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ABSTRACT 
 

 

Evaluating and Developing Parameter Optimization and Uncertainty Analysis Methods 

for a Computationally Intensive Distributed Hydrological Model. (August 2008) 

Xuesong Zhang, B.S, Qingdao University, China; M.S., Beijing Normal University, 

China 

Chair of Advisory Committee: Dr. Raghavan Srinivasan 

 

 

This study focuses on developing and evaluating efficient and effective parameter 

calibration and uncertainty methods for hydrologic modeling. Five single objective 

optimization algorithms and six multi-objective optimization algorithms were tested for 

automatic parameter calibration of the SWAT model. A new multi-objective 

optimization method (Multi-objective Particle Swarm and Optimization & Genetic 

Algorithms) that combines the strengths of different optimization algorithms was 

proposed. Based on the evaluation of the performances of different algorithms on three 

test cases, the new method consistently performed better than or close to the other 

algorithms.  

In order to save efforts of running the computationally intensive SWAT model, 

support vector machine (SVM) was used as a surrogate to approximate the behavior of 

SWAT. It was illustrated that combining SVM with Particle Swarm and Optimization 

can save efforts for parameter calibration of SWAT. Further, SVM was used as a 

surrogate to implement parameter uncertainty analysis fo SWAT. The results show that 

SVM helped save more than 50% of runs of the computationally intensive SWAT model 

The effect of model structure on the uncertainty estimation of streamflow simulation 

was examined through applying SWAT and Neural Network models. The 95% 

uncertainty intervals estimated by SWAT only include 20% of the observed data, while 
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Neural Networks include more than 70%. This indicates the model structure is an 

important source of uncertainty of hydrologic modeling and needs to be evaluated 

carefully. Further exploitation of the effect of different treatments of the uncertainties of 

model structures on hydrologic modeling was conducted through applying four types of 

Bayesian Neural Networks. By considering uncertainty associated with model structure, 

the Bayesian Neural Networks can provide more reasonable quantification of the 

uncertainty of streamflow simulation. This study stresses the need for improving 

understanding and quantifying methods of different uncertainty sources for effective 

estimation of uncertainty of hydrologic simulation. 
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CHAPTER I  

 

INTRODUCTION 
 

 

1.1 Problem statement 

1.1.1 Why use hydrologic models? 

As a result of the limitations of hydrologic measurement techniques, we are not able 

to measure everything we would like to know about hydrological systems (Beven, 2000). 

Extrapolating the knowledge that we have obtained from laboratory experiments and 

field studies is a practical means for studying hydrologic processes happening in the real 

world where only limited measurements are available. Hydrologic models are usually 

used as an extrapolating tool to approximate the hydrologic processes and predict the 

evolution of important hydrologic variables like soil moisture, evapotranspiration, 

groundwater table, discharge and so on. With hydrologic models, the modeler can 

evaluate the impact of management practices and environmental change on future 

hydrologic response. For example, hydrologic models have been widely used for flood 

protection, design of engineered channels, assessing the impact of climate change, and 

predicting pollution incidents. 

1.1.2 Error sources of hydrologic modeling  

All models are wrong, and the simulated results of all models are wrong and 

uncertain. But some models are useful, and some are more useful than others (Marian 

Scott, 2004). In order to evaluate whether a model is valid and its results are useful, we 

need to identify the errors and uncertainty of models and their outputs. In this 

dissertation, “hydrologic model” is taken as an example for identifying the errors and 

uncertainty sources. The error and uncertainty sources of hydrologic modeling have been  
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Agricultural and Biological Engineers. 



2 

analyzed in previous studies (Beven, 2001; Montanari and Brath, 2004; Schaefli et al., 

2006; Ewen et al., 2006). Ewen et al. (2006) gave an comprehensive description of the 

error sources of hydrologic modeling, which were categorized into three groups: 1) 

model structure error, associated with the model’s equations, 2) parameter error, 

associated with the parameter values used in the equations; and 3) run time error, 

associated with rainfall and other forcing data. Further, Ewen et al. (2006) introduced the 

error components for each group (Table 1-1). The error components listed above all 

contribute to the “integrated” model output error, but their individual contribution 

usually cannot be isolated because the modeling process is complex and there is a lack of 

knowledge about the catchment and its hydrological responses (Beven, 2001; Ewen, 

2006).  

 
 
 

Table 1-1. Error components of hydrologic modeling. 

M1 
It is a philosophical question whether any model can exactly represent the 

truth, so even the best possible model might give “integrated” error. 

M2 From conceptual and mathematical simplification 

M3 From using approximate numerical solutions, finite time steps, etc 

M4 
From conceptual, mathematical and programming mistakes made by the 

modeler 

P1 
From incomplete or erroneous calibration data (i.e. forcing and response 

data used in calibration) 

P2 From the calibration process, to compensate for model structure error 

P3 From not using the optimum parameter values 

P4 
From mistakes made by the modeler in setting parameter values (the typing 

error described above contributes to component P4) 

R1 From incomplete and erroneous forcing data 

R2 
From mistakes in forcing data made by the modeler and from mistakes in 

the way the model is used and the results interpreted 

Note: For the model structure errors group, its components start with “M”. Similarly, error components 
belonging to the parameter error group start with “P”, and errors components belonging to the run time 
error group start with “R”. 
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1.1.3 General procedures for applying a hydrologic model  

When applying a hydrologic model, we would like to ask questions like (Marian 

Scott, 2004): Is the model valid? Are the assumptions reasonable? Does the model make 

sense based on the best scientific knowledge? Is the model credible? Do the model 

predictions match the observed data? How uncertain are results? In order to answer these 

questions, several key procedures followed in practical application of hydrologic model 

(Beven, 2000; Bedient et al., 2001) are as follows: 1) Select model based on study 

objectives and the perception and knowledge of the watershed under investigations. For 

example, if the snowfall and snowmelt processes are significant in the watershed under 

investigation, the snow routing component of the hydrologic model should be paid more 

attention to; or if the modeler would like to study an urbanized watershed, then a model 

developed for rural area should not be used. With the availability of observed data and 

the increasing need of understanding the hydrologic processes through the watershed 

system, physically based, distributed hydrologic models (e.g. MIKE SHE, SWAT, 

TOPMODEL) have been widely used to investigate water resources related problems. 2) 

Obtain necessary input data (e.g., precipitation, temperature, infiltration, physiography, 

land use, soil, channel characteristics, streamflow, ponds, and reservoirs). After the 

identification of a hydrologic model with specific model structure, the modelers would 

try their best to collect the most accurate forcing data for the hydrologic model. For 

example, the corrected radar rainfall data are preferable to the observed data from rain 

gauges for distributed hydrologic modeling; or the SSURGO soil data with high 

resolution (1: 24,000) would be preferable to the STATSGO soil data with resolution of 

1:250,000 (Peschel et al., 2006). 3) Conduct model calibration and uncertainty analysis. 

Even for physically based hydrologic models, there are parameters that can not be 

observed directly because of the measurement limits or scaling issues. These parameters 

need to be estimated by parameter optimization or uncertainty analysis methods. 4) 

Evaluate usefulness of the model and comment on needed change or modifications. 5) 

Use the model to perform simulations to assess the effect of management practices, 

climate change, and government policies on the hydrologic system.  
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1.1.4 Research problems  

Among the general procedures of applying hydrologic models, the selection of 

model structure, collecting data, and parameter calibration and uncertainty analysis are 

important since the accuracy of results is determined by these procedures. When 

applying a hydrologic model, the model structure and data available are usually fixed, 

while the procedure of determining parameters is relatively flexible. With highly 

parameterized distributed hydrologic models, parameter calibration and uncertainty 

analysis are a major concern of many applications of hydrologic models. Therefore, the 

objectives of this dissertation are to developing methods and computer tools to facilitate 

the robust parameter calibration and uncertainty analysis of physically based, complex 

hydrologic model. As the operation of these models is very time consuming, the research 

of this study will focus on only one of these physically based hydrologic models, the 

Soil and Water Assessment Tool (SWAT), that have been widely applied worldwide.  

1.2 Scope of this dissertation 

1.2.1 Parameter calibration for SWAT 

The parameters of hydrologic model are difficult to estimate through measurement 

and prior estimation. Some of the conceptual model parameters can not be measured 

directly, such as Curve Number (CN). Some model parameters can be measured directly, 

such as soil hydraulic conductivity, LAI (Leaf Area Index), but suffer from experimental 

constraints and scaling problems (measurement scale and model scale are different). 

Studies have generally found that, even using intensive series of measurements of 

parameter values, the results have not been entirely satisfactory (Beven, 2000). In 

general, when modelers apply the SWAT model in a practical situation, calibration of 

model parameters is a necessary and critical procedure. Many studies have been 

conducted to find effective and efficient method for hydrologic model calibration. There 

are mainly two types of calibration methods: manual and automatic calibration. 

Traditional manual calibration is labor-intensive and subjective to modeler’s opinion. 

Automatic methods are becoming more and more popular because of their ability to take 

advantage of power and speed of computers while being objective and relatively easy to 
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implement. The parameter calibration tool for SWAT includes popular single-objective 

and multi-objective evolutionary algorithms that have been successfully applied for 

optimizing hydrologic models or other complex systems.  

1.2.2.1 Single-objective method 

With the popularity of complex, physically based hydrologic model, the time 

consumed by running these models has increased substantially, although the speed and 

capacity of computers have increased multi-fold in the past several decades. Comparing 

and evaluating the efficacy of different optimization algorithms for calibrating the 

computationally intensive SWAT model is becoming a nontrivial issue. Previous studies 

have shown that different optimization algorithms exhibit varied performance for 

parameter calibration. For example, Cooper et al. (1997) evaluated Shuffled Complex 

Evolution algorithm (SCE-UA), Genetic Algorithm (GA) and Simulated Annealing (SA) 

methods for optimization of the Tank model. Chen et al. (2005) compared the 

performance of multi-start Powell and SCE-UA methods for calibrating the Tank model. 

These comparison results reveal the promising application of evolutionary algorithms. 

Besides the SCE-UA and GA algorithms, the Particle Swarm Optimization (PSO) has 

also been used to optimize the arrangement of hydraulic devices in a pipeline system 

(Jung and Karney, 2006), and train the Artificial Neural Networks’ weights for river 

stage prediction (Chau, 2006). Other evolutionary algorithms, such as Differential 

Evaluation (DE) (Storn and Price, 1997) and Artificial Immune Systems (AIS) (de 

Castro and Von Zuben, 2002a; de Castro and Von Zuben, 2002b), although rarely used 

in hydrologic model calibration, showed promising ability for global optimization of 

complex systems. In this study, five global optimization algorithms (GA, SCE, PSO, DE, 

and AIS) will be tested for automatic parameter calibration of the SWAT model, and 

suggestions on selection of optimization algorithms will be provided. 

1.2.2.2 Multi-objective method 

Most real-world decision making problems involve multiple and conflicting 

objectives. In the single objective case, one attempts to obtain the best solution, which is 

absolutely superior to all other alternatives. In the multiple objective cases, there does 
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not necessarily exist a solution that is best with respect to all objectives because of 

incommensurability and conflict among objectives. The purpose of multi-objective 

algorithm is finding the Pareto optimal solutions. Several methods have been developed 

for multi-objective optimization of hydrologic model. For example, Yapo et al. (1998) 

and Gupta et al. (1998) extended SCE-UA to address multi-objective functions in the 

multi-objective complex evolution (MOCOM-UA) algorithm, which was further 

improved to a multi-objective shuffled complex evolution Metropolis (MOSCEM-UA) 

by Vrugt et al. (2003b). Gill et al. (2006b) developed a PSO based multi-objective 

algorithm, and applied it for parameter calibration of the SAC-SMA Model and Support 

Vector Machine. There are many methods could be used to realize this objective. Here in, 

six state-of-the-art algorithms (Strength Pareto Evolutionary Algorithm 2 (SPEA2), 

Non-dominated Sorted Genetic Algorithm II (NSGAII), Epsilon Dominance Non-

dominated Sorted Genetic Algorithm II (ε-NSGAII), Multi-objective Particle Swarm 

Optimization algorithm (MOSPO) (Coello Coello et al., 2004), elitist-mutation MOPSO 

(EM-MOPSO) (Reddy and Kumar, 2007), and a variant of MOPSO develop by Gill et al. 

(2006b) were evaluated and compared for multi-objective parameter calibration of 

SWAT. After comparison of several state of the art multi-objective algorithms, the most 

promising single-objective optimization algorithm will be incorporated into the multi-

objective optimization framework to improve the efficiency and effectiveness of the 

original algorithms. 

1.2.2.3 Comparison between single objective and multi-objective method  

In many applications of hydrologic models, single objective optimization methods 

have been used. For SWAT, few studies have reported the application of multi-objective 

optimization methods. Therefore, comparison between single objective and multi-

objective methods is helpful to provide insights into the sensitivity of distributed 

hydrologic simulation to different calibration methods and the advantages and 

disadvantages of different parameter estimation methods.  
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1.2.3 Parameter uncertainty analysis for SWAT 

Referring to Montanari and Brath (2004), the methods used to estimate the predictive 

uncertainty of hydrologic models were categorized into three major groups in this study. 

The first option is to structure the hydrologic model as a probability model, then the 

confidence interval of model output can be computed (Montanari et al., 1997). 

Representative methods of this category include Markov Chain Monte Carlo (MCMC) 

and a Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992). 

The second option is to analyze the statistical properties of the hydrologic model error 

series that occurred in reproducing observed historical river flow data. Parameter 

solutions (ParaSol) (van Griensven and Meixner, 2006) is a typical of this group of 

methods. The third option is using on-line data assimilation algorithms, like Ensemble 

Kalman Filter (EnKF) (Vrugt et al., 2005), Particle Filter (PF) (Moradkhani et al., 2005) 

and Bayesian Recursive Estimation (BaRE) (Thiemann et al., 2001). These methods 

have been used to estimate the uncertainty interval of real time model prediction. As 

SWAT is designed to evaluate long term hydrologic effect of land cover change, Climate 

change and management practices, the recursive methods are not applicable for SWAT 

model. In this study, the author would like to explore the applicability of the GLUE and 

MCMC methods for the analysis of predictive uncertainty of SWAT model. The 

effectiveness of the parameter uncertainty analysis for estimating uncertainty of 

hydrologic modeling will be evaluated, and the effect of taking other error sources into 

account will be discussed.  

1.2.4 Efficient surrogate models for approximating SWAT 

Function approximation is an efficient method for parameter calibration and 

uncertainty analysis of computationally intensive model (Gutmann, 2001). Several 

studies have applied different learning machines as surrogate models to approximate the 

behavior of computationally intensive environmental models. For example, Artificial 

Neural Networks (ANN) have been used by Morshed and Kaluarachchi (1998), Aly and 

Peralta (1999), Johnson and Rogers (2000), Almasri and Kaluarachchi (2005), and Zou 

et al. (2007) as surrogate of complex environmental models for parameter selection and 
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management practices evaluation. Radial Basis Function (RBF) has been used by 

Gutmann (2001), Regis and Shoemaker (2005), and Mugunthan and Shoemaker (2006) 

as an approximation tool of computationally intensive model for parameter calibration 

and uncertainty analysis. It was shown in previous studies that different learning 

machines exhibited various ability to approximate different models’ behavior. In this 

study, the performances of ANN and SVM will be evaluated for approximating the 

SWAT model. Several practical issues related to how to efficiently and effectively apply 

the learning machines were also analyzed and discussed. In order to save huge amount of 

efforts running the computationally intensive SWAT model, the promising learning 

machines will be incorporated into the GLUE and MCMC methods. The efficiency and 

usefulness of the surrogate learning machines will be exhibited in experimental 

watersheds. 

1.3 Dissertation organization 

The dissertation consists of several chapters that deal with different aspects of the 

research scope. Specific topics for each individual chapter are summarized as follows: 

1) Chapter II introduces the SWAT model and study area; 

2) Chapter III evaluates and compares the effectiveness and efficiency of different 

single-objective evolutionary optimization algorithms for parameter calibration of 

SWAT;  

3) Chapter IV evaluates the advantage and disadvantage of single-objective and 

multi-objective optimization algorithms;  

4) Chapter V attempts to develop and compare different multi-objective evolutionary 

optimization algorithms for effective and efficiency parameter calibration of SWAT;  

5) Chapter VI aims to approximate the behavior of the SWAT model using learning 

machines, which are in turn used as surrogate for efficient parameter calibration and 

uncertainty analysis of SWAT;  

6) Chapter VII conducts parameter uncertainty analysis of SWAT using Generalized 

Likelihood Uncertainty Estimation (GLUE) and Bayesian Markov Chain Monte Carlo 
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(MCMC) methods, and evaluate the applicability of learning machines for saving efforts 

of running the computationally intensive SWAT model;  

7) Chapter VIII discusses the effect of model structure on the uncertainty estimation 

of hydrologic modeling; 

8) Chapter IX provides the conclusions. 
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CHAPTER II  
 

SWAT MODEL AND STUDY AREA DESCRIPTION 
 

 

2.1 SWAT developmental history and overview 

SWAT is a continuous, long-term, distributed-parameter model designed to predict 

the impact of land management practices on the hydrology, sediment and contaminant 

transport in agricultural watersheds (Arnold et al., 1998). SWAT model was developed 

through incorporating features of several ARS models, including the SWRRB (Simulator 

for Water Resources in Rural Basins), CREAMS (Chemicals, Runoff, and Erosion from 

Agricultural Management Systems), GLEAMS (Groundwater Loading Effects on 

Agricultural Management Systems), and EPIC (Erosion-Productivity Impact Calculator). 

Gassman et al. (2007) presented the developmental history of SWAT in a schematic 

chart (Figure 2-1).  

Development of SWRRB began with modification of the daily rainfall hydrology 

model from CREAMS. The SWRRB was further improved through a) incorporation of 

the GLEAMS pesticide fate component; b) optional SCS technology for estimating peak 

runoff rates; and c) newly developed sediment yield equations. Also ROTO (Routing 

Outputs to Outlet) (Arnold et al., 1995) was linked with SWRBB to provided a reach 

routing approach and overcame the SWRRB subbasin limitation by “linking” multiple 

SWRRB runs together. Further ROTO and SWRRB were merged into a single model - 

SWAT, which retained all the features of SWRRB while allowing simulation of very 

extensive areas through subdividing it into thousands of subbasins.  

Since the appearance of SWAT in the early 1990s, it has undergone continued 

review and expansion of capabilities (Neitsch et al., 2005a), and different versions of 

SWAT were developed. In this study, the newly developed SWAT2005 was applied, so 
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a brief overview of this version of SWAT is introduced. For a detailed description of 

SWAT, please refer to Neitsch et al. (2005a; 2005b) and Gassman et al. (2007). 

 
 
 

 
Figure 2-1. Schematic of SWAT developmental history, including selected SWAT adaptations 

(From Gassman et al., 2007). 

 
 
 

2.2 SWAT model structure overview 

SWAT is a basin-scale, continuous-time model that operates on a daily time step and 

is designed to predict the impact of management on water, sediment, and agricultural 

chemical yields in ungauged watersheds (Arnold et al., 1998). SWAT subdivides a 

watershed into sub-basins connected by a stream network, and further delineates HRUs 

(hydrologic response unit) consisting of unique combinations of land cover and soils 

within each sub-basin. The model assumes that there are no interactions among HRUs, 

and these HRUs are virtually located within each sub-basin. HRU delineation minimizes 

the computational costs of simulations by lumping similar soil and land use areas into a 

single unit (Neitsch et al., 2005a). HRU represent percentages of the subwatershed area 

and are not identified spatially within a SWAT simulation. Alternatively, a watershed 

can be subdivided into only subwatersheds that are characterized by dominant land use, 
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soil type, and management (Gassman et al., 2007). GIS based interfaces have been 

developed to facilitate preparing of spatial data for SWAT (e.g. Di luzio et al., 2004; 

Olivera, 2006). 

SWAT is able to simulate surface and subsurface flow, sediment generation and 

deposit, and nutrient fate and movement through the landscape and river. In this chapter, 

only the hydrologic components of SWAT will be described. The hydrologic routines 

within SWAT account for snow accumulation and melt, vadose zone processes (i.e., 

infiltration, evaporation, plant uptake, lateral flows, and percolation), and groundwater 

flows. Surface runoff volume is estimated using a modified version of the USDA-SCS 

curve number method (USDA-SCS, 1972). A kinematic storage model (Sloan et al., 

1983) is used to predict lateral flow, whereas return flow is simulated by creating a 

shallow aquifer (Arnold et al., 1998). Channel flood routing is estimated using the 

Muskingum method. Outflow from a channel is also adjusted for transmission losses, 

evaporation, diversions, and return flow.  

2.3 Hydrologic components of SWAT 

SWAT allows a number of different physical processes to be simulated in a 

watershed. The physical processes simulated in SWAT can be divided into two phases: 

land and routing. 

2.3.1 Land phase of the hydrologic cycle 

The hydrologic cycle as simulated by SWAT is based on the water balance equation: 
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where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content 

on day i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm 

H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Ea is the amount of 

evapotranspiration on day i (mm H2O), wseep is the amount of water entering the vadose 

zone from the soil profile on day i (mm H2O), and Qgw is the amount of return flow on 

day i (mm H2O). Figure 2-2 shows the Land phase hydrologic processes modeled by 

SWAT. 
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Figure 2-2. Land phase hydrologic processes modeled by SWAT (From Neitsch et al., 2005a). 

 
 
 

2.3.1.1 Climate 

The climate of a watershed provides the moisture and energy inputs that control the 

water balance and determine the relative importance of the different components of the 

hydrologic cycle. The climatic variables required by SWAT consist of daily precipitation, 

maximum/minimum air temperature, solar radiation, wind speed and relative humidity.  

2.3.1.2 Hydrology 

Precipitation may be intercepted and held in the vegetation canopy or fall to the soil 

surface. Water on the soil surface will infiltrate into the soil profile or flow overland as 

runoff. Runoff moves relatively quickly toward a stream channel and contributes to 
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short-term stream response. Infiltrated water may be held in the soil and later 

evapotranspired or it may slowly make its way to the surface-water system via 

underground paths. The potential pathways of water movement simulated by SWAT in a 

HRU are illustrated in Figure 2-2. 

Canopy storage. SWAT contains use two methods to calculate the water intercepted 

by vegetative surfaces (the canopy) where it is held and made available for evaporation. 

When using the curve number method to compute surface runoff, canopy storage is 

taken into account in the surface runoff calculations. However, if methods such as Green 

& Ampt are used to model infiltration and runoff, canopy storage must be modeled 

separately.  

Infiltration. Infiltration refers to the entry of water into a soil profile from the soil 

surface. As infiltration continues, the soil becomes increasingly wet, causing the rate of 

infiltration to decrease with time until it reaches a steady value. The initial rate of 

infiltration depends on the moisture content of the soil prior to the introduction of water 

at the soil surface. The final rate of infiltration is equivalent to the saturated hydraulic 

conductivity of the soil. Because the curve number method used to calculate surface 

runoff operates on a daily time-step, it is unable to directly model infiltration. The 

amount of water entering the soil profile is calculated as the difference between the 

amount of rainfall and the amount of surface runoff. 

Redistribution. Redistribution refers to the continued movement of water through a 

soil profile after input of water (via precipitation or irrigation) has ceased at the soil 

surface. Redistribution is caused by differences in water content in the profile. Once the 

water content throughout the entire profile is uniform, redistribution will cease. The 

redistribution component of SWAT uses a storage routing technique to predict flow 

through each soil layer in the root zone. Downward flow, or percolation, occurs when 

field capacity of a soil layer is exceeded and the layer below is not saturated. The 

flow rate is governed by the saturated conductivity of the soil layer. Redistribution is 

affected by soil temperature. If the temperature in a particular layer is 0°C or below, no 

redistribution is allowed from that layer. 
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Evapotranspiration. Evapotranspiration is a collective term for all processes by 

which water in the liquid or solid phase at or near the earth's surface becomes 

atmospheric water vapor. Potential soil water evaporation is estimated as a function of 

potential evapotranspiration and leaf area index (area of plant leaves relative to the area 

of the HRU). The model offers three options for estimating potential evapotranspiration: 

Hargreaves, Priestley-Taylor, and Penman-Monteith (Neitsch et al., 2005a). Actual soil 

water evaporation is estimated by using exponential functions of soil depth and water 

content. Plant transpiration is simulated as a linear function of potential 

evapotranspiration and leaf area index. 

Lateral subsurface flow. Lateral subsurface flow, or interflow, is streamflow 

contribution which originates below the surface but above the zone where rocks are 

saturated with water. Lateral subsurface flow in the soil profile (0-2m) is calculated 

simultaneously with redistribution. A kinematic storage model is used to predict lateral 

flow in each soil layer. The model accounts for variation in conductivity, slope and soil 

water content.  

Surface runoff. Surface runoff, or overland flow, is flow that occurs along a sloping 

surface. Using daily or subdaily rainfall amounts, SWAT simulates surface runoff 

volumes and peak runoff rates for each HRU. As the SCS curve number equation is 

closely related to the many important hydrologic processes (e.g., vegetation interception, 

infiltration, soil water redistribution, and surface runoff), it is introduced as follows 

(Neitach et al., 2005a) 
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where Qsurf is the accumulated runoff or rainfall excess (mm H2O), Rday is the rainfall 

depth for the day (mm H2O), Ia is the initial abstractions which includes surface storage, 

interception and infiltration prior to runoff (mm H2O), and S is the retention parameter 

(mm H2O). The retention parameter varies spatially due to changes in soils, land use, 

management and slope and temporally due to changes in soil water content. The 

retention parameter is defined as: 
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where CN is the curve number for the day. The initial abstractions, Ia, is commonly 

approximated as 0.2S and equation 2-2 becomes 
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Runoff will only occur when Rday > Ia. 

Ponds. Ponds are water storage structures located within a subbasin which intercept 

surface runoff. The catchment area of a pond is defined as a fraction of the total area of 

the subbasin. Ponds are assumed to be located off the main channel in a subbasin and 

will never receive water from upstream subbasins. Pond water storage is a function of 

pond capacity, daily inflows and outflows, seepage and evaporation. Required inputs are 

the storage capacity and surface area of the pond when filled to capacity. Surface area 

below capacity is estimated as a non-linear function of storage. 

Tributary channels. Two types of channels are defined within a subbasin: the main 

channel and tributary channels. Tributary channels are minor or lower order channels 

branching off the main channel within the subbasin. Each tributary channel within a 

subbasin drains only a portion of the subbasin and does not receive groundwater 

contribution to its flow. All flow in the tributary channels is released and routed through 

the main channel of the subbasin. SWAT uses the attributes of tributary channels to 

determine the time of concentration for the subbasin. Water losses from the channel are a 

function of channel width and length and flow duration. Both runoff volume and peak 

rate are adjusted when transmission losses occur in tributary channels. 

Return flow. Return flow, or base flow, is the volume of streamflow originating 

from groundwater. SWAT partitions groundwater into two aquifer systems: a shallow, 

unconfined aquifer which contributes return flow to streams within the watershed and a 

deep, confined aquifer which contributes return flow to streams outside the watershed 

(Arnold et al., 1993). Water percolating past the bottom of the root zone is partitioned 

into two fractions—each fraction becomes recharge for one of the aquifers. In addition 
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to return flow, water stored in the shallow aquifer may replenish moisture in the soil 

profile in very dry conditions or be directly removed by plant. Water in the shallow or 

deep aquifer may be removed by pumping. 

2.3.2 Routing phase of the hydrologic cycle 

Once SWAT determines the loadings of water, sediment, nutrients and pesticides to 

the main channel, the loadings are routed through the stream network of the watershed 

using a command structure similar to that of HYMO (Williams and Hann, 1972). In 

addition to keeping track of mass flow in the channel, SWAT models the transformation 

of chemicals in the stream and streambed.  

As water flows downstream, a portion may be lost due to evaporation and 

transmission through the bed of the channel. Another potential loss is removal of water 

from the channel for agricultural or human use. Flow may be supplemented by the fall of 

rain directly on the channel and/or addition of water from point source discharges. Flow 

is routed through the channel using the Muskingum routing method. 

2.4 Review of parameter calibration and uncertainty analysis of SWAT 

Numerous sensitivity analysis approaches have been reported in the SWAT literature, 

which provide valuable insights regarding which input parameters have the greatest 

impact on SWAT output. As previously discussed, the vast majority of SWAT 

applications report some type of calibration effort. SWAT input parameters are 

physically based and are allowed to vary within a realistic uncertainty range during 

calibration. Sensitivity analysis and calibration techniques are generally referred to as 

either manual or automated, and can be evaluated with a wide range of graphical and/or 

statistical procedures.  
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Table 2-1.Parameters for calibration in SWAT model 

Parameter 

Code 
Parameter Description Range 

Parameters governing surface water response 

1 CN2 Curve Number ±20% 

2 ESCO Soil Evaporation compensation factor 0 to 1 

3 SOL_AWC Available soil water capacity ±20% 

Parameters governing subsurface water response 

4 GW_REVAP Ground water reevaporation coefficient 0.02 to 0.2 

5 REVAPMN 
Threshold depth of water in the shallow aquifer for 

reevaporation to occur (mm). 
0-500 

6 GWQMN 
Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 
0-5000 

7 GW_DELAY Groundwater delay (days) 0-50 

8 ALPHA_BF Base flow recession constant 0 to 1 

9 RCHRG_DP Deep aquifer percolation fraction 0-1 

Parameters governing basin response 

10 CH_K2 
Effective hydraulic conductivity in main channel 

alluvium (mm/hr) 
-0.01-150 

11 TIMP Snow pack temperature lag factor 0-1 

12 SURLAG Surface runoff lag coefficient (day) 0 to 10 

13 SFTMP Snow melt base temperature (ºC) 0-5 

14 SMTMP Snowfall temperature (ºC) 0-5 

15 SMFMX 
Maximum snowmelt factor for June 21 (mm 

H2O/ºC-day) 
0 to 10 

16 SMFMN 
Minimum snowmelt factor for Dec. 21 (mm 

H2O/ºC-day) 
0 to 10 

 
 
 

One important factor that impacts the complexity of the optimization problem is the 

parameter dimension that need to be adjusted and the parameters’ ranges. van Griensven 

et al. (2006) conducted detailed global sensitivity analysis of the parameters in SWAT, 

and the results showed that ten parameters are sensitive to the hydrologic simulation of 
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SWAT. Van Liew et al. (2007) tested the suitability of SWAT for the CEAP 

(Conservation Effect Assessment Project) in five USDA agricultural research service 

watersheds. In the study conducted by Van Liew et al. (2007), sixteen parameters, which 

include the ten parameters identified by van Griensven et al. (2006), were adjusted to 

calibrate the SWAT model for hydrologic simulation. In order to be consistent with 

previous work, the 16 parameters identified by Van Liew et al. (2007) were applied in 

this study. The general description of the sixteen parameters is shown in Table 2-1. The 

parameters’ ranges were determined according to van Griensven et al. (2006) and 

Neitsch et al. (2005b). Among these sixteen parameters, nine of them govern surface and 

subsurface water response in SWAT, and other seven parameters govern basin response. 

2.4.1 Sensitivity analysis of SWAT 

Sensitivity analysis has been taken as an attractive method for reducing parameter 

dimension. Numerous studies have reported the parameter sensitivity analysis of SWAT. 

The sensitivity analysis methods can be categorized as either manual or automatic. 

Although manual methods were used to determine sensitive parameters of SWAT (e.g., 

Spruill et al., 2000; Lenhart et al., 2002), the automatic methods became more popular 

with the availability of powerful computer. Francos et al. (2003) demonstrated an 

application of a two-step sensitivity analysis approach for SWAT in the 3,500 km2 Ouse 

Watershed in the United Kingdom using 82 input and 22 output parameters. They 

applied a “Morris” screening procedure that is based on the One factor At a Time (OAT) 

design to determine the qualitative ranking of an entire input parameter set for different 

model outputs at low computational cost, and then used a Fourier Amplitude Sensitivity 

Test (FAST) method to provide an assessment of the most relevant input parameters for 

a specific set of model output. Holvoet et al. (2005) combined the Latin Hypercube (LH) 

with OAT to determine which of 27 SWAT hydrologic-related input parameters are 

most sensitive regarding streamflow and atrazine outputs were for 32 km2 Nil Watershed 

in central Belgium. Similar LH-OAT method was used by van Giensvcn et al. (2006) to 

assess the sensitivity of 41 input parameters on SWAT flow, sediment, total N, and total 

P estimates for both the 933 km2 Upper North Bosque River Watershed (UNBRW) 
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located in Central Texas and the 3240 km2 Sandusky River Watershed in Ohio. The LH-

OAT method has been incorporated as part of the automatic sensitivity/calibration 

package included in SWAT2005. 

2.4.2 Parameter calibration approaches for SWAT 

Manual and automatic parameter calibration techniques have been widely used to 

estimate optimum parameters for SWAT. The manual calibration method is to utilize 

knowledge of the watershed and experience with the model to adjust the parameters 

through a trial and error procedure, which is subjective and labor intensive (Gupta et al., 

1999). Automatic calibration methods, which are objective and relatively easy to be 

implemented with high speed computers, have become more and more popular in recent 

years (Vrugt et al., 2003b). Different automatic parameter estimation methods (i.e. PEST, 

GA, and SCE) have been successfully applied for calibrating SWAT. For example, 

Govender and Everson (2005) and Wang and Melesse (2005) applied automatic PEST 

parameter estimation program to estimate hydrologic related variables of SWAT; Muleta 

and Nicklow (2005) describe using a GA to perform automatic calibration of daily 

streamflow and sediment yield estimates. SCE is the automatic method that has been 

incorporated into SWAT2005. Eckhardt and Arnold (2001), Eckhardt et al. (2005), van 

Griensven and Bauwens (2003; 2005), Vandenberghe et al. (2001), Van Liew et al. 

(2005; 2007) demonstrated the application of SCE in a broad range of watersheds for 

streamflow, sediment and pollutant simulation.  

For most cases, the SWAT model is calibrated and validated at the drainage outlet of a 

watershed (Qi and Grunwald, 2005). It was found that spatially distributed calibration 

and validation accounted for hydrologic patterns in the subwatersheds (Qi and Grunwald, 

2005). Using spatially distributed data to calibrate and validate SWAT model is 

becoming more and more popular (Cao et al., 2006; White and Chaubey, 2005; 

Vazquez-Amábile and Engel, 2005; and Santhi et al., 2001). 

2.4.3 Parameter uncertainty analysis of SWAT 

Monte Carlo simulation has been widely used to assess the uncertainty of hydrologic 

models (Haan and Skaggs, 2003a; 2003b). Several parameter uncertainty analysis 
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methods have been developed and applied for SWAT. Benaman and Shoemaker (2004) 

developed a six-step method, which reduced the model output range by an order of 

magnitude, resulting in reduced uncertainty and the amount of calibration required for 

SWAT. Muleta and Nicklow (2005) describe a combined method for parameter 

sensitiviey analysis, calibration, and uncertainty analysis of SWAT. They conducted 

parameter sensitivity analysis for 35 input parameters, in which LH samples were used 

to reduce the number of MC simulations needed to conduct the analysis. GA and GLUE 

methods were then used to conduct parameter calibration and uncertainty analysis of 

SWAT. Van Greinsven and Meixner (2006) describe several uncertainty analysis tools 

that have been incorporated into SWAT2005, including a modified SCE algorithm called 

“parameter solutions” (ParaSol), the Sources of Uncertainty Global Assessment using 

Split SamplES (SUNGLASSES) which further evaluates results obtained with ParaSol 

for a different time period (to ascertain bias in the initial confidence region, etc.), and the 

Confidence ANalysis Of Physical Inputs (CANOPI) which evaluates uncertainty 

associated with climatic data and other inputs.  

2.5 Study area description 

In this study, the SWAT model was applied to four watersheds with different 

climatic and terrain characteristics to test the effectiveness and efficiency of different 

optimization algorithms. The four watersheds included the YR headwater watershed, 

MCEW, LREW, and RCEW. The geographic locations of the four watersheds are shown 

in Figure 2-3 and Figure 2-4. Among the four watersheds, the YR headwater watershed 

is located in China, and the other three watersheds are located in the United States. 

These three watersheds are US Department of Agriculture Agricultural Research Service 

(USDA ARS) experimental watersheds, and have been used in a paper by Van Liew et al. 

(2007) for testing the suitability of SWAT for the Conservation Effects Assessment 

Project. The basic characteristics of the four test watershed are described below.  

2.5.1 Yellow River headwaters watershed 

The Yellow River headwaters watershed (YRHW) is an 114,345 km2 mountainous 

river basin, which is located in the northeast part of Tibetan plateau. This area is the 
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important source of water generation for the Yellow River Basin (Liu, 2004). The 

average elevation is about 4,217 m, and ranges between 2,600 and 6,266 m. The annual 

precipitation amount is around 600 mm and the average annual temperature for the YR 

headwater is near 0ºC. In winter the average temperature is below 0ºC for most of the 

weather stations, while in summer the average temperature is above 0ºC. This seasonal 

temperature variation makes snowmelt a significant process in this area (Zhang et al., 

2007). This watershed is characterized by gently sloping upland and river bed, and 

swamp and wetland. The major types of soils in this area are clay and loam with 

relatively low infiltration rate. The major land cover in the study area is grassland, which 

accounts for approximately 90% of the total area. Other land use/land cover (forest land, 

rangeland, agriculture land, and bare area) account for the remaining 10% of the area.  

2.5.2 Mahantango Creek Experimental Watershed 

Mahantango Creek Experimental Watershed (MCEW) is a tributary of the 

Susquehanna River in Central Pennsylvania. The MCEW is typical of upland 

agricultural watersheds within the nonglaciated, folded and faulted, Appalachian Valley 

and Ridge Physiographic Province (Veith et al., 2005). Climate in the region is 

temperate and humid, with a long-term average annual precipitation of 1100 mm. The 

watershed is characterized by shallow, fragipan soils in near-stream areas, and deep, 

well-drained soils in the uplands (Van Liew et al., 2007). Land use types consist of 

pasture (38%), forest (34%), mixed croplands (26%), and farmsteads (2%). 

2.5.3 Little River Experimental Watershed 

The Little River Experimental Watershed (LREW) is the upper 334 km2 of the Little 

River and is the subject of long-term hydrologic and water quality research by USDA-

ARS and cooperators (Sheridan, 1997). The LREW is located in the Tifton Upland 

physiographic region, which is characterized by intensive agriculture in relatively small 

fields in upland areas and riparian forests along stream channels. The region has low 

topographic relief and is characterized by broad, flat alluvial floodplains, river terraces, 

and gently sloping uplands (Sheridan, 1997). Climate in this region is characterized as 

humid subtropical with an average annual precipitation of about 1167 mm based on data 
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collected by USDA ARS from 1971 to 2000. Soils on the watershed are predominantly 

sands and sandy loams with high infiltration rates. Since surface soils are underlain by 

shallow, relatively impermeable subsurface horizons, deep seepage and recharge to 

regional ground water systems are impeded (Sheridan, 1997). Land use types include 

forest (65%), cropland (30%), rangeland and pasture (2%), wetland (2%), and 

miscellaneous (1%). 

2.5.4 Reynolds Creek Experimental Watershed 

The area of the Reynolds Creek Experimental Watershed (RCEW) is 239 km2, which 

is located about 80 km southwest of Boise and exhibits a considerable degree of spatial 

heterogeneity. The topography of the watershed ranges from a broad, flat alluvial valley 

to steep, rugged mountain slopes, with a range in elevation from 1101 to 2241 m 

(Seyfried et al., 2000). Because of orographic effects, the average annual precipitation 

range from about 250 mm from the outlet to more than 1100 mm at the upper end of the 

watershed. Perennial streamflow is generated at the highest elevations in the southern 

part of Reynolds Creek where deep, late lying snowpacks are the source for most water 

(Seyfried et al, 2000).  Although much of the watershed has steep, shallow, rocky soils, 

there are areas of deep, loamy soils that are rock free.  Land cover on Reynolds Creek 

consists of rangeland and forest communities of sagebrush, greasewood, aspen, and 

conifers (94%) and irrigated cropland (6%). 

 
 

 
Figure 2-3. Location of the headwaters region of the Yellow River. 
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Figure 2-4. Locations of three USDA ARS experimental watersheds. (Modified from Van Liew 

et al., 2007). 
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CHAPTER III  
 

SINGLE OBJECTIVE CALIBRATION OF SWAT 
 

 

3.1 Introduction  

Hydrologic models are more and more widely applied by hydrologists and resources 

managers as a tool to understand and manage natural and human activities that affect 

watershed systems. The successful application of a hydrologic model depends on how 

well the model is calibrated (Duan et al., 1992). Hydrologic models, even those 

physically-based models, often contain parameters that cannot be measured directly due 

to measurement limits and scale issues (Beven, 2000). These parameters need to be 

estimated through an inverse method by calibration so that observed and predicted 

output values are in agreement. Before the widespread availability of high speed 

computers, hydrologic practitioners utilized knowledge of the watershed and experience 

with the model to adjust the parameters through a manual trial and error procedure 

(Gupta et al., 1999). This approach to calibration is subjective and labor intensive. 

Automatic calibration methods, which are objective and relatively easy to be 

implemented with high speed computers, have become more and more popular in recent 

years (Vrugt et al., 2003). Global optimization algorithms, which can efficiently and 

effectively search optimum parameter solutions that can minimize (or maximize) some 

objective functions that represent the agreement between observations and model 

simulations, have been successively applied in the research field of automatic calibration 

of hydrologic methods. For example, Duan et al. (1992) developed the Shuffled 

Complex Evolution algorithm (SCE-UA), which has been widely used in hydrologic 

modeling (Sorooshian et al., 1993) and proved to be consistent and efficient for 

searching global optimum parameter values of hydrologic models (Vrugt et al., 2003). 

Other optimization algorithms (i.e., Genetic Algorithms (GA), simulated annealing (SA), 
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and Levenberg-Marquardt) are also popular methods for automatic calibration of 

parameters in hydrologic models.  

With the popularity of sophisticated physically-based watershed models, the 

complexity of the calibration problem has increased substantially (Gupta et al., 1998). 

Although the speed and capacity of computers have increased multi-fold in the past 

several decades, the time consumed by running hydrologic models (especially those 

complex, physically based, distributed hydrologic models) is still a concern for 

hydrologic practitioners. As to which of the available optimization methods that can 

effectively and efficiently identify good parameter sets is a topic of considerable interest. 

Several studies have been conducted to evaluate the performance of different algorithms. 

For example, Cooper et al., (1997) evaluated SCE-UA, GA and SA methods for 

optimization of the Tank model; Kuczera (1997) compared four search algorithms, SCE-

UA, GA, and multiple random start using either simplex or quasi-Newton local searches 

for parameter optimization of catchment models; Chen et al. (2005) compared the 

performance of multi-start Powell and SCE-UA methods for calibrating the Tank model; 

Jha et al., (2006) compared the traditional (Levenberg-Marquardt and Gauss-Newton) 

and nontraditional (GA) techniques for determining well parameters. The results 

obtained by the above comparison studies showed that the evolutionary algorithms 

(SCE-UA and GA) could provide equal or better performance than other methods (Jha et 

al., 2006; Kuczera, 1997; Chen et al., 1997; Cooper et al., 1997). With the robustness for 

searching global optimum and ease of implementation, evolutionary algorithms have 

been widely used in hydrologic modeling. Besides the SCE-UA and GA algorithms, the 

Particle Swarm Optimization (PSO) has also been used to optimize the arrangement of 

hydraulic devices in a pipeline system (Jung and Karney, 2006), and train the Artificial 

Neural Networks’ weights for river stage prediction (Chau, 2006). Other evolutionary 

algorithms, such as Differential Evaluation (DE) (Storn and Price, 1997) and Artificial 

Immune Systems (AIS) (de Castro and Von Zuben, 2002a; de Castro and Von Zuben, 

2002b), although rarely used in hydrologic model calibration, showed promising ability 

for global optimization of complex systems. 
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There are many physically-based watershed models that have been successfully 

applied in practical hydrologic modeling problems. As the time consumed by running 

these models is enormous huge, it’s nearly impossible to test the optimization algorithms 

for all these complex models. The objective of this paper was therefore to evaluate the 

efficacy of the five evolutionary algorithms (SCE-UA, GA, PSO, DE, and AIS) for 

parameter optimization of SWAT. As the time and computational resources did not 

allow for a vast number of model runs with SWAT, the performance of the five 

optimization algorithms were only tested for a limited number of evaluations of the 

model.  

3.2 Methods 

3.2.1 Global optimization algorithms 

The five based global optimization algorithms were investigated in this study. Use of 

these algorithms depends upon a number of variables, many of which are defined as 

follows: D is defined as the parameter solution dimension; N is the number of parameter 

solutions in the population; ix  is defined as the ith parameter solution in the population, 

and a D-dimensional vector ),,,( 21 iDiii xxx L=x  where idx  is the dth parameter of the 

ith parameter solution. Different algorithms use different terms to denote parameter 

solution. The parameter solution is referred to as “chromosome” in GA, “point” in SCE, 

“particle” in PSO, “antibody” in AIS, and “individual” in DE. The current number of 

iteration of the algorithms is denoted as t. T is the maximum number of iterations 

allowed before optimization is terminated. All five algorithms are population based. A 

Latin Hypercube algorithm is used to initialize the first population of parameter 

solutions. 

3.2.1.1 GA 

GAs are stochastic search procedures inspired by the evolutionary biological 

processes of natural selection and genetics (Holland, 1975; Goldberg, 1989), such as 

inheritance, mutation, selection, and crossover. With flexibility and robustness, GAs 

have been successfully applied to solve complex nonlinear programming problems in 

many science and engineering branches (Reca and Martinez, 2006), including 
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hydrologic modeling. For example, Kuo and Liu (2003) applied GAs for optimizing a 

model for irrigation planning and management; Chang et al. (2005) showed that the GAs 

provided an adequate, effective and robust way for searching the reservoir operating rule 

curves. Srivastava (2002) and Arabi et al. (2006) used GAs for optimizing the allocation 

of watershed management practices. Jia and Culver (2006) optimized total maximum 

daily load allocations in the Charlottesville Watershed, Virginia using GAs. The general 

procedures for applying GAs are schematically described in Figure 3-1. There are three 

major operators in the GAs: selection, crossover, and mutation.  

 
 
 

 
Figure 3-1. Flowchart of the genetic algorithm. 

 
 
 

Selection operator. The fitter chromosomes in the population are preferred to be 

selected to reproduce new promising offspring. A roulette wheel algorithm is applied to 

select chromosomes for the following crossover and mutation operation. The probability 

of a chromosome to be selected as parent is proportional to its fitness. In order to 



29 

overcome shortcomings of using the original fitness value in the roulette wheel 

algorithm, a relative fitness value for each chromosome is calculated in the following 

equation: 

rfNfrF 2)1)(1()(' −++=     3- 1 

Where f  is the selection pressure ( 10 ≤≤ f ), and r  is the rank assigned to the 

chromosomes based on their fitness. 

Crossover operator. The purpose of crossover is exchanging important building 

blocks of two parent chromosomes to generate new promising offspring. The probability 

of crossing two chromosomes is determined by an input parameter cP . There are mainly 

three crossover methods: 1) one-point crossover, 2) two-point crossover, and 3) uniform 

crossover (Goldberg, 1989). In this study, the uniform crossover operator has been 

applied. In the uniform crossover, for each dimension of the parent chromosomes, two 

parent chromosomes swap the parameter values with a probability of 0.5 to generate a 

new offspring chromosome.  

Mutation operator. For each dimension of the offspring chromosome, a random 

number between [0,1] is generated. If this random number is less than the mutation 

probability ( mP ), then a newly generated parameter value will replace the old parameter 

value of the specific dimension. 

After the newly bred chromosomes are generated through the selection, crossover, 

and mutation operators, they will be incorporated into the population using a steady-

state-delete-worst plan (Reca and Martinez, 2006), in which the least fit member of the 

parent population is eliminated and replaced by the offspring. Several control parameters 

of the GA were determined according to Schaffer et al. (1989) and Reca and Martinez 

(2006): mP  was set to 1/D, cP  was equal to 0.5, and f  was set to 1.  

3.2.1.2 SCE 

The Shuffled Complex Evolution algorithm is very popular for hydrologic model 

optimization. The SCE algorithm developed by Duan et al. (1992) merges the strengths 

of the Downhill Simplex procedure (Nelder and Mead, 1965) with the concepts of 
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controlled random search, systematic evolution of points in the direction of global 

improvement, competitive evolution (Holland, 1975), and complex shuffling. In a first 

step of implementation of SCE, an initial population of parameter solutions is randomly 

sampled for “p” parameters to be optimized. The population is partitioned into several 

community, each consisting “2p+1” points. Each community is made to evolve based on 

a statistical “reproduction process” that uses the simplex method, an algorithm that 

evaluates the objective function in a systematic way with regard to the progress of the 

search in previous iterations (Nelder and Mead, 1965). At periodic stages in the 

evolution, the entire population is shuffled and parameter solutions are reassigned to 

communities to ensure information sharing. As the search progresses, the entire 

population tends to converge toward the neighborhood of global optimization.SCE 

searches the entire parameter space and finds the global optimum efficiently and 

effectively (Sorooshian et al., 1993) and has been successfully used for calibration of 

SWAT (van Griensven and Bauwens, 2003; Eckhardt et al., 2005; Van Liew et al., 2005; 

van Griensven and Bauwens 2005). A brief description of the processing sequence of the 

SCE is presented below (Duan et al., 1992): 

1) Initialize N points in the feasible parameter space, and evaluate each 

parameter solution’s fitness. 

2) Rank points in ascending order of fitness value. 

3) Partition the N points into p complexes, each containing m points. The 

complexes are partitioned in such a way that the first complex contains 

every p×(k-1)+1 ranked point, the second complex contains every p× (k-

1)+2 ranked point, and so on, where k = 1,2,..., m.  

4) Evolve each complex independently by taking β evolution steps: 

a) Rank points in each complex in ascending order of fitness value. 

b) A sub-complex containing q points is selected according to a prespecified 

probability distribution using equation (3-2).  
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The points with higher fitness value have a higher chance of being chosen to 

form the sub-complex than the worse points.  

c) Rank points in sub-complex in descending order of fitness value, and 

compute centroid G by equation (3-3) 

∑
−

=−
=

1

11
1 q

j
ju

q
G     3- 3 

ju  is the jth point in current sub-complex.  

d) Compute the new point  quGr −= 2  (“reflection”). 

e) If r  is within the feasible parameter space, compute its fitness value rf  

and go to procedure (f); otherwise compute the smallest hypercube 
nRH ∈  that contains the points within the current complex, randomly 

generate a point z  within H , compute zf , and set zr =  and zr ff =  

(mutation step). 

f) If qr ff > , replace qu  with r , go to step (l); otherwise compute 

2/)( quGc +=  and cf  (contraction step). 

g) If qc ff > , replace qu  with c , go to step (l); otherwise generate a point 

z  within H , compute zf  (mutation step). Replace replace qu  with z .  

h) Repeat procedures (c) to (g) α times. 

i) Replace the points in sub-complex to current complex using their original 

positions. Repeat procedures (a) to (h) β times. 

5) Shuffle complexes: Combine the points in the evolved complexes into a 

single sample population; sort the sample population in order of 

increasing criterion value; re-partition or shuffle the sample population 

into p complexes according to the procedure specified in Step 3. If the 

number of trials exceeds T, stop; else, return to Step 2. 

p is number of complexes in a sample population, m is number of points in each 

complex, p×m equals the population size N, q is number of points in each sub-complex, 



32 

β is number of evolution steps allowed for each complex before complex shuffling, and 

α is the number of consecutive offspring generated by each sub-complex. According to 

Duan et al. (1994), m was set to 2×D + 1, q was equal to D + 1, β was set to 2 × D + 1, 

and α was equal to 1.  

3.2.1.3 PSO 

Particle swarm optimization (Kennedy and Eberhart, 1995) is a stochastic 

optimization technique inspired by social behavior of bird flocking or fish schooling. 

PSO’s basic algorithm involves casting a population of particles over the search space. 

Each particle is assigned to an initially random location and velocity vector, and then 

each particle adjusts its “flying” according to its own flying experience and its 

companions’ flying experience (Eberhart and Shi, 1998). PSO has been successfully 

applied to optimize artificial neural networks for river stage prediction (Chau, 2006) and 

parameter estimation of hydrologic models (Gill et al., 2006b). 

Before introducing the PSO algorithm, several variables are defined: iv  denotes the 

movement velocity for the ith particle in the swarm, which is a D dimensional vector 

),,,( 21 iDiii vvv L=v , idv  is the movement velocity of dth parameter of the ith particle; 

ip  denotes the personal best position that has been searched by the ith particle, which is 

also a D-dimensional vector ),,,( 21 iDiii ppp L=p , idp  is the value of the dth parameter 

of the ith particle’s personal best position; gp  denotes the global best position that has 

been searched by all particles, which is D-dimensional vector ),,,( 21 gDggg ppp L=p . 

gdp  is the value of the dth parameter of the global best particle. Since the first 

introduction of PSO by Kennedy and Eberhart (1995), several variants of PSO have been 

proposed. One of the variants that has been successively applied for solving complex 

optimization problems was applied in this study (Parsopoulos and Vrahatis, 2002). The 

basic PSO’s operation formulas are described as:  
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where 1η  and 2η  are the cognitive and social learning rates, respectively. These two 

rates control the relative influence of the memory of all the particles and the memory of 

the individual particle, 1rnd  and 2rnd  are uniformly distributed random numbers 

between 0 and 1, and w  is the inertia weight of previous velocity. Based on previous 

studies (Shi and Eberhart, 1998; Parsopoulos and Vrahatis, 2002), 1η  and 2η  are both set 

equal to 2. The initial value of w  is set equal to 1.2. The value of w  is decreased 

linearly and set equal to 0.1 for the last iteration. In addition to the above variables, three 

vectors maxx , minx  and maxv  are defined to place a limit on the search space and 

velocities. The general procedures for applying PSO are schematically described in 

Figure 3-2. For more detailed information of PSO, please refer to Kennedy and Eberhart 

(2001).  

 
 

Randomly initialize N parameter 
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Figure 3-2. Flowchart of the particle swarm pptimization. 
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3.2.1.4 DE 

The DE algorithm is a simple and powerful evolutionary algorithm developed by 

Storn and Price (1997) for global optimization. The DE has gradually gained popularity 

and has been applied in many practical cases because of its ease of implementation and 

good convergence properties. For example, the DE has been successfully applied for 

multi-sensor fusion (Joshi and Sanderson, 1999), optimization of heat transfer 

parameters in trickle-bed reactors (Babu and Sastry, 1999), and of surface grinding 

operations (Krishna, 2007). The DE creates new candidate solutions by combining the 

parent individual and several other individuals of the same population, and chooses the 

better one between the new solution and the parent individual into the next generation of 

the population. The DE algorithm uses three operators to generate new parameter 

solutions. Mutation and crossover are used to generate new parameter solutions, and the 

selection operator is used to determine which of the solutions survive into the next 

generation. There are several variants of DE (Storn and Price, 1997, Krishna, 2007). One 

variant of DE, noted as DE/rand/1/bin according to Storn and Price (1997), was applied 

in this study. This variant of DE has been most often used in practice (Brest et al., 2006, 

Krishna, 2007). The general procedures of DE are illustrated in Figure 3-3.  

The mutation, crossover and selection operators are different from those used in GA, 

and are described as follows: 

Mutation operator. For each parameter solution ix , a mutant parameter vector iv  

is generated according to  

)( 321 rrri F xxxv −⋅+=      3- 6 

where 1r , 2r  and 3r  are random integer numbers from ],1[ N , and these numbers are 

different from each other and from the running index i . F  is a real number ( ]2,0[∈F ) 

that controls the amplification of the difference vector )( 32 rr xx − . If a component of the 

newly generated parameter vector exceeds the constrained parameter space, then the 

parameter value will be set to the bound value. 
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Figure 3-3. Flowchart of the differential evolution. 

 
 
 
Crossover operator. The mutated parameter vector iv  is mixed with the original 

solution ix  to produce the trial parameter solution ),,,( 21 iDiii uuu L=u . Each 

dimension of iu  is chosen from iv  or ix  using following scheme:  

idid vu =  if CRrd ≤  or )(irnd =     3- 7 

idid xu =  if CRrd >  and )(irnd ≠     3- 8 

where ]1,0[∈dr , Dd K,2,1= . CR  is the crossover constant which is between ]1,0[ , and 

)(irn  is a random integer chosen from },2,1{ DK , which is used to make sure that at 

least one parameter value of iu  is from iv .  

Selection operator. The newly yielded iu  candidate parameter solution is compared 

with the original solution ix , and the better one (in terms of fitness value defined by 

users) will be selected to enter into the next generation of population; otherwise the old 

solution ix  will be retained. 
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For the three control parameters ( F , CR , and N) in DE, Storn and Price (1997) 

suggested that ]1,5.0[∈F , ]1,8.0[∈CR , and DN ⋅= 10 . In this study, we set the values 

of F  and CR  to 0.5 and 0.9 respectively, following the suggestions from Storn and 

Price (1997), and Brest et al. (2006). 

3.2.1.5 AIS 

An AIS is a type of optimization algorithm inspired by the principles and processes 

of the vertebrate immune system. The theory of a biological immune system is beyond 

the scope of this paper. For further information regarding the theory of an immune 

system, the reader is referred to de Castro and Von Zuben (2002a) and de Castro and 

Von Zuben (2002b). The AIS has been successfully applied for optimizing complex 

systems, like the radial basis function (de Castro and Von Zuben, 2002b), neural 

networks (Byrski and Kisiel-Dorohinicki, 2005), economic dispatch in power systems 

(Rahman et al., 2006), and several constrained global optimization problems (Cruz-

Cortés et al., 2005). But AIS had seldom been used for optimizing hydrologic models. In 

this study, the CLONALG (de Castro and Von Zuben, 2002a), a classical AIS algorithm 

was introduced and applied for parameter optimization of SWAT. In CLONALG, the 

parameter solution is defined as antibody ( Ab ), and the objective to be optimized is 

defined as antigen ( Ag ). The flowchart of AIS is shown in Figure 3-4. First of all, a 

population of N  Ab s is initiated randomly in the parameter space. Two criteria are 

used to select promising Ab s to reproduce the next generation of candidates. The first 

one is the Ab - Ag  affinity (expressed as the value of the objective function), and the 

other one is the Ab - Ab  similarity (expressed as the Euclidean distance). The Ab  with 

upper Ab - Ag  affinity and lower similarity with other Abs are taken as promising 

solutions. Each Ab  is assigned to a shared fitness sf  which takes the Ab - Ag  affinity 

and Ab - Ab  similarity into account: 

∑
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Where )(⋅sh  is the sharing function, )(1)(
share

ddsh
σ

−= , if shared σ< , otherwise )(dsh = 

0. shareσ  is a threshold value of dissimilarity. The Ab s are proliferated through the 

cloning and hypermutation operator, which perturb the old solution by summing a 

random vector:  

randomoldinewi a xAbAb ⋅+= ,,     
*

sfea ⋅−= ρ
   3- 10 

where a  is the hypermuation rate, randomx  is a vector of Gaussian random numbers of 

mean 0 and standard deviation 1, *
sf  is the normalized value of fitness in the range. The 

Ab s with higher *
sf  are tended to be perturbed with a smaller step size. The total 

number of new clones generated is determined using the rule suggested by de Castro and 

Von Zuben (2002a), 

∑
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where Nc  is the total number of new Ab s, and β  is a multiplying factor. For each Ab , 

the number of clones yielded using equation (3-10) is the same. The best n  Ab s among 

the combination of newly cloned and the parent Ab s with highest fitness are reselected 

to enter the next generation. Also N-n new Ab s are randomly generated and added to 

the next generation. 

de Castro and Von Zuben (2002a) provides detailed discussion on the application of 

CLONALG algorithms for parameter optimization. Following the control parameter 

setting in de Castro and Von Zuben (2002a), shareσ  was set to 4, n was set to 

)9.0( Nround ⋅ , β  was 0.1, and ρ was 10. 
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Figure 3-4. Flowchart of the artificial immune system. 

 
 
 

3.2.2 Optimization test cases 

The performance of the five optimization algorithms is determined by the control 

parameters. For most of the control parameters, previous literature provides some 

suggestion on how to choose appropriate settings. Among these control parameters, the 

population size is an important factor that determines the performance of different 

algorithms. In this study, most of the control parameters of the five optimization 

algorithms were set according to recommendations from previous studies. The effect of 

population size on the performance of different algorithms was further examined with 

one relatively small population size and one large population size for each optimization 

algorithm. There are no common criteria for evaluating whether a population size is 

large or small for different algorithms. The small and large population sizes are different 

for the five algorithms, and were chosen according to the population sizes that have been 

tested in previous empirical studies that applied these optimization techniques. The small 
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population sizes are 66 (two complexes), 50, 30, 10, and 50 for SCE, GA, PSO, AIS and 

DE, respectively. The large population sizes are 165 (five complexes), 200, 100, 50, and 

160 for SCE, GA, PSO, AIS and DE, respectively. There are two optimization cases that 

were defined for each watershed: 1) small population size scenario and 2) large 

population size scenario. Hence, there were a total of eight optimization cases for each 

optimization algorithm that were applied in this study. The definition of the optimization 

case was denoted using the combination of watershed name and population size, i.e., 

“watershed name+ population size” was used to represent the optimization cases. For 

example, “Reynolds + Small” denote that the optimization algorithms were tested on the 

RCEW with small population size. In this study, the SWAT model was set up for daily 

flow simulation at the outlets at different watersheds. The calibration periods consists of 

ten years (1976-1985) in the YR headwater watershed, six years (1995-2000) in MCEW, 

four years (1995-1998) in LREW, seven years (1966-1972) in RCEW. 

3.2.3 Evaluating performance of different algorithms  

The optimization objective functions are indicators of agreement between measured 

and simulate series of the variable of interest. The sum of squares of residuals (SSR) is 

an often applied objective function in calibrating hydrologic models (Van Liew et al., 

2007). In this study, the Nash-Sutcliffe efficiency (Ens), a normalized form of SSR, was 

selected. The formula to calculate Ens is (Nash and Sutcliffe, 1970; Legates and McCabe, 

1999): 
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where P is the model simulated value, O is the observed data, the over bar is the mean 

for the entire time period of the evaluation, and i = 1, 2, ..., N, where N is the total 

number of pairs of simulated and observed data. Ens indicates how well the plot of the 

observed value versus the simulated value fits the 1:1 line, and ranges from ∞−  to 1. A 

new variable, REns, defined as the ratio between the average Ens value obtained at 
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different model evaluation numbers and the best average Ens value obtained after the 

maximum number of model evaluations was used to represent how fast the algorithm 

converges. In this study, it’s assumed that a REns value of 0.99 means the convergence of 

the algorithm. The five algorithms are all stochastically based, so the results obtained by 

one trial are stochastic and cannot be used to accurately evaluate the algorithm’s 

performance. The average behavior of multiple trials of each algorithm was used to 

compare the performance of different algorithms. In this study, ten trials were 

implemented for each optimization case. Ideally, the optimization algorithm with high 

average Ens value and small number of model evaluations to reach a Ens value of 0.99 are 

preferred. 

As the time and computer resources are limited, it was not possible to run the 

computationally intensive model for a very long simulation period or for an unlimited 

number of model evaluations. The five algorithms were compared based on the average 

performance of ten trials within a limited and affordable number of model evaluations. 

On a computer with Pentium IV 3 GHZ and 1GB RAM, the time consumed by one 

SWAT model evaluation were 30 seconds for the YR headwater watershed, 18 seconds 

for MCEW, 56 seconds for LREW, 1 minute and 8 seconds for RCEW. According to 

previous calibration studies of SWAT, usually less than 10000 model evaluations were 

implemented (van Griensven and Bauwens, 2003; Tolson and Shoemaker, 2007). 

Considering the time and computer resources availability, the maximum number of 

model evaluations was limited to 10000 model evaluations for the four test watersheds. 

The time consumed by one trial were 84 hours in the YR headwater watershed, 50 hours 

in MCEW, 155 hours and 190 hours for LREW and RCEW, respectively.  
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Table 3-1. Ens values obtained by different optimization algorithms at different number of 

model runs in the four test watersheds 

YRHW MCEW 
 

SCE GA PSO AIS DE SCE GA PSO AIS DE 

Small 0.751 0.782 0.759 0.730 0.758 0.64 0.638 0.691 0.474 0.637 500 
Large 0.718 0.753 0.768 0.730 0.726 0.628 0.595 0.662 0.576 0.606 
Small 0.772 0.799 0.769 0.752 0.783 0.673 0.667 0.694 0.513 0.676 1000 
Large 0.735 0.785 0.780 0.743 0.757 0.656 0.639 0.677 0.577 0.625 
Small 0.819 0.815 0.787 0.781 0.803 0.691 0.708 0.7 0.596 0.701 2000 
Large 0.775 0.806 0.801 0.758 0.783 0.687 0.681 0.68 0.588 0.671 
Small 0.826 0.822 0.808 0.787 0.810 0.695 0.718 0.7 0.616 0.704 3000 
Large 0.814 0.813 0.811 0.775 0.807 0.69 0.705 0.682 0.612 0.689 
Small 0.828 0.824 0.815 0.794 0.819 0.696 0.726 0.7 0.628 0.708 4000 
Large 0.828 0.816 0.814 0.787 0.811 0.692 0.717 0.684 0.619 0.695 
Small 0.830 0.826 0.817 0.799 0.825 0.701 0.727 0.7 0.637 0.709 5000 
Large 0.830 0.820 0.816 0.791 0.818 0.693 0.719 0.689 0.633 0.698 
Small 0.833 0.829 0.819 0.803 0.829 0.704 0.735 0.7 0.671 0.713 10000 
Large 0.831 0.825 0.827 0.806 0.830 0.696 0.733 0.703 0.659 0.707 

LREW RCEW 
 

SCE GA PSO AIS DE SCE GA PSO AIS DE 

Small 0.731 0.685 0.694 0.487 0.715 0.64 0.638 0.691 0.474 0.637 500 
Large 0.704 0.673 0.725 0.569 0.645 0.628 0.595 0.662 0.576 0.606 
Small 0.757 0.717 0.713 0.503 0.759 0.673 0.667 0.694 0.513 0.676 1000 
Large 0.723 0.707 0.752 0.583 0.685 0.656 0.639 0.677 0.577 0.625 
Small 0.774 0.747 0.774 0.565 0.783 0.691 0.708 0.7 0.596 0.701 2000 
Large 0.775 0.739 0.771 0.626 0.733 0.687 0.681 0.68 0.588 0.671 
Small 0.774 0.766 0.783 0.609 0.794 0.695 0.718 0.7 0.616 0.704 3000 
Large 0.782 0.757 0.776 0.634 0.768 0.69 0.705 0.682 0.612 0.689 
Small 0.774 0.775 0.783 0.632 0.795 0.696 0.726 0.7 0.628 0.708 4000 
Large 0.783 0.764 0.778 0.637 0.782 0.692 0.717 0.684 0.619 0.695 
Small 0.775 0.779 0.784 0.662 0.797 0.701 0.727 0.7 0.637 0.709 5000 
Large 0.783 0.771 0.779 0.639 0.793 0.693 0.719 0.689 0.633 0.698 
Small 0.78 0.782 0.784 0.707 0.802 0.705 0.735 0.7 0.671 0.713 10000 
Large 0.784 0.784 0.781 0.65 0.802 0.694 0.733 0.703 0.659 0.707 
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Figure 3-5. Performance of different optimization algorithms versus evaluation number in 

the four test watersheds.  
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3.3 Results and discussion 

The curves of average objective function values against model evaluation number 

obtained by different algorithms with large and small population size are shown in 

Figure 3-5 for YR headwaters watershed, MCEW, LREW and RCEW, respectively. In 

Figure 3-5, the x axis represents the model evaluation number × 200, y axis represents 

Ens value. The average objective values and relative performance ranks of different 

algorithms at different model evaluation numbers are listed in Table 3-1 for YRHW, 

MCEW, LREW and RCEW, respectively. Based on these figures and tables, the 

performances of different algorithms in the four test watersheds were analyzed and 

presented in the following sections. For most cases, AIS performed the least among the 

five algorithms. The analysis was mainly focused on SCE, GA, PSO and DE.  

3.3.1 Performances of different algorithms in YRHW 

The selected optimization algorithms exhibited various performance levels at 

different model evaluation numbers (Figure 3-5 and Table 3-1). From Table 3-1, after 

10000 model runs, the best average Ens values obtained by the selected algorithms are 

0.833 (SCE with large population), 0.829 (GA with small population), 0.827 (PSO with 

large population), and 0.830 (DE with small population). Although the four algorithms 

obtained close objective values with large number of model runs, they exhibited very 

different performance levels at small number of model evaluations. One algorithm may 

be preferred for small number of model evaluations while another algorithm may be 

preferred for large number of model runs. For example, GA found better objective 

values with small number of model runs (500 and 1000), while SCE obtained better 

results given large number of model evaluations (more than 2000). The differences 

between the best average Ens values obtained by different algorithms at small number of 

model runs are larger than those obtained with larger number model evaluations. For 

example, the maximum difference between the best final average nsE  values obtained by 

SCE, GA, PSO and DE was 0.006, while this difference was 0.031 given 500 model runs. 

It was also found that, the objective values change relatively quickly for the initial 

1000 model evaluations, and begin to change relatively slow after that. The REns values 
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at small number of model evaluations represent the capacity of each algorithm to 

approach to objective values that can be obtained by each scheme with 10000 model 

evaluations within limited computational time. In the YR headwater watershed, all the 

algorithms reached REns values larger than 0.86 and 0.88 for 500 and 1000 model runs, 

respectively. Based on the REns values obtained with limited model runs, the objective 

values obtained by each algorithm with large number of model evaluations can be 

roughly estimated. In general, each scheme needs less than 5000 model evaluations to 

reach a REns value of 0.99 and approximate the best objective value that can be obtained 

by each algorithm with 10000 model evaluations. 

The effect of population size on average Ens values obtained by the optimization 

algorithms was relatively stronger for the initial 5000 model evaluations than for the 

model runs after 5000. For example, the difference between average objective values 

obtained by SCE with small and large population sizes was 0.044 at 2000 model 

evaluations, while these differences were within 0.012 for all optimization algorithms 

after 5000 model evaluations. 

3.3.2 Performances of different algorithms in MCEW 

Figure 3-5 shows that the performance of the GA is much better than the other 

algorithms after the initial 3000 model evaluation. The GA exhibited an average Ens 

value larger than 0.72 with 5000 model evaluations, while the other algorithms did not 

reach Ens values of 0.72 even after 10000 model evaluations. Within 1000 model runs, 

PSO performed much better than other algorithms (Table 3-1). The maximum difference 

between the final average Ens values obtained by SCE, GA, PSO and DE was 0.032 after 

10000 model evaluations. This shows that different optimization algorithms can obtain 

substantially different objective values even after large number of model runs. In the 

MCEW, REns values reached 0.99 for all optimization algorithms within 5500 model 

evaluations, except for the AIS (Table 3-1). With 500 model runs, SCE and PSO 

obtained REns values larger than 0.9, and GA and DE obtained REns values larger than 

0.8. For 1000 model runs, SCE and PSO obtained REns values larger than 0.95, and GA 

and DE obtained REns values larger than 0.85. 
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For small number of model runs, the difference between the objective values 

obtained by the each algorithm with large or small population size was relatively larger 

than that for large number of model runs. For instance, the differences between the final 

average objective values obtained by SCE, GA, PSO and DE with small and large 

population sizes were within 0.007, while this difference obtained by GA with small and 

large population sizes reached 0.043 at 500 model runs. 

3.3.3 Performances of different algorithms in LREW 

With 10000 model evaluations, the final average Ens values obtained by the selected 

algorithms were 0.784 (SCE with large population), 0.784 (GA with small population), 

0.784 (PSO with small population), and 0.802 (DE with small population), respectively 

(Table 3-1). SCE obtained better objective values than other algorithms with 500 model 

runs, and DE obtained better objective values after 1000 model runs. To reach REns 

values of 0.99, SCE and PSO need 2000 model evaluations, and GA and DE need 5000 

model evaluations. With 500 model runs, SCE and PSO obtained REns values larger than 

0.89, and GA and DE obtained REns values larger than 0.8. For 1000 model runs, SCE, 

GA, and PSO obtained REns values larger than 0.9, and DE obtained REns values larger 

than 0.85. 

The differences between final average Ens values obtained by different algorithms 

with small or large population size were within 0.004, which show that the Ens values are 

not sensitive to population size after large number of model runs in the LREW. But this 

difference was 0.06 for DE with small and large populations at 500 model runs. 

3.3.4 Performances of different algorithms in RCEW 

After 10000 model evaluations, the GA with small population size exhibited the best 

objective function value (0.753), followed by PSO (0.751), SCE with large population 

size (0.746), and DE with small population size (0.746), respectively (Table 3-1). For the 

initial 500 or 1000 model runs, PSO obtained better results than other algorithms. The 

maximum difference between the best final average Ens values obtained by SCE, GA, 

PSO and DE was 0.007, and this difference is 0.027 at 500 model runs. In the RCEW, to 

reach REns values of 0.99, 2600 model evaluations were required for the SCE and PSO, 
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and 4500 for the GA and DE. All the algorithms reached REns values larger than 0.90 for 

500 model runs, and 0.93 for 1000 model evaluations. 

Similar to previous results obtained in the above three test watersheds, the 

differences between final average Ens values obtained by different algorithms with small 

or large population size were relatively small (within 0.008), and these differences were 

relatively large for the initial model runs. 

 
 
 

Table 3-2. performance ranks of different optimization algorithms at different number of model 

evaluations in the four test Watersheds 

 SCE GA PSO DE  SCE GA PSO DE 

500 4 1 2 3 500 1 4 2 3 
1000 4 1 3 2 1000 2 3 4 1 
2000 1 2 4 3 2000 2 4 3 1 
3000 1 2 3 4 3000 3 4 2 1 
4000 1 2 4 3 4000 2 4 2 1 
5000 1 2 4 3 5000 3 4 2 1 

YRHW 

10000 1 3 4 2 

LREW 

10000 2 2 2 1 
500 2 3 1 4 500 2 3 1 4 
1000 3 4 1 2 1000 2 3 1 4 
2000 4 1 3 2 2000 1 1 3 4 
3000 4 1 3 2 3000 3 1 2 4 
4000 4 1 3 2 4000 2 1 2 4 
5000 3 1 4 2 5000 3 1 2 4 

MCEW 

10000 3 1 4 2 

RCEW 

10000 3 1 2 4 

 
 
 
3.4 Discussion 

The results obtained in previous sections show that no one optimization algorithm 

can consistently perform better than the other algorithms for the selected test watersheds. 

To some extent, this indicates the complexity and difficulty of parameter optimization 

for SWAT model. Although all the test cases used SWAT as the model for parameter 

calibration, it appears as though the properties of the four optimization cases are 



47 

different from each other and this leads to evidently different performances of the 

selected algorithms. The overall performances of the five optimization algorithms, and 

the influence of model evaluation number and population size, were discussed in the 

following sections.  

Using the best final average Ens values obtained by the each of the selected 

algorithms as the indicator of performance, the performance ranks of the algorithms in 

the four test watersheds are shown in Table 3-2. The GA performed best for the RCEW 

and MCEW, DE performed best for LREW, and SCE performed best for YRHW. Using 

the cumulative rank as the indicator of the comprehensive performance in the four test 

watersheds (Figure 3-6), GA performed the best in terms of finding good objective 

values with large number of model runs, followed by DE, SCE, PSO and AIS. 
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Figure 3-6. Cumulative performance ranks of four optimization algorithms at different 

number of model evaluations in the four test watersheds 
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For computationally intensive models, the number of model evaluations needed for 

obtaining acceptable objective values is an important factor for selecting the 

optimization algorithm. The SWAT model of detailed characterization of large river 

basin can take hours or days to implement once. For this type of cases, it is difficult to 

run the model for large number. The algorithms that can find better objective values 

within limited model evaluations (less than 1000) are preferred. The performance ranks 

of different algorithms evaluated with the best average Ens values obtained by each 

algorithm at different number of model evaluations are listed in Table 3-2. As the AIS 

can not get good results comparable to the other optimization algorithms, it was not 

discussed here. It is apparent that the performance of the selected optimization 

algorithms could change appreciably with model evaluation numbers and watershed 

characteristics. The cumulative performance ranks of the four optimization algorithms at 

different number of model evaluations in the four test watersheds are shown in Figure 3-

6. It is revealed that PSO performed best with 500 model runs, PSO and DE performed 

best with 1000 model runs, SCE and GA performed best with 2000 model runs, and GA 

performed best with more than 2000 model runs. PSO is the preferred choice for less 

than 1000 model evaluations. For most optimization cases, PSO can obtain REns values 

larger than 90% with 500 or 1000 model runs, which can be taken as fairly good 

approximation of the best values obtained by PSO after 10000 model runs. In general, 

results show that SCE and PSO converge faster than GA and DE. The numbers of model 

evaluations required by various optimization algorithms to obtain a REns value of 0.99 

are summarized with a conservative consideration of the convergence numbers of the 

four optimization techniques with small and large population sizes in the four test 

watersheds. Overall, SCE, GA, PSO and DE need no more than 3200, 5400, 4400, and 

4800 model runs, respectively. 
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It is worthy noting that the population size could exert influence on the performance 

of the various algorithms. As the difference between the Ens values obtained by each 

optimization technique due to using small or large population size at small number of 

model evaluations is less than that at small number of model evaluations, the selection of 

population size is mainly based on the performances of different algorithms at fewer 

number of model evaluations (less than 3000). In general, small population size provided 

better objective function values than large population size for SCE, GA, DE, and PSO 

for fewer model evaluation (Table 3-1). In the future application of these algorithms for 

optimizing SWAT, small population size is proffered. 

The results discussed above, to some extent, agree with the popular no free lunch 

(NFL) theorem that “for any optimization algorithm, any elevated performance over one 

class of problems is exactly paid for in performance over another class” (Wolpert and 

Macready, 1997). In general, GA performed better than the other algorithms in terms of 

finding good average Ens values, on the other hand, PSO need less model runs to find 

acceptable objective values than other algorithms. Although AIS performed the least in 

terms of both finding best Ens values and efficient convergence to good objective values, 

it can search multiple local optimum simultaneously, which could be another attracting 

property for hydrologic model calibration and deserve further analysis in the future. 

Similar results were also obtained by other numerical evaluation of different global 

optimization algorithms. For instance, based on the comparison of five stochastic global 

optimization algorithms, Ali et al. (2005) concluded “one algorithm may be preferred if 

a small number of function evaluations is allowed but a different algorithm may be 

favored if a large number of function evaluations is permitted”. Although GA algorithm 

exhibits the better comprehensive rank in terms of finding good average Ens values, it is 

not possible to infer that this algorithm will always provide the better performance on 

parameter calibration of SWAT model. The GA can be taken as the first choice when the 

modelers are interested in finding global optimum, while when the modelers are 

interested in obtaining acceptable good calibration results within limited computation 

budget the PSO may be better choice. 
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3.5 Summary 

Efficient and effective algorithms for optimization of computationally intensive 

hydrologic models like SWAT are becoming increasingly more important because of 

limited time and computational resources. The purpose of this study was to evaluate the 

performance of five optimization algorithms for parameter calibration of SWAT within 

the context of limited model evaluations. In this study, five global optimization 

algorithms (SCE, GA, PSO, AIS and DE) were tested for parameter calibration of 

SWAT in four watersheds. For future application of SWAT across United States and 

other watersheds worldwide, several empirical recommendations on selecting 

optimization algorithms for SWAT are provided based on the overall performances of 

different optimization algorithms in the four test watersheds. The GA outperform the 

other four algorithms given model evaluation numbers larger than 2000, while PSO can 

obtain better parameter solutions than other algorithms given fewer number of model 

runs (less than 2000). Given limited computational time, the PSO algorithm is preferred, 

while GA should be chosen given plenty of computational resources. If GA is chosen to 

optimize SWAT with large number of model evaluations, the performances of GA can 

not be pronouncedly improved after 5400 model runs. When applying PSO and GA to 

calibrate parameters of SWAT, small population size is preferred. It is also worth noting 

that different optimization algorithms exhibited various preferred properties, 

incorporating the strength of different algorithms into one powerful algorithm seems to 

hold promise for future investigations. 
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CHAPTER IV  
 

MULTI-SITE CALIBRATION OF SWAT 
 

 

4.1 Introduction 

In recent years, hydrologic models have been increasingly used by hydrologists and 

water resources managers to understand and manage natural and human activities that 

affect watershed systems. These hydrologic models can contain parameters that cannot 

be measured directly due to measurement limitations and scaling issues (Beven, 2000). 

For practical applications in solving water resources problems, model parameters are 

calibrated to produce model predictions that are as close as possible to observed values. 

When calibrating a hydrologic model, one or more objectives are often used to measure 

the agreement between observed and simulated values. The objectives to be optimized 

can be the combination of multiple goodness-of-fit estimators (e.g. relative error, 

coefficient of determination), multiple variables (e.g. water, energy, sediment, and 

nutrients), and multiple sites (Yapo et al., 1998; Gupta et al., 1998; Santhi et al., 2001b; 

Van Liew and Garbrecht, 2003; White and Chaubey, 2005; Demarty et al., 2005; Cao et 

al., 2006; Engeland et al., 2006; Bekele and Nicklow, 2007). With the recent 

development of distributed hydrologic models which can spatially simulate hydrologic 

variables, the use of multi-site observed data to evaluate model performance is becoming 

more common. 

In the application of SWAT, multi-site data have been used to calibrate parameter 

values (Santhi et al., 2001b; Van Liew and Garbrecht, 2003; White and Chaubey, 2005; 

Cao et al., 2006; Bekele and Nicklow, 2007). For simultaneous multi-site automatic 

calibration of SWAT, two types of calibration methods are usually implemented. The 

first calibration method aggregates the different objective function values calculated at 

each monitoring site into one integrated value, and then to apply the single objective 
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optimization algorithms for parameter estimation (e.g., van Griensven and Bauwens, 

2003). The second calibration method uses multi-objective evolutionary algorithms to 

optimize the different objective functions calculated at multiple sites simultaneously, and 

finds a set of multiple Pareto optimal solutions (e.g., Bekele and Nicklow, 2007). 

Currently, the Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1992) is 

incorporated into SWAT for automatic parameter estimation using a single objective 

(one objective function or integrated multiple objective functions) (van Griensven and 

Bauwens, 2003). In many SWAT applications, the model has been calibrated using 

objective functions at single site or for integrated multi-site objective functions, but 

multi-objective evolutionary algorithms were seldom applied for multi-site calibration. 

Therefore, the objective of this study was to compare and evaluate the effect of single 

and multi-objective optimization schemes on the calibrated parameter values and 

simulated hydrographs from SWAT. In order to accomplish this objective, a program for 

parameter optimization of SWAT using single and multi-objective evolutionary 

algorithms was developed. The single objective and multi-objective optimization 

algorithms applied in this study were a Genetic Algorithms (GA) and a Strength Pareto 

Evolutionary Algorithm 2 (SPEA2), respectively. These two optimization algorithms 

were implemented to estimate the parameters in SWAT for the Reynolds Creek 

Experimental Watershed in Idaho with observed streamflow data at three monitoring 

sites. The differences between estimated parameter values and simulated hydrographs 

are explored and discussed. The results of this study are expected to help the users of 

SWAT and other distributed hydrologic models understand the sensitivity of distributed 

hydrologic simulation to different calibration methods and to show the advantages and 

disadvantages of single objective and multi-objective parameter estimation methods. 

4.2 Material and methods 

4.2.1 Study area description 

The RCEW was selected as the case study area of this multi-site calibration of 

SWAT. The locations of the RCEW and three streamflow monitoring gages (Salmon, 

Tolgate, and Outlet) are shown in Figure 4-1. For modeling purposes, the RCEW was 
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partitioned into subwatersheds connected by a stream network and then into HRUs 

consisting of unique combinations of land cover and soils in each subwatershed.  

 

 

Figure 4-1. Location of RCEW and three streamflow monitoring gages. 

 
 
 

4.2.2 Optimization algorithms  

4.2.2.1 Single objective optimization 

For single objective optimization, there is only one objective function that needs to 

be optimized. Given the objective function Θ≠Ω⊆Ω ,: DRf , for Ω∈x  the value 

∞<= *)(* xff  is called a global maximum if and only if )()(: * xxx ff ≥Ω∈∀ , 

where, *x  is the parameter solution for global maximum and the set Ω  is the feasible 

parameter space. 

There are many automatic calibration algorithms that can be used to implement the 

single objective optimization. Based on the comparison of SCE, GA, PSO, DE and AIS 
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in Chapter III, and GA is selected as the single objective optimization algorithm for 

SWAT.  

4.2.2.2 Multi-objective optimization 

Before the introduction of multi-objective optimization algorithms, several basic 

concepts related to multiple objective optimization are introduced below (Coello Coello 

et al., 2004): 

Definition 1 [General Multi-objective Optimization Problem (MOP)]: Find the vector 

],[ **
1

*
nxx K=x  which will satisfy the l  inequality constraints 

0)( ≥xig  li K,2,1=      4- 1 

the p  equality constraints 

0)( =xih  pi K,2,1=      4- 2 

And will optimize the vector function  

)](,),(),([)( 1 xxxx mx ffff K
r

=    4- 3 

Definition 2 (Pareto optimality): A point Ω∈*xr  is Pareto optimal if for every Ω∈x  

and },2,1{ mI K=  either  

))()(( *xx iiIi ff =∀ ∈      4- 4 

Or, there is at least one Ii∈  such that 

)()( *xx ii ff >       4- 5 

Definition3 (Pareto Dominance): A vector ),,( 21 muuu K=u  is said to dominate 

),,( 21 mvvv K=v  (denoted by vu p ) if and only if u  is partially less than v , i.e., 

iiii vumivumi <∈∃∧≤∈∀ :},1{},,1{ KK . 

Definition 4 (Pareto Optimal Set): for a given MOP )(xf . The Pareto optimal set ( *P ) 

is defined as: 

)}()(,|{: ''* xfxfxx pΩ∈¬∃Ω∈=P    4- 6 
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Definition 5 (Pareto front): fro a given MOP )(xf rr
 and Pareto optimal set *P , the Pareto 

front ( *PF ) is defined as  

}|))(,),(({: *
1

* PffPF m ∈=== xxxfu K    4- 7 

For multi-objective optimization problems (MOP), a series of objective functions 

need to be taken into account simultaneously. The general multi-objective optimization 

problem can be defined as: find the parameter solution *x  that will optimize the 

objective function vector )](,),(),([)( 1 xxxxf mx fff K=  where m the number of 

objective functions is. As there are multiple objective functions that need to be 

optimized simultaneously, and different objective functions prefer different parameter 

solutions, it is difficult to find a single global optimum parameter solution. The Pareto 

optimality concept is defined to evaluate whether a parameter set is “optimal” or not. For 

a objective function vector )](,),(),([)( ''
2

'
1

' xxxxf mfff K= , it is said to dominate 

another objective function vector )](,),(),([)( 21 xxxxf mfff K=  (denoted by 

)()( ' xfxf f ), if )()(:},1{     )()(},,1{ '' xxxx iiii ffmiffmi >∈∃∧≥∈∀ KK . If the 

objective function vector )( *xf  of a point Ω∈*x  is not dominated by all the other 

objective function vectors of the parameter solutions in the feasible parameter space, 

then *x  is taken as a Pareto optimal parameter solution. An illustration of the *PF  and 

dominated objective function vectors is shown in Figure 4-2, where sold circle denotes 

dominated objective function vectors, and empty circles consist of the PF*. 

The purpose of multi-objective optimization is to search the feasible parameter space 

and find those parameter solutions which are Pareto optimal. 
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Figure 4-2. Illustration of the PF* and dominated objective function vectors. (From Zitzler et al., 

2002).  

 
 

Among many multi-objective optimization algorithms that have been presented and 

successfully applied, the SPEA2 (Zitzler et al., 2002) was adopted here to conduct 

parameter estimation in SWAT model according to the comparison of several state-of-

the-art MOAs (Tang et al., 2006). In order to give a clear description of the SPEA2, 

several new symbols are defined: N  is the external archive size, and A  is the Pareto 

optimal set. Different from the single objective GA, the SPEA2 applies different 

procedures to calculate the fitness of each parameter solution and keep the diversity of 

the candidate parameters. The basic procedures of implementing the SPEA2 are 

illustrated in Figure 4-3 and the following sections (Zitzler et al., 2002): 

Initialization. Generate an initial population 0P  and create the empty archive 

(external repository) Θ=0P . Set 0=t . 

Fitness assignment. In order to calculate fitness values of chromosomes in tP  and 

tP , three major steps need to be implemented. First of all, each chromosome i  in the 

archive tP  and the population tP  is assigned a strength value )(iS  representing the 

number of solutions it dominates. Second, on the basis of S  values, the raw fitness 

)(iR of a chromosome i  is calculated as ∑
+∈

=
ijPPj tt

jSiR
f,

)()( . 0)( =iR  represents a non-

f1

f2

Non-dominated 
Dominated 
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dominated chromosome, while a high )(iR  value means that i  is dominated by many 

chromosomes. Third, the raw fitness )(iR  needs to be adjusted to incorporate the density 

of each chromosome, in case many chromosomes have the same raw fitness when most 

chromosomes do not dominate each other. The density of each chromosome is calculated 

using the k -th nearest neighbor method, which defines the density of a chromosome as a 

function of its distance to the k-th nearest neighbors in the objective space ( k
iσ ) (Zitzler 

et al., 2002). In SPEA2, k  is set equal to NN + . Then the density of each 

chromosome i  is defined as 2
1)(
+

= k
i

iD
σ

, where the number “2” is added to the 

denominator to ensure that )(iD  is less tan 1 (Zitzler et al., 2002). Finally, adding )(iD  

to the raw fitness value )(iR  yields each chromosome’s fitness )()()( iDiRiF += . 

Environmental selection. Copy all Pareto optimal chromosomes in tP  and tP  to 

1+tP . If the size of 1+tP  exceeds N , then reduce 1+tP  by means of truncating the non-

dominated chromosomes with less fitness )(iF , otherwise if the size of 1+tP  is less than 

N , then fill 1+tP  with best dominated chromosomes in tP and tP .  

Termination. If Tt >  or another stopping criterion is satisfied then set A  to the set 

of parameter vectors represented by the non-dominated chromosomes in 1+tP . Stop. 

Mating selection and variation. Perform tournament selection with replacement on 

1+tP  to fill the mating pool. Apply crossover and mutation operators to the mating pool 

and set 1+tP  to the resulting population. Increment generation counter ( 1+= tt ) and go 

to the fitness assignment step. 
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Figure 4-3. Flowchart of the SPEA2. 

 
 
4.2.3 Experimental test design 

In order to understand the effect of applying different parameter optimization 

schemes (single objective and multi-objective optimization techniques) on the calibrated 

parameter values and simulated hydrographs of the SWAT model, several GA based 

optimization schemes were designed for comparative purposes, in addition to the 

application of the multi-objective optimization scheme (SPEA2). The GA with the 

optimization objective function of nsE  at Salmon is denoted as GA-sal. Similarly, GA-

tol denotes GA with objective function of nsE  at Tolgate, GA-out denotes GA with 

objective function of nsE  at Outlet, and GA-sum denotes GA with the summed objective 

functions at all three monitoring stations. There are a total of five optimization cases, 

which include the GA-sal, GA-tol, GA-out, GA-sum and SPEA2. As SPEA2 can 

optimize all three objective functions at Salmon, Tolgate and Outlet simultaneously and 

find a set of Pareto optimal solutions, several representative Pareto optimal solutions 

were selected for analysis and comparison: SPEA2-sal, SPEA2-tol, SPEA2-out, and 
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SPEA2-sum denote the parameter solutions with best objective function values at 

Salmon, Tolgate, Outlet and the sum of all three monitoring stations, respectively. The 

comparison between the different optimization schemes was mainly based on the eight 

representative parameter sets (GA-sal, GA-tol, GA-out, GA-sum, SPEA2-sal, SPEA2-tol, 

SPEA2-out, and SPEA2-sum). The GA and SPEA2 algorithms are stochastically based, 

so the results obtained by one trial are stochastic. Based on previous studies of applying 

evolutionary optimization algorithms for SWAT, all the optimization schemes were run 

as 10 trials (10000 model evaluations for each trial) to obtain the optimized parameter 

solutions and objective function values. 

4.3 Results and discussion 

4.3.1 Optimized objective function values, parameter sets and hydrographs by 

different optimization schemes  

The objective function values at Salmon, Tolgate and Outlet obtained by the GA-sal, 

GA-tol, GA-out, GA-sum, and SPEA2 schemes are shown in Figure 4-4. For each single 

objective optimization scheme, a best objective function value was obtained, while 96 

Pareto optimal objective function vectors were obtained for the multi-objective 

optimization scheme. For each objective function, the values obtained by the different 

optimization schemes are listed in Table 4-1. Simulations show that the single objective 

optimization schemes can identify better values for each separate objective function than 

the multi-objective optimization scheme. This means that the objective function vectors 

found by each single optimization scheme are not dominated by other objective function 

vectors obtained by SPEA2, and can be added to the Pareto front found by SPEA2. 

Although the single objective optimization schemes can identify better results for each 

separate objective function, they need to be run several times separately. On the other 

hand, with one trial SPEA2 can find multiple objective function vectors that perform as 

well as the parameter solutions obtained by GA. These results are in agreement with the 

“no free lunch theorem” that states “for any optimization algorithm, any elevated 

performance over one class of problems is exactly paid for in performance over another 

class” (Wolpert and Macready, 1997). For example, GA-sum achieved better objective 
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values for nsE -Tolgate and nsE -Sum, while SPEA2-Sum obtained better results for 

nsE -Salmon, and nsE -Outlet. For parameter calibration, the single objective and multi-

objective optimization schemes can find parameter solutions that are not inferior to each 

other.  

Test results show that a substantial difference exists between the objective function 

values at different monitoring sites obtained by each single objective optimization 

scheme. For example, GA-sal obtained an nsE value of 0.854 at Salmon, while GA-tol 

obtained an nsE  value of -0.361 at Salmon. Optimizing the objective function value at 

one site can lead to a serious bias of objective function values at other sites. Similarly, 

the multi-objective optimization scheme can also obtain a wide range of objective 

function values at each monitoring site. For example, the range of objective function 

values at Salmon, Tolgate, Outlet are [0.097, 0.827], [0.02, 0.599], and [0.471, 0.763], 

respectively. Given the substantial variation of the optimized objective function values, 

the corresponding parameter values were expected to scatter within the feasible space. 

The normalized parameter values obtained by different optimization schemes are shown 

in Figure 4-5. All of the parameter values were normalized between their upper and 

lower bounds so that they ranged between 0 and 1. As expected, the value of each 

parameter varied substantially depending on the selected optimization scheme. The 

range of the initial CN was 45 to 60. For the single objective optimization schemes, the 

optimized parameter values varied from each other. For example, the normalized CN 

values are 0.99, 0.12, 0.54, and 0.67 for GA-sal, GA-tol, GA-out and GA-sum, 

respectively. For SPEA2, the range of CN values obtained by the 96 Pareto optimal 

parameter sets is [0.38, 0.99]. These differences between the optimized parameter values 

reveal the relationship between streamflow and topography, landuse, and precipitation 

are different for each subwatershed, which result in a specific parameter solution for a 

given subwatershed.  

The eight representative parameter sets obtained by both single and multi-objective 

optimization schemes were used to simulate the hydrographs at Salmon, Tolgate, and 

Outlet (Figure 4-6). In Figure 4-6, thick solid lines are the observed hydrograph; thin 
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solid lines are the simulated hydrographs using eight representative parameter sets 

calibrated by different optimization schemes. Considerable variation among the 

optimization schemes is apparent in the simulated hydrograph for each of these stations 

(Figure 4-6). The two sample Kolmogorov-Smirnov test (Massey, 1951) was used to test 

whether there is a statistically significant difference between the simulated hydrographs 

using the parameter sets obtained by different optimization schemes (Table 4-2). Of the 

total 28 comparisons at each monitoring site, 21, 25, and 22 pairs of hydrographs are 

significantly different from each other. This indicates that the selection of parameter 

optimization schemes can lead to significantly different simulated hydrographs, which 

may yield important implications to water resources management investigations. 
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Figure 4-4. The best or Pareto optimal objective function values at Salmon, Tolgate and Outlet 

obtained by the GA-sal, GA-tol, GA-out, GA-sum, and SPEA2. 
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Table 4-1. The objective values obtained by eight parameter optimization schemes at Salmon, 

Tolgate, and Outlet for calibration period. 

 Salmon Tolgate Outlet Sum 

GA-sal 0.854 0.022 0.690 1.566 

GA-tol -0.361 0.621 0.248 0.507 

GA-out 0.499 0.291 0.776 1.566 

GA-sum 0.615 0.441 0.741 1.797 

SPEA2-sal 0.827 0.027 0.667 1.574 

SPEA2-tol 0.132 0.599 0.471 1.201 

SPEA2-out 0.548 0.181 0.763 1.492 

SPEA2-sum 0.702 0.306 0.742 1.750 

 
 
 

 

Figure 4-5. Normalized parameter values obtained by the SPEA2 and different GA based single 

objective optimization schemes. 
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Figure 4-6. Simulated hydrographs using parameter sets calibrated by different optimization 

schemes for calibration period.  
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Table 4-2. Kolmogorov-Smirnov test results between the hydrographs simulated using different 

parameter solutions obtained by different optimization schemes at Salmon, Tolgate, and Outlet 

for calibration period. 

 
GA_ 

sal 

GA_ 

tol 

GA_ 

out 

GA_ 

sum 

SPEA2-

sal 

SPEA2-

tol 

SPEA2-

out 

SPEA2-

sum 

GA_sal --        

GA_tol 1 --       

GA_out 1 1 --      

GA_sum 1 1 0 --     

SPEA2-sal 0 1 1 1 --    

SPEA2-tol 1 1 1 1 1 --   

SPEA2-out 1 1 0 0 1 1 --  

Salmon 

SPEA2-sum 1 1 0 1 0 1 0 -- 

GA_sal --        

GA_tol 1 --       

GA_out 1 1 --      

GA_sum 1 1 0 --     

SPEA2-sal 0 1 1 1 --    

SPEA2-tol 1 0 1 1 1 --   

SPEA2-out 1 1 1 1 1 1 --  

Tolgate 

SPEA2-sum 1 1 1 1 1 1 1 -- 

GA_sal --        

GA_tol 1 --       

GA_out 1 1 --      

GA_sum 1 1 0 --     

SPEA2-sal 0 1 1 1 --    

SPEA2-tol 1 0 1 1 1 --   

SPEA2-out 1 1 0 0 1 1 --  

Outlet 

SPEA2-sum 1 1 0 1 1 1 1 -- 

Note: 1 represents that there is significant difference between the two simulated hydrographs at significant 
level of 0.05, while 0 means the inverse. 
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4.3.2 Model validation using the parameters obtained by different optimization 

schemes 

After calibration, the optimized parameter sets need to be validated using another 

independent set of observed data. The observed daily streamflow (1970-1972) at Samlon, 

Tolgate, and Outlet were used to validate the optimized parameter sets obtained by 

different optimization schemes. Figure 4-7 shows the simulated and observed 

hydrographs at Salmon, Tolgate, and Outlet. The hydrographs simulated by different 

parameter sets show evident variation from each other for the validation period. In 

Figure 4-7, thick solid lines are the observed hydrograph; thin solid lines are the 

simulated hydrographs using eight representative parameter sets calibrated by different 

optimization schemes. Using the two sample Kolmogorov-Smirnov test, it is shown that 

there are 20, 26, and 24 pairs of hydrographs that are significantly different from each 

other at Salmon, Tolgate and Outlet, respectively (Table 4-4), which indicate that the 

selection of different parameter sets has significant influence on the simulation results 

for water resources management investigations. 

The evaluation coefficients (Table 4-3) show that the GA-sum and SPEA2-sum 

performed much better for the validation than other parameter calibration schemes. If 

only one specific objective function was emphasized in the calibration process, the 

calibrated parameter sets tended to achieve relatively good performance for that specific 

objective function at the cost of the performance of the other objective functions. For 

example, GA-tol and SPEA2-tol achieved a value of nsE -Tolgate larger than 0.25 while 

nsE -salmon was less than -0.35. In addition, the emphasis on one specific objective 

function tends to calibrate the model parameters so that they fit that specific objective 

function, while ignoring important information contained in other objective functions. 

On the contrary, the GA-sum and SPEA2-sum consider all objective functions and 

search for a good compromise among these different objective functions. Given the 

uncertainties associated with the observed data and model structure, the over fit to one 

specific objective function leads to poor performance during the validation period. For 

example, GA-sum and SPEA2-sum achieved much better nsE  values at all three 
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monitoring sites than other optimization schemes that only emphasized on one specific 

objective function during calibration. Hence, thegood performance of GA-sum and 

SPEA2-sum stresses the importance of collecting more detailed spatially distributed data 

to calibrate the distributed hydrologic model.  

 
 
 

Table 4-3. Ojective values obtained by different parameter optimization schemes at Salmon, 

Tolgate, and Outlet for the validation period. 

 Salmon Tolgate Outlet Sum 

GA-sal 0.305 0.009 0.561 0.875 

GA-tol -0.480 0.353 0.430 0.304 

GA-out 0.083 0.117 0.615 0.815 

GA-sum 0.320 0.507 0.728 1.554 

SPEA2-sal 0.288 0.012 0.586 0.886 

SPEA2-tol -0.374 0.256 0.445 0.327 

SPEA2-out 0.199 0.241 0.630 1.070 

SPEA2-sum 0.438 0.488 0.725 1.651 

 
 
 

Often hydrologic conditions of a validation period are different from those of a 

calibration period, which may lead to differences in performance of the parameter 

solutions for the respective periods. For example, GA-sum achieved the highest Ens 

values based on the sum of the three sites for the calibration period, but SPEA2-sum 

performed better than GA-sum for the validation period. The 92 Pareto optimal 

parameter sets (except for SPEA2-sal, SPEA2-tol, SPEA2-out and SPEA2-sum) 

achieved by SPEA2 were also evaluated for the validation period. Some of the parameter 

sets outperformed the eight representative parameter solutions obtained during 

calibration. The best validation objective function values are 0.467 at Salmon, 0.526 for 

Tolgate, 0.739 for Outlet, and 1.68 for the sum, respectively. These values are better 

than those listed in Table 4-3. Among the 96 Pareto optimal parameter sets, 22 of them 
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achieved the sum of three objective function values larger than 1.55, and two of them 

achieved better results than GA-sum for all three objective functions. These validation 

results show that the multiple Pareto optimal parameter sets obtained by SPEA2 may 

contain some useful information that GA did not identify. The multiple Pareto optimal 

parameter sets can also allow practitioners to use different ways to select reasonable 

parameter values. If only one “most likely” parameter set is used to forecast or simulate 

streamflow, graphical visualization techniques (Gupta et al., 1998) and expert 

knowledge (Khu and Madsen, 2005) can be applied to assist the parameter selection. 

4.4 Summary 

With the increasing availability of spatial hydrologic data and growing popularity of 

complex, physically-based distributed hydrologic models, the use of the spatial data to 

calibrate and validate hydrologic models is becoming an increasingly important issue. In 

this study, different optimization schemes were applied to optimize a distributed 

hydrologic model, SWAT, using observed streamflow data at three monitoring sites 

within the Reynolds Creek Experimental Watershed in Idaho. The results show that 

different optimization schemes can lead to substantially different objective function 

values, parameter solutions, and corresponding simulated hydrographs. This in turn 

indicates that the selection of optimization schemes can significantly impact how well 

hydrologic models simulate actual streamflow. Parameters estimated by optimizing the 

objective function at three monitoring sites consistently produced better goodness-of-fit 

than those obtained through optimizing the objective function at a single monitoring site, 

which stresses the importance of having spatially distributed data to conduct such 

simultaneous mult-site calibration. When applied with multi-site data, the single 

objective (GA) method can identify better parameter solutions in calibration period, but 

the the multi-objective (SPEA2) method performed better in the validation period. The 

multi-objective optimization method, however, can identify multiple Pareto optimal 

parameter solutions, which allows hydrologic practitioners to use expert knowledge and 

visual graphic analysis to select one preferred solution. The multi-objective optimization 

method also eliminates the multiple runs by determining the optimal values 
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simultaneously. Overall, the application of different optimization schemes in the 

Reynolds Creek Experimental Watershed showed that the single objective (GA) and 

multi-objective (SPEA2) optimization methods both produce reasonable results for 

multi-site calibration and validation of the SWAT model. We also agree with the “no 

free lunch theorem” (Wolpert and Macready, 1997). Each optimization scheme has its 

strengths and weaknesses and may perform better under one set of hydrologic conditions 

as compared to another; therefore a method to combine the strengths of different 

optimization schemes deserves further research in the future. 
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Figure 4-7. Simulated hydrographs using parameter sets calibrated by different optimization 

schemes for validation period. 
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Table 4-4. Kolmogorov-Smirnov test results between the hydrographs simulated using different 

parameter solutions obtained by different optimization schemes at Salmon, Tolgate, and Outlet 

for validation period. 

 
GA_ 

sal 

GA_ 

tol 

GA_ 

out 

GA_ 

sum 

SPEA2-

sal 

SPEA2-

tol 

SPEA2-

out 

SPEA2-

sum 

GA_sal --        

GA_tol 1 --       

GA_out 1 1 --      

GA_sum 1 1 1 --     

SPEA2-sal 1 1 0 0 --    

SPEA2-tol 1 0 1 1 1 --   

SPEA2-out 1 1 0 1 1 0 --  

Salmon 

SPEA2-sum 1 1 0 0 0 1 1 -- 

GA_sal --        

GA_tol 1 --       

GA_out 1 1 --      

GA_sum 1 1 1 --     

SPEA2-sal 1 1 1 1 --    

SPEA2-tol 1 0 1 1 1 --   

SPEA2-out 1 1 1 1 1 1 --  

Tolgate 

SPEA2-sum 1 1 1 1 0 1 1 -- 

GA_sal --        

GA_tol 1 --       

GA_out 1 1 --      

GA_sum 1 1 1 --     

SPEA2-sal 1 1 1 1 --    

SPEA2-tol 1 0 1 1 0 --   

SPEA2-out 1 1 1 1 1 1 --  

Outlet 

SPEA2-sum 1 1 1 1 0 0 1 -- 
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CHAPTER V  
 

MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS FOR SWAT 
 

 

5.1 Introduction 

In many real world optimization problem, there are multiple objectives need to be 

considered simultaneous. In practical calibration of hydrologic models, it was found that 

single-objective functions are often inadequate to properly measure all of the 

characteristics of the observed data deemed to be important (Vrugt et al., 2003a). When 

calibrating a hydrologic model, one or more objectives might be used to measure the 

agreement between the observed and simulated variables. With the various measurement 

data of different variables or at different locations, multiple objectives need to be used to 

evaluate the agreement between simulated and observed variables. Usually, different 

objectives prefer different parameter values (Gupta et al., 1998, Madsen, 2003, England 

et al., 2006). Numerous parameters sets (Pareto parameter sets) will be identified not to 

be inferior to others in terms of all objective values. Without additional information, it is 

not possible to distinguish any of the parameter set as being objectively better than any 

other parameter set (Gupta et al., 1998). 

Simultaneously considering multiple objectives related to multiple hydrologic fluxes 

(e.g. surface flow and subsurface flow) at multiple sites have led to increasing research 

on applying and developing multi-objective optimization algorithms for hydrologic 

model calibration (e.g. Gupta et al., 1998, 1999; Yapo et al., 1998; Wagener et al., 2001; 

Madsen, 2003; Vrugt et al., 2003a; Vrugt et al., 2005). In Chapter IV, it was shown that 

the multi-objective optimization algorithm can find multiple parameter sets favoring 

different characteristics of the hydrologic modeling system, and provide insights into 

parameter uncertainty as well as the limitations of a model (Gupta et al., 1998). There 

are numerous multi-objective optimization algorithms available for implementing multi-
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objective optimization of hydrologic model. The Non-dominated Sorted Genetic 

Algorithm II (NSGAII) (Deb et al., 2002) and Strength Pareto Evolutionary Algorithm 2 

(SPEA2) (Zitzler et al., 2002) have been widely applied for calibrating parameters of 

hydrologic models. Several examples of newly developed multi-objective optimization 

algorithms for calibrating hydrologic model are: Yapo et al. (1998) and Gupta et al. 

(1998) extended SCE-UA to address multi-objective functions in the multi-objective 

complex evolution (MOCOM-UA) algorithm, which was further improved to a multi-

objective shuffled complex evolution Metropolis (MOSCEM-UA) by Vrugt et al. 

(2003a); Gill et al. (2006b) combine the PSO algorithm for multi-objective optimization 

of SAC-SMA Model and Support Vector Machine; Reed et al. (2003) developed Epsilon 

Dominance Non-dominated Sorted Genetic Algorithm II (ε-NSGAII) and applied it for a 

four-objective groundwater monitoring application.  

Although the multi-objective optimization algorithms have been widely applied in 

hydrologic model calibration, a majority of these studies focused on conceptual rainfall-

runoff applications. Recently, with the popularity of physically based, distributed 

hydrologic models for understanding complex hydrologic processes, there are increasing 

number of studies focusing on developing multi-objective calibration strategies for 

distributed hydrologic models (Madsen, 2003; Ajami et al., 2004; Vrugt et al., 2005; 

Bekele, 2007). The distributed hydrologic models often have more complex structures 

and significantly larger parameter sets that need to be specified (Tang et al., 2006), 

which make the calibration of distributed hydrologic model a challenging problem. In 

addition, the distributed hydrologic models are often computationally intensive due to 

the detailed processes they are intended to simulate. The implementation of automatic 

calibration may take several days, weeks, or even months to finish one trial. The 

enormous amount of computational time severely constrains the effectiveness of 

automatic calibration. The increasing size and complexity of calibration problems being 

considered within the water resources literature necessitate rapid and reliable search 

(Tang et al., 2006). 
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Among all the available multi-objective optimization algorithms, comparing their 

performances on different problems is useful for future selection of algorithms for 

specific application. Several studies have compared the efficiency and effectiveness of 

different algorithms on calibrating hydrologic models. For example, Kollat and Reed 

(2005b) compared the performance of NSGAII, ε-NSGAII, Epsilon Dominance Multi-

objective Evolutionary Algorithm (ε-MOEA), and SPEA2 on a four-objective long-term 

groundwater monitoring (LTM) design test case, and the results revealed that ε-NSGAII 

was superior to the other three methods. Tang et al. (2006) compared the performance of 

ε-NSGAII, MOSCEM-UA, and SPEA2 on two real world hydrologic modeling cases, 

and concluded that SPEA2 and ε-NSGAII attained superior results than MOSCEM-UA 

and SPEA2 was superior or competitive to ε-NSGAII.  

The purpose of this study is to assess the efficiency and effectiveness of several 

state-of-the-art multi-objective optimization algorithms for parameter calibration of 

SWAT. The strength and weakness of each algorithm were evaluated and discussed. A 

new multi-objective optimization algorithm was proposed and compared with other 

methods. The state-of-the-art multi-objective optimization algorithms that were tested in 

this study include SPEA2, NSGAII, ε-NSGAII, multi-objective particle swarm 

optimization (MOPSO-IEEE) (Coello Coello et al., 2004), MOPSO-EM (Reddy and 

Kumar, 2007), and MOPSO-WRR (Gill et al., 2006b). These algorithms were applied 

for calibrating parameter of SWAT in several study areas, and the performances of 

different algorithms were derived based on several evaluation coefficients. Finally, 

suggestions on the selection of multi-objective optimization algorithms for calibrating 

SWAT were provided. 

5.2 Description of multi-objective optimization algorithms 

Before the description of the multi-objective optimization algorithms, several 

common variables are firstly introduced here: A  is non-dominated set; tP  represents the 

population for evolution, and tP  denotes the archive saving the elitist parameter sets. 

Other common variables used in the following sections are the same as those described 



73 

in Chapters III and IV. The Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler 

et al., 2002) was introduced in Chapter IV.  

5.2.1 NSGA-II 

NSGA-II is an elitist multi-objective GA developed by Deb et al. (2002). The 

NSGAII algorithm has been used to allocate optimal waste load in rivers (Yandamuri 

and Srinivasan et al., 2006), multi-objective optimization problem considering 

minimizing the total design cost and robustness (Kapelan and Savic et al. 2005), and 

watershed water quality management problem considered meeting water quality targets 

while sustaining necessary growth (Dorn and Ranjithan, 2003). The major steps to 

implement the NSGAII are listed blow (Deb et al., 2002): 

1) Initialization: Generate an initial population 0P  and evaluate each 

individual’s fitness (if t = 0), otherwise use the population inherited from 

previous iteration. The GA algorithm is used to create a child population 

tQ  of size N . 

2) Combine parent and child population: ttt QPR ∪=  

3) Fast non-dominated sorting of tR . 

4) Select the best individuals as parent population for generating new 

individuals. Select N  individuals from tR  into 1+tP  using crowd 

distance sorting and crowded comparison operator.  

5) Termination: If Tt >  or another stopping criterion is satisfied then set 

A  to the set of decision vectors represented by the non-dominated 

individuals. Stop.  

6) Go to step 1).  

 

5.2.1.1 Fast non-dominated sorting approach 

First, for each individual we calculate two entities: (i) in , the number of solutions 

which dominate the individual i , and (ii) iS , a set of individuals which the solution i  

dominates. The individuals with in  = 0 are put in a list 1F , which is called the current 
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front. For each individual in the current front, the dominated individuals in iS  are 

identified. For each j  in iS , its jn  value is reduced by 1. The individuals (with jn = 0) 

will be put to a new list 2F , and the current front is set to be 2F . The same processing 

procedures will be continued until all individuals in the population are assigned to a 

specific front. 

5.2.1.2 Density estimation 

In the fast non-dominated sorting approach, usually many individuals located in the 

same front. Then density estimation of each individual is used to discriminate the 

individuals with same front order. NSGAII use the average distance ( cedisi tan ) of the two 

individuals on either side of individual i  along each of the objectives as an estimate of 

the size of the largest cuboid enclosing the point i  without including any other point in 

the population (this distance is called crowding distance). The crowding distance of i th 

individual in its front is the average side-length of the cuboid shown with a dashed box 

in Figure 5-1.  
 
 
 

f1

f2

 
Figure 5-1. Illustration of crowding distance calculation (Modified from Deb et al., 2002). 
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5.2.1.3 Crowded comparison operator  

After calculation of the non-domination front rank ( ranki ) , and local crowding  

distance ( cedisi tan ). The crowded comparison operator ( n≥ ) was developed by Deb et al. 

(2002) for guiding the selection of the most appropriate individuals into the external 

archive. The n≥  operator is defined as  

ji n≥      )()()( tantan cediscedisrankrankrankrank jijiji >∧<∨<∀   5- 1 

5.2.2 ε-NSGAII 

ε-NSGAII is a relatively new multi-objective optimization algorihtm, which 

incorporates ε-dominance archiving (Laumanns et al., 2002) and automatic 

parameterization (Reed et al., 2003) to improve the original NSGAII’s efficiency, 

reliability and ease-of-use (Kollat and Reed, 2005b). The ε-Dominance concept is 

introduced by Laumanns et al. (2002) for improving convergence and diversity in 

evolutionary multi-objective optimization. The basic concept of ε-Dominance is 

introduced below following Laumanns et al. (2002): 

Definition 1 (ε-Dominance) If 1x  is said to ε-dominates 2x  for some ε>0, denoted 

as 21 xx εf , if and only if )()()1(},,1{ 21 xx ii ffmi ≥×+∈∀ εK  

Definition 2 (ε-approximate set) Let mRF ⊆  be a set of vectors and ε>0. Then a set 

εF  is called an ε-approximate Pareto set of F , if any vector F∈1x  is ε-dominated by at 

least one vector F∈2x , i.e. εFF ∈∃∈∀ 21 : xx  such that 21 xx εf . The set of all ε-

approximate Pareto sets of F  is denoted as )(FPε . 

Definition 3 (ε-Pareto set) Let mRF ⊆  be a set of vectors and ε>0. Then a set 

FF ⊆*
ε  is called an ε-Pareto set of F  if i) *

εF  is an ε-approximate Pareto set of F , 

i.e., )(* FPF εε ∈ , and ii) *
εF  contains Pareto points of F  only, i.e., ** FF ⊆ε . The set 

of all ε-Pareto sets is denoted as )(* FPε . 

One practical method to maintain ε-Pareto set is using ε-grid, i.e. maintain a set of 

non-dominated boxes (one solution per box). When a new solution is generated, if and 
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only if i) its corresponding box is not dominated by any box represented by the archive 

A and ii) any other archive member in the same box is dominated by the new solution, 

then the new solution is added to the Pareto front. The employing of the ε-Pareto set 

concept is helpful for improving coverage (diversity) of non-dominated solutions 

(Laumanns et al., 2002). Knowles and Corne (2000) and Coello Coello (2004) presented 

a practical way to apply ε-Pareto set concept to keep diversity of the non-dominated 

solutions in objective function space. The objective function space of the solutions in 

external archive is divided into regions as shown in Figure 5-2, a two objectives case. 

For the grid with two or more solutions located in, Coello Coello (2004) randomly chose 

one of them and removes the others. Another method is to using crowding distance 

calculation (introduced in previous sections) to estimate the density solutions located in 

the same grid box, and choose the one with highest crowding distance. The results of 

implementation of the ε-Pareto set based on crowding distance are illustrated in Figure 

5-2. In the process of implementation of the ε-Pareto set, if the individual inserted into 

the external archive lies outside the current bounds of the grid, then the grid has to be 

recalculated. The adaptive grid is really a space formed by hypercubes for optimization 

problems with dimensions equal to the number of objective functions that are needed to 

be optimized. 

 

 
Figure 5-2. Illustration of implementation of the ε-Pareto set. (Modified from Coello Coello, 

2004). 
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Kollat and Reed (2005a) incorporated the adaptive population sizing scheme into ε-

NSGAII based on the population sizing theory and the automatic parameterization. In ε-

NSGAII there are two types of iterations within the ε-NSGAII. The inter iteration shows 

how the population size is adapted. The intra iteration (NSGAII) is used to exploit and 

explore the ε-Pareto set of a given population. The ε-NSGAII uses a series of “connected 

runs” where small populations are exploited to pre-condition search with successively 

adapting population sizes (Kollat and Reed, 2005a). The major steps in ε-NSGAII are: 

1) Initially, a population of small number is generated and evolved using 

original NSGAII until it is no longer making significant progress (intra 

iteration stop criterion). 

2) Choose the ε-Pareto set from the previous NSGAII run and randomly 

generated new solutions (three times of the ε-Pareto set) to form a new 

population, which will be used for next implementation of NSGAII until 

it is no longer making significant progress 

3) Repeat steps 2 until some inter iteration termination criteria are met. 

The intra run will stop if 1) search within n generations (termed the lag window) fails 

to yield a specified percentage increase in the number of archived solutions or (2) the 

maximum run duration has been reached. After running the NSGAII for n generation, 

the ε-Pareto set size will be compared with that obtained n generations before, if the 

change percent of the ε-Pareto set size is larger than ∆ (usually set to 10%) then the intra 

run will be stopped, and the current ε-Pareto set will be combined with newly generated 

random solutions (three times of the ε-Pareto set size) to form the population for next 

intra run using NSGAII. The inter run will stop if 1) maximum model evaluations are 

reached, or 2) maximum inter run number is reached. 

5.2.3 MOPSO 

Besides GA, PSO was also extended to handle multiple objectives problems. Particle 

swarm optimization (PSO) was first extended to deal with multiple objectives 

optimization by Coello Coello et al. (2004), who developed Multi-objective Particle 

Swarm Optimization algorithm (MOSPO). Coello Coello et al. (2004) compared the 
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MOPSO with NSGAII, Pareto Archive Evolutionary Strategy (PAES) and microgenetic 

algorithm for multi-objective optimization (microGA) on several standard multi-

objective test problems, and the results showed that MOPSO is a competitive alternative 

of other popular algorithms. Reyes Sierra and Coello Coello (2006) conducted a survey 

of the state-of-the-art of the multi-objective particle swarm optimizers. Over twenty five 

different proposals of MOPSO were reported in published literatures. It is difficult to 

evaluate all these algorithms for the computationally intensive SWAT model. In this 

study, one MOPSO proposed by Reyes Sierra and Coello Coello (2005), which have 

been proved to be superior to several other PSO-based approaches, was selected as a 

benchmark MOPSO. This algorithm is referred as MOPSO-IEEE in this study. And two 

relatively new PSO-based algorithms that have been developed recently and successfully 

applied in water resources related multi-objective problems were chosen. One of them is 

elitist-mutation MOPSO (EM-MOPSO) (Reddy and Kumar, 2007), another was 

proposed by Gill et al. (2006b), which is denoted as MOPSO-WRR here. All the three 

algorithms are similar to each other in the general framework, but may vary in some 

specific procedures. The general framework of these three PSO-based algorithms are 

introduced below. 

1) Initialization. Generate an initial population 0P  and create the empty 

archive (external repository) Θ=0P . Set the velocity of each particle in 

the population to 0. Set t = 0 

2) Fitness assignment. calculate fitness values of individuals in tP  and tP  

3) Environmental selection. copy all non-dominated individuals in tP  and 

tP  to 1+tP . If size of 1+tP  exceeds N  then reduce 1+tP  by means of the 

truncation operator,  

4) Update position of each particle. Choose one particle in 1+tP  as guide 

(Gbest), and generate new positions of the particles. 

5) Mutation. The newly generated position is mutated.  
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6) Termination. 1+= tt . If Tt >  or another stopping criterion is satisfied 

then set A  to the set of decision vectors represented by the non-

dominated individuals in 1+tP . Stop. 

7) Go to step 2). 

The three PSO-based algorithms use the same “Initialization” and “Fitness 

assignment” operators, but may be different in the other operators. Table 5-1 lists the 

major characteristics of the four operators that have been adopted in different algorithms. 

 
 
 

Table 5-1. Major characteristics of the three operators in different MOPSO algorithms. 

 MOPSO-IEEE MOPSO-EM MOPSO-WRR 

Environmental 
selection ε-Pareto set  

Pareto set with 
fixed size using 
crowding 
distance operator 
for truncation 

Pareto set 

Update position 
of each particle 

Update particles 
in tP .  
Gbest is 
randomly chosen 
from the ε-Pareto 
set 

Update particles 
in tP .  
Gbest is 
randomly chosen 
from the 10% 
less crowded 
Pareto set 

Update particles in both 

tP  and tP .  
Choose the closest 
particle in the Pareto set 
as Gbest for particles in 

tP . Choose the median 
of the Pareto set to 
guide the move of 
particles in tP . 

Mutation 

Dividing the 1+tP  
into three equal 
size part, and 
apply a variable 
range, fixed 
range, and no 
mutation to each 
part. 

Elitist mutation No mutation 
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5.2.3.1 Update position of particles in Pareto set  

The operator to update position of each particle for the MOPSO-WRR is different 

from the other two. In MOPSO-WRR, it also generates new particles directly from the 

Pareto set. The position of each particle in the non-dominated set is updated with the 

guiding of the median particle of the Pareto set. Gill et al. (2006b) suggested the method 

to obtain the median particle of the Pareto set.  

5.2.3.2 Mutation operators 

There are three mutation operators. 1) In variable range operator, the range of the 

newly generated parameters are reduced with the increase of model evaluations; 2) In 

fixed range operator, the sampling range of the parameters will not change along the 

model evaluations; 3) The third mutation operator is EM range operator. This operator is 

relative complex. First, randomly select one of the objectives from m  objectives. 

Second, sort the fitness function of particles in descending order and get the index 

number descending order sorted particles for the respective particles. Third, use 

crowding distance assignment operator and calculate the density of solutions in the 

Pareto set and sort them in descending order of crowding value. Finally, randomly select 

one of the least crowded solutions from the top 10% of Pareto set as guide, and Perform 

random mutation on a predefined number of particles ( maxNM ). 

5.2.4 A new multi-objective optimization algorithm 

The test results of the above six multi-objective optimization algorithms show that 

PSO based methods converged quickly at the initial stage, while GA based methods 

could find better solutions than PSO based methods given large number of model runs. 

How to combine these two types of algorithms to produce more promising methods is an 

interesting topic. Actually the PSO and GA based methods are different in the update of 

solutions’ position to find better solutions. PSO update the position of solutions in the 

population archive, while GA uses the promising solutions (elitists) to find the promising 

results. A new idea is generated based on the strong points of PSO and GA based 

methods. The solutions in the population are updated using PSO for the initial stage, 
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then the elitists (solutions in the non-dominated set) are updated using the GA algorithm. 

The basic procedures for the newly developed MO-PSOGA are introduced below: 

1) Initialization: Generate an initial population 0P  and create the empty 

archive (external repository) Θ=0P . Set t = 0 

2) Fitness assignment: calculate fitness values of individuals in tP  and tP  

3) Environmental selection: copy all non-dominated individuals in tP  and 

tP  to 1+tP . If size of 1+tP  exceeds N  then reduce 1+tP  by means of the 

truncation operator. 

4) Termination: if Tt >  or another stopping criterion is satisfied then set 

A  to the set of decision vectors represented by the non-dominated 

individuals in 1+tP . Stop 

5) PSO operator: Update the position of individuals in tP  using the PSO 

operator. The gbest solution is selected from 1+tP . Evaluate each newly 

generated solution, update the pbest population, and reselect non-

dominated solutions from pbest and 1+tP . Set 1+tP  to the newly generated 

non-dominated solutions. if t = 0, perform PSO until the non-dominated 

solutions do not increase 10% with 10 consecutive iterations. Otherwise, 

just perform PSO once. 

6) GA operator: Perform crossover and mutation on the solutions in the 

1+tP . Store the newly generated solutions in a temporary archive tempP . 

Evaluate each solution in tempP  Reselect non-dominated solutions from 

tempP  and 1+tP . Set 1+tP  to the newly generated non-dominated solutions. 

if t = 0, perform GA until the non-dominated solutions can not increase 

10% with 10 consecutive iterations. Otherwise, just perform GA once. 

7) Increment generation counter ( 1+= tt ) and go to step 3).  
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5.3 Performance of different multi-objective optimization algorithms  

5.3.1 Evaluation metrics 

Three issues are normally taken into account when assessing the performance of 

multi-objective algorithms (Zitzler et al., 2000): 

1) Minimize the distance of the Pareto front produced by the algorithm with 

respect to the true Pareto front. 

2) Maximize the spread of solutions found, so that we can have a 

distribution of vectors as smooth and uniform as possible. 

3) Maximize the number of elements of the true Pareto optimal set found.  

Many metrics for assessment the performance of different multi-objective 

optimization algorithms have been developed. In this study, five of them were employed. 

There are still many other metrics that can be used to evaluate performance of multi-

objective algorithm. For further information please refer to Zitzler et al. (2003), Zitzler 

and Thiele (1999). The five metrics applied in this study are introduced below: 

1) Generational distance (GD ): The concept of generational distance was 

introduced by Van Veldhuizen and Lamont (1998), which estimates how 

far the elements are in the set of non-dominated vectors found so far from 

those in the true Pareto set. The equation to calculate GD  is: 

n

d
GD

n

i i∑ == 1      5- 2 

Where n  is the number of vectors in the set of non-dominated solutions 

found and id  is the Euclidean distance (measured in objective space) 

between each of these and the nearest member of the Pareto set. A value 

of GD =0 indicates that all the elements generated are in the Pareto set.  

This issue from the list previously described. 

2) Spacing ( SP ): The Spacing metric measures the range variance of 

neighboring vectors in the non-dominated vectors found (Deb, 2001)  



83 

∑
=

−
−

=
n

i
idd

n
SP

1

2)(
1

1
    5- 3 

where |)||||(|min 2211
j

m
i

m
jiji

ji ffffffd −++−+−= K , 

nji K,1, = , d  is the mean of id , and n  is the number of vectors in the 

set of non-dominated solutions found. A value of SP = 0 indicates all 

members in the non-dominated set currently available are equidistantly 

spaced. This metric addresses the second issue from the list previously 

provided. 

3) Error ration ( ER ): this metric was proposed by Van Veldhuizen and 

Lamont (1999) to indicate the percentage of solutions that are not 

members of the true Pareto optimal set: 

n
eER

n
i i∑ == 1      5- 4 

Where n  is the number of vectors in the set of non-dominated solutions. 

ie = 0 if vector i  is a member of the Pareto set, and ie  = 1, otherwise. A 

value of ER =0 indicates all the vectors generated belong to the Pareto set. 

This metric addresses the third issue. 

4) ε-indicator: this metric was proposed by Zitzler et al. (2003) to measure 

how well the algorithms converge to the true Pareto set or the best known 

approximation to the Pareto set. The ε-indicator represents the smallest 

distance that an approximation set must be translated to dominate the true 

Pareto set.  

5) Hypervolume (HP): this metric was proposed by Zitzler and Thiele 

(1999). The HP metric measures how well the approximation set 

performs in identifying solutions along the full extent of the Pareto 

surface. The HP metric is represented by the difference between the 

volume of the objective space dominated by the Pareto set and the 

approximation set.  
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In general case, it is very difficult to find an analytical expression of the line or 

surface that contains all the Pareto optimal parameter sets. The normal procedure to 

generate Pareto front is to compute the feasible points Ω  and their corresponding )(Ωf . 

When there are a sufficient number of feasible points, then the it is assumed the non-

dominated points are approximating the Pareto front.  

5.3.2 Test cases 

Several test options could be applied to evaluate the performance of all these multi-

objective algorithms for SWAT: 1) multi-site optimization (Calibrating stream flow, 

sediment or nutrients at different location simultaneously), 2) multi-variable 

optimization (calibrating different variables such as high flow, low flow, average flow), 

3) multi-criteria optimization (optimizing different evaluation coefficients that measure 

the agreement between observed and simulated variables, such as coefficient of 

determination and Nash-Sutcliffe efficiency). As the time and computational resources 

are limited, the author will not test the algorithms for all the potential multi-objective 

optimization problems. In this study three test cases were designed to evaluate the 

performance of different algorithms.  

1. Multi-criteria calibration of MCEW: the Nash-Sutcliffe efficiency and 

coefficient of determination for streamflow at the outlet (WE-38) are 

simultaneously optimized. The objective functions needed to be 

optimized are 

)}38(),38({ 2
21 −=−== WERfWEEfF ns   5- 5 

The calculation of the Nash-Sutcliffe efficiency has been described in 

Chapter III. Here, the formula used to calculate the coefficient of 

determination is: 
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Where N is the total number of pairs of simulated and observed data, 

Ni ,,2,1 L= ,  iobsQ ,  is observed flow on day i , isimQ ,  is simulated flow 

on day i , obsQ  is the average of observed flow for the entire period, and 

simQ  is the average of simulated flow for the entire period.

 

2. Multi-flow components calibration of MCEW: the Nash-Sutcliffe 

efficiency for three types of flow component are simultaneously 

optimized at the outlet (WE-38). The objective functions needed to be 

optimized are 

)}38(_),38(_),38(_{ 321 −=−=−== WEfloodEfWEbaseEfWEtotalEfF nsnsns
  5- 7 

Three objectives that measure the performance of model response to high 

glow, low flow and total flow are formulated. Firstly, the baseflow 

separation technique developed by Arnold et al., (1999) was used to 

separate the base flow from the observed daily streamflow hydrograph. 

Then each day’s major driven flow component is determined by a percent 

criterion ( totalbase flowflow / ). If totalbase flowflow /  is larger than 50%, then 

it’s assumed this day’s flow is mainly driven by base flow, otherwise by 

flood.  Using this methods, we can obtain the days whose flow drive by 

base flow ( basedays ) and the days whose flow drive by flood ( floodldays ). 

After separating baseflow and calculating the  basedays  and flooddays . The 

three objective functions measuring the model’s performance to different 

flow component can be formulated: 
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High flow: 
∑
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where, N is the total number of pairs of simulated and observed data, 

Ni ,,2,1 L= ,  baseN _  is the number of pairs of simulated and observed 

data on basedays ,   baseNbasei _,,2,1_ L= , floodN _  is the number of 

pairs of simulated and observed data on flooddays , 

floodNfloodi _,,2,1_ L= , iobsQ ,  is observed flow on day i , totalisimQ _,  

is simulated flow on day i , totalobsQ _  is the average of observed flow for 

the entire period, baseiobsQ _,  is the observed flow on day basei _ , baseisimQ _,  

is the simulated flow on day basei _ , baseQ  is the average observed flow 

on basedays , floodiobsQ _,  is the observed flow on day floodi _ , floodisimQ _,  

is the simulated flow on day floodi _ , and floodQ  is the average observed 

flow on flooddays . 

3. Multi-site calibration of RCEW: the Nash-Sutcliffe efficiency for three 

streamflow monitoring site (Salmon, Tolgate and Outlet) were optimized 

simultaneously. The objective functions needed to be optimized are 

=F ( =1f nsE -salmon, =2f nsE -Tolgate, =3f nsE -Outlet)  5- 11 

5.4 Results and discussion 

5.4.1 Settings of multi-objective optimization algorithms 

How to set the control parameters of the multi-objective optimization algorithms is 

critical for their performance. The population size, crossover rate, mutation rate, and 

archive size are expected to determine the performance of different algorithms. Actually 

the parameter setting problem is a trial and error problem. But the trail and error method 

is not suitable for computationally expensive model, as the time and resources are 

limited for running models. So we refer to the previously studies that have applied the 
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same multi-objective optimization algorithms. Based on the results from Tang et al., 

(2006), Coello Coello et al. (2004), Gill et al. (2006b), Reddy and Kumar (2007), the 

parameter settings of different multi-objective optimization algorithms are listed in 

Table 5-2. For different algorithms, settings of the control parameters are introduced as 

follows. 

The control parameter settings for MOPSO-EM are (Reddy and Kumar, 2007): c1 is 

1.0 and c2 is 0.5; inertial weight w is 1, constriction coefficient χ  is 0.9; the size of 

elitist-mutated particles is set to 20% of the population size, the value of Pem was set to 

0.2; and the value of Sm decreases from 0.2 to 0.01 over the iterations. For MOPSO-

WRR, c1 and c2 are set to 0.5, inertial weight w decrease from 0.9 to 0.01 with the 

number of iterations. For MOPSO-IEEE, c1 and c2 are randomly chosen from [1.5, 2.0]; 

inertial weight w is randomly chosen from [0.1, 0.5], mutation rate is 0.5. For ε-NSGAII, 

the initial population size is 10, the lag window size is 50 for the first iteration and 10 

after that. 

 
 
 

Table 5-2. Parameters set for different algorithms. 

Algorithm Population size Archive Size 
Crossover 

rate 
Mutation rate 

NSGAII 50 and 100 50 and 100 0.5 1/(parameter dimension) 

SPEA2 50 and 100 50 and 100 0.5 1/( parameter dimension) 

ε-NSGAII 
Initially set to 

10 

Varying with the 

population size 
0.5 1/( parameter dimension) 

MOPSO-

IEEE 
50 and 100 50 and 100 N/A 1/( parameter dimension) 

MOPSO-

EM 
50 and 100 50 and 100 N/A N/A 

MOPSO-

WRR 
50 and 100 50 and 100 N/A N/A 
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Figure 5-3. Pareto set found by all algorithms for the two-objective case in MCEW. 

 
 
 
5.4.2 Evaluation of different algorithms for the two-objective case in MCEW 

The best known approximation set was collected through running the seven multi-

objective optimization algorithms. Only two algorithms (ε-NSGAII and the MO-PSOGA 

method) can contribute to the reference Pareto set (Figure 5-3). The ε-NSGAII 

contributed to 2% of the reference Pareto set, while the MO-PSOGA method contributed 

to the rest 98%. This indicates the advantage of combining the PSO and GA algorithms 

to perform multi-objective optimization of SWAT. The approximation set found by 

different algorithms are shown in Figure 5-4, and the evaluation coefficients of these 

approximation sets are listed in Table 5-3. The approximation set found by different 

algorithms refer to the best known non-dominated set found by all trials with different 

population sizes using the same multi-objective optimization algorithm.  
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Figure 5-4. The approximation set found by different algorithms for the two-objective case in 

MCEW. 

 
 
 

Table 5-3. Evaluation coefficients for the approximation set found by different algorithms for the 

two-objective case in MCEW. 

Algorithms GD SP 
ε-

indicator 
ER  HP 

MO-PSOGA 0 0.0012 0.002 0.9767 1E-06 

ε-NSGAII 0.0099 0.0035 0.017 0.0465 0.001 

NSGAII 0.0129 0.0051 0.022 0 0.0015 

SPEA2 0.0202 0.0029 0.025 0 0.0017 

MOPSO-EM 0.0146 0.0066 0.046 0 0.0031 

MOPSO-IEEE 0.0265 0.011 0.028 0 0.0023 

MOPSO-WRR 0.0052 0.0056 0.024 0 0.0017 
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Through visual inspection of Figure 5-4, it is evident that the approximation sets 

found by different algorithms are different. Based on the evaluation coefficients in Table 

5-3, the MO-PSOGA method that combining the PSO and GA algorithms performed the 

best in terms of GD, ε-indicator, ERR and HP. This reveals the promising ability of the 

newly proposed multi-objective optimization for parameter calibration of SWAT model. 

The ε-NSGAII method performed the second in terms of GD, ε-indicator, ERR and HP, 

which shows the advantage of dynamic population size. Among the rest five algorithms, 

the performances of NSGAII, SPEA2, and MOPSO-WRR are close to each other, while 

MOPSO-EM and MOPSO-IEEE performed the least.  

The dynamic performance plots for the ε-indicator versus model evaluations for the 

two-objective case in MCEW are shown in Table 5-4. It was found that the PSO based 

multi-objective methods performed better than the GA based methods with small 

number of model evaluations, while the GA based methods performed better than the 

PSO based methods with large number of model evaluations. For example, with 2000 

model runs, all the PSO based method obtained ε-indicator values close to or smaller 

than those obtained by GA based methods. But, for 10000 model evaluations, the ε-

indicator values obtained by GA based methods values are close to or smaller than those 

PSO based methods. The evaluation results show that the PSO based methods tends to 

find relatively better parameter sets using less computational time, while GA based 

methods can obtained better parameter sets with larger number of model runs. This 

phenomenon is consistent with what we have found with the single objective 

optimization test cases. The implementation of the MO-PSOGA method that combining 

PSO and GA, the PSO is preferred to be run in the initial iterations, while GA is 

preferred to be run after this initial period. From Table 5-4, the population size also 

exerted appreciable effect on the performances of different multi-objective optimization 

algorithms, but there is no explicit rules that can be derived based on the test results for 

the two-objective case in MCEW. Among the three tested PSO based methods, MOPSO-

WRR performed better than the other two. The smaller population size was chosen for 
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the PSO population size in the MO-PSOGA method because the MOPSO-WRR 

performed relatively better with small population size. 

 
 
 

Table 5-4. Average ε-indicator value at different model evaluations for the two-objective case in 

MCEW. 

Algorithms 2000 4000 6000 8000 1000 

MO-PSOGA 0.075 0.0483 0.0333 0.0292 0.0272 
ε-NSGAII 0.0847 0.045 0.0402 0.0338 0.031 

50 0.0918 0.0504 0.039 0.0308 0.028 
NSGAII 

100 0.1293 0.0597 0.0453 0.0363 0.033 

50 0.1182 0.0655 0.0503 0.0425 0.035 
SPEA2 

100 0.1422 0.071 0.0512 0.0428 0.0375 

50 0.0722 0.06 0.0553 0.0527 0.0523 MOPSO-

EM 100 0.0788 0.0627 0.0583 0.0568 0.0545 

50 0.0708 0.0555 0.0502 0.0462 0.044 MOPSO-

IEEE 100 0.0798 0.0542 0.05 0.045 0.0412 

50 0.096 0.05 0.0423 0.0352 0.0342 MOPSO-

WRR 100 0.0882 0.067 0.0643 0.059 0.0542 

 
 
 
5.4.3 Evaluation of different algorithms for the three-objective case in MCEW 

As the time consumed by running the SWAT model is huge and the performances of 

MOPSO-EM and MOPSO-IEEE are the least among the seven algorithm as discussed in 

section 5.4.2, these two algorithms were not tested for the three-objective case in 

MCEW in order to save computation resources. The best known approximation set 

(Figure 5-5) was collected through running five multi-objective optimization algorithms. 

57% of the estimated Pareto set was contributed by the newly proposed method, 40% by 

SPEA2, 2% by NSGAII and 1% by ε-NSGAII. The MOSPO-WRR contributed 0% for 

the Pareto set. The approximation set found by different algorithms are shown in Figure 

5-6, and the evaluation coefficients of these approximation sets are listed in Table 5-5. 
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Through visual inspection of Figure 5-6, it is evident that the approximation sets found 

by different algorithms have different shape and extent.  

The MO-PSOGA method performed the best in terms of GD, ε-indicator, ERR and 

HP, followed by SPEA2, NSGAII, ε-NSGAII and MOPSO-WRR. The good 

performance of the newly proposed method emphasizes its potential to be a promising 

multi-objective optimization algorithm. The performance rank of the five algorithms is 

different from that obtained in the two-objective case in MCEW. For example, ε-

NSGAII performed less than SPEA2 and NSGAII for the three-objective case in MCEW. 

This reveals that the performances of different algorithms are influenced by the 

properties of some specific optimization problems.  

The dynamic performance plots for the ε-indicator versus model evaluations for the 

three-objective case in MCEW are shown in Table 5-6. It is found that different 

algorithms show evidently different performance. Although the MO-PSOGA method 

obtained smaller ε-indicator value than SPEA2 with 10000 model evaluations, SPEA2 

found better ε-indicator values with relatively small number of model evaluations. The 

average performances of SPEA2 and NSGAII are better with small population size.  
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Figure 5-5. Pareto set found by all algorithms for the three-objective case in MCEW. 
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Table 5-5. Evaluation coefficients for the approximation sets found by different algorithms for 

the three-objective case in MCEW. 

Algorithms GD SP ε-indicator ER  HP 

MO-PSOGA 0.0043 0.004 0.011 0.6044 0.0001 

ε-NSGAII 0.6063 0.0166 0.053 0.011 0.0068 

NSGAII 0.0297 0.0121 0.038 0.033 0.0023 

SPEA2 0.0074 0.0154 0.012 0.4615 0.0006 

MOPSO-WRR 0.4134 0.1446 0.088 0 0.0079 
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Figure 5-6. Approximation sets found by different algorithms for the three-objective case in 

MCEW. 
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Table 5-6. Average ε-indicator value at different model evaluations for the three-objective case 

in MCEW. 

Algorithms 2000 4000 6000 8000 10000 

MO-PSOGA 0.0818 0.0468 0.0404 0.0368 0.03 

e-NSGAII 0.1218 0.1102 0.1054 0.1 0.0968 

50 0.1083 0.0827 0.0777 0.063 0.052 
NSGAII 

100 0.0948 0.0758 0.064 0.0618 0.058 

50 0.0716 0.0434 0.0356 0.0336 0.0302 
SPEA2 

100 0.1003 0.0753 0.0573 0.0418 0.0405 

 
 
 

5.4.4 Evaluation of different algorithms for the three-objective case in RCEW 

The last case is to test the performances of different algorithms on a three-objective 

multi-site calibration of the RCEW. In this case, in order to save computation resources, 

only three algorithms (MO-PSOGA, SPEA2, and NSGAII) were applied. The best 

known approximation set (Figure 5-7) was collected through running three multi-

objective optimization algorithms. 39% of the estimated Pareto set was contributed by 

MO-PSOGA, 34% by SPEA2, and 27% by NSGAII. The approximation set found by 

different algorithms are shown in Figure 5-8, and the evaluation coefficients of these 

approximation sets are listed in Table 5-7. From Figure 5-8, the three algorithms still 

found different approximation sets with different shape and extent. The evaluation 

coefficients in Table 5-7 show that the performances of theses algorithms are very close 

to each other. The MO-PSOGA method performed slightly better than SPEA2 and 

NSGAII.  
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Table 5-7. Evaluation coefficients for the approximation set found by different algorithms for the 

three-objective case in RCEW. 

Algorithms GD SP e-indicator ER  HP 

MO-PSOGA 0.0018 0.0421 0.084 0.3913 0.0233 

SPEA2 0 0.0234 0.094 0.337 0.0229 

NSGAII 0 0.0419 0.096 0.2717 0.0447 
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Figure 5-7. Pareto set found by all algorithms for the three-objective case in RCEW. 

 
 
Table 5-8. Average ε-indicator value at different model evaluations for the three-objective case 

in RCEW. 

Algorithms 2000 4000 6000 8000 1000 

MO-PSOGA 0.204 0.1586 0.1452 0.1372 0.1156 

50 0.1878 0.1604 0.1412 0.1288 0.1202 
NSGAII 

100 0.2283 0.154 0.1373 0.129 0.1183 

50 0.2168 0.1572 0.1364 0.1286 0.117 
SPEA2 

100 0.2444 0.182 0.1522 0.1374 0.121 
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Figure 5-8. Approximation set found by all algorithms for the three-objective case in RCEW. 

 
 
 

The dynamic performance plots for the ε-indicator versus model evaluations for the 

three-objective case in RCEW are shown in Table 5-8. Although the MO-PSOGA 

method obtained smaller ε-indicator value than SPEA2 with 10000 model evaluations, 

SPEA2 and NSGAII found better ε-indicator values with relatively small number of 

model evaluations.  

5.5 Summary 

In this chapter, six multi-objective algorithms and one newly proposed method (MO-

PSOGA) were tested for parameter calibration of SWAT model for several multi-

objective case studies. The application of GA based and PSO based algorithms show that 

the PSO based method converge quickly at the initial state, while GA based methods 

performed better in terms of finding good parameter sets with larger number of model 

runs. A new multi-objective optimization method (MO-PSOGA) that combines the 

advantages of the PSO and GA algorithms was proposed. Based on the evaluation of the 

performances of different algorithms on three test cases, the MO-PSOGA method 

consistently perform better for all the other algorithms in terms of finding good 
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parameter sets approximating the Pareto front with large number of runs. For relatively 

small number of evaluations of SWAT, the MO-PSOGA method can obtain results close 

to that of other optimization algorithms. Overall, the MO-PSOGA method can serve as a 

promising alternative method for multi-objective optimization of SWAT model. 
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CHAPTER VI  
 

APPROXIMATING SWAT USING ANN AND SVM 
 

 

6.1 Introduction 

In recent years, complex, physically based hydrologic models have been used 

increasingly by hydrologists and resources managers as tools to understand and manage 

natural and human activities that affect watershed systems. With the popularity of these 

models, the time consumed for running these models is increasing substantially. The 

automatic calibration and uncertainty analysis require a large number of evaluations of 

the computationally intensive models. As the SWAT model usually requires several 

minutes, several hours, or even several days to be implemented for a single run, it is very 

time consuming to conduct the parameter calibration and uncertainty of SWAT. For 

example, the time consumed by running SWAT model 1,000 times is about 17 hours (if 

1 minute is required for one run) or even 1000 hours (if 1 hour is required for one run). 

Because of the enormous computational cost involved, it is important to improve the 

efficiency of parameter calibration and uncertainty analysis for SWAT. How to produce 

good parameter solutions with a limited number of evaluations of SWAT is a concern of 

many model users. 

The function approximation method is an efficient way for parameter calibration and 

uncertainty analysis of computationally intensive models (Gutmann, 2001). Several 

studies have applied different learning machines as surrogate models to approximate the 

behavior of computationally intensive environmental models. For example, the Artificial 

Neural Network (ANN) has been used by Morshed and Kaluarachchi (1998), Johnsom 

and Rogers (2000), Almasri and Kaluarachchi (2005), and Zou et al. (2007) as 

surrogates of complex environmental models for parameter selection and management 

practices evaluation. Radial Basis Function (RBF) also has been used by Mugunthan and 
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Shoemaker (2006) as an approximation tool of computationally expensive models for 

parameter calibration and uncertainty analysis. Previous studies have shown that 

different learning machines exhibited various abilities to approximate different models’ 

behavior. For example, Khalil et al. (2005) compared the capacity of four learning 

machines (ANN, support vector machine (SVM), locally weighted projection regression 

(LWPR), and relevance vector machines (RVM)) for approximating the behavior of 

complex ground water quality models, and concluded that ANN minimizes empirical 

risk and SVM can minimize the structural risk to achieve estimators that are less 

susceptible to over fitting. To the best of the author’s knowledge, the learning machines 

were seldom applied to approximate the SWAT model’s response to parameter adjusting. 

Therefore, evaluating and comparing the performances of different learning machines 

for approximating the SWAT model is a topic deserving further exploration. Among the 

different learning machines, the ANN is very popular and has been successfully used to 

approximate the computationally intensive models. Another learning machine - SVM, 

which has exhibited learning ability equal to or better than ANN for hydrologic 

simulation (Liong and Sivapragasam, 2002; Gill et al., 2006), was also taken as a 

promising candidate learning machine. In this study, the major objective was to evaluate 

and compare the performances of ANN and SVM for approximating the response of 

SWAT model to parameter selections. Several practical issues related to efficient and 

effective application of the learning machines were also analyzed and discussed. The 

remainder of this paper is organized as follows: Section two provides a brief description 

of the Materials and Methodology, including the characteristics of the study area (LREW 

in GA and MCEW in PA), the description of the SWAT model, introduction of learning 

machines (ANN and SVM), and the procedures of implementing particle swarm 

optimization (PSO) algorithm used to train the learning machines. In section three, 

several test cases with different combinations of parameter dimensions, numbers of 

training sample points, and cross validation schemes were designed to evaluate and 

compare the performance of ANN and SVM. In section four, the results and discussion 

of the performance of ANN and SVM for approximating the SWAT model with respect 
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to different test cases were presented. In addition, the potential application learning 

machines for parameter calibration and uncertainty analysis of SWAT were also 

illustrated with simple analysis and example. Finally, a summary with conclusions is 

provided in section five. 

6.2 Methods 

6.2.1 ANN 

 
 
 

 
Figure 6-1. A fully connected one-hidden-layer feed-forward neural network with four input 

units, four hidden units, and one output unit. 

 
 
 

ANN is a universal approximate that has been widely used to simulate complex and 

nonlinear relationships between input and output data. The input data vector tx  is 

mapped to the target variable ty  in the form of )( tt f xy = , where )( tf x  is the neural 

network function. ANN has been widely used in hydrology and water resources-related 

applications. An artificial neural network consists of an interconnected group of 

processing elements (artificial neurons) which can exhibit complex global behavior. One 
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typical type of a 3 layered feed-forward neural network with four inputs, four hidden 

units and one output is shown in Figure 6-1 (Liang, 2005). This network can be used to 

approximate the variable of interest using a function with the form of  
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where tx  is the input data vector at time t, p  is the dimension of tx , itx  is the ith 

component of tx , M  is the number of hidden units; 0α  denotes the bias of the output 

unit, iα  denotes the weight that directly connects the ith input unit to the output unit; jβ  

is the weight that connects the jth hidden unit to the output unit; 0jγ  is the bias of the jth 

hidden unit, jiγ  denotes the weight on the connection from the ith input to the jth hidden 

unit; and )(⋅ψ  is the activation function of the hidden units. The activation function 

applied in this study is the hyperbolic tangent function. The )tanh(⋅  function ensures that 

the output of a hidden unit is 0 if all connections to the hidden unit from input units have 

been eliminated. The symbols 0α , iα , jβ , 0jγ , and jiγ  are the biases and connections 

that need to be optimized to infer an acceptable approximation of the relationship 

underlying a system that relates a set of input variables to the dependent variables of 

interest.  

Given a set of l samples )},(,),,{( 11 LL yy xx K , where tx  are the input vectors and 

ty  are the corresponding output values ( Lt K,2,1= ), a class of functions )( tf x  can be 

formulated to approximate the relationship between the input vector and the output 

variable. The optimal weights and biases of the links in the neural network are usually 

determined by empirical risk minimization (ERM) procedure. The formula used to 

calculate the empirical risk empR  is 
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The conventional method for solving the problem of regression estimation for a 

learning machine is to apply the ERM principle using the loss function specified by the 
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above equation, which is the least square method. There are many optimization 

algorithms available for training the ANN model.  Herein, a popular evolutional 

optimization algorithm, Particle Swarm Optimization (PSO), was applied. The PSO has 

been successfully applied to optimize artificial neural networks for river stage prediction 

(Chau, 2006). For more information about PSO, please refer to Kennedy et al. (2001). 

6.2.2 SVM 

The Support Vector Machine developed by Vapnik (1998) is gaining wide use in 

many research fields. The basic form of SVM for nonlinear regression is 

bf t
T

t +⋅= )()( xwx φ   6- 3 

where w  and b  are the regression parameter vectors of the function. )(xφ  is the 

nonlinear function that maps input data tx  into a feature space in which the training data 

may exhibit linearity. SVM employs the novel Structural Risk Minimization (SRM) 

principle developed from statistical learning theory to minimize the expected risk based 

on limited data (Vapnik 1998). The SRM principle suggests a tradeoff between the 

quality of the approximation and the complexity of the approximating function. A 

popular regression version of SVM, ε -SVM, is used to find a function that has at most 

ε  deviations from the actual obtained targets for all the training data, and is as flat as 

possible (Smola and Scholköpf, 2004). The objective function is 
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where tξ  and *
tξ  are slack variables that specify the upper and lower training errors 

subject to an error tolerance ε , and C  is a positive constant that determines the degree 

of penalized loss when a training error occurs. The schematic illustration of the 

calculation of tξ  and *
tξ  is shown in Figure 6-2, where solid circles denote support 
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vectors. Only the points ),( ii yx  outside the ε  tube contribute to the loss function, and 

an error tξ  or *
tξ  needs to be calculated. ε -SVM avoids under-fitting and over-fitting 

the training data by minimizing both the regularization term wwT

2
1  and the training 

error term ∑
=

∑
=

+
l

i

l

i
tt CC

1 1

*ξξ . Minimizing the first term is equivalent to minimizing the 

complexity of the learning machine, and minimizing the second term corresponds to 

minimizing the empirical risk. 

 
 
 

 
Figure 6-2. Nonlinear SVR with Vapnik’s ε-insensitive loss function (Modified from Yu et al., 

2006).  

 
 
 

The optimization problem described above can be solved through introducing a dual 

set of Lagrange multipliers, tα  and tα , enabling the optimization problem to be solved 

more easily in the dual form, by applying the standard quadratic programming algorithm. 

Then, the dual form of the nonlinear SVM optimization problem can be expressed as 
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ltCt K,2,1,0 =≤≤ α  

ltCt K,2,1,0 =≤≤ α  

where ),( jtK xx  is )(),( jt xx φφ , the inner product of )( txφ  and )( jxφ . The dual 

formulation does not require the explicit form of the nonlinear function )(xφ . A “kernel” 

function ),( jiK xx  = )(),( jt xx φφ  is sufficient to perform the SVM optimization 

problem. The application of the kernel function avoids the direct computation of 

)(),( jt xx φφ , which may be too complex to perform. After the Lagrange multipliers, 

iα  and iα , have been determined, the approximate function can be expressed as,  
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If the values ( tt αα +− ) are zero, the corresponding data point are contained inside 

of the ε -intensive tube. Only those data points with non zero coefficients ( tt αα +− ) 

will be used in the final calculation of function (6-6). These data points are denoted as 

support vectors (SVs).  

In order to calculate function (6-6), the kennel function ),( jtK xx  is necessary. Any 

function that meets Mercers condition can be used as a kernel function. The commonly 

used kernel functions include linear kernel, polynomial kernel, sigmoid kernel and radial 

basis function (RBF) kernel. According to the previous application of SVM (e.g., Yu et 

al., 2006; Gill et al., 2006a) and a preliminary test of the performance of different kernel 

functions, the RBF kernel was selected in this study. The basic form of the RBF kernel is,  

0]),||||exp(),( 2 >−= γγ jtjtK xxxx    6- 7
 

where γ  is kernel parameter. 

Based on previous descriptions of SVM, there are three important parameters that 

dominate the performance of the nonlinear SVR: the cost constant C , the radius of the 

insensitive tube ε, and the kernel parameter γ . These three parameters are usually 

determined by a heuristic trial-and-error process. Recently, advanced evolutionary 
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optimization algorithms have been proposed to calibrate the parameters of SVM (e.g., 

Bazi and Melgani, 2007). In this study, the PSO algorithm was applied for parameter 

selection of SVM. Based on previous studies on applying automatic optimization for 

SVM, the ranges of the C, γ , and ε were set to [10-3, 100], [10−3,5], and [0, 0.5], 

respectively. 

6.3 Test cases design  

In this study, the optimization objective function is the Nash-Sutcliffe efficiency (Ens) 

that has been introduced in Chapter III. The Ens values in MCEW and LREW were 

calculated using six years (1995-2001) and four years (1997-2000) simulated daily 

streamflow, respectively. The ANN and SVM were applied to approximate the objective 

function (Ens) values simulated by SWAT with different parameter values. The learning 

ability of ANN and SVM is dependent on many factors, such as number of training 

samples, parameter dimensions, training schemes (the number of folds of cross-

validation), and characteristics of the watershed. In the following sections, several test 

cases were designed to evaluate the effect of the parameter dimensions, training schemes 

and training sample sizes on the approximation ability of ANNs and SVM in two 

watersheds (LREW and MCEW).  

6.3.1 Parameter dimensions 

In the previous application of SWAT for hydrologic modeling, the number of 

parameters that were calibrated usually ranges between five and sixteen parameters (Van 

Liew et al., 2003; Van Liew et al., 2007). Herein, four parameter dimension scenarios 

with six, nine, twelve and sixteen parameters, respectively, were designed for each 

watershed. In order to determine the parameters included into different parameters 

scenarios, all sixteen parameters identified by Van Liew et al. (2007) were ranked 

according to their sensitivity index in descending order. In the n-parameter scenario, the 

first n parameters are included. The sensitivity analysis method used in this study is the 

algorithm developed by van Griensven et al. (2006), which has been incorporated into 

the parameter sensitivity program of SWAT2005. The basic idea of LH-OAT is to 

perform Latin-hypercube (LH) sampling and then perform the One-factor-At-a-Time 
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(OAT) sensitivity analysis locally around each parameter point obtained in the LH 

procedure. Finally, the sensitivity indices obtained by the OAT operations are averaged 

over the number of Latin-hypercube samples to get the average estimate of the 

sensitivity of each parameter. Another efficient alternative to the Latin-hypercube design 

is symmetric Latin-hypercube design (SLHD). In the samples obtained by SLHD, each 

parameter point has its reflection through the center of the parameter space. The SLHDs 

have shown better performance than simple LH (Ye et al., 2000). In this study, the 

SLHD was applied to generate random initial sample parameter points. The parameter 

sensitivity ranks in LREW and MCEW are listed in Table 6-1. 

 
 
 

Table 6-1. Sensitivity rank of the 16 parameters in the LREW and MCEW. 

Sensitivity Rank LREW MCEW 

1 CN CN 
2 Surlag Surlag 
3 ESCO ESCO 
4 GWQMN SFTMP 
5 CH_K2 TIMP 
6 RCHRG_DP SMTMP 
7 SOL_AWC SOL_AWC 
8 GW_DELAY GW_DELAY 
9 ALPHA_BF CH_K2 

10 GW_REVAP ALPHA_BF 
11 REVAPMN SMFMN 
12 SFTMP REVAPMN 
13 SMTMP GWQMN 
14 SMFMX RCHRG_DP 
15 SMFMN GW_REVAP 
16 TIMP SMFMX 

 
 
 
6.3.2 Number of training samples  

The effect of training sample size on the performance of ANN and SVM was 

investigated. As the function approximation method is designed for computationally 

expensive models, the maximum number of training samples should not be large. In this 
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study, the largest training sample size is 1000. The other sample sizes are equally spaced 

between 200 and 1000 with an increment of 200. 

6.3.3 Training schemes for ANN and SVM 

Cross-validation is one popular approach to estimating how well the model that has 

been trained is going to perform on another independent set of data. The cross validation 

approach requires the data set to be divided into k mutually disjointed folds (subsets) jS  

( },,1{ kj K= ). For each subset jS , the function is trained based on all the data left. 

Totally, the training and testing operations are needed to be operated k times. The cross-

validation with k mutually disjointed subsets of training samples are denoted as k-fold 

cross-validation. Previous studies have shown that 10-fold cross validation is preferred 

in real world problems (Kohavi, 1995). The computation time required by the cross 

validation scheme increases with the number k. As saving computation time is one of the 

major concerns, the optimal number of k will be examined through evaluating the 

performance of 10-fold, 5-fold, 4-fold, 3-fold, 2-fold and no cross-validation schemes. 

The objective function used in the k-fold cross validation is  
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where jempR ,  is the tested mean square error for subset jS . The Error  was taken as an 

objective function to be minimized using the PSO algorithm. For the training of ANN, 

the appropriate number of hidden units (ranging from 5 to 50) was selected through 

cross-validation scheme. As the number of parameters that need to be optimized for 

ANN is many more than that for SVM, the population size of PSO used for ANN is 200, 

while the population size of PSO for SVM is 30. The criterion for stopping the 

optimization process is that if the optimization objective function does not improve by 

2% within three consecutive iterations of PSO.  

6.3.4 Evaluation of the performance of ANN and SVM 

After the training of the ANNs and SVM, their generalization ability is evaluated 

using another independent input data set and corresponding target values. The evaluation 

coefficient used in this study was coefficient of determination (R2). R2 is calculated as: 
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where P denotes the model simulated value, O denotes observed data, and the over bar 

denotes the mean for the entire time period of the evaluation. Ni K,2,1= , where N is 

the total number of simulated and observed data pairs. 2R  is the square of the Pearson’s 

product-moment correlation coefficient and describes the proportion of the total variance 

in the observed data that can be explained by the model (Legates and McCabe, 1999). 
2R  is an indicator of strength of relationship between the observed and simulated values. 

The value of 2R  ranges between 0 and 1. If 2R  values are equal to one, the model 

prediction is considered to be “perfect”. 

6.4 Results and discussion 

For each test case, the SVM and ANN models were run 20 trials to obtain the 

average evaluation coefficients ( 2R  and RMSE ) to assess the performance. As the 2R  

and RMSE  are highly correlated to each other, and 2R  is popular in previous studies 

(e.g., Morshed and Kaluarachchi, 1998; Virginia et al, 2000) to evaluate the 

approximation ability of learning machines, the analysis of the performance of learning 

machines  was mainly based on 2R  in order to save space. Figure 6-3 shows the R2 

values obtained by SVM and ANN for different parameter dimensions, training sample 

sizes, and cross validation schemes in LREW and MCEW. the 2R  values range from 

0.834 to 0.996 in LREW and from 0.728 to 0.941. In the previous studies that have 

reported successful applications of learning machines as surrogates of complex models, 

the ranges of 2R  were between 0.927 and 0.988 (Virginia et al., 2000), and between 

0.867 and 0.998 (Morshed and Kaluarachchi, 1998). The R2 values obtained in this study 

are close to those reported in previous studies. From Figure 6-3, it is important to note 

that the performance of the learning machines is substantially impacted by the parameter 

dimensions, training sample sizes, and cross validation schemes. Based on the 
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simulation results, the following analysis and discussion will focus on four aspects: 1) 

comparing the performances between the ANNs and SVM, 2) the effect of training 

sample size on the performance of learning machines, 3) the effect of parameter 

dimension on the performance of learning machines, 4) the effect of different cross-

validation schemes on the performance of learning machines. In Figure 6-3, Figure 6-4, 

and Figure 6-5, “6p” denotes six parameters scenario, “9p” denotes nine parameters 

scenario, “12p” denotes twelve parameters scenario, and “16p” denotes sixteen 

parameters scenario; On the horizontal axis, “1” represents 200 random samples, “2” 

represents 400 random samples, “3” represents 600 samples, “4” represents 800 samples, 

and “5” represents 1000 samples. 

6.4.1 Comparison between the performances of ANN and SVM in the LREW and 

MCEW 

From Figure 6-3, it was found that the overall performances of SVM and ANNs were 

very close to each other, but SVM performed slightly better than ANNs. For most cases, 

SVM can find higher 2R  and lower RMSE  than ANN. In the LREW, among the total 

120 test cases, SVM performed better than or equal to ANN for 109 test cases. If the no 

cross-validation scheme was removed, then SVM performed no less than ANN for 97 

test cases from the total 100 test cases. In the MCEW, SVM performed better than or 

equal to ANN for 75 test cases among the total 120 test cases. If the no cross validation 

scheme was removed, then SVM performed no less than ANN for 70 test cases from the 

total 100 test cases. For each combination of parameter dimension and training sample 

sizes, the best solutions found by SVM and ANN with different cross validation schemes 

were plotted in Figure 6-4. In the LREW, the best solutions found by SVM are no less 

than the best solutions found by ANNs. For example, for the six parameters scenario, 

with 200 training samples, SVM found solutions with 2R  of 0.988 and RMSE  of 0.08, 

while ANNs found solutions with 2R  of 0.987 and RMSE  of 0.083. Similar results were 

also obtained for 400, 600, 800 and 1000 training samples of the six parameter scenario. 

For the nine, twelve and sixteen parameters scenarios in the LREW, SVM can also 

provide superior evaluation coefficients to ANN. In the MCEW, the SVM did not  
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Figure 6-3. R square values obtained by SVM and ANN for different parameter dimensions, 

training sample sizes, and cross-validation schemes in the LREW and MCEW.  
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Figure 6-4. Best R square values obtained by SVM and ANN for different parameter dimensions, 

and training sample sizes in the LREW and MCEW.  

 
 

always perform better than ANN in terms of finding best solutions. For the six and nine 

parameter scenarios, with 200 training samples, ANN obtained better results than SVM. 

For example, the best solution (with 2R  of 0.83) found by ANN is better than the best 
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solution (with 2R  of 0.822) found by SVM under the six parameter scenarios. SVM still 

outperformed ANN for 400, 600, 800 and 1000 training samples under the six and nine 

parameters scenarios. For the twelve and sixteen parameter scenarios, the SVM also 

found better solutions than ANN, given all training sample sizes. The simulation results 

show that SVM can obtain better evaluation coefficients for most test cases, especially 

when the cross validation schemes were carefully selected. Overall, SVM is preferred to 

ANNs for approximating the model behaviors of SWAT. 

6.4.2 Effect of different cross-validation schemes on the performance of SVM 

Figure 6-5 shows the performance of SVM with different cross-validation schemes 

for different combinations of parameter dimensions and training sample sizes. The cross-

validation schemes can influence the performance of SVM. In general, the 10-fold, 5-

fold, 3-fold, and 2-fold cross-validation schemes performed better than the training 

scheme of No cross-validation. For all of the test cases, the No cross-validation scheme 

exhibited lower 2R  and larger RMSE  values than the other five training schemes with 

cross-validation. For example, for the test case of 12 parameters and 200 training 

samples, the No cross-validation scheme found solution with 2R  of 0.836 and RMSE  of 

0.273, while the least solution found by other cross-validation schemes is with 2R  of 

0.903 and RMSE  of 0.205. This indicates that the generalization ability of the learning 

machines can be substantially improved through applying cross-validation. The No 

cross-validation training scheme should not be adopted in the future. Among the five 

cross-validation schemes, as to which scheme should be chosen, two factors were 

considered in this study: 1) the prediction accuracy of each cross-validation scheme, and 

2) the time consumed by each scheme, if the performances of different schemes are very 

similar to each other. The performances of different cross-validation schemes are 

impacted by the watershed characteristics, parameter dimensions, and sample sizes. In 

order to give a comprehensive evaluation of different cross-validation schemes, the 

relative performance ranks of the five cross-validation schemes were summed over all 

combinations of parameter dimensions and sample sizes for each watershed (Table 6-2). 

In general, the cross-validation schemes with more folds tend to perform better. It is 
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shown that the 5-fold cross-validation scheme performed best in LREW, and the 10-fold 

cross-validation scheme performed best in MCEW. The 10-fold cross-validation scheme 

doesn’t always outperform other cross-validation schemes. This may be because of the 

stochastically training of SVM with limited number of iterations. Although the overall 

performance of the 10-fold cross-validation scheme is better than other cross-validation 

scheme, it is also found that the average 2R  values obtained by the five cross-validation 

schemes are close to each other (Figure 6-5). In order to test whether the mean 2R  

values obtained by the five cross-validation schemes are statistically different from each 

other, the Analysis of Variance (ANOVA) method was implemented. The null 

hypothesis is that the mean 2R  values obtained by the different cross-validation schemes 

are the same. If all of the five cross-validation schemes were compared, the results (for 

most test cases the p-value is less than 0.05) would show that the null hypothesis is false 

for most cases. If four cross-validation schemes (3-fold, 4-fold, 5-fold, and 10-fold) were 

compared, then the results (the p-values for most test cases are larger than 0.05) would 

show that the null hypothesis is true for most test cases. Based the statistical tests, it is 

assumed that the 3-fold cross-validation scheme can perform as well as the higher folds 

cross-validation schemes. Considering the time consumed to train the SVM, the 3-fold 

cross-validation scheme was suggested to be used to approximate the response of SWAT 

model to parameter calibration. 

 
 
 

Table 6-2. Cumulative performance rank of different cross-validation schemes in LREW and 

MCEW. 

Watershed 10-fold 5-fold 4-fold 3-fold 2-fold 

LREW 45 39 43 48 78 
MCEW 44 57 60 63 70 
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Figure 6-5. Comparison between R square values obtained by SVM with different cross 

validation schemes for different combinations of parameter dimension and training sample size. 

 
 
 

6.4.3 Effect of training sample size and parameter dimension on the performance of 

learning machines 

From Figure 6-4 and Figure 6-5, it has been shown that the training sample sizes and 

parameter dimensions can substantially influence the performance of learning machines 

to approximate the behavior of SWAT model. In general, the performance of SVM 

increases with the increasing of training sample size and decreases with the increasing of 

parameter dimension. The high parameter dimensionality makes the response surface of 

SWAT model to parameters more complex, which in turn make it difficult for SVM to 

approach. For example, in the LREW, given 200 training samples, the 2R  values are 
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0.988 under the six parameters scenario and 0.882 under the sixteen parameters scenario, 

respectively. In order to effectively apply SVM to approach the behavior of SWAT 

model, reducing the dimension of the parameters is important. Determining the 

parameter values from field data as much as possible and fixing the spatial patterns of 

parameters are effective ways of reducing the dimensionality of parameters. Also, the 

sensitivity analysis (SA) can serve as useful to screen out the insensitive parameters.  

Large numbers of training samples provide more information about the response 

surface of SWAT model to parameters, which make SVM provide more accurate 

prediction. For instance, in the MCEW, under the six parameters scenario, the 2R values 

are 0.909 given 400 training samples and 0.814 given 200 training samples, respectively. 

The effect of training sample size on the performance of SVM is influenced by the 

watershed characteristics, parameter dimensionality, and number of model evaluations 

considered in this study. In LREW, sample number larger than 600 did not provide 

significant gains in LREW, while there was no clear indication on how many training 

samples are adequate for applying SVM to approximate SWAT. In the future, further 

research needs to be conducted in order to determine appropriate number of training 

samples. 

6.4.4 Simple illustration of the applicability of SVM for parameter estimation of 

SWAT model 

In the previous sections, we have shown that SVM can obtain high 2R values in 

terms of approximating the response of SWAT model to parameters. In this section, 

simple illustration examples were used to show the potential usefulness of incorporating 

SVM into the parameter calibration and uncertainty analysis process for the SWAT 

model. In this study, we use the Generalized Likelihood Uncertainty Estimation (GLUE) 

(Beven and Binley, 1992), which is a simple and flexible method that has been referred 

to in a vast number of literatures for parameter uncertainty analysis, to illustrate the 

application of SVM for parameter uncertainty analysis of SWAT. The essence of GLUE 

is to identify a set of acceptable or behavioral parameter sets. And, the multiple 

behavioral parameter sets will be run to determine the prediction limits of variables of 
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interest. A common method adopted by GLUE to generate candidate parameter sets is 

uniform random sample of the parameter space. The generated parameter sets with high 

objective function values (e.g. the best 10%) (Zak and Beven, 1999) will be taken as 

behavioral, and those non-behavioral parameter sets will be discarded. The combination 

of SVM with the Monte Carlo sampling method can substantially improve the efficiency 

of the GLUE method. As GLUE uses only those parameter sets with high objective 

function values, we can train SVM using a relatively small number of samples obtained 

with the SWAT model, and then use SVM as a surrogate to evaluate whether other 

parameter sets are behavioral or not. Only those parameter sets that are taken as 

promising to be behavioral by SVM will be evaluated by SWAT. The illustration of the 

application of SVM within the GLUE framework is straightforward, using two examples. 

For the six parameters scenario in LREW, the SVM with 3-fold cross-validation was 

trained using 200 samples, and this trained SVM was applied to simulate the objective 

function values of 10000 test samples. 730 of 1000 top 10% test parameter sets are 

within the simulated top 10% parameter sets, and all of these 1000 top 10% test 

parameter sets are included in the simulated top 26% parameter sets. For the six 

parameters scenario in MCEW, similar analysis was conducted. It was found that 550 of 

the 1000 top 10% test parameter sets are within the simulated top 10% parameter sets, 

and all of the top 10% test parameter sets are within the simulated top 55% parameter 

sets. Through the application of SVM, we can obtain more behavioral parameter sets, 

given limited evaluations of computationally intensive models. This advantage of 

incorporating SVM with SWAT model can save huge amounts of time consumed by 

running SWAT for parameter uncertainty analysis. 

Another example is to combine the SVM with PSO to improve the efficiency of the 

PSO algorithm for parameter optimization of SWAT. The flowchart of incorporating the 

SVM into PSO algorithm is shown in Figure 6-7. The SVM, which is fitted to the past 

samples generated by PSO, is used to evaluate whether a newly generated parameter set 

needs to be evaluated by the SWAT model or not. If SVM simulated the fitness value of 

the new particle is larger than the 80% of the personal best fitness of that particle, then 
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SWAT model will be triggered. Otherwise, the personal best particle will not be updated, 

and the implementation of SWAT is avoided. The purpose of using SVM as a surrogate 

of SWAT is to save the time consumed by running SWAT model. The original PSO and 

PSO-SVM algorithms were implemented to optimize SWAT model of the MCEW with 

the six parameters scenario. Given 300 model evaluations of SWAT model, the PSO-

SVM algorithm obtained the average nsE  value of 0.644, while the PSO algorithm found 

the average nsE  value of 0.627 (Figure 6-6). Using the ANOVA analysis, the average 

nsE values obtained by PSO-SVM and PSO algorithms are statistically different (with a 

p-value of 0.042). With 1000 model evaluations, the PSO algorithm obtained an average 

nsE value of 0.645, which is not statistically different from that obtained by the PSO-

SVM algorithm with 300 model evaluations. This example shows that the efficiency of 

the original PSO algorithm can be substantially improved through incorporating the 

function approximation. It is important to note that this is one simple example of 

combining SVM with one type of evolutionary algorithm. Combining SVM with other 

evolutionary algorithms such as Genetic Algorithms (GA), Shuffled Complex Evolution 

(SCE) and Differential Evolution (DE) need to be performed and compared for multiple 

scenarios in further research. 
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Figure 6-6. Performance of PSO and PSO-SVM against model evaluations. 
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Figure 6-7. Flow chart of PSO-SVM algorithm. 

 

 
6.5 Summary 

In this study, two learning machines ANN and SVM were evaluated and compared 

for approximating the SWAT model. The PSO algorithm was applied to estimate the 

parameters of ANN and SVM. The results showed that both SVM and ANN can obtain 

high evaluation coefficients for approximating SWAT model, however, SVM exhibited 

better generalization ability than ANN. It is suggested that SVM be applied to 

approximate SWAT model.  

In order to effectively and efficiently apply learning machines to approximate SWAT, 

the effect of parameter dimensions, training sample size, and cross-validation schemes 

on the performance of learning machines was investigated. Six types of cross-validation 

schemes (10-fold, 5-fold, 4-fold, 3-fold, 2-fold and No cross-validation) were used to 
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train the SVM model. Considering the prediction accuracy and time consumed for 

training SVM, the 3-fold cross-validation scheme, which could provide, statistically, 

equally good performance as the higher folds of cross-validation. Parameter dimensions 

can substantially impact the performance of SVM. In general, the performance of SVM 

decreases with the increasing of parameter dimensions. Reducing the parameter 

dimension through determining the parameter values from field data and the sensitivity 

analysis is important to improve the prediction ability of SVM. The number of training 

samples is another important factor influencing the performance of SVM. Large 

numbers of training samples can provide more accurate prediction at the cost of running 

the computationally intensive model many times. But, based on the results obtained in 

this study, it is difficult to draw conclusions on how many training samples are adequate 

for applying SVM to approximate SWAT.  

The potential applicability of SVM model for improving the efficiency of parameter 

calibration and uncertainty analysis of SWAT was illustrated using simple examples. 

The first example showed that the parameter uncertainty analysis of SWAT using GLUE 

can save about 70% and 45% evaluations of SWAT in LREW and MCEW, respectively. 

In the second example, a new PSO-SVM algorithm was used to optimize SWAT. The 

results showed that the objective function values obtained by PSO-SVM with 300 

evaluations of SWAT are close to that obtained by PSO with 1000 evaluations of SWAT. 

Overall, the results obtained in this study show that the learning machines have the 

ability to provide good approximation of the computationally intensive SWAT model, 

and hence serve as a valuable means for saving efforts in parameter calibration and 

uncertainty of SWAT. In the future, further research on evaluating the applicability of 

SVM for approximating SWAT in other watersheds and combing SVM with other 

parameter uncertainty analysis algorithms and evolutionary optimization algorithms 

needs to be conducted. 
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CHAPTER VII  
 

PARAMETER UNCERTAINTY ANALYSIS OF SWAT 
 

 

7.1 Introduction 

Due to the errors in model structure, parameter and forcing data, the predictions of 

hydrologic models are affected by uncertainty. Uncertainty analysis currently enjoys 

substantial attention in hydrology modeling (Beven, 2006). It is widely recognized that 

proper consideration of uncertainty in hydrologic predictions is essential for purposes of 

both research and operational modeling (Wagener and Gupta, 2005). The reasonable 

estimates of the predictive uncertainty of a hydrologic prediction is valuable to water 

resources and other relevant decision making processes (Liu and Gupta, 2007). Usually, 

water management projects are planned and designed using scenarios that fall at the 

conservative end of the range of plausible outcomes. Over estimation of this uncertainty 

can result in over design of mitigation measures, while under estimation of this 

uncertainty can lead to inadequate preparation of possible conditions. Many uncertainty 

analysis methods that have been introduced in hydrologic modeling, which include 

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992), 

Importance sampling (Kuczera and Parent, 1998), Markov Chain Monte Carlo (MCMC) 

(Vrugt et al, 2003b, Kuczera and Parent, 1998), Sequential Uncertainty Fitting SUFI-2 

(Abbaspour et al., 2004), Parameter solutions (ParaSol) (van Griensven and Meixner, 

2004), Ensemble Kalman Filter (EnKF) (Vrugt et al., 2005), Particle Filter (PF) 

(Moradkhani et al., 2005), Bayesian Recursive Estimation (BaRE) (Thiemann et al., 

2001), and Bayesian Model Averaging (BMA) (Vrugt and Robinson, 2007; Duan et al., 

2007; Ajami et al., 2007).  

A popular method in the uncertainty analysis methods is to structure the hydrologic 

model as a probability model, then the confidence interval of model output can be 
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computed probabilistically (Montanari et al., 1997). The uncertainty analysis methods 

are differing in philosophy, assumptions and sampling strategies, and the understanding 

and quantification of different uncertainty sources can influence the estimation of the 

predictive uncertainty of hydrologic modeling (e.g. Beven and Binley, 1992; Beven and 

Freer, 2001; Wagener and Gupta, 2005; Beven, 2006; Vrugt and Robinson, 2007; 

Kavetski et al., 2006; Ajami et al., 2007). Among the many uncertainty analysis methods 

that have been introduced in hydrologic modeling, some of them (e.g., GLUE and SUFI-

2) are using flexible likelihood function (any measure of goodness-of fit between the 

observed and simulated variable of interest) to assign different levels of confidence 

(weighting) to different parameter sets or models, reflecting their ability to acceptably 

reproduce “non-error-free” observations from the environmental system (Beven and 

Binley, 1992, Beven, 2006), while some of them (e.g., MCMC and BMA) try to use 

more statistically rigorous formulation to represent the probability of different parameter 

sets or models. GLUE methodology (Beven and Binley, 1992) and Bayesian Markov 

Chain Monte Carlo or MCMC (e.g. Kuczera and Parent, 1998, Vrugt et al., 2003b) are 

two methods that have gained much attention from hydrologic modelers for parameter 

uncertainty analysis of hydrologic and environmental model (Tolson and Shoemaker, 

2008). These two methods usually require thousands of model evaluations to generate 

meaningful uncertainty estimates. When they are applied to computationally intensive 

hydrologic models like SWAT, the time consumed by implementation will be a major 

concern.  

In this study, the objective was to evaluate and extend the GLUE and MCMC 

uncertainty analysis methods to assess the parameter uncertainty of SWAT. As discussed 

in previous chapters, implementation of the SWAT model is computationally intensive. 

Therefore, the research is focusing on extending the GLUE and MCMC method using 

the function approach for SWAT. It is expected that the function approximation 

approach can improve the efficiency of the GLUE and MCMC methods. 
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7.2 Description of GLUE and MCMC methods 

7.2.1 GLUE 

The GLUE method uses pseudo-likelihood function, and avoids the difficult task of 

defining the formal statistical likelihood function which is usually very difficult for real 

world hydrologic modeling problem. This simplification makes the GLUE method very 

popular for uncertainty analysis of hydrologic modeling. The basic idea of GLUE is that 

there are always different models that can equally mimic the hydrologic system, and can 

be equally acceptable or behavioral. Such equally acceptable or behavioral models are 

therefore called equifinal. GLUE requires that modelers subjectively define a 

‘likelihood’ function that monotonically increases as agreement between model 

predictions and measured calibration data increases (Beven and Binley, 1992). The 

GLUE likelihood function can be, but is not required to be and is not typically, a 

statistically based likelihood function. A large number of GLUE studies utilize the Nash-

Suttcliffe coefficient (1970) or some transformation of it to define the likelihood 

function (Tolson and Shoemaker, 2008). In this study, the Nash-Suttcliffe coefficient 

was taken as the ‘pseudo-likelihood’ function and used to select behavioral models. As 

the model structure, input forcing data, and other measured data are fixed, and little 

information is available for these sources of uncertainty, the uncertainty analysis of 

hydrologic modeling using SWAT model is focusing on parameter uncertainty. The 

purpose of applying GLUE is to identify multiple acceptable or ‘behavioral’ models that 

are defined by different parameter sets. A Monte Carlo experiment is conducted to 

independently sample model parameter space and identify various behavioral parameter 

sets. The modeler must subjectively determine whether a sufficient number of behavioral 

parameter sets are sampled. The generated parameter sets with high objective function 

values (e.g. the best 10%) (Zak and Beven, 1999) will be taken as behavioral, and those 

non-behavioral parameter sets will be discarded. The uncertainty bounds are calculated 

using the following procedures (Freer et al., 1996). First, the behavioral parameter sets 

are used to provide simulated streamflow )(tQ i
sim , where t is the time, and i = 1, … n, is 

the index of the behavioral parameter sets. Second, all the likelihoods of the behavioral 
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parameter sets are rescaled to have a cumulative sum of 1.0. Third, the )(tQ i
sim  are 

ranked in ascending order for each time step, and a distribution function of the simulated 

)(tQ i
sim  is constructed using rescaled likelihoods. Finally, uncertainty bounds 

corresponding to an preferred confidence level can derived. 

7.2.2 MCMC 

7.2.2.1 Bayesian analysis framework 

The key principle of Bayesian approach is to construct the posterior probability 

distribution of parameter set θ  given the observed input data ( tx ) and target data sets 

( ty ). In the Bayesian analysis framework, the observed data and prior knowledge of 

parameters were applied to derive the posterior distribution of models parameter set θ  

for inference. Given the observed data sets )},(,),,(),,{( 2211 nnD yxyxyx K= , the 

posterior distribution of the parameter set θ  is defined as: 

∫
=

)()()|(
)()|()|(
θθπθ

θπθθ
dDp

DpDp     7- 1 

where )|( Dp θ  is the posterior probability distribution of θ  given observed data D , 

)(θπ  is the prior probability distribution ofθ , ∫ )()()|( θθπθ dDp  is the normalizing 

constant, and )|( θDp  is the likelihood function of θ , which is denoted as )(θL  in the 

following. Through integrating the predictions of the model with respect to the posterior 

distribution of the parameter set θ , The posterior predictive distribution of output newy  

for the new input newx , is (Lampinen and Vehtari, 2001), 

∫= )()|(),|(),|( θθθ dDppDp newnewnewnew xyxy   7- 2 

The expectation of the posterior prediction distribution in equation (2) is  

∫== )()|(),(),|(ˆ θθθ dDpfDE newnewnewnew xxyy   7- 3 

where ),( θnewf x  denotes the simulated target output give input data newx  and parameter 

set θ . 
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One major challenge in the Bayesian analysis is evaluating integrals for posterior 

distribution of the variable of interest. Usually, the posterior distribution of parameters is 

very complex and multimodal. In this case, the MCMC methods are usually used as 

tools for sampling the posterior probability of model parameters. In MCMC, the 

complex integrals in the marginalization are approximated via drawing samples from the 

probability distribution of θ , and newŷ  can be approximated using a sample of the θ  

drawn from the posterior probability distribution of θ  (Lampinen and Vehtari, 2001), 

∑
=

=
K

i
inewnew f

K 1
, )(1ˆ θxy      7- 4 

where, K  denotes the number of all parameter set θ  under consideration. 

7.2.2.2 Evolutionary Monte Carlo 

Many MCMC methods have been proposed, such as hybrid Monte Carlo (e.g., Neal, 

1995, 1996), reversible jump MCMC (e.g., Green, 1995, Muller and Rios Insua, 1998; 

Holmes and Mallick, 1998; Andrieu, 2001), sequential Monte Carlo (e.g., de Freitas et 

al., 2001; Higdon et al., 2002), and evolutionary Monte Carlo (e.g., Liang and Wong, 

2001a, 2001b, 2001c; Liang, 2005b). Several other MCMC based algorithms have been 

successfully applied to generating variables observing some complex distributions in 

water resources modeling. For example, the Shuffled Complex Evolution Metropolis 

algorithm (SCEM) (Vrugt et al., 2003b) and adaptive Metropolis samplers (Haario et al., 

2001; Kingston et al, 2005; Marshall et al., 2004; Renard et al., 2006) have been 

successfully applied in hydrologic modeling. In this study, the Evolutionary Monte Carlo 

(EMC) algorithm was applied to train the BNNs. Because the EMC algorithm has been 

compared with several other famous MCMC methods, including the Gibbs (Chib, 1995), 

reversible jump MCMC (Green, 1995), parallel tempering (Geyer, 1991), and was 

shown to be a promising MCMC method (Liang and Wong, 2001c).  

The EMC is a population based method, which was developed based on the 

combination of three popular algorithms: parallel tempering, reversible jump MCMC, 

and the genetic algorithm (Holland 1975; Goldberg, 1989). EMC generates new samples 

using the basic mutation, crossover operators in genetic algorithm. The acceptance of 
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new samples is guided by the Metropolis-Hastings rule (Metropolis et al., 1953; 

Hastings, 1970). In addition, EMC allows the position exchange between the candidates 

within the population. In the following sections, the basic EMC algorithm is introduced 

briefly. It is assumed that the researchers are interested in sampling from the distribution 

))(exp()( ξξ Hf −∝ , where )(⋅H  is called the energy function of ξ  which corresponds 

to the negative log-posterior of a posterior distribution. Here ξ  is referred to as an 

individual in the population, and represent the joint of one model structure and a set of 

parameters. The EMC is running multiple chains of different density distributions 

conditioned on the temperatures. A population of distributions )( 1
1 ξf ,…, )( N

Nf ξ are 

constructed as: )/)(exp()( i
ii

i tHf ξξ −∝ , Ni ,,1K= , where it  is called the temperature 

of )(⋅if , N  is called the population size. ),( 1 Ntt K=t  is a series of temperatures defined 

by the users with )( 1 Ntt >>L . iξ  denotes a sample from )(⋅if . After randomly 

initializing a population of samples, the specific mutation, crossover, and exchange 

operators are implemented to update the position of samples. Although the mutation and 

crossover operators are similar to those applied in genetic algorithm, they have been 

modified such that they are reversible and usable as proposal functions for Metropolis-

Hastings algorithm (Liang and Wong, 2001a, 2001b, 2001c; Liang, 2005b). A simple 

introduction of the three operators is refereed to Appendix A. Figure 7-1 shows the 

schematic diagram of one iteration of the EMC algorithm. In one iteration of EMC, the 

individuals in the population are firstly updated using mutation operator (with 

probability of η ) and crossover operator (with probability of 1-η ), Then the exchange 

operator is implemented to exchange the positions of 1−N  pairs of randomly sampled 

individuals ( iξ , jξ ). In the implementation of mutation and crossover operators, new 

samples are generated and model needs to be evaluated, while no new samples are 

yielded and model evaluation is not needed during the exchange operation. The EMC 

algorithm has several attracting properties for effectively and efficiently generating 

sample from the model space(Liang and Wong, 2001a, 2001b, 2001c; Liang, 2005b): 

Adopting a sequence of distributions along a temperature series can help the sampler 
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overcoming barriers of the landscape of energy function; The crossover operator makes 

EMC has the learning ability of genetic algorithm; and exchange operator accelerate the 

mix of individuals in different sequences without extra evaluation of the energy function 

 
 
 

 

Figure 7-1. Schematic illustration of one iteration of EMC. 

 
 
 
In order to implement the EMC algorithm, the user needs to specify several 

parameters that control its effectiveness and efficiency. These parameters include: the 

population size N , mutation rate η , Metropolis step size κ , and temperature series t. 

Based on the recommendation in Liang and Wong (2001c) and Liang (2005b), we set 

20=N , 6.0=η , 25.0=κ , the highest temperature 201 =t , the lowest temperature 

1=Nt , and the intermediate temperatures are equally spaced in between 1t  and Nt . The 

step size was tested to make sure that the acceptance rate ranged from 0.2 to 0.4 as 

suggested by Gelman et al., (2004). For more detailed information on EMC algorithm 

and issues related to the choice of the control parameters (e.g. temperature series) please 

refer to Liang and Wong (2001c). 

Randomly initialize N  individuals 

Apply mutation and crossover operator to the population 

with probability η  and 1-η  respectively. 

Exchange iξ  with jξ  for 1−N  pairs ),( ji  with i  

being sampled randomly in { }NK,1  and 1±= ij  

with probability jiw , . 

One iteration 
of EMC 
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In implementing a MCMC method, it is important to check whether the sampler 

converge to target distribution or not. As the EMC is running with multiple chains of 

different density distribution conditioned on a series of temperatures, it’s difficult to 

apply the scale reduction score to detect whether the MCMC sampler converge or not. In 

this study, one commonly used diagnostic of convergence through trace plots of sample 

MCMC values versus iteration was applied to detect the convergence of EMC sampler. 

It’s assumed that the convergence has been reached when the trace plot flattens out 

(Kass et al., 1998). With the multimodal nature of neural networks’ weights and 

structures, the convergence to the posterior weights distribution is usually very slow.  

Mutation. The mutation operator is used to generate the variant of a chromosome 

(denoted as iξ , where the superscript i  is the position of a chromosome in the current 

population). iξ  is selected at random from the current 

population { }Niii ξξξξξ ,,,,,, 111 KK +−=z . iξ  is modified to form a new chromosome 
'iξ  by the “Metropolis” operation defined by Metropolis et al. (1953) and Hasting 

(1970). The newly generated population { }Niii ξξξξξ ,,,,,, 111' '

KK +−=z  is accepted 

with probability, 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

−−
)|'(
)'|()/)()((exp,1min '

zz
zz

T
TtHH i

ii ξξ    7- 5 

where )|'(/)'|( zzzz TT  is the ratio of the transition probabilities. For detailed 

information on the “birth” and “death” operations and calculation of the three types of 

transition probabilities, please refer to Liang and Wong (2001a, 2001b, 2001c) and 

Liang (2005b).  

Crossover. The crossover operator is similar to that used in the popular Genetic 

Algorithm. Through recombination of two chromosomes, which are randomly selected 

from the current population, offspring are produced. First of all, two chromosomes iξ  

and jξ  ( j  is the position of a chromosome in the current population with a different 

value from i ) are selected as parental chromosomes. Next, an integer c is drawn 
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randomly among { }M,,2,1 K , where M  is the number of hidden units. The hidden unit 

c  is called the crossover unit, and only one unit crossover operator is applied in this 

study. Finally, two new offspring 'iξ  and 'jξ  are constructed by swapping the weights 

connected with hidden unit c  between iξ  and jξ . A new population is constructed by 

replacing the parental chromosomes with the new offspring, and it is accepted with 

probability 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

−−−−
)|'(
)'|(/))()((/))()((exp,1min ''

zz
zz

T
TtHHtHH j

jj
i

ii ξξξξ   7- 6 

where ),|,()|,()|'( '' jijiji PPT ξξξξξξ zzz = , ))1(/(2)|,( −= NNP ji zξξ  is the 

selection probability of ),( ji ξξ  from population z , and ),|,( '' jijiP ξξξξ  denotes the 

generating probability of ),( '' ji ξξ  from the parental chromosomes ),( ji ξξ . The 

crossover operator is symmetric, which means that ),|,( '' jijiP ξξξξ  = 

),|,( '' jijiP ξξξξ . 1)|'(/)'|( =zzzz TT  for the crossover operator.  

Exchange. The exchange operator is useful for exchangimg information obtained by 

different series of chromosomes within the population. Given the current population z  

and the attached temperature ladder t , an exchange is made between iξ  and jξ  without 

changing the temperature t  associated with the specific position within the population. 

The initial population and temperature ladder 

),,,,,,,,,,(),( 1
1

N
N
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j

i
i tttt ξξξξ KKK=tz  are proposed to be changed to 

),,,,,,,,,,(),'( '''
1

'1
N

N
j

j
i

i tttt ξξξξ KKK=tz . In this paper, the exchange is only operated 

on two chromosomes neighboring each other (i.e., 1|| =− ji ). The new population is 

accepted with probability 
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where ijjji
i wpwpT ,, )()()|'( ξξ +=zz , )( iP ξ  is the probability that iξ  is chosen to 

exchange with the other chromosome, jiw ,  denotes  the probability that jξ  is chosen to 

exchange with iξ , 5.01,1, == −+ iiii ww  for Ni <<1  for and 11,2,1 == −NNww . Thus 

1)|'(/)'|( =zzzz TT  for the exchange operator. 

7.3 Results and discussion 

7.3.1 Application of GLUE and SVM for parameter uncertainty analysis of SWAT 

To reduce the number of runs of the computationally intensive SWAT model 

required by the GLUE method, the SVM model was trained using a small number of 

samples (1000) generated by the SWAT model. 20000 parameter sets were generated 

using SLHD algorithm. The parameter sets which give non-behavioral evaluation 

coefficients are discarded before running the computationally intensive SWAT model. It 

is expected that the combination of GLUE and SVM (GLUE-SVM) can effectively 

reduce the number of actual model runs of SWAT without the loss of accuracy. The 

newly proposed GLUE-SVM algorithm was applied in the LREW and MCEW, and its 

results were compared with the original GLUE method. 

In hydrologic modeling, different types of uncertainty limits can be recognized (e.g. 

Beven, 2006; Liu and Gupta, 2007). In this study, we are concerned with the modeling 

uncertainty and predictive uncertainty (Liu and Gupta, 2007). The modeling uncertainty 

limits, obtained through training hydrologic model to match observed streamflow data, 

were expected to include a specified proportion of the training data set. The predictive 

uncertainty limits, obtained through applying the trained models to another independent 

data set, were expected to contain a specified proportion of future observations. Ideally, 

the uncertainty interval should be consistent with observations and be as small as 

possible (Vrugt et al., 2007). Two coefficients were used to compare the uncertainty 

intervals estimated by different methods: 1) the percentage of coverage (POC) of 

observations in the uncertainty interval, and 2) the average width of the uncertainty 

interval, which is denoted as D-bar in the following sections. The POC coefficient is 

firstly evaluated. The uncertainty interval with a POC coefficient close to the expected 
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proportion is preferred. If the POC of two uncertainty intervals are very close to each 

other, then the uncertainty interval with narrower D-bar value is considered better.  

The POC and D bar values of the uncertainty intervals estimated by GLUE with 

different threshold values in MCEW and LREW for the calibration and validation 

periods are listed in Table 7-1 toTable 7-4. It is found that the POC and D-bar values 

obtained by the original GLUE and GLUE-SVM methods for different threshold values 

are very close to each other.  

The R2 values between the POC values estimated by GLUE and GLUE-SVM are 

0.87 for calibration period and 0.86 for validation period in MCEW, and 0.90 for 

calibration period and 0.96 for validation period in LREW, respectively. The R2 values 

between the D-bar values estimated by GLUE and GLUE-SVM are 0.95 for calibration 

period and 0.96 for validation period in MCEW, and 0.88 for calibration period and 0.91 

for validation period in LREW, respectively. The high correlation between the properties 

of the uncertainty intervals estimated using GLUE and GLUE-SVM show that the 

GLUE-SVM can serve as a promising alternative for the original GLUE method.  

In MCEW, among the 20000 randomly generated parameter sets, only about 2% of 

them have Ens values larger than or equal to 0.36, which is the criterion to evaluate 

whether the hydrologic simulation is satisfactory or not. All these top 2% ranked 

parameter sets are within the top 40% parameter sets ranked by the fitness simulated by 

GLUE-SVM. In LREW, among the 20000 randomly generated parameter sets, only 

about 3% of them have Ens values larger than or equal to 0.36. All these top 3% ranked 

parameter sets are within the top 20% parameter sets ranked by the fitness simulated by 

GLUE-SVM. If our purpose is to identity behavioral parameter sets and the non-

behavioral parameter sets will be discarded, then the GLUE-SVM method can save 

about more than 50% runs of the computational intensive SWAT model.  
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Table 7-1. POC and D bar values of the uncertainty intervals estimated by GLUE and GLUE-

SVM with different threshold values in MCEW for the calibration period. 

POC (%) D-bar (cms) 
Threshold 

GLUE GLUE-SVM 
Threshold

GLUE GLUE-SVM 

1% 55.05 59.04 1% 0.08 0.11 

2% 69.86 64.79 2% 0.11 0.13 

3% 73.42 67.4 3% 0.14 0.14 

4% 75.62 69.32 4% 0.15 0.143 

5% 77.12 71.1 5% 0.16 0.154 

10% 81.64 80 10% 0.19 0.175 

20% 85.62 84.79 20% 0.21 0.21 

30% 86.16 85.07 

 

30% 0.23 0.22 

 

 

 

Table 7-2. POC and D bar values of the uncertainty intervals estimated by GLUE and GLUE-

SVM with different threshold values in MCEW for the validation period. 

POC (%) D bar (cms) 
Threshold 

GLUE GLUE-SVM 
Threshold

GLUE GLUE-SVM 

1% 47.33 53.08 1% 0.08 0.1 

2% 61.97 57.59 2% 0.11 0.12 

3% 65.39 59.37 3% 0.14 0.13 

4% 67.17 61.01 4% 0.15 0.14 

5% 69.22 61.97 5% 0.17 0.15 

10% 72.28 71.18 10% 0.19 0.17 

20% 82.22 80.71 20% 0.22 0.21 

30% 83.17 81.4 

 

30% 0.24 0.22 
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Table 7-3. POC and D bar values of the uncertainty intervals estimated by GLUE and GLUE-

SVM with different threshold values in LREW for the calibration period. 

POC (%) D bar (cms) 
Threshold 

GLUE GLUE-SVM 
Threshold

GLUE GLUE-SVM 

1% 30 34 1% 3.94 3.34 

2% 33 40 2% 4.27 4.01 

3% 38 41.04 3% 4.6 4.05 

4% 42 41.59 4% 5.28 4.13 

5% 43.09 41.72 5% 5.42 4.17 

10% 45.42 47.33 10% 5.85 5.5 

20% 50.42 51.57 20% 6.5 6.3 

30% 51.03 51.85 

 

30% 6.6 6.43 

 

 

 

Table 7-4. POC and D bar values of the uncertainty intervals estimated by GLUE and GLUE-

SVM with different threshold values in LREW for the validation period. 

POC (%) D bar (cms) 
Threshold 

GLUE GLUE-SVM 
Threshold

GLUE GLUE-SVM 

1% 32.94 32.39 1% 3.92 2.38 

2% 34.3 37.5 2% 4.15 2.83 

3% 35.4 38.5 3% 4.3 2.86 

4% 37.5 38.96 4% 4.57 2.91 

5% 38.96 39.51 5% 4.7 2.97 

10% 44.89 46.9 10% 5.05 4.65 

20% 48.27 50 20% 5.51 5.27 

30% 49.36 50.18 

 

30% 5.59 5.35 
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7.3.2 Parameter uncertainty analysis of SWAT using EMC and SVM 

7.3.2.1 Evaluation of EMC for two illustrative examples 

Before running the EMC algorithm for training BNNs, two illustrative test examples 

were used to show the effectiveness of EMC for generating samples observing complex 

distributions.The first illustrative example is a mix of two multivariate normal 

distributions with mean vectors of )0,0,0,0,0(=0  and )8,8,8,8,8(=8  respectively,  

),(5.0),(5.0)( 55 I8I0x NN ⋅+⋅=π   7- 8 

where ),,,,( 54321 xxxxx=x  is a five dimensional vector, ),( ΣuN  denote the normal 

distribution with mean of u  and covariance matrixΣ . This example was used by Renard 

et al. (2006) to test the effectiveness of three MCMC samplers. The initial population 

was generated within ]1,0[]1,0[ × . 30,000 iterations of EMC were implemented to 

estimate the statistical properties of x . The EMC was implemented 50 times. In order to 

save space, only the statistics of the first dimension and fifth dimension of x  were listed 

in Figure 7-2 and Table 7-5. The results show that the EMC algorithm can accurately 

generate samples observing this bimodal distribution. 

 
 
 

Table 7-5. Parameters estimation of the five-dimensional bimodal distribution. 

Parameter True value Estimate SD 

1u  4 4.02 0.034 

5u  4 4.014 0.035 

11Σ  17 16.989 0.033 

55Σ  17 16.99 0.035 

15Σ  16 15.993 0.028 
NOTE: Here 1u  and 5u  are the first and fifth component of the mean of x ; 11Σ , 55Σ  and 15Σ  are the 
variances and covariance of the first and second component of x ; SD denotes the standard deviation of 
the corresponding estimate 
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Figure 7-2. Simulated values of the first and fifth component from the two-modal distribution. 

The solid line is the true value, and the grey area is the density estimated by EMC. 

 
 
 
A two dimensional multimodal mixture normal distribution was used to test the 

EMC algorithm to show its effectiveness for sampling candidates from distribution with 

complex landscape. The multimodal distribution applied here is 

∑
= ⎭

⎬
⎫

⎩
⎨
⎧ −−−=

20

1

'
2 )()(

2
1exp

2
1)(

i
iiif uxuxx

σ
ω

σπ
  7- 9 

where σ =0.1, 201 ωω ==L =0.05. The mean vectors 2021 ,, uuu K  are uniformly drawn 

from the rectangle space ]10,0[]10,0[ × . This multimodal distribution is similar to that 

used in Liang and Wong (2001c). The initial population was generated within 

]1,0[]1,0[ × . 50,000 iterations of EMC were implemented to estimate the statistical 

properties of x . The EMC was implemented 50 times. Figure 7-3 shows the scatter plot 

of 10,000 samples, which reveals that the EMC can effectively sample all the 20 local 

modes. The estimate of means, variances of the two components of x , and the standard 

deviation of the estimated values are shown in Table 7-6, which show that the EMC 
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algorithm can consistently obtain accurate estimate of the interesting statistical 

properties of the x .  

 
 
 

 

Figure 7-3. Scatter plot of the samples generated by EMC for the 20-modal distribution. 

 
 
 

Table 7-6. Parameters estimation of the two-dimensional multimodal distribution. 

Parameter True value Estimate SD 
1u  5.123 5.128 0.015 

2u  5.093 5.089 0.021 

11Σ  5.623 5.627 0.032 

22Σ  8.641 8.648 0.036 

12Σ  -1.579 -1.583 0.025 
NOTE: Here 1u  and 2u  are the first and second component of the mean of x ; 11Σ , 22Σ  and 12Σ  are 
the variances and covariance of the first and second component of x ; SD denotes the standard deviation 
of the corresponding estimate. 
 
 
 
7.3.2.2 Application of EMC and SVM in the MCEW 

In order to implement MCMC analysis of SWAT model, the posterior distribution of 

the parameter )|( Dp θ  needs to be defined. In this study the prior distribution )(θπ  is 
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assumed to be non-informative uniform distribution. This assumption reflects the lack of 

prior knowledge of the distribution of parameters. And the posterior of the parameter 

distribution is entirely determined by the observed data. A popular method to specify the 

likelihood function )(θL  is to assume the model residuals (i.e. ) ,( θtf x - ty ) are 

normally and independently distributed with zero mean and constant variance ),0( 2σN . 

Then, the likelihood of a set of )(θL  for describing the observed data y  can be 

computed as:  
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Then the log form of the posterior probability can be formulated as 
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where n  is the number of observed target data, and 2σ  is referred to as hyperparameter, 

which is assumed to observe Inverse Gamma (IG) distribution ( ),(~ 21
2 vvIGσ ), 1v  and 

2v  are the shape parameter and scale parameter respectively that define the Inverse 

Gamma distribution.  In order to effectively implement EMC, the input and output data 

were normalized by qtt Sqqq /)(' −= , where q  and qS  denote the mean and standard 

deviation of the input and output data. This type of data processing tends to avoid that 

the hydrologic model is trained to accommodate different scales of the observed data. A 

vague prior on 2σ  was chosen through setting 1ν  = 2ν  = 0.05.  

The EMC algorithm was implemented to train the SWAT model using observed 

daily streamflow from 1997 to 1998. For training the SWAT model, the EMC was run 

for 11,000 iterations each time. The trace of the mean log posterior density was 

inspected, and it was found that convergence was reached after about 6,000 iterations. 

The first 6,000 iterations were taken as a burn-in stage and were discarded, and the left 
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5,000 sets of parameters samples were collected to derive the posterior distribution of 

)(θ . The 5,000 sets of )(θ  were used to run the SWAT model and calculate the daily 

streamflow output. The mean of the simulations of the 5,000 streamflow values were 

used to estimate the 95% uncertainty interval. The computation time consumed by 

implementing the EMC based MCMC analysis of SWAT is enormous (several months). 

In order to save the computational cost, the SVM was trained using 1000 samples 

generated from SWAT, and then the trained SVM was used as the surrogate of SWAT to 

estimate the posterior distribution of parameters and estimate the uncertainty interval of 

simulated streamflow. 

The uncertainty intervals of daily streamflow estimated by EMC and EMC-SVM 

algorithms for both calibration and validation periods are shown in Figure 7-4 and 

Figure 7-5, where shaded are denotes the 95% uncertainty interval, and solid dots dente 

the observed streamflow. It is found that the 95% uncertainty interval estimated by 

original EMC can contain about 20% observed data for both calibration and validation 

periods. While for the EMC-SVM algorithm, the 95% uncertainty interval can only 

contain less than 3% of observed data. This reveals that the applicability of SVM for 

MCMC analysis of SWAT is not satisfactory. Although SVM can provide fairly good 

approximation to the SWAT model, the discrepancy between the fitness values 

simulated by SVM and SWAT may lead to evident bias for inferring the parameter 

distribution and the corresponding uncertainties of the hydrologic modeling. 

According to the discussion in Chapter I, the uncertainty of hydrologic modeling is 

affected by not only the parameters but also the forcing data and model structure. The 

application of EMC for SWAT shows that only considering parameter uncertainty is not 

adequate for estimate uncertainty of hydrologic modeling. The percentage of observed 

data that are contained in the 95% interval is much less than the expected 95%. This, to 

some extent, indicates the importance of taking forcing data and model structure 

uncertainty into consideration. 
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Figure 7-4. 95% uncertainty intervals estimated by EMC and EMC-SVM for the calibration 

period in MCEW. 
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Figure 7-5. 95% uncertainty intervals estimated by EMC and EMC-SVM for the validation 

period in MCEW.  
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7.4 Summary 

Parameter uncertainty analysis of hydrologic modeling of SWAT was analyzed. 

Among the many uncertainty analysis methods that have been introduced in hydrologic 

modeling, a pseudo likelihood method (GLUE) and a Bayesian MCMC based method 

(EMC) were applied to infer the uncertainty of parameters of SWAT, and estimate the 

uncertainty interval of the simulated daily streamflow. One concern of the application of 

GLUE and MCMC methods for parameter uncertainty analysis is the enormous time 

consumed by larger number of runs of the computationally intensive SWAT model. In 

order to save computational resources, the SVM was used as surrogate model of SWAT 

and combined with the GLUE and MCMC methods. The results show that the GLUE-

SVM can obtain similar results to that obtained by the original GLUE method. The 

percentage of coverage and interval width of the uncertainty bounds estimated by the 

original GLUE and GLUE-SVM methods are very close to each other. The R2 values 

between the POC values estimated by GLUE and GLUE-SVM are larger than 0.85, and 

The R2 values between the D-bar values estimated by GLUE and GLUE-SVM are larger 

than 0.87. The GLUE-SVM can be taken as a promising alternative of the original 

GLUE method. The uncertainty intervals estimated by the EMC-SVM and the original 

EMC method showed evident difference from each other. The may be because the SVM 

is not an error free surrogate of SWAT, and the discrepancy between the simulated 

results of SVM and SWAT lead to the substantially different uncertainty estimation. It 

should be noted that that both GLUE and EMC can not accurately quantify the 

prediction uncertainty of SWAT model if parameter is taken as the only source of 

uncertainty. The results obtained in this study stress the research on taking uncertainties 

associated with forcing data and model structure into account. 
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CHAPTER VIII  
 

MODEL STRUCTURE AND UNCERTAINTY ANALYSIS 
 

 

8.1 Introduction 

The uncertainty of hydrologic modeling is associated with the uncertainties from 

forcing data, model structure, and parameters. In the previous chapters, the parameter 

calibration and uncertainty analysis methods have been examined for parameter 

estimation of the SWAT model. The results show that not considering the uncertainties 

of forcing data and model structure leads to the failure to evaluate the predictive 

uncertainty. Understanding and evaluating the effect of uncertainty of forcing data and 

model structure on hydrologic modeling deserve further research. There are many input 

data (e.g., precipitation, temperature, land cover, soil, and elevation) for SWAT. For any 

of these data, a large amount of observed data needs to be collected for reasonable 

estimation of their uncertainties characteristics. Therefore, the major objective of this 

chapter is to evaluate the effect of considering model structure uncertainty on 

uncertainty estimation of streamflow simulation.  

In this study, ANN, which has been successfully applied in a wide range of 

hydrologic problems (ASCE task Committee on Application of artificial Neural 

Networks in Hydrology, 2000a, 2000b), was selected an alternative hydrologic model to 

SWAT. Bayesian analysis of the neural network can yield predictive distribution of the 

variables of interest and make the computation of confident intervals possible (Lampinen 

and Vehtari, 2001). Since the Bayesian evidence framework proposed by MackKay 

(1992), the Bayesian Neural Network (BNN) have been widely applied in training, 

model selection, and prediction (e.g., Neal, 1995; Bishop, 1995; Muller and Rios Insua, 

1998; Holmes and Mallick; 1998, de Freitas et al., 2000; Andrieu 2001; Liang, 2003; 

Liang, 2004; Liang, 2005a).  
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In this study, we changed the hydrologic model from SWAT to BNN to examine the 

difference between the uncertainty intervals obtained by SWAT and BNN. Because the 

implementation of EMC for SWAT model takes enormous computational time of 

months or even years, the comparison between SWAT and BNN was only conducted in 

the MCEW. In order to further understand the effect of different treatments of 

uncertainties related to parameters (network weights) and structures on the uncertainty 

estimation of streamflow simulation, different BNNs (with variable or fixed model 

structure, informative or non-informative prior knowledge) were applied in two 

experimental watersheds (LREW and RCEW) for daily streamflow simulation to derive 

results for analysis and discussion. 

8.2 Bayesian neural network 

8.2.1 Neural networks structure 

Usually, the neural network structure is fixed, which means that the number of 

connections between the neutrons is fixed. A set of indication functions can be linked 

with each connection to represent the validity of a specific connection (Liang, 2004, 

2005b). Then, the neural network model form presented in section 6-1 can be 

transformed to: 

∑ ∑ ∑
= =
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jiitjjiitt jijji
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where ζI  is the indicator function associated with the connection ζ . If ζI =1, then the 

connection is in effect, otherwise, ζI =0 and the connection is not effective. The 

activation function ( )(⋅ψ ) applied in this study is the hyperbolic tangent function. The 

)tanh(⋅  function ensures that the output of a hidden unit is 0 if all connections to the 

hidden unit from input units have been eliminated. Let Λ  be the vector consisting of all 

indicators in equation (2), then Λ  specifies the structure of the network. Let 

),,,( 10 pαααα K= , ),,,,( 10 Mββββ K=  ),,,,( 10 jpjjj γγγγ K=  ),,,,( 21 Mγγγγ K=  

and ),,,( 2σγβαθ ΛΛΛ= , where Λα , Λβ , and Λγ  denote the non-zero subsets of α , β , 

and γ , respectively. Thus the combination of (θ ,Λ ) completely defines equation (2). In 
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the following, a neural network model is defined by (θ ,Λ ), and )( tf x  is represented by 

), ,( Λθtf x . Equation (1) is a special case of equation (2). The major difference between 

equation (1) and equation (2) is that equation (2) is trained by sampling from the joint 

posterior of the neural network structures and weights while equation (1) is trained by 

sampling from the posterior of the weights.  

8.2.2 Bayesian training of neural networks 

In the traditional deterministic training of a neural networks, a single set of optimal 

(θ ,Λ ) is identified that is most likely to reproduce the observed target data. From the 

Bayesian viewpoint, the training of neural networks can be taken as a problem of 

inference. The key principle of Bayesian approach is to construct the posterior 

probability distribution of (θ ,Λ ) given the observed input and target data sets. In the 

Bayesian training framework, the observed data and prior knowledge of parameters and 

model structure were applied to derive the posterior distribution of models (θ ,Λ ) for 

inference. Given the training data sets )},(,),,(),,{( 2211 nnD yxyxyx K= , the posterior 

distribution of the weights and model structure (θ ,Λ ) is defined as: 

∫ ΛΛΛ

ΛΛ
=Λ

),(),(),|(
),(),|()|,(
θθπθ

θπθθ
dDp

DpDp    8- 2 

Where )|,( Dp Λθ  is the posterior probability distribution of ),( Λθ  given observed data 

D , ),( Λθπ  is the prior probability distribution of ),( Λθ , ∫ ΛΛΛ ),(),(),|( θθπθ dDp  is 

the normalizing constant, and ),|( ΛθDp  is the likelihood function of (θ ,Λ ), which is 

denoted as ),( ΛθL  in the following. The posterior distribution of the model ),( Λθ  is 

estimated using EMC. The BMA estimation of target variable is 

∑
=

Λ=
K
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K 1
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where, K  denotes the number of all models ),( Λθ  under consideration. 
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8.2.3 Posterior probability distribution of neural networks 

To some extent, the quantification of uncertainty is dependent on understanding prior 

knowledge of uncertainty. In practical application of neural networks, incorporating 

human prior knowledge in neural networks models was suggested to improve their 

performance (Wang, 1995, Muler and Insua, 1998, Liang, 2005b). Usually, the large 

weights and bias values and complex model structures are penalized in application of 

neural networks. For example in Liang’s study (2005b), prior distributions were 

specified for the weights: ),0(~ 2
ασα Ni  for pi ,,0 K= , ),0(~ 2

βσβ Nj  for 

Mj ,,0 K= , ),0(~ 2
γσγ Nij  for Mj ,,0 K=  and pi ,,0 K= ,  where 2

ασ , 2
βσ , and 

2
γσ  are hyper-parameters to be specified by users. With the prior distribution of each 

component of θ , the prior distribution of θ  can be easily calculated under the 

assumption that iα , jβ , and ijγ  are independent with each other. Incorporating the 

parameter prior knowledge into the posterior probability lead to  
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Where ∑ ∑∑∑∑ = =
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)( γββα γ  is the total number of 

effective connections, )(tΦ  is 1 if t >0 and 0 otherwise. For fixed model structure, all 

indicator functions are equal to 1 and m  is a constant.  

The prior knowledge of the structure of neural networks can also be taken into 

account. Based on Muler and Insua (1998) and Liang (2005b), the neural network’s 

structure Λ  is set to be subject to a prior probability that is proportional to a truncated 

Poisson with rate λ , 
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where λ  is hyper-parameter, MpMU +++= )1)(1(  is the number of connections of the 

full model in which all connections are valid, and !/ mZ m∑ Ω∈Λ
= λ  where Ω  denotes 

the set of all possible model structures with Um ,,4,3 K= . The minimum number of m  

is set to be three to limit the network size. Furthermore, it is assumed that the prior 

distributions of θ  and Λ , and the likelihood ),( ΛθL  are independent. Then, the 

posterior distribution of ),( Λθ  can be formalized by multiplying the prior distributions 

of θ  and Λ  and ),( ΛθL . According to (Liang, 2005b), the log form of this posterior 

probability can be written as: 
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  8- 6 

In order to effectively implement the BNNs based on the posterior probability 

distributions defined above, the data preparation and hyperparameter settings suggested 

by Liang (2005b) were adopted in this study. Firstly, the input and output data were 

normalized by qtt Sqqq /)(' −= , where q  and qS  denote the mean and standard 

deviation of the input and output data. This type of data processing tends to avoid that 

the neural networks are trained to accommodate different scales of the observed data. 

For the settings of the hyperparameters, moderate values were adopted to penalize a 
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large weight variation and complex model structure: 2
ασ , 2

βσ , and 2
γσ  are set to 5, and 

a vague prior on 2σ  was chosen through setting 1ν  = 2ν  = 0.05.  
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Figure 8-1. 95% uncertainty intervals estimated by BNN for the calibration and validation period 

in MCEW.  
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8.3 Streamflow uncertainty estimation using SWAT and BNN 

The results obtained in Chapter VII show that the uncertainty interval obtained 

through applying SWAT and EMC with consideration of parameter uncertainty can only 

include about 20% observed data, which is far from the desired 95%. In this study, a 

BNN model was developed for the MCEW for uncertainty estimation of streamflow 

simulation. Streamflow data from water years (WY) 1997-1998 were used for neural 

network training. The second group included the streamflow data in WY 1999-2000, 

which were used to test the generalizing ability of trained networks. Model setup of the 

neural network involves the selection of input variables and hidden units. The input 

variables for the first layer of a three-layer perceptron network were selected based on 

the knowledge of the hydrologic characteristics of the study area and the correlation 

between the input variables and streamflow data. A total of 11 input variables were 

selected: 1) total daily precipitation of the last four days starting from 1−t  to 3−t  was 

taken into account as four separate inputs; 2) moving average of the last 30 days’ 

precipitation as a single separate input; 3) mean daily temperature of the last four days 

starting from 1−t  to 3−t  were taken as four separate inputs; 4) moving average of last 

30 days’ temperature as one input; 5) daily streamflow values of the last three days from 

1−t  to 3−t  were included according to the partial auto-correlation function (PACF). 

The selection of the number of hidden units was based on a trial and error procedure, and 

twenty hidden units were chosen for this case study. The EMC algorithm was 

implemented to train the BNNs using the same setting of the posterior probability 

defined in section 7.3.2.2. For training the Bayesian neural networks, the EMC was run 

for 200,000 iterations each time. The trace of the mean log posterior density was 

inspected, and it was found that convergence was reached after about 100,000 iterations. 

For each run of EMC-based BNNs, the first 100,000 iterations were taken as a burn-in 

stage and were discarded, and 10,000 sets of ),( Λθ  separated with equal interval were 

sampled from the remaining 100,000 iterations. A total of 50,000 samples was collected 

to derive the posterior distribution of ),( Λθ . The 50,000 sets of ),( Λθ  were used to run 

the neural network and calculate the network output kf ),,( Λθx  ( 50000,,2,1 K=k ). The 
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mean of the simulations of the 50,000 ),,( Λθxf  was used as the estimate of the 

streamflow value. All the 50,000 ),,( Λθxf  predictions were ranked in ascending order 

to determine the 95% prediction interval.  

Figure 8-1 shows the 95% uncertainty intervals estimated by BNN for the calibration 

and validation period in MCEW. In Figure 8-1, Shaded are denote the 95% uncertainty 

interval, solid circle denotes observed data. The POC coefficients show that the BNN 

model can include more than 70% of the observed data, which is much higher than that 

obtained by the SWAT model. Neural network has powerful capacity of capturing non-

linear relationships between inputs and outputs data without requiring an in-depth 

understanding of the underlying physical processes (Kingston et al., 2005), while SWAT 

try to simulate the hydrological processes using physically based equations. Theses two 

models are different in the underlying assumptions about the model structure. This, to 

some extent, indicates that the uncertainty associated with model structure can exert 

substantial impact on the uncertainty estimation of hydrologic modeling. But it is also 

worth noting that the uncertainties of SWAT modeling are also contributed by the errors 

from many input data (e.g. soil, land cover, elevation). It is difficult to identify the 

contributions from these input data and model parameters and structure without detailed 

information for the characteristics of theses uncertainty sources. 

8.4 Streamflow uncertainty estimation using different types of BNNs 

In this investigation, we are interested in the modeling and predictive uncertainty 

limits of streamflow simulation using BNNs with different treatment of uncertainties 

associated with parameters and structures of neural networks. Four types of BNNs were 

applied in this study. The first type of BNN, referred to as BNN-a, is with a fixed model 

structure and non-informative prior knowledge of parameters. The second one is BNN-b, 

which uses variable model structure and non-informative prior knowledge of parameters 

and model structures. The form of the posterior distribution used by BNN-a and BNN-b 

is defined by equation (7-11). The other two BNNs are referred to as BNN-c and BNN-d, 

respectively. BNN-c is with fixed model structure and informative prior knowledge of 

parameters. BNN-d uses variable model structure and informative prior knowledge of 
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parameters and model structures. The form of the posterior distribution used by BNN-c 

is a simplification of equation (8-4) through setting all the indicator functions equal to 1. 

The form of the posterior distribution used by BNN-d is defined by equation (8-6). 

Several comparison scenarios were designed to show the effect of taking variable model 

structure and informative prior knowledge into account on the uncertainty limits 

estimation using BNNs: 1) comparing the uncertainty limits obtained by BNN-a and 

BNN-b can provide insight into the effect of considering model structure uncertainty 

under the non-informative prior knowledge condition; 2) comparing BNN-c and BNN-d 

can show the effect of considering variable model structure under the informative prior 

knowledge condition; 3) comparing BNN-a and BNN-c can reveal the effect of 

considering prior knowledge under the fixed model structure condition; 4) comparing 

BNN-b and BNN-d can show the effect of considering prior knowledge under the 

variable model structure condition. These comparisons are expected to provide some 

insight into response of uncertainty limits due to different considerations of uncertainties 

related to parameters and model structure.  

8.4.1 Application of BNNs in the RCEW 

Streamflow during low temperature periods (late fall, winter, and early spring) in the 

RCEW is mainly driven by snowmelt. Because simulation of the snow-driven flow 

during these low temperature periods requires long term climate inputs, stremflow 

simulation during these periods was not included in the data sets for this study. 

Streamflow data from day 148 to 274 for water years (WY) 1968-1975 (a total of 1016 

data values) were used in this study. These 1016 data values were further subdivided into 

two groups. The first group included the streamflow data in WY 1971-1972, which were 

used for neural networks training. The second group included the streamflow data in 

WY 1968-1970, which were used to test the generalizing ability of trained networks. A 

total of 13 input variables were selected: 1) total daily precipitation of the last four days 

starting from 1−t  to 4−t  was taken into account as four separate inputs; 2) moving 

average of the last 30 days’ precipitation as a single separate input; 3) mean daily 

temperature of the last four days starting from 1−t  to 4−t  were taken as four separate 
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inputs; 4) moving average of last 30 days’ temperature as one input; 5) daily streamflow 

values of the last three days from 1−t  to 3−t  were included according to the partial 

auto-correlation function (PACF). Thirty hidden units were used to determine the neural 

network structure of the ANNs and BNNs. The EMC algorithms were used to generate 

50,000 sets of ),( Λθ , and estimate the 95% uncertainty intervals of the four types of 

BNNs.  

The calibration and validation results of the BNNs are listed in Table 8-1. In terms of 

the MSE and R2 coefficients for the validation period, the four BNNs show similar 

generalization performance with slight difference. For the four types of BNNs, we are 

particularly interested in the modeling and predictive uncertainty limits. For illustrative 

purposes, the modeling uncertainty intervals estimated by different BNNs for days from 

May 28, 1975 to July 12, 1975 during calibration period are shown in Figure 8-2. 

Similarly the predictive uncertainty intervals for days from May 28, 1972 to June 28, 

1972 during validation period are shown in Figure 8-3. The two coefficients (POC and 

D-bar) used to evaluate the modeling and predictive uncertainty limits obtained by the 

four BNNs are shown in Table 8-1. For the validation period, BNN-a, BNN-b, BNN-c, 

and BNN-d produced POC coefficients of 65.83%, 80%, 93.23%, and 93.70%, 

respectively. And for validation period, BNN-a, BNN-b, BNN-c, and BNN-d produce 

POC coefficients of 73.75%, 83.46%, 93.70%, and 93.96%, respectively. We evaluated 

the 95% uncertainty intervals estimated by the four BNNs to show the effect of different 

considerations of uncertainty sources: 1) BNN-b includes about 10% more observations 

than BNN-a for both modeling and predictive uncertainty limits, which shows that 

considering variable model structures can improve the estimation of uncertainty limits 

under the non-informative prior knowledge condition; 2) under the informative prior 

knowledge condition, BNN-d yields 95% modeling and predictive uncertainty intervals 

with slightly better POC coefficients than BNN-c, while the D-bar coefficient of BNN-c 

are slightly smaller than BNN-d. In this case, variable model structures don not 

necessarily mean better uncertainty estimation of streamflow simulation 3) Under both 

fixed and variable model structure conditions, incorporating informative prior 
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knowledge of uncertainty sources can improve the uncertainty interval estimation to 

include more observations. The BNN-c includes about 28% and 20% more observations 

than BNN-a for modeling and predictive uncertainty intervals, respectively. BNN-d 

includes 10% more observations than BNN-b for both calibration and validation periods. 

Through comparing the uncertainty intervals of the four BNNs, it is evident that the 

choice of posterior model probability with different considerations of the uncertainties 

associated with parameters and structures can exert appreciable effects on the estimated 

uncertainty interval. 

 
 
 

Table 8-1. Evaluation of the performance of the ANNs and BNNs for streamflow simulation in 

the RCEW. 

Evaluation Coefficients 

 

Period/Model 

MSE R2 
Percentage 

of coverage 

Average 

interval 

width 

BNN-a 0.0055 0.98 65.83% 0.05 

BNN-b 0.0046 0.99 80.00% 0.08 

BNN-c 0.0058 0.98 93.23% 0.16 
Calibration 

BNN-d 0.0061 0.98 93.70% 0.17 

BNN-a 0.0052 0.98 73.75% 0.06 

BNN-b 0.0050 0.98 83.46% 0.08 

BNN-c 0.0055 0.98 93.70% 0.14 
Validation 

BNN-d 0.0056 0.98 93.96% 0.15 
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Figure 8-3. 95% modeling uncertainty intervals of streamflow simulation using different BNNs 

for days between May 28, 1975 and July 12, 1975 in RCEW 
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8.4.2 Application of BNNs in the LREW 

Streamflow data of WY 1997-2002 in the LREW were used to develop and validate 

the BNNs and ANNs. These five years of daily data values were subdivided into two 

groups. The first group includes the streamflow values in WY 1997-2000, which were 

used for neural networks training. The second group includes the streamflow values in 

WY 2001-2002, which were used to test the generalizing ability of trained networks. The 

procedures for model setup of the neural network for the LREW are similar to those used 

in the RCEW. A total of 15 input variables were identified: 1) daily precipitation of the 

last five days starting from 1−t  to 5−t  was taken into account as five separate inputs; 2) 

moving average of the last 30 days’ precipitation as a single separate input; 3) mean 

daily temperature of the last four days starting from 1−t  to 5−t  were taken as five 

separate inputs; 4) moving average of the last 30 days’ temperature as one input; 5) daily 

streamflow values of the last three days from 1−t  to 3−t  were included as three 

separate according to the partial auto-correlation function (PACF). Thirty hidden units 

were used to determine the neural network structure of the ANNs and BNNs. The EMC 

algorithms were used to generate 50,000 sets of ),( Λθ , and estimate the 95% 

uncertainty intervals of the four types of BNNs.  

Further analysis of the modeling and predictive uncertainty intervals estimated by the 

four BNNs in the LREW was also conducted. For illustrative purposes, the 95% 

modeling uncertainty intervals for days from January 4, 1997 to March 31, 1997 are 

shown in Figure 8-4 (calibration period), and the 95% predictive uncertainty intervals for 

days from January13, 2001 to April 24, 2001 are shown in Figure 8-5 (validation period). 

Visually, the difference between the uncertainty intervals estimated by the four BNNs in 

the LREW is not so appreciable compared with that obtained in the RCEW. The POC 

and D-bar values of the 95% uncertainty intervals estimated by different BNNs are listed 

in Table 8-2. For the calibration period, the BNN-a, BNN-b, BNN-c and BNN-d include 

about 79.71%, 82.29%, 85.14%, and 86% of the observed data into their 95% modeling 

uncertainty intervals respectively. For the validation period, the 95% predictive 

uncertainty intervals of the four BNNs tend to expand and include more observed data. 
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BNN-a, BNN-b, BNN-c, and BNN-d cover approximately 87.35%, 90.59%, 90.88%, 

and 92.06% of the observed streamflow data within their 95% predictive uncertainty 

intervals, respectively. The comparisons between the uncertainty intervals estimated by 

different BNNs in the LREW also show that incorporating variable model structures and 

informative prior knowledge can provide more reasonable estimation of the uncertainty 

of streamflow simulation: 1) under both variable and fixed model structure conditions, 

taking informative prior knowledge into account results in more robust modeling and 

predictive uncertainty intervals for BNN-d and BNN-c than BNN-b and BNN-a, 

respectively; 2) under both non-informative and informative prior knowledge conditions, 

BNN-b and BNN-d contain more observations in the modeling and predictive 

uncertainty limits than BNN-a and BNN-c respectively. Results obtained for the LREW 

are similar to those obtained for the RCEW, except that BNN-d produced not only larger 

POCs but also smaller D-bar values than BNN-c. This finding emphasizes the 

importance of considering multiple model structures. 

 
 
 

Table 8-2. Evaluation of the performance of BNNs and ANNs for streamflow simulation in the 

LREW. 

Evaluation Coefficients  

 

Period/Model 

MSE R2 
Percentage 

of coverage 

Average 

interval 

width 

BNN-a 11.25 0.94 79.71% 5.7 

BNN-b 11.17 0.94 82.29% 5.99 

BNN-c 12.16 0.93 85.14% 6.88 
Calibration 

BNN-d 13.14 0.93 86.00% 6.62 

BNN-a 6.16 0.89 87.35% 5.32 

BNN-b 5.78 0.90 90.59% 5.59 

BNN-c 5.92 0.89 90.88% 6.58 
Validation 

BNN-d 5.96 0.89 92.06% 5.8 
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Figure 8-5. 95% predictive uncertainty intervals of streamflow simulation using different 

BNNs for days between May 28, 1972 and June 28, 1972 in RCEW. 
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Figure 8-7. 95% modeling uncertainty intervals of streamflow simulation using different 

BNNs for days between January 4, 1997 and March 31, 1997 in LREW 
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Figure 8-9. 95% predictive uncertainty intervals of streamflow simulation using different 

BNNs for days between January13, 2001 and April 24, 2001 in LREW. 
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8.4.3 Discussion 

For the BNNs, the choice of posterior model probability with different 

considerations of uncertainties associated with model structures and parameters can 

exert substantial impacts on both modeling and predictive uncertainty limits estimated 

by the BNNs. Based on the test results in the LREW and the RCEW, the BNN-a, which 

only considers parameter uncertainty with non-informative prior knowledge, performs 

the least among all the four BNNs. On the other hand the BNN-d, which considers both 

parameter and model structure uncertainties with informative prior knowledge, produces 

equivalent or better estimation of the 95% modeling and predictive uncertainty intervals 

compared to the other BNNs. In general, incorporating variable model structure and 

informative prior knowledge produces more reasonable uncertainty interval estimation. 

It is important to recognize that the prior knowledge of neural networks’ parameters and 

structures applied in this study is not selected arbitrarily, but based on expert knowledge 

and experimental testing (Wang, 1995, Muler and Insua, 1998, Liang, 2005b). An 

inappropriate setting of the prior knowledge may lead to worse estimation results.  

From Figures 8-2 to 8-5 and Tables 8-1 to 8-2, we note that no uncertainty bounds 

estimated by the four BNNs can include 95% or more of the observed streamflow data, 

although BNN-c and BNN-d can produce POC coefficients approaching 95%. This is 

mainly because our understanding of hydrologic uncertainty is still far from complete. 

The inappropriate convergence to the true posterior (Kingston et al., 2005), the 

inadequate definition of the prior distribution of parameters and model structures, and 

the omission of uncertainties related to the observed input data and other forcing data 

can lead to inappropriate estimation of the uncertainties. Moreover, the complex and true 

joint distributions of the uncertainty sources (which result from high non-linearity of the 

hydrologic system and the complex interactions between different components of the 

system) make it very difficult to accurately represent the uncertainty of streamflow 

simulation (Liu and Gupta, 2007).  

For water resources investigations essential for relevant decision making processes, 

the predictive uncertainty estimation of hydrologic prediction is valuable. The predictive 
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uncertainty limits are dependent on and different from modeling uncertainty. This is 

because when the trained BNNs are applied to another set of data independent of the 

training data, the hydrologic conditions may change and therefore impact the predictive 

interval estimation. From Figures 8-2 to 8-4 and Tables 8-1 to 8-2, it can be seen that the 

95% modeling uncertainty limits are always narrower than the corresponding predictive 

uncertainty limits estimated by the same BNNs. The difference between modeling and 

predictive uncertainty limits can be impacted by the type of BNN and the characteristics 

of the hydrologic conditions. For example, in the RCEW, the BNN-a’s POC of 

predictive uncertainty interval (73.75%) is about 8% higher than its POC of modeling 

uncertainty interval (65.83%), while the BNN-d’s POC of predictive uncertainty interval 

(93.96%) is about the same its POC of modeling uncertainty interval (93.70%). 

Applying the BNN-d to the LREW, it is apparent that the BNN-d’s POC of predictive 

uncertainty interval (92.06%) is 6% higher than its POC of modeling uncertainty interval 

(86.00%). Because of the future uncertainties due to natural and anthropogenic factors, 

the predictive uncertainty limits are also uncertain, which means that we are unable to 

estimate predictive uncertainty limits even if our estimation of modeling uncertainty 

limits are accurate. Hence in application of uncertainty analysis for hydrologic 

prediction, how to extend modeling uncertainty limits to predictive uncertainty limits 

remains a huge challenge for applying BNNs to water resources-related management and 

design problems. 

Although uncertainty estimation of hydrologic prediction faces many challenges, it is 

still broadly recognized that proper consideration of uncertainty in hydrologic 

predictions is essential for purposes of both research and operational modeling (Wagener 

and Gupta, 2005; Pappenberger and Beven, 2006; Liu and Gupta, 2007). To improve the 

estimation of modeling uncertainty of hydrologic modeling, effective methods for 

considering the uncertainties associated with input hydrometeorolgic data (e.g. Kavetshi 

et al, 2006, Ajami et al., 2007, Srivastav et al., 2007) and observed outputs (e.g. Kuczera, 

1983; Bates and Campbell, 2001; Yang et al., 2007) must also be considered in the 

definition of posterior model probability  
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8.5 Summary 

In this study, the effect of model structure on the uncertainty estimation of 

streamflow simulation was examined. The SWAT model and Neural Network model 

were applied in MCEW for streamflow simulation of the same calibration and validation 

periods. The EMC method was used to derive the 95% uncertainty interval of 

streamflow simulation. The results show that the uncertainty intervals obtained by 

SWAT and Neural Network model are substantially different from each other. This, to 

some extent, indicates the model structure is an important source of uncertainty of 

hydrologic modeling. Future research on improving SWAT model structure and 

understanding the contributions of different forcing data uncertainties need to be 

evaluated.  

Four types of BNNs with different treatments of variable structures and prior 

knowledge have been applied in this study. Findings from this study show that the 95% 

uncertainty limits of neural network outputs estimated by different BNNs were evidently 

different from each other. In general, BNNs incorporating multiple model structures can 

provide equal or better estimation of the uncertainty limits than those with fixed network 

structures. Findings also show that taking informative prior knowledge of network 

parameters and structures can lead to more robust estimation of the uncertainty limits. 

For all the test cases, the 95% uncertainty intervals (including modeling and predictive 

uncertainty intervals) estimated by all four BNNs failed to include 95% or more of 

observed streamflow data. This, to some extent, indicates the incomplete consideration 

of all uncertainty sources and inappropriate definition of error characteristics associated 

with different uncertainty sources. In the future, improving understanding and 

quantifying methods of different uncertainty sources need to be exploited for effective 

estimation of the uncertainty of hydrologic prediction using BNNs. It should also be 

noted that the difference between predictive uncertainty and modeling uncertainty, 

which is raised by unknown future conditions, complicates the process to develop 

practical guides on how to extend modeling uncertainty estimation to reliable predictive 

uncertainty estimation. 
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CHAPTER IX  
 

CONCLUSIONS 
 

 

In recent years, physically based distributed hydrologic models have been widely 

used by hydrologists and resources managers as tools to understand and manage natural 

and human activities that affect watershed systems. Hydrologic models, even those 

physically-based models, often contain parameters that cannot be measured directly due 

to measurement limits and scale issues (Beven, 2000; Madsen, 2003). In practical 

application of these models, parameters need to be estimated through an inverse method 

to reach agreement between observed and predicted output values. With the popularity 

of complex, distributed models, the time consumed for running these models is 

increasing substantially. Selecting efficient and effective parameter optimization 

algorithms for computationally expensive hydrologic models is becoming a nontrivial 

issue. Therefore, this study focuses on the developing and evaluating the efficiency and 

effectiveness of parameter calibration and uncertainty methods for a computationally 

intensive distributed hydrologic model. In this study we selected one complex 

distributed hydrologic model - SWAT as an example, which has been applied worldwide 

for hydrologic assessment. 

To evaluate the efficacy of different optimization algorithms, five optimization 

algorithms (GA, SCE, PSO, DE and AIS), which have been successfully applied in 

optimization problems in different research fields, were tested for automatic parameter 

calibration the SWAT model in four watersheds with different terrain and climate 

conditions. The results show that no one optimization algorithm can consistently 

perform better than the other algorithms for the four watersheds. Based on the overall 

performance of the five optimization algorithms within limited model runs in the four 

watersheds, GA tends to find better objective function values given 10000 model 
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evaluations, while PSO can find acceptable good objective function values with less 

number of model evaluations (e.g. 1000 model evaluations). In order to find global 

optimum, multiple algorithms should be run to calibrate the SWAT model if the time 

and computational resources allow. Incorporating the strength of different algorithms 

into one powerful algorithm seems to hold promise for future investigations. 

Although SWAT can simulate spatially distributed hydrologic variable, many 

applications of SWAT used single objective parameter optimization algorithms. In this 

study, the single objective optimization method and multi-objective optimization 

algorithm were applied to optimize the parameters of SWAT using observed streamflow 

data at various monitoring sites within the RCEW. The results obtained in this study 

show that the parameter solutions optimized using the objective function at one 

monitoring site performed worse than those obtained through simultaneously 

considering objective functions at multiple monitoring sites, which stresses the 

importance of collecting detailed spatially distributed data to calibrate the SWAT model. 

When using multi-site observed data to calibrate SWAT, the multi-objective 

optimization method can identify multiple Pareto optimal parameter solutions, which 

performed about the same as the parameter solutions obtained by the single objective 

optimization method for a calibration period and actually performed better for a 

validation period. The Pareto optimal parameter solutions can also be used to assess the 

uncertainty of simulated hydrographs. Overall, the multi-objective optimization method 

provides promising results that can be used for multi-site calibration of SWAT model. 

Different multi-objective optimization algorithms were evaluated for simultaneously 

optimizing several objectives (e.g. multiple criteria, multiple flow components, and 

hydrologic variables at multiple sites) of SWAT. The tested multi-objective optimization 

algorithms include (SPEA2, NSGAII, ε-NSGAII, and three variants of MOPSO). It was 

found that the PSO based method converge quickly at the initial state, while GA based 

methods performed better in terms of finding good parameter sets with larger number of 

model runs. A new multi-objective optimization method (MO-PSOGA) that combines 

the advantages of the PSO and GA algorithms was proposed. Based on the evaluation of 
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the performances of different algorithms on three test cases, the MO-PSOGA method 

consistently perform better or close to the other algorithms.. The MO-PSOGA method 

can serve as a promising alternative method for multi-objective optimization of SWAT 

model. 

In the application of the computationally intensive SWAT model, the time consumed 

by the parameter calibration is enormous. Using surrogate models to approximate the 

computationally intensive models is a promising method to save huge amounts of time 

for parameter calibration and uncertainty analysis. In this study, two learning machines 

(ANN and SVM) were evaluated and compared for approximating the SWAT model. It 

was found that both SVM and ANN can obtain high evaluation coefficients for 

approximating SWAT, however, SVM in general exhibited better generalization ability 

than ANN. In order to effectively and efficiently apply SVM to approximate SWAT, the 

effect of cross-validation schemes, parameter dimensions, and training sample sizes on 

the performance of SVM was evaluated and discussed. It is suggested that 3-fold cross-

validation is adequate for training the SVM model, and reducing the parameter 

dimension through determining the parameter values from field data and the sensitivity 

analysis is an effective means of improving the performance of SVM. Simple examples 

were used to illustrate the potential applicability of combining the SVM model with 

uncertainty analysis and evolutionary optimization algorithm to save efforts for 

parameter calibration and uncertainty of SWAT.  

Two types of parameter uncertainty analysis methods (GLUE and EMC) were 

applied to estimate simulation uncertainty of SWAT. Usually, the parameter uncertainty 

analysis needs more than 10000 model evaluations of SWAT. Considering the huge time 

consumed by applying parameter uncertainty analysis of SWAT, the Support Vector 

Machine (SVM) was used as a surrogate of SWAT to implement GLUE and EMC. The 

results show that the combination of GLUE with SVM (GLUE-SVM) can save more 

than 50% runs of the computationally intensive SWAT model compared with the 

implementation of the original GLUE method. At the same time, GLUE-SVM can 

provide uncertainty interval estimation close to that obtained by the original GLUE 
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method. As SVM is not a error free surrogate of SWAT, the combination of EMC and 

SVM can not obtain uncertainty interval estimation results similar to that obtained by the 

original EMC. It is worth noting that both GLUE and EMC can not accurately quantify 

the prediction uncertainty of SWAT model if parameter is taken as the only source of 

uncertainty.  

The reasonable estimation of the prediction uncertainty, a valuable for decision 

making to address water resources management and design problems, is influenced by 

the techniques used to deal with different uncertainty sources. In this study, the effect of 

model structure on the uncertainty estimation of streamflow simulation was examined 

through applying SWAT and Neural Network models in MCEW. The 95% uncertainty 

intervals estimated by SWAT can only include 20% observed data, which Neural 

Network can include more than 70%. This indicates the model structure is an important 

source of uncertainty of hydrologic modeling and need to be evaluated carefully. Further 

exploitation of the effect of different treatments of the uncertainties of model structures 

on hydrologic modeling was conducted through applying four types of BNNs. The 

BNNs that only consider the parameter uncertainty with non-informative prior 

knowledge contain the least number of observed streamflow data in their 95% 

uncertainty bound. By considering variable model structure and informative prior 

knowledge, the BNNs can provide more reasonable quantification of the uncertainty of 

streamflow simulation. This study stresses the need for improving understanding and 

quantifying methods of different uncertainty sources for effective estimation of 

uncertainty of hydrologic simulation. 

In this dissertation, different parameter calibration and uncertainty methods were 

evaluated or developed in order to efficiently and effectively to estimate parameters for 

computationally distributed hydrologic model. These methods were programmed with 

user friendly interface, which facilitate their easy use for SWAT and other models. As 

the results obtained show that that only consider the parameter uncertainty is not 

adequate to estimate the uncertainty of hydrologic simulation, future research is stressed 
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to be conducted on taking different uncertainty sources into account for effective 

estimation of uncertainty of hydrologic simulation. 
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