of several 

modified histones at the rDNA in wild-type cells and sir2Δ cells. Using chromatin 

immunoprecipitation analyses (ChIP) and antisera specific for K4-mono-, K4-di- or K4-

trimethylated H3, I found that in cells lacking Sir2, the level of K4-di- and trimethylated 

H3 did not increase uniformly across the rDNA repeat. Instead, these two types of K4-

methylated H3 were increased primarily at the NTS2 region of the rDNA repeat. High 

levels of K4-trimethylated histone H3 are known to be associated with genes that are 

being transcribed by Pol II. The increased level of K4-trimethylated H3 at NTS2 region 

suggested to us that Pol II transcription might be occurring in NTS2, despite the fact that 

there were no known Pol II-transcribed genes in this region. In subsequent ChIP 

experiments, I found that the level of Pol II was increased approximately two-fold over 

the NTS region in sir2Δ cells. I also identified and characterized several Pol II 

transcription units in the rDNA whose expression was upregulated in sir2Δ cells. My 

model is that the increased level of K4-methyalted H3 is the result of the loss of silent 

chromatin at the rDNA and derepression of Pol II transcription in the NTS region in 

sir2Δ cells. Consistent with my model, the peak of K4-di- and trimethylated H3 at the 

NTS2 region in sir2Δ cells was not observed in the cells lacking both Sir2 and Paf1, a 
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Pol II-associated factor that is required for efficient transcription elongation (data not 

shown). Taken together, my data suggest that Sir2 prevents the euchromatinization of 

the rDNA by restricting Pol II access to the rDNA sequences. 

5.2. Functional analysis of the endogenous Pol II transcription units in the 

rDNA NTS region 

Next, I investigated the possibilities that transcripts from or transcription of the 

NTS2 region play a role in the maintenance of silent chromatin at the rDNA. Because 

deletion of SIR2 causes a Pol II gene silencing defect and hyperrecombination at the 

rDNA, we wanted to know if transcription of the NTS2 region is involved in regulating 

the silent chromatin at the rDNA locus. I decided to study the NTS2 bottom strand 

transcripts because these transcripts were resolved as three well defined bands by 

Northern blot analysis (see Chapters 2 and 3). 

To determine if transcripts from NTS2 are required for the formation of silent 

chromatin, I expressed the transcripts in trans from an inducible promoter or in cis by 

driving transcription of the NTS2 region using a galactose-inducible promoter. When the 

NTS2 transcripts were overexpressed in trans (from a plasmid), no silencing or 

hyperrecombination defect was observed at the rDNA. In contrast, when the NTS2 

transcripts were overexpressed in cis (at the rDNA array), the silencing of a Pol II gene 

inserted at the rDNA locus was disrupted and the marker gene was lost more frequently 

by recombination. The loss-of-silencing phenotypes are probably due to changes in 

chromatin accessibility caused by galactose-induced transcription in the NTS2 region.   
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During the course of my studies, it was reported that deletion of SIR2 causes the 

dissociation of cohesin from the rDNA (Kobayashi and Ganley, 2005). Thus, one 

possible mechanism to explain the hyperrecombination phenotype observed in the cells 

where the NTS2 region was overexpressed in cis is that transcription in NTS2 prevents 

or reduces the association of cohesin with the rDNA. Failure in proper cohesin binding 

allows misalignment of sister chromatids, and increases the probability of unequal sister 

chromatid exchanges that lead to expansion and contraction events in repeated sequences, 

such as the rDNA array. My data support a model where Sir2 represses mitotic 

recombination at the rDNA by preventing Pol II transcription in the NTS region, thereby 

allowing the stable association of cohesin, which keeps the rDNA repeats in proper 

register and to ultimately stabilize the rDNA locus. 

I have found that overexpression of the NTS2 region causes hyperrecombination 

at the rDNA. One question I am currently addressing is what will happen to the silent 

chromatin at the rDNA if the transcription of the NTS2 region is hindered? My 

hypothesis is that if the hyperrecombination at the rDNA that is observed in sir2Δ cells 

depends on Pol II transcription in the NTS region, then preventing transcription at the 

NTS region should repress the rDNA hyperrecombination defect. Toward completing 

this goal, I am constructing a yeast strain that will be unable to transcribe the NTS2 

bottom strand. As shown in Figure 2-9C, the major 5’ end of the NTS2 bottom strand 

transcripts colocalizes with a consensus Pol II transcription start site (TSS). My goal is 

to delete the TSS from each rDNA repeat and to prevent transcription of the NTS2 

bottom strand by Pol II. Because the rDNA array contains more than 150 rDNA repeat, 
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and each rDNA repeat contains a TSS in NTS2, it would be impossible to delete each 

TSS in the rDNA array. Instead, I subcloned one rDNA repeat on a plasmid, and deleted 

the TSS in NTS2 by PCR-mediated site-directed mutagenesis. The mutagenized rDNA 

repeat was then introduced back to chromosome XII of a strain that lacks the entire 

chromosomal rDNA array (rdnΔΔ strain, see Oakes et al., 2006a). Growth of the rdnΔΔ 

strain is supported by a helper plasmid that has the rRNA genes under the control of a 

GAL7 promoter. This strain is only viable in galactose-containing media and not in 

media containing glucose. 

After growing the transformants for several generations, I observed that the cells 

lacking the rDNA TSS were able to grow on glucose-containing media, suggesting that 

the rDNA repeats had expanded to at least a minimum copy number that allows cells 

growth (~20 copies, Takeuchi et al., 2003). In addition, the helper plasmid was no longer 

needed for viability and could be segregated from the cells. In the future, we are going to 

use this strain to test if the NTS2 bottom strand transcripts are eliminated in the presence 

and absence of Sir2. If transcription of the NTS2 bottom strand is abolished by deleting 

the TSS, we will measure the level of Pol II transcription and recombination in the 

rDNA to see if it is altered in cells that lack transcription of the NTS (see below).  I will 

also examine the extent to which the rDNA array is expanded in this strain. Failure to 

expand the locus to the wild-type copy number could imply that loss of transcription has 

imparted a replication defect at the rDNA.  

Each rDNA repeat contains an autonomous replication sequence (ARS) at the 

NTS2 region (see Figure 1-5). However, only 20% of the rDNA ARSs are fired during 
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each cell cycle, and the rest of the ARSs are repressed in a Sir2-dependent manner that is 

not well understood (Pasero et al., 2002). Given that the transcription start site of the 

NTS2 bottom strand transcripts is about 50 bp from one of the ARS elements, it is 

possible that transcription across NTS2 is required for rDNA ARS firing. In this scenario, 

firing of the rDNA ARS will be hindered in the “ΔTSS” strains due to lack of 

transcription in NTS2, and replication of the rDNA locus will depend on the ARS 

elements flanking the rDNA array. We expect that the ARS elements flanking the rDNA 

locus will not be able to support replication of the full length rDNA array (~ 1.4 - 1.8 

Mb). Therefore, defects in rDNA replication will limit the extent of rDNA repeat 

expansion. This experiment will tell us if the transcription in NTS2 region has a role in 

regulating rDNA ARS firing and help us understand how Sir2 represses rDNA 

replication.  

Two other important characteristics of silent rDNA chromatin that need to be 

examined using the strains that lack the TSS in NTS are Pol II gene silencing and mitotic 

recombination. This will be accomplished by measuring the mRNA level using Northern 

blotting analysis and by measuring the rate of loss of a marker gene inserted in one of 

the rDNA repeats in cells lacking the NTS2 TSS. The mRNA level of the reporter gene 

will indicate the degree of silencing and the rate of loss of the marker gene will reflect 

the mitotic recombination at the rDNA. If the transcription of the NTS2 region does 

regulate the silent chromatin at the rDNA, deletion of SIR2 in strains lacking the NTS2 

TSS will not cause Pol II silencing defect or hyperrecombination as observed in the 

stains with an intact NTS2 TSS. This will allow us to confirm the previous conclusion 
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that Sir2 regulates the silent chromatin rDNA locus by repressing Pol II transcription at 

the rDNA NTS region. 

In addition, I found that the NTS2 bottom strand transcripts can be translated in 

vitro, and that they associate with polysomes. These data suggest that the NTS2 bottom 

strand transcripts may encode proteins. To investigate if these transcripts encode 

proteins in vivo, the sequences encoding an epitope tag should be introduced into the 

possible ORFs found within the NTS2 bottom strand transcripts. With these strains, 

Western blotting analysis using antibodies against the tags could be used to test if the 

transcripts have the potential to be translated. Alternatively, the NTS2 bottom strand 

transcripts may not encode any proteins but serve as a regulator in ribosome functions. 

In support of this, the NTS2 bottom strand transcripts were predicted to form stable 

secondary structures using an RNA secondary structure prediction method called 

“RNAfold”.  

5.3. Linker histone H1 represses recombination at the rDNA locus in S. 

cerevisiae 

As the basic components of the chromatin structure, histones play direct roles in 

regulating the silent domains of the genome. Many studies have been conducted to 

understand how the core histones (including H2A, H2B, H3 and H4) regulate silent 

chromatin, yet little is known about the linker histone H1. Different from the core 

histones, histone H1 binds and protects the entry and exit point of the DNA wrapping 

around a nucleosome and facilitates the compaction of the chromatin (reviewed in 

Bustin et al., 2005). It was found to be present at several regions of the yeast genome, 
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including the subtelomeric region and the rDNA repeats (Freidkin and Katcoff, 2001; 

Downs et al., 2003). However, whether H1 regulates the silent chromatin at the rDNA 

locus remained unclear. In my study, we examined the role of histone H1 on Pol II gene 

silencing and mitotic recombination at the rDNA locus. Our results showed that histone 

H1 represses mitotic recombination without affecting Pol II gene silencing at the rDNA. 

Since Sir2 contributes to repression of rDNA recombination by inhibiting 

intrachromosomal recombination events, we next tested if H1 acts in the same pathway 

as Sir2. All the evidence that we have found suggest histone H1 and Sir2 act to repress 

different recombination pathways at the rDNA. First, the recombination rate in the 

hho1Δ sir2Δ double mutant is equal to the sum of recombination rate from the two single 

mutants. Secondly, the hho1Δ cells do not accumulate extrachromosomal rDNA circles 

(ERCs) or the Holliday junction intermediates, which accumulate in cells lacking Sir2. 

In addition, the association of Sir2 or H1 with the rDNA repeats does not depend on 

each other. These data suggest that histone H1 regulates recombination at the rDNA 

through a Sir2-independent pathway. 

The ongoing and future experiments are focusing on identifying the 

recombination pathway(s) that are repressed by histone H1. There are several 

recombination pathways that do not involve in formation of the Holliday junction 

intermediates, such as synthesis-dependent strand annealing pathway (SDSA), the 

single-stranded annealing pathway (SSA), and the break-induced repair pathway (BIR). 

Different recombination proteins are involved in each of the three pathways. For 

example, SDSA requires Rad51 and Rad52, but not Rad1 nor Rad10. SSA requires 
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Rad1and Rad10, but not Rad51. SSA requires Rad52 when DNA repeat lengths are short, 

but not when DNA repeat lengths are long (~10 kb) as in the rDNA. Finally, BIR 

requires Rad52, but not Rad1, Rad10 nor Rad51. Dr. John Mueller and other members of 

our lab are using the single and double deletion mutants lacking HHO1and one the Rad 

factors mentioned above to measure the rates of rDNA recombination, and to ultimately 

identify the recombination pathway(s) that histone H1 represses at the rDNA.  
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APPENDIX I 

 

ISW2 REGULATES GENE SILENCING AT THE RIBOSOMAL DNA LOCUS 

IN Saccharomyces cerevisiae 

 
Since the discovery of rDNA silencing in 1997 (Bryk et al., 1997; Smith and 

Boeke, 1997), a number of studies have identified factors required for silencing at the 
rDNA including, but are not limited to, histones, histone-modifying enzymes and 
chromatin remodelers (Bryk et al., 1997; Fritze et al., 1997; Smith and Boeke, 1997; 
Smith et al., 1999; Straight et al., 1999; Roy and Runge, 2000; Bryk et al., 2002; Dror 
and Winston, 2004; Clarke et al., 2006; Mueller et al., 2006; Mueller and Bryk, 2007). 
Chromatin remodeling proteins have been shown to regulate silencing at the rDNA. 
Deletion of SNF2 or SNF5, which encode members of the Swi/Snf complex, causes loss 
of silencing at the rDNA and telomeres (Dror and Winston, 2004). The chromatin 
remodeling protein Isw1 is also required for silencing at the rDNA (Mueller and Bryk, 
2007). Isw1 is a member of the Imitation Switch (ISWI) family of chromatin remodelers 
(Saha et al., 2006). Given that Isw1 associates with the rDNA and that deletion of ISW1 
causes changes in rDNA chromatin structure, it has been proposed that Isw1 functions 
directly at the rDNA to regulate silencing (Mueller and Bryk, 2007). A second ISWI 
family gene in S. cerevisiae, ISW2, is required for gene repression (Mellor and Morillon, 
2004). Cells lacking ISW2 overexpress a-specific genes in MATα cells and fail to repress 
early meiotic genes (Goldmark et al., 2000; Ruiz et al., 2003). Isw2 has been shown to 
repress individual genes as well, including INO1, PHO3 and CLB2 (Fazzio et al., 2001; 
Kent et al., 2001; Sugiyama and Nikawa, 2001; Sherriff et al., 2007). Here we used 
Northern analysis to determine if Isw2 is required for transcriptional silencing at the 
rDNA.  

To determine if Isw2 regulates Pol II gene silencing at the rDNA, we constructed 
a strain with the ISW2 gene replaced with KANMX4 gene. All the strains used this 
experiment contains a genetically marked Ty1 element, Ty1his3AI, in one of the rDNA 
repeats. In wild-type cells, the Ty1his3AI is transcriptionally silenced at the rDNA array 
(Bryk et al., 1997). However, if rDNA silencing is disrupted, it will be transcribed by 
Pol II. The level of Ty1his3AI mRNA is inversely proportional to the degree of silencing 
at the rDNA locus in these strains. 

We measured the steady-state Ty1his3AI transcript levels in wild-type cells and 

________________ 
Modified with permission from “Isw2 regulates gene silencing at the ribosomal DNA locus in 
Saccharomyces cerevisiae” by Mueller, J.E., Li, C., and Bryk, M., (2007), Biochem Biophys Res 
Commun. 361:1017-1021. Copyright © 2007 by Elsevier Inc. 
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isw2Δ cells. Ty1his3AI mRNA was detected by hybridization with a probe specific to 
his3 sequence (Figure A-1, upper panel). The low level of Ty1his3AI mRNA observed in 
wild-type cells is consistent with transcriptional silencing at the rDNA. In isw2Δ cells, 
Ty1his3AI mRNA levels were increased 4.3-fold relative to the level in wild-type cells, 
indicating that Isw2 regulates transcriptional silencing at the rDNA. As a control, we 
performed Northern analyses on RNA from cells lacking ISW1, a chromatin remodeling 
protein that is closely related to Isw2 and is required for silencing at the rDNA and HM 
loci (Cuperus and Shore, 2002; Mueller and Bryk, 2007). As expected, Ty1his3AI RNA 
levels were increased in isw1Δ cells. 

Approximately 30 endogenous Ty1 elements have been mapped in the S. 
cerevisiae genome and all of these are located outside of the rDNA. To determine if 
deletion of ISW2 causes a general increase in transcription of endogenous Ty1 elements, 
we measured total Ty1 mRNA (Figure A-1, middle panel). Consistent with previous 
studies (Kent et al., 2001; Gelbart et al., 2005), no significant difference in steady-state 
total Ty1 mRNA levels were observed in wild-type and isw2Δ cells. In contrast to the 
regulation of the Ty1his3AI element in the rDNA, cells lacking either ISW1 or ISW2 
individually do not exhibit defects in transcription of genomic Ty1 elements (Kent et al., 
2001; Mueller and Bryk, 2007). However, previous work has shown that cells lacking 
both ISW1 and ISW2 have higher levels of Ty1 transcripts than wild-type or single ISW1 
or ISW2 deletion mutants, suggesting that Isw1 and Isw2 act redundantly to repress 
transcription of genomic Ty1 elements(Kent et al., 2001). Consistent with transcriptional 
silencing of Pol II genes at the rDNA being a result of specialized silent chromatin, data 
presented here and elsewhere (Mueller and Bryk, 2007) suggest that Isw1 and Isw2 alter 
the function of silent chromatin at the rDNA. However, in contrast to the regulation of 
endogenous Ty1 elements located outside of the rDNA (Kent et al., 2001), our results 
suggest that ISW1 and ISW2 do not act redundantly in the silencing of Pol II-transcribed 
genes in the rDNA. 

There is precedence for the regulation of the rDNA locus by the ISWI family 
chromatin remodelers. In S. cerevisiae, Isw1 associates with the rDNA and is required 
for the silencing of Pol II-transcribed genes at the rDNA (Mueller and Bryk, 2007). In 
mammals, Snfh2, an ISWI chromatin remodeling protein and member of the nucleolar 
remodeling complex NoRC, is required for silencing of Pol I transcription (Strohner et 
al., 2004; Li et al., 2006b). Here, we show that Isw2 plays a role in the regulation of Pol 
II transcription at the rDNA in S. cerevisiae, however, the lack of an effect of deletion of 
ISW2 on total rRNA levels or cell-growth properties (data not shown) suggests that Isw2 
does not regulate transcription of the ribosomal RNA genes by Pol I in S. cerevisiae. 



181 
 

 
 
Figure A-1. Isw2 is required for transcriptional silencing at the rDNA. Total RNA from wild-type, isw2Δ 
and isw1Δ cells were analyzed to determine the levels of Ty1his3AI mRNA (upper panel), total Ty1 
mRNA (middle panel) and ACT1 mRNA (lower panel). Transcript levels for Ty1his3AI and total Ty1 
were normalized to levels of ACT1 or PYK1 (not shown) mRNA. The average ratios of normalized 
Ty1his3AI mRNA in mutants relative to that in wild-type cells are shown below each panel (n=3). These 
values ±SE were: isw2Δ, 4.3±0.7, p=0.011; isw1Δ, 3.6±0.8, p=0.036. The average ratios of normalized 
total Ty1 transcript in mutants relative to wild-type cells are shown below each panel (n=3). These values 
±SE were: isw2Δ, 1.8±0.6, p=0.24; isw1Δ, 1.4±0.2, p=0.12. 
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APPENDIX II 

 

AN INCREASE IN MITOCHONDRIA DNA EXCLUDES SIR2 ASSOCIATION 

AT THE RIBOSOMAL DNA LOCUS 

Coordination between cellular metabolism and DNA replication determines when cells 
initiate division. It has been assumed that metabolism only plays a permissive role in cell 
division. While blocking metabolism arrests cell division, it is not known whether an up-
regulation of metabolic reactions accelerates cell cycle transitions. To determine if metabolism 
can actively promote cell division it is important to identify gain-of-function mutations in 
metabolic pathways that also accelerate cell proliferation. Such mutations have not been 
described in the yeast S. cerevisiae. In eukaryotic cells, the mitochondria are membrane-bound 
organelles which produce energy and regulate cell metabolism. Each mitochondrion contains a 
mitochondria-specific genome (also referred as mtDNA) that is evolutionarily different from the 
nuclear DNA. Abf2 is a conserved mtDNA maintenance protein (Diffley and Stillman, 1991; 
Bonawitz et al., 2006), which directly binds to, bends and compacts mtDNA (Friddle et al., 2004; 
Stigter, 2004). Moderate over-expression of Abf2 by 2-3 fold elevates the amount of mtDNA by 
50-150% (Zelenaya-Troitskaya et al., 1998). The consequences of an increase in mtDNA in cell 
proliferation have not been explored. 

In the study to determine if up-regulation of metabolism could promote cell division, 
Heidi Blank (2008) from Dr. Michael Polymenis’ lab found that cells with increased amount of 
mitochondria DNA by moderately overexpressing ABF2 proliferate and increase in size more 
rapidly than wild-type cells, indicating that increasing the amount of mtDNA may promote 
nuclear DNA replication. One of the connections between mitochondria function and the nuclear 
DNA replication is Sir2. Sir2 is a class III histone deacetylase whose activity depends on NAD+, 
an important coenzyme involved in cell metabolism (reviewed in Blander and Guarente, 2004). 
It is known that Sir2 not only represses Pol II gene expression at several silent loci in S. 
cerevisiae, but also appears to negatively impact on rDNA replication. In sir2Δ cells, twice as 
many origins are activated within the rDNA array (Pasero et al., 2002). My contribution to this 
work was to determine if overexpressing the mitochondrial protein Abf2 can down-regulate the 
level of Sir2 at the rDNA locus hence promote DNA replication at the rDNA locus. 

To test if increased amount of mtDNA negatively regulates the level of Sir2 at the rDNA, 
I performed chromatin immunoprecipitation (ChIP) with ABF2+ or 3×ABF2+ cells using antisera 
against Sir2. ABF2+/sir2Δ cells and 3×ABF2+/sir2Δ cells were examined to provide a 
measurement of background. Immunoprecipitated DNA was analyzed by real-time PCR using 
primers that span the ARS elements in the rDNA. We found that the level of Sir2p at the rDNA 
ARS elements was reduced about two-fold in 3×ABF2+ cells, compared to the level in ABF2+ 
cells (Figure A-2). The level of Sir2 at RPS16A, a locus that does not contain an ARS element, 

________________ 
Modified with permission from “An Increase in Mitochondrial DNA Promotes Nuclear DNA Replication 
in Yeast” by Blank HM, Li C, Mueller JE, Bogomolnaya LM, Bryk M, Polymenis M. (2008), PLoS Genet. 
4(4):e1000047. Copyright © 2008 Blank et al. 
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 was not altered by over-expression of Abf2. These data indicate that increasing the amount of 
mtDNA reduces Sir2 association with the rDNA. In support of this, John Mueller also showed 
that the levels of K9-, K14-diacetylated histone H3 (a known target of Sir2) were increased at 
the rDNA in the 3×ABF2+ strain (see Figure 9C in Blank et al., 2008). And in contrast to the 
reduced level of Sir2 in 3×ABF2+ strain, cells lacking the mtDNA (ρ-) have increased level of 
Sir2 at the rDNA locus (see supplemental Figure S6 in Blank et al., 2008), suggesting the level 
of Sir2 bound at the rDNA ARS elements is inversely related to the amount of mtDNA. 

In conclusion, our data suggest the positive effect of increasing mtDNA on cell division 
may be mediated by lowering the level of Sir2 bound at the rDNA ARS region. The inhibitory 
effects of Sir2 on DNA replication extend beyond rDNA. Loss of Sir2 suppresses replication 
defects of mutants that cannot assemble a pre-replicative complex of proteins (pre-RC) at origins 
of DNA replication in the G1 phase of the cell cycle (Pappas et al., 2004). Recently, another 
study showed that Sir2 represses five DNA replication origins on chromosome III and VI in S. 
cerevisiae by inhibiting the loading of the MCM (minichromosome maintenance) complex 
(Crampton et al., 2008). Hence, Sir2 could possibly act as a common sensor to coordinate cell 
metabolism and DNA replication.  

 

 
 
Figure A-2. Cells over-expressing ABF2 have less Sir2 at the rDNA ARS elements. ChIP experiments 
analyzed by real-time PCR show that the level of Sir2p (%IP) at the rDNA ARS elements is reduced in 
3×ABF2+ cells. Part of one rDNA repeat is shown above the graph indicating the location of the rDNA 
ARS elements, the PCR products analyzed (20, 21, 22); the nontranscribed spacer (NTS); and the 35S and 
5S rRNA genes. The values shown in the bar graph are the average %IPs (± SD) of three independent 
experiments. 
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APPENDIX III 

 

THE HISTONE VARIANT H2A.Z DOES NOT REGULATE RIBOSOMAL DNA 

SILENCING 

The nucleosome is the fundamental building block of chromatin in eukaryotic cells. The 
canonical nucleosome is composed of the four core histone proteins, H2A, H2B, H3 and H4. 
These canonical histones can be modified by adding different chemical groups to distinguish 
different chromatin states. In addition, there are histone variants that are used as an alternative 
means of marking chromatin domains (reviewed in Sarma and Reinberg, 2005). One of the most 
well characterized histone variants is H2A.Z, the variant for histone H2A. The H2A.Z is found 
in nearly all eukaryotes, and its functions have been linked to antagonizing gene silencing and 
activation of gene expression. In S. cerevisiae, Htz1 (H2A.Z in S. cerevisiae) has been found to 
act redundantly with SWI/SNF complex in activation of the GAL1 and PHO5 genes upon 
induction (Santisteban et al., 2000). It is also enriched at regions near telomeres and in regions 
flanking the HMR silent loci to prevent spreading of the silent chromatin (Meneghini et al., 
2003). Deletion of HTZ1 was found to mildly derepress a reporter gene inserted at the silent 
HMR loci (Dhillon and Kamakaka, 2000), which is probably due to the spreading of the limited 
amount of Sir proteins into euchromatin (Meneghini et al., 2003). 

H2A.Z has been localized to chromatin flanking the rDNA locus (Dhillon and 
Kamakaka, 2000). However, the role of Htz1 in regulating rDNA silencing remains unclear. To 
address this question, I replaced the endogenous HTZ1 gene with KANMX4 in a strain carrying a 
Ty1his3AI element inserted in one rDNA repeat, and measured the steady-state Ty1his3AI 
mRNA levels in wild-type cells, htz1Δ cells and the silencing-defective control strain set1Δ cells 
by Northern blotting. As shown in Figure A-3, the level of Ty1his3AI mRNA in wild-type cells 
is low (top panel, lane 1), consistent with transcriptional silencing at the rDNA locus. As a 
silencing-defective control, we looked at the level of Ty1his3AI mRNA in set1Δ cells. Set1 is a 
histone methyltransferase and it is absolutely required for rDNA silencing (Nislow et al., 1997; 
Briggs et al., 2001; Bryk et al., 2002; Nagy et al., 2002; Krogan et al., 2003a). As 
expected, deletion of SET1 results in a 3.3-fold increase in the Ty1his3AI mRNA compared to 
the level in wild-type cells (top panel, lane2). We also measured the levels of Ty1his3AI mRNA 
in three isolates of htz1Δ strains, and found that deletion of HTZ1 causes mild increase of the 
level of Ty1his3AI mRNA (top panel, lane 3-5). However, the increase of the level of Ty1his3AI 
mRNA from the Ty1his3AI element at the rDNA locus is not likely to reflect loss of rDNA 
silencing in htz1Δ cells, because we also observed that the transcription of other genomic Ty1 
elements is elevated slightly in cells lacking Htz1 (middle panel, lane 3-5). The data suggest that 
histone H2A variant Htz1 in S. cerevisiae represses transcription of the all genomic Ty1 
elements regardless of their position in the genome.  
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Figure A-3. Htz1 is not required for Pol II gene silencing at the rDNA. Total RNA from wild-type 
(MBY1198), set1Δ  (MBY1217) and three htz1Δ (MBY2071, 2072 and 2073) strains were analyzed to 
determine the levels of Ty1his3AI mRNA (upper panel), total Ty1 mRNA (middle panel) and PYK1 
mRNA (lower panel). Transcript levels for Ty1his3AI and total Ty1 were normalized to levels of PYK1 
mRNA. The average ratios of normalized Ty1his3AI mRNA in mutants relative to that in wild-type cells 
are shown below each panel (n=2, except set1Δ, n=1). These values ±range were: set1Δ, 3.3; htz1Δ#1, 1.4
±0.05; htz1Δ#2, 1.5±0.12; htz1Δ#3, 2.2±0.02. The average ratios of normalized total Ty1 transcript in 
mutants relative to wild-type cells are shown below each panel (n=2, except set1Δ, n=1). These values ±
range were: set1Δ, 1.5; htz1Δ#1, 1.7±0.03; htz1Δ#2, 2.2±0.06; htz1Δ#3, 3.0±0.01. 
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