
metals

Article

Leaching of Pure Chalcocite with Reject Brine and
MnO2 from Manganese Nodules

David Torres 1,2,3, Emilio Trigueros 1, Pedro Robles 4 , Williams H. Leiva 5, Ricardo I. Jeldres 5 ,
Pedro G. Toledo 6 and Norman Toro 1,2,3,*

1 Department of Mining and Civil Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain;
David.Torres@sqm.com (D.T.); emilio.trigueros@upct.es (E.T.)

2 Faculty of Engineering and Architecture, Universidad Arturo Prat, Almirante Juan José Latorre 2901,
Antofagasta 1244260, Chile

3 Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte,
Antofagasta 1270709, Chile

4 Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
pedro.robles@pucv.cl

5 Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de
Antofagasta, Antofagasta 1270300, Chile; williams.leiva.jeldres@ua.cl (W.H.L.);
ricardo.jeldres@uantof.cl (R.I.J.)

6 Department of Chemical Engineering and Laboratory of Surface Analysis (ASIF), Universidad de
Concepción, P.O. Box 160-C, Correo 3, Concepción 4030000, Chile; petoledo@udec.cl

* Correspondence: ntoro@ucn.cl; Tel.: +56-552651021

Received: 21 September 2020; Accepted: 24 October 2020; Published: 27 October 2020
����������
�������

Abstract: Chalcocite (Cu2S) has the fastest kinetics of dissolution of Cu in chlorinated media of
all copper sulfide minerals. Chalcocite has been identified as having economic interest due to its
abundance, although the water necessary for its dissolution is scarce in many regions. In this work,
the replacement of fresh water by sea water or by reject brine with high chloride content from
desalination plants is analyzed. Additionally, the effect of adding MnO2 from available manganese
nodules in vast quantities at the bottom of the sea is studied. Reject brine shows better results than
sea water, and the addition of MnO2 to the brine significantly increases the kinetics of chalcocite
dissolution in a short time. H2SO4 concentration is found to be irrelevant when working at high
concentrations of chloride and MnO2. The best results, 71% Cu extractions in 48 h, are obtained for
reject brine, 100 mg of MnO2 per 200 g of mineral and H2SO4 0.5 mol/L. The results are expected
to contribute to a sustainable process of dissolution of chalcocite by using the reject brine from
desalination plants.

Keywords: sulfide leaching; chalcocite dissolution; desalination; reject brine; replace water; sustainability

1. Introduction

Currently, 19.7 million tons of copper are produced worldwide [1,2], mainly by pyrometallurgical
processes (75%) and, to a lesser extent, by hydrometallurgy (25%) [3,4].

The vast majority of copper minerals in the world correspond to sulfide minerals and a smaller
quantity to oxidized minerals [5–8]. Among the sulfurous minerals, the most abundant copper mineral
is chalcopyrite [9–11], followed by chalcocite [12]. However, chalcopyrite is a very refractory mineral
to be treated hydrometallurgically [13]. On the other hand, chalcocite has been shown to be relatively
easy to treat using hydrometallurgical processes [14]. The literature reports an important number of
works on the dissolution of chalcocite in acidic media, pressure leaching [15], bioleaching [15–17] and
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leaching in chlorinated media [18–21]. This last process is very attractive because it is cost effective
and leads to high coper extractions.

There is no record in the literature on the use of MnO2 as an oxidizing agent in the leaching of
chalcocite in chlorinated media. However, there are records in which this oxidant is added to improve
the dissolution of chalcopyrite with good results [22–24]. Havlik et al. [24] use HCl and manganese
nodules to extract Cu from chalcopyrite. This study finds that, when working at high concentrations
of MnO2 (MnO2/CuFeS2 ratio of 4/1) and HCl (4 mol/L), the best copper extractions are obtained,
reaching values above 40% at room temperature and near 70% at 50 ◦C.

The dissolution of chalcocite in chlorinated media has been analyzed several times [14,20,21,25,26],
obtaining high copper extraction in the presence of oxidants, such as ferric or cupric, at high temperature,
which greatly improves the leaching kinetics of this mineral. To evaluate the effect of chloride,
both the concentration and the source have been analyzed, that is, sea water, HCl, NaCl, FeCl3, etc.
Cheng and Lawson [25] have proposed that chloride acts as a catalyst that forms long sulfur crystals
that allow the diffusion of oxidizing agents within the mineral avoiding the formation of a passivating
layer that retards the dissolution of the mineral. Several authors [27,28] have obtained similar results,
and to demonstrate the mechanism they have measured the porosity at the mineral surface when
copper sulfides are leached in the presence of NaCl, HCl, FeCl3 or other sources of chloride. It is
this porosity that allows the mineral to contact the leaching agent through these sulfur layers that form
on the mineral surface.

Two reactions are proposed for the dissolution of chalcocite in chlorinated media and in the
presence of manganese (IV) as an oxidizing agent.

2 Cu2S + MnO2 + 4 Cl− + 4H+ = 2 CuCl2− + Mn2+ + 2 H2O + 2 CuS ∆G0 = −138.59 kJ (1)

2 CuS + MnO2 + 4 Cl− + 4H+ = 2 CuCl2− + Mn2+ + 2 H2O + 2 S ∆G0 = −84.512 kJ (2)

In the first leaching stage (Equation (1)), chalcocite is converted to covellite; this reaction is
thermodynamically possible according to the Gibbs free energy that is negative under the described
conditions. The second reaction (Equation (2)) is slower. The energies were calculated using the
HSC 5.1 software. Thus, Equation (1) is more likely to occur than Equation (2) as suggested by other
authors [12,29].

The shortage of fresh water in various regions of the world is a major economic, environmental and
social problem [30]. The use of sea water has become increasingly important for mining, for example,
in northern Chile, not only for its positive effects on leaching processes due to its chloride content,
but as a strategic and indispensable resource for the sustainability of the industry [4,31,32]. A very
attractive alternative is the use of wastewater from desalination plants, which, following the example
of Chile, are abundant in the north of the country. Desalination plants produce drinking water for
the population, but the reject brine pollutes the sea, threatening the marine ecosystem, and therefore
alternatives are required to recycle or reuse this concentrated brine.

In this study, the kinetics of chalcocite dissolution in acid solution and at room temperature in
chlorinated media and in the presence of manganese nodules are determined. The kinetics of chalcocite
dissolution in sea water and in reject brine from a desalination plant are compared, and the effect of
MnO2 and sulfuric acid on the percentage of copper extraction is evaluated, at short and long times.

2. Materials and Methods

2.1. Chalcocite

The chalcocite mineral sample was obtained from Mina Atómica, located in Antofagasta,
Chile. The material was reduced to reach a size range between −150 and +106 µm. The grinding
was done in a porcelain mortar to avoid contamination. The chemical composition was determined
by inductively coupled plasma atomic emission spectrometry (ICP-AES, (FEI Company, Brisbane,



Metals 2020, 10, 1426 3 of 9

Australia)). Table 1 shows the results. In addition, the mineralogy of the sample was analyzed using
a Bruker X-ray diffractometer (Bruker, Billerica, MA, USA), automatic and computerized model D8,
Figure 1 shows the results. The sample was 99.90% chalcocite.

Table 1. Chemical analysis of the chalcocite ore sample.

Component Cu S

Mass (%) 79.83 20.17
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Figure 1. X-ray spectrum of the chalcocite mineral sample.

2.2. Manganese Nodules

The MnO2 used came from manganese nodules collected during the 1970s from the Blake Plateau
in the Atlantic Ocean. The sample was reduced in size in a porcelain mortar until reaching a size range
between −140 and +100 µm. The chemical composition was determined by inductively coupled plasma
atomic emission spectrometry (ICP-AES). Table 2 shows the results. The mineralogy of the sample was
analyzed using Bruker® M4-Tornado µ-XRF table-top equipment (Fremont, CA, USA). µ-XRF data
interpretation showed the sample is comprised of a pre-existent nodule fragment forming the core with
concentric layers precipitated around it at later stages. The experiments showed pyrolusite (MnO2) as
the predominant phase (See Table 3).

Table 2. Chemical analysis of manganese ore.

Component Mn Fe Cu Co

Mass % 15.96 0.45 0.12 0.29

Table 3. Mineralogical analysis of manganese ore.

Component MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO2 Fe2O3

Mass (%) 3.54 3.69 2.97 7.20 1.17 0.33 22.48 1.07 29.85 26.02
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2.3. Reagents and Leaching Tests

Sea water from Antofagasta (Chile) and reject brine from Aguas Antofagasta, Antofagasta (Chile),
were used. The sulfuric acid used in the leaching tests is Merck, grade p.a., purity 95–97%, density 1.84 kg/L
and molecular weight 98.08 g/mol. Leaching tests were carried out in a 50 mL glass reactor with a 0.01
solid to liquid (S/L) ratio of leaching solution. A total of 200 mg of chalcocite ore was kept suspended by
agitation with the use of a 5-position magnetic stirrer (IKA ROS, CEP 13087-534, Campinas, Brazil) at
a speed of 600 rpm. The tests were conducted at room temperature of 25 ◦C at different concentrations
of sulfuric acid and chloride, and leaching times. The tests were performed in duplicate. Analyses were
performed on 5 mL undiluted samples using atomic absorption spectrometry with a coefficient of
variation ≤5% and a relative error between 5% and 10%. Measurements of pH and oxidation-reduction
potential (ORP) of the suspensions were made using a pH-ORP meter (HANNA HI-4222, St. Louis, MO,
USA). An ORP electrode cell combination consisting of a platinum working electrode and a saturated
Ag/AgCl reference electrode was used.

2.4. Experimental Design

Two sources of water that provide chloride, sea water (20 g/L Cl−) and reject brine (39 g/L Cl−),
were evaluated. The copper extraction was determined every 4 h until reaching a total time of 48 h.
The total mass of calchocite in all tests was always 200 mg. The tests were repeated adding MnO2 to the
reactor with the chalcocite pulp and measuring every 4 h until completing 48 h. Two concentrations of
MnO2 were used, 0.25:1 and 0.5:1, with respect to the total mass of chalcocite. Finally, to evaluate the
effect of H2SO4 on all the tests carried out, three concentrations were used, 0.1, 0.5 and 1 M.

3. Results

3.1. Effect of Chloride Concentration on Copper Extraction

The effect of chloride ions in leaching processes has proven beneficial for the treatment of sulphide
minerals [14,25,26]. On the other hand, recent studies have shown the benefits of oxidizing primary
sulphides incorporating MnO2 into the system [22–24]. Figure 2 for chalcocite shows better results in
chloride-concentrated water such as the brine reject from reverse osmosis plants (ca. 39 g/L of Cl−)
than in seawater (20 g/L of Cl−) both in the presence of MnO2 in a concentration 0.25:1 w/w with respect
to the chalcocite mass. Using reject brine, extractions over 50% Cu are obtained in 8 h and 67.5% Cu in
48 h, apart from the fact that other ions present such as calcium, magnesium and carbonate do not
adversely affect the Cu2S dissolution. Figure 2 shows that 80% or more of the copper extraction occurs
quickly within the first 8 h.
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w/w with respect to the chalcocite mass.
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3.2. Effect of MnO2 Concentration on Copper Extraction

Figure 3 shows the effect of MnO2 concentration on chalcocite dissolution in reject brine. As the
MnO2 concentration increases, the dissolution of chalcocite increases. This is consistent with the results
presented by Devi et al. [22] and Havlik et al. [24], which show that MnO2 increases the dissolution
of even a more refractory sulfide such as chalcopyrite when working at very high concentrations of
MnO2 and HCl. Figure 3 shows that the kinetics of chalcocite dissolution is faster in the presence of
MnO2 but it is more so when the concentration of MnO2 is higher (ratio 0.5:1 w/w or more with respect
to the chalcocite mass). In the latter case, a greater dissolution is obtained at very short times (less than
10 h) which slowly stabilizes at higher dissolution values at longer times.
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Table 4 compares the results of chalcocite dissolution in chlorinated media (sea water and reject
brine) in two cases: Without the addition of an oxidizing agent and with the incorporation of a small
amount of MnO2 under the same operating conditions. The table shows that the higher the chloride
concentration, the greater the leaching performance, and that the presence of MnO2 increases the
dissolution in all cases. Dissolution data without MnO2 in Table 4 are from Toro et al. [14]. Note that
for reject brine the data is very similar to that shown in Figure 3. MnO2 increases chalcocite dissolution
at short times of 4 h by 8% in sea water and by 10% in reject brine. At long times of 48 h the increase
is more moderate, 2% in sea water and 2.5% in reject brine. More interesting are the short time data
considering that in a field operation the leaching solution is continuously refreshed.

Table 4. Comparison of chalcocite dissolution in sea water and reject brine and the effect of MnO2.

Experimental Conditions and Results Toro et al. [14] This Work

Temperature (◦C) 25 25
Particle size of Cu2S (um) −147 + 104 −147 + 104

H2SO4 concentration (mol/L) 0.5 0.5
MnO2/Cu2S ratio (w/w) - 0.25:1

Dissolution in sea water after 4 h (%) 32.8 35.6
Dissolution in reject brine after 4 h (%) 36 40
Dissolution in sea water after 48 h (%) 63.4 64.7

Dissolution in reject brine after 48 h (%) 64.6 66.2

Figure 4 shows the potential for the tests performed in Figure 3. The potential varies between
550 and 630 mV in agreement with Senanayake [33], which indicates that for the dissolution of chalcocite in
a chloride-iron solution at 25 ◦C it is necessary to reach potential values greater than 500 mV. Figure 4 shows
higher potentials and copper extractions at short leaching times. Furthermore, Miki et al. [29] have
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stated that upon dissolving 50% of chalcocite, the dissolution kinetics becomes slower because the
mineral changes phase to covellite, which implies the need to reach potentials greater than 600 mV to
dissolve it.Metals 2020, 10, x FOR PEER REVIEW 6 of 9 
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3.3. Effect of Sulfuric Acid Concentration on Copper Extraction

The effect of the sulfuric acid concentration on the chalcocite dissolution in reject brine from
desalination is presented in Figure 5. In general, the H2SO4 concentration does not have a significant
effect on the Cu2S dissolution in a chlorinated medium; this is in agreement with Cheng and Lawson [25]
who determined that only a minimal amount of sulfuric acid is needed. An increase in the concentration
of sulfuric acid has no significant effect on the dissolution of chalcocite in the presence of MnO2,
whatever its concentration.

The results of this study confirm the findings of Toro et al. [14], Dutrizac [34], Cheng and Lawson [25]
and Senanayake [26] regarding that high concentrations of chloride favor dissolution kinetics of
chalcocite, and of other copper sulfides such as chalcopyrite and covellite [27–29], other variables or
conditions are not as relevant. At the same time, the results of this study suggest that the addition of
MnO2 enhances the dissolution of chalcocite regardless of the concentration of chlorides.
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Figure 5. Effect of sulfuric acid concentration on copper extraction using reject brine, (a) without MnO2,
(b) MnO2/Cu2S 0.25:1 w/w and (c) MnO2/Cu2S 0.5:1 w/w.

4. Conclusions

Rejection brine from desalination plants and manganese nodules improve the dissolution kinetics
of chalcocite, especially at short times. The main conclusions of this work are:

1. Reject brine shows higher Cu extracts from chalcocite compared to sea water due to its higher
chloride concentrations.

2. Low concentrations of MnO2 significantly improve the dissolution kinetics of chalcocite in a short
time, which is important for continuous leaching operations.

3. High concentration of H2SO4 is not important when working at high concentrations of chloride
and MnO2.

4. Best results are obtained in reject brine, with MnO2/Cu2S 0.5:1 w/w and 0.5 mol/L H2SO4, that is,
71% Cu extractions in 48 h.

5. Results are expected to contribute to a sustainable process of dissolution of chalcocite.

In future works, these expressions should be replicated but reusing black copper minerals, in order
to reuse MnO2 from waste, and thus justify the additional cost of adding an oxidizing agent. Finally,
these new results should be compared with those presented in this study.
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