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Abstract: Genetic programming (GP) is a powerful machine learning (ML) algorithm that can
produce readable white-box models. Although successfully used for solving an array of problems
in different scientific areas, GP is still not well known in the field of remote sensing. The M3GP
algorithm, a variant of the standard GP algorithm, performs feature construction by evolving
hyperfeatures from the original ones. In this work, we use the M3GP algorithm on several sets
of satellite images over different countries to create hyperfeatures from satellite bands to improve
the classification of land cover types. We add the evolved hyperfeatures to the reference datasets
and observe a significant improvement of the performance of three state-of-the-art ML algorithms
(decision trees, random forests, and XGBoost) on multiclass classifications and no significant effect
on the binary classifications. We show that adding the M3GP hyperfeatures to the reference datasets
brings better results than adding the well-known spectral indices NDVI, NDWI, and NBR. We also
compare the performance of the M3GP hyperfeatures in the binary classification problems with those
created by other feature construction methods such as FFX and EFS.

Keywords: genetic programming; evolutionary computation; machine learning; classification; multi-
class classification; feature construction; hyperfeatures; spectral indices

1. Introduction

Since the establishment of the Warsaw Framework in 2013, remote sensing (RS) is
recommended as an appropriate technology for monitoring and measuring, reporting, and
verification (MRV) for countries reporting forest land cover and land cover change to the
UNFCCC (https://unfccc.int/topics/land-use/resources/warsaw-framework-for-redd-
plus (accessed on 15 November 2020)). However, many difficulties, from the availability of
adequate in situ reference data to the spatial and temporal resolution of freely available
satellite imagery and data processing power, have been hindering the operational use
of this technology for MRV. Now, with the evolution of Earth observation systems (with
provision of higher spatial and temporal resolution images) and with novel open-data
distribution policies, there is an opportunity of applying machine learning (ML) to induce
models that automatically identify land cover types in satellite images and improve the
capacity for producing frequent and accurate land cover maps.

Previous ML work in classification of satellite imagery for land cover mapping has
been successful. One simple practice that helps obtain good results is the inclusion of
spectral indices as additional independent variables (also called attributes, or features,
by the ML community) in the reference dataset. Spectral indices are combinations of
reflectance values from different wavelengths that represent the relative abundance of
certain terrain elements. They have been used by the RS community for a long time to
enhance the identification of vegetation (e.g., NDVI [1]), water (e.g., NDWI [2]), burnt areas
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(e.g., NBR [3]) and many other elements. Over the years, many indices were created and
adapted to accommodate the particularities of different images. In the case of vegetation
indices, this number is so vast that over one hundred of them were reviewed in [4].

Like indices, hyperfeatures are mathematical expressions that combine the original
features of the data (the independent variables) with the goal of representing data properties
that facilitate the learning of ML models. Spectral indices are, in fact, particular cases of
hyperfeatures. Ideally, the hyperfeatures should be simple and meaningful, allowing the
RS experts to easily understand the ML models that are based on them, or to directly use
them in image analysis software to visualize what they represent.

Notwithstanding the success of ML methods when performing classification of satel-
lite imagery, the reported results are often obtained by applying a model in the same
images where it was trained (e.g., [5–7]), or in an image time series from the same location
(e.g., [8–10]). Training models to be ready for use outside their training images is not a triv-
ial task due to the radiometric variations between different images. These variations can
arise from multiple sources, such as the difference in the angle of the solar incidence on the
ground, the weather, the conditions of the terrain, the type of terrain, or the growth stage
of the vegetation. Spectral indices are also sensitive to these variations, despite the efforts
to increase their robustness.

Our goal is to improve satellite imagery classification by creating hyperfeatures that
increase the performance of ML algorithms. In previous work [11], we used a genetic
programming (GP) [12] classifier called M3GP [13] to evolve hyperfeatures that, when used
instead of the original ones, were able to improve the accuracy of different ML algorithms in
binary classification of images different from the ones used in training (although, for unseen
data of the same images, there was no significant effect). GP is a powerful ML evolutionary
algorithm that can produce readable white-box models. Successfully used for solving
an array of problems in different scientific areas, GP is, however, still not well known in
RS. The M3GP algorithm is a variant of standard GP that was originally developed as
a multiclass classifier, but later used as a feature construction method for other algorithms,
both for classification and for regression [11,14,15]. Creating hyperfeatures from one image
and using them for classifying a different image falls under the area of transfer learning [15],
which attempts to use knowledge from one problem to solve another similar problem.

In this work, we perform a thorough study of the effects of adding M3GP-evolved
hyperfeatures to the reference datasets. We test our approach on several datasets from
different images in two types of problems that have been tackled several times over the last
decades, the binary classification of burnt areas [16–22], and the multiclass classification of
land cover types [23–27]. The images used in our study cover several different regions over
developing countries: Angola, Brazil, Democratic Republic of the Congo, Guinea-Bissau,
and Mozambique. We add the evolved hyperfeatures to the reference datasets and analyze
the differences in the generalization ability of different ML algorithms when tested on
unseen data from the same images. Three common state-of-the-art algorithms are tested,
namely decision trees [28], random forests [29] and XGBoost [30]. We also perform the
same experiments when adding spectral indices instead of the hyperfeatures, comparing
the results. The selected indices are the popular NDVI, NDWI, and NBR. For the binary
classification problems, we also compare our results with the ones obtained when adding
hyperfeatures created by two different feature construction methods, EFS [31] and FFX [32].

2. Related Work

Feature engineering is an essential step in the knowledge discovery process and one
of the keys to success in applied ML. The features used to induce a data model can directly
influence the quality of the model itself and the results that it can achieve. Feature engineer-
ing can be broadly partitioned into feature selection and feature construction. According to
Liu and Motoda [33], feature selection is a process that chooses a subset of features from the
original data variables, so that the feature space is optimally reduced according to a certain
criterion, whereas feature construction/extraction (also called feature generation, feature
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learning, or constructive induction) is a process that creates a new set of hyperfeatures
from the original data. Feature construction typically combines existing variables into
more informative hyperfeatures. Both feature selection and feature construction attempt to
improve model performance and can be used in isolation or in combination.

Feature construction, the focus of this work, has been widely studied in the last two
decades. Recent surveys can be found in [34–36], while the book [37] gives an in-depth
presentation of the area. In all these references, the importance of EC as an effective method
for feature construction is asserted, together with other feature construction methods
such as the ones based on decision trees, inductive logic programming, and clustering.
A recent survey of EC techniques for feature construction can be found in [38]. Among
the different EC flavors, GP is probably the one that has been used more often and more
successfully. Indeed, GP is particularly suited for feature construction because it naturally
evolves functions of the original variables. The versatility offered by the user-defined
fitness function of GP allows the user to choose among several possible criteria for evolving
new hyperfeatures. Additionally, the fact that the evolved hyperfeatures are, in principle,
readable and understandable can play an important role in model interpretability. Several
existing GP-based methods for feature construction are discussed in [39,40], and a deep
analysis of previous work can be found in [15], where GP-constructed features are used for
transfer learning.

Among the large set of feature construction methods available, in this paper, we use
M3GP [13] as our method of choice and two others for comparison purposes: the non-EC
method FFX [32] and the EC method EFS [31]. In the remainder of this section, will focus
on GP-based feature construction, including applications, and on feature construction and
GP in the context of RS.

2.1. Feature Construction with Genetic Programming

Among the several previous contributions in which GP was used for feature con-
struction, Krawiec has shown that classifiers induced using the representation enriched
by GP-constructed hyperfeatures provide better accuracy on a set of benchmark classi-
fication problems [41]. Krawiec et al. have also used GP in a coevolutionary system for
feature construction [42,43].

The use of GP for feature construction was later deeply investigated by Zhang et al. [44–48].
For instance, in [44], a GP approach was proposed that, instead of wrapping a particular
classifier for single feature construction as in most of the existing methods, it used GP to
construct multiple features from the original variables. The proposed method used a fitness
function based on class dispersion and entropy, and thus was independent of any particular
classification algorithm. The approach was tested using decision trees on the new obtained
dataset and experimentally compared with the standard decision tree method, using the
original features. The results showed that the proposed approach outperforms standard
decision trees on the studied test problems in terms of the classification performance,
dimension reduction, and the learned decision tree size. Several years later, in [45], GP
was used for both feature construction and implicit feature selection. The work presented
a comprehensive study, investigating the use of GP for feature construction and feature
selection on high-dimensional classification problems. Different combinations of the con-
structed and/or selected features were tested and compared on seven high-dimensional
gene expression problems, and different classification algorithms were used to evaluate
their performance. The results indicated that the constructed and/or selected feature sets
can significantly reduce the dimensionality and maintain or even increase the classification
accuracy in most cases. In [46], previous GP-based approaches for feature construction
were extended to deal with incomplete data. The results indicated that the proposed ap-
proach can, at the same time, improve the accuracy and reduce the complexity of the learnt
classifiers. While until a few years ago, GP-based feature construction had been applied
mainly to classification, in [47], it was applied with success to symbolic regression, thus
giving a demonstration of the generality of the approach. In [48], the authors investigate
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the construction of sets of hyperfeatures using GP-based approaches. One of the most
interesting results showed that multiple-feature construction achieves significantly better
performance than single-feature construction. Consistently with that result, the method
presented in this paper uses GP to construct multiple features.

It should be noted that the use of GP for feature construction has been explored
for some time, as surveyed in [40]. Although the most common approach to multiclass
classification problems used to be splitting a classification problem with n classes into
n binary classification problems, and evolving one hyperfeature for each class [49,50],
some methods create several hyperfeatures to separate the classes within the feature space.
In this category, the survey includes works that converted the datasets into hyperdatasets
using exclusively the evolved hyperfeatures [41], and works that include the original
hyperfeatures in the hyperdataset [51] (similarly to our work).

GP-based feature construction methods have been used with success in several real-life
applications. For instance, the authors of [52] proposed a novel method for breast cancer
diagnosis using the features generated by GP. A few years later, in [53], GP-based feature
construction was used for improving the accuracy of several classification algorithms for
biomarker identification. In [54], a method to find smaller solutions of equally high quality
compared to other state-of-the-art GP approaches was coupled with a GP-based feature
construction method and applied to cancer radiotherapy dose reconstruction. One year
later, in [55], GP-based feature construction was successfully applied to the classification
of ten different categories of skin cancer from lesion images. Interestingly, while the ap-
plication tackled in [54] is a symbolic regression problem, the one in [55] is a multiclass
classification problem, thus confirming that the GP-based feature construction approach
can be successfully applied to both types of problems. Finally, in [56], GP-based feature
construction was extended for the first time to experimental physics. In particular, to be
applicable to physics, dimensional consistency was enforced using grammars. The pre-
sented results showed that the constructed hyperfeatures can both significantly improve
classification accuracy and be easily interpretable.

2.2. Feature Construction and Genetic Programming in Remote Sensing

In the RS domain, many techniques have been used to extract features from satellite im-
ages. These features include statistical descriptors, obtained by the gray level co-occurrence
matrix (GLCM) and other methods [57]; features of interest, such as known structures (e.g.,
buildings, roads), using deep learning [58]; sets of generic features, using principal com-
ponent analysis (PCA) [59]; and even temporal features, using the continuous change
detection and classification (CCDC) algorithm [60].

GP-based algorithms, mainly the standard GP algorithm, have been previously used
in the area of RS in tasks such as the creation of vegetation indices [61], the detection of
riparian zones [62] and the estimation of soil moisture [62,63], the estimation of canopy
nitrogen content at the beginning of the tasseling stage [64], the estimation of chlorophyll
levels to monitor the water quality in reservoirs [65], the prediction of soil salinity by
estimating the electrical conductivity on the ground [66], and also in geoscience projects
reviewed in [67].

The expressions obtained by the GP-based algorithms can be used in transfer learning
by exporting them to datasets under the form of hyperfeatures, in the attempt to improve
the performance of ML algorithms. Our work continues to develop this kind of application,
which was already explored in the area of RS using EC-based algorithms [68,69] and
specifically GP-based algorithms [11,62].

3. Materials and Methods

3.1. Datasets and Study Areas

The datasets used in this work are meant to train ML models to classify burnt areas
and land cover types on a pixel-level. We use a total of nine datasets, obtained from
Landsat-7, Landsat-8, and Sentinel-2A satellite images. The characteristics of these images
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and datasets are summarized in Tables 1 and 2, and their associated geographic locations
are highlighted in Figure 1.

Table 1. Summary of the datasets used.

Dataset Ref. Country
Scene Identifier

Path/Row
Acq. Date

DD/MM/YYYY
No.

Images Satellite KGCS

Ao2 a Angola 177/67 09/07/2013 1 LS-8 Cwa
Br2 [70] Brazil 225/64 28/02/2015 1 LS-8 Af, Am
Cd2 [70] DR Congo 175/62 08/06/2013 1 LS-8 Aw
Gw2 [70] Guinea-Bissau 204/52 13/05/2002 1 LS-7 Am, Aw

IM-3
IM-10

b

[71]
Guinea-Bissau

203/51, 52
204/51, 52

205/51

From: 02/01/2010
To: 01/04/2010

17 LS-7 Am, Aw

Ao8 [72] Angola 182/64, 65 18/06/2016 2 LS-8 Aw

Gw10 c Guinea-Bissau 204/51, 52
205/51

01/03/2019
24/03/2019

3 LS-8 Am, Aw

Mz6 [73] Mozambique Entire Country
( 122 S-2A tiles )

From: 19/02/2016
To: 06/10/2016

2806 d S-2A Am, Aw, BSh,
Cwa, Cwb, Cfa

a There is no reference paper for this dataset. b This is a subdataset, obtained by extracting three forest classes from the IM-10 dataset.
c The reference paper for this dataset is under review. d An approximation obtained by considering that the S-2A mapped every tile of
Mozambique once every 10 days for 230 days.

Table 2. Summary of the datasets used.

Dataset Classes (No. Pixels) No.
Classes

No. Bands
No. Features

Total
Pixels

Ao2 Burnt (1573) Non-Burnt (2309) 2 7 3882
Br2 Burnt (2033) Non-Burnt (2839) 2 7 4872
Cd2 Burnt (877) Non-Burnt (1972) 2 7 2849
Gw2 Burnt (1101) Non-Burnt (3430) 2 7 4531

IM-3 Savanna Woodland (114) Dense Forest (68) Open Forest (140) 3 6 322

IM-10
Agriculture/Bare Soil (950) Burnt (77) Dense Forest (524)
Grassland (75) Mangrove (1240) Open Forest (723)
Savanna Woodland (1626) Sand (166) Mud (509)
Water (908)

10 6 6798

Ao8
Agriculture/Bare Soil (73) Burnt (301) Clouds (332)
Forest (662) Grassland (12) Urban (53)
Savanna Woodland (598) Water (152)

8 10 2183

Gw10
Agriculture/Bare Soil (449) Burnt (157) Dense Forest (62)
Grassland (16) Mangrove (1383) Open Forest (646)
Savanna Woodland (1308) Sand (50) Water (620)
Wetland (389)

10 7 5080

Mz6 Agriculture/Bare Soil (33611) Forest (63190) Grassland (28406)
Urban (4194) Wetland (35673) Other (25128)

6 10 190202

3.1.1. Datasets

From the Landsat-7 images, we have one binary classification dataset (Gw2) and two
multiclass classification datasets (IM-10 and IM-3). The IM-3 dataset was built, in previous
work, from IM-10 by extracting only the pixels classified in situ from the three forest land
cover types that ML models failed to correctly discriminate. These images were both
obtained over Guinea-Bissau.
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Figure 1. Location of the study areas, in red, in Brazil (Br2), Guinea-Bissau (Gw2, Gw10, IM-3, IM-10),
Democratic Republic of Congo (Cd2), Angola (Ao2, Ao8), and Mozambique (Mz6) in South America
and Africa continent.

From the Landsat-8 images, we have three binary classification datasets and two
multiclass classification datasets. The binary classification datasets have the objective of
training models to identify burnt areas, by classifying each pixel as “burnt” or “nonburnt”.
These three datasets were obtained from satellite images over Angola (Ao2), Brazil (Br2)
and Democratic Republic of the Congo (Cd2). The multiclass classification datasets have the
objective of training models to correctly classify each pixel as one of several different land
cover types. These two datasets were extracted from satellite images over Angola (Ao8)
and Guinea-Bissau (Gw10).

Lastly, from the Sentinel-2A satellite images, we have one multiclass classification
dataset that was extracted from several satellite images from the entire country of Mozam-
bique (Mz6). These images were obtained through 2016, between 19 February and
6 October [73].

3.1.2. Study Areas

In terms of size of the classified areas, the pixels used in the Landsat satellite images
consist of 900 m2 areas and those used in the Sentinel-2A satellite images consist of 400 m2

areas. As such, the classified areas can be calculated from Table 2. Next, we describe the
climate (according to the Köppen–Geiger classification system (KGCS) [74]) and vegetation
in each of the study areas:

Brazil: The study area of the Br2 dataset is located in eastern Amazonia, in southeast-
ern Pará, Brazil. According to the KGCS, the climate in this image is classified as equatorial
monsoon (Am) and equatorial rainforest, fully humid (Af) in the north and south sections,
respectively. This area is drier than central and western Amazonia, with annual rainfall
between 1500 mm and 2000 mm and average temperatures ranging from 23 ◦C to 30 ◦C.
The vegetation in this image ranges from lowland Amazon forest in the north through
submontane dense and open forests in the south [70].

Guinea-Bissau: The study area of the Gw2, IM-3, IM-10, and Gw10 datasets is located
in Guinea-Bissau, West Africa. According to the KGCS, the climate in this area is classified
as Am and equatorial savanna with dry winter (Aw) within the coastal and interior areas,
respectively. This area is characterized by having a marshy coastal plain with a dry to moist
(North to South) tropical climate. There are two marked seasons, a dry season between
November and May, and a wet season between June and October. Total annual rain values
vary from 1200 to 1400 mm in the Northeast region, and from 2400 to 2600 mm in the
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Southwest region. The monthly average temperature ranges from 25.9 ◦C and 27.1 ◦C.
The vegetation consists of mangroves on the coast and gradually becomes composed of
mainly dry forest and savanna inland [70].

Northern Angola: The study area of the Ao8 dataset is located in the Zaire province,
northern Angola. According to the KGCS, the climate in this region is classified as Aw with
a mean annual rainfall near 1300 mm, distributed in two periods separated by a short dry
spell. The monthly average temperature ranges from 20.5 ◦C and 24.9 ◦C. The vegetation
is mainly savanna scrublands and some dense humid forests mostly located along rivers,
creeks, and gullies. There are anthropic forests composed by native species and mango,
cola, safou, avocado, citrus, and guava trees in ancestral settlements, abandoned due to
forced relocation along the main roads by the colonial administration [75].

Eastern Angola: The study area of the Ao2 dataset is located in Lunda Sul, Eastern
Angola. According to the KGCS, the climate in this area is classified as Warm temper-
ate climate with dry winter and hot summer (Cwa) and a mean annual rainfall near
1300 mm, distributed between October and April and a dry season from May to September.
The monthly average temperature ranges from 20.0 ◦C and 24.4 ◦C. The vegetation is
mainly dominated by woody and shrub savannas and gallery forests essentially located
along the valleys of the great rivers [76].

Democratic Republic of Congo: The study area of the Cg2 dataset is located in the
central-eastern Democratic Republic of Congo. According to the KGCS, the climate in this
area is classified as Aw with a mean annual rainfall near 1600 mm. There are two distinct
seasons, a dry season (with temperatures ranging between 18 ◦C and 27 ◦C) from June to
August, and a rainy season (with temperatures ranging between 22 ◦C and 33 ◦C) from
September to May. The vegetation is characterized by a congolian lowland forest in the
north to miombo woodlands in the south. In the southwestern region, the population
pressure had conducted to the degradation of the miombo woodlands [70].

Mozambique: The study area of the Mz6 dataset includes the entire country of
Mozambique. According to the KGCS, the climate is classified as Aw in the coastal area
and near the Zambezi river; as Cwa in the interior, at the north and the west of the Zambezi
river; as warm temperate climate with dry winter and warm summer (Cwb) near Lichinga
and west of Chibabava; as hot semiarid (BSh) in the interior in south Mozambique and east
of Mungári and Derre, and as hot desert (Bwh) in the area between Dindiza and the frontier
between Mozambique and Zimbabwe, south of the Save river. It has a wet season from
October to March and a dry season from April to September. The lowest average rainfall
(300–800 mm/year) occur in the interior southern regions and the highest average rainfall
(over 1200 mm/year) occur in the area around Espungabera. The average temperatures are
the highest along the coast in the northern regions (with temperatures ranging between
25 ◦C and 27 ◦C in summer and between 20 ◦C and 23 ◦C in winter) and in the southern
regions (with temperatures ranging between 24 ◦C and 26 ◦C in summer and between
20 ◦C and 22 ◦C in winter), while the high inland regions have cooler temperatures (with
temperatures ranging between 18 ◦C and 20 ◦C in summer and between 13 ◦C and 16 ◦C
in winter). The northern areas are predominantly occupied by miombo woodlands and the
western and southern borders by Zambezian and Mopane woodland. The most widespread
vegetation in the north coast is the Zanzibar–Inhambane forest mosaic, followed by the
African mangroves and the Maputaland forest mosaic in the southeast coast [73,77,78].

3.2. Methodology

The core of this work is to expand the reference datasets with hyperfeatures that
improve the performance of different ML methods. Figure 2 illustrates the process of
obtaining and using such hyperfeatures. As usual, the reference dataset is split in two
datasets, one for training the classifiers, called the training set, and one for testing the
classifiers on unseen data, called the test set. Based only on the training set, the feature
construction algorithm creates a set of hyperfeatures that are used to expand the reference
dataset in both training and test sets. The expanded training set is used by the classification
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algorithm to obtain a trained classifier that is applied to both (expanded) training and test
sets in order to report the performance in terms of learning and generalization, respectively.

A small deviation to this process has been made for the datasets IM-3 and IM-10,
where the hyperfeatures used to expand the IM-10 datasets where obtained in the training
data of its subset IM-3, and not the training data of the complete IM-10. The goal of this
deviation was to check whether a larger dataset could also benefit from hyperfeatures
obtained in a much limited context (results reported in Section 4.3).

As feature construction algorithms, we use M3GP and compare it with FFX and EFS,
all described below. As classification algorithms, we use decision trees (DT), random forests
(RF), and XGBoost (XGB), also briefly described below. The number and complexity of
the created hyperfeatures is not predefined, but automatically determined by the feature
construction algorithm.

We also experiment with expanding the reference datasets with the NDVI, NDWI, and
NBR indices, instead of performing feature construction. These indices were selected from
the RS literature as being helpful to the ML algorithms for separating vegetation, water,
and burnt classes, since these elements are present among the pixels used in the datasets.

Each experiment is performed 30 times for each possible trio of reference dataset,
feature construction algorithm, and classification algorithm (with the exception of the EFS
and FFX algorithms, which are only used in binary classification datasets), each time with
a different random split of the reference dataset in training and test sets. In other words,
and limiting the explanation to Figure 2, our experimental process follows these steps:

Splitting the Dataset: The reference dataset is split randomly into training (70% of
the pixels) and test sets (remaining 30%), stratified by class;

Creating and Adding Hyperfeatures/Indices: The training set is used by a Feature
Construction algorithm to create a new set of hyperfeatures, and the training and test sets
are then extended using these hyperfeatures, or the indices;

Training and Testing a Classifier: a classifier is trained using the extended training
set and tested on the extended test set, providing the final results.

Reference Dataset

Training Dataset Test Dataset

Feature Construction Algorithm Set of Hyper-Features

Training Results Test Results

Reference Dataset

Training Dataset with Hyper-Features Test Dataset with Hyper-Features

Classifier Trained Classifier

Figure 2. Representation of the methodology adopted to obtain and use hyperfeatures.

3.3. Feature Construction Algorithms

We use three different methods for feature construction. Our method of choice is
the M3GP algorithm, because of the interpretability of the hyperfeatures it creates, and
because it can evolve hyperfeatures for multiclass classification problems. For comparing
our M3GP results with the results of other evolutionary and non-evolutionary methods,
we selected the EFS and FFX algorithms, due to their running speed, availability of the
authors’ implementations, and number of citations. However, EFS and FFX are focused
on regression problems, rather than classification problems. They are easily adapted to
binary classification by defining a threshold separating the two classes, but there is no
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easy adaptation for multiclass problems, the reason why we test them only on the binary
classification datasets.

M3GP algorithm: Multidimensional multiclass GP with multidimensional popula-
tions (M3GP) is a GP-based algorithm that evolves a set of hyperfeatures that convert
the original feature space into a new feature space, guided by a fitness function that mea-
sures the performance of a classifier in the new feature space. The M3GP is an all-in-one
algorithm that both creates the hyperfeatures and uses them for solving both regression
and classification problems. The inner workings of this algorithm are explained below, in
Section 3.3.1.

EFS algorithm: Evolutionary feature synthesis (EFS) is an evolutionary algorithm that
uses pathwise LASSO [79] regression to optimize multiple linear regression models that
are extended for nonlinear relationships between features. This extension is made using
functions such as cos, sin, and log, as well as functions with several inputs, e.g., multipli-
cation of variables. This regression tool can produce a set of interpretable hyperfeatures
in seconds.

FFX algorithm: Fast function extraction (FFX) is a deterministic algorithm that applies
pathwise regularized learning [80] to a large set of generated nonlinear functions to search
for a set of hyperfeatures with minimal error. Although the hyperfeatures observed are
simple, this algorithm generates hundreds of hyperfeatures, which leads us to consider the
final model noninterpretable.

3.3.1. The M3GP Algorithm

The M3GP [13] is a GP-based algorithm that evolves models similar in structure to the
models of standard GP [12]. Standard GP represents each model as a parse tree, to be read
depth-first, where the terminal nodes are features and the nonterminal nodes are operators
that combine features (e.g., arithmetic operators such as multiplication, subtraction, etc.).
The main difference between the models evolved by M3GP and the ones of standard GP is
that in M3GP, each model is not a single tree, but a set of trees, as exemplified in Figure 3.
These trees are what we call hyperfeatures and are evolved using the steps shown in
Figure 4 and explained here:

Initialization: The M3GP algorithm initializes its population of models as single,
randomly generated trees. Therefore, in the beginning of the evolutionary cycle, each
individual is a simple model consisting of a single hyperfeature.

Evaluation: Each individual of the population is evaluated by the following procedure.
The n hyperfeatures are used to convert the original features into a new n-dimensional
dataset. The fitness of the model is then calculated by applying a fitness function to this
new (hyper)feature space. This fitness function rewards the individuals whose set of
hyperfeatures creates a space where the different classes are more easily separable. In the
original M3GP algorithm, the fitness was the overall accuracy of the Mahalanobis distance
classifier (described below), but in the current implementation, we use the weighted
average of F-measures (WAF) instead of the overall accuracy, (although we still use the
overall accuracy to assess performance), for its robustness to class imbalance, especially in
multiclass classification.

Stopping Criteria: After the population is evaluated, the algorithm decides whether
to stop the evolution or not. The most common stopping criteria are related to the number
of generations/iterations already done, and to the quality of the best model achieved
(in terms of accuracy or any other metric). In the current implementation, the evolution
stops when 50 generations are completed or when one individual achieves 100% accuracy
on the training set, whichever occurs first. If the evolution does not stop, a new generation
of models is created, following the steps described next.

Selection: The parents of the next generation are selected using the tournament
method. To select each parent, the algorithm randomly selects a small group of models and,
out of these models, chooses the best. The tournament method is able to maintain enough
selective pressure to choose mostly the best individuals, thus promoting the propagation of
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their good traits in the next generation, while allowing also the bad ones to become parents,
thus avoiding the loss of genetic diversity that would stagnate the evolution.

Breeding: After selecting models to act as parents, each new model is created either
through a mutation of one parent or through a crossover of two parents. When using a mu-
tation genetic operator, the parent can either: create a new, randomly generated tree and
add it to its set of hyperfeatures; randomly select one of its hyperfeatures and remove it (if
it contains more than one hyperfeature); or modify one of its hyperfeatures by replacing
one of its branches with a new, randomly generated tree. When using a crossover genetic
operator, the parent models can swap either branches or entire hyperfeatures between each
other. Unlike the mutation genetic operator, the crossover results in two offspring.

After a new population has been created, the algorithm returns to the evaluation step.

B2

B7

–

+

//

*

//

*

( B1 – B3 ) // ( B1 + B3 )

B1 + B3

B6 // B4

B7 * B6 * B5

B1

B3

B4

B5

B6

( B1 – B3 ) // ( B1 + B3 )

//

– +

B1 B3 B1 B3

Figure 3. Example of an M3GP model that uses six of the seven available features to build four
hyperfeatures (left) and a single hyperfeature (right). The solid and dashed lines indicate the first
and second variables used by the operators. // is a division operator protected against division
by zero.

Start Initialisation Evaluation

Selection

Breeding

ContinueStop Stopping
CriteriaEnd

Figure 4. Evolutionary cycle used by M3GP.

3.4. Classification Algorithms

Four different classifiers are used in this work: MD, DT, RF, and XGB. The MD
classifier is used only as part of M3GP, but the other three are used to independently test
the effectiveness of the indices and hyperfeatures added to the reference datasets.

Mahalanobis distance classifier: The MD classifier is a nonparametric supervised
cluster-based algorithm that classifies a data point by associating it with the closest cluster
centroid using the Mahalanobis distance, where a cluster is defined as a set of pixels
belonging to the same class.

Decision tree classifier: The DT algorithm is a nonparametric supervised algorithm
that infers simple decision rules from the training data. This algorithm can be used in both
classification and regression problems.

Random forest classifier: The RF algorithm is an ensemble algorithm that uses a set
of DT to solve both classification and regression problems by assigning each data point to
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the majority vote of all DT in classification problems or to the average of the prediction of
all DT in regression problems.

XGBoost classifier: The XGB algorithm is a DT-based ensemble algorithm that uses
an optimized gradient boosting to minimize errors. This algorithm can be used in both
classification and regression problems.

3.5. Tools and Parameters

All the experiments involving M3GP are performed using our own implementation
of the M3GP algorithm (Python implementation available at https://github.com/jespb/
Python-M3GP), which includes the implementation of the MD classifier. The DT and RF
implementations belong to the sklearn Python library [81] and the XGB implementation
belongs to the xgboost Python library [30]. The EFS implementation (EFS project website:
http://flexgp.github.io/efs/) is provided by the authors in their paper [31] and the FFX
implementation (Python implementation available at https://github.com/natekupp/ffx)
belongs to the ffx Python library.

The parameter settings used in this work are the standard within the ML community,
with the main parameters and variations specified in Table 3. The EFS, FFX, and M3GP
algorithms used the same parameters as those used by the authors in their respective
papers. The variations in this work include our implementation of the M3GP using the
WAF of the MD classifier (untied with the number of hyperfeatures and then with the
total size of the model) as fitness, rather than the accuracy, and only pruning the final
individual, for consistency with previous work that had this variation [11]. Every run
using the DT, RF, and XGB classifiers used the default parameters of their respective
implementations, except for the XGB runs in the Mz6 dataset. In this dataset, the XGB was
unable to obtain perfect training accuracy with the default maximum depth for its models.
As such, the maximum depth was increased from 6 to 20.

Table 3. Main parameters and variations used in the experiments.

General:
Runs 30
Training Set 70% of the samples of each class
Statistical Significance p-value < 0.01 (Kruskal–Wallis H-test)

M3GP:
Stopping Criteria 50 generations or 100% training accuracy
Fitness WAF (Weighted Average of F-measures)
Pruning Final individual

XGBoost:
Maximum Depth 20 in the Mz6 dataset and 6 (default) in the other datasets

4. Results and Discussion

We start this section by presenting the results and hyperfeatures obtained by running
M3GP by itself on all the datasets. Then, we discuss the interpretability of the hyperfeatures
and the popularity of the different satellite bands in the solutions proposed by M3GP. Next,
we compare the overall accuracy, and class accuracy, obtained when running the DT, RF,
and XGB algorithms on the original datasets and on the datasets expanded with indices or
hyperfeatures. Regarding the class accuracy, we present the results only for XGB because
the results for DT and RF were similar in terms of the relationship between the classes, and
therefore would not bring any new information.

The presentation of the results is split into three categories: binary classification
datasets (Ao2, Br2, Cg2, and Gw2), regarding the detection of burnt areas; discrimination
of similar classes (IM-3 and IM-10), regarding the separation of forest types; and discrim-
ination of all classes (Ao8, Gw10, and Mz6), regarding the separation of different land
cover types.

https://github.com/jespb/Python-M3GP
https://github.com/jespb/Python-M3GP
http://flexgp.github.io/efs/
http://flexgp.github.io/efs/
https://github.com/natekupp/ffx
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We present the results in tables, boxplots, and confusion matrices. On the tables, each
overall accuracy value is the median obtained in the 30 runs. The confusion matrices, rather
than showing the class accuracy, show the difference (in percentage of pixels) between
using hyperfeatures (or indices) and using the original dataset, to facilitate the identification
of the effect produced by the hyperfeatures. Statistical significance is determined with the
nonparametric Kruskal–Wallis H-test (from the scipy Python library) at p < 0.01.

4.1. M3GP Performance and Hyperfeature Analysis

Although we use M3GP as a feature construction method for other ML algorithms,
M3GP can perform binary and multiclass classification by itself, as described in Section 3.4.
While using M3GP to evolve the hyperfeatures, we have registered the accuracy values it
achieved in each dataset, presented in Table 4. Although the accuracy is high, it is generally
worse than the accuracy achieved by the other ML algorithms we used, and therefore we
will not refer to the results of standalone M3GP again.

In terms of interpretability of the evolved hyperfeatures, in Table 4, we report the
number of hyperfeatures and their median size (with minimum and maximum values,
between parentheses). While the number of evolved hyperfeatures seems to depend heavily
on the number of classes of the problem, the median average size of each hyperfeature
tends to be higher for the binary datasets, where a large dispersion of values is observed.

To exemplify the variety of different sets of evolved hyperfeatures, we picked three
examples. On the first two examples, a single hyperfeature was evolved, but with different
sizes. Both were evolved for the Gw2 dataset and obtained perfect test accuracy on the
respective runs. The third example is a set of 16 hyperfeatures that were evolved in a run
for the Ao8 dataset and obtained median test accuracy. This variety of hyperfeatures can
be seen in Equations (1)–(7). Note that Bn refers to the nth band of the satellite. As we can
see, the M3GP algorithm can generate hyperfeatures that are as simple as (and perfectly
equal to) the original features themselves (Equations (3)), hyperfeatures that are simple
enough to be interpreted (Equations (1), (4) and (5)), and hyperfeatures that need to be
decomposed for a proper analysis of the expression (Equations (2), (6) and (7)).

Looking at Table 4 and the examples of hyperfeatures in Equations (1)–(7), we can
state that, although the M3GP sometimes produces complex hyperfeatures, the general
case seems to be the production of interpretable hyperfeatures. While this work focuses
exclusively on datasets from the RS domain, the same tendency regarding interpretability
was already observed in the original M3GP paper [13], which used datasets from a much
wider range of domains.

Table 4. The median training and test overall accuracy, size, number of hyperfeatures, and average
size of the hyperfeatures obtained by the M3GP models in 30 runs in each dataset.

Ao2 Br2 Cg2 Gw2 IM-3 IM-10 Ao8 Gw10 Mz6

Accuracy
Training 1.000 0.992 0.993 1.000 0.996 0.932 1.000 0.988 0.620
Test 0.999 0.990 0.993 1.000 0.948 0.916 0.983 0.971 0.620

Hyperfeatures
Number 5 (3–8) 8 (1–15) 4 (3–8) 2 (1–3) 8.5 (5–13) 23 (17–29) 18 (14–21) 21 (15–23) 14.5 (12–17)
Avg. Size 14 (9–28) 14 (6–39) 23 (6–40) 11 (2–43) 11 (5–22) 10 (8–13) 10 (5–14) 8 (6–12) 11 (5–17)

Gw2, Run#11, 1 Hyperfeature:

B5 (B3 + B5)
B7 + B4 + 1

(1)

Gw2, Run#26, 1 Hyperfeature:

B22 B3 B4 B5 B6 − B22 B42 B5 + B2 B32 B52 B6 − B2 B3 B4 B52 − B3 B43 B7
B42 B7 (B2 B4 + B3 B5)

(2)
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Ao8, Run#18, 16 Hyperfeatures:

B3 B5 B6 B10 B11 (3)

B9 − B2
B3
B5

B1
B2 B72 B5 − B6 + B9 − 2 B10

B2 B9
B2 B11 − B10 − B2 B5

(4)

(B1 + B4 − B10) (B3 + B9)
B6

B6 B9 − B1 B2 − B1 + B3 + B6 − B9 (5)

B9 (B9 − B11)
B7 (B3 B6 + B9 − B11)

(B4 + B10 − B12

B5 − B9
) (2 B2 +

B3
B4

− B4 + B5 + B10) (6)

B7 B92 (B2 + B7 − B11)
B5 B6 B112 (B2 + B3 − B9)

B1 B2 + B1 B3 B6 + B1 B3 B9 + B3 B4 B5
B11

(7)

Regarding the popularity of the different satellite bands in the evolved hyperfeatures,
Figure 5 shows, for each band and each dataset, the fraction of hyperfeatures generated
for that dataset (in 30 runs) that use the band. We only check whether a band appears in
a hyperfeature. Measuring its importance inside the hyperfeature would be a complex
exercise that we do not perform here. For each dataset, we subjectively identify a group of
most popular bands as the ones ranked higher and at a larger distance from the rest. We
do not identify any popular bands for Ao8, since on this dataset all the bands are ranked
low, with small distances between them.

In Binary Classification Datasets: The most popular band in all four datasets was the
SWIR2 (B7 in both LS-7 and LS-8), which appears in 62.4% to 81.4% of the hyperfeatures
across all datasets. This preference for the SWIR2 band is expected due to its usefulness
when searching for dry earth, which may indicate a recent fire [82].

Ao2 Br2 Cg2 Ao8 Gw10 Gw2 IM-3 IM-10 Mz6
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Figure 5. Fraction of hyperfeatures generated for each dataset (in 30 runs) that use a given band.
The bands identified as popular are highlighted.
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When Discriminating Similar Forest Classes: The most popular band in the IM-3
and IM-10 datasets was the NIR (B4), which appeared in 69.6% and 67.5% of the hyperfea-
tures, respectively. The popularity of the NIR band in the creation of hyperfeatures can be
justified by its importance on the visualization of healthy vegetation in the discrimination
between Dense Forest and Open Forest pixels. The importance of this band has also led to
the creation of indices, such as the NDVI [1,82].

When Discriminating All Classes: Since the target classes are not similar to each
other, here, we observe which are the most popular bands on each dataset, and attempt to
explain their popularity based on which classes benefited the most from the hyperfeatures.
We do not discuss the Ao8 dataset, not only because it lacks popular bands, but also because
it did not benefit from the hyperfeatures, as we will see below in Section 4.4.

In the Gw10 dataset, the Red (B4) and NIR (B5) bands were the most popular, appearing
in 56.2% and 54.3% of the hyperfeatures, respectively. We will see in the next section that on
this dataset the hyperfeatures improved the classification of the Mangrove, Savanna Woodland,
and Wetland pixels. This suggests that the better discrimination of these land cover types
took into account the amount of healthy vegetation and the composition of the soil.

Regarding the Mz6 dataset, the Vegetation Red Edge (B8A), Green (B3), and Red (B4)
were identified as the most popular bands, appearing in 51.6%, 50.5%, and 48.6% of the
hyperfeatures, respectively. However, their effect is not so clear, since the improvement
brought by the hyperfeatures affected several different classes. Taking into consideration
only the classes with the highest improvement, which were Agriculture/Bare Soil, Forest and
Wetlands, we suggest that the better discrimination of these land cover types considered
the health and age of the vegetation, as well as the composition of the soil.

In some of the related work regarding the use of GP to build hyperfeatures in RS,
the authors reveal what were considered the best hyperfeatures obtained. For comparison
with our own, here we also comment on those hyperfeatures. It is important to say that
these works address regression problems (rather than classification problems), which some-
times require more complex models in order to be solved. In comparison with our own,
these works use an extensive list of mathematical operators to combine the original features
(which also tends to cause the creation of larger models). The authors also include indices
in the datasets, similarly to what is done in part of our work.

In [65], the authors use GP to monitor the quality of the water in reservoirs, by predict-
ing the amount of chlorophyll in the water. The final model is quite simple (having a size
of 8), according to our criteria, and only uses the Green, Red, and NIR bands. While in this
case, the hyperfeature used is simple, that is not the case in the other two works. In [66],
the authors attempt to predict the soil salinity. Their final model uses one band and five
indices, and its size is near 50 (making it larger than any of our hyperfeatures). In [62],
the authors attempt to predict the soil moisture and, although their final model only uses
four terminals (SAR backscatter coefficient, slope, soil permeability (in/hr), and the NDVI),
this model is the most complex out of these three.

4.2. Hyperfeatures in Binary Classification Datasets

The results obtained on the binary classification datasets (Ao2, Br2, Cd2, Gw2) are
reported in Table 5 and Figure 6. In terms of training accuracy, the three classification
algorithms managed to obtain perfect results in nearly every run, and therefore those
results are not included in the table. In terms of test accuracy, the induced models achieved
high values, nearly all above 99% (both in terms of overall accuracy and class accuracy,
as seen in Table 6), also on the original (non-expanded) datasets. The lowest results belong
to DT that, when applied to the Br2 dataset, achieved a median overall test accuracy of
98.9%. Without much room for improvement, FFX was still able to create hyperfeatures
that improved the test accuracy in two cases (DT and XGB in the Gw2 dataset), surpassing
also the M3GP hyperfeatures, while neither the indices nor the M3GP or EFS hyperfeatures
caused any significant difference in the results. The boxplots show a low dispersion of
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accuracy values (the ranges of the y-axes are limited), which seems to be marginally larger
for the EFS results.

Table 5. Comparison of the median overall test accuracy (highlighted in bold) obtained by the three
ML algorithms in the original datasets, when adding indices, and when using hyperfeatures evolved
by EFS, FFX, and M3GP. The colored p-values indicate significantly better/worse results.

Decision Trees Random Forests XGBoost

Dataset Ao2 Br2 Cd2 Gw2 Ao2 Br2 Cd2 Gw2 Ao2 Br2 Cd2 Gw2

Orig. Dataset
Test Accuracy 0.999 0.989 0.996 0.999 0.999 0.992 0.999 1.000 0.999 0.993 0.998 0.999

Indices
Test Accuracy 0.999 0.990 0.996 0.999 0.999 0.993 0.999 1.000 0.999 0.993 0.998 0.999
p-value vs. Orig. 0.694 0.678 0.909 0.669 0.675 0.917 0.436 0.871 1.000 1.000 1.000 1.000

EFS
Test Accuracy 0.998 0.989 0.996 0.999 1.000 0.992 0.999 1.000 0.999 0.993 0.998 0.999
p-value vs. Orig. 0.012 0.226 0.143 0.735 0.091 0.777 0.137 0.619 0.256 0.682 0.489 0.127

FFX
Test Accuracy 0.999 0.990 0.996 1.000 0.999 0.993 0.999 1.000 0.999 0.993 0.998 1.000
p-value vs. Orig. 0.224 0.941 0.294 0.000 0.363 0.988 0.148 0.730 0.739 0.794 0.886 0.000

M3GP
Test Accuracy 0.999 0.990 0.996 0.999 0.999 0.992 0.999 1.000 0.999 0.993 0.998 0.999
p-value vs. Orig. 0.908 0.947 0.672 0.813 0.500 0.846 0.688 0.871 1.000 1.000 1.000 1.000
p-value vs. Ind. 0.782 0.761 0.598 0.849 0.780 0.982 0.738 1.000 1.000 1.000 1.000 1.000
p-value vs. FFX 0.276 0.830 0.525 0.001 0.095 0.905 0.319 0.868 0.739 0.794 0.886 0.000
p-value vs. EFS 0.017 0.272 0.291 0.572 0.286 0.682 0.309 0.757 0.256 0.682 0.489 0.127

Or. Ind. EFS FFX
M3GP Or. Ind. EFS FFX

M3GP Or. Ind. EFS FFX
M3GP

  Decision Trees           Random Forests               XGBoost       
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Figure 6. Boxplots of the test accuracy obtained in the binary classification datasets in each test case.

These seemingly uninteresting results agree with the findings of our previous work [11].
Using a different method of selecting and using the hyperfeatures also had no effect in the
cases where the training and test datasets came from the same image. However, the hy-
perfeatures revealed to be beneficial when the induced models where applied to datasets
that came from images not seen during training. This suggests that the current method of
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obtaining and using the hyperfeatures may also prove beneficial in a similar training and
test setting.

Table 6. Average test accuracy in each class when using the XGBoost algorithm in the origi-
nal datasets.

XGB—Original Ao2 Br2 Cg2 Gw2 IM-3 IM-10 Gw10 Ao8 Mz6

Agriculture/Bare Soil — — — — — 98.96% 96.34% 83.02% 72.59%
Burnt 99.81% 99.51% 99.63% 99.80% — 93.19% 98.72% 99.22% —
Clouds — — — — — — — 100.00% —
Forest — — — — — — — 99.87% 88.05%

- Dense Forest — — — — 92.67% 87.67% 79.81% — —
- Open Forest — — — — 93.02% 93.65% 98.41% — —

Grassland — — — — — 92.73% 81.67% 85.56% 64.02%
Mangrove — — — — — 99.12% 98.41% — —
Mud — — — — — 96.07% — — —
Sand — — — — — 95.78% 90.22% — —
Savanna Woodland — — — — 99.71% 84.41% 98.66% 98.66% —
Urban — — — — — — — 87.78% 56.82%
Water — — — — — 97.33% 99.48% 99.48% —
Wetland — — — — — — 95.29% — 80.34%
Other 99.97% 99.16% 99.88% 99.98% — — — — 76.07%

4.3. Hyperfeatures to Discriminate Similar Classes in a Multiclass Classification Dataset

Before looking at these results, it is worth recalling that the IM-3 dataset was built
from three similar classes within the IM-10 dataset. As such, even though it has a reduced
number of classes, it is not unexpected to see a lower accuracy in this dataset. It is also
worth specifying that the hyperfeatures used in the IM-10 dataset were obtained only in
the IM-3 dataset, in an attempt to help discriminate these similar classes. Finally, we also
recall that EFS and FFX are not used in the multiclass datasets.

The results for IM-10 and IM-3 are reported in Table 7 and Figure 7. Once again,
the training results are omitted from the table because all three algorithms achieved perfect
results in nearly every run. In terms of test accuracy, we observe that, although the
values are high, they have a larger margin for improvement when compared to the binary
classification results reported above. When adding indices to the original dataset, the test
accuracy on the IM-10 dataset increased with two algorithms (RF and XGB). When adding
the hyperfeatures evolved by M3GP, the test accuracy in the IM-10 dataset increased with
all three algorithms, and in the IM-3 dataset, it increased with the XGB algorithm. Neither
the indices nor the M3GP hyperfeatures degraded the test accuracy. When comparing the
performance of indices versus M3GP hyperfeatures, M3GP is better with two algorithms
(DT and XGB). In the boxplots, we observe that IM-3 has a larger dispersion of values than
IM-10 (notice the different y-axes ranges). On IM-10, the DT algorithm visibly falls behind
RF and XGB.

Table 7. Comparison of the median overall test accuracy (highlighted in bold) obtained by the
three ML algorithms in the original datasets, when adding indices, and when adding hyperfeatures
evolved by the M3GP algorithm. The colored p-values indicate significantly better results.

Decision Trees Random Forests XGBoost

Dataset IM-3 IM-10 IM-3 IM-10 IM-3 IM-10

Original Dataset
Test Accuracy 0.948 0.956 0.969 0.974 0.958 0.973

Indices
Test Accuracy 0.938 0.959 0.958 0.979 0.948 0.977

p-value vs. Original 0.151 0.051 0.062 0.000 0.178 0.001

M3GP
Test Accuracy 0.958 0.961 0.969 0.978 0.969 0.978

p-value vs. Original 0.020 0.000 0.844 0.000 0.009 0.000
p-value vs. Indices 0.000 0.407 0.055 0.218 0.000 0.711
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Figure 7. Boxplots of the test accuracy obtained in the IM-3 and IM-10 datasets in each test case.

In terms of class accuracy in the IM-3 dataset, we can see in Table 8 that the hyper-
features improved the discrimination between the Dense Forest and the Open Forest pixels,
at the cost of reducing the accuracy on the Savanna Woodland class, by increasing its con-
fusion with Open Forest. Looking at Table 6, we see that Savanna Woodland had almost
perfect accuracy, and therefore any changes on this class would certainly be for the worse.
In the end, the three classes became more balanced in terms of accuracy. Although these
hyperfeatures do not seem to be helpful in the classification of Savanna Woodland on the
IM-3 dataset, when applied to the IM-10 dataset (See Table 9), their largest impact is pre-
cisely in this class by correcting pixels that were previously misclassified as Agriculture/Bare
soil, Grassland, and Mangrove. Their second biggest impact is in the classification of Dense
Forest by improving its discrimination from Open Forest and by correcting pixels that were
previously misclassified as Mangrove.

Table 8. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyperfeatures in the IM-3 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are in green and deteriorations in red. The rightmost column
indicates the accuracy obtained in each class without using hyperfeatures and the coloured cells
show the class accuracy difference from this value.

XGB IM−3 Dense Forest Open Forest Savanna Woodland Original Accuracy

Dense Forest 2.83% −2.83% 0.00% 92.67%
Open Forest −3.33% 2.46% 0.87% 93.02%

Savanna Woodland 0.00% 1.57% −1.57% 99.71%

Table 9. Confusion matrix comparing the average test accuracy obtained by the XGB with and without hyperfeatures in
the IM-10 dataset. This table shows the difference in the percentage of pixels in each line. Improvements are in green and
deteriorations in red. Only the 20 cells with the highest impact are colored. The rightmost column indicates the accuracy
obtained without using hyperfeatures and the coloured cells show the class accuracy difference from this value.

XGB
IM-10 Water Burnt Sand Agriculture

/Bare soil
Open
Forest

Dense
Forest Grassland Mangrove Savanna

Woodland Mud Original
Accuracy

Water 0.00% −0.05% 0.00% 0.02% 0.00% 0.00% 0.00% −0.01% 0.00% 0.04% 97.33%
Burnt 0.87% 0.29% 0.00% −0.29% 0.00% 0.00% 0.14% −0.87% −0.58% 0.43% 93.19%
Sand 0.00% 0.00% 0.95% −0.95% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 95.78%

Agriculture
/Bare soil 0.00% 0.00% −0.15% 0.19% 0.00% 0.00% −0.01% −0.18% 0.13% 0.02% 98.96%

Open Forest 0.00% 0.00% 0.00% −0.08% 1.03% −1.83% −0.08% 0.79% 0.16% 0.00% 93.65%
Dense Forest 0.00% 0.00% 0.00% 0.00% −2.50% 4.33% 0.00% −1.83% 0.00% 0.00% 87.67%

Grassland −0.15% 0.15% 0.00% −0.15% −0.45% 0.00% 0.15% 0.61% −0.15% 0.00% 92.73%
Mangrove −0.15% 0.00% 0.00% −0.03% −0.03% 0.00% 0.00% 0.23% −0.04% 0.01% 99.12%
Savanna

Woodland 0.00% −0.29% 0.00% −2.55% 0.10% 0.00% −1.27% −1.18% 5.49% −0.29% 84.41%

Mud −1.29% 0.09% 0.00% −0.02% 0.00% 0.00% 0.00% 0.07% 0.00% 1.16% 96.07%
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In these two datasets, although the M3GP hyperfeatures performed better than the
indices, these were also clearly beneficial when added to the original datasets. This behavior
was similar to all three classification algorithms and, as such, we only displayed the
confusion matrices related to the XGBoost algorithm, which had the best results. It is worth
noticing that the IM-3 and IM-10 datasets were extracted from a set of satellite images with
different acquisition dates. Next, we will observe additional evidence that indices and
hyperfeatures seem to be more useful in datasets coming from sets of images with different
acquisition dates.

4.4. Hyperfeatures to Discriminate All Classes in Multiclass Classification Datasets

The results obtained on the three unrelated multiclass classification datasets (Ao8, Gw10,
Mz6) are reported in Table 10 and Figure 8. Once again, the training results were omitted
from the table, as perfect accuracy was achieved in almost every run. However, for the
Mz6 dataset, XGB required a maximum tree depth larger than the implementation default
in order to achieve it (see Section 3.5).
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Figure 8. Boxplots of the test accuracy obtained in the Ao8, Gw10, and Mz6 datasets in each test case.

In terms of overall test accuracy, the indices improved the accuracy in two test cases
(DT on Gw10, XGB on Mz6) and reduced the accuracy in one test case (RF on Mz6).
On the other hand, the hyperfeatures evolved by M3GP improved the test accuracy in five
test cases (Mz6 with all algorithms, and Gw10 with RF and XGB), when comparing the
results with those on the original dataset, and in four test cases, when comparing with the
results obtained with the indices (Mz6 with all algorithms, Gw10 with XGB). Once again,
the hyperfeatures evolved by M3GP did not lead to a degradation of the test accuracy in
any of the cases.

Both the indices and the M3GP-evolved hyperfeatures had an impact on the Gw10
and Mz6 datasets, which were obtained from a set of satellite images with different acqui-
sition dates. Neither the indices nor the hyperfeatures had an impact on the Ao8 dataset,
which was obtained from two images with the same acquisition date. These results, together
with those displayed previously, seem to indicate that both the indices and the hyperfea-
tures are particularly useful in datasets obtained by mixing satellite images with different
acquisition dates.



Remote Sens. 2021, 13, 1623 19 of 25

On the boxplots, once again we observe that DT falls behind RF and XGB, and com-
pletely struggles on the Mz6 problem.

Table 10. Comparison of the overall test accuracy (highlighted in bold) obtained by the three ML
algorithms in the original datasets, when adding indices, and when adding hyperfeatures evolved by
the M3GP algorithm. The colored p-values indicate significantly better/worse results.

Decision Trees Random Forests XGBoost

Dataset Ao8 Gw10 Mz6 Ao8 Gw10 Mz6 Ao8 Gw10 Mz6

Original Dataset
Test Accuracy 0.977 0.964 0.662 0.988 0.981 0.773 0.985 0.979 0.780

Indices
Test Accuracy 0.978 0.968 0.662 0.989 0.980 0.769 0.986 0.980 0.781
p-value vs. Original 0.291 0.000 0.371 0.213 0.824 0.000 0.645 0.335 0.003

M3GP
Test Accuracy 0.980 0.970 0.665 0.988 0.982 0.775 0.987 0.983 0.786
p-value vs. Original 0.125 0.000 0.000 0.923 0.054 0.006 0.389 0.000 0.000
p-value vs. Indices 0.693 0.847 0.000 0.228 0.038 0.000 0.650 0.002 0.000

In terms of class accuracy in the Gw10 dataset (Table 11), when using the XGBoost
algorithm, the improvements are more general across the classes, with the exception of the
Grassland pixels, which are now misclassified as Savanna Woodland, and the Dense Forest
pixels, which were previously misclassified as Open Forest.

In this case, we omitted the results regarding the RF classifier since there was no
statistically significant difference between the runs in the original and the extended datasets.
We present the results of the XGBoost classifier to show that it is also possible to create a set
of hyperfeatures that helps improving the accuracy on nearly all classes.

Regarding class accuracy in the Mz6 case (Table 12), when using the hyperfeatures
in the XGBoost algorithm, the improvement was general among all classes, with a higher
impact on the Urban pixels that were previously misclassified as Other. The improvements
in this class’s pixels can be easily justified by being the class with the lowest accuracy in
the original dataset, followed by Grassland, which was also improved.

Table 11. Confusion matrix comparing the average test accuracy obtained by the XGB with and without hyperfeatures in
the Gw10 dataset. This table shows the difference in the percentage of pixels in each line. Improvements are in green and
deteriorations in red. Only the 20 cells with the highest impact are colored. The rightmost column indicates the accuracy
obtained without using hyperfeatures and the coloured cells show the class accuracy difference from this value.

XGB
Gw10

Agriculture
/Bare soil Burnt Dense

Forest Grassland Mangrove Open
Forest Sand Savanna

Woodland Water Wetland Original
Accuracy

Agriculture
/Bare soil 0.77% 0.00% 0.00% 0.00% 0.00% 0.00% −0.62% −0.17% 0.00% 0.02% 96.34%

Burnt −0.14% 0.28% 0.00% 0.00% −0.43% −0.07% 0.00% 0.21% 0.00% 0.14% 98.72%
Dense Forest 0.00% 0.00% 0.93% 0.00% 0.93% −1.85% 0.00% 0.00% 0.00% 0.00% 79.81%

Grassland 0.00% 0.00% 0.00% −2.50% 0.00% 0.00% 0.00% 2.50% 0.00% 0.00% 81.67%
Mangrove 0.00% 0.00% −0.03% 0.00% 0.40% −0.02% 0.00% −0.08% −0.08% −0.19% 98.41%

Open Forest 0.00% 0.00% −0.19% 0.00% −0.03% 0.31% 0.00% −0.09% 0.00% 0.00% 98.41%
Sand 0.67% 0.00% 0.00% 0.00% 0.00% 0.00% −0.67% 0.00% 0.00% 0.00% 90.22%

Savanna
Woodland −0.09% 0.00% 0.00% 0.00% −0.02% −0.14% 0.00% 0.29% 0.00% −0.04% 98.66%

Water 0.00% 0.00% 0.00% 0.00% −0.05% 0.00% 0.00% 0.00% 0.16% −0.11% 99.48%
Wetland −0.11% 0.06% 0.00% 0.00% −0.34% 0.00% 0.00% 0.00% 0.06% 0.34% 95.29%
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Table 12. Confusion matrix comparing the average test accuracy obtained by the XGBoost algorithm
with and without hyperfeatures in the Mz6 dataset. This table shows the difference in the percentage
of pixels in each line. Improvements are shown in green. The 10 cells with the highest impact
are colored. The rightmost column indicates the accuracy obtained in each class without using
hyperfeatures and the coloured cells show the class accuracy difference from this value.

XGB-Mz6 Agriculture
/Bare soil Forest Grassland Urban Wetland Other Original Accuracy

Agriculture
/Bare soil 0.87% −0.24% −0.28% −0.01% −0.01% −0.32% 72.59%

Forest −0.00% 0.34% −0.29% 0.00% −0.04% −0.01% 88.05%
Grassland −0.26% −0.32% 0.51% 0.00% 0.14% −0.08% 64.02%

Urban −0.03% −0.02% −0.25% 1.82% −0.06% −1.48% 56.82%
Wetland −0.15% −0.19% −0.39% 0.02% 0.84% −0.12% 80.34%

Other −0.26% −0.04% −0.18% −0.04% −0.08% 0.60% 76.07%

4.5. Impact on the MRV Performance

When training hyperfeatures to discriminate multiple classes, the results indicate
an overall improvement, particularly in the classes that previously had a lower accu-
racy. The improvements are significant in the IM-3, IM-10, Gw10, and Mz6 datasets.
These datasets have one thing in common: they consist of mosaics derived from several
acquisition dates. On the contrary, in the Ao8 dataset, where the two images of the mosaic
are from the same day, there are no significant improvements. These results indicate that
both indices and hyperfeatures are more useful when training models in images with more
than one acquisition date (or from different locations). However, when this is not the case,
there is no visible degradation of accuracy either.

Monitoring forest land cover at the country level, in compliance with UNFCCC stan-
dards, is a challenging endeavor, especially for vast countries covering various ecosystem
types with distinct seasonality. The production of wall-to-wall maps derived from satellite
imagery is especially attractive in these cases because remote sensing can cover large
extents, greatly reducing costs, improving consistency, and increasing the periodicity of
observations. However, in such cases, the image mosaics required to produce good quality
maps are likely to include many different acquisition dates, maximizing image quality and
observation date adequacy regarding vegetation cycles and climatic conditions. Thus, con-
sidering the results obtained, with hyperfeatures improving both the discrimination of
analogous wooded vegetation classes and the classification accuracy of large image mo-
saics, with no degradation of results in any of the cases tested, it can be ascertained that the
methods presented merit further development to exploit improvements in remote-sensing-
based MRV performance. They are also general enough to be applied to a variety of other
tasks, inside and outside the remote sensing domain.

5. Conclusions

We performed feature construction using M3GP, a variant of the standard genetic
programming algorithm, with the goal of improving the performance of several machine
learning algorithms by adding the new hyperfeatures to the reference datasets. We tested
the approach in the tasks of binary classification of burnt areas and multiclass classification
of land cover types. The datasets used were obtained from Landsat-7, Landsat-8, and
Sentinel-2A satellite images over the countries of Angola, Brazil, Democratic Republic of
Congo, Guinea-Bissau, and Mozambique.

The hyperfeatures produced by the M3GP algorithm, although variable in number and
size, were generally not complex and were considered to be quite interpretable. While a larger
number of hyperfeatures were created on the multiclass classification problems, a higher
dispersion of sizes was observed on the binary problems. Regarding the popularity of each
satellite band in the binary and multiclass classification problems, the models frequently used
the SWIR2 band when trying to detect burnt areas in the binary datasets. On the multiclass
classification datasets, the models seemed to have a preference for the Vegetation Red Edge,



Remote Sens. 2021, 13, 1623 21 of 25

NIR, Red, and Green bands when training hyperfeatures to discriminate different forest
classes or when the hardest classes included vegetation (e.g., Agriculture/Bare Soil and Forest),
and in some cases, also water (e.g., Mangroves and Wetlands).

The performance of decision trees, random forests, and XGBoost was assessed on the
original datasets and on the datasets expanded with the evolved hyperfeatures, and the
results compared for statistical significance. For comparison purposes, we also assessed the
performance of the same algorithms on all datasets expanded with the well-known spectral
indices NDVI, NDWI, and NBR, and on the binary datasets expanded with hyperfeatures
created by the FFX and EFS feature construction algorithms. On the binary classification
problems, we conclude that neither of the four alternatives (M3GP, indices, FFX, EFS)
leads to substantial improvements. Only FFX was able to improve the results in 2 out
of 12 test cases (both on the same dataset). On the multiclass classification problems,
the hyperfeatures evolved by the M3GP caused significant improvements in 9 out of 15 test
cases, with no degradation of results in any test case, while the indices caused significant
improvements in 4 out of 15 test cases and significant degradation of results in one test case.
The approach appears to be equally beneficial to all three machine learning algorithms.

Overall, both hyperfeatures and indices displayed the capability of improving the
robustness of the machine learning models in multiclass classification datasets. However,
this improvement seems to exist only in datasets built from collections of images with
several acquisition dates, which indicates that both hyperfeatures and indices can be
robust to the radiometric variations across images and can be used to improve the MRV
performance of mechanisms such as REDD+.

Although the hyperfeatures have the advantage of being created automatically with
specific goals, such as the discrimination of specific classes, there is a computational cost
associated with this task. Taking this into consideration, one of our objectives for future
work is to continue the validation of the efficacy of the hyperfeatures in the discrimination
of similar classes and their robustness to the radiometric variations across different satellite
images. We hope to be able to create reusable hyperfeatures, thus reducing the computa-
tional cost of generating them frequently. Besides this validation, we also want to expand
this work into regression problems, such as the estimation of biomass from satellite images.
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Af Equatorial rainforest, fully humid
Am Equatorial monsoon
Ao Angola
Aw Equatorial savanna with dry winter
Bx Band x
Br Brazil
BSh Hot semiarid
Bwh Hot desert
CCDC Continuous change detection and classification
Cd Democratic Republic of the Congo
Cwa Warm temperate climate with dry winter and hot summer
Cwb Warm temperate climate with dry winter and warm summer
DT Decision tree
EC Evolutionary computation
EFS Evolutionary feature synthesis (algorithm)
FFX Fast function extraction (algorithm)
GLCM Gray level co-occurrence matrix
Gw Guinea-Bissau
GP Genetic programming
KGCS Köpper–Geiger classification system
LS-7 Landsat 7
LS-8 Landsat 8
M3GP Multidimensional multiclass GP with multidimensional populations

(algorithm or classifier)
MD Mahalanobis distance (classifier)
ML Machine learning
MRV Measure, report, and verify
Mz Mozambique
NBR Normalized burn ratio
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
PCA Principal component analysis
REDD+ Reducing emissions from deforestation and forest degradation
RF Random forest
RS Remote sensing
S-2A Sentinel-2A
UNFCCC United Nations Framework Convention on Climate Change
XGB XGBoost
WAF Weighted average of F-measures
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