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Abstract: Nowadays, wind is considered as a remarkable renewable energy source to be implemented
in power systems. Most wind power plant experiences have been based on onshore installations,
as they are considered as a mature technological solution by the electricity sector. However, future
power scenarios and roadmaps promote offshore power plants as an alternative and additional
power generation source, especially in some regions such as the North and Baltic seas. According to
this framework, the present paper discusses and reviews trends and perspectives of offshore wind
power plants for massive offshore wind power integration into future power systems. Different
offshore trends, including turbine capacity, wind power plant capacity as well as water depth and
distance from the shore, are discussed. In addition, electrical transmission high voltage alternating
current (HVAC) and high voltage direct current (HVDC) solutions are described by considering the
advantages and technical limitations of these alternatives. Several future advancements focused on
increasing the offshore wind energy capacity currently under analysis are also included in the paper.
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1. Introduction

Energy demand has been increasing non-stop during the last decades [1]. Nowadays, fossil fuel
sources (i.e., coal, oil and natural gas) provide around 85% of the world energy demand, according to
the BP Energy Outlook of 2019 [2]. However, with the Paris climate agreement established in December
2015, this energy scenario is about to change [3]. This climate agreement aims to restrict maximum
increase in the global average temperature below 2 ◦C above pre-industrial levels [4]. To fulfill this
goal, greenhouse gas (GHG) emission trends should drastically change [5]. Consequently, the use
of fossil fuels should be reduced, as they are considered as the main source of GHG emissions [6].
Actually, global GHG emissions are dominated by the emissions of CO2 due to the combustion of fossil
fuels, which has been increasing continuously since 1990 [7]. The power sector should be decarbonized
by 2050 to meet the Paris agreement target [8]. Furthermore, Liddle and Sadorsky estimated that
increasing by 1% the share of non-fossil fuel electricity generation can reduce by up to 0.82% the
CO2 emissions [9]. This environmental worry is one of the reasons to promote the integration of
renewable energy sources (RES) into power systems [10]. Moreover, RES can also mitigate the energy
dependence on fossil fuels imported from other countries [11]. Apart from the economic costs of
these fossil fuel imports, decreasing energy dependence increases electricity supply security [12].
The International Energy Agency defines electricity supply security as the uninterrupted availability

J. Mar. Sci. Eng. 2019, 7, 399; doi:10.3390/jmse7110399 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0003-2605-3269
https://orcid.org/0000-0002-6501-7896
https://orcid.org/0000-0003-2438-1429
http://www.mdpi.com/2077-1312/7/11/399?type=check_update&version=1
http://dx.doi.org/10.3390/jmse7110399
http://www.mdpi.com/journal/jmse


J. Mar. Sci. Eng. 2019, 7, 399 2 of 23

of energy sources at an affordable price [13]. However, political stability, market liberalization and
foreign affairs are nowadays linked to energy supply security [14]. As a consequence, it is important to
be energy-independent to guarantee the energy security of a country [15].

While RES provide an acceptable solution for these two problems, they also face many challenges
as their integration increases into the grids, mostly based on their intermittency, variability and
uncertainty due to their dependency on weather conditions [16]. Actually, they are usually considered
as ‘non-dispatchable’ sources [17]. This fact makes them hard to integrate into power systems [18],
as transmission system operators (TSOs) have to deal with not only the uncontrollable demand but
also uncontrollable generation [19,20]. RES include bioenergy, geothermal energy, hydropower, ocean
energy (tide and wave), PV, thermal solar energy and wind energy (onshore and offshore) [21].
Some of them (such as wind and solar installations) are connected to the grid through power
electronic converters, reducing the rotational inertia of the system as they replace conventional
generation units [22,23]. This fact compromises the frequency stability and alters the transient
response [24]. As a result, several frequency control strategies have been proposed in the specific
literature [25–30]. Other alternatives to increase the RES share in power systems and avoid the
aforementioned problems are to complement one source with another (for instance, wind with solar
and/or hydropower) [31–33] or to use storage systems (such as flywheels, pumped hydroelectric
storage, batteries, hydrogen, etc.) [34,35].

Among these renewable technologies, wind is one of the most economic, prominent and matured
RES technologies [36,37]. In fact, since 2001, global cumulative installed wind capacity has shown
an exponential growth, as can be seen in Figure 1a. Among the total wind capacity, 23 GW came
from offshore installations in 2018, compared to 1 GW in 2007, refer to Figure 1b [38]. Despite offshore
wind energy dating back to the 1990s, its popularity started around ten years ago [39]. This increase
is due to the current interest of the wind energy industry in offshore wind power [40]. For instance,
offshore wind energy investments surpassed onshore investments in Europe in 2016, as presented
in [41]. Moreover, nearly 40% of the total wind capacity is expected to come from offshore wind energy
in Europe in 2030 [42,43].

In addition, offshore wind energy presents many advantages compared to onshore wind power
plants, especially related to wind energy potential [44,45]: (i) Offshore mean wind speeds are higher
and wind power variability is also lower than onshore wind power; (ii) their visual and acoustic impact
is usually lower than onshore; subsequently (iii) larger wind turbines (WTs) can be installed [46].
Actually, on the European coasts, the available offshore wind energy is about 350 GW [47]; the USA’s
shores present an offshore wind power potential of more than 2000 GW [48]; the offshore wind resource
in China is about 500 GW in water depth under 50 m [49]; and the east and west Indian coasts have
an offshore wind potential of 4.4 GW and 6.7 GW, respectively [50].

Furthermore, offshore wind speed usually increases with distance from the shore, thus increasing
the power generated, as it depends on the cube of the wind speed [51]. However, higher installation
and maintenance costs of offshore wind power plants (OWPP) far from the shore balance the benefits
of higher energy production [52]. Indeed, OWPP are around 50% more expensive than onshore wind
power plants [53], but their costs are expected to decline up to 35% by 2025 [54]. The global weighted
average levelized cost of energy (LCOE) in 2018 was 20% lower than in 2010. These cost reductions
can be a result of [55]:

• The evolution in wind turbine technology, installation and logistics
• The economies of scale in operations and maintenance
• The improved capacity factors due to higher hub heights, better wind resources and larger

rotor diameters

This paper analyzes and reviews different aspects of offshore wind power plants, including several
future alternatives to increase the offshore wind power capacity. The rest of the paper is organized as
follows: Section 2 presents the current status of offshore wind power plants (WTs and OWPP sizes,
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water depth, distance from shore and electrical transmission to shore). Future advancements possible
for larger offshore wind power plant integration are analyzed in Section 3. Finally, Section 4 gives
the conclusions.
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Figure 1. Global cumulative wind capacity in GW. (a) Global cumulative wind capacity: Onshore and
offshore. (b) Global cumulative offshore wind capacity.

2. Current Status of Offshore Wind Power Plants

2.1. Preliminaries: Classification of Wind Turbines

WTs are usually classified as fixed speed wind turbines (FSWTs) and variable speed wind
turbines (VSWTs) [56]. FSWTs work at the same rotational speed regardless of the wind speed [57].
VSWTs can operate around their optimum power point for each wind speed, using a partial or full
additional power converter [58]. As a result, VSWTs are more efficient than FSWTs [59]. Moreover,
WTs present different topologies depending on their generator [60]: type 1 includes a squirrel cage
induction generator; type 2 includes a wound rotor induction generator; type 3 includes a doubly-fed
induction generator (DFIG); and type 4 includes a full-converter synchronous generator [61]. Types 1
and 2 are FSWTs, whereas types 3 and 4 are VSWTs.

Nowadays, VSWTs are the most commonly installed WTs [62–65]. Among them, full converter
generator WTs seem to be a better option than DFIG-based WTs for OWPP [66–72]. The main differences
between DFIG and full-converter WTs are the following:



J. Mar. Sci. Eng. 2019, 7, 399 4 of 23

• The DFIG configuration needs a gearbox, generator and partial-scale power converter
(around 30%), as shown in Figure 2a. The gearbox couples the blades with the generator,
increasing the rotational speed from the rotor hub to the induction machine [73–75]. The stator
is directly connected to the grid, whereas the rotor is connected to the power converter [76]. As
a result, the converter only covers the power produced by the rotor of the DFIG [77].

• The synchronous generator of a full-converter WT is excited by an external DC source or by permanent
magnets [78]. In this case, the hole generator is connected to the grid through a power converter [79].
Hence, all the generated power from a WT can be regulated accordingly [80]. They have low
maintenance costs and negligible rotor losses [81]. Moreover, some type 4 WTs have no gearbox,
as depicted with a dotted line in Figure 2b, using a direct driven multipole generator [82].

(a) (b)

Figure 2. Variable speed wind turbines types. (a) Doubly-fed induction generator (DFIG) wind turbine.
(b) Full-converter wind turbine.

2.2. Offshore Trends: Turbine Capacity, Wind Power Plant Capacity, Depth and Distance from the Shore

In Europe, the rated capacity of offshore WTs has been continuously increasing during the last
decade. For instance, in 2017, the average rated capacity of WTs was 5.9 MW, compared to 3 MW in
2010 and 4.8 MW in 2016 [83]. In 2018, new offshore WTs were 6.8 MW on average, 15% larger than in
2017. Comparing 2018 to 2010, the average WT increase is more than 200%. Moreover, two 8.8 MW
offshore WTs were installed in the United Kingdom in 2018, those being the largest WTs installed of
the world. The commercial model of those WTs was V164-8.8 MW from MHI Vestas Offshore [84].
However, nowadays there are larger commercial offshore WTs, up to 12 MW, as presented in [85].
Table 1 shows the 10 largest WTs currently available. All of them have a rated power over 8 MW, rotor
diameters between 150 and 200 m and are equipped with synchronous generators (type 4).

Table 1. Biggest wind turbines currently available.

Rated Power (MW) Manufacturer Reference Diameter (m) Generator

8.0 Siemens Gamesa SG 8.0-167 DD 167 Synchronous permanent
8.3 MHI Vestas Offshore V164-8.3 MW 164 Synchronous permanent
8.8 MHI Vestas Offshore V164-8.8 MW 164 Synchronous permanent
9.0 MHI Vestas Offshore V164-9.0 MW 164 Synchronous permanent
9.5 MHI Vestas Offshore V164-9.5 MW 164 Permanent magnet
10.0 AMSC wt10000dd SeaTitan 190 HTS synchronous
10.0 MHI Vestas Offshore V164-10.0MW 164 Permanent magnet

10.0 Swiss Electric
YZ150/10.0 150

Synchronous permanentYZ170/10.0 170
YZ190/10.0 190

10.0 Siemens Gamesa SG 10.0-193 DD 193 Synchronous permanent
12.0 General Electric GE HALIADE-X 220 Synchronous permanent

Regarding OWPP capacity, it has also increased dramatically in the last 10 years (around 700%),
in line with the increase of average offshore WT capacity. In fact, average OWPP capacity was 79.6 MW
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in 2007. In contrast, 561 MW was the average capacity for OWPPs in 2018 [84]. This means that
considering the average WT and OWPP capacities of the year 2018, each OWPP has between 80 and
85 WTs. On the other hand, OWPP depth and distance to the shore have not increased that much
in recent years. At the end of 2013, the average water depth of OWPPs was 16 m with an average
distance to the shore of 29 km [86]. In 2018, the average water depth of OWPPs under construction
was 27.1 m, with an average distance to shore of 33 km. This means that water depth has increased
by 170% and distance to shore by around 110%. There are some OWPPs that should be mentioned:
Hornsea One (UK) and EnBW Hohe See (Germany) are the OWPPs located farthest from the shore
(103 km away); Kincardine Pilot (Scotland), a floating demonstration project, has a water depth of
77 m [84]; and Hywind (Scotland), the first fully operational floating wind farm, with water depths
varying between 95 and 129 m [87].

2.3. Offshore Wind Power Electrical Power Transmission

For the electrical power transmission from the OWPP plant to the shore, there are two possibilities:
(i) High voltage alternating current (HVAC) and (ii) high voltage direct current (HVDC). Figure 3
depicts an overview of the current state of offshore wind power energy transmission to the shore.

OWPP transmission

HVAC

HVDC





LCC

VSC

DRU





Figure 3. Offshore wind power plant transmission.

2.3.1. High Voltage AC

HVAC transmissions were mostly used for OWPPs until the year 2010 [88]. Their easy protection
system design and the use of transformers to change between different voltage levels were the main
reasons to use them [89]. However, the high capacitance of submarine HVAC cables combined with
the low resistivity of sea water caused different electromagnetic dynamic and transient problems
from those of conventional overhead lines, such as distortion of the voltage’s shape due to resonance
problems [90,91]. This high capacitance also leads to substantial charging currents, subsequently
reducing the active power transmission capacity and transmitting reactive power in long distances [92].
A possible solution could be to install reactive power compensation units along the HVAC submarine
cables, but they are expensive devices and it is a difficult task to carry out [93]. an alternative found in
the literature is to add compensation units only at both ends (onshore and offshore) of the underwater
cables, which improve the current profile along them [94,95]. However, their effect is very limited for
distances over 60–75 km [96,97]. With the aforementioned considerations, the topology for HVAC
transmission from OWPPs is depicted in Figure 4 [98,99]. It consists of:

• An offshore substation to increase the offshore voltage level (usually from 30–36 kV) to the
transmission voltage level at 132–400 kV.

• Three-core HVAC submarine transmission cables.
• Reactive compensation units on both ends (offshore and onshore), such as static VAR

compensators (SVCs) or static synchronous compensators (STATCOMs).
• An onshore substation, if the onshore interconnecting grid voltage is different from the offshore

transmission system rated voltage.
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Figure 4. Offshore wind power plant high voltage alternating current (HVAC) transmission system.

As can be seen, the OWPP grid is synchronously coupled to the main onshore grid. This is another
problem of HVAC links for OWPPs, as all faults in either the grid or the OWPP are propagated to the
other one [100].

2.3.2. High Voltage DC

High voltage direct current (HVDC) transmission is considered as the best solution to OWPPs
located far away from the land [101]. Actually, some studies conclude that HVDC links are economically
viable for distances above 50–70 km [102]. A graphical comparison of costs between HVAC and HVDC
transmission systems can be seen in Figure 5 [103].

Distance

Cost

AC cost effective DC cost effective

AC terminal costs

AC line costs

DC system cost curve

AC system cost curve
Breakeven distance

50 - 80 km

DC terminal costs

DC line costs

Figure 5. AC and DC system costs based on the transmission distances.

Figure 6 shows the main elements of an HVDC connection, and consists of [104,105]:

• An offshore substation to increase the voltage level to the level of the transmission line.
• AC/DC rectifier.
• AC and DC filters to cancel the low order harmonics. Furthermore, the AC filters supply some

of the reactive power used by the converter, whereas the DC filters avoid the generation of
circulating AC currents in the cable.

• DC current filtering reactance. This removes the possibility of a current interruption under minimum
load circumstances, limiting DC fault currents and also reducing current harmonics in the DC cable.

• DC cables.
• DC/AC converter.
• An onshore substation.
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Offshore wind
power plant

Offshore substation
HV transformer & AC/DC converter

Onshore substation
DC/AC convertar & HV transformer

DC submarine cables

Shore line

AC / DC DC / AC

Figure 6. Offshore wind power plant HVDC transmission system.

In contrast to the HVAC topology presented in Figure 4, the HVDC link electrically decouples both the
OWPP and the onshore grid, avoiding the propagation of possible disturbances between them [106,107].

Two different HVDC technologies are currently under use: Line-commutated converters (LCCs)
based on thyristors and voltage-source converters (VSCs) based on insulated gate bipolar transistors
(IGBTs) [108]. Among them, there is not a clear consensus about which technology is better: Some
authors consider that LCCs are superior to VSCs in terms of reliability, cost and efficiency [26],
whereas others affirm that the VCS–HVDC transmission system is the most promising technology [109].
a comparison between both HVDC technologies is summarized in Table 2 [110]. Recently, another
technology called the diode rectifier unit (DRU) has been under discussion, though has not been
implemented yet [111].

Table 2. Comparison between line-commutated converter (LCC) and voltage-source converter (VSC)
HVDC technologies.

Technology LCCs VSCs

Semiconductor Thyristor IGBT
Control Turn on Turn on/off

Power control Active Active & Reactive
AC filters Yes No

Blackstart capability No Yes

Line-Commutated Converters

Traditionally, HVDC transmission systems have been based on LCCs, which use thyristors as
the base technology. Actually, LCC is a trusted and mature technology [112] that links a mainland
with some islands (e.g., in Northern Europe [113]). However, solutions based on thyristors usually
involve the injection of some harmonics. For example, a twelve-pulse thyristor bridge, which is made
up of two six-pulse bridges; the fifth and seventh harmonics can be canceled [114]. The LCC–HVDC
transmission system is based on this twelve-step bridge [115,116].

The main drawbacks of the LCC–HVDC link are [116–120]:

• It can only transfer power between (at least) two active grids. As a result, an auxiliary start-up
system is necessary in the OWPP.

• It demands reactive power, which needs to be supplied through reactive support devices.
• Despite most harmonics being canceled by using a twelve-pulse bridge, others still remain, thus

needing additional filters.
• It requires voltage support for the OWPP AC bus. Two possible solutions can be found to

overcome this requirement: (i) Installing a dedicated STATCOM, which increases considerably the
overall cost or (ii) controlling the turbine inverters individually, which is technically challenging.

• The inverter is susceptible to commutation failures, especially when connected to weak AC
power systems.



J. Mar. Sci. Eng. 2019, 7, 399 8 of 23

Blasco et al. suggest that the filter’s design depends on the harmonic characteristics of the AC
grid and the active power exchanged by the LCC–HVDC link, thus needing a detailed AC power
system analysis [121].

Voltage-Source Converters

Since 2005, VSC–HVDC technology has been used in offshore applications. It is based on
IGBTs [122]. The main characteristics of the VSC–HVDC link are summarized as [123–125]:

• It can control active and reactive power simultaneously.
• It can feed island-mode, weak AC and passive networks.
• Its station requires less space than that of an LCC (about 60% less).
• The cables are lighter.
• It does not require reactive power compensation.
• It can transmit power from zero to full-rating bidirectional, enabling OWPP start-up (black start

operation) and working at low wind speeds.

Despite all these advantages, VSC–HVDC presents higher commutation losses and costs compared
to the LCC–HVDC. Moreover, it can only handle limited voltage and power levels [126].

Diode Rectifier Unit

During the last years, DRU–HVDC has been under discussion. A DRU includes several diodes,
a transformer and a smoothing reactor [127]. As DRU can only convert AC to DC [128], a hybrid
topology combining DRU and VSC/LCC must be used, introducing the DRU as the offshore rectifier
and the LCC/VSC as the onshore converter [129]. The main advantages of DRU–HVDC compared to
LCC–HVDC and VSC–HVDC are [130–133]:

• Reduction of volume (80%) and weight (66%) of the platform.
• Smaller footprints.
• Reduction of power losses up to 20%.
• Reduction of total cost up to 30%.
• Capacity increased by 33%.
• Higher reliability and efficiency.
• Modular design and full encapsulation.
• Reduced operation and maintenance costs.

However, several problems have to be solved before implementing a DRU–HVDC connection [132–135]:

• As the DRU is a non-controllable passive device, the OWPP AC system must be regulated and
controlled by the WT, thus requiring different WT and OWPP schemes.

• The onshore converter (LCC/VSC) controls the HVDC voltage. Subsequently, the DRU output
DC voltage must be higher than the minimum voltage value to start conducting and transmit the
power to the onshore station.

• Passive filters or active compensation devices are needed to remove the harmonic currents injected
by the DRU.

• Voltage and frequency control stages are needed in the offshore grid for DRU commutation.
• A DRU is not able to provide auxiliary active power for the WT and OWPP substation, being then

a drawback to the self-start of WTs.
• A DRU is not able to provide reactive power, needing power converters or other devices to

compensate it.
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3. Potential Future Advancements for Offshore Wind Energy

In 2018, ENTSO-E and ENTSO-G published their Ten Year Network Development Plan (TYNDP)
scenarios. It was the first time that both European electrical and gas TSOs collaborated together.
The TYNDP 2018 covers from 2020 to 2040 [136]. In 2030–2040, it is expected that between 45 and 75%
of the overall European demand will be covered by RES, especially by hydro, wind and solar power.
Actually, in the North Sea and Baltic Sea regions, the offshore wind power capacity is estimated to
reach between 40 and 59 GW in 2030, and between 86 and 127 GW in 2040, according to the TYNDP.
Other authors propose similar offshore wind power capacity scenarios in these regions; for instance,
scenarios were modeled and optimized by Koivisto and Gea-Bermudez [137]. Greenpeace published
in 2015 their ‘Energy [R]evolution’ forecast, where 148 GW of offshore wind capacity is expected to be
installed in Europe in 2050 [138]. In the US, the Department of Energy considers that 22 GW of OWPPs
can be installed by 2030, increasing up to 86 GW by 2050 [139]; according to the scenarios presented
by the Energy Resources Institute of India for 2050, it could have 170 GW installed of offshore wind
energy by then [140]; and the Chinese scenarios propose to install 200 GW of OWPPs (150 GW near
offshore wind and 50 GW far offshore wind) by 2050 [141,142]. By these means, OWPPs seem to have
an important energy role in the future worldwide.

However, onshore wind and other conventional fossil fuel technologies are currently cheaper than
offshore wind energy [143]. As a consequence, different alternatives are being researched to reduce
further costs of offshore wind power development:

• Power-to-X conversion (P2X)
• North Sea Wind Power Hub: The Hub-and-Spoke project
• Offshore storage options

These initiatives are discussed in detail in the following.

3.1. Power-to-X Conversion

P2X is based on converting power (electricity) to diverse substances (X) [144]. The different
alternatives available in the P2X conversion are [145,146]:

• Power-to-heat (P2H): The electrical generation excess is linked to a heat device (electric boiler, heat
pump), avoiding any intermediate energy carrier and subsequently increasing the global efficiency.

• Power-to-liquid (P2L): Different alternatives can be found in the specific literature, including the
production of syngas through hydrogenation of CO2 and reverse water gas shift; co-electrolysis
of CO2 and H2O; or directly through the electro-reduction of CO2 to methanol.

• Power-to-chemicals (P2C): From the syngas obtained with the power-to-liquid conversion, several
compounds can be produced accordingly.

• Power-to-gas (P2G): Hydrogen is obtained from an electrolysis process and the possible
subsequent conversion to methane with CO2.

• Power-to-mobility (P2M): The electrical generation excess is used by the mobility sector through
electric vehicles with an electric motor of 90% efficiency instead of an internal combustion engine
(efficiency of 20%) or fuel cell (efficiency of 50%).

• Power-to-power (P2P): Electricity is converted into chemical or mechanical energy, which is stored
and later reconverted into electric power.

These transformations are expected to be very relevant in future power systems, as the generated
electricity excess can be stored in different ways and later used as, for instance, fuel for power
plants [147]. Hence, the system’s flexibility would be enhanced [148]. By these means, high capacity P2X
plants could increase the RES supply by providing supply security in terms of storage facilities [149].
Moreover, as explained in [150], the P2X conversion provides a real link between different sectors,
promoting the transition towards a future urban smart energy system. As an example, Figure 7 depicts
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the power-to-heat conversion joint [151]. an exhaustive analysis of 128 P2X demo projects in operation
in Europe is discussed in [152]. These projects aim to gain experience with system integration of P2X
components. Moreover, Denmark is interested in the conversion of electricity to hydrogen and liquid
fuels through P2X solutions. Thus, they can become a front-runner in this technology as large Danish
companies already work with it [153].

Centralized electricity infrastructure

Electricity network

Thermal power plant
(no CHP)

Centralized 
energy storage

Wind Bio

Decentralized electricity infrastructure

Electric vehicle Residential PV & storage

Heat plants and 
CHP plants

Centralized 
heat storage

Centralized 
heat pumps

Centralized 
heat boilers

District heating

Heat supply Heat demand

Heat network

P2H P2H

Direct electric
heating

P2H P2H P2H P2H

Small electric
thermal storage

Decentral 
heat pump

Decentral electric boilers 
or hybrid electric

Figure 7. Power-to-heat conversion.

Several authors have already analyzed these technologies combined with the wind resource.
Different flexibility options for wind power plants are analyzed in [154], concluding that the P2H
solutions provide the most cost-effective scenarios with the lowest CO2 emissions. Pursiheimo et al.
focused on the feasibility of the P2G technology in Nordic countries to achieve a 100% RES system.
The main applications of P2G are focused on supplying gas to transport and industrial sectors [155].
Furthermore, the use of P2G has been proved in Denmark to be a successful tool to complement wind
power plants [156]. However, both investment costs of facilities and energy losses (due to the low
efficiency in the conversion process) are high. Hence, the hydrogen produced from wind power also
has a high cost [157]. For instance, in [158] different energy applications of hydrogen (P2P, P2G, P2M)
are considered for a hybrid offshore wind–hydrogen power plant in France, obtaining negative profits
due to the high investment costs in both wind and hydrogen infrastructures. Other authors conclude
that the combination of a wind–hydrogen power plant should be considered to sell hydrogen directly,
as re-powering hydrogen for electricity is extremely expensive [159]. Consequently, future works
should be focused on reducing investment and maintenance costs for such power conversion solutions.

3.2. North Sea Wind Power Hub: The Hub-and-Spoke Project

To meet the Paris Agreement and the GHG reduction goals (refer to Section 1) in the countries
around the North Sea, the North Sea Wind Power Hub (NSWPH) consortium was created. TenneT
(a Dutch–German electricity TSO), Port of Rotterdam (the biggest port in Europe), Energinet (a Danish
TSO) and Gasunie (a European energy infrastructure company) are the partners of the consortium [160].
NSWPH aims to facilitate the deployment of large scale OWPPs in the North Sea, evaluating and
developing the Hub-and-Spoke project. The project consists on several central platforms, called hubs,
which are in charge of supporting the power transport infrastructure by using the P2X conversion
instead of the offshore converter platforms used currently. According to TenneT, the offshore wind
power capacities will be in the range of 70 to 150 GW by the year 2040 and up to 180 GW by 2045 [161],
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similar values to those proposed in the TYNDP. Two main challenges are identified in NSWPH,
(i) a strong power transmission infrastructure and (ii) high flexibility requirements. Mainly due
to onshore surface constraints, onshore wind power plants and PV installations are not enough to
decarbonize the power systems of this area [162]. The hub-and-spoke concept proposed by NSWPH is
made up of several modular hubs located in different zones of the North Sea, which connect OWPPs
with bordering North Sea countries. This can be seen in the figure of page 6 of [163]. By using high
capacity DC cables, the power generated by OWPPs is transmitted to onshore grids in different
locations connected in a smart and coordinated manner. These DC connections also provide high
interconnection capacity among the different countries. Moreover, the hub-and-spoke concept can
promote onshore OWPP integration through P2G transformation. Power systems thus become flexible
through such P2X conversion [163].

Apart from defining the hub-and-spoke project, the NSWPH consortium also aims to demonstrate
the technical feasibility of the project. So far, the consortium have concluded that [164]:

• The optimal capacity of the OWPP is estimated to be between 10 and 15 GW.
• Hub substructures can be based on four different foundation types: Ciasson island, sand

island, platform and gravity-based structure. A comparison among them is presented in Table 3,
as presented in [164].

• Both the spatial requirements and investment costs of the hubs are similar regardless of being
all-electric, all-hydrogen or combining electricity and hydrogen:

– All-electric hub-and-spoke: The electricity generated by the OWPP is transmitted to the
shore.

– All-hydrogen hub-and-spoke: The electricity generated by the OWPP is transformed offshore
into hydrogen, and transported through pipelines to the shore.

– Combined electricity and hydrogen hub-and-spoke: combines the two previous concepts.

Table 3. Hub substructures under consideration.

Caisson Island Sand Island Platform Gravity Based Structure

Water depth limit (m) <25 <40 <45 >100
Construction time (years) 3–4 6–8 3–4 3–4

Size limit (GW) 6 >36 2 <6 (each WTs)
Maturity Middle Middle High Units – High/Linking – Middle

Footprint on seabed High High Low Middle

Moreover, the lifetime savings between CAPEX (capital expenditure) and OPEX (operational
expenditures) for a 12 GW hub-and-spoke project (Denmark (2 GW), Germany (6 GW) and the
Netherlands (4 GW)) could rise up to 2.5 billion e, without considering the P2X conversion, compared
to a radial approach. This reduction is due to the lack of additional interconnection capacity between
those countries. A study compared the LCOE between hub-and-spoke projects and radial approaches,
concluding that the LCOE was able to be reduced for hub sizes between 6 and 12 GW, but limited for
capacity hubs between 24 and 36 GW. Furthermore, electricity prices and emissions were also reduced.
The total cost saving of a hub-and-spoke project compared to a no-hub project was then estimated to
be between 15 and 20 billion e [165]. The main drawback of the hub-and-spoke project is that it would
take more than 10 years of development and construction to become operational. Moreover, policies,
regulatory framework and market design should be reconsidered to ensure a stable market. As the
Paris Agreement must be fulfilled by 2050, these issues should be urgently reconsidered in order to
carry out multiple hub-and-spoke projects by then [166].
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3.3. Offshore Storage Options: Hydrogen and Compressed-Air Energy Storage

As electrical generation has to be immediately sold to supply the electrical consumption, and due
to the stochastic nature of RES, energy storage emerges as an important solution for these sources [167].
However, as traditional energy storage technologies are difficult to use in a marine environment,
new alternatives are being developed to store offshore energy. Wang et al. provide a comprehensive
review on existing marine renewable energy storage solutions [168].

3.3.1. Hydrogen Energy Storage

The surplus of electricity produced by OWPP can be stored as hydrogen, and used later to
generate power in fuel cells or as fuel in hydrogen vehicles [169]. Most alternatives available are based
on the P2X technology, as previously described in Section 3.1.

An example of such alternatives can be found in the Deep Purple project which is based on the
important CO2 emissions from Norwegian oil and gas production. The project involves TechnipFMC,
SINTEF, Subsea Valley and Maritim Forening Sogn og Fjordane, which develop the concept and new
technology. It has received funding from the Research Council of Norway [170]. The Deep Purple
project aims to convert electricity from OWPP to hydrogen and store such energy on the seabed.
The hydrogen can then be used for several purposes [171,172]:

• Supply stable and renewable power to oil and gas installations
• Supply stable and renewable power to remote islands
• Provide a coastal hydrogen infrastructure to maritime sector
• Provide local production of power, hydrogen and oxygen to fist farming

It is expected to have a full-scale pilot by 2025 in Norway [173]. Figure 8 depicts an overview of
the Deep Purple project.

Figure 8. Deep Purple project.

3.3.2. Compressed Air Energy Storage

Compressed air energy storage (CAES) systems are a solution to energy storage based on the
compression of air [174]. According to [175], the integration of CAES with wind and solar power
generation can increase the RES share rate, as CAES is reported as less expensive than other storage
systems, and to be large and powerful enough to store energy on a utility scale level [176]. Moreover,
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due to the high installation and capital cost of undersea transmission cables, offshore CAES can
increase the cable’s capacity factor, potentially lowering the average cost of offshore wind power while
increasing the reliability and economic value of delivered power [177].

The TAKEOFF Business Incubator (University of Malta) has already patented the a storage
technology called FLASC, with the aim of integrating large-scale energy storage into OWPPs.
This solution is tailor-made for the offshore market, exploiting existing infrastructure and
supply-chains, see Figure 9 [178]. FLASC uses compressed air for energy storage purposes, relying
on the hydrostatic pressure of the deep-sea areas to maintain a stable pressure in the compressed
air storage. As it uses existing infrastructure, it is considered a cost-effective solution. In [179,180],
the multi-system integration and the working principle of the FLASC storage technology are described.
This solution can also be used in order to: (i) Convert the intermittent RES supply into a stepped out
one, simplifying their grid integration by allowing the TSO to schedule operations at specific time
intervals, see Figure 10a; (ii) control the ramp rate of the generated power in case of sudden natural
condition changes, see Figure 10b.

Figure 9. FLASC storage for offshore wind power plants (OWPPs).

(a) (b)

Figure 10. Further applications of FLASC storage technology. (a) Stepped out power control. (b) Ramp
rate control.
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A small-scale prototype was installed in Malta’s Grand Harbor in May 2018. After one year,
the testing campaign was completed. Results confirmed a consistently high thermal efficiency across
a variety of meteorological conditions and operating regimes after hundreds of charging cycles.
The prototype was removed and decommissioned, and nowadays the FLASC team is focused on
developing a large-scale demonstrator in the open sea [181,182].

4. Conclusions

Future power scenarios include offshore wind energy as an important generation source.
According to this framework, this paper discusses and reviews some aspects of offshore wind power
plants for a massive integration into power systems. In the last decade, several characteristics such as
offshore wind turbines, wind power plants, water depth and distance to shore have increased 230%,
700%, 170% and 110%, respectively. In the same way, electrical transmission has also evolved from
HVAC to HVDC solutions. Moreover, HVDC technology currently offers three different possibilities:
LCCs (based on thyristors), VSCs (based on IGBTs) and DRU (based on diodes). LCCs and VSCs have
already been used, whereas DRU has not been implemented yet. The advantages and drawbacks of
each technology have been extensively discussed in the paper. Different future advancements currently
under development are also described: P2X conversion, the hub-and-spoke project as well as hydrogen
and compressed air energy storage. The P2X conversion can enhance the power system’s flexibility by
converting the electricity surplus to other substances; however, its investment and maintenance costs
should first be reduced to be economically viable. The hub-and-spoke project aims to facilitate the
huge integration of offshore wind power plants in the North Sea; the total cost saving of this project,
compared to a common offshore wind power plant, is estimated to be between 15 and 20 billion e.
However, it is expected to take more than 10 years to become operational. Both hydrogen and
compressed air energy storage systems appear as an alternative to conventional storage technologies
due to the difficulty of using these traditional storage systems in the marine environment.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating current
CAES Compressed air energy storage
DC Direct current
DFIG Doubly fed induction generator
DRU Diode rectifier unit
FSWTs Fixed speed wind turbines
GHG Greenhouse gasses
HVAC High voltage alternating current
HVDC High voltage direct current
IGBT Insulated gate bipolar transistors
LCCs Line-commutated converters
LCOE Levelized cost of energy
OWPP Offshore wind power plant
P2X Power-to-X
PV Photovoltaic
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RES Renewable energy sources
STATCOM Static synchronous compensator
SVC Static VAR compensator
TSO Transmission system pperator
TYNDP Ten Year Network Development Plan
VSCs Voltage-source converters
VSWTs Variable speed wind turbines
WPP Wind power plants
WTs Wind turbines
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