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Abstract 18 

The value of the molecular information obtained from saliva is dependent on the 19 

use of in vitro and in silico techniques. The main proteins of saliva when 20 

separated by capillary electrophoresis enable the establishment of individual 21 

profiles with characteristic patterns reflecting each individual phenotype. Different 22 

physiological or pathological conditions may be identified by specific protein 23 
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profiles. The association of each profile to the particular protein composition 24 

provides clues as to which biological processes are compromised in each 25 

situation. Patient stratification according to different phenotypes often within a 26 

particular disease spectrum is especially important for the management of 27 

individuals carrying multiple diseases and requiring personalized interventions. 28 

In this work we present the SalivaPRINT Toolkit, which enables the analysis of 29 

protein profile patterns and patient phenotyping. Additionally, the SalivaPRINT 30 

Toolkit allows the identification of molecular weight ranges altered in a particular 31 

condition and therefore potentially involved in the underlying dysregulated 32 

mechanisms. This tutorial introduces the use of the SalivaPRINT Toolkit 33 

command line interface (https://github.com/salivatec/SalivaPRINT) as an 34 

independent tool for electrophoretic protein profile evaluation. It provides a 35 

detailed overview of its functionalities, illustrated by the application to the analysis 36 

of profiles obtained from a healthy population versus a population affected with 37 

inflammatory conditions. 38 
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1. Introduction 42 

In the age of precision medicine, diagnostics are based on the use of big data 43 

from genomic, proteomic and transcriptomic research. These techniques enable 44 

the establishment of molecular phenomes associated with different functional 45 

profiles which characterize the phenotypes of individuals sharing similar 46 

conditions and may direct a personalized intervention. 47 

Omics results have revealed information on molecules which are dysregulated 48 

https://github.com/salivatec/SalivaPRINT


in certain health and disease situations. This information is stored in several 49 

public databases [1–4].  50 

Saliva is a fluid increasingly used in diagnostics [5]. Several techniques have 51 

been used to acquire molecular information from this fluid. Such information is 52 

available in several public databases such as OralOme [3,6] or SalivaOmics [7]. 53 

One of the techniques used to characterize the main protein content of saliva is 54 

electrophoresis, and capillary electrophoresis is one of the most sensitive 55 

variants. Despite the wide availability of capillary electrophoresis-based 56 

techniques, the challenge remains in the exploration of the technique´s full power. 57 

In particular, the fact that the currently available tools for result analysis require 58 

manual and visual inspection of the profiles and are not amenable to high 59 

throughput result analysis, has created a bottleneck in the generation of powerful 60 

analysis of the results from large number of profiles such as those generated in 61 

large population studies. 62 

Few studies have been developed to surpass these problems mainly in the 63 

analysis of nucleic acid results [8,9] but also for total protein profiles [10,11]. 64 

In spite of the existence of studies to recognize patterns of capillary 65 

electrophoresis profiles [12] there is, to our knowledge, no approach developed 66 

and applied to the use of total protein profiles of complex samples for patient 67 

stratification or sample quality control.  68 

The possibility of establishing protein profile patterns corresponding to specific 69 

clinical situations is an opportunity for the development of new diagnostics 70 

strategies essential for the analysis of large samples characteristic of population 71 

wide and large epidemiologic studies.  72 

The Experion™ automated electrophoresis system [12] (from Bio-Rad 73 



Laboratories, USA) was used to provide the data in the example presented in this 74 

tutorial. This system integrates protein analysis into a single process in which 75 

protein separation, staining, band detection and quantitation are automatically 76 

executed and produces protein profiles in about 30 minutes (10 samples) through 77 

an automated process.  78 

By performing capillary electrophoresis it is possible to obtain a protein profile 79 

of the sample within the molecular weights (MW) in the range of 10–260 80 

kiloDaltons (kDa) while separating and detecting protein concentrations in the 81 

2.5–2000 ng/mL range [12].  82 

The system software is responsible for plotting the fluorescence index as a 83 

function of migration time to produce an electropherogram. A virtual gel image is 84 

generated from the electropherogram data. Proteins bands or peaks are 85 

identified by migration time relative to the known MW markers. 86 

After running the samples, relevant peak heights and density of protein bands 87 

are calculated by the software and the output is exported in a file containing 88 

multiple information such as MW, peak height, protein concentration, and total 89 

sample concentration among others. This information can be used with data 90 

analysis techniques in order to characterize each individual and/or the population 91 

to which it belongs. 92 

Capillary electrophoresis technology has been used efficiently to detect 93 

Listeria monocytogenes in foods [13] and to measure ovarian cancer or cancer-94 

related proteins biomarkers in serum [14], however the methodology followed for 95 

result processing was to manually select individuals and check which molecular 96 

weights were different according to the individual’s conditions. 97 

The development of solutions for automatic analysis of the results produced 98 



by capillary electrophoresis technology, to obtain typical profiles or molecular 99 

weight ranges, revealing altered protein quantities, are a first approach to 100 

evaluate the functional status of each individual. These solutions are also useful 101 

for the identification of the molecular weight ranges in which there are 102 

dysregulated proteins associated to specific pathologies or phenotypes and 103 

therefore may be used for diagnosis or stratification. 104 

SalivaPRINT Toolkit provides a set of functionalities to analyze the output data 105 

provided by capillary electrophoresis techniques. This tool can be widely applied 106 

for the analysis of data from protein separation techniques resulting in an output 107 

of migration/molecular weight data and respective protein quantification in each 108 

sample. 109 

 110 

2. The SalivaPRINT Toolkit command line tools 111 

 112 

a. Installation 113 

 114 

SalivaPRINT Toolkit command line tools are written in Python and work on 115 

Windows, macOS and Unix. Python 3.0 (https://www.python.org/downloads/) is 116 

required along with the modules numpy (http://www.numpy.org/), scipy 117 

(https://www.scipy.org/), configparser 118 

(https://docs.python.org/2/library/configparser.html) and matplotlib 119 

(https://matplotlib.org/). 120 

After successful installation of Python and the required libraries for running the 121 

program, the user should decompress the file salivaprint.zip to a new directory 122 

and use the salivaprint.py as a normal program passing commands as 123 
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arguments. In order to check if everything is working properly, the command 124 

salivaprint.py –v should print the version number as follows. 125 

 126 

b. Available commands 127 

 128 

SalivaPRINT Toolkit is a command line tool, which allows data extraction and 129 

analysis from capillary electrophoresis systems output files. 130 

The functionalities available allow the construction of a matrix of molecular 131 

weights from an output file provided by Experion™ systems, which can then be 132 

used with data analysis and machine learning tools in order to find similarities 133 

between individuals and/or populations. By implementing a naïve Bayes 134 

classification algorithm, a probabilistic classifier based on the application of the 135 

Bayes’ theorem with strong independence assumptions between features, it 136 

becomes possible to achieve an overview of important features for the 137 

stratification of the individuals in study. 138 

SalivaPRINT Toolkit available commands can be checked anytime by using -139 

h as argument. The following commands are currently implemented (version 0.1): 140 

 141 

-v: Displays the program and required libraries version; 142 

-h: Displays the help menu. Lists the available commands; 143 

-build output_file: Builds a new molecular feature matrix from capillary 144 

electrophoresis output files using config.cfg as the configurations file; 145 



-view input_file: Shows a visual representation of the dataset previously 146 

built using the –build flag; 147 

-learn input_file output_file: Builds a classifier from input_file dataset. 148 

Uses the name given as output_file for saving the created classifier; 149 

-classify classifier_file dataset: Classifies the dataset using the previously 150 

trained classifier. 151 

 152 

c. Dataset preparation 153 

 154 

The main data file accepted by SalivaPRINT Toolkit is composed by a Comma 155 

Separated File (CSV) file with peak information collected with Experion™ (or 156 

other equivalent system) in the format: Sample, Molecular Weight, Protein 157 

Concentration, Sample Concentration without header information.  158 

An example is shown below. 159 

 160 

 161 

 162 

Linux command line tools provides an easy way to prepare the Experion™ 163 

output files as datasets which can be used with SalivaPRINT Toolkit. Assure the 164 

use of a CSV format files containing the data encoded to UTF-8 with Unix Line 165 

Feed (LF) as line break special characters. Note that it is important to use this file 166 

encoding since the awk language for processing text, available on the standard 167 



Linux bash, may fail to correctly recognize columns if the file encoding is not 168 

correctly set. 169 

Using awk is a fast option to select the correct columns for creating the dataset 170 

file. The following command selects rows 7,10,13 and 17 from all the data 171 

available. Note that these row positions (7,10,13,17) correspond to the columns 172 

which provide information as sample name, MW, concentration and sample 173 

concentration in the standard output file, and are the ones we need in order to 174 

use SalivaPRINT Toolkit . 175 

  awk -F',' '{print $7,$10,$13,$17}' output_experion.csv > 176 

dataset.csv 177 

 178 

d. Configurations file 179 

 180 

Config.cfg is the file that contains all the configurations necessary for the 181 

program to run. In order to extract data from the original MW from the capillary 182 

electrophoresis output file the following configurations are necessary.  183 

MIN_MOL_WEIGHT – (Default 9) Minimum molecular weight, defined in kDa 184 

to consider while extracting data from the input dataset file. 185 

MAX_MOL_WEIGHT – (Default 120) Maximum molecular weight, defined in 186 

kDa to consider while extracting data from the input dataset file. 187 

N_SLICES – (Default 120) Number of slices to consider from the 188 

MIN_MOL_WEIGHT to MAX_MOL_WEIGHT. 189 



DATASET - Input file containing all the capillary electrophoresis molecular 190 

weights at which protein concentration peaks occur. 191 

CONTROL – A list of healthy individuals, or control individuals, present in the 192 

DATASET file. It should contain the sample IDs as found in the DATASET one 193 

by each line. Ideally, it should have the same length of STUDY list for generating 194 

a balanced classifier. 195 

STUDY - A list of unhealthy, or disease carrier individuals, present in the 196 

DATASET file. It should contain the sample IDs as found in the DATASET one 197 

by each line. Ideally, it should have the same length of CONTROL list for 198 

generating a balanced classifier. 199 

 200 

3. Case study: What can we learn from patients with inflammatory 201 

conditions? 202 

 203 

In order to build this tutorial, 184 salivary electrophoretic profiles from 204 

Experion™ automated electrophoresis system were used. The data was split into 205 

two classes regarding the health status of individuals. The healthy population was 206 

composed of 92 individuals without acute or chronic inflammation, as far as could 207 

be discerned from the clinical history, ranging from 18 to 89 years of age 208 

(average: 23.7, standard deviation: 9.4). The unhealthy population was 209 

represented by 92 individuals, ranging from 7 to 84 years of age (average: 39.4, 210 

standard deviation: 25.3). These individuals presented a broad spectrum of 211 

diseases, from oral problems such as gingivitis, to whole systemic and chronic 212 

diseases as diabetes or celiac disease, all related to an underlying inflammatory 213 



condition.  214 

 215 

a) Preparing the dataset 216 

 217 

For this part of the tutorial, the saliva protein profiles from 164 individuals (82 218 

healthy and 82 inflammatory), were used. Considering that we have two output 219 

files from SalivaPRINT Toolkit, one for patients with inflammation and one 220 

without, we can process them using the following commands: 221 

 222 

After this procedure, dataset.csv should have the format shown in 2.c) and 223 

should be is ready to be used with SalivaPRINT Toolkit. 224 

 225 

b) Building the Molecular Weight Matrix 226 

 227 

First, it is necessary to properly set the configurations file. Using a minimum 228 

MW of 9 kDa and a maximum MW of 120 kDa with 120 slices we will get a 229 

description of each individual protein profile. Experion™ does not account for MW 230 

below 10kDa (~9.5) and identifications with MW above 120 kDa since these 231 

larger MW are often protein aggregates easily formed in saliva [16]. Note that if 232 

using a different sample it may be useful to include MWs above 120 kDa. 233 

The configurations used are shown below. 234 



 235 

The next step is to run SalivaPRINT Toolkit –build matrix.csv using the 236 

standard configurations available in the configurations file. Make sure you build 237 

two lists of individuals using the same IDs provided on the dataset file and edit 238 

the config.cfg file to point to these files. One should list the healthy individuals 239 

and the other the unhealthy. The program will then use the dataset in order to 240 

build a matrix of relative concentration of protein per MW. This matrix represents 241 

the presence of a ratio of protein. 242 

By using the command salivaprint.py –view matrix.csv is possible to obtain 243 

a visual representation of the matrix created. 244 

 245 

Figure 1 - Graphical representation of the population. Each line represents one 246 

individual and each column represents a small range of molecular weights (In 247 

this case approximately 1kDa).  248 



c) Creating a Classifier 249 

 250 

Using this matrix, which represents protein concentration per MW per 251 

individual, it is possible to use SalivaPRINT Toolkit and create a classifier. The 252 

command salivaprint.py –learn matrix.csv classifier.pkl will create a naïve 253 

Bayes classifier with the examples provided in the matrix.csv file and save it with 254 

the name classifier.pkl. When a Graphical User Interface (GUI) is available, it will 255 

also show a graphical representation of the influence of each MW towards the 256 

classification of samples according to condition state (healthy or inflammatory). 257 

In Figure 2, we show the influence of molecular weights over the classification of 258 

healthy individuals and individuals with inflammatory conditions obtained from the 259 

dataset used on this tutorial. Y-axis values correspond to the influence of each 260 

MW as learned from the naïve Bayes classifier. Negative values are associated 261 

to the influence of a given MW over the population in study, in this case a 262 

population with inflammatory conditions, while positive values are associated 263 

towards the control population, in this case the healthy population. 264 



 265 

Figure 2 - Graphical representation of the MW influence towards classification 266 

of individuals. The green arrows point to MWs  related to a tendency towards 267 

healthiness and the red arrows to MW related with inflammatory states. 268 

From this graphic representation it is possible to analyze the influence of 269 

different MW towards the classification of individuals given their protein profiles. 270 

Profiles containing some of the same MW as the positive values on Figure 2 are 271 

expected to be related to healthy individuals and profiles containing some of the 272 

same MWs as the negative values are expected to be related with individuals 273 

suffering from inflammatory conditions. 274 

 275 

d) Using a Classifier With a Different Dataset 276 

 277 

In table I a set of molecular weights and proteins within the ranges identified 278 

in the previous section is shown. In this table, the corresponding proteins are 279 

absent or present in different quantities. These MW ranges with the greatest 280 

variability in the proteins present enable through the identification of which 281 



proteins are present (using Omics databases) and the potentially compromised 282 

molecular mechanisms. The potentially dysregulated proteins presented in each 283 

MW range were identified according to the data from Rosa et. al, 2016 [15]. 284 

Proteins with molecular weights with a ± 8.56% interval were considered since 285 

this is the largest variation in Experion™ efficiency as reported by the 286 

manufacturer [16].  287 

Table I – Proteins present in the MW ranges with greater influence in 288 

distinguishing protein profiles of healthy or inflammation challenged individuals. 289 

Molecular 
Weights 

Proteins 

14 – 15 
kDa 

 
P09228 Cystatin-SA (Cystatin-2) 
P01037 Cystatin-SN (Cystain-SA-I) 
P01036 Cystatin-S (Cystatin-4)  
P01034 Cystatin-C (Cystatin-3)  
P07737 Profilin-1  
Q01469 Fatty acid-binding protein 
P06702 Protein S100-A9 (Calgranulin-B)  

46 – 49 
kDa 

 
P52209 6-phosphogluconate dehydrogenase 
P80303 Nucleobindin-2  
P01871 Ig mu chain C region 
Q8N4F0 BPI fold-containing family B member 2 
P01009 Alpha-1-antitrypsin 
Q9UIV8 Serpin B13  
P30740 Leukocyte elastase inhibitor (LEI)  

58 – 61 
kDa 

 
P14618 Pyruvate kinase PKM  
P04745 Alpha-amylase 1 
P07237 Protein disulfide-isomerase (PDI) 

Q9UBG3 Cornulin 
P52209 6-phosphogluconate dehydrogenase  

28 – 29 
kDa 

 
P06870 Kallikrein-1  
P31947 14-3-3 protein sigma  
Q96DR5 BPI fold-containing family A member 2   

42 – 46 
kDa  

 
P80303 Nucleobindin-2  
P01871 Ig mu chain C region 
Q8N4F0 BPI fold-containing family B member 2 



P01009 Alpha-1-antitrypsin 
Q9UIV8 Serpin B13  
P30740 Leukocyte elastase inhibitor (LEI) 
P04083 Annexin A1 
P01876 Ig alpha-1 chain C region 
Q6P5S2 Protein LEG1 homolog   

62 – 64 
kDa  

 
P02768 Serum albumin 
P15311 Ezrin (Cytovillin)  
P14618 Pyruvate kinase PKM  
P04745 Alpha-amylase 1 
P07237 Protein disulfide-isomerase (PDI)  

76 – 78 
kDa   

 
P01833 Polymeric immunoglobulin receptor (PIgR) 
P22079 Lactoperoxidase (LPO)  
P02788 Lactotransferrin (Lactoferrin) 
Q08188 Protein-glutamine gamma-glutamyltransferase E  
P02768 Serum albumin 
P15311 Ezrin (Cytovillin)   

 290 

e) Using SalivaPRINT Toolkit as a Classification Tool  291 

 292 

Another functionality implemented in SalivaPRINT Toolkit is the possibility to 293 

run the previously created classifier on an independent set of individuals. This 294 

allows to verify if the classifier has correctly learned to differentiate the molecular 295 

weights related with the two populations (when the expected output is known), as 296 

well as providing a way to test if a particular individual is more similar to a 297 

population or another. 298 

In this step, a new set of individuals from the original dataset, not used in the 299 

training of the algorithm, was used for testing the previously created classifier.  300 

A list of 10 healthy individuals and 10 unhealthy individuals was created: 301 



 302 

Next, the configurations file was adapted to create a testing dataset, note that 303 

it must provide the same configurations as the ones used to extract the data, 304 

which was used to create the classifier. 305 

 306 

 307 

Then it is necessary to generate the test dataset, as follows: 308 

python salivaprint.py –build inflammation_test.csv 309 

And, finally, classify the test dataset: 310 

 311 



The values closer to zero are related with a tendency towards healthier states 312 

and values closer to 1 are related with inflammatory states. As shown, using this 313 

independent dataset, the classifier was able to correctly identify 18 out of 20 314 

samples. Note that the misclassified examples occurred when the expected class 315 

was 0 and present values closer to 0.5 than most of the samples where the 316 

expected class was 1. This means that, despite misclassified, they are closer to 317 

the threshold line, which splits the two classes.  318 

It is also important to keep in mind that the inflammatory process is not a binary 319 

classification problem in its origin; there are no absolute healthy or unhealthy 320 

individuals from which the classifier can learn from. Thus, it is expected that small 321 

changes in the classification threshold line (here considered to be 0.5) lead to 322 

adaptations on the sensibility and specificity of the algorithm. 323 

 324 

4. Case study: Celiac patients a distinct phenotype within the 325 

inflammatory process 326 

 327 

In this case study, a dataset of individuals diagnosed as celiac was used. 328 

These individuals share a chronic inflammation status and therefore it is expected 329 

that their salivary protein profile reflects the underlying functional dysregulation. 330 

To test this hypothesis celiac patients were chosen according to time since 331 

diagnostic and grouped in 1-5 years or more than 5 years since diagnostics. Form 332 

each of these groups the individuals presenting the most dysregulated protein 333 

profiles were selected. This selection was based on complementary clinical data. 334 



SalivaPRINT Toolkit commands were run following the steps above, 335 

considering, the two groups of celiac patients. The goal was to find which MW is 336 

important in the distinction of these groups. 337 

The plot below represents the output of salivaprint.py –learn using this dataset. 338 

The molecular differences found between the two groups were minimal occurring 339 

on a small number of MW and with small values of influence (<0.5). 340 

 341 

Figure 3 - Graphical representation of the molecular weight related with 342 

dysregulated proteins in the celiac groups. 343 

The small differences found between the two groups with different diagnostic 344 

times are characterized by different profiles in the MW ranges presented in table 345 

II. The potential dysregulated proteins are also presented in each MW range 346 

according to the data from Rosa et. al, 2016 [15]. Proteins with molecular weights 347 

with a ± 8.56% interval were considered since this is the largest variation in 348 

Experion™ efficiency as reported by the manufacturer [16]. 349 

Table II – Proteins present in the MW ranges with greater influence in 350 

distinguishing protein profiles of healthy or inflammation challenged individuals. 351 



Molecular 
Weights 

Proteins 

44 – 45 
kDa (1-5 
years) 

 
P01871 Ig mu chain C region 
Q8N4F0 BPI fold-containing family B member 2 
P01009 Alpha-1-antitrypsin 
Q9UIV8 Serpin B13  
P30740 Leukocyte elastase inhibitor (LEI) 
P04083 Annexin A1  

59 – 60 
kDa (1-5 
years) 

 
P14618 Pyruvate kinase PKM  
P04745 Alpha-amylase 1 
P07237 Protein disulfide-isomerase (PDI) 

Q9UBG3 Cornulin  
15 – 16 
kDa (+5 
years) 

 
P27482 Calmodulin-like protein 3  
P12273 Prolactin-inducible protein (PIP) 
P02810 Salivary acidic proline-rich phosphoprotein 1/2  
P09228 Cystatin-SA (Cystatin-2) 
P01037 Cystatin-SN (Cystain-SA-I) 
P01036 Cystatin-S (Cystatin-4)  
P01034 Cystatin-C (Cystatin-3)  
P07737 Profilin-1  
Q01469 Fatty acid-binding protein  

43 – 44 
kDa (+5 
years) 

 
P01009 Alpha-1-antitrypsin 
Q9UIV8 Serpin B13  
P30740 Leukocyte elastase inhibitor (LEI) 
P04083 Annexin A1  

 352 

Conclusions 353 

SalivaPRINT Toolkit is a command line tool that uses machine learning to 354 

analyze and learn from capillary electrophoresis data set experiments. 355 

The analysis of individual protein profiles stratified by health condition has 356 

enabled the proposal of which MW ranges and respective proteins are altered in 357 

each group, leading to the inference of which molecular processes might be 358 

compromised.  359 



In this tutorial, two scenarios were selected to demonstrate the use of the 360 

SalivaPRINT toolkit. First, a dataset composed of healthy individuals and 361 

individuals suffering from inflammatory conditions. Second, a group of individuals 362 

all with celiac disease, but stratified by date of diagnosis and treatment. 363 

In both cases, the use of the proposed toolkit enabled the finding of protein 364 

MWs ranges, which characterizes the protein phenotype of these individuals. 365 

The true power of using SalivaPRINT Toolkit as protein profile analysis tool, 366 

relies on the fact that the information of a large number of profiles is analyzed 367 

simultaneously and large amounts of data are accounted for, enabling the 368 

inference of which proteins may be involved with the underlying molecular 369 

process compromised in a particular condition. In this way, the identification of 370 

the protein profile patterns in saliva corresponding to different clinical situations, 371 

or the existence of different patterns within the same pathology may constitute a 372 

first approach to establish patient stratification according to the individual 373 

molecular profile (phenotype).  374 

 375 
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