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Since the 1940s, humans have developed new drugs and consumption has increased
significantly in the last 15 years. This global phenomenon is now a major public health
concern due to Antimicrobial resistance (AMR). AMR is a severe threat to both human
and animal health. Indeed, the spread across systems can occur through a number of path-
ways, both related and unrelated to agriculture, comprising the wastewater, soils, manure
applications, direct exchange between humans and animals, and food consumption. Char-
acterizing the presence in the environment (baseline assessment of the AMR prevalence)
and managing human health risks due to exposure to resistant organisms requires national
and international interdisciplinary cooperation. In fact, a holistic approach such as the One
Health approach is needed to tackle this public health menace. This Special Issue includes
19 papers (16 articles and 3 reviews) that collectively provide novel information about this
topic.

In one of the published studies, a method was developed to detect bacteria resistant
to colistin, carbapenems, and 3-lactams in commercial poultry farms, characterizing also
the phylogenetic and virulence markers of E. coli isolates to assess virulence risk, and to
evaluate potential transfer of AMR. The study allowed concluding about the presence of
multidrug resistance to the last-resort antibiotics that are transferable between bacteria
in food-producing animals [1]. Also, in a different animal production environment, 145
florfenicol-resistant enterococci, isolated from swine fecal samples collected from 76 pig
farms, were investigated for the presence of optrA, cfr, and poxtA genes by PCR. In this
study it was possible to observe a dissemination of linezolid resistance genes in enterococci
of swine origin in Central Italy and confirm the spread of linezolid resistance in animal
settings [2]. In another study, the pathogenomics of carbapenem-resistant Aeromonas veronii
(A. veronii) isolates recovered from pigs in KwaZulu-Natal, South Africa were explored by
whole genome sequencing on the Illumina MiSeq platform. In this case, phylogenomic and
metadata analyses revealed a predilection for water environments and aquatic animals,
with more recent reports in humans and food animals across geographies, making A. veronii
a potential One Health indicator bacterium [3]. An extensive culturomics approach was
applied in 27 healthy pigs from seven different farms, in a different study, and a high
frequency of methicillin-resistant staphylococci supporting the need for enhanced efforts
within the “One Health” approach to prevent and manage the antibiotic resistance crisis in
the human and veterinary medicine sectors was observed [4].

Another study also published in this special issue addresses how soil disturbance,
and the subsequent shift in community composition, will affect the types, abundance, and
mobility of antibiotic resistance genes (ARGs) that compose the active layer resistome by
assessing resistance phenotypes through antibiotic susceptibility testing, and analyzing
types, abundance, and mobility of ARGs through whole genome analyses of bacteria iso-
lated from a disturbance-induced thaw gradient in Interior Alaska. This study emphasizes
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the hypothesis that both phylogeny and ecology shape the resistome and suggest that a
shift in community composition as a result of disturbance induced will be reflected in
the predominant ARGs comprising the active layer resistome [5]. In a different study,
several antibiotic-resistant bacteria (ARB) were isolated from the mangroves in Kerala,
India showing that MDR with strong biofilm formation is prevalent in natural habitat and
if acquired by deadly pathogens may create a highly negative impact in public health [6].

Using water as an environmental matrix, one study aimed at characterizing and
tracking nonresistant and extended-spectrum (3-lactamase-producing (ESBL)-Salmonella
spp. from agricultural settings to nearby water sources, highlighting their antibiotic re-
sistance genes (ARG) and virulence factor (VF) distribution using a combination of both
culture-dependent and independent methods, concluding that agricultural environment
contamination may have a direct relationship with the presence of antibiotic-producing
Salmonella in freshwater streams [7]. Also, in a different study was investigated the per-
sistence of an (ESBL)-producing Escherichia coli (E. coli) pEK499 and its clinically most
important ARG (blactx-m-15), after introduction via irrigation water or manure into a
lettuce-growing system. This study demonstrated long-term persistence of undesired ARB
and ARG after their introduction via both irrigation and amendments adding the need
to define critical actions in order to mitigate their transfer to the consumer [8]. Irrigation
water was also used to screen ESBL-producing E. coli, Enterobacter cloacae, and Citrobacter
freundii for their potential to transmit resistance to antibiotic-susceptible E. coli, proving
that ESBL-producing E. coli was able to transfer resistance with different efficiency to E.
coli-susceptible recipients [9].

One of the published studies aimed to compare antimicrobial resistance (AMR) in
extended-spectrum cephalosporin-resistant and generic E. coli from a One Health approach
applied on a beef production system, identifying the municipal sewage as a hot spot
for MDR emergence and dissemination [10]. Also published was a study that identified
associations in resistance traits between E. coli isolated from clinical, dairy manure, and
freshwater ecosystem environments concluding that manure and environmental isolates
were significantly different from clinical isolates based on analyzed traits, suggesting more
transmission occurs between these two sources in the sampled environment [11]. The
same approach was held by a different study aiming at detecting several virulence factors
genes (fimA, papC, papG I, cnfl, hlyA and aer) and to determine the conjugative capacity
in a wide collection of ESBL-producing E. coli isolated from different sources (human,
food, farms, rivers, and wastewater treatment plants), emphasizing the need of a specific
surveillance program of AMR indicators in wastewaters from animal or human origin, in
order to apply sanitary measures to reduce the burden of resistant bacteria arriving to risky
environments such as WWTPs [12].

An additional study published intended to assess settleable dust loading rates and
bioburden in Portuguese dwellings by passive sampling onto quartz fiber filters and
electrostatic dust cloths (EDCs), including azole-resistance screening reinforcing the impor-
tance of applying azole resistance screening to unveil azole resistance detection in fungal
species [13]. A similar approach was applied in a different study developed in two small
commercial bakeries and in a pizzeria, which aimed to measure occupational exposure
to flour and microorganisms, including azole resistance screening where the presence of
azole-resistant fungi in these specific occupational environments was detected [14].

Another published study observed three major subtypes (FimH41, H22, and H30) of
ST131 in fecal carriage in dogs in Taiwan by rectal swabs used for E. coli isolation from non-
infectious dogs in a veterinary teaching hospital in Taiwan, finding three major subtypes
(FimH41, H22, and H30) of ST131 in fecal carriage [15].

A multicenter retrospective study applied in two different teaching hospitals in Ro-
mania was published. This study analyzed urine samples from patients to determine the
frequency of incriminating pathogens and their resistance to different antibiotics, conclud-
ing that the obtained data are an important tool in managing urinary tract infections [16].
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The three review papers also published in this special issue focused on three different
topics: Mitochondria-mediated azole drug resistance and fungal pathogenicity address-
ing the opportunities for therapeutic development [17]; correlation between exogenous
compounds and the horizontal transfer of plasmid-borne antibiotic resistance genes [18];
and, also Antibiotic resistance profiles, molecular mechanisms, and innovative treatment
strategies of Acinetobacter [19], all presenting crucial updates of each topic and the current
progress concerning innovative strategies for combating multidrug-resistant species.

Overall, the papers in this Special Issue reveal different perspectives of antimicrobial
resistance: from the presence of resistant organisms in different environmental compart-
ments to human exposure in different settings. Furthermore, descriptions of prevention
and intervention actions to tackle this public health menace were also described and can be
used in the future.

Conflicts of Interest: The authors declare no conflict of interest.
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