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Abstract. Let (M, g) be a complete non-compact Riemannian manifold to-

gether with a function eh, which weights the Hausdorff measures associated to

the Riemannian metric. In this work we assume lower or upper radial bounds
on some weighted or unweighted curvatures of M to deduce comparisons for the

weighted isoperimetric quotient and the weighted capacity of metric balls in M

centered at a point o ∈ M . As a consequence, we obtain parabolicity and hyper-
bolicity criteria for weighted manifolds generalizing previous ones. A basic tool

in our study is the analysis of the weighted Laplacian of the distance function
from o. The technique extends to non-compact submanifolds properly immersed

in M under certain control on their weighted mean curvature.

1. Introduction

A weighted manifold (also known as a manifold with density or smooth metric
measure space) is a triple (M, g, eh), where (M, g) is a Riemannian manifold and eh a
smooth function used to weight the Hausdorff measures associated to the Riemann-
ian distance. In these manifolds, by combining the Riemannian structure with the
derivatives of h, it is possible to introduce weighted curvatures and differential oper-
ators, see Morgan’s book [35, Ch. 18] and Section 2 for precise definitions. Hence,
the framework of weighted manifolds provides an extension of Riemannian geometry
where many classical questions are being analyzed in recent years. In particular, com-
parison geometry and topological obstructions for the different weighted curvatures
have been considered by many authors, see [43, 44, 26, 3, 34, 45, 46, 28, 36, 47, 22, 23]
but this list is far from exhaustive.

Our aim in this paper is to establish comparison results for the weighted isoperimet-
ric quotients and capacities of intrinsic and extrinsic balls in a complete non-compact
weighted manifold. These will be derived from lower or upper radial (maybe non-
constant) bounds on some of the curvatures of the manifold, in such a way that they
become equalities in the corresponding comparison model. The weighted model spaces
are defined in Section 2.3 as rotationally symmetric manifolds with a pole together
with a weight which is radial, i.e., it only depends on the Riemannian distance from the
pole. Our capacity inequalities will allow to deduce parabolicity (resp. hyperbolicity)
criteria for weighted manifolds and their proper submanifolds from the parabolicity
(resp. hyperbolicity) of the associated comparison models.
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The starting point for our results is the analysis of ∆hr, where ∆h is the weighted
Laplacian defined in (2.1) and r denotes the distance function in M from a fixed point
o ∈M . This is accomplished in Section 3 by means of a standard method in Riemann-
ian geometry [11, Ch. 2], [48]. From inequality (3.1), which relates the Hessian Hess r
and the sectional curvatures in (M, g), we can control ∆hr by assuming radial lower

bounds on two kinds of weighted curvatures: the Bakry-Émery Ricci curvatures Richq
and the weighted sectional curvatures Sechq with q ∈ (0,∞], see Section 2.2 for precise

definitions and references. Estimates for ∆hr involving lower bounds on Richq have
appeared in many of the aforementioned works by following the same technique or by
using a Bochner-Weitzenböck formula in weighted manifolds. A similar approach was
followed in [47, 22] to extend classical Riemannian statements to the case Sechq > 0.
Our more general comparisons for Hess r in Theorem 3.3 depending on lower radial
bounds on the sectional curvatures Sechq seem to be new.

Having the Laplacian inequalities for the distance in hand, we are ready to establish
our main comparisons in a unified way. For more clarity we have divided the exposition
into two sections where we treat separately the intrinsic case and the extrinsic one.

Section 4 is devoted to the intrinsic setting and contains two type of results. The
first ones are estimates for isoperimetric quotients of a complete non-compact weighted
manifold (M, g, eh). Given a point o ∈M , the weighted isoperimetric quotient qo(R)
measures the ratio between the weighted volume of the open metric ball BR of radius
R centered at o and the weighted area of ∂BR. In Theorems 4.1, 4.6 and 4.12 we
compare qo(R) with the weighted isoperimetric quotient at the pole of a weighted
model space, which is determined from eventual bounds on

〈
∇h,∇r

〉
and radial lower

bounds on weighted or unweighted Ricci curvatures of (M, g, eh). In Theorem 4.7 we
show the opposite comparison under an upper bound on the Riemannian sectional
curvatures. For the proofs we adapt to the weighted context the arguments employed
in [38, 29, 33] for submanifolds in Riemannian manifolds with a pole. The main idea
is to use the previous analysis of ∆hr to compare the mean exit time function in
BR with the function defined by transplanting to BR, via the distance function r,
the mean exit time function for the ball of the same radius in the weighted model
space. As a consequence of our estimates for qo(R) we can compare separately the
weighted volumes and areas of metric balls and spheres in (M, g, eh) with the ones
in the corresponding model. Similar inequalities for weighted volumes and quotients
of weighted volumes, but not for weighted isoperimetric quotients, were given in
[43, 26, 34, 45, 41, 36] under a lower bound on Rich∞, and in [44, 3, 28] under a lower

bound on Richq with q ∈ (0,∞).

In Section 4 we also establish comparisons for the capacities of metric balls, and
deduce from them parabolicity and hyperbolicity criteria. To explain this in more
detail we need to introduce some notation and definitions.

Following classical terminology in potential theory, a weighted manifold (M, g, eh)
is weighted parabolic or h-parabolic if every function u ∈ C∞(M) bounded from above
and satisfying ∆hu > 0 must be constant. Otherwise, (M, g, eh) is weighted hyper-
bolic. As in the unweighted setting, the h-parabolicity is characterized in terms of the
h-capacities defined in Section 2.1. More precisely, by Theorem 2.2, the h-parabolicity
is equivalent to the existence of a precompact open set D ⊆ M , and an exhaustion
{Ωi}i∈N of M by smooth precompact open sets, such that limi→∞Caph(D,Ωi) = 0.

When ∂D is smooth the value of Caph(D,Ωi) can be computed from equality (2.3) in-
volving the h-capacity potential, which is the solution to the weighted Laplace equation
with Dirichlet boundary condition in (2.4). This characterization leads to parabolic-

ity and hyperbolicity criteria when we are able to bound the capacities Caph(D,Ωi)
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for a suitable family of capacitors (D,Ωi) in terms of the geometry of the under-
lying weighted manifold. Following this idea with the capacitors (Bρ, BR), the h-
parabolicity of a weighted manifold comes from suitable growth properties of the
weighted volume and boundary area of the balls Bt, see for instance [14, 16]. In the

case of a weighted model (Mw, gw, e
f(r)), an explicit computation of Capf (Bwρ , B

w
R),

where Bwt denotes a metric ball centered at the pole, shows that the f -parabolicity
is equivalent to that

∫∞
ρ

Vol−1
f (∂Bwt ) dt = ∞ for some ρ > 0, see [14, 19]. This is

a weighted extension of a classical parabolicity criterion of Ahlfors for rotationally
symmetric Riemannian manifolds [1, 12].

In Theorems 4.4, 4.9 and 4.13 we prove, for almost every radii ρ < R, a compar-
ison for the ratio between the capacity Caph(Bρ, BR) and the weighted area of ∂Bρ
with respect to the same ratio in a model space with weight depending on an eventual
bound on

〈
∇h,∇r

〉
, and with curvature determined from a lower bound on a weighted

or unweighted Ricci curvature in (M, g, eh). In Theorem 4.10 we deduce the opposite
comparison from an upper bound on the Riemannian sectional curvature. The proofs
employ the analysis of ∆hr to compare the h-capacity potential of (Bρ, BR) with the

function obtained by transplanting to the annulus BR−Bρ, via the distance function
r, the capacity potential of the capacitor (Bwρ , B

w
R) in the weighted model. By passing

to the limit when R → ∞ the resulting capacity estimates imply the h-parabolicity
(resp. h-hyperbolicity) of (M, g, eh) from the parabolicity (resp. hyperbolicity) of the
corresponding model. In particular, we generalize to weighted manifolds a parabol-
icity (resp. hyperbolicity) criterion of Ichihara [20] for Riemannian manifolds with
Ricci curvature bounded from below (resp. sectional curvature bounded from above).
Also, by combining these capacity estimates with our previous inequalities for the
weighted area of metric spheres, we achieve a direct comparison between Caph(Bρ)

and Capf (Bwρ ).

The proof technique in these results can also be employed to study the parabolicity
of a Riemannian manifold (M, g). It is easy to observe that the h-parabolicity of
(M, g, eh) does not imply the parabolicity of (M, g). For instance, Euclidean space
Rm is hyperbolic for m > 3, whereas it is parabolic with respect to the Gaussian
weight. In this sense, it is interesting to provide sufficient conditions on a weight eh

ensuring the Riemannian parabolicity of (M, g). In Theorem 4.14 we give a criterion

in this line which involves a lower bound on some Bakry-Émery Ricci curvature Richq
with q ∈ (0,∞).

In Section 5 we gather our comparisons in the extrinsic setting. This arises when a
submanifold P immersed in the manifold M is endowed with the structure of weighted
manifold inherited from the Riemannian metric and weight in (M, g, eh). More pre-
cisely, we suppose that M has a pole and P is a non-compact submanifold with empty
boundary properly immersed in M . By following similar arguments as in the intrinsic
case we deduce, from the weighted geometry of M and the extrinsic weighted geom-
etry of P , sharp estimates for the weighted isoperimetric quotients and capacities of
extrinsic balls. By an extrinsic ball in P we mean any connected component in the
intersection of P with the metric ball BR in M centered at the pole.

Our results here rely on the analysis of the extrinsic distance r|P developed in
Section 5.2. In this situation, the Hessian in P depends on the Hessian in M and the
second fundamental form of P . As in the Riemannian setting, see for instance [39],
we may assume suitable bounds on weighted or unweighted sectional curvatures in
(M, g, eh) to control the weighted Laplacian ∆h

P of radial functions in P by means of

our previous analysis on Hess r, and from radial bounds on the term
〈
∇h+H

h

P ,∇r
〉
,

which involves the radial derivatives of h and the weighted mean curvature vector



4 A. HURTADO, V. PALMER, AND C. ROSALES

H
h

P defined in Section 5.1. In the particular case of weighted rotationally symmetric
manifolds with a pole, the sectional curvature is a radial function from the pole, and
the Laplacian ∆h

P can be explicitly computed as we did in [19].

In Theorem 5.5 we show how a radial bound on the sectional curvature Sec in
(M, g) implies an inequality for the weighted isoperimetric quotient of extrinsic balls
in P . Under a lower bound on Sec we generalize a result of Markvorsen and the
second author in the Riemannian setting [33]. Under an upper bound on Sec, our
inequality provides a genuine comparison with respect to the isoperimetric quotient of
a weighted model space, thus extending a result of the second author [38] for minimal
submanifolds of Cartan-Hadamard manifolds.

In Theorems 5.7 and 5.15, we consider capacitors associated to concentric extrinsic
balls and estimate their capacities to obtain, by means of Theorem 2.2, parabolicity
and hyperbolicity criteria for submanifolds under certain control on the weighted or
unweighted sectional curvatures of the ambient manifold, and the weighted mean
curvature vector of the submanifold. As in the intrinsic setting, we can conclude the
h-parabolicity (resp. h-hyperbolicity) of P from the parabolicity (resp. hyperbolicity)
of the associated comparison model. Our Theorem 5.7 extends to arbitrary weighted
manifolds previous criteria of the authors [19] for rotationally symmetric manifolds
with weights. In the unweighted case h = 0 we recover previous statements by
Esteve and the second author [9], and by Markvorsen and the second author [31]. In
Corollary 5.11 we show a weighted version of the hyperbolicity result of Markvorsen
and the second author [30] for minimal submanifolds of a Cartan-Hadamard manifold.

We must remark that the extrinsic h-parabolicity leads to geometric restrictions
and characterization theorems for submanifolds with controlled weighted mean cur-
vature. For proving results in this line, the idea is to apply the defining property
of parabolic submanifolds with suitable functions having a geometric meaning. In
particular, this allowed us to deduce half-space and Bernstein type theorems for sub-
manifolds of bounded h-mean curvature, extending previous ones for solitons of the
mean curvature flow, see [19, Sect. 4] and the references therein.

To finish this introduction we should mention that, due to the relation between the
weighted and the unweighted curvatures, all the results of the paper depending on a
certain bound on the Ricci curvature Ric or the sectional curvature Sec are valid when
we assume the same bound on Rich∞ or Sech∞ together with an additional concavity
or convexity condition on h.

The paper is organized into five sections. Section 2 contains some preliminary
material about weighted manifolds, potential theory and weighted model spaces. In
Section 3 we derive estimates for the weighted Laplacian of the distance function
in terms of lower bounds on the weighted curvatures of the manifold. In Section 4
we prove our comparison results and our parabolicity / hyperbolicity criteria for
weighted manifolds. Section 5 includes the analysis of the weighted Laplacian and
the comparisons for submanifolds with controlled weighted mean curvature vector.

Acknowledgments. The authors would like to thank the referee for his/her detailed
report and for pointing out valuable comments that helped to improve this work.
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2. Preliminaries

In this section we recall some notions and results that will be instrumental in the
sequel.

2.1. Weighted capacities and parabolicity.

In a complete Riemannian manifold (Mm, g) with m > 2 and ∂M = ∅ we consider
a weight or density, i.e., a smooth positive function eh on M which is used to weight
the Hausdorff measures associated to the Riemannian metric. In particular, for any
Borel set E ⊆ M , and any C1 hypersurface P ⊂ M , the weighted volume of E and
the weighted area of P are given by

Volh(E) :=

∫
E

dvh =

∫
E

eh dv, Volh(P ) :=

∫
P

dah =

∫
P

eh da,

where dv and da denote the Riemannian elements of volume and area, respectively.

In weighted manifolds there are generalizations not only of volume and area, but
also of some differential operators of Riemannian manifolds. The weighted divergence
of a smooth vector field X on M is the function

divhX := divX +
〈
∇h,X

〉
,

where div is the Riemannian divergence, ∇ is the Riemannian gradient and
〈
· , ·
〉

denotes the Riemannian metric in M . Following [15, Sect. 3.6] we define the weighted
Laplacian or h-Laplacian of a function u ∈ C2(M) by

(2.1) ∆hu := divh∇u = ∆u+
〈
∇h,∇u

〉
,

where ∆ is the Laplacian in (M, g). The h-Laplacian is a second order linear operator,
which is self-adjoint with respect to dvh since∫

M

u∆hw dvh =

∫
M

w∆hu dvh,

for any two functions u,w ∈ C2
0 (M).

Given a domain (connected open set) Ω in M , a function u ∈ C2(Ω) is h-harmonic
(resp. h-subharmonic) if ∆hu = 0 (resp. ∆hu > 0) on Ω. As in the unweighted
setting there is a strong maximum principle and a Hopf boundary point lemma for
h-subharmonic functions. We gather both results in the next statement, see [15,
Sect. 8.3] and [10, Sect. 3.2].

Theorem 2.1. Let Ω be a smooth domain of a weighted manifold (Mm, g, eh). Con-
sider an h-subharmonic function u ∈ C2(Ω) ∩ C1(Ω). Then, we have:

(i) if u achieves its maximum in Ω then u is constant,
(ii) if there is p0 ∈ ∂Ω such that u(p) < u(p0) for any p ∈ Ω then ∂u

∂ν (p0) > 0,
where ν denotes the outer unit normal along ∂Ω.

From the maximum principle it is clear that any h-subharmonic function on a
compact manifold M must be constant. In general, a weighted manifold is weighted
parabolic or h-parabolic if any h-subharmonic function which is bounded from above
must be constant. Otherwise we say that M is weighted hyperbolic or h-hyperbolic.

Next, we will recall how the h-parabolicity of manifolds can be characterized by
means of weighted capacities. For more details about the definitions and results below
we refer to [12, 13, 16].
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Let Ω ⊆ M be an open set and K ⊂ Ω a compact set. The weighted Newtonian
capacity or h-capacity of the capacitor (K,Ω) is defined by

Caph(K,Ω) := inf

{∫
Ω

|∇φ|2 dvh ; φ ∈ H1
0 (Ω, dvh) with 0 6 φ 6 1 and φ = 1 on K

}
.

Here H1
0 (Ω, dvh) denotes the closure of C∞0 (Ω) with respect to the norm ‖u‖ :=

(
∫

Ω
u2 dvh +

∫
Ω
|∇u|2 dvh)1/2 in the weighted Sobolev space H1(Ω, dvh) of functions

u ∈ L2(Ω, dvh) with distributional gradient satisfying |∇u| ∈ L2(Ω, dvh). By a stan-
dard approximation argument it follows that

Caph(K,Ω) = inf

{∫
Ω

|∇φ|2 dvh ; φ ∈ C∞0 (Ω) with 0 6 φ 6 1 and φ = 1 on K

}
.

For a precompact open set D with D ⊂ Ω we denote Caph(D,Ω) := Caph(D,Ω).

For Ω = M we write Caph(D) := Caph(D,M) and we call it the h-capacity of D at
infinity. It can be proved that equality

(2.2) Caph(D) = lim
i→∞

Caph(D,Ωi)

holds for any exhaustion {Ωi}∞i=1 of M by precompact open sets. This means that
∪∞i=1Ωi = M and Ωi ⊂ Ωi+1 for any i ∈ N.

When Ω ⊂ M is a precompact open set with Lipschitz boundary and K ⊂ Ω has
smooth boundary, it can be proved (see [12, Sect. 4.3]) that

(2.3) Caph(K,Ω) =

∫
Ω

|∇u|2 dvh =

∫
∂K

|∇u| dah =

∫
∂K

∂u

∂ν
dah,

where ν is the outer unit normal along ∂(Ω − K), i.e., the unit normal along ∂K
pointing into K, and u is the solution of the following Dirichlet problem for the
weighted Laplace equation

(2.4)


∆hu = 0 in Ω−K,
u |∂K= 1,

u |∂Ω= 0.

Hence, the infimum in the definition of Caph(K,Ω) is attained by the solution to
(2.4). This function u is called the h-capacity potential of the capacitor (K,Ω).

The relation between weighted capacities and the h-parabolicity (resp. h-hyperboli-
city) of a weighted manifold is shown in the next result, see [17].

Theorem 2.2. Let (Mm, g, eh) be a weighted manifold. Then, M is h-parabolic (resp.
h-hyperbolic) if and only if M has null (resp. positive) h-capacity, i.e., there exists a

precompact open set D ⊆M such that Caph(D) = 0 (resp. Caph(D) > 0).

In view of Theorem 2.2 and equality (2.2), in order to determine the h-parabolicity

or h-hyperbolicity of a weighted manifold it suffices to find bounds on Caph(D,Ωi)
for some set D ⊂ M and some exhaustion {Ωi}∞i . This will be done by assuming
suitable bounds on the weighted or unweighted curvatures of the manifold.

2.2. Weighted curvatures.

Let us consider a complete weighted manifold (Mm, g, eh). In this subsection we
recall different notions of curvature in this context.

The most extended generalizations of the Ricci curvature tensor are the Bakry-
Émery Ricci tensors. These were introduced by Lichnerowicz [24, 25] and later em-

ployed by Bakry and Émery [2] in the framework of diffusion generators.
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Definition 2.3. The ∞-Bakry-Émery Ricci tensor in (M, g, eh) is the 2-tensor

Rich∞ := Ric−Hessh,

where Ric and Hess denote the Ricci tensor and the Hessian in (M, g). For any q > 0,

the q-Bakry-Émery Ricci tensor in (M, g, eh) is defined as

Richq := Ric−Hessh− 1

q
∇h⊗∇h.

Observe that

Rich∞ = Richq +
1

q
∇h⊗∇h,

so that a lower bound on Richq implies the same lower bound on Rich∞.

In this work the Bakry-Émery Ricci tensors will be used to deduce inequalities
for the weighted Laplacian of the distance function r from a fixed point o ∈ M . On
the other hand, comparison results for the Hessian of r will be obtained by assuming
bounds on the weighted sectional curvatures, that we now introduce.

Definition 2.4. Fix a point o ∈ M . We denote by r : M → [0,∞[ the distance
function from o in (M, g), and by cut(o) the cut locus of o in (M, g). It is well known
that r is smooth on M − (cut(o) ∪ {o}). For any point p ∈ M − (cut(o) ∪ {o}), and
any plane σp ⊆ TpM containing the radial direction (∇r)p, we define the ∞-weighted
sectional curvature of σp as

Sech∞(σp) := Sec(σp)−
1

m− 1
(Hessh)p

(
(∇r)p, (∇r)p

)
,

where Sec stands for the sectional curvature in (Mm, g). On the other hand, for any
q > 0, we define the q-weighted sectional curvature of σp by

Sechq (σp) := Sech∞(σp)−
1

(m− 1) q
(∇h⊗∇h)

(
(∇r)p, (∇r)p

)
.

We remark that, up to some constants, the previous definitions coincide with the
ones introduced by Wylie [47]. Note also that, if {x1, . . . , xm−1} ⊂ TpM is any
orthonormal basis orthogonal to (∇r)p, then for q > 0 or q =∞, we have

m−1∑
i=1

Sechq (σi) = (Richq )p((∇r)p, (∇r)p),

where σi denotes the plane spanned by {xi, (∇r)p}. Hence, a lower bound on Sechq
implies the same lower bound multiplied by m− 1 on Richq (∇r,∇r).

2.3. Weighted model spaces.

Here we introduce the model spaces that we will use to establish our comparison
theorems.

Definition 2.5. (see [11, Ch. 2], [12, Sect. 3], [40, Ch. 3]). A w-model space is
a warped product (Mm

w , gw) := B1 ×w Fm−1 with base B1 := [0,Λ[⊂ R (where
0 < Λ 6 ∞), fiber Fm−1 := Sm−1

1 (the unit (m − 1)-sphere with standard metric),
and C2 warping function w : [0,Λ[ → [0,∞[ such that w(r) > 0 for all r > 0, whereas
w(0) = 0 and w′(0) = 1. The point ow := π−1(0), where π denotes the projection
onto B1, is called the center point of the model space. If Λ = ∞, then ow is a pole
of the manifold (recall that a pole of a complete Riemannian manifold M is a point
o ∈M such that the exponential map expo : ToM →M is a diffeomorphism).
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Remark 2.6. The regularity hypotheses about w are those necessary for our compar-
ison results. If we further assume w to be C∞ with wk)(0) = 0 for all even derivation
orders, then the warped metric is C∞ at the pole.

Example 2.7. The simply connected space forms Km(b) of constant sectional cur-
vature b can be constructed as w-models with any given point as center point using
the warping functions

wb(r) :=


1√
b

sin(
√
b r) if b > 0,

r if b = 0,
1√
−b sinh(

√
−b r) if b < 0.

Note that, for b > 0, the model Km(b) admits a smooth extension to r = π/
√
b. For

b 6 0 any center point is a pole.

In [11, 12, 31, 32, 37] we have a complete description of the w-model spaces. In
particular, the sectional curvatures for planes containing the radial direction from the
center point are determined by the radial function

−w
′′(r)

w(r)
.

Moreover, the (normalized) mean curvature of the metric sphere of radius r from the
center ow is

ηw(r) :=
w′(r)

w(r)
=

d

dr
ln(w(r)).

A weighted (w, f)-model space is a triple (Mm
w , gw, e

f(r)) where ef(r) is a radial
weight in the w-model (Mm

w , gw). In this situation, the weighted volumes of the open
metric ball BwR of radius R > 0 centered at ow, and of the sphere ∂BwR are computed
as follows

Volf (BwR) = V0

∫ R

0

wm−1(t) ef(t) dt,

Volf (∂BwR) = V0 w
m−1(R) ef(R),

where V0 is the Riemannian volume of the unit sphere Sm−1
1 . We will denote by qw,f

the weighted isoperimetric quotient for balls around the center, defined by

qw,f (R) :=
Volf (BwR)

Volf (∂BwR)
=

∫ R
0
wm−1(t) ef(t) dt

wm−1(R) ef(R)
.

In [19] we computed the weighted capacity Capf (Bwρ , B
w
R) for any two radii ρ,R > 0

with R > ρ. By equations (2.3) and (2.4) this is determined by the associated f -
capacity potential, i.e., the solution to the following weighted Dirichlet problem

(2.5)


∆f
Mw

u = 0 in Awρ,R,

u = 1 in ∂Bwρ ,

u = 0 in ∂BwR ,

where Awρ,R is the annulus BwR − B
w

ρ in Mm
w . For later use we must mention that a

radial function φ(r) defined on Awρ,R satisfies the first equation in (2.5) if and only if

(2.6) φ′′(r) + φ′(r)

(
(m− 1)

w′(r)

w(r)
+ f ′(r)

)
= 0.
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Theorem 2.8 ([19]). In a weighted (w, f)-model space (Mm
w , gw, e

f(r)), the solution
to the Dirichlet problem (2.5) in the annulus Awρ,R is given by the radial function

(2.7) φρ,R,f (r) :=

(∫ R

r

w1−m(s) e−f(s) ds

) (∫ R

ρ

w1−m(s) e−f(s) ds

)−1

.

Therefore, we have

Capf (Bwρ , B
w
R) = |φ′ρ,R,f (ρ)| Volf (∂Bwρ )

= V0

(∫ R

ρ

w1−m(s) e−f(s) ds

)−1

.
(2.8)

Remark 2.9. The last equality in equation (2.8) can be written in terms of the
weighted area of the geodesic spheres, so that we get

Capf (Bwρ , B
w
R) =

(∫ R

ρ

dt

Volf (∂Bwt )

)−1

.

As a direct consequence, it can be obtained a weighted version of the Ahlfors criterion:
a weighted (w, f)-model space is f -parabolic if and only if

∫∞
ρ

Volf (∂Bwt )−1 dt = ∞
for some ρ > 0, see [14, 19].

3. Analysis of the distance function

Let (Mm, g, eh) be a weighted manifold such that M is complete and noncom-
pact. In this section, depending on lower or upper bounds for some of the weighted
curvatures, we provide Laplacian and Hessian comparisons for the distance function
r : M → [0,∞[ from a fixed point o ∈M . Then, we will deduce estimates outside the
cut locus cut(o) for the Hessian and Laplacian of a modification F ◦ r associated to a
smooth function F : (0,∞)→ R.

While the Laplacian comparisons in Subsection 3.1 will lead us to intrinsic compar-
ison results for the volume and the capacity of balls centered at o, which eventually
provide an intrinsic description of parabolicity, the Hessian comparisons in Subsection
3.2 will allow us to deduce analogous consequences in the extrinsic setting, i.e., when
we consider a submanifold P of the ambient weighted manifold M .

The starting point for our estimates is an inequality which comes from the Index
Lemma and the relation between the Hessian of the distance function r and the index
form over Jacobi vector fields.

Fix a point p ∈ M − (cut(o) ∪ {o}) and denote rp := r(p). Let γ : [0, rp] −→ M
be the minimizing geodesic parameterized by arc-length joining o with p. Take a unit
vector x ∈ TpM with x ⊥ (∇r)p. It is well known, see [11, Ch. 2], that

(Hess r)p(x, x) = Iγ(J, J) :=

∫ rp

0

(
|J ′|2 − 〈R(J, γ′)J, γ′〉

)
(t) dt,

where J is the Jacobi vector field along γ with J(0) = 0 and J(rp) = x. Here J ′

stands for the covariant derivative of J , and R is the Riemann curvature tensor in
(M, g). On the other hand, the Index Lemma [8, Sect. 10.2] implies that

Iγ(J, J) 6 Iγ(X,X),

for any vector field X along γ such that X(0) = J(0) and X(rp) = J(rp). As a
consequence

(Hess r)p(x, x) 6
∫ rp

0

(
|X ′|2 − 〈R(X, γ′)X, γ′〉

)
(t) dt,
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for any vector field X along γ with X(0) = 0 and X(rp) = x.

Let w(s) be a function such that w(0) = 0 and w(s) > 0 for all s > 0. We

define X(t) := w(t)
w(rp) Y (t), where Y is the unique parallel vector field along γ with

Y (rp) = x. Since |X(t)|2 = w2(t)
w2(rp) , 〈X(t), γ′(t)〉 = 0 and X ′(t) = w′(t)

w(rp) Y (t), we

deduce the inequality

(3.1) (Hess r)p(x, x) 6
1

w2(rp)

∫ rp

0

(
(w′)2(t)− Sec(σγ(t))w

2(t)
)
dt,

where σγ(t) ⊆ Tγ(t)M is the plane spanned by {γ′(t), X(t)}.

3.1. Laplacian comparisons under lower bounds for the Ricci curvatures.

In the next result we obtain inequalities for the weighted Laplacian of r that
generalize previous estimates for the unweighted case h = 0 given in [11, Ch. 2],
see also [39, 48].

Theorem 3.1 ([44, 45, 28, 41]). Let (Mm, g, eh) be a weighted manifold, r : M →
[0,∞[ the distance function from a fixed point o ∈ M , and w(s) a smooth function
such that w(0) = 0 and w(s) > 0 for all s > 0.

a) If there is q > 0 such that the q-Bakry-Émery Ricci curvature in the radial
direction is bounded from below in M − (cut(o) ∪ {o}) as

Richq (∇r,∇r) > −(m+ q − 1)
w′′(r)

w(r)
,

then

(3.2) ∆hr 6 (m+ q − 1)
w′(r)

w(r)

on M − (cut(o) ∪ {o}).
As a consequence, for every smooth function F : (0,∞) → R with F ′ > 0

(respectively F ′ 6 0), we have

(3.3) ∆h(F ◦ r) 6 (>)F ′′(r) + F ′(r) (m+ q − 1)
w′(r)

w(r)

on M − (cut(o) ∪ {o}).

b) If the ∞-Bakry-Émery Ricci curvature in the radial direction is bounded from
below in M − (cut(o) ∪ {o}) as

Rich∞(∇r,∇r) > −(m− 1)
w′′(r)

w(r)
,

and there exists a non-decreasing C1 function θ : [0,∞[→ R such that

〈∇h,∇r〉w′(r) 6 θ(r)w′(r)
on M − (cut(o) ∪ {o}), then

(3.4) ∆hr 6 (m− 1)
w′(r)

w(r)
+ θ(r)

on M − (cut(o) ∪ {o}).
As a consequence, for every smooth function F : (0,∞) → R with F ′ > 0

(respectively F ′ 6 0), we have

(3.5) ∆h(F ◦ r) 6 (>)F ′′(r) + F ′(r)

(
(m− 1)

w′(r)

w(r)
+ θ(r)

)
on M − (cut(o) ∪ {o}).
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Proof. The proof of (3.2) can be found in [44] when the lower bound on Richq is
constant, and in [28] for the general case. The proof of (3.4) appears in [45] for

constant bounds, and in [41] when w′′(r)
w(r) is a positive function and θ : [0,∞[→ R is

continuous and nondecreasing. The starting point for both proofs is the Bochner-
Weitzenböck formula in weighted manifolds. We provide below a complete proof of
(3.4) based on the inequality (3.1).

Take a point p ∈ M − (cut(o) ∪ {o}) and denote rp := r(p). Let γ : [0, rp] → M
be the minimizing geodesic parameterized by arc-length joining o with p. It is well
known that γ′(t) = (∇r)γ(t) for any t 6= 0. We apply (3.1) to an orthonormal family
{x1, . . . , xm−1} in TpM orthogonal to (∇r)p. By summing up, and taking into account
that (Hess r)p((∇r)p, (∇r)p) = 0, it follows that

(∆r)(p) 6
1

w2(rp)

∫ rp

0

(
(m− 1) (w′)2(t)− Ricγ(t)((∇r)γ(t), (∇r)γ(t))w

2(t)
)
dt.

Define the function f(t) := (h ◦ γ)(t). It is clear that f ′(t) =
〈
∇h,∇r

〉
(γ(t)) and

f ′′(t) = (Hessh)γ(t)((∇r)γ(t), (∇r)γ(t)). Since Ric = Rich∞ + Hessh, by using the

lower bound on Rich∞ and integration by parts, we get

(∆r)(p) 6
m− 1

w2(rp)

∫ rp

0

(
(w′)2(t) + w(t)w′′(t)

)
dt− 1

w2(rp)

∫ rp

0

w2(t) f ′′(t) dt

= (m− 1)
w′(rp)

w(rp)
− 1

w2(rp)

∫ rp

0

w2(t) f ′′(t) dt.

On the other hand, the definition of weighted Laplacian in (2.1) gives us

(∆hr)(p) = (∆r)(p) +
〈
∇h,∇r

〉
(p) = (∆r)(p) + f ′(rp).

By substituting this information above and integrating by parts, we obtain

(∆hr)(p) 6 (m− 1)
w′(rp)

w(rp)
+

1

w2(rp)

∫ rp

0

(w2)′(t) f ′(t) dt

6 (m− 1)
w′(rp)

w(rp)
+

1

w2(rp)

∫ rp

0

(w2)′(t) θ(t) dt

= (m− 1)
w′(rp)

w(rp)
+ θ(rp)−

1

w2(rp)

∫ rp

0

w2(t) θ′(t) dt

6 (m− 1)
w′(rp)

w(rp)
+ θ(rp),

where we have used the hypothesis f ′(t)w′(t) 6 θ(t)w′(t) and that θ(t) is a non-
decreasing function. This shows (3.4).

Finally, to deduce (3.3) and (3.5) it suffices to have in mind the estimates in (3.2)
and (3.4) together with equality

(3.6) ∆ (F ◦ r) = F ′′(r) + F ′(r) ∆r,

which holds on M − (cut(o) ∪ {o}). �

Remark 3.2. When we also assume w′(0) = 1 we can identify the lower bounds

in Theorem 3.1 for the radial Bakry-Émery Ricci curvatures and the upper bounds
deduced for ∆hr as the radial Ricci curvatures and the Laplacian of the distance
function from ow in some w-model space.

More precisely, if q ∈ N in statement a), then −(m + q − 1) w
′′(r)
w(r) is the Ricci

curvature in the radial direction of the model (Mm+q
w , gw), whereas (m+ q − 1) w

′(r)
w(r)

is the Laplacian in (Mm+q
w , gw) of the distance function from the center point ow.
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In a similar way, the bound in statement b) for Rich∞ coincides with the radial Ricci

curvature of the model space (Mm
w , gw), whereas the quantity (m − 1) w

′(r)
w(r) + θ(r)

coincides with the weighted Laplacian of the distance function in the weighted (w, f)-
model space (Mm

w , gw, e
f(r)) with f(r) :=

∫ r
0
θ(s) ds.

3.2. Hessian comparisons under lower bounds for the sectional curvatures.

Here we follow the ideas employed in the unweighted case [11, Ch. 2] to establish
comparisons for the Hessian of the distance function involving the radial derivatives
of the weight and the weighted sectional curvatures introduced in Definition 2.4.

Theorem 3.3. Let (Mm, g, eh) be a weighted manifold, r : M → [0,∞[ the distance
function from a point o ∈ M , and w(s) a smooth function such that w(0) = 0 and
w(s) > 0 for all s > 0.

a) Suppose that there is q > 0 such that, for any p ∈ M − (cut(o) ∪ {o}) and
any plane σp ⊆ TpM containing the radial direction (∇r)p, the q-weighted
sectional curvature is bounded from below as

Sechq (σp) > −
m+ q − 1

m− 1

w′′(r)

w(r)
.

Then, the inequality

(3.7) (Hess r)(x, x) +
1

m− 1
〈∇h,∇r〉 6 m+ q − 1

m− 1

w′(r)

w(r)

holds on M − (cut(o) ∪ {o}) for any unit tangent vector x orthogonal to ∇r.
As a consequence, for every smooth function F : (0,∞) → R with F ′ > 0

(respectively F ′ 6 0), we obtain

(3.8) ∆h(F ◦ r) 6 (>)F ′′(r) + F ′(r) (m+ q − 1)
w′(r)

w(r)

on M − (cut(o) ∪ {o}).

b) If, for any p ∈M−(cut(o)∪{o}) and any plane σp ⊆ TpM containing (∇r)p,
the ∞-weighted sectional curvature is bounded from below as

Sech∞(σp) > −
w′′(r)

w(r)
,

and there exists a non-decreasing C1 function θ : [0,∞[→ R such that

〈∇h,∇r〉w′(r) 6 θ(r)w′(r)

on M − (cut(o) ∪ {o}), then the inequality

(3.9) (Hess r)(x, x) +
1

m− 1
〈∇h,∇r〉 6 w′(r)

w(r)
+

1

m− 1
θ(r)

holds on M − (cut(o) ∪ {o}) for any unit tangent vector x orthogonal to ∇r.
As a consequence, for every smooth function F : (0,∞) → R with F ′ > 0

(respectively F ′ 6 0), we obtain

(3.10) ∆h(F ◦ r) 6 (>)F ′′(r) + F ′(r)

(
(m− 1)

w′(r)

w(r)
+ θ(r)

)
on M − (cut(o) ∪ {o}).
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Proof. Fix a point p ∈M − (cut(o)∪ {o}) and denote rp := r(p). Let γ : [0, rp]→M
be the minimizing geodesic parameterized by arc-length joining o with p. It is well
known that γ′(t) = (∇r)γ(t) for any t 6= 0. Define the function f(t) := (h ◦ γ)(t).

Note that f ′(t) =
〈
∇h,∇r

〉
(γ(t)) and f ′′(t) = (Hessh)γ(t)((∇r)γ(t), (∇r)γ(t)).

Let us prove (3.7). Starting from (3.1), and having in mind the lower bound for

Sechq (σγ(t)), we arrive at

(Hess r)p(x, x) =
1

w2(rp)

∫ rp

0

(w′)2(t) dt

− 1

w2(rp)

∫ rp

0

(
Sechq (σγ(t)) +

f ′′(t)

m− 1
+

(f ′)2(t)

(m− 1) q

)
w2(t) dt

6
1

w2(rp)

∫ rp

0

(
(w′)2(t) +

m+ q − 1

m− 1
w′′(t)w(t)

)
dt

− 1

w2(rp)

∫ rp

0

(
f ′′(t)w2(t)

m− 1
+

(f ′)2(t)w2(t)

(m− 1) q

)
dt.

(3.11)

On the other hand, applying integration by parts, we get

(3.12)

∫ rp

0

f ′′(t)w2(t) dt = f ′(rp)w
2(rp)−

∫ rp

0

2 f ′(t)w(t)w′(t) dt.

Moreover

(3.13) 2 f ′(t)w(t)w′(t) 6
1

q
(f ′ w)2(t) + q (w′)2(t).

Replacing the information of (3.12) and (3.13) into (3.11), we obtain

(Hess r)p(x, x) 6
m+ q − 1

(m− 1)w2(rp)

∫ rp

0

(
(w′)2(t) + w′′(t)w(t)

)
dt− 1

m− 1
f ′(rp).

Finally, integrating by parts again, it follows that

(Hess r)p(x, x) +
1

m− 1
f ′(rp) 6

m+ q − 1

m− 1

w′(rp)

w(rp)
,

which is the desired inequality at the point p.

Let us prove (3.9). Starting from (3.1), and taking into account the lower bound

for Sech∞(σγ(t)), we get

(Hess r)p(x, x) 6
1

w2(rp)

∫ rp

0

(
(w′)2(t) + w′′(t)w(t)

)
dt

− 1

(m− 1)w2(rp)

∫ rp

0

f ′′(t)w2(t) dt.

Using integration by parts, the hypothesis f ′(t)w′(t) 6 θ(t)w′(t), and the fact that
θ′ > 0, we obtain

(Hess r)p(x, x) 6
w′(rp)

w(rp)
− f ′(rp)

(m− 1)
+

1

(m− 1)w2(rp)

∫ rp

0

(w2)′(t) f ′(t) dt

6
w′(rp)

w(rp)
− f ′(rp)

m− 1
+

1

(m− 1)w2(rp)

∫ r

0

(w2)′(t) θ(t) dt

=
w′(rp)

w(rp)
+
θ(rp)− f ′(rp)

m− 1
− 1

(m− 1)w2(rp)

∫ r

0

w2(t) θ′(t) dt

6
w′(rp)

w(rp)
− 1

m− 1
f ′(rp) +

1

m− 1
θ(rp).

This is equivalent to inequality (3.9) at the point p.
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Finally, inequalities (3.8) and (3.10) follow from (3.7), (3.9) and the definition of
weighted Laplacian in (2.1), with the help of the identities

Hess (F ◦ r)(X,X) = F ′′(r)
〈
∇r,X

〉2
+ F ′(r) (Hess r)(X,X),

(Hess r)(∇r,∇r) = 0,

where X is any vector field on M − (cut(o) ∪ {o}). �

Remark 3.4. By also assuming w′(0) = 1 the lower bounds in Theorem 3.3 for
the weighted sectional curvatures of radial planes and the upper bounds for Hess r
are related to the sectional curvatures of the radial planes and the Hessian of the
distance function from ow in some w-model space. Indeed, in (Mm

w , gw) the radial

sectional curvatures equal −w
′′(r)
w(r) , whereas the value of Hess r along any unit direction

orthogonal to the radial one is w′(r)
w(r) .

Remark 3.5. The comparisons for Hess r in Theorem 3.3 extend in M−(cut(o)∪{o})
for any tangent vector y. Write y = x + λ (∇r)p, where x ∈ TpM is orthogonal to
(∇r)p and λ :=

〈
y, (∇r)p

〉
. Since (Hess r)p(u, (∇r)p) = 0 for any vector u ∈ TpM , it

follows that

(Hess r)p(y, y) = (Hess r)p(x, x),

so that an estimate for (Hess r)p(x, x) leads to an estimate for (Hess r)p(y, y). In the
particular case of (3.7), we deduce that the inequality

(3.14) (Hess r)(y, y) 6
(
|y|2 −

〈
y,∇r

〉2)(m+ q − 1

m− 1

w′(r)

w(r)
− 1

m− 1

〈
∇h,∇r

〉)
holds on M − (cut(o) ∪ {o}) for any tangent vector y.

4. Intrinsic comparison results

In this section we consider a complete non-compact weighted manifold and present
three series of results where, assuming lower or upper bounds for some of the weighted
or unweighted curvatures of the manifold, we provide estimates for the weighted vol-
umes and capacities of metric balls about a given point. From the capacity estimates
we will deduce conclusions about the parabolicity or hyperbolicity of the manifold.

Along this section we will denote by BR (resp. BwR) the open metric ball of radius
R > 0 centered at a fixed point o ∈Mm (resp. at the pole ow ∈Mm

w ).

4.1. Comparisons under a lower bound on the ∞-Bakry-Émery Ricci cur-
vatures.

The first result of this section shows that, as happens in the Riemannian setting,
estimates for the weighted Laplacian of the distance function allow to establish bounds
for weighted isoperimetric quotients and volumes of metric balls. Our proof goes in
the line of [38, 29, 33], where comparisons for the unweighted isoperimetric quotient
of extrinsic balls of submanifolds were obtained. Previous comparisons involving
weighted volumes and quotients of weighted volumes (but not weighted isoperimetric

quotients) when Rich∞ is bounded from below can be found in [43, 26, 34, 45, 41, 36].

Theorem 4.1. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
with w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0. Suppose that the following
conditions are fulfilled:
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a) Every radial ∞-Bakry-Émery Ricci curvature is bounded as

Rich∞(∇r,∇r) > −(m− 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}).

b) There exists a non-decreasing C1 function θ : [0,∞[→ R such that

〈∇h,∇r〉w′(r) 6 θ(r)w′(r) on M − (cut(o) ∪ {o}).

Then, we have

(4.1)
Volh(BR)

Volh(∂BR)
>

Volf (BwR)

Volf (∂BwR)
, for almost any R > 0,

where Volf stands for the weighted volume in the (w, f)-model space (Mm
w , gw, e

f(r))
with f(r) :=

∫ r
0
θ(s) ds. As a consequence

Volh(BR) 6 eh(o) Volf (BwR), for any R > 0,(4.2)

Volh(∂BR) 6 eh(o) Volf (∂BwR), for almost any R > 0.(4.3)

In particular, if Volf (Mw) <∞, then Volh(M) <∞.

Proof. We will prove the comparison for the weighted isoperimetric quotient by using
the mean exit time of (Mm

w , gw, e
f(r)).

Let qw,f : (0,∞) → R be the weighted isoperimetric quotient in (Mm
w , gw, e

f(r)),
which is given by

qw,f (t) :=
Volf (Bwt )

Volf (∂Bwt )
=

∫ t
0
wm−1(s) ef(s) ds

wm−1(t) ef(t)
.

Note that qw,f extends to 0 as a C1 function with qw,f (0) = 0 and q′w,f (0) = 1
m .

For a fixed number R > 0, we define the C2 function φR : [0,∞[→ R by

(4.4) φR(s) :=

∫ R

s

qw,f (t) dt.

It is easy to check that

(4.5)

{
φ′′R(s) + φ′R(s)

(
(m− 1) w

′(s)
w(s) + θ(s)

)
= −1 in [0,∞[,

φR(R) = 0.

If we consider v := φR ◦ r, then we obtain a radial function v ∈ C2(M − cut(o)).
Moreover, since φ′R(s) 6 0, we infer from inequality (3.5) in Theorem 3.1 that

(4.6) ∆hv > −1 on M − cut(o).

Let us see that this implies

(4.7)

∫
M

〈
∇v,∇ϕ

〉
dvh 6

∫
M

ϕdvh, for any ϕ ∈ H1
0 (M,dvh) with ϕ > 0.

For that we follow the approximation argument in [42, Lem. 2.5]. Let {Mn}n∈N be
an exhaustion of M − cut(o) by smooth precompact (and nested) open sets such that
o ∈ Mn and the radial derivative with respect to the outer conormal νn along ∂Mn

satisfies
〈
∇r, νn

〉
> 0. For a function ϕ ∈ C∞0 (M) with ϕ > 0, equation (4.6) implies∫
Mn

(∆hv)ϕdvh > −
∫
Mn

ϕdvh, for any n ∈ N.
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By taking into account that divh(ϕ∇v) = ϕ∆hv +
〈
∇v,∇ϕ

〉
, and applying the

divergence theorem as in Lemma 2.1 of [6], we obtain∫
Mn

(∆hv)ϕdvh =

∫
∂Mn

ϕ
〈
∇v, νn

〉
dah −

∫
Mn

〈
∇v,∇ϕ

〉
dvh.

The first integral at the right hand side is nonpositive since
〈
∇v, νn

〉
= φ′R(r)

〈
∇r, νn

〉
along ∂Mn. This shows that

−
∫
Mn

〈
∇v,∇ϕ

〉
dvh > −

∫
Mn

ϕdvh, for any n ∈ N.

By passing to the limit we get (4.7) for ϕ ∈ C∞0 (M) by using the dominated con-
vergence theorem and the fact that cut(o) has null weighted volume. By standard
approximation the inequality also holds for any ϕ ∈ H1

0 (M,dvh) with ϕ > 0.

Next, for any ε > 0 small enough, we define the function ϕε := ρε ◦ r, where

ρε(t) :=


t
ε if 0 6 t 6 ε,

1 if ε 6 t 6 R− ε,
R−t
ε if R− ε 6 t 6 R,

0 if t > R.

Clearly ϕε ∈ H1
0 (M,dvh) with ϕε > 0. Inequality (4.7) and some computations yield

1

ε

∫
BR−BR−ε

qw,f (r) dvh −
1

ε

∫
Bε

qw,f (r) dvh 6
∫
BR

ϕε dvh, for any ε > 0.

This inequality can be written as

η(R)− η(R− ε)
ε

− η(ε)

ε
6
∫
BR

ϕε dvh, for any ε > 0,

where

η(s) :=

∫
Bs

qw,f (r) dvh =

∫ s

0

qw,f (t) Volh(∂Bt) dt,

and we have used the coarea formula. Note that η′(0) = 0 and η′(s) = qw,f (s) Volh(∂Bs)
for almost any s > 0. By taking limits above when ε→ 0+ we conclude that inequality

Volh(BR) > qw,f (R) Volh(∂BR) =
Volf (BwR)

Volf (∂BwR)
Volh(∂BR)

holds for almost any R > 0. This proves (4.1).

Now, consider the function

F (R) :=
Volh(BR)

Volf (BwR)
, for any R > 0.

Taking into account that d
dR Volh(BR) = Volh(∂BR) for almost any R > 0, that

d
dR Volf (BwR) = Volf (∂BwR) for any R > 0, and inequality (4.1), we easily deduce that
F (R) is non-increasing, and so

F (R) 6 lim
R→0+

F (R) = eh(o), for any R > 0,

which proves (4.2). The last equality above comes from the asymptotic expansion of
weighted volumes for small geodesic balls [4, Ch. 3], which implies that

Volh(Bt) ∼ cm tm eh(o) and Volf (Bwt ) ∼ cm tm,
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where cm is a positive dimensional constant and we have used that f(ow) = 0. Finally,
from (4.1) and (4.2), we conclude that

Volh(∂BR) 6
Volh(BR)

Volf (BwR)
Volf (∂BwR) 6 eh(o) Volf (∂BwR),

for almost any R > 0. This proves (4.3) and completes the proof. �

Remark 4.2. When the point o ∈M is a pole then inequalities (4.1) and (4.3) hold
for any R > 0. In this case cut(o) = ∅ and the proof of (4.1) is easier. Indeed, by
integrating in (4.6) and applying the divergence theorem, it follows that

Volh(BR) > −
∫
BR

∆hv dvh = −
∫
BR

divh∇v dvh

= −
∫
∂BR

〈∇v,∇r〉 dah = qw,f (R) Volh(∂BR),

which proves (4.1) for any R > 0. From here we deduce (4.3) as in the general case.

Remark 4.3. The structure and behaviour of the distributional Hessian and Lapla-
cian of the distance function r from a point o ∈M have been described in [27, Sect. 2].
From this study, it is still possible to get Hessian and Laplacian comparison theorems
from below if the hypothesis that o is a pole is weakened to the hypothesis that cut(o)
has zero (m−1)-dimensional Hausdorff measure, a condition that is equivalent to that
every point of cut(o) is focal for o, see the overview in [5, Ch. 2.1].

In the next result we show a capacity comparison and a parabolicity criterion for
weighted manifolds under a lower bound on Rich∞.

Theorem 4.4. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
such that w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0. Suppose that the following
conditions are fulfilled:

a) Every radial ∞-Bakry-Émery Ricci curvature is bounded as

Rich∞(∇r,∇r) > −(m− 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}).

b) There exists a non-decreasing C1 function θ : [0,∞[→ R such that

〈∇h,∇r〉w′(r) 6 θ(r)w′(r) on M − (cut(o) ∪ {o}).

Then, for almost any ρ > 0, we have

(4.8)
Caph(Bρ)

Volh(∂Bρ)
6

Capf (Bwρ )

Volf (∂Bwρ )
.

As a consequence

(4.9) Caph(Bρ) 6 e
h(o) Capf (Bwρ ),

where Capf (Bwρ ) denotes the weighted capacity of the metric ball Bwρ in the weighted

(w, f)-model space (Mm
w , gw, e

f(r)) with f(r) :=
∫ r

0
θ(s) ds.

Moreover, if

(4.10)

∫ ∞
ρ

w1−m(s) e−f(s) ds =∞,

for some ρ > 0, then M is h-parabolic.
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Proof. We first prove inequality (4.8). For any numbers ρ,R > 0 with ρ < R, let
φρ,R,f : [0,∞[→ R be the function defined in (2.7). This provides the solution to the

problem (2.5) in the (w, f)-model space (Mm
w , gw, e

f(r)). In particular, equality (2.6)
is satisfied on (0,∞). Compose this function with the distance r to obtain a radial
function v := φρ,R,f ◦ r. It is clear that v ∈ C2(M − cut(o)) such that v = 1 in ∂Bρ,

v = 0 in ∂BR and 0 6 v 6 1 in the annulus Aρ,R := BR − Bρ. Since φ′ρ,R,f 6 0, we

can use inequality (3.5) in Theorem 3.1 to deduce

∆hv > φ′′ρ,R,f (r) + φ′ρ,R,f (r)

(
(m− 1)

w′(r)

w(r)
+ θ(r)

)
= 0 on M − cut(o).

From here, we can reproduce the approximation argument in the proof of Theorem 4.1
to infer that∫

M

〈
∇v,∇ϕ

〉
dvh 6 0, for any ϕ ∈ H1

0 (M,dvh) with ϕ > 0.

In particular, this inequality holds when ϕ := ψ v, for any function ψ ∈ H1
0 (M,dvh)

such that ψ > 0 and ψ = 0 in M −Aρ,R. This implies that

(4.11)

∫
M

ψ |∇v|2 dvh 6 −
∫
M

v
〈
∇v,∇ψ

〉
dvh.

Now, we define a function v ∈ H1
0 (BR, dvh) by

v :=

{
v in Aρ,R,

1 in Bρ.

From the definition of weighted capacity, it follows that

(4.12) Caph(Bρ, BR) 6
∫
BR

|∇v|2 dvh =

∫
Aρ,R

|∇v|2 dvh.

Next, we will estimate the last integral with the help of (4.11).

For any ε > 0 small enough, we take the function ψε := ρε ◦ r, where

ρε(t) :=



0 if 0 6 t 6 ρ,
t−ρ
ε if ρ 6 t 6 ρ+ ε,

1 if ρ+ ε 6 t 6 R− ε,
R−t
ε if R− ε 6 t 6 R,

0 if t > R.

It is clear that ψε ∈ H1
0 (M,dvh) with ψε > 0 and ψε = 0 on M − Aρ,R. Hence,

inequality (4.11) and some computations lead to∫
M

ψε |∇v|2 dvh 6
1

ε

∫
BR−BR−ε

φρ,R,f (r)φ′ρ,R,f (r) dvh

− 1

ε

∫
Bρ+ε−Bρ

φρ,R,f (r)φ′ρ,R,f (r) dvh, for any ε > 0.

This inequality can be written as∫
M

ψε |∇v|2 dvh 6
η(R)− η(R− ε)

ε
− η(ρ+ ε)− η(ρ)

ε
, for any ε > 0,

where η : [0,∞[→ R is given by

η(s) :=

∫
Bs

φρ,R,f (r)φ′ρ,R,f (r) dvh =

∫ s

0

φρ,R,f (t)φ′ρ,R,f (t) Volh(∂Bt) dt,
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and we have used the coarea formula. By taking limits above when ε → 0+, and
having in mind the equalities φρ,R,f (ρ) = 1, φρ,R,f (R) = 0 together with equations
(4.12) and (2.8), we conclude that inequality

Caph(Bρ, BR) 6
∫
Aρ,R

|∇v|2 dvh 6 |φ′ρ,R,f (ρ)| Volh(∂Bρ)

=
Capf (Bwρ , B

w
R)

Volf (∂Bwρ )
Volh(∂Bρ),

holds for almost every ρ,R > 0 with ρ < R. Thanks to (2.2) the inequality (4.8)
follows by taking limits in the previous estimate when R goes to infinity. On the
other hand, the comparison in (4.9) comes from (4.8) and (4.3).

Finally, suppose that (4.10) is satisfied for some ρ > 0. This implies by equation

(2.8) that Capf (Bwρ ) = 0. We can admit that (4.8) holds for the value ρ, so that

Caph(Bρ) = 0. From Theorem 2.2 we conclude that M is h-parabolic. �

Remark 4.5. If the point o ∈ M is a pole, then cut(o) = ∅, and the inequalities
(4.8) and (4.9) are satisfied for any ρ > 0. Indeed, by using the divergence theorem,
the inequality ∆hv > 0 and the equalities v = 1 in ∂Bρ and v = 0 in ∂BR, we get

Caph(Bρ, BR) 6
∫
BR

|∇v|2 dvh =

∫
Aρ,R

|∇v|2 dvh

=

∫
Aρ,R

divh(v∇v) dvh −
∫
Aρ,R

v∆hv dvh

6
∫
∂Aρ,R

v
〈
∇v, ν

〉
dah = |φ′ρ,R,f (ρ)| Volh(∂Bρ).

From here we can deduce (4.8) and (4.9) as in the general case.

4.2. Comparisons under bounds on the Riemannian curvatures.

Here we establish estimates for the isoperimetric quotient of balls together with
parabolicity and hyperbolicity criteria by assuming radial bounds on some Riemann-
ian curvatures of the ambient manifold and on the radial derivatives of the weight.

We first obtain for the isoperimetric quotient of balls the same inequality as in
(4.1) by means of different hypotheses.

Theorem 4.6. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
such that w(0) = 0, w′(0) = 1, and w(s) > 0 for all s > 0. Suppose that the following
conditions are fulfilled:

a) The radial Ricci curvature in (M, g) is bounded as

Ric(∇r,∇r) > −(m− 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}).

b) There exists a continuous function θ : [0,∞[→ R such that

〈∇h,∇r〉 6 θ(r) on M − (cut(o) ∪ {o}).

Then, we have

Volh(BR)

Volh(∂BR)
>

Volf (BwR)

Volf (∂BwR)
, for almost any R > 0,
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where Volf stands for the weighted volume in the (w, f)-model space (Mm
w , gw, e

f(r))
with f(r) :=

∫ r
0
θ(s) ds. As a consequence

Volh(BR) 6 eh(o) Volf (BwR), for any R > 0,

Volh(∂BR) 6 eh(o) Volf (∂BwR), for almost any R > 0.

In particular, if Volf (Mw) <∞, then Volh(M) <∞.

Proof. For any R > 0, we consider the function φR : [0,∞[→ R defined in (4.4). This
provides the solution to the Poisson problem in (4.5). Since φ′R(r) 6 0, by applying
the inequalities for the Laplacian of radial functions in a Riemannian manifold with
Ricci curvature bounded from below [11, 48, 39], or by using the inequality (3.5) with
θ = 0 and h = 0, we get that the radial function v := φR ◦ r satisfies

∆v > φ′′R(r) + φ′R(r) (m− 1)
w′(r)

w(r)
on M − (cut(o) ∪ {o}).

If we combine this with the hypothesis in b), then we deduce that

∆hv > −1 on M − cut(o).

From here we can proceed as in the proof of Theorem 4.1 to show the claim. �

In the next result we replace the Ricci curvature with the sectional curvature so
that, by reversing the hypotheses in Theorem 4.6, we deduce the opposite compar-
isons. In this way, we are able to show an upper bound for the weighted isoperimetric
quotient of geodesic balls, which extends a result of Markvorsen and the second author
for the unweighted case [33, Sect. 8].

Theorem 4.7. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M and w(s) a smooth function
such that w(0) = 0, w′(0) = 1, and w(s) > 0 for all s > 0. Suppose that the following
conditions are fulfilled:

a) For any p ∈ M − (cut(o) ∪ {o}) and any plane σp ⊆ TpM containing (∇r)p,
we have

Sec(σp) 6 −
w′′(r)

w(r)
.

b) There exists a continuous function θ : [0,∞[→ R such that

〈∇h,∇r〉 > θ(r) on M − (cut(o) ∪ {o}).

Then, for any R > 0 such that BR ∩ cut(o) = ∅, we get

Volh(BR)

Volh(∂BR)
6

Volf (BwR)

Volf (∂BwR)
,

and therefore

Volh(BR) > eh(o) Volf (BwR),

Volh(∂BR) > eh(o) Volf (∂BwR),

where Volf stands for the weighted volume in the (w, f)-model space (Mm
w , gw, e

f(r))
with f(r) :=

∫ r
0
θ(s) ds.

Proof. It is well known, see for instance [11, Ch. 2] and [39], that the upper bound
on the radial sectional curvatures implies that

(4.13) ∆r > (m− 1)
w′(r)

w(r)
on M − (cut(o) ∪ {o}).
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Take R > 0 and let φR : [0,∞[→ R be the function in (4.4), which provides the
solution to the Poisson problem in (4.5). We define v := φR ◦ r. Since φ′R(r) 6 0,
from (4.13) we get

∆v 6 φ′′R(r) + φ′R(r) (m− 1)
w′(r)

w(r)
on M − (cut(o) ∪ {o}).

This inequality together with the hypothesis in b) yields

∆hv 6 −1 on M − cut(o).

Hence, if R satisfies that BR∩cut(o) = ∅, then ∂BR is a smooth hypersurface, and we
can proceed as in Remark 4.2 with reversed inequalities to deduce all the comparisons
in the claim. �

Remark 4.8. As a difference with respect to Theorem 4.6, where we assumed a
lower bound on the Ricci curvature, the comparisons in Theorem 4.7 are only valid
for balls having empty intersection with cut(o). The reason is that the approximation
argument in the proof of Theorem 4.1 fails, so that we cannot deduce an integral
inequality as in (4.7) from the Laplacian inequality ∆hv 6 −1 on M − cut(o). This
phenomenon is already observed in some classical comparison results in Riemannian
geometry, see for instance [7, Sect. III.4].

Now, we prove a capacity comparison with an associated parabolicity criterion
under a lower bound on the radial Ricci curvatures. In the unweighted case h = 0 we
recover a result of Ichihara [20].

Theorem 4.9. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
such that w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0. Suppose that the following
conditions are fulfilled:

a) Every radial Ricci curvature in (M, g) is bounded as

Ric(∇r,∇r) > −(m− 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}).

b) There exist ρ0 > 0 and a continuous function θ : [ρ0,∞[→ R such that

〈∇h,∇r〉 6 θ(r) on M − (cut(o) ∪Bρ0).

Then, for almost any ρ > ρ0, we have

Caph(Bρ)

Volh(∂Bρ)
6

Capf (Bwρ )

Volf (∂Bwρ )
,

where Capf (Bwρ ) denotes the weighted capacity of the metric ball Bwρ in a weighted

(w, f)-model space (Mm
w , gw, e

f(r)) with f(r) :=
∫ r
ρ0
θ(s) ds for any r > ρ0.

Moreover, if ρ0 = 0, then

Caph(Bρ) 6 e
h(o) Capf (Bwρ ),

for almost any ρ > 0.

Anyway, if

(4.14)

∫ ∞
ρ0

w1−m(s) e−f(s) ds =∞,

then M is h-parabolic.
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Proof. We follow the scheme of proof and notation in Theorem 4.4. For any numbers
ρ,R with ρ0 6 ρ < R, consider the radial function v := φρ,R,f ◦r. Since φ′ρ,R,f 6 0, by

taking into account the estimate for ∆v in (3.5) and the inequality 〈∇h,∇r〉 6 θ(r)
on M − (cut(o) ∪Bρ0), we obtain

∆hv = ∆v +
〈
∇h,∇v

〉
> φ′′ρ,R,f (r) + φ′ρ,R,f (r)

(
(m− 1)

w′(r)

w(r)
+
〈
∇h,∇r

〉)
> φ′′ρ,R,f (r) + φ′ρ,R,f (r)

(
(m− 1)

w′(r)

w(r)
+ θ(r)

)
= 0 on M − (cut(o) ∪Bρ0).

By reasoning as in the proof of Theorem 4.1, we get∫
M

〈
∇v,∇ϕ

〉
dvh 6 0, for any ϕ ∈ H1

0 (M −Bρ0 , dvh) with ϕ > 0.

In particular, the inequality in (4.11) is valid for any ψ ∈ H1
0 (M − Bρ0 , dvh) with

ψ > 0 and ψ = 0 in Aρ,R := BR − Bρ. From this point we can finish the proof as in
Theorem 4.4 with the help of the last inequality in the statement of Theorem 4.6. �

If we replace the Ricci curvature with the sectional curvature, and we reverse the
hypotheses in Theorem 4.9, then we deduce a weighted hyperbolicity criterion for
complete manifolds with a pole which generalizes a result of Ichihara [20] for simply
connected Riemannian manifolds. Indeed, under the assumptions on the sectional
curvature, the fact that M is simply connected implies that it has a pole. We also
remark that the technical issue observed in Remark 4.8 prevents a direct extension of
the theorem to any complete weighted manifold.

Theorem 4.10. Let (Mm, g, eh) be a complete weighted manifold with a pole o ∈M ,
r : M → [0,∞[ the distance function from o, and w(s) a smooth function such that
w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0. Suppose that the following conditions
are fulfilled:

a) For any p ∈M − {o} and any plane σp ⊆ TpM containing (∇r)p, we have

Sec(σp) 6 −
w′′(r)

w(r)
.

b) There exist ρ0 > 0 and a continuous function θ : [ρ0,∞[→ R such that

〈∇h,∇r〉 > θ(r) on M −Bρ0 .

Then, for any ρ > ρ0, we get

(4.15)
Caph(Bρ)

Volh(∂Bρ)
>

Capf (Bwρ )

Volf (∂Bwρ )
,

where Capf (Bwρ ) denotes the weighted capacity of the metric ball Bwρ in a weighted

(w, f)-model space (Mm
w , gw, e

f(r)) with f(r) :=
∫ r
ρ0
θ(s) ds for any r > ρ0.

Moreover, if ρ0 = 0, then

(4.16) Caph(Bρ) > e
h(o) Capf (Bwρ ),

for any ρ > 0.

Anyway, if

(4.17)

∫ ∞
ρ0

w1−m(s) e−f(s) ds <∞,

then M is h-hyperbolic.



COMPARISON RESULTS IN WEIGHTED MANIFOLDS 23

Proof. We follow the notation in Theorem 4.4. Choose numbers ρ,R with ρ0 6 ρ < R.
Consider the radial function v := φρ,R,f ◦ r defined in Aρ,R := BR − Bρ. Since
φ′ρ,R,f 6 0, by taking into account the estimate for ∆r in (4.13), the equality (3.6)

and the hypothesis 〈∇h,∇r〉 > θ(r) on M −Bρ0 , we obtain

∆hv = ∆v +
〈
∇h,∇v

〉
6 φ′′ρ,R,f (r) + φ′ρ,R,f (r)

(
(m− 1)

w′(r)

w(r)
+ θ(r)

)
= 0.

On the other hand, the h-capacity potential u of the capacitor (Bρ, BR) in M
satisfies ∆hu = 0 and 0 6 u 6 1 in Aρ,R, whereas u = v = 1 along ∂Bρ and u = v = 0
along ∂BR. From equation (2.3), and applying the divergence theorem in Aρ,R to the
vector fields v∇u and u∇v, we get

Caph(Bρ, BR) = −
∫
∂Bρ

〈
∇u,∇r

〉
dah =

∫
Aρ,R

〈
∇v,∇u

〉
dvh

>
∫
Aρ,R

u∆hv dvh +

∫
Aρ,R

〈
∇u,∇v

〉
dvh

= −
∫
∂Bρ

〈
∇v,∇r

〉
dah = |φ′ρ,R,f (ρ)| Volh(∂Bρ)

=
Capf (Bwρ , B

w
R)

Volf (∂Bwρ )
Volh(∂Bρ),

where we have used (2.8). Thanks to (2.2) the inequality (4.15) follows by taking
limits above when R goes to infinity. The estimate in (4.16) comes from (4.15) with
the help of the last comparison in Theorem 4.7. Finally, the hypothesis (4.17) implies

by equation (2.8) that Capf (Bwρ0) > 0. Thus, we have Caph(Bρ0) > 0 by (4.15).
From Theorem 2.2 we conclude that M is h-hyperbolic. �

Remark 4.11. The hypothesis about Ric in Theorem 4.9 is independent of the
hypothesis about Rich∞ in Theorem 4.4. However, it is immediate that the second one
implies the first one provided the convexity condition (Hessh)(∇r,∇r) > 0 holds on
M − (cut(o) ∪ {o}). In a similar way, the hypothesis

Sech∞(σp) 6 −
w′′(r)

w(r)

for any p ∈M − (cut(o)∪{o}) and any radial plane σp ⊆ TpM entails the same upper
bound on Sec(σp) whenever (Hessh)(∇r,∇r) 6 0 on M − (cut(o) ∪ {o}).

4.3. Comparisons under a lower bound on the q-Bakry-Émery Ricci curva-
tures.

In this subsection we first follow the above arguments to provide a comparison for
the weighted isoperimetric quotient and a parabolicity criterion by assuming a lower
bound on some q-Bakry-Émery Ricci curvature with q > 0. Related comparisons for
volumes and quotient of volumes (but not for isoperimetric quotients) can be found
in [44, 3, 28].

Theorem 4.12. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
such that w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0.

If, for some q > 0, the radial q-Bakry-Émery Ricci curvature is bounded as

Richq (∇r,∇r) > −(m+ q − 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}),
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then, for almost any R > 0, we have

Volh(BR)

Volh(∂BR)
>

∫ R
0
wm+q−1(s) ds

wm+q−1(R)
.

Proof. We will employ arguments similar to those in [38, 29, 33]. Let qw : (0,∞)→ R
be the function

qw(t) :=

∫ t
0
wm+q−1(s) ds

wm+q−1(t)
.

Note that qw extends to 0 as a C1 function with qw(0) = 0 and q′w(0) = 1
m+q .

For fixed R > 0, we define the C2 function φR : [0,∞[→ R by φR(s) :=
∫ R
s
qw(t) dt.

This satisfies the Poisson-type problem{
φ′′R(s) + φ′R(s) (m+ q − 1) w

′(s)
w(s) = −1 in [0,∞[,

φR(R) = 0.

If we consider v := φR ◦ r, then we get a radial function v ∈ C2(M − cut(o)). Since
φ′R(s) = −qw(s) 6 0, by inequality (3.3) in Theorem 3.1 we deduce

∆hv > φ′′R(r) + φ′R(r) (m+ q − 1)
w′(r)

w(r)
= −1 on M − cut(o).

Now, we can follow the proof of (4.1) to deduce the desired comparison. �

Theorem 4.13. Let (Mm, g, eh) be a complete and non-compact weighted manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
such that w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0.

If, for some q > 0, the radial q-Bakry-Émery Ricci curvature is bounded as

Richq (∇r,∇r) > −(m+ q − 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}),

then, for almost any ρ > 0, we have

Caph(Bρ)

Volh(∂Bρ)
6

w1−m−q(ρ)∫∞
ρ
w1−m−q(s) ds

.

Moreover, if

(4.18)

∫ ∞
ρ

w1−m−q(s) ds =∞,

for some ρ > 0, then M is h-parabolic.

Proof. In this case we consider v := φρ,R ◦ r, where φρ,R : [0,∞[→ R is the function
defined in (2.7) when we take f = 0 and dimensional constant m + q. In particular
φρ,R satisfies the differential equation in (2.6), so that the comparison ∆hv > 0 on
M − cut(o) comes from inequality (3.3) in Theorem 3.1. The rest of the proof relies
on the arguments employed in Theorem 4.4. �

We finish this section by showing how we can deduce the parabolicity of a Rie-
mannian manifold (Mm, g) from a lower bound for the q-Bakry-Émery Ricci curva-
tures associated to a weight eh in M . The strategy for the proof is similar to previous
ones by using a second order differential operator L, that coincides with the weighted
Laplacian in some (w, f)-model space only when q ∈ N.
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Theorem 4.14. Let (Mm, g) be a complete and non-compact Riemannian manifold,
r : M → [0,∞[ the distance function from a point o ∈M , and w(s) a smooth function
such that w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0. Suppose that there exists a
weight eh on M such that the following conditions are fulfilled:

a) For some q > 0 the radial q-Bakry-Émery Ricci curvature is bounded as

Richq (∇r,∇r) > −(m+ q − 1)
w′′(r)

w(r)
on M − (cut(o) ∪ {o}).

b) There exist ρ0 > 0 and a continuous function θ : [ρ0,∞[→ R such that

〈∇h,∇r〉 > θ(r) on M −Bρ0 .

Then, for almost any ρ > ρ0, we have

(4.19)
Cap(Bρ)

Vol(∂Bρ)
6

w1−m−q(ρ) e−f(ρ)∫∞
ρ
w1−m−q(s) e−f(s) ds

,

where Cap and Vol denote the capacity and volume in (M, g), and f(r) := −
∫ r
ρ0
θ(s) ds

for any r > ρ0.

Moreover, if

(4.20)

∫ ∞
ρ0

w1−m−q(s) e−f(s) ds =∞,

then M is parabolic in Riemannian sense.

Proof. We define a second order differential operator L acting on any C2 function
F : [ρ0,∞[→ R by

L(F (s)) := F ′′(s) + F ′(s)

(
(m+ q − 1)

w′(s)

w(s)
− θ(s)

)
.(4.21)

As in Theorem 2.8 it is easy to check that, for any ρ,R with ρ0 6 ρ < R, the function
φLρ,R : [ρ0,∞[→ R obtained by replacing m with m + q in (2.7) satisfies equation

L(φLρ,R(s)) = 0 in [ρ0,∞[ with φLρ,R(ρ) = 1 and φLρ,R(R) = 0.

In the setM−Bρ0 we define v := φLρ,R◦r, which is C2 function onM−(cut(o)∪Bρ0).

Because (φLρ,R)′ 6 0, we can use inequality (3.3) in Theorem 3.1 to deduce

∆hv > (φLρ,R)′′(r) + (φLρ,R)′(r) (m+ q − 1)
w′(r)

w(r)
on M − (cut(o) ∪Bρ0).

Since ∆v = ∆hv − 〈∇h,∇v〉, by taking into account the hypothesis b) and the fact
that (φLρ,R)′ 6 0, we get this inequality on M − (cut(o) ∪Bρ0)

∆v > (φLρ,R)′′(r) + (φLρ,R)′(r)

(
(m+ q − 1)

w′(r)

w(r)
− 〈∇h,∇r〉

)
> (φLρ,R)′′(r) + (φLρ,R)′(r)

(
(m+ q − 1)

w′(r)

w(r)
− θ(r)

)
= 0.

As in the proof of Theorem 4.4, the approximation argument in Theorem 4.1 implies∫
M

〈
∇v,∇ϕ

〉
dv 6 0, for any ϕ ∈ H1

0 (M −Bρ0 , dv) with ϕ > 0.

In particular, the inequality in (4.11) is valid for any ψ ∈ H1
0 (M − Bρ0 , dvh) with

ψ > 0 and ψ = 0 in the annulus Aρ,R := BR −Bρ.
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From here, we can reproduce the arguments in the proof of (4.8) to deduce that

Cap(Bρ, BR) 6
∫
Aρ,R

|∇v|2 da 6 |(φLρ,R)′(ρ)| Vol(∂Bρ)

=
w1−m−q(ρ) e−f(ρ)∫ R

ρ
w1−m−q(s) e−f(s) ds

Vol(∂Bρ)

holds for almost any ρ,R with ρ0 6 ρ < R. Hence, the comparison in (4.19) follows
by taking limits when R→∞. Finally, the condition (4.20) implies that Cap(Bρ) = 0
for some ρ > ρ0 where (4.19) is valid. Thus, M is parabolic by Theorem 2.2. �

Remark 4.15. Note that, if q ∈ N, then the right hand side terms in the comparisons
established in Theorems 4.12, 4.13 and 4.14 can be written as

Vol(BwR,m+q)

Vol(∂BwR,m+q)
,

Cap(Bwρ,m+q)

Vol(∂Bwρ,m+q)
and

Capf (Bwρ,m+q)

Volf (∂Bwρ,m+q)
,

where Bwt,m+q denotes the metric ball of radius t centered at ow, Vol and Cap are the

capacity and volume in the w-model space (Mm+q
w , gw), and Volf and Capf are the

weighted capacity and volume in the (w, f)-model space (Mm+q
w , gw, e

f(r)). In this
case, the operator L defined in (4.21) coincides with the weighted Laplacian operator
in (Mm+q

w , gw, e
f(r)) over radial functions.

Note also that, under the conditions of Theorem 4.12, we cannot deduce a volume
comparison as in (4.2). The problem is that, although the corresponding function

F (R) :=
Volh(BR)

Vol(BwR,m+q)

is still non-increasing, we have that F (R)→∞ when R→ 0.

Remark 4.16. The non-integrability (resp. integrability) hypotheses in (4.10), (4.14),
(4.18), (4.20) and (4.17) are equivalent by Remark 2.9 to the weighted parabolicity
(resp. hyperbolicity) of the corresponding weighted comparison model. In particular,
Theorems 4.4, 4.9, 4.13, 4.14 and 4.10 show that the ambient manifold is h-parabolic
(resp. h-hyperbolic) provided the weighted (w, f)-model space is f -parabolic (resp.
f -hyperbolic).

5. Extrinsic comparison results

In this section, given a weighted manifold with a pole and a properly immersed
submanifold, we establish volume and capacity comparisons for extrinsic balls in the
submanifold. As a consequence, we deduce parabolicity and hyperbolicity of subman-
ifolds by assuming certain control on the weighted mean curvature of the submanifold,
the radial curvatures of the weight and some (weighted) curvatures of the ambient
manifold. This extends to arbitrary weighted manifolds the results obtained by the
authors in rotationally symmetric manifolds with weights [19, Sect. 3].

5.1. Submanifolds in weighted manifolds.

Let Pn be an n-dimensional submanifold with ∂P = ∅ properly immersed in a
weighted manifold (Mm, g, eh) with a pole o ∈ M . We consider in P the induced
Riemannian metric. We use the notation∇Pu and ∆Pu for the gradient and Laplacian
in P of a function u ∈ C2(P ).

The restriction to P of the weight eh in M produces a structure of weighted man-
ifold in P . From (2.1) the associated h-Laplacian ∆h

P has the expression

∆h
Pu = ∆Pu+

〈
∇Ph,∇Pu

〉
,



COMPARISON RESULTS IN WEIGHTED MANIFOLDS 27

for any u ∈ C2(P ). We say that the submanifold P is h-parabolic when P is weighted
parabolic as a weighted manifold. Otherwise we say that P is h-hyperbolic. By
Theorem 2.2 the h-parabolicity of P is equivalent to that CaphP (D) = 0 for some

precompact open set D ⊆ P , where CaphP denotes the h-capacity relative to P . Clearly
a compact submanifold P is h-parabolic.

Next we introduce the extrinsic balls of a submanifold P . As in the previous
sections we denote by r : M → [0,∞[ the distance function from the pole o ∈M , and
by BR the metric ball in M of radius R > 0 centered at o.

Definition 5.1. If P is a non-compact submanifold properly immersed in M , the
extrinsic metric ball of (sufficiently large) radius R > 0 and center o is denoted by
DR, and defined as any connected component of the set

BR ∩ P = {p ∈ P : r(p) < R}.

For given radii ρ,R > 0 with ρ < R, we define the extrinsic annulus in P as the set

APρ,R := DR −Dρ,

where DR is the component of BR ∩ P containing Dρ.

Since P is properly immersed in M the extrinsic balls are precompact open sets in
P . As we assume that P is noncompact then DR 6= P for any R > 0. Moreover, by
Sard’s Theorem we deduce that ∂DR is smooth for almost any R > 0.

Now we present another necessary ingredient to establish our results: the weighted
mean curvature of submanifolds. In the case of two-sided hypersurfaces this was first
introduced by Gromov [18], see also [4, Ch. 3].

Definition 5.2. The weighted mean curvature vector or h-mean curvature vector of
P is the vector field normal to P given by

H
h

P := nHP − (∇h)⊥,

where (∇h)⊥ is the normal projection of ∇h with respect to P and HP is the mean

curvature vector of P . This is defined as nHP := −
∑m−n
i=1 (divP Ni)Ni, where divP

stands for the divergence relative to P and {N1, . . . , Nm−n} is any local orthonormal
basis of vector fields normal to P .

We say that P has constant h-mean curvature if |Hh

P | is constant on P . If H
h

P = 0,
then P is called h-minimal. More generally, P has bounded h-mean curvature if

|Hh

P | 6 c on P for some constant c > 0.

For later use we must note that equality

(5.1) 〈nHP ,∇r〉+ 〈∇Ph,∇P r〉 = 〈Hh

P ,∇r〉+ 〈∇h,∇r〉

holds on P − {o}. This easily comes from the definition of H
h

P and the fact that
∇h− (∇h)⊥ = ∇Ph.

5.2. Extrinsic Laplacian comparisons.

As in Section 4, the analysis of modified distance functions will be instrumental
to deduce our comparisons for extrinsic balls of submanifolds. The results in this
subsection are applications to the extrinsic context of the estimates for the distance
function in Theorem 3.3, and of Laplacian comparisons for modified distance functions
in submanifolds given in [31, 33, 39].

We first establish some inequalities for the weighted Laplacian of submanifolds
under bounds on the radial sectional curvatures of the ambient manifold. In the
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particular case of rotationally symmetric manifolds with a pole it was shown in Lemma
3.1 of [19] that all the estimates in the next statement become equalities.

Theorem 5.3. Let (Mm, g, eh) be a weighted manifold with a pole o ∈ M , Pn a
submanifold immersed in M , r : M → [0,∞[ the distance function from o, and w(s)
a smooth function such that w(0) = 0, w′(0) = 1 and w(s) > 0 for all s > 0.

If, for any p ∈M − {o} and any plane σp ⊆ TpM containing (∇r)p, we have

Sec(σp) > (6) − w′′(r)

w(r)
,

then, for every smooth function F : (0,∞)→ R with F ′ 6 0, we obtain the inequality

∆h
P (F ◦ r) > (6)

(
F ′′(r)− F ′(r) w

′(r)

w(r)

)
|∇P r|2

+ F ′(r)

(
n
w′(r)

w(r)
+ 〈Hh

P ,∇r〉+ 〈∇h,∇r〉
)

in the points of P − {o}.

Proof. From the results in [33, 39], which requires that w′(0) = 1 when Sec(σp) 6

−w
′′(r)
w(r) , the bound for the radial sectional curvatures of the ambient manifold implies

that the Laplacian ∆P of the modified distance function F ◦ r satisfies the inequality

∆P (F ◦ r) > (6)

(
F ′′(r)− F ′(r) w

′(r)

w(r)

)
|∇P r|2 + nF ′(r)

(
w′(r)

w(r)
+ 〈HP ,∇r〉

)
.

Thus, by the definition of weighted Laplacian, we get

∆h
P (F ◦ r) > (6)

(
F ′′(r)− F ′(r) w

′(r)

w(r)

)
|∇P r|2

+ nF ′(r)

(
w′(r)

w(r)
+ 〈HP ,∇r〉

)
+ F ′(r) 〈∇Ph,∇P r〉,

so that the claim follows by using (5.1). �

Now, we derive a comparison for the weighted Laplacian of submanifolds by as-
suming a lower bound on some q-weighted sectional curvature. Such a bound does
not imply a lower bound on the Riemannian sectional curvature, so that we cannot
use, as we did in Theorem 5.3, the known inequalities for the unweighted Laplacian.

Theorem 5.4. Let (Mm, g, eh) be a weighted manifold with a pole o ∈ M , Pn a
submanifold immersed in M , r : M → [0,∞[ the distance function from o, and w(s)
a smooth function such that w(0) = 0 and w(s) > 0 for all s > 0.

If there is q > 0 such that, for any p ∈M−{o} and any plane σp ⊆ TpM containing
(∇r)p, we have

Sechq (σp) > −
m+ q − 1

m− 1

w′′(r)

w(r)
,

then, for every smooth function F : (0,∞)→ R with F ′ 6 0, we obtain the inequality

∆h
P (F ◦ r) >

(
F ′′(r)− F ′(r)

m− 1

(
(m+ q − 1)

w′(r)

w(r)
− 〈∇h,∇r〉

))
|∇P r|2

+ F ′(r)

(
n
m+ q − 1

m− 1

w′(r)

w(r)
+
m− n− 1

m− 1
〈∇h,∇r〉+ 〈Hh

P ,∇r〉
)
.

in the points of P − {o}.
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Proof. For any smooth function F : (a, b) → R and any tangent vector y to P , it is
not difficult to check as in [21] or [39] that

HessP (F ◦ r)(y, y) = F ′′(r)
〈
y,∇r

〉2
+ F ′(r)

(
(Hess r)(y, y) +

〈
α(y, y),∇r

〉)
,

where HessP is the Hessian operator relative to P and α is the second fundamental
form of P . Hence, by using the estimate for (Hess r)(y, y) in (3.14) and the fact that
F ′ 6 0, we get

HessP (F ◦ r)(y, y) > F ′′(r)
〈
y,∇r

〉2
+ F ′(r)

〈
α(y, y),∇r

〉
+ F ′(r) (|y|2 −

〈
y,∇r

〉2
)

(
m+ q − 1

m− 1

w′(r)

w(r)
− 1

m− 1

〈
∇h,∇r

〉)
.

Applying the previous inequality to an orthonormal basis {y1, . . . , yn} of tangent
vectors to P − {o} and summing up, we arrive at

∆P (F ◦ r) > F ′′(r) |∇P r|2 + F ′(r)
〈
nHP ,∇r

〉
+ F ′(r)

(
n− |∇P r|2

)(m+ q − 1

m− 1

w′(r)

w(r)
− 1

m− 1

〈
∇h,∇r

〉)
.

From here the proof finishes after some computations by taking into account (5.1)
and that ∆h

P (F ◦ r) = ∆P (F ◦ r) + F ′(r)
〈
∇Ph,∇P r

〉
. �

5.3. Comparisons under bounds on the sectional curvatures.

With Theorem 5.3 in hand we are now ready to prove estimates for the weighted
volume of extrinsic balls for submanifolds.

Theorem 5.5. Let (Mm, g, eh) be a weighted manifold with a pole o ∈M , Pn a non-
compact submanifold properly immersed in M , r : M → [0,∞[ the distance function
from o, and w(s) a smooth function such that w(0) = 0, w′(0) = 1 and w(s) > 0 for
all s > 0. Suppose that the following conditions are fulfilled:

(i) For any p ∈M − {o} and any plane σp ⊆ TpM containing (∇r)p, we have

Sec(σp) > (6)− w′′(r)

w(r)
.

(ii) There exist continuous functions ψ,ϕ : [0,∞[→ R, such that

〈∇h,∇r〉 6 (>)ψ(r), 〈Hh

P ,∇r〉 6 (>)ϕ(r) on P − {o}.
(iii) In P − {o} the bounding functions verify

n
w′(r)

w(r)
+ ψ(r) + ϕ(r) 6 (>)

1

qw,f (r)
(balance condition),

where qw,f is the weighted isoperimetric quotient in the weighted (w, f)-model

space (Mn
w, gw, e

f(r)) with f(r) :=
∫ r

0
(ψ(s) + ϕ(s)) ds.

Then, for any extrinsic ball DR in P such that ∂DR is smooth, we obtain

Volh(DR) > (6)
Volf (BwR)

Volf (∂BwR)

∫
∂BR

|∇P r| dah,

where BwR is the metric ball of radius R centered at the pole ow in (Mn
w, gw).

Proof. Fix R > 0 such that ∂DR is smooth. The function φR : [0, R]→ R given by

φR(s) :=

∫ R

s

qw,f (t) dt
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is C2 and satisfies the differential equation

(5.2) φ′′R(s) + φ′R(s)

(
(n− 1)

w′(s)

w(s)
+ ψ(s) + ϕ(s)

)
= −1 in [0, R].

We define v := φR ◦ r, which is a radial function in C2(DR). Since φ′R 6 0, by
using Theorem 5.3 and the estimates in (ii), we infer that

∆h
P v > (6)

(
φ′′R(r)− φ′R(r)

w′(r)

w(r)

)
|∇P r|2 + φ′R(r)

(
nw′(r)

w(r)
+ ϕ(r) + ψ(r)

)
.

Observe that (5.2) and the balance condition in (iii) imply that

φ′′R(r)− φ′R(r)
w′(r)

w(r)
= −1− φ′R(r)

(
n
w′(r)

w(r)
+ ψ(r) + ϕ(r)

)
6 (>) 0

in DR − {o}. As |∇P r| 6 1, we conclude that

∆h
P v > (6)φ′′R(r) + φ′R(r)

(
(n− 1)

w′(r)

w(r)
+ ϕ(r) + ψ(r)

)
= −1

in DR. Finally, we integrate and apply the divergence theorem to get

Volh(DR) > (6) −
∫
DR

divh∇P v dvh = −
∫
∂DR

〈
∇P v,

∇P r
|∇P r|

〉
dah

= qw,f (R)

∫
∂DR

|∇P r| dah =
Volf (BwR)

Volf (∂BwR)

∫
∂BR

|∇P r| dah,

where we have used that φ′R(s) = −qw,f (s) and that the outer conormal vector along

∂DR is ∇P r
|∇P r| . This proves the claim. �

Remark 5.6. In the case where Sec(σp) > −w
′′(r)
w(r) the theorem extends to weighted

manifolds a comparison of Markvorsen and the second author [33]. In the case

Sec(σp) 6 −w
′′(r)
w(r) the fact that |∇P r| 6 1 on P − {o} leads to the estimate

Volh(DR)

Volh(∂DR)
6

Volf (BwR)

Volf (∂BwR)
.

This generalizes to a weighted context a result of the second author [38] for minimal
submanifolds of Cartan-Hadamard manifolds.

Next, we provide some criteria for the h-parabolicity or h-hyperbolicity of non-
compact submanifolds properly immersed in a weighted manifold with bounded radial
sectional curvatures.

Our first result is an extension to the weighted setting of previous theorems for
Riemannian manifolds by Esteve and the second author [9], and by Markvorsen and
the second author [31]. We note that the particular situation of rotationally symmetric
manifolds with weights was analyzed by the authors in Theorems 3.2 and 3.3 of [19].

Theorem 5.7. Let (Mm, g, eh) be a weighted manifold with a pole o ∈M , Pn a non-
compact submanifold properly immersed in M , r : M → [0,∞[ the distance function
from o, and w(s) a smooth function such that w(0) = 0, w′(0) = 1 and w(s) > 0 for
all s > 0. Suppose that the following conditions are fulfilled:

(i) For any p ∈M − {o} and any plane σp ⊆ TpM containing (∇r)p, we have

Sec(σp) > (6)− w′′(r)

w(r)
.
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(ii) There exist ρ > 0 and continuous functions ψ(s), ϕ(s), such that ∂Dρ is
smooth and

〈∇h,∇r〉 6 (>)ψ(r), 〈Hh

P ,∇r〉 6 (>)ϕ(r) on P −Dρ.

(iii) In P −Dρ the bounding functions verify

ψ(r) + ϕ(r) 6 (>) − n w
′(r)

w(r)
(balance condition).

Then, we obtain

CaphP (Dρ) 6 (>)
Capf (Bwρ )

Volf (∂Bwρ )

∫
∂DR

|∇P r| dah,

where Capf (Bwρ ) denotes the weighted capacity of the metric ball Bwρ in a weighted

(w, f)-model space (Mn
w, gw, e

f(r)) with f(r) :=
∫ r
ρ

(ψ(s) + ϕ(s)) ds for any r > ρ.

Moreover, if

(5.3)

∫ ∞
ρ

w1−n(s) e−f(s) ds = (<)∞,

then P is h-parabolic (h-hyperbolic).

Proof. By using Sard’s Theorem we can suppose that ∇P r 6= 0 along ∂Dρ. Take
any number R > ρ such that ∂DR is smooth. Let us consider the extrinsic annulus
APρ,R := DR − Dρ and the function φρ,R,f : [ρ,R] → R defined in (2.7), i.e., the

f -capacity potential of (B
w

ρ , B
w
R) in the n-dimensional weighted (w, f)-model space

(Mn
w, gw, e

f(r)). This function is the solution to the problem (2.5); in particular, it
satisfies (2.6) by replacing m with n. The composition v := φρ,R,f ◦r defines a smooth
function in APρ,R.

Since φ′ρ,R,f (r) 6 0, by using Theorem 5.3 and the boundedness assumptions (ii)

in the statement, we get this comparison in APρ,R

∆h
P v > (6)

(
φ′′ρ,R,f (r)− φ′ρ,R,f (r)

w′(r)

w(r)

)
|∇P r|2+φ′ρ,R,f (r)

(
nw′(r)

w(r)
+ ϕ(r) + ψ(r)

)
.

On the other hand, by taking into account (2.6) and the balance condition in (iii), it
follows that

φ′′ρ,R,f (r)− φ′ρ,R,f (r)
w′(r)

w(r)
= −φ′ρ,R,f (r)

(
n
w′(r)

w(r)
+ ψ(r) + ϕ(r)

)
6 (>) 0

in APρ,R. As |∇P r| 6 1, we conclude that

∆h
P v > (6) φ′′ρ,R,f (r) + φ′ρ,R,f (r)

(
(n− 1)

w′(r)

w(r)
+ ϕ(r) + ψ(r)

)
= 0 = ∆h

P u,

where u is the h-capacity potential of the capacitor (Dρ, DR) in P . Since u = v on
∂APρ,R, by applying the maximum principle and the Hopf boundary point lemma in

Theorem 2.1, we deduce that ∂u
∂ν < (>) ∂v∂ν on ∂Dρ, where ν is the outer unit normal

along ∂APρ,R, which coincides with the unit normal ∇Pu|∇Pu| = ∇P v
|∇P v| along ∂Dρ pointing
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into Dρ. From (2.3), we obtain

CaphP (Dρ, DR) =

∫
∂Dρ

|∇Pu| dah 6 (>)

∫
∂Dρ

|∇P v| dah

= |φ′ρ,R,f (ρ)|
∫
∂Dρ

|∇P r| dah

=
Capf (Bwρ , B

w
R)

Volf (∂Bwρ )

∫
∂Dρ

|∇P r| dah.

Hence, the desired comparison follows by taking limits when R → ∞. Moreover, if
(5.3) holds, then Capf (Bwρ ) = CaphP (Dρ) = 0 (resp. Capf (Bwρ ) > 0 and CaphP (DR) >
0), so that P is h-parabolic (resp. h-hyperbolic) by Theorem 2.2. �

Remark 5.8. Under the hypotheses corresponding to the case Sec(σp) > −w
′′(r)
w(r) we

can deduce that

CaphP (Dρ)

Volh(∂Dρ)
6

Capf (Bwρ )

Volf (∂Bwρ )
.

Remark 5.9. In [19, Re. 3.4 (2)] the authors showed a geometric interpretation for
the balance condition in Theorem 5.7 (iii) in terms of the weighted mean convexity of
the metric spheres centered at the pole in a weighted (w, f)-model (Mn+1

w , gw, e
f(r)),

where n = dim(P ) and f(t) :=
∫ t
ρ
(ψ(s) + ϕ(s)) ds for any t > ρ. In Corollaries 5.10

and 5.11 below we provide some hypotheses ensuring that the condition is satisfied.
In [19, Cor. 3.6, Re. 3.7] the authors described similar situations in weighted (w, f)-
models, including Euclidean space Rm and hyperbolic space Hm with radial (and more
general) weights. In particular, this allowed to establish weighted parabolicity and
hyperbolicity properties for self-shrinkers, self-expanders and translating solitons of
the mean curvature flow, see [19, Ex. 3.10, Cor. 3.12, Ex. 4.24]. Indeed, the weighted
parabolicity was an essential property in [19, Sect. 4] to deduce characterization results
for proper submanifolds with bounded h-mean curvature vector, and confined into
some regions of a w-model space.

Next, we will deduce some consequences of Theorem 5.7 for submanifolds with
bounded weighted mean curvature.

Corollary 5.10. Let (Mm, g, eh) be a weighted manifold with a pole o ∈ M , Pn

a non-compact submanifold properly immersed in M , r : M → [0,∞[ the distance
function from o, and w(s) a smooth function such that w(0) = 0, w′(0) = 1 and
w(s) > 0 for all s > 0. Suppose that the following conditions are fulfilled:

(i) The function w satisfies
∫∞

0
w(s) ds = ∞ (resp.

∫∞
0
w(s) ds < ∞) and w′(s)

w(s)

is bounded at infinity.
(ii) For any p ∈M − {o} and any plane σp ⊆ TpM containing (∇r)p, we have

Sec(σp) > (6)− w′′(r)

w(r)
.

(iii) There exist ρ > 0 and a continuous function ψ(s) with ψ(s) → −∞ (resp.
ψ(s)→∞) when s→∞, such that ∂Dρ is smooth and

〈∇h,∇r〉 6 (>)ψ(r) on P −Dρ.

In these conditions, if P has bounded h-mean curvature, then P is h-parabolic
(resp. h-hyperbolic).
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Proof. We check the hypotheses in Theorem 5.7. Choose c > 0 such that |Hh

P | 6 c on

P . The Cauchy-Schwarz inequality implies that
〈
H
h

P ,∇r
〉
6 c (resp.

〈
H
h

P ,∇r
〉
> −c)

on P − {o}. On the other hand, since w′(s)
w(s) is bounded at infinity and ψ(s) → −∞

(resp. ψ(s)→∞) when s→∞, by changing ρ if necessary, we can suppose that

n
w′(r)

w(r)
+ ψ(r) + c 6 0

(
resp. n

w′(r)

w(r)
+ ψ(r)− c > 0

)
on P −Dρ,

so that the balance condition is satisfied. Consider the function f(s) :=
∫ s
ρ

(ψ(t)+c) dt

(resp. f(s) :=
∫ s
ρ

(ψ(t)− c) dt). By integrating the inequality above, we obtain

f(s) 6 (>)− n
∫ s

ρ

w′(t)

w(t)
dt = −n ln

(
w(s)

w(ρ)

)
,

and so

e−f(s) > (6)
wn(s)

wn(ρ)
, for any s > ρ.

From here we have∫ ∞
ρ

w1−n(s) e−f(s) ds > (6)
1

wn(ρ)

∫ ∞
ρ

w(s) ds,

so that the condition in (5.3) holds since
∫∞

0
w(s) ds = ∞ (resp.

∫∞
0
w(s) ds < ∞).

We conclude that P is h-parabolic (resp. h-hyperbolic). �

Also as a consequence of Theorem 5.7 we can extend to a weighted setting a result
of S. Markvorsen and the second author [30] ensuring that, in a Cartan-Hadamard
manifold with sectional curvatures bounded from above by b 6 0, the n-dimensional
complete minimal and properly immersed submanifolds are hyperbolic if either b < 0
and n > 2, or b = 0 and n > 3. This statement is the particular case h = 0 of the
next corollary.

Corollary 5.11. Let (Mm, g) be a Cartan-Hadamard manifold, i.e., a complete and
simply connected Riemannian manifold such that there is a constant b 6 0 for which

Sec(σp) 6 b,

for any plane σp ⊆ TpM and any point p ∈M . Denote by r : M → [0,∞[ the distance
function from a fixed point o ∈M . Given a weight eh in M , suppose that there exist
n ∈ N with n > 2, and constants ρ, ε > 0, such that{〈

∇h,∇r
〉
> −n−2−ε

r in M −Bρ if b = 0,〈
∇h,∇r

〉
> −(n− 1− ε)

√
−b coth(

√
−b r) in M −Bρ if b < 0.

Then, any non-compact h-minimal submanifold Pn properly immersed in M is h-
hyperbolic.

Proof. For a submanifold P in the conditions of the statement we check that the
hypotheses in Theorem 5.7 are satisfied.

In case b = 0 we consider the functions w,ψ, ϕ : [0,∞[→ R defined by w(s) := s,
ψ(s) := −n−2−ε

s and ϕ(s) := 0. Observe that

ψ(r) + ϕ(r) + n
w′(r)

w(r)
=
ε+ 2

r
> 0,

so that the balance condition holds. On the other hand, a straightforward computa-
tion shows that

f(s) :=

∫ s

ρ

ψ(t) dt = −(n− 2− ε) ln

(
s

ρ

)
,
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and so ∫ ∞
ρ

w1−n(s) e−f(s) ds =
1

ρn−2−ε

∫ ∞
ρ

s−(ε+1) ds <∞,

which is the condition in (5.3). From here we conclude that P is h-hyperbolic.

In case b < 0 we reason in a similar way with the functions w,ψ, ϕ : [0,∞[→ R given
by w(s) := 1√

−b sinh(
√
−b s), ψ(s) := −(n−1−ε)

√
−b coth(

√
−b s) and ϕ(s) := 0. �

Remark 5.12. In Theorem 5.3 and the results of this subsection we assume bounds
on the Riemannian sectional curvatures. As we noted in Remark 4.11, these hypothe-
ses hold when we assume the same bounds on Sech∞ under an additional condition for
the sign of (Hessh)(∇r,∇r).

Remark 5.13. As we pointed out in Remark 4.16, the condition in (5.3) is equivalent
by Remark 2.9 to the weighted parabolicity (resp. hyperbolicity) of the corresponding
n-dimensional weighted comparison model. Hence, Theorem 5.7 shows that the sub-
manifold P is h-parabolic (resp. h-hyperbolic) provided the weighted (w, f)-model
space is f -parabolic (resp. f -hyperbolic).

Remark 5.14 (Comparisons under a lower bound on Sech∞). By following the proofs
of Theorems 5.5 and 5.7 it is possible to derive a volume comparison and a parabolicity
criterion for a weighted manifold (Mm, g, eh), where h is a radial non-decreasing
weight satisfying that

Sech∞(σp) > −
w′′(r)

w(r)
.

The starting point for these comparisons is the inequality (3.9) in Theorem 3.3, from
which the same estimate for ∆h

P (F ◦r) as in Theorem 5.3 can be deduced. The details
are left to the reader.

5.4. Weighted parabolicity under a lower bound on the q-weighted sectional
curvatures.

We finally show a parabolicity criterion by assuming a lower bound on some q-
weighted sectional curvature. The key ingredients to prove it are the comparison in
Theorem 5.4 for the weighted Laplacian and the use, as in Theorem 4.14, of a second
order operator over radial functions that coincides with the weighted Laplacian in
some weighted model space when q ∈ N.

Theorem 5.15. Let (Mm, g, eh) be a weighted manifold with a pole o ∈M , Pn a non-
compact submanifold properly immersed in M , r : M → [0,∞[ the distance function
from o, and w(s) a smooth function such that w(0) = 0, w′(0) = 1 and w(s) > 0 for
all s > 0. Suppose that the following conditions are fulfilled:

(i) There is q > 0 such that, for any p ∈ M − {o} and any plane σp ⊆ TpM
containing (∇r)p, we have

Sechq (σp) > −
m+ q − 1

m− 1

w′′(r)

w(r)
.

(ii) There exist ρ > 0 and continuous functions ψ(s), ϕ(s), such that ∂Dρ is
smooth and

〈∇h,∇r〉 6 ψ(r), 〈Hh

P ,∇r〉 6 ϕ(r) on P −Dρ.

(iii) In P −Dρ the bounding functions verify

m− n− 1

m− 1
ψ(r) + ϕ(r) 6 −n m+ q − 1

m− 1

w′(r)

w(r)
(balance condition).
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Then, we obtain

CaphP (Dρ)

Volh(∂Dρ)
6

w(1−n) m+q−1
m−1 (ρ) e−f(ρ)∫∞

ρ
w(1−n) m+q−1

m−1 (s) e−f(s) ds
,

where f(r) :=
∫ r
ρ

(
m−n
m−1 ψ(s) + ϕ(s)

)
ds for any r > ρ.

Moreover, if

(5.4)

∫ ∞
ρ

w(1−n) m+q−1
m−1 (s) e−f(s) ds =∞,

then P is h-parabolic.

Proof. We define a second order differential operator L acting on smooth functions
F : [ρ,∞[→ R by

L(F (s)) := F ′′(s) + F ′(s)

(
(n− 1)

m+ q − 1

m− 1

w′(s)

w(s)
+
m− n
m− 1

ψ(s) + ϕ(s)

)
.

For any R > ρ, it is easy to see that the unique solution of equation L(F (s)) = 0 in
[ρ,R] with boundary conditions F (ρ) = 1 and F (R) = 0 is given by the function

φLρ,R(s) :=

(∫ R

s

w(1−n) m+q−1
m−1 (t) e−f(t)dt

)(∫ R

ρ

w(1−n) m+q−1
m−1 (t) e−f(t)dt

)−1

.

Now, we consider the radial function v := φLρ,R ◦ r defined in the extrinsic annulus

APρ,R := DR−Dρ of P . Since (φLρ,R)′(r) 6 0, by using Theorem 5.4 together with the

boundedness assumptions in (ii), we get this inequality in APρ,R

∆h
P v >

(
(φLρ,R)′′(r)−

(φLρ,R)′(r)

m− 1

(
(m+ q − 1)

w′(r)

w(r)
− ψ(r)

))
|∇P r|2

+ (φLρ,R)′(r)

(
n
m+ q − 1

m− 1

w′(r)

w(r)
+
m− n− 1

m− 1
ψ(r) + ϕ(r)

)
.

On the other hand, from equality L(φLρ,R,f (r)) = 0 and the balance condition in (iii),
it follows that

(φLρ,R)′′(r)−
(φLρ,R)′(r)

m− 1

(
(m+ q − 1)

w′(r)

w(r)
− ψ(r)

)
= (φLρ,R)′(r)

(
1−m− n
m− 1

ψ(r)− n m+ q − 1

m− 1

w′(r)

w(r)
− ϕ(r)

)
6 0.

Thus, since |∇P r| 6 1, we conclude that

∆h
P v > L(φLρ,R(r)) = 0 = ∆h

P u,

where u is the h-capacity potential of the capacitor (Dρ, DR) in P . From this point
the claim follows with the same arguments as in the proof of Theorem 5.7. �

As a consequence of Theorem 5.15 we deduce the following result for weighted
minimal hypersurfaces.

Corollary 5.16. Let (Mm, g, eh) be a weighted manifold with a pole o ∈M , r : M →
[0,∞[ the distance function from o, and w(s) a smooth function such that w(0) = 0,
w′(0) = 1 and w(s) > 0 for all s > 0. Suppose that the following conditions are
fulfilled:

(i) There exists ρ > 0 such that w : [ρ,∞[→ R is a non-increasing function.



36 A. HURTADO, V. PALMER, AND C. ROSALES

(ii) There is q > 0 such that, for any p ∈ M − {o} and any plane σp ⊆ TpM
containing (∇r)p, we have

Sechq (σp) > −
m+ q − 1

m− 1

w′′(r)

w(r)
.

(iii) h is a non-positive radial function.

Then, any non-compact h-minimal hypersurface P properly immersed in M is h-
parabolic.

Proof. We apply Theorem 5.15. Since h is radial and P is h-minimal, we consider the
functions ψ(r) := h′(r) and ϕ(r) := 0. As n = m− 1, the balance condition reads

0 6 −(m+ q − 1)
w′(r)

w(r)
,

which holds on P −Dρ because w′ 6 0 in [ρ,∞). On the other hand∫ ∞
ρ

w(1−n) m+q−1
m−1 (s) e−f(s) ds = e

h(ρ)
m−1

∫ ∞
ρ

w(2−m) m+q−1
m−1 (s) e−

h(s)
m−1 ds

> e
h(ρ)
m−1 w(2−m) m+q−1

m−1 (ρ)

∫ ∞
ρ

e−
h(s)
m−1 ds =∞,

because w is nonincreasing in [ρ,∞) and h 6 0. So, condition (5.4) holds and P is
h-parabolic. �

Remark 5.17. Under the assumptions of Theorem 5.15 we can obtain a weighted
volume comparison for extrinsic balls of submanifolds in the line of those in Theo-
rems 5.5 and 4.13. The details are left to the reader.
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78(4):865–883, 2003.

[27] C. Mantegazza, G. Mascellani, and G. Uraltsev. On the distributional Hessian of the distance

function. Pacific J. Math., 270(1):151–166, 2014.
[28] L. Mari, M. Rigoli, and A. G. Setti. Keller-Osserman conditions for diffusion-type operators on

Riemannian manifolds. J. Funct. Anal., 258(2):665–712, 2010.

[29] S. Markvorsen and V. Palmer. Generalized isoperimetric inequalities for extrinsic balls in mini-
mal submanifolds. J. Reine Angew. Math., 551:101–121, 2002.

[30] S. Markvorsen and V. Palmer. Transience and capacity of minimal submanifolds. Geom. Funct.

Anal., 13(4):915–933, 2003.
[31] S. Markvorsen and V. Palmer. How to obtain transience from bounded radial mean curvature.

Trans. Amer. Math. Soc., 357(9):3459–3479, 2005.
[32] S. Markvorsen and V. Palmer. Torsional rigidity of minimal submanifolds. Proc. London Math.

Soc. (3), 93(1):253–272, 2006.

[33] S. Markvorsen and V. Palmer. Extrinsic isoperimetric analysis of submanifolds with curvatures
bounded from below. J. Geom. Anal., 20(2):388–421, 2010.

[34] F. Morgan. Myers’ theorem with density. Kodai Math. J., 29(3):455–461, 2006.

[35] F. Morgan. Geometric measure theory. A beginner’s guide. Elsevier/Academic Press, Amster-
dam, fourth edition, 2009.

[36] O. Munteanu and J. Wang. Geometry of manifolds with densities. Adv. Math., 259:269–305,

2014.
[37] B. O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Aca-

demic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications

to relativity.
[38] V. Palmer. Isoperimetric inequalities for extrinsic balls in minimal submanifolds and their ap-

plications. J. London Math. Soc. (2), 60(2):607–616, 1999.
[39] V. Palmer. On deciding whether a submanifold is parabolic of hyperbolic using its mean cur-

vature. Simon Stevin Institute for Geometry, Tilburg, The Netherlands, 2010. Simon Stevin

Transactions on Geometry, vol 1.
[40] P. Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer,

New York, second edition, 2006.

[41] S. Pigola, M. Rigoli, M. Rimoldi, and A. G. Setti. Ricci almost solitons. Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5), 10(4):757–799, 2011.



38 A. HURTADO, V. PALMER, AND C. ROSALES

[42] S. Pigola, M. Rigoli, and A. G. Setti. Vanishing and finiteness results in geometric analysis,
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