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ABSTRACT  

Historic buildings, and the artefacts that are usually kept within these buildings, are a living representation of 

the past and it is essential to ensure that future generations have access to this heritage. In order to accomplish 

this, it is necessary to determine the conditions that the buildings are in and, if needs be, to make the required 

changes in order to preserve our cultural heritage. In addition, the foreseen changes of the indoor climate 

caused by climate change can endanger the preservation of these artefacts, since they are prone to various types 

of decay depending on the existing indoor conditions. 

One way of counteracting these changes, is the application of passive retrofit measures. However, the guideline 

was that retrofit measures were hardly ever used in cultural heritage because they could cause the building to 

lose its authenticity. Nowadays, more and more cases of historic buildings are subject to this type of measures. 

Indeed, these measures can lead to positive outcomes, such as decreasing the energy consumption of the 

buildings or mitigating the effects of climate change, but the welfare of the cultural heritage must be ensured 

before these measured can be applied.  

Hence, the main aim of this thesis is to determine the potential of passive retrofit measures in mitigating the 

negative effects of climate change in the indoor climate of historic buildings, whilst accounting for the 

artefacts’ preservation requirements. For this reason, the indoor climate of a 13th century church in Lisbon was 

used to develop and validate a whole-building hygrothermal model. Then, the model was run using future 

weather files to determine the future indoor conditions, which were then assessed using a risk-based analysis 

and an adaptive thermal comfort model. Finally, the effects of the passive retrofit measures in the building’s 

energy consumption, the artefacts’ conservation metrics and the occupants’ thermal comfort were assessed.  

The future weather files were developed based on the methodology described in standard EN 15927-4 and in 

Skartveit and Olseth model, which divides the global radiation into its direct and diffuse components. In 

addition, a methodology that aims to make large-sized hygrothermal studies more time-efficient is also 

presented. This methodology was based in the studies developed in this thesis. 

It was shown that the conditions for the preservation of artefacts that are housed in historic buildings will 

worsen, especially in Mediterranean climates when compared to humid Continental and Oceanic climates. The 

tested retrofit measures can mitigate, up to a certain extent, the negative effects imposed by climate change in 

terms of artefacts’ conservation requirements. However, the Mediterranean climates do not have the same 

margin as the other tested climates. In addition, it was also shown that there is a positive outcome of 

implementing these measures in terms of energy saving potential. These savings will even be higher if these 

measures are combined with a more adequate relative humidity and temperature setpoint strategy. 

Keywords: Cultural heritage, Preventive conservation, Climate change, Computational simulation, Passive 

retrofit measures 
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RESUMO 

Os edifícios históricos, e os artefactos que geralmente são guardados no interior destes edifícios, são uma 

representação viva do passado e é fundamental garantir que as gerações futuras também têm acesso ao 

património cultural. Para isso, é necessário determinar as condições interiores destes edifícios e, se necessário, 

aplicar as alterações necessárias de forma a promover a preservação do património. Além disso, as mudanças 

expectáveis dos climas internos causadas pelas alterações climáticas podem pôr em risco a preservação destes 

artefactos, uma vez que estes são propensos a vários tipos de deterioração consoante as condições internas. 

Uma forma de combater as mudanças expectáveis do clima interior deste tipo de edifico é a aplicação de 

medidas de reabilitação passivas. No entanto, era prática comum a sua aplicação em edifícios históricos ser 

muito restrita, uma vez que podiam provocar a perda de autenticidade destes edifícios. Actualmente é cada vez 

mais usual a aplicação destas medidas, que podem ter resultados bastante positivos, como a diminuição do 

consumo de energia dos edifícios ou a mitigação dos efeitos das alterações climáticas. No entanto, é necessário 

garantir que o património não sofre danos com a sua aplicação. 

O principal objectivo desta tese é determinar o potencial de mitigação dos efeitos negativos impostos pelas 

alterações climáticas no clima interior de edifícios históricos através do recurso a medidas de reabilitação 

passivas, tendo em conta os requisitos de preservação dos artefactos. Por este motivo, o clima interno de uma 

igreja do século XIII em Lisboa foi utilizado para desenvolver e validar um modelo higrotérmico. Numa fase 

subsequente o modelo foi corrido para ficheiros climáticos futuros de forma a determinar as condições internas 

futuras, que foram avaliadas recorrendo a uma análise de risco e a um modelo de conforto térmico adaptável. 

Por fim, foi avaliado o efeito das medidas de reabilitação passivas no consumo de energia do edifício, nas 

métricas de conservação dos artefactos e no conforto térmico dos ocupantes do edifício. 

Os ficheiros climáticos futuros foram construídos com base na metodologia descrita na norma EN 15927-4 e 

no modelo Skartveit and Olseth, que permite subdividir a radiação global na componente directa e difusa. É 

também apresentada uma metodologia que visa tornar os estudos higrotérmicos com inúmeros casos mais 

eficiente em termos temporais. Esta metodologia baseou-se estudos desenvolvidos nesta tese de doutoramento. 

Ficou demonstrado que as condições de preservação de artefactos guardados no interior de edifícios históricos 

vão piorar, especialmente em climas mediterrâneos quando comparados com climas húmidos continentais e 

oceânicos. As medidas de reabilitação passivas testadas podem mitigar, até certo ponto, os efeitos negativos 

provocados pelas alterações climáticas em termos de conservação de artefactos. No entanto, os climas 

mediterrâneos não têm a mesma margem que os outros climas testados. Além disso, também foi demonstrado 

que a implementação destas medidas apresenta um resultado positivo em termos de poupança energética. No 

entanto, esta poupança será ainda maior se estas medidas forem combinadas com uma estratégia de controlo 

de temperatura e humidade relativa mais adequada. 

Palavras-chave: Património cultural, Conservação preventiva, Alterações climáticas, Simulações 

computacionais, Medidas de reabilitação passivas
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1 

1. INTRODUCTION 

1.1. Research motivation and background 

Historic artefacts are a pillar of society since they are a “living” representation of the past and, therefore, 

have great heritage value, which makes them irreplaceable. In addition, so that future generations also 

have access to these priceless objects, it is necessary to ensure that the interior climate of the buildings 

that house them is adequate in terms of conservation.  

Usually, these objects are housed in museums, libraries, archives, churches and galleries. In most cases 

these buildings are classified as historic buildings, which means that they have their own history and 

can have great heritage value. For example, the National Museum of Ancient Art (MNAA), which holds 

the largest collection of ancient art in Portugal nowadays, is installed, since its creation in 1884, in the 

old Alvor palace built in the 17th century at the bidding of the first Count of Alvor after his return from 

India. Due to their heritage value there is an additional difficulty to ensure the quality of the indoor 

climate since they are protected by law, but also because most of these buildings were not initially built 

to exhibit or store artefacts. Hence, they had to go through adaptations over the years to fulfil the required 

conditions to host artefacts. Nonetheless, these changes should be thoroughly analysed prior to 

application. 

It is also important to highlight the great heritage value of most historic buildings, which sometimes 

makes them the most valuable component of the collection. Hence, it is necessary to ensure that the 

present use of these buildings, such as the number of people associated to mass tourism, does not damage 

their state of preservation. Additionally, it is expected that climate change will worsen the capacity of 

the indoor climate to preserve artefacts adequately, as well as cause the deterioration of historic 

buildings. Thus, this study is a relevant matter so that preventive conservation is promoted.  

However, due to the complexity of all these concerns, they must be addressed individually. First, it is 

necessary to check if the current indoor conditions are harmful or not to the housed collection. This step 

can be performed using a risk-based analysis, which depending on the type of housed collection, checks 

the risk of mechanical, chemical and biological decay occurring dependent on the indoor conditions. 

The driving forces of these three processes are relative humidity and temperature, which can be 

determined through a multi-sensor and long-term monitoring campaign. 

Secondly, and if the indoor conditions are harmful to the collection’s welfare, it is necessary to 

implement measures so that the indoor climate becomes suitable to house the collection. In addition, 

bearing in mind that this type of building is protected by law, a thorough analysis of the effects on the 

indoor climate in terms of conservation metrics, thermal comfort and energy consumption must be 

performed prior to the application of any type of measure. Furthermore, due to the already mentioned 

negative effects of climate change, it is also interesting to analyse the effects that the selected retrofit 
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measures will have in the future, since although the retrofit measure might not be necessary nowadays, 

they can become necessary in the future, or even to optimize the select retrofits to future needs.  

This complex analysis can be developed using a whole building hygrothermal model of the case-study. 

However, in order to be reliable, the model has to be thoroughly validated against the measured indoor 

conditions. The validation of this type of models is a highly time-consuming process, mostly due to the 

lack of information regarding the materials and techniques used to construct the case-study, but also due 

to the large number of inputs necessary to build a reliable model (e.g. current outdoor weather 

conditions, building geometry and respective building element hygrothermal characteristics, internal 

gains loads and respective schedules, natural and mechanic ventilation, among others). Nonetheless, it 

is possible to develop such models for historic buildings resorting to the help of a sensitivity analysis. 

The main research gaps detected from a literature review carried out concerning the hygrothermal 

behaviour of historic buildings with high thermal inertia that house artefacts are presented in the 

following bullet list. Nonetheless, other minor research gaps are mentioned throughout this thesis. 

• There is a wide gap in the knowledge regarding the hygrothermal behaviour of high thermal 

inertia buildings that house artefacts, mainly for temperate climates (e.g. Lisbon’s climate), 

since most of the existing studies deal with case-studies situated in humid continental climates. 

• The validation of many whole-building thermal and hygrothermal models in literature is to some 

extent lax, since some of the authors validate the models in relation to short-term monitoring, 

others authors use statistical parameters to assist in the model’s validation process that are not 

adequate; and most of the times the soil/slab interface temperature is a parameter that is not 

mentioned in many of the hygrothermal models in literature, among other shortcomings. 

• The effects of climate change in the indoor climate of historic buildings in terms of its influence 

in the artefacts’ conservation metrics, the visitors’ thermal comfort and the buildings’ energy 

consumption has not been addressed sufficiently in literature. 

• The potential of passive retrofit measures to improve the indoor climate in terms of thermal 

comfort and conservation metrics, as well as to decrease the building’s energy consumption, 

whilst taking into account the changes due to climate change has not been sufficiently studied 

in historic buildings that house artefacts. 

1.2. Research aims 

This research intends to develop even further the existing knowledge concerning the hygrothermal 

behaviour of buildings with high thermal inertia. It also aims to develop a methodology that selects the 

most appropriate retrofit measures for historic buildings that house artefacts. This methodology will take 

into account the three key parameters that affect the management of this type of buildings, namely the 

artefacts’ conservation metrics, the visitors’ thermal comfort and the building’s energy consumption. 

Furthermore, this methodology will also take into account the changes that the indoor climate is going 
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to suffer in the future due to the negative influence of the anthropogenic greenhouse gases emissions. 

Ultimately, this option will allow to plan the best course of action for these buildings.  

Considering all these goals, the development of a reliable whole-building hygrothermal model of a 

historic building was defined as a priority. This option is mostly due to the uniqueness of each historic 

buildings, which is why they are protected under-law, and enforces the concept that any type of change 

that is seen fit to be apply to this type of buildings, such as increasing the number of visitors substantially 

or installing a new ventilation system, needs to be thoroughly analysed first, and only if the outcome of 

this analysis is positive, can it be applied to the building. The use of a validated whole-building 

hygrothermal model allows to perform this type of analysis with great detail without jeopardizing the 

building itself, because it is based on a non-intrusive methodology, i.e. it measures the indoor conditions 

using multiple sensors and uses the recorded data to develop the building’s model.  

However, the model’s reliability is extremely dependent on the robustness of the validation process. 

Hence, these models are developed based on extensive monitoring campaigns that measure indoor 

conditions. Subsequently, the gap between the measured and simulated indoor conditions is shortened 

using several statistical that analyse the difference. These models can analyse most of the parameters 

that influence the hygrothermal behaviour of a building, such as the substantial increase of visitors, the 

effect of climate change, indoor temperature and relative humidity setpoints that account for outdoor 

conditions, and the use of historic buildings to house and store artefacts, among many others. For this 

reason and for the fact that it does not jeopardize the welfare of the buildings, it is clear the usefulness 

of these models. Nonetheless, their development is a challenging endeavour.  

The case-study selected for this research was St. Cristóvão church in Lisbon, which is a good example 

of a high thermal inertia building due to its thick limestone walls and low window/wall area ratios. In 

addition, the building is naturally ventilated and does not have any type of climate control system, which 

are important facts because they reduce the uncertainty associated to the model’s validation process 

considerably, since most of the software cannot account for the precise influence of the climate control 

systems. The variability of both the indoor conditions and the outdoor conditions in the vicinity of the 

church were already determined using a long-term and multi-sensor monitoring campaign, namely in 

terms of air temperature and relative humidity. 

In order to identify the most appropriated adaptations for this type of buildings it is helpful to first 

determine how the outdoor conditions are going to change in the future. This was already determined 

by the many developed future scenarios that encompass the Intergovernmental Panel on Climate 

Change (IPCC) assessment reports, which are continuously being updated due to the ever-new 

knowledge reached by the scientific community. Secondly, it is important to determine how the indoor 

climate of historic building will change, so that truly useful adaptations can be implemented. This can 

be determined using a validated hygrothermal model of a case-study coupled to the respective future 
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weather file, which are based on previously mentioned future scenarios. Nonetheless, the variability of 

both the indoor and outdoor conditions should be assessed and quantified using statistical parameters, 

because it allows to explain why certain indoor hygrothermal behaviours will occur in these buildings.  

In addition, the future indoor conditions can also be used to assess how the artefacts’ conservation 

metrics, the visitors’ thermal comfort and the building’s energy consumption are going to evolve in the 

future, whilst taking into account the international standards and guidelines that preconize the ranges of 

the indoor conditions that mitigate the risks of artefacts decay. Analysing the evolution of these three 

key parameters will greatly help the search for the most appropriate adaptations for this type of 

buildings. Whilst the artefacts conservation metrics must be assessed using a risk-based analysis, the 

thermal comfort can be assessed either using an analytical model, or an adaptive method, but both 

parameters depend on the indoor conditions. 

Passive retrofit measures can have a great potential to mitigate the effects of climate change on the 

indoor climate. To select the most adequate retrofit measures for each case-studied, whilst taking into 

account climate change and the three previously stated parameters, it will be necessary to test repeatedly.  

Based on the many hygrothermal simulations performed to achieve the aims of this thesis, which took a 

large amount of time to perform, a methodology that makes large sized hygrothermal studies more time-

efficient is presented. This methodology is based on several techniques that reduce the time consumed 

to either prepare the simulations, run the simulations or process the obtained results. 

In summary, the main aim of this thesis is to determine the potential that passive retrofit measures have 

in mitigating the negative effects of climate change in the indoor climate of historic buildings that house 

artefacts. As consequence of the developed work, a whole-building hygrothermal model for a 13th 

century church was developed and validated against its measured indoor conditions, a fast and reliable 

methodology to build weather files was created in MATLAB and a methodology that considerably 

reduces the time spent to perform large-sized hygrothermal studies was developed. 

1.3. Thesis layout 

This thesis is organized in eight chapters, including the present chapter that outlines the research 

motivation and background, as well as its main aims. The remaining chapters will be briefly presented. 

The second chapter, named Literature review, consists of a brief overview of the challenges that this 

research aims to address. Secondly, the climate monitoring procedures, the climate conservation and 

thermal comfort tools, as well as the indoor climate limiting standards for cultural heritage are addressed. 

Thirdly, the assumptions behind the climate change IPCC scenarios are addressed. Finally, several of 

the monitoring campaigns of historic buildings that exist in literature are reviewed, as well as the 

application of passive retrofit measures to improve the indoor climate of historic buildings. 

The third chapter, named Whole-building hygrothermal modelling using WUFI, consists of a more 
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detailed review of the WUFI software, namely the necessary outdoor weather file, the building materials 

properties and the considered internal gains. In addition, the validation work that the software has been 

through over the years, as well as the software disadvantages are addressed. Finally, a review of the 

statistical parameters mainly used to help in the development of computational models is performed. A 

methodology that reduces the time spent to perform large sized hygrothermal studies is presented. 

The fourth chapter, named Validation of hygrothermal models of historic buildings, establishes a 

validation process for historic buildings based on annual indoor conditions using a simulation software. 

The indoor conditions of a 13th century church in Lisbon were used. i.e. St. Cristóvão church. The model 

accuracy was assessed by comparing the simulated and measured temperature and water-vapour 

pressure, and quantified using the coefficient of determination, coefficient of variation of the root mean 

square error, normalized mean bias error and goodness of fit. In addition, a simplified model was 

developed using tested simplifications in order to decrease the simulation time significantly. 

The fifth chapter, named Impact of climate change on artefacts kept in cultural heritage buildings and 

the thermal comfort of the visitors, studies the effects of climate changes on the free floating indoor 

climate of heritage buildings and on the conservation of artefacts and thermal comfort of visitors. For 

this purpose, the validated hygrothermal model of St. Cristóvão church in Lisbon coupled with climate 

change weather files was used to obtain the future indoor conditions. The obtained indoor climates were 

assessed using a statistical analysis based in several indices, a risk-based analysis and an adaptive 

thermal comfort model. The simulations were performed for several climate types.  

The sixth chapter, named The Impact of climate change in cultural heritage: from energy consumption 

to artefacts’ conservation and building rehabilitation, consists of quantifying the energy consumption 

associated to three different setpoints strategies and respective financial cost, as well as their future trend 

to demonstrate the positive outcome of passive retrofit measures. These will be responsible for 

decreasing the building’s energy consumption and mitigating the effects of climate change in artefacts’ 

preservation. A validated whole-building hygrothermal model of a historic building coupled to climate 

change weather files was used to obtain the expected future indoor conditions for three types of climates, 

which were also assessed using a risk-based analysis.  

The seventh chapter, named Performance of passive retrofit measures for historic buildings that house 

artefacts viable for future conditions, consists on the study of  the performance of several types of retrofit 

measures in historic buildings that house artefacts by considering climate change. To accomplish this 

endeavour, a validate hygrothermal model of a 13th-century church is used coupled with future weather 

files, which were built using the EN 15927-4 methodology and the Skartveit and Olseth model, and a 

global risk-assessment methodology based on damage functions.  

The eighth chapter, named Conclusions, lists the main conclusions reached with the research reported 

in this thesis, as well as presenting some suggestions for future research. 
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Figure 1.1 – Thesis outline. The measured indoor conditions correspond to the monitoring campaign described in Ref. [250]  

Fourth 
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2. LITERATURE REVIEW 
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2.1. Introduction 

The deterioration of historic objects is a continuous and irreversible process [136]. In the buildings that 

exhibit and store such objects, namely, museums, galleries, archives, churches and libraries, it is 

necessary to ensure certain conditions to delay the deterioration processes, as much as possible. The 

conditions necessary to preserve the objects vary according not only with each collection, but also within 

the collection.  

Over the past few years, the analysis of the indoor climate of historic buildings for cold climates has 

increased. Even the European standard that limits the indoor air temperature and relative humidity of 

buildings that house artefacts was based on studies performed for cold climates [90]. On the other hand, 

there are few studies that thoroughly analyse the hygrothermal behaviour of historic buildings in 

temperate climates, when compared with the ones that exist for cold climates [250].  

The studies performed in these buildings need to be the less intrusive possible due to their great heritage 

value. Hence, many of the studies performed nowadays are based on climate monitoring, which 

normally uses a multi-sensor grid for long periods of time [51]. Subsequently, the indoor climate is 

assessed using a risk-based analysis, which determines the risk of mechanical, biological or chemical 

decay depending on the recorded indoor temperature and relative humidity [178].  

If the indoor conditions are averse to the preservation of historic artefacts, it is necessary to implement 

changes that guarantee an adequate indoor climate. However, it must be taken into account that historic 

buildings are protected by law and any major intervention is always confronted with great opposition. 

Thus, the selection process of the set of improvement measures that is applied to this type of building is 

of key importance. The selected set of measures should be subject to a detailed analysis prior to its 

application, since they can lead to irrecuperable damages if not adequately chosen [224]. 

This analysis can be performed using hygrothermal models, which have to be thoroughly validated 

against the measured indoor conditions so that the model’s outputs are reliable [66]. These models allow 

the identification of the consequences of the proposed changes without endangering the welfare of the 

building, since they are based on a non-invasive procedure, which is a substantial advantage. 

For the monitoring campaign to record the variability of the indoor climate in historic buildings, certain 

requirements have to be ensured. Camuffo [51] advocates that the monitoring campaign should have a 

minimum duration of one complete year to include the seasonal fluctuations in its recordings and, if 

possible, the monitoring should be extended for another year or two to rule out possible anomalies that 

might occur during the monitoring period. Hence, the validation of hygrothermal models for this type 

of buildings should also be based on a long-term period. However, this is not the case for the vast 

majority of the literature (e.g. [245,104]), thus making it very hard to develop reliable models. 

The choice of the statistical parameters used to validate the computational model plays a key role in the 

model's validation process [195,160]. If the statistical parameters do not represent reality accurately, it 
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is not possible to converge to a real model. Most of the existing literature either makes a visual 

comparison between the simulated and measured variable for short durations (e.g. [245]) or uses an 

insufficient set of statistical parameters (e.g. [58]). The soil/slab interface temperature, which is a 

parameter that considerably influences the hygrothermal behaviour of a building [66], is also one of the 

model inputs that is not mentioned in the development of many of the existing models in literature. 

The development of reliable hygrothermal models validated by recorded climate conditions from 

historic buildings allows the analysis of several parameters that influence the building’s hygrothermal 

behaviour, such as: analysing the effect of a set of rehabilitation measures on buildings [108], studying 

the effects of the climate control strategy [157], identifying the influence of the mechanical ventilation 

system on the indoor climate [125], studying the effects of moisture buffering materials [15], studying 

the characteristics of the building's surroundings [31] or assessing the effect of visitors on the building 

[40]. It is also possible to assess the influence of climate change on the building and, consequently, on 

the indoor climate [172]. 

It is important to be aware that the weather conditions will change in the future [132,133], mainly due 

to anthropogenic contributions of carbon dioxide (CO2) [196]. Consequently, the indoor climate of 

historic buildings, which are substantially influenced by the outdoor climate, can undergo significant 

changes and put artefacts at risk [128,67]. Hence, it is of the utmost importance to analyse the effect of 

climate change in the artefacts, to find ways to keep both the artefacts and the building safe. 

2.2. Indoor climate of historic buildings 

This subchapter starts by briefly addressing the main concerns while monitoring the indoor climate of 

historic buildings. The second subchapter deals with the tools used to assess the quality of the indoor 

climate in terms of artefact conservation and human thermal comfort. Lastly, the major international 

standards and guidelines that limit the indoor climate to preserve artefacts are addressed. 

2.2.1. Climate monitoring 

In order to characterize the indoor climate of a building thoroughly, researchers normally resort to a 

multi-sensor grid, since they are non-intrusive for the building. In historic buildings, this grid usually 

monitors at least the indoor temperature and relative humidity, but it can also monitor additional 

variables, such as the CO2 concentration (e.g. [274]) or indoor pollutants (e.g. [53]), among others. 

However, several aspects have to be taken into account to make an adequate record. 

In a monitoring campaign the position of the sensors must be carefully chosen in order to accurately 

explain the indoor climate differences both in plan as in height. In addition, their location must be out 

of the influence of unwanted sources, such as sources of radiation, air flow through open doors/windows 

and heat loss through the envelope [128,51,169,131,253,193]. Moreover, there are those that perform a 

pre-monitoring campaign with a short-term duration to determine the best location for the sensors [105]. 

For outdoor sensors it is also important to account for the influence of rain in addition to the already 
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mentioned unwanted sources [232].  

It is also important to define the length of the monitoring campaign and its recording frequency, since 

the monitoring campaign has to be long enough to record the indoor environment variability completely 

and the recording frequency has to allow the proper reconstruction of the indoor environment with the 

minimum number of values. Camuffo [51] states that monitoring campaigns should last at least one 

complete year and have a recording frequency of 10 minutes. EN 15757 [90] follows the same line of 

thought since it states that in order to define the historical climate of an object it is necessary to perform 

a long-term measuring campaign of at least one year with a recording frequency of one hour or less.  

In order to choose an appropriate sensor for each monitoring campaign there are several factors that 

must be considered, such as the compatibility of the sensor with the ambient conditions, its measuring 

range, resolution, accuracy, response time, drift and compatibility with the recording instrument, but its 

cost is also a decisive factor [51]. Another aspect that has to be taken into account is the uncertainty of 

the sensors, which has to be within certain limits – for temperature it is required that the uncertainty is 

lower than 0.5 ºC, but it is desirable that it is lower than 0.2 ºC [91], and for relative humidity it has to 

be lower than 3 %RH [92]. Further information concerning this topic can be found elsewhere [51]. 

More recently, Arduino based sensors have been more and more used in climate monitoring of historic 

buildings [169,184,33,246,147,248]. This has been occurring due to their much lower cost when 

compared to the traditional ones [248], but also due to their open-source nature, which allows a greater 

flexibility [248]. Ultimately, these advantages offer the possibility of performing an accurate monitoring 

campaign at a lower cost. For example, Silva et al. [248] installed a long-term monitoring campaign in 

the church of the Jeronimos Monastery in Lisbon using this type of sensors, which allowed them to save 

up to ca 230€ per sensor when compared to the traditional sensors. However, there are still some mistrust 

concerning the accuracy of these sensors. Hence, several authors have showed that their accuracy is as 

good as the traditional ones by performing extensive experimental campaigns (e.g. [246,248]). 

2.2.2. Climate quality assessment tools 

This subchapter includes several statistical parameters that quantify the variability of both indoor and 

outdoor meteorological conditions, as well as three distinctive materials risk assessment tools - 

biological, mechanical and chemical, for four different artefacts - paper, panel paintings, furniture and 

wooden sculptures. Lastly, the analytical and the adaptive thermal comfort models are addressed. 

2.2.2.1. Tools to analyse the variability of climate conditions 

Due to the key influence of the outdoor climate on the indoor climates, and in order to explain certain 

hygrothermal behaviours that occur in buildings, it is of the utmost importance to analyse the 

meteorological conditions accurately.  

WUFI is equipped with a very interesting tool that quickly assesses the outdoor temperature and relative 
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humidity both in terms of hourly values and monthly moving averages, as well as the distribution roses 

of the global radiation and the wind-driven rain [292]. However, these parameters are not enough to 

carry out a thorough analysis of the outdoor climate. Hence, this subchapter presents additional 

parameters that were used in this research to analyse the outdoor climates, namely: monthly moving 

averages, seasonal cycles, short-term fluctuations and yearly normals. The standard parameters, such 

as the annual average, the percentiles or the max/min values, are not presented in this subchapter, since 

it is believed that due to their calculation simplicity it is not necessary to describe them. 

The monthly moving average consists on calculating an average with values corresponding to 15 days 

prior and 15 days after the central value i [90]. Note that the moving average can be calculated for any 

of the hygrothermal variables, namely temperature (ºC) or relative humidity (%). 

𝑋𝑖 =
1

𝑛 + 1
∑ 𝑋

𝑖+0.5∙𝑛

𝑖−0.5∙𝑛
 2.1 

Where Xi corresponds to the 30-day moving average centred on i, n corresponds to the number of data 

over the considered period (n corresponds to 720 since hygrothermal modelling normally deals with 

hourly data) and i corresponds to the centre point.  

The seasonal cycles are evaluated using the maximum variation of the monthly moving average 

temperature (ΔT̅seasonal) and relative humidity (ΔR̅H̅seasonal). These variations are determined by the 

difference between the maximum value and the minimum value of the monthly moving average: 

Δ�̅�𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 𝑚𝑎𝑥(�̅�𝑖,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙) − 𝑚𝑖𝑛(�̅�𝑖,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙) 2.2 

Δ𝑅𝐻̅̅ ̅̅ 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = 𝑚𝑎𝑥(𝑅𝐻̅̅ ̅̅ 𝑖,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙) − 𝑚𝑖𝑛(𝑅𝐻̅̅ ̅̅ 𝑖,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙) 2.3 

The short-term fluctuations are determined using equations 2.4 and 2.5:  

ΔT𝑖 = 𝑇𝑖 − �̅�𝑖,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 2.4 

Δ𝑅𝐻𝑖 = 𝑅𝐻𝑖 − 𝑅𝐻̅̅ ̅̅ 𝑖,𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 2.5 

Where ΔTi and ΔRHi are the short-term fluctuations for temperature and relative humidity, Ti and RHi 

are the respective hourly values of temperature and relative humidity, and T̅seasonal and ΔR̅H̅seasonal are the 

monthly moving averages of temperature and relative humidity. 

Another interesting parameter to assess a large amount of data is the annual normals concept, which is 

determined by averaging the twelve monthly normals [289]. Usually, this concept is used for 30-year 

intervals. The monthly normals are calculated using the following equation: 

𝑍 =
∑ 𝑋�̅�
𝑛
𝑖=1

𝑛
 2.6 

Where Z is the monthly normal, X̅ is the monthly mean average and n is the number of months within 
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the selected period (usually, varies between 25 and 30). Note that the annual normal cannot be calculated 

if either three-consecutive values are missing or if either more than five year-months in total are missing.  

2.2.2.2. Risk-based analysis 

This subchapter includes three distinctive materials risk assessments: biological, mechanical and 

chemical, for four different artefacts: paper, panel paintings, furniture and wooden sculptures. In order 

to assess the materials’ behaviour to the variation of the indoor conditions it is necessary to calculate its 

response time. This parameter was developed by Martens [178] and it consists in the amount of time 

that an object takes to get to 95 % of the end value in case of a RH step change, i.e. reflects how fast a 

material reacts to the variation of the indoor climate: 

𝑅𝐻𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖 =
𝑎 ∙ 𝑅𝐻𝑖 + 𝑎

2 ∙ 𝑅𝐻𝑖−1 + 𝑎
3 ∙ 𝑅𝐻𝑖−2 + 𝑎

4 ∙ 𝑅𝐻𝑖−3+. . . +𝑎
𝑛 ∙ 𝑅𝐻𝑖−(𝑛−1)

(𝑎 (1 − 𝑎)⁄ )
 2.7 

Where RHresponse,i is the object response in RH at instant i (%), RHi is the room relative humidity at 

instant i (%) and a is the response factor (-), which is calculated using the following equation [178]: 

𝑎 = 𝑒
−3∙Δ𝑡

𝜏𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  2.8 

Where a is the response factor (-), ∆t is the time interval between two consecutive points (s) and τresponse 

is the response time (s). Note that if the response time (τresponse) is much larger than the time interval 

between points (∆t), then equation 2.7 can be simplified to the following form [178]: 

𝑅𝐻𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖 =
𝑅𝐻𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒,𝑖−1 + 𝑅𝐻𝑖 (𝑛 3⁄ )⁄

(1 + 1 (𝑛 3⁄ )⁄ )
 2.9 

Where RHresponse,i is the object response in RH at instant i (%) and n is the number of data points in the 

response time (-). Table 2.1 presents the respond time and respective relevant responds for the analysed 

objects [178]. Note that these values correspond to intact objects. Hence, and if deterioration has already 

occurred, the respond time will decrease [178]. 

Table 2.1 – Respond time and respective relevant responds for panel painting, lacquer box and wooden sculptures [178] 

Object Relevant response Response time 

Panel painting 
Surface response just under oil paint 4.3 days 

Full response of entire panel 26 days 

Lacquer box Full response of entire lacquer box 40 days 

Wooden sculptures 
Surface response  10 hours 

Sub-surface response causing maximum stresses 15 days 
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2.2.2.2.1. Chemical risk 

Although chemical decay is a slow process, all organic materials are vulnerable to it, especially paper. 

Its speed is proportional to temperature and relative humidity, i.e. the higher the temperature and relative 

humidity, the faster will chemical decay occur. The damage in the material is caused by chemical 

reactions (namely, hydrolysis and oxidation), which take place within the material and depend primarily 

on the temperature and secondly on its moisture content. Michalski [186] states that for each 5 K drop, 

the chemical lifetime of most chemical sensitivity materials doubles. The life expectancy for the several 

types of chemical sensitivity materials can be consulted elsewhere [188,187]. 

The amount of moisture within a hygroscopic material increases with the RH by adsorption processes 

in the hygroscopic region [163]. Initially, there is only one layer of water molecules, but due to the 

increase of RH, the number of layers will increase as well. This will lead to the increase of the thickness 

of the sorbate film. As the film thickness increases, the external water molecule layer will be less 

controlled by the porous wall and more available for chemical reaction (namely, hydrolysis). This is the 

reason why it is necessary to reduce the RH where the chemical sensitivity materials are housed, as 

much as possible. 

The chemical decay is assessed using the lifetime multiplier concept, which was developed by Michalski 

based on the Arrhenius equation [186], and reflects for how much time the object remains usable by 

comparison to standard conditions, i.e. 20 ºC and 50% RH. The activation energy necessary for the 

reactions to start occurring is 100 kJ/mol for paper (i.e. cellulose) and 70 kJ/mol for the other materials 

(i.e. varnish) [178]. 
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−
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293.15
)
 2.10 

Where LMx is the lifetime multiplier at point x (-), RHx is the surface relative humidity at instant x (%), 

Ea is the activation energy (J/mol), R is the gas constant (8.314 J/Kmol) and Tx is the temperature at 

instant x (ºC). The equivalent Lifetime Multiplier can be used to quantify the chemical risk under a single 

value [253]. This is beneficial for this research, because it allows the assessment of the variation of the 

chemical decay throughout a large period of time more easily: 

𝑒𝐿𝑀 = 1 (
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Where eLM is the equivalent Lifetime Multiplier (-), n is the number of data points in considered period 

(-) and LMx is the lifetime multiplier at instant x (-). 

2.2.2.2.2. Biological risk  

Many of the artefacts that are housed in buildings, such as museums, are vulnerable to fungal growth, 
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especially those that are composed by at least one organic material, but also inorganic materials with 

organic films [197]. For fungal to grow it is necessary to attain certain values of relative humidity and 

temperature, but it is also necessary that the substrate has nutrients [244]. These three conditions have 

to be met simultaneously and must endure for a specific period of time for mould growth to occur. Due 

to the risk that mould presents to artefacts conservation it is of key importance to cease this process. 

This can be achieved by first knowing the conditions under which mould growth occurs and secondly 

acting appropriately. 

Sedlbauer [244] developed a two phase method, known as isopleth model, that allows the study of the 

mould growth based on relative humidity, temperature and substrate. This model includes four types of 

substrates: category 0 – optimum culture medium, category I – Bio-utilizable substrates, category II – 

Substrates with porous structure and category III – Inert substrates. Substrate category III is disregarded 

because it is assumed that mould will only form if there is severe soiling [244].  

In the first phase, one determines the time needed for the spores to became active. Secondly, and once 

they are active, the rate of the mould growth is determined. For the first phase the Spore germination 

graph is used (Figure 2.1a), in which spores became active fungi when the Lowest Isopleth for Mould 

(LIM) is surpassed. The germination time decreases as temperature and relative humidity increase.  

In the second phase, the speed of the fungi growth is determined using the Mycelium growth rate graph 

(Figure 2.1b). If the active fungi die, the germination process has to start all over again. It is also 

important to bear in mind that the maximum RH in which there is no mould growth varies according to 

the type of climate (while in temperate regions the RH should remain below 70 %, higher values maybe 

permitted in cold regions [51]).  

 

Figure 2.1 – Spore germination (a) and Mycelium growth (b) for the substrate category I (adapted from Ref. [244]) 

In order to quantify the biological risk under a single value, the mould risk factor (MRF) was calculated. 

The MRF is the sum of the time contributions to spore germination of each set of temperature and 

relative humidity that overcomes the respective LIM. This is done by summing the reciprocal of the 

corresponding germination time. For example, for a hourly set of values, if for a given instant the isoline 
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16 days is surpassed its contribution to MRF is 1/(16 days x 24 hours) = 0.0026. Note that this 

contribution corresponds to hourly frequencies and for different frequencies the contribution to MRF 

changes (see, for example, Ref. [251]). The spores became active fungi when the MRF reaches 1.  

According to IPI metrics [197], if the MRF is lower than 0.5 there is little or no risk of mould growth. 

It is important to bear in mind that due to MRF restrictions (namely, the possibility of the active fungi 

dying), the MRF value can vary throughout the considered period. This leads to the fact that the 

assessment should be focussed on the maximum values and not necessarily in the final value. Another 

advantage of this factor, which is important for this specific research, is the fact that a single value allows 

to assess the risk of mould growth throughout a large period of time more easily. 

2.2.2.2.3. Mechanical risk 

All hygroscopic organic materials are susceptible to mechanical decay, which is a process that is mainly 

governed by relative humidity. The variation of relative humidity will lead to the variation of the 

moisture content of these materials, which will cause the material to shrink if relative humidity decreases 

or swell if relative humidity increases. Additionally, and if the material has internal or external restraints, 

it will cause stresses within itself, which may eventually result in its cracking. 

Hygroscopic composite objects are the most susceptible to mechanical decay, since their constituents 

have different moisture expansion coefficients and therefore will shrink/swell at different rates, thus 

causing indoor restraint. In most hygroscopic materials, the lowest dimensional change occurs at 50 

%RH, whilst the highest occur in the extremes [181].  

Mechanical decay can be caused by uneven moisture distribution within the object (e.g. in a thick object, 

the moisture content of the surface can differ significantly from the moisture content of the core) or by 

uneven dimensional changes between the substrate and surface layer (namely, in painted panels).  

This research follows a validated methodology of mechanical decay assessment [178], and analyses the 

dimensional change of furniture, sculptures and panel paintings, whose constituents have to be analysed 

individually – i.e. wood substrate and pictorial layer (Figure 2.2).  

For furniture, the mechanical decay is assessed using an adapted version of Bratasz et al. [44] graph, in 

which the x-axis corresponds to the annual average of relative humidity and the y-axis corresponds to 

the surface response to relative humidity. For sculptures, the mechanical decay is assessed using an 

adapted version of Jakiela et al. [144] graph, in which the x-axis corresponds to the sub surface response 

to relative humidity and the y-axis corresponds to the surface response to relative humidity.  

The mechanical decay in the wood substrate and the pictorial layer of painted panels have to be assessed 

using two different methods. The mechanical decay of the wood substrate is assessed using an adapted 

version of Mecklenburg’s et al. [181] graph in which the x-axis corresponds to the object full response 

to relative humidity and the y-axis corresponds to the surface response to relative humidity. On the other 
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hand, the mechanical decay of the pictorial layer is assessed using Bratasz’s et al. [45] graph. A more 

detailed explanation of these methods can be found elsewhere [178]. 

 

Figure 2.2 – Mechanical decay assessment for: a) wood substrate of the panel painting [181], b) pictorial layer of the panel 

painting [45], c) wood furniture [44] and d) wood sculptures [144] 

2.2.2.3. Thermal comfort 

Visitors are crucial for the continuity of buildings that exhibit artefacts because they are a major source 

of revenue. Hence, it is important that the management of the indoor climate in these building also takes 

the comfort of the visitors into account.  

The human thermal sensation can either be assessed using an analytical method, such as the Predicted 

Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) [106], or using an adaptive thermal 

comfort model, such as the one developed in ASHRAE Research Project 884 [73], which was later on 

included in ASHRAE 55 [4] with some adaptations.  

The PMV/PPD model has suffered several updates over the years and it is still one of the most used 

thermal comfort models in literature nowadays. These indices are included in several international 

standards concerning human thermal comfort, such as ASHRAE 55 [4] and ISO 7730 [137].  

Another reason why the PMV/PPD model is normally used in literature is due to the fact that the 

literature concerning the thermal comfort in museums or galleries is scarce [154]. The PMV/PPD indices 

can be calculated using, for example, a MATLAB routine based on the code presented in ISO 7730 

[137], which is advantageous when analysing a great number of cases. However, de Dear et al. [73] 
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demonstrated that although the PMV/PPD model is valid for buildings with HVAC-systems, it is not 

suitable to assess the indoor climate of naturally ventilated buildings. 

The adaptive method of ASHRAE 55 [4] can have either an 80 % acceptability limit (Figure 2.3a) or an 

90 % acceptability limit, which is used when a higher level of comfort is sought [4]. This method is 

valid for natural ventilated buildings without HVAC systems, in which occupants can adapt their 

clothing to the climate conditions, and the activity level is near-sedentary [4], i.e. varying between 1.0–

1.3 met. Furthermore, this method accounts for local thermal discomfort effects, clothing adaptation and 

indoor air speed adaptation [4]. The outdoor air temperature is obtained using a 7-day exponential 

weighted running average of the daily averages of the outdoor temperature [4].  

 

Figure 2.3 – ASHRAE 55 adaptive thermal comfort model for an acceptability limit of 80 % [4] 

2.2.3. Limiting indoor climate 

Due to the importance of maintaining historic artefacts safe, many standard and guidelines that aim to 

reduce or mitigate the risk of deterioration, by limiting the variance of the indoor temperature and 

relative humidity, have been developed over the years. For instance, Gary Thomson developed a 

guideline in which the buildings are divided in two classes (Table  B.1): class 1, which aims to mitigate 

most deterioration risks by varying the indoor conditions within a more stringent range; and class 2, 

which aims to avoid major deterioration risks whilst keeping costs to a minimum [264]. Class 1 is 

recommended for major museums since they have the financial capacity to guarantee the recommended 

indoor conditions.  

Another important guideline, which aims at mitigating the risks of artefacts deterioration, is the 

ASHRAE guideline [5], which was first introduced in the ASHRAE Handbook – HVAC Applications 

in 1999. This guideline is centred in a five permissible class system in which the strictness in terms of 

indoor conditions lessens from the first class (class AA) to the last class (class D) (Table  B.2). In other 

words, the energy spent to ensure the setpoints preconized by the guideline will decrease, but at the same 

time the risks of deterioration will increase. The first two-classes are not recommended for historic 

buildings due to problems induced by condensation, hence the recommended classes for high inertia 

historic buildings are B, C or D [5].  
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On the other hand, in Europe the current standard that deals with the preservation of artefacts is standard 

EN 15757 [90]. This standard aims to mitigate the mechanical risk induced by the indoor conditions to 

hygroscopic materials by maintaining the historical climate. The standard is based on the definition of 

the historical climate using a long-term monitoring campaign and, on the assumption, that if the artefact 

is subject in the future to the same conditions as in past, then the risk of mechanical damage is low. 

However, if the measured climate is not stable, then the 14 % largest short-term fluctuations, i.e. the 7 

% most dangerous fluctuations in dryness and wetness [51], must be excluded.  

There are also two other European standards worth mentioning: PAS 198 [48] and UNI 10829 [84]. The 

first aims to slow down, as much as possible, the deterioration of artefacts by choosing appropriate 

setpoints for the indoor conditions, namely in terms of temperature, relative humidity, and light; but also 

reduce the effects of indoor pollutants. However, this standard always takes into account the energy 

consumption necessary to maintain each set of indoor conditions [48].  

The second standard limits the range within which the indoor temperature and relative humidity can 

vary to guarantee the preservation of the housed artefacts. This Italian standard encompasses several 

classes of objects in which the seasonal cycles and the short-term fluctuations of the indoor temperature 

and relative humidity are limited according to the requirements of each object [84].  

More recently, Silva et al. [250,252] developed a two-class guideline that aims to mitigate the risk of 

deterioration of artefacts housed in historic buildings for temperate climates (Table  B.3). This guideline 

limits the variance of the indoor temperature and relative humidity in terms of seasonal and short-term 

fluctuations with a more stringent class 1, which is meant for buildings with important and permanent 

collections, and a more flexible class 2, which is meant for less resourceful buildings. This guideline 

was partially based on UNI 10829 [84], in the ASHRAE specification [5] and on EN 15757 [90]. A 

detailed review of these standards and guidelines is presented in Ref. [226]. 

2.3. Outdoor climate  

It is known that the outdoor climate can play a prominent role in the variance of the indoor climate [6]. 

In order to explain certain hygrothermal behaviours that occur in the building, it is of great importance 

to analyse the outdoor climate. It is also very important to analyse how the outdoor climate is going to 

evolve in the future so as to predict how the indoor climate is going to evolve.  

This subchapter briefly addresses the evolution of the emissions of greenhouse gases into the atmosphere 

since 1990 until 2017, because they are one of the main causes for climate change. Secondly, the changes 

that Lisbon’s climate has suffered in the past years are addressed. Finally, the several scenarios 

encompass in IPCC’s reports that describe how the world can evolve in the future are also addressed. 

The last three assessment reports are addressed, i.e. third, fourth and fifth assessment reports. 
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2.3.1. Emission of greenhouse gases  

The emission of greenhouse gases into the atmosphere caused by anthropogenic activities is greatly 

responsible for the changes the outdoor climate will suffer in the future [196]. The two main contributors 

for these emissions worldwide are the United States (US), since the US are responsible for more than 

40 % of the total GHGs emissions of the OECD members [201]; and China, which is also responsible 

for a large amount of GHGs emissions, which have been increasing abruptly over the past years. China 

even surpassed the US emissions in 2005 turning it into the main producer of greenhouse gases 

worldwide from then onwards (Figure 2.4). 

Nonetheless, the European Union (EU) has also a key contribution to the overall GHGs emissions 

(Figure 2.4). The European Union is responsible for more than one third of the GHGs emitted by the 

OECD members, i.e. 5,600,000 tonnes of CO2-equiv per year [201]. However, this amount has been 

steadily decreasing over the past years (Figure 2.4), mostly due to the efforts made by the EU parliament 

in promoting a more environmentally friendly society by establishing demanding, but necessary, goals 

to its member states to reduce the GHGs emissions of the European Union [88].  

 

Figure 2.4 – Greenhouse gases emissions (in tonnes of CO2-equivalent) for the United States, China and the European Union 

between 1990 and 2017 [201]. The OECD database only has three values for China (1994, 2005 and 2012), hence, the 

remaining years were determined through interpolation and extrapolation  

Nevertheless, the magnitude of GHGs emissions is still quite alarming [201]. The main European 

contributors are Germany (21.5 %), the United Kingdom (11.2 %), France (11.1 %), Italy (10.1 %), 

Poland (9.8 %), Spain (8.1 %) and the Netherlands (4.6 %) (Figure 2.5). It is obvious that if these 

environmentally friendly policies are to be successful, they must be followed by all EU member states, 

especially by these seven countries. In addition, there are two other non-European countries that have a 

very significant contribution to the continent overall emissions amount, i.e. Russia (ca 2,150,000 tonnes 

of CO2-equiv) and Turkey (ca 500,000 tonnes of CO2-equiv).  
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Figure 2.5 – Greenhouse emissions throughout Europe in tonnes of CO2 equivalent in 2017 [201]. Countries emission are 

divided in three levels: level 1 - annual emissions of GHGs lower than 200.000, level 2 - annual emissions of GHGs between 

200.000 and 800.000, level 3 - annual emissions of GHGs higher than 800.000 

A great part of the greenhouse gases emissions in Europe is caused by electricity related consumptions, 

i.e. more than 400.000.000 tonnes of CO2 in 2017, which corresponds to 9 % of the overall sum, as well 

as the building construction sector, i.e. more than 330.000.000 tonnes in 2017, which corresponds to 7 

% of the overall sum (Figure 2.6). These values have been decreasing since 2008 [101].  

However, private households are even a larger contributor to the GHGs emissions, which were 

responsible for the emission of more than 830.000.000 tonnes of CO2 in 2017, which corresponds to 19 

% of the overall sum. These numbers show the key importance of the building sector on the overall 

emissions of greenhouse gases in Europe. Thus, demonstrating the crucial need to intervene in this sector 

in order to perform a significant reduction of the GHGs emissions in the European Union. 

 

Figure 2.6 – Greenhouse gases emissions distribution in accordance with the activities defined for the CPA08 in Europe in 

2017 [101] with the four most pollutant activities, the direct emissions caused by private households and the “other” section, 

which includes all the remaining activities (Table  C.1) 

2.3.2. Situation in Lisbon, Portugal 

As was stated before, the changes suffered by the environment over these past years have been greatly 

caused by the emission of greenhouse gases due to anthropogenic activities. For example, in Lisbon, 

which is a coastal city and the largest city in Portugal with over 2.8 M people [214], it is expected that 
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the annual precipitation decreases. On the other hand, it is also expected that the number of extreme 

phenomena with extreme rains will increase, the droughts will become more frequent and more severe, 

and both the air temperature and the average sea level will rise [50].  

2.3.2.1. Temperature and precipitation 

In order to study the changes in the outdoor climate over the past years in Lisbon, three sets of 

temperature and precipitation were analysed: 1951–1980, 1970–2000 and 2005–2015. The first set was 

supplied by the old Meteorological Institute (now IPMA) and used by Henriques [122] to analyse the 

variability of the outdoor climate in eight climate representative cities of Portugal – Bragança, Porto, 

Portalegre, Lisboa, Beja, Faro, Ponta Delgada (Açores archipelago) and Funchal (Madeira archipelago). 

The second set was obtained from IPMA website [142] and the third set was supplied by IPMA for other 

projects [66]. Although, the third set does cover the required 25–30 years [289] and only includes 11-

years’ worth of data, the obtained results are representative of a more recent climate in Lisbon.  

Overall, the mean temperature in Lisbon considerably increases from 1951–1980 to 1970–2000, with 

the difference amounting to +4.0 ºC (Figure 2.7). The only month in which the average temperature 

corresponding to 1970–2000 is not higher than the average temperature of 1951–1980 is May (-0.3 ºC). 

The highest increases occur in March (+0.8 ºC) and in December (+0.7 ºC). The same observation can 

be made whilst comparing the values that correspond to 1951–1980 and 2005–2015, i.e. the mean 

temperature considerably increases throughout the whole year (Figure 2.7). The difference amounts to 

+7.7 ºC and the highest increases occur in April (+1.1 ºC) and in December (+1.0 ºC). 

 

Figure 2.7 – Normals of the average outdoor temperature for three periods: 1951-1980 (used in Ref. [122]), 1970-2000 [142] 

and 2005-2015 (used in Ref [66]) 

The precipitation accumulated difference between 1951–1980 and 1970–2000 is approximately -52 mm, 

which means that the precipitation in Lisbon has decreased significantly from 1951–1980 to 1970–2000 

(around 7 %). The highest difference occurred in March with a decrease of ca -50 mm (Figure 2.8). 

However, the difference in January (-25 mm), February (-18 mm) and December (-15 mm) is also 

considerable. On the other hand, the precipitation increases substantially in May (+12 mm) and April 
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(+11 mm), but it is not enough to compensate the decrease that occurs on the other months.  

When comparing 1951–1980 and 2005–2015 the difference in terms of precipitation is even higher 

(Figure 2.8), i.e. the precipitation decreases ca -127 mm, around 16 % when compared to the 1951–1980 

value. The most significant decreases occur in March (-43 mm), December (-42 mm) and January (-40 

mm). On the other hand, the precipitation increases substantially in October (+23 mm) and November 

(+20 mm) and slightly in September (+5 mm), but once again these increases are not enough to 

compensate the decreases of precipitation that occur in the other months of the year.  

 
Figure 2.8 – Precipitation normals for three periods: 1951-1980 (used in Ref. [122]), 1970-2000 [142] and 2005-2015 (used 

in Ref [66])  

In addition, the average monthly maximum and minimum were compared for the periods of 1951–1980 

and 1970–2000. It is visible that the difference of the maximum temperatures is not as substantial as one 

would expect (Figure 2.9). The temperature accumulated difference amounts to +1.2 ºC, with the largest 

differences being reached in March (+0.9 ºC), December and February (+0.5 ºC). On the other hand, the 

difference between both periods is much more significant for the minimum temperatures, with the 1970–

2000 period always corresponding to higher temperatures, except for January (Figure 2.10). Its 

accumulated difference amounts to +6.9 ºC, with the largest differences being reached in July and 

December (+0.9 ºC), closely followed by August and September (+0.8 ºC). 

 

Figure 2.9 – Normals of the maximum outdoor temperatures for two periods: 1951-1980 [122] and 1970-2000 [142] 
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Figure 2.10 – Normals of the minimum outdoor temperatures for two periods: 1951-1980 [122] and 1970-2000 [142] 

2.3.2.2. Airborne pollutants 

Pollutants, which exist in several states of matter and can either have an anthropogenic or natural origin 

[260], are one of the main threats to artefacts conservation [5]. This is due to their capacity to hasten 

other decay processes when coupled with certain levels of temperature and relative humidity [5], but 

because they can also be responsible for the deterioration itself (see Annex D). Tétreault [260] defines 

three ways in which pollutants can reach artefacts: 1) pollutants are carried by air (typically known as 

airborne pollutants), 2) pollutants are passed from an object to another one through physical contact, 

and 3) pollutants are already part of the object or are produced by chemical reactions. The main focus 

of pollutants studies in artefacts conservation is the first type of transmission [260].  

Although, there is a large number of airborne pollutants, only a few have been proven to be harmful to 

artefacts, namely [260,207,228,5]: acetic acid (CH3COOH), hydrogen sulphide (H2S), nitrogen dioxide 

(NO2), ozone (O3), sulphur dioxide (SO2) and fine particles (i.e. particles with aerodynamic diameter 

smaller than 2.5 µm). Tétreault [260] also defines water-vapour as a key airborne pollutant because it 

causes physical and chemical damage, but also due to its capacity to heighten other decay processes.  

Due to the negative consequences that these airborne pollutants have on the indoor climate of museums 

and similar buildings and, subsequently, on the housed artefacts, their variance over the past 24 years – 

1995 to 2018 – in several locations in Lisbon was analysed (Figure 2.11). The used data was obtained 

by QualAR project [216], which is a project mainly financed by the European Union, whose aim is to 

help in the decision making process concerning the air quality in Portugal by monitoring pollutants 

[215]. The monitoring campaigns did not start in 1995 in all zones, nor did they all last until 2018. 

The analysed airborne pollutants in this research were nitrogen dioxide (NO2), ozone (O3), sulphur 

dioxide (SO2) and fine particles (PM2.5), since they are the key damaging pollutants in the museum 

environment [260,207,228,5]. Furthermore, the Directive 2008/50/EC of the European Parliament [202] 

established limit-values and target-values for these airborne pollutants to improve the air quality for 

human health and vegetation throughout the European Union (Annex E).  
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Directive 2008/50/EC [202] established that the nitrogen dioxide (NO2) should be assessed using two 

parameters, so that human health is protected, namely the hourly values and the annual average. Whilst 

the first cannot overcome the 200 µg/m3 limit more than 18 times a year, the second must not be higher 

than 40 µg/m3. The failure of any of these two conditions makes the climate unbefitting for human 

presence and, consequently, leads to the need of applying measures that improve the air quality.  

The hourly values of the 33 monitored zones (Figure 2.11a) were assessed over a period of 24 years in 

terms of number of times the 200 µg/m3 limit is overcome in each year (Figure 2.12a). If this sum is 

higher than 18, then the zone’ air quality has to be improved. This figure shows that at the beginning of 

the analysed period the limit-value was overcome ca 550 times in Avenida da Liberdade (one of the 

main avenues of Lisbon) and ca 420 times in Avenida Casal Ribeiro (located in a highly populated zone 

of Lisbon), which shows the poor air quality of the city at the time. However, the air quality in terms of 

these parameter has been improving over the years for all monitored zones, except for Avenida da 

Liberdade that amounts to more than the 18/year-limits in more than one occasion – 2005–2011, 2014–

2015 and 2017–2018. 

 
Figure 2.11 – Location of the QualAR stations that monitored the nitrogen dioxide (NO2) – 33 zones (a), the sulphur dioxide 

(SO2) – 29 zones (b), the ozone (O3) – 29 zones (c) and fine particle matter (PM2.5) – 26 zones (d) concentration 

Although the number of times the NO2 concentration is higher than the limit-value has clearly improved, 

the same cannot be said for the annual average. In fact, more zones have higher values than the limit-
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value (Figure 2.12b), in opposition to the number of zones where the hourly NO2 concentration is higher 

than the limit-value. Once again, Avenida da Liberdade is the overall worst case. Although its annual 

average decreases, it is still far from the limit. These observations are worrisome in terms of human 

health, since long-term exposure to high levels of NO2 concentration can cause the decrease of lung 

function and the increase of respiratory problems [300]. 

These values reflect what is happening outdoors, which indirectly affects the conservation metrics 

indoors, depending on the building’s ventilation behaviours [5]. There are several models in literature 

that accurately determine the indoor concentration of a pollutant [228], but in order to have an idea of 

the indoor concentration, one can use the “100, 10, 1” rule purposed by Tétreault [261] that states that 

a pollutant’s indoor concentration will be 10 % of its outdoor concentration. If the annual moving 

average of Avenida da Liberdade in 2017 (i.e. 58.9±2.6 µg/m3) is multiplied by this percentage, this 

means that the annual moving average of the indoor NO2 concentration is 5.9 µg/m3, which means that 

the NO2 susceptible artefacts would start showing signs of decay in 5 years [260]. This observation 

shows the key importance in addressing air pollution in big cities in order to safeguard both human 

health and artefacts. 

 

Figure 2.12 – Number of times the NO2 concentration is higher than the limit-value 200 µg/m3 (a) and annual NO2 

concentration average (b) for the five worst cases in Lisbon’s metropolitan area. The first parameter should only occur, at 

most, 18 times a year, whilst the annual average should not surpass the 40 µg/m3 [202] 

The Sulphur dioxide (SO2) was analysed in terms of hourly values and daily averages, since these are 
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the two parameters in terms of SO2 concentration that have to be controlled in order to guarantee human 

health [202]. Whilst the first cannot overcome the 350 µg/m3 limit more than 24 times a year, the second 

cannot exceed the 125 µg/m3 more than 3 times a year [202]. By failing one of these two conditions the 

climate is classified as unbefitting for human presence and the application of air quality improvement 

measures is required. Long-term exposure to high levels of SO2 can cause respiratory illness symptoms, 

as well as the increase of respiratory illness frequencies [287].  

The hourly values of the 29 monitored zones (Figure 2.11b) were assessed over a period of 24 years by 

determining the number of times the 350 µg/m3 limit is overcome in each year (Figure 2.13a). The only 

two zones that did not comply with the first SO2 concentration requirement were Hospital Velho and 

Lavradio. Whilst Hospital Velho only overcame the 350 µg/m3 limit more than the allowed 24 times in 

1996, Lavradio overcame this limit in 1999, 2001–2003 and 2007–2008. Afterwards, the monitoring 

campaign stopped in Lavradio. In addition, the obtained results for the daily averages supported these 

observations, since the only two zones that did not satisfy the limit-values for the daily averages were 

Hospital Velho and Lavradio for the same years (Figure 2.13a). 

 
Figure 2.13 – Number of times the hourly SO2 concentration is higher than the limit-value 350 µg/m3 (a) and the number of 

times the daily average of SO2 concentration is higher than the limit-value 125 µg/m3 (b) for the worst cases in Lisbon’s 

metropolitan area. The first parameter should only occur, at most, 24 times a year, whilst the daily average should not surpass 

the limit-value more than 3 times a year [202] 

The Ozone (O3) concentration in Lisbon’s metropolitan area was analysed in terms of maximum eight-

hours daily averages, since this is the parameter established by Directive 2008/50/EC [202] that has to 
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be checked to assess the air quality in terms of O3 concentration. The parameter can overcome the target-

value (120 µg/m3), at the most, 25 days in average for a period of 3 years [202]. If this requirement is 

not guaranteed, then the zone is classified as unbefitting for human presence and it is necessary to 

implement air quality improvement measures.  

The hourly values of the 29 monitoring zones in Lisbon’s metropolitan area (Figure 2.11c) were assessed 

over a period of 24 years in terms of the number of times the 120 µg/m3 limit is overcome in each year. 

This limit cannot be overcome more than 25 days/year for a three-year average. Figure 2.14 shows that 

the air quality has improved in some of the zones, but most of the years the values are higher than the 

25/year limit, with Chamusca being the worst case. This is quite worrisome in terms of human health 

since long-term exposure to high levels of O3 concentrations can be responsible for asthma, the decrease 

of lung function growth, lung cancer and, consequently, the increase of the mortality rate [300]. 

If Tétreault’s “100, 10, 1” rule [261] is applied to the annual moving average for 2017 of Chamusca 

(i.e. 71.1±2.1 µg/m3), this would mean that the annual moving average of the indoor O3 concentration 

would be below ca 7.1 µg/m3. By taking Table 2 in Tétreault [260] into account, this would mean that 

the O3 susceptible artefacts would start showing signs of decay in less than four years. Once again, 

showing the importance of addressing air pollution. 

 

Figure 2.14 – Number of times the maximum daily eight-hour mean of the O3 concentration is higher than the limit-value 

(120 µg/m3) for the five worst cases in Lisbon metropolitan area. This should only occur, at most, 25 times a year in a three 

year average [202] 

Lastly, the fine particles matter (PM2.5) concentration in Lisbon’s metropolitan area was analysed in 

terms of annual average, since this was the parameter established by Directive 2008/50/EC [202]. 

However, contrary to the other three already addressed airborne pollutants, PM2.5 did not have a limit-

value at the time of the development of this directive, but instead it had target-values since at the time 

the threshold below which human health was guaranteed was not yet identified [202]. Nonetheless, it is 

important to stress that PM2.5 has a substantial negative effect on human health [202] and should be 

thoroughly monitored, since long-term exposure to this pollutant can result in the reduction of life 

expectancy, due to the increase of cardio-pulmonary problems, as well as lung cancer mortality [300]. 
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The hourly values of the 26 monitoring zones in Lisbon’s metropolitan area (Figure 2.11d) were assessed 

over a period of 18 years in terms of annual average in each year. This limit cannot overcome the target-

value 25 µg/m3. Figure 2.15 shows that this limit is guaranteed for all of the selected cases, which is 

quite reassuring. In addition, there is a general decrease of the PM2.5 concentration over the years, except 

for Entrecampos at the second part of the decade (i.e. 2014–2017). The only zone that has a higher value 

than the target-value is Fidalguinhos. However, only one year of data is available, which is not 

representative enough to assess this zone’s situation properly.  

If Tétreault’s “100, 10, 1” rule [261] is applied to the annual moving average for 2017 of Entrecampos 

(i.e. 17.8±5.3 µg/m3), this would mean that the annual moving average of the indoor PM2.5 concentration 

would be below ca 1.8 µg/m3. Taking Table 2 in Tétreault [260] into account, this would mean that the 

PM2.5 susceptible artefacts would start showing signs of decay in approximately nine years. Once again, 

this result shows the importance of addressing air pollution in terms of artefacts conservation. 

 

Figure 2.15 – Annual PM2.5 concentration average (µg/m3) for the five worst cases in Lisbon’s metropolitan area. The annual 

average should not surpass the 40 µg/m3 limit according to Directive 2008/50/EC [202] 

2.3.3. Climate change 

Nowadays climate change is one of the key challenges faced by mankind, since it will greatly influence 

the environment, human health and both global and local economy [284]. Furthermore, these changes 

will also affect the durability of buildings negatively [18]. However, due to the variability of all the 

factors that affect the emission of greenhouse gases (GHG) and, consequently, the outdoor climate, it is 

necessary to describe the different ways in which the outdoor climate might evolve.  

For this purpose, the Intergovernmental Panel on Climate Change (IPCC) developed several scenarios 

that are grounded on different assumptions. Based on a multi-model methodology, the variance of the 

outdoor meteorological conditions was determined for all scenarios of the 3rd Assessment Report (TAR). 

Their driving forces are the demographic and socio-economic developments, as well as the technological 

evolution [196]. Prior to this report, the IPCC had already developed two others, namely the First 

Assessment Report (FAR) [301] in 1990 and the Second Assessment Report (SAR) [127] with the IS92 

scenarios in 1995. Despite their interest, these reports will not be discussed because they are outdated.  



30 

Due to the need to reflect the updates suffered by climate change modelling, since scientific knowledge 

is constantly progressing, there is a need to produce new assessment reports that reflect these advances 

periodically. Hence, the assessment report that was developed after TAR was the 4th Assessment report 

(AR4), in 2007. This AR used some of TAR’s scenarios – A2, A1B and B1. These three scenarios were 

updated due to the scientific progress that occurred during the years between both reports. More recently, 

the outdoor conditions were determined in accordance with the scenarios of the 5th Assessment Report 

(AR5), named Representative Concentration Pathway (RCP). 

The assumptions behind the three more recent assessment reports will be briefly addressed in the 

following subchapter. More detailed information about them can be found elsewhere, i.e. TAR [196], 

AR4 [302] and AR5 [303]. In addition, the next assessment report is expected to be released between 

2021–2022 [141], i.e. 6th Assessment report (AR6). 

2.3.3.1. Effects of climate change in cultural heritage  

The changes that the outdoor climate will suffer in the future will affect historic buildings negatively 

[18]. UNESCO World Heritage Report 22 [288] points out the major impacts of climate change in 

cultural heritage (Table 2.2). Amongst all the impacts mentioned by this document, the following 

impacts standout for historic buildings: physical changes of porous building materials and corrosion of 

metals due to moisture change; deterioration of facades due to thermal stress and freeze-thaw/frost 

damage induced by the temperature change; penetrative moisture into porous building materials and 

deterioration of surface due to wind pattern changes. These risks demonstrate the urgency in studying 

climate change in order to safeguard our cultural heritage. 

Due to the great risks that climate change poses to cultural heritage there have been two European 

research projects that focus on analysing the effects of climate change on cultural heritage, namely: 

NOAH’s Ark project [229], and Climate for Culture project [172]. The NOAH’s Ark project aimed to fill 

the gap of the effects of climate change in cultural heritage buildings. Thus, European risk-based maps, 

which outline the risks of decay in cultural heritage in the future, were created [229]. 

The Climate for Culture research project focused on the study of the effects of climate change on the 

decay process of artefacts housed in historic buildings. A methodology based on computational models 

of the case-studies, future outdoor weather files and damage functions was used to assess the future risks 

for the collections. This methodology has been used in several other studies that analyse the future 

indoor conditions using computational models of historic buildings (e.g [18,129,128,130,131,218,266]).  

For instance, Huijbregts et al. [128] concluded that an increase of both the indoor temperature and 

relative humidity is expected, and that in terms of the conservation of artefacts there is no location in 

Europe that is safe from some sort of decay, with each zone having its respective risks [129,130]. More 

recently, Rajčić et al. [218] determined that an increase of the risk of both mechanical and biological 

decay is expected in Croatia, while Turhan et al. [266] determined that an increase of the risk of chemical 
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decay and a decrease of the thermal comfort are expected in Turkey, due to the increase of the indoor 

temperature. Hence, it can be said that climate change will increase the risks of biological, chemical and 

mechanical decay to a different extent depending on the location. 

Table 2.2 – Climate change risks and consequent impacts in cultural heritage buildings (table adapted from UNESCO World 

Heritage Report 22 [288]) 

Climate 

indicator 
Risk Impact 

Moisture 

change 

- Flooding  

- Intense rainfall 

- Changes in water-table levels 

- Changes in soil chemistry 

- Changes in humidity cycles 

- Increase in time of wetness 

- Sea-salt chlorides 

- Physical changes to porous building materials 

and finishes due to rising damp 

- Crystallisation and dissolution of salts caused 

by wetting and drying affecting standing 

structures, archaeology, wall paintings, frescos 

and other decorated surfaces 

- Erosion of inorganic and organic materials due 

to flood waters 

- Relative humidity cycles/shock causing 

splitting, cracking, flaking and dusting of 

materials and surfaces 

- Corrosion of metals 

Temperature 

change 

- Diurnal, seasonal, extreme 

events (heat waves, snow 

loading) 

- Changes in freeze-thaw and ice 

storms, and increase in wet frost 

- Deterioration of facades due to thermal stress 

- Freeze-thaw/frost damage 

- Damage inside bricks, stones, ceramics 

Wind 

- Wind-driven rain  

- Wind-transported salt  

- Wind-driven sand  

- Winds, gusts and changes in 

direction 

- Deterioration of surfaces due to erosion 

- Penetrative moisture into porous cultural 

heritage materials 

Climate and 

pollution 

- pH precipitation 

- Changes in deposition of 

pollutants 

- Stone recession by dissolution of carbonates 

- Blackening of materials 

- Corrosion of metals 

2.3.3.2. Intergovernmental Panel on Climate Change assessment reports  

2.3.3.2.1. Third assessment report 

Due to the large variability of its driving forces, it is quite difficult to determine exactly how the world 

will evolve in 100 years from now. Hence, IPCC developed several evolution scenarios to cover the 

possible ways in which the world can evolve. Each of these scenarios is based on different assumptions 

in terms of society’s development, more precisely in terms of technological, demographic and socio-

economic development [196]. For the 3rd assessment report (TAR, 2001), the following six scenarios 

were developed, which are subdivided into four families: A1F1, A1B, A1T (family A1); A2; B1; and 

B2 (Figure 2.16). Each scenario has different levels of emission of gases that cause the anthropogenic 
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radiative forcing1, e.g. CO2, CH4 [196], since they are based on different assumptions.  

In total, 40 scenarios were developed for the 3rd assessment report (Figure 2.16). Furthermore, six of 

these scenarios were chosen to represent each family, which are known as “marker scenarios”: AIM 

(A1B scenario), MiniCAM (A1F1 scenario), MESSAGE (A1T scenario); ASF (A2 scenario); IMAGE 

(B1 scenario) and MESSAGE (B2 scenario). These scenarios were chosen because the SRES team found 

them to be the ones that best represent the initial quantifications of each family storyline [134]. 

Moreover, these scenarios do not include additional climate policies as, for example, the emission targets 

established by the Kyoto Protocol or United Nations Framework Convention on Climate Change [196]. 

 
Figure 2.16 – Scenario families for TAR and respective number of developed scenarios (adapted from Ref. [196]) 

Although all greenhouse gases evolution is important, carbon dioxide is the main contributor for the 

radiative forcing [196]. All these scenarios are based on the fact that the variation of CO2 emissions will 

greatly depend on the total energy consumption and energy supply structure [196]. Figure 2.17b shows 

the predominant type of energy in each scenario/year, since it is obtained by subtracting the amount of 

energy that has fossil sources to the amount of energy that has non-fossil sources. Hence, if the result is 

negative, then the focus for that scenario and that year is fossil technologies. In contrast, if the result is 

positive, then the focus is non-fossil technologies for that scenario and that year. 

The A1 family is based on the assumptions of a fast economic growth (Figure 2.17c red, blue and green), 

the increase of the world’s population, as well as the introduction of new and more efficient technologies 

[196]. The world’s population will rapidly grow until mid-century and then will decline until 2100 

(Figure 2.17a red, blue and green). The distinction between the three scenarios in family A1 – A1F1, 

A1B and A1T – lays in the evolution of the fuel powered technologies. Whilst scenario A1F1 is based 

on the intensive development of fossil fuel technologies (Figure 2.17b, red), the A1T is based on a non-

fossil fuel technology development (Figure 2.17b, blue). 

These assumptions will mean a steeply increase of the CO2 emissions until 2080 for scenario A1F1, 

only refraining at the end of the century (Figure 2.17d, red). On the other hand, for scenario A1T there 

is a substantial increase of the CO2 emissions in the beginning of the 21st-century, but the CO2 emissions 

will steeply decrease after 2050 (Figure 2.17d, blue). Lastly, A1B scenario is based on the balanced 

development of both types of technologies (Figure 2.17b, green). These assumptions will mean a 

 

1 Difference between the amount of radiation absorbed by earth (emitted by the sun) minus the amount of energy emitted. 
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substantial increase of the CO2 emissions in the beginning of the century. However, after 2050 the CO2 

emissions will steeply decrease due to the structural changes of the energy sector (Figure 2.17d, green).  

Scenario A2 is based on a heterogeneous world in which its population continuously increases (Figure 

2.17a, yellow) and in the assumption that fossil fuels remain the main source of energy (Figure 2.17b, 

yellow). These assumptions will mean a significant increase of the CO2 emissions from the beginning 

of the 21st-century until 2100 (Figure 2.17d, yellow).  

Scenario B1 has an evolution of the world’s population very similar to the trend of the A1 family (Figure 

2.17a, orange), but this scenario is also defined as having a fast change in the economic structure, since 

it will become service and information orientated. Subsequently, the material consumption will decrease 

[134]. In addition, this scenario is centred on clean and resource-efficient technologies, focusing on 

global solutions [134]. Due to these assumptions, the CO2 emissions will initially increase, but mid-

century they will steeply decrease, attaining the lowest value of the six scenarios (Figure 2.17d, orange). 

 

Figure 2.17 – Evolution of the world’s population (a), balance between the primary energy for fossil sources and non-fossil 

sources (b), world’s gross domestic product in trillions of US$ (c) and total carbon dioxide emissions in gigatons of carbon 

(d) between 1990 and 2100 for the six representative scenarios: A1F1, A1T, A1B; A2; B1 and B2 [258] 

Finally, scenario B2 is based on the assumption of a gradual increase in the world’s population (Figure 

2.17a, purple), but to a lower extent than scenario A2. This scenario is also based on an intermediate 

level of economic development, a slower but a more diverse technological change than scenario B1 and 

family A1, focusing more on the local and regional level [134]. These assumptions will lead to a 

relatively constant increase of the CO2 emissions across all the analysed period (Figure 2.17d, purple). 

Overall, the six scenarios can be divided into three groups in terms of the magnitude of the radiative 

forcing that they induce to the outdoor climate [134]: low-radiative forcing – scenario B1 and A1T; 
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mid-radiative forcing – scenario A1B and B2; and high-radiative forcing – scenario A2 and A1F1. 

2.3.3.2.2. Fourth assessment report 

In 2007, the Intergovernmental Panel on Climate Change (IPCC) used some of the scenarios that were 

developed for the Special Report on Emission Scenarios (SRES) to assess the future variability of the 

world’s meteorological conditions for the fourth assessment report (AR4) – B1, A1B and A2. Moreover, 

the scenarios descriptions for AR4 were the same as for TAR’s [304], but the scenarios suffered updates 

due to the scientific progress that occurred during the six years between the reports.  

For instance, access to a larger and more comprehensive amount of data, which had a wider geographical 

coverage; to more sophisticated data analysis methods and to a more extensive study on the uncertainty 

ranges allowed a better understanding of how the climate is going to change both in terms of space and 

time. This data was obtained using a larger number of models than in TAR, which are more complex 

and simulate climate changes more faithfully [304]. Additionally, the Summary for Policymakers (SPM) 

also summarized the main changes the climate has suffered in the recent years [304], namely: 

• significant increase of the atmospheric concentration of CO2, CH4 and N2O 

• increase of air temperature and ocean temperature, as well as the surface water-vapour content 

(see subchapter 3.4.2.1 in Ref. [302])  

• melting of glaciers and icecaps, which contributes to the increase of sea level 

• increase of precipitation in some zones of the world – eastern parts of North and South America, 

northern Europe and northern and central Asia, but its decrease in other regions – 

Mediterranean, southern Africa and Sahel, as well as some regions of southern Asia 

• more intense and longer droughts, particularly in the tropics and subtropics, but increase of the 

frequency of heavy rains events in most land areas 

• changes in extreme temperature – cold days/nights and frost are less frequent, and hot 

days/nights and heat weaves are more common  

In addition to the increase of ocean temperature, the oceans also absorb more than 80 % of the heat that 

is added to the system. This causes the seawater to expand and, consequently, contributes to the increase 

of sea level. For more detailed information about these topics consult chapter 3 in Ref [302].  

The effects of each climate change scenario will differ from scenario to scenario since their forcing also 

differs. However, only the climate changes induced by scenario A1B and A2 in Europe will be 

addressed, since these two scenarios will be used in subsequent chapters. Nonetheless, the effects on the 

climate for the other scenarios can be consulted elsewhere [302]. 

Scenario A1B and A2 are based on certain scenarios drives that affect the outdoor conditions in Europe 

differently. In terms of temperature it is foreseen that the annual temperature will increase for all Europe 
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[302]. In contrast, the effect of climate change in precipitation will differ from region to region. For 

instance, both the annual precipitation and the number of precipitation days will decrease for the 

Mediterranean regions [302]. On the other hand, the precipitation will increase in winter and decrease 

in summer for central Europe [302]. The risk of drought in these two regions will increase in summer 

[302]. Distinctively, the annual precipitation and the extremes of daily precipitation will increase in the 

northern European regions [302]. Additionally, the snow season is likely to shorten in all Europe [302].  

2.3.3.2.3. Fifth assessment report 

A new set of climate changes scenarios were developed in the scope of the 5th Assessment Report [303], 

named Representative Concentration Pathway (RCP). However, these scenarios differ from the 

previous ones since the methodology applied to their development changed from a sequential process, 

which was used until AR4 and took about 10 years to be fully developed [238], to a parallel process. 

This change was carried out so that the time it takes to develop these scenarios decreases substantially, 

but also to couple the socio-economic drives and the changes in the outdoor climate more successfully 

[238].  

The AR5 scenarios were based on a parallel process that instead of starting off with thoroughly 

characterized socio-economic storylines (which were used to generate future emissions scenarios and 

then climate scenarios [239]), they started off with a limited number of radiative forcing pathways that 

were representative of the emissions scenarios that existed in literature and the resulting ranges of GHGs 

concentrations were wide enough to produce clearly different climate change projections [239]. The 

novelty of this methodology is the fact that the climate scenarios and the socio-economic scenarios are 

developed parallelly, thus reducing the time it would take to develop these two phases [239]. Further 

information about the novelty of this process can be found elsewhere [238,239,303]. 

The RCPs describe four different ways in which the greenhouse gases and the air pollutants emissions, 

the atmospheric concentrations and the changes of land use can evolve in the future, namely [63]: RCP 

2.6 (stringent mitigation scenario), RCP 4.5 and RCP 6.0 (two intermediate scenarios), RCP 8.5 (high 

GHGs emissions). These scenarios were named according to their total radiative forcing in 2100 (Figure 

2.18). However, contrary to the SRES scenarios some of the RCPs scenarios included future climate 

polices [303]. Whilst RCP 2.6 is a mitigation scenario that includes this sort of policies to reduce the 

GHGs emissions, so that the increase of the global temperature is lower than 2 ºC relative to 1750 (i.e. 

pre-industrial age); the RCP 6.0 and RCP 8.5 are baseline scenarios that do not include these policies, 

thus reaching a higher level of GHGs emissions [63]. 

In addition, there is a correspondence in terms of radiative forcing between the scenarios of the 4th and 

5th assessment reports, namely scenario RCP 4.5 is close to scenario B1, whilst scenario RCP 6.0 is close 

to scenario A1B and scenario RCP 8.5 is close to scenario A2 (Figure 2.18). However, this sort of 

correspondence does not necessarily mean the similarity of their respective GHGs emissions (Figure  
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F.1 for CO2 and CH4, which are the biggest contributors for the anthropogenic radiative forcing [259]) 

or their concentrations (Figure  F.2, which also correspond to CO2 and CH4). Furthermore, the span of 

the radiative forcing for the RCP scenarios is much wider than the span for these three SRES scenarios, 

mainly due to RCP 2.6 (Figure 2.18).  

 

Figure 2.18 – Radiative forcing between 2000–2100 for the three SRES scenarios and four RCPs scenarios, namely: RCP 2.6 

(IMAGE RCP3-PD [279,280]), RCP 4.5 (MiniCAM [256,61,285]), RCP 6.0 (AIM [116,124]) and RCP 8.5 (MESSAGE 

[222])  

Both this new approach and the several other updates that were implemented in the modelling of the 

RCPs scenarios, due to the constant scientific progress, led to more robust climate change scenarios. 

Nonetheless, the climate change projected by the RCPs scenarios is similar to the one projected by the 

SRES scenarios for Europe both in terms of patterns and magnitude [305], namely:  

• Increase of the global temperature all over Europe, but to a bigger extent in southern Europe 

during summer, as well as in northern Europe during winter 

• Decrease of precipitation in southern Europe, and its increase in northern Europe  

• Increase in the number of heat waves, droughts and heavy precipitations events  

• Increase of the global mean sea level, as well as extreme sea level events (e.g. storms) 

• Slight increase of the extreme wind speed during winter in central and northern Europe, and its 

slight decrease in southern Europe  

2.4. Hygrothermal monitoring of historic buildings: case-studies 

It is possible to highlight some studies, namely those performed in religious buildings that can be used 

to understand the natural response of heritage buildings and to contribute for future measures to control 

the indoor climate effectively. For example, Bratasz et al. [47] performed a monitoring campaign of the 

indoor climate of the church of Saint Maria Maddalena to evaluate the dimensional changes in its 

wooden altarpiece, which allowed to study how the constituents of the wooden altarpiece components 

behave according to the variation of the indoor climate conditions. Camuffo et al. [54], through a long-

term monitoring campaign, studied the effects of replacing a warm-air heating system for a friendly-



37 

heating system in two Italian churches – Saint Maria Maddalena and Saint Stefano di Cadore. San Juan 

Bautista Church in Talamanca de Jarama in Spain was monitored for 13-months to study how natural 

ventilation, human presence and the installed heating system affected the indoor climate and the 

buildings envelope [275,276]. Camuffo et al. [52] reconstructed the historical climate that a 15th century 

wooden bookcase was subjected for 500 years to define to which extend the indoor climate can be 

changed without inducing mechanical decay. Bertolin et al. [37] applied the same line of thought to a 

different case-study, namely an old choir installed in S. Giustina monastery in Padua, Italy. It is also 

worth pointing out the important work performed by the following monitoring campaigns in religious 

buildings [117,26,112,28,274]. 

The monitoring campaigns developed in  Cathedral of Valencia, Spain [118,299]; St. Cristóvão church, 

Lisbon [250,251]; Saint Michael Archangel church, Poland [46] and Santa Maria Maggione Basilica, 

Italy [55,46], can be highlighted since they correspond to studies of non-heated historic buildings. 

García-Diego et al. [118] installed in 2007 a monitoring campaign in Cathedral of Valencia in Spain 

that included several sensors in the plaster layer (layer that supports the frescos), in the adjoining walls 

and also throughout the whole cathedral, and carried out a preliminary assessment based on the recorded 

data to determine if the frescos of the Spanish cathedral were endangered. Four years later and using the 

data recorded until then, Zarzo et al. [299] carried out a second assessment that validated the principal 

component analysis (PCA) as a preventive tool for culture heritage.  

Silva et al. [250] performed a monitoring campaign in a 13th century church (St. Cristóvão) in Lisbon, 

Portugal. Using the recorded data, they developed a methodology adequate for historic buildings in 

temperate climates that aims to mitigate the physical damage induced by the environment in artefacts. 

The results of this campaign were also used to perform a thorough assessment in terms of biological, 

chemical and mechanical risk induced by the indoor conditions. This allowed the evaluation of the 

effects caused by the values of temperature and relative humidity imposed by each of the studied 

standards [251]. Bratasz et al. [46] proposed a method to mitigate the climate-induced physical damage 

by cutting the 16 % largest fluctuations. Then, this method was tested in three churches to encompass 

the main factors that influence the indoor climate of a historic building. Two of these churches were 

non-heated – Saint Michael Archangel church in Poland, and Santa Maria Maggione Basilica in Italy. 

This latter case-study had already been subjected to a monitor campaign by Camuffo et al. [55] with the 

aim to preserve its ancient mosaics and frescos.  

The work performed in Malatestiana library in Italy [105], Classense library in Italy [12] and Necip Paşa 

library in Turkey [232] on non-heated libraries is also worth addressing. Fabbri et al. [105] performed 

a monitoring campaign of the Malatestiana Library in Cesena, Italy. Since its construction, in the 15th 

century, the indoor climate has been controlled by opening/closing the library windows. Andretta et al. 

[12] monitored the indoor conditions of the Classense library in Ravenna (Italy) during a summer period 

and a winter period to corelate the indoor conditions with the outdoor conditions. They also compared 
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the recorded indoor conditions against the recommended values by standard UNI 10586 [85] for libraries 

using the performance index (PI). Sahin et al. [232] performed a one year monitoring campaign of the 

Necip Paşa library in Turkey to assess if the indoor conditions presented biological, chemical and 

mechanical risk for the housed artefacts. They concluded that the application of passive measures should 

have priority over the installation of an HVAC system, due to the natural behaviour of the building. 

2.5. Retrofit of historic buildings 

Nowadays, one of the most used outputs of monitoring campaigns is the validation of thermal or 

hygrothermal models to perform thorough analysis of the several parameters that influence the 

building’s behaviour (e.g. [66]). These models are validated against the measured indoor conditions in 

order to accurately represent reality. These models allow the thorough analysis of several parameters, 

such as the effects of applying improvement measures prior to their implementation (e.g. [281]), the 

effects of climate change in the indoor climate [172] or the effect of altering the setpoint strategy (e.g. 

[154]). The number of validated models of historic buildings has increased lately [66], which shows its 

usefulness in the preservation of cultural heritage buildings and their collections.  

Due to their high heritage value, retrofit measures, such as the application of a thermal insulation layer 

in the exterior walls or the installation of mechanical systems, are always faced with a lot of adversities 

[203]. Hence, these measures have to be thoroughly studied and their effects quantified before 

application. This is one of the reasons why the development of computational models is such a useful 

tool for historic buildings. Nonetheless, these models have to be validated against the indoor conditions 

so that they can replicate reality accurately. This is a difficult task to perform, especially for historic 

buildings [66]. 

Due to the difficulty in implementing these measures, historic buildings are more susceptible to the 

effects of climate change [129,167]. Additionally, and as pointed out by Lucchi [175], preventive 

conservation is the best course of action to reduce the energy demand in a sustainable way without 

jeopardizing the artefacts welfare and human comfort. Hence, and taking into account climate change, 

it is fundamental to develop preventive conservation methodologies. 

Sometimes, in order to achieve a proper indoor climate for the preservation of artefacts it is necessary 

to adopt passive or active measures or even a combination of both. For example, Muñoz-González et at. 

[194] studied several of these options to improve the indoor climate of a 17th century church in Seville 

(Spain) and Sciurpi et al. [243] studied several windows replacing options and different solar shadings 

for the “La Specola” Museum in Florence in Italy to improve the conservation metrics of the indoor 

climate. Both these studies used computational models to assess the improvement measures viability.  

Retrofit measures aim to guarantee a proper indoor climate for the conservation of the housed artefacts 

without compromising the energy consumption of the building [234]. In the past few years, these 

measures have been subject to a significant number of studies that test their performance in historic 
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buildings having today’s sustainability concerns in mind (e.g. [25,22,190,231,72,193,225,194]). In 

addition, these measures can also be important to ensure that these buildings are still around in the future 

[282].  

However, their viability is greatly dependent on the outdoor climate [205], which means that a thorough 

study of the effects of each measure has to be developed in each specific case to ensure that they lead to 

an improvement of the indoor climate quality and not the opposite. This type of study is even more 

important for historic buildings that house collections due to these buildings’ specific characteristics and 

the fact that most of them were not initially built to house artefacts. An inadequate retrofit measure 

might even threaten the collection welfare or might lead to irreparable damages in the building [224].  
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3. WHOLE-BUILDING HYGROTHERMAL MODELLING USING 

WUFI 
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3.1. Calculation methodology 

Several software have been used to develop computational models of historic buildings to study either 

the thermal or the hygrothermal behaviour of the building [179]. However, WUFI®Plus is one of the 

most known software to develop studies concerning the hygrothermal behaviour of buildings, thus, 

making it an adequate choice for the work performed in this research. There are several examples of the 

application of this software to study the effects of different parameters in the hygrothermal behaviour 

of historic buildings, such as churches [18,86,13,87,19,177], palaces [39,177], museums [162,217] and 

other types of historic buildings [149,152].  

The following subchapter shortly addresses the calculation equations used by WUFI®Plus in its 

hygrothermal mode, the software validations as well as the software disadvantages. More detailed 

information about the WUFI®Plus software can be found elsewhere Ref. [14]. 

WUFI®Plus is indeed a powerful hygrothermal simulation software that determines the indoor 

temperature and relative humidity for each zone of the model by taking into consideration the heat and 

moisture transfer that occurs through components, which is induced by the boundary conditions; the 

gains/losses due to natural and/or mechanical ventilation and the gains/losses due to internal heat or 

moisture sources/sinks, i.e. people, lights and equipment. The temperature and relative humidity for 

each zone is obtained by calculating the coupled heat and moisture balance equations [14]: 

𝜕𝐻𝑖
𝜕𝑡

=∑�̇�𝐶𝑜𝑚𝑝,𝑗 + �̇�𝑆𝑜𝑙 + �̇�𝑖𝑛 + �̇�𝑣𝑒𝑛𝑡 + �̇�𝐻𝑉𝐴𝐶

𝑛

𝑗=1

 3.1 

𝜕𝐶𝑖
𝜕𝑡
=∑�̇�𝐶𝑜𝑚𝑝,𝑗 + �̇�𝑖𝑛 + �̇�𝑣𝑒𝑛𝑡 + �̇�𝐻𝑉𝐴𝐶

𝑛

𝑗=1

 3.2 

Where Hi is the enthalpy of the air in zone i (J), t is time (s), Q̇Comp,j is the amount of heat from the inner 

surface of component j into zone i (W), Q̇sol is the amount of radiation that goes through the transparent 

components into zone i (W), Q̇in is the amount of convective heat in zone i (W), Q̇vent is the amount of 

heat due to natural ventilation (W), Q̇HVAC is the amount of heat due to mechanical ventilation (W), Ci is 

the amount of moisture in the air of zone i (kg), ẆComp,j is the moisture flux from the inner surface of 

component j into zone i (kg/s), Ẇin is the moisture production in zone i (kg/s), Ẇvent is the moisture flux 

due to ventilation (kg/s) and ẆHVAC is the moisture flux due to mechanical ventilation (kg/s).  

The heat and moisture transfer that occurs through opaque components is based on Künzel’s [163] one-

dimensional simultaneous heat and moisture transfer model, in which the variables are the temperature 

and relative humidity. For the transparent components WUFI®Plus calculates the amount of heat that 

goes across a window through transmission based on the window’s thermal transmittance and 

emissivity, and the amount of incident solar radiation that manages to go through the window based on 

a direct solar heat gain coefficient, a diffusive solar heat gain coefficient and the frame section.  
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The ventilation in buildings can be either induced by physical effects, i.e. natural ventilation, or by using 

a mechanical equipment. WUFI®Plus takes into consideration both these types of ventilation in the heat 

and moisture balance equations. The internal heat and moisture gains or losses due to living beings 

and/or equipment are also taken into consideration in the heat and moisture balance equations. A detailed 

explanation about these behaviours and their calculation methodologies can be found elsewhere [14]. 

In order for WUFI®Plus to perform at its full capacity [75,292], the following parameters have to be 

defined (Figure 3.1):  

• Basic materials’ properties – bulk density (kg/m3), porosity (-), specific heat capacity (J/kg.K), 

thermal conductivity (W/m.K), and water-vapour diffusion resistance factor (-); 

• Advanced materials’ properties – moisture storage function, liquid transport coefficient (m2/s), 

moisture-dependent thermal conductivity (W/m.K) and resistance factor (-), temperature-

dependent thermal conductivity (W/m.K) and enthalpy (J/kg);  

• Outdoor weather file (in hourly time steps preferably) – wind speed (m/s) and wind direction 

(º), normal rain (mm), global and diffuse radiation (W/m2), air temperature (°C), relative 

humidity (-), atmospheric pressure (hPa). If radiation cooling is to be account for in the 

simulations, then the weather file must also have the long-wave atmospheric radiation (W/m2) 

and cloud index (-) both also in hourly time steps [292]; 

• Detailed schedule of the internal sources – building’s occupancy schedule, illumination and 

equipment use. 

• Surface variables – heat transfer resistances (calculated depending on the wind characteristics 

if needed), short-wave radiation absorption, long-wave emissivity, shading factor, solar gain, 

water-vapour transfer coefficients, additional water vapour diffusion resistance factor (for 

surface coatings if needed), rain load coefficients and rain absorption coefficient (if rain load is 

considered) 

• Building geometry and disposition – surfaces orientation and dimension, building’s volume and 

floor area, windows and doors placement  

If the case-study has direct contact with soil, then it is also necessary to input the soil/slab interface 

temperature [292]. For window elements, it is necessary to define the window’s thermal transmittance 

(W/m2K), the frame factor (-), the short-wave radiation average (-) and the long-wave radiation 

emissivity (-) [292]. 
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Figure 3.1 – Outline of the necessary inputs necessary for WUFI®Plus to run at its full capacity 

3.2. Software inputs 

This subchapter briefly addresses the inputs necessary for WUFI®Plus to solve the coupled heat and 

moisture balance equations, i.e. data describing the outdoor and indoor climate, the basic and advanced 

properties of the materials that make up the constructive element; the internal gains in terms of people 

and illumination. More detailed information about these topics can be found elsewhere [14].  

3.2.1. Weather files 

In hygrothermal modelling, the outdoor boundary conditions are defined using a weather file that is 

based on measured meteorological data. This data is typically registered in open spaces, such as airports 

fields, so that the equipment is unaffected by the influence of other buildings/objects [138].  

The meteorological data in hourly time steps that WUFI requires to perform at its full capacity are the 

following [75,292]: wind speed (m/s) and wind direction (º), normal rain (mm), direct and diffuse 

radiation (W/m2), air temperature (°C), relative humidity (-), atmospheric pressure (hPa). If the radiation 

cooling is to be account for in the simulations, then the weather file must also have the long-wave 

atmospheric radiation (W/m2) and cloud index (-) both in hourly time steps [292].  

If the case-study is a building, then WUFI needs the soil/slab interface temperature [292]. Another 

important input for the software is the ventilation, which can be determined by monitoring the indoor 

carbon dioxide concentration [27]. Additional to WUFI’s incorporated weather file database, there are 

several other that have sets of weather files that can be used to run hygrothermal simulations in WUFI 

[292], for example, EnergyPlus online database [83], LNEG’s excel climatic data [174] and Meteonorm 
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program [185], amongst other.  

3.2.1.1. Soil/slab interface temperature 

Although soil/slab interface temperature is a key input in whole-building hygrothermal simulations, it 

is not very often mentioned in the models’ description (e.g. [104]). However, since WUFI®Plus cannot 

simulate this interface temperature it has to be either monitored or determined using another software. 

EnergyPlus [81] can determine the interface temperature using the Slab pre-processor, through Detailed 

Ground Heat Transfer field; or Ground Domain through one of the three available models to determine 

the undisturbed ground temperature: Finite Difference, Kusuda-Achenbach and Xing. All these methods 

need both the soil and slab properties, i.e. λ, ρ and cp; and additional data is needed to determine the 

interface temperature. 

The interface temperature can also be determined using the methodology of Standard EN ISO 13788 

[93] or, for more complex cases, the methodology of Standard ISO 13370 [94], or even a sine curve. 

The interface temperature can also be rudimentarily determined by subtracting 2 ºC to the indoor 

monthly average [267]. 

The Detailed Ground Heat Transfer needs the monthly indoor average temperature for the twelve 

months of a year, the area/perimeter slab ratio and the slab thickness [268]. A disadvantage of this 

method is the fact that it requires the average indoor temperature for each month of the year. However, 

this can be overcome by conducting a preliminary simulation and then using the output average indoor 

temperature for each month in the second simulation. The Kusuda-Achenbach method [164] assumes 

that the earth temperature can be determined by a simple harmonic time function, which is valid for heat 

transfer through the soil/slab interface. This method only requires the soil surface temperature average 

and respective amplitude, and the day with the lowest surface soil temperature.  

Xing [296] developed a one-dimensional numerical model to determine the ground temperature through 

a full surface heat balance by using some of the outdoor conditions, i.e. incident short-wave radiation 

on a horizontal surface, air temperature and relative humidity as well as wind speed. However, Xing et 

al. [297] also stated that for most engineering challenges it was not necessary to use such a complex 

model. Therefore, a simpler model that only required a few parameters, i.e. the annual soil temperature 

average, two temperature amplitude and two-phase shift, was developed, i.e. the two-harmonic 

analytical model.  

The Finite Difference method is a one-dimensional implicit finite difference heat transfer model based 

on Xing [296] model assumptions and on Lee [170] numerical methods that uses the weather file to 

determine the daily boundary conditions averages and requires the soil moisture content volume fraction, 

soil moisture content volume fraction at saturation and evapotranspiration ground cover [269].  

The sine curve determines the soil/slab interface temperature using the mean annual temperature and its 
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amplitude, as well as the day with the highest temperature. Choosing this option offers better results 

since they can be fitted to the real case. However, since the model is fitted to these conditions it cannot 

be applied to other outdoor conditions. As a result, this option is restrictive since it cannot be used under 

different conditions or in other situations.  

3.2.1.2. Carbon dioxide concentration 

A room’s Air Change per Hour (ACH) is normally determined through the release and, subsequent, 

monitoring of the concentration values of the tracer gas in the room. The used gas should be non-toxic, 

chemically stable, not absorbable or adsorbable by building materials, have a density close to the air and 

a low concentration in the atmosphere. The most common used gases are nitrous oxide (N2O), sulphur 

hexafluoride (SF6), carbon dioxide (CO2) and helium (He) [27].  

The mass balance equation is obtained by subtracting the amount of gas that leaves the room to the 

amount of gas that enters the room plus the amount of gas that is generated in the room:  

𝑉 ∙
𝜕𝑐𝑖𝑛𝑡
𝜕𝑡

= 𝐺 + 𝑄 ∙ (𝑐𝑒𝑥𝑡 − 𝑐𝑖𝑛𝑡) 3.3 

Where V is the volume of the room (m3), cint is the internal gas concentration (ppm), t is the time (s), G 

is the rate of the generated gas in the room (m3/s), Q is the air volume flow rate through the enclosure 

(m3/s) and cext is the external gas concentration (ppm). There are three different methods to determine 

the ACH of a room using an inert gas: concentration decay method, constant tracer injection method 

and constant concentration method. Of the three methods, the concentration decay method is the most 

commonly used method [27]. 

The concentration decay method consists on injecting the tracer gas into the room and allowing it to mix 

with air inside the room. After achieving equilibrium, the concentration of the tracer gas is monitored 

using an appropriate detector during a suitable period of time.  

Assuming that there is no production of the gas inside the room and that its concentration in the 

atmosphere is low (e.g. SF6), the ACH of the room can be obtained using the following equation [3]: 

𝐴𝐶𝐻 = −𝑙𝑛 (
𝑐𝑖𝑛𝑡,𝑡
𝑐𝑖𝑛𝑡,0

) ∙
1

𝑡
 3.4 

On the other hand, if the gas’ concentration in the atmosphere is not negligible (e.g. CO2), the ACH of 

the room has to be calculated using the following equation [209]:  

𝐴𝐶𝐻 = −𝑙𝑛 (
(𝑐𝑖𝑛𝑡,𝑡 − 𝑐𝑒𝑥𝑡)

(𝑐𝑖𝑛𝑡,0 − 𝑐𝑒𝑥𝑡)
) ∙
1

𝑡
 3.5 

If during the experimental campaign, the external gas tracer concentration is not recorded for any type 

of reason, it is possible to assume that its value is equal to the internal gas concentration in steady-state, 
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i.e. when the variation of the internal gas concentration is less than 2 % for at least 1 hour [191]. 

The constant tracer injection method is quite similar to the concentration decay method, except for the 

fact that when the equilibrium is achieved the gas tracer will still be pumped into the room at a constant 

rate, and both the pump rate and the concentration are monitored throughout the test [27]. The constant 

concentration method relies in maintaining a constant level of the gas tracer concentration during all the 

test by controlling the gas injection rate [27] 

3.2.2. Hygrothermal properties of building materials  

WUFI divides the building materials properties in two major categories [292]: the basic properties, 

which are indispensable for the program, but are easily determined or found in literature; and the 

advance properties, which can be left out whilst inputting building materials into the database. However, 

by leaving out these properties, WUFI will not perform to its fullest, which means that not all the heat 

and moisture processes that WUFI considers will be taken into account in the simulation [113]. Hence, 

the results will be far from reality.  

3.2.2.1. Basic properties 

The basic properties include bulk density (kg/m3), porosity (m3/m3), specific heat capacity (J/kg.K), 

thermal conductivity of the building material in dry state (W/m.K), and water vapour diffusion resistance 

of the building material in dry state (-). These five properties will be shortly addressed in the following 

subchapters. In addition, the individual procedures to determine these properties are thoroughly 

described, for example, in Delgado et al. [75] or Krus [161].  

3.2.2.1.1. Bulk density 

The bulk density of a building material, which is presented in kg/m3, is obtained by dividing the mass 

of the sample by its respective volume. WUFI uses this material’s property to transform the specific 

heat capacity by mass (J/kg.K) into the specific heat capacity by volume (J/m3.K) by multiplying the 

first for the material’s bulk density [113]. The specific heat capacity by volume is used in the heat 

transport equations, more precisely in the enthalpy calculations. The bulk density of a building material 

is obtained using the following equation: 

𝜌𝑏𝑢𝑙𝑘 =
𝑚

𝑉𝑡𝑜𝑡𝑎𝑙
 3.6 

Where ρbulk is the bulk density of the building material (kg/m3), m is the mass of the sample (kg) and 

VTotal is the volume of the sample (m3). 

3.2.2.1.2. Porosity  

The porosity of a material is the ratio of the volume of voids per the total volume of the sample. Its 

values can either be presented in m3/m3 or in percentage. This property allows to determine the 
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maximum water content of the building material by simply multiplying its value for the bulk density of 

water [113]. As it is known, the latter varies with the temperature [146], however, WUFI® does not take 

this variance into account and assumes that the bulk density of the water is 1000 kg/m3. Since in most 

of the simulations, the water content does not surpass the saturation water content (i.e. limit which is 

inferior to the maximum water content), it is possible to estimate the value of the maximum water 

content. The porosity of a building material is obtained using the following equation: 

Ψ = 1 −
𝜌𝑏𝑢𝑙𝑘
𝜌𝑡𝑟𝑢𝑒

 3.7 

Where ψ is the porosity (m3/ m3), ρtrue is the true density (kg/m3) and ρbulk is the bulk density (kg/m3). 

Building materials can either be classified as having: open porosity, in which there is communication 

between the voids and, therefore, the circulation of fluids within the material is possible (e.g., air, 

moisture); and closed porosity, when there is no connection between the voids, hence there is no 

circulation of the fluids within the material (i.e. impermeable materials). Most of the building materials 

have open porosity [115]. 

3.2.2.1.3. Specific heat capacity 

The specific heat capacity by mass (J/kg.K) is the amount of energy necessary so that one kilogram of 

the building material in dry state increases its temperature by one degree Kelvin. On the other hand, the 

specific heat capacity by volume (J/m3.K), which was previously mentioned, is the amount of energy 

necessary so that one cubic meter of the material increases its temperature by one degree Kelvin.  

The advantage of using the specific heat capacity by mass is the fact that it depends on the chemical 

composition of the material, and not on its porosity [113]. Since the specific heat capacity by mass refers 

to the material in its dry state, the software will account for the enthalpy changes caused by moisture in 

its various states, i.e. liquid, vapour and solid. 

3.2.2.1.4. Thermal conductivity  

The thermal conductivity (W/m.K) is the amount of energy that goes through a unit of thickness of the 

material for a temperature differential of one degree Kelvin. In WUFI, the thermal conductivity refers 

to the building material in dry state. However, the contribution of the latent heat of evaporation must be 

subtracted from the amount of total energy because it is already accounted elsewhere in the heat transport 

equation. The influence of moisture in this property is also considered by the software (subchapter 

3.2.2.2.3). 

3.2.2.1.5. Water vapour diffusion resistance factor 

The diffusion of water vapour in a porous medium faces a resistance distinct from that encountered in 

the environment. This distinction results from the material characteristics. This behaviour is 
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characterized by the vapor diffusion resistance factor. This factor shows that the diffusion resistance in 

the porous medium is superior to that of the environment and refers to the material in its dry state. 

3.2.2.2. Advance properties 

The advanced properties include the moisture storage curve (kg/m3), the liquid transport coefficient for 

suction (m2/s) and the liquid transport coefficient for redistribution (m2/s), the dependency of the thermal 

conductivity to moisture (W/m.K) and the dependency of the water-vapour diffusion resistance factor 

to moisture (-). 

3.2.2.2.1. Moisture storage curve  

The majority of the materials used in civil engineering is hygroscopic [115], which means that that they 

have the capacity to store moisture and that moisture can travel through them. Consequently, this type 

of materials can be greatly influenced by the border conditions. Hence, it is of key importance to 

establish a relationship between the border conditions and the amount of moisture within the building 

materials. The moisture storage curve establishes the correspondence between the value of water content 

for the selected building material to each value of relative humidity. 

The concept that quantifies the moisture within a building material is the water content since it quantifies 

the moisture regardless of its physical form. Moisture can exist within a building material in its three 

forms, namely solid, liquid and vapour. However, it is only transported in either its vapour state (named 

diffusion flux) or in its liquid stated (named capillary flux). Whilst the diffusion flux is governed by the 

water-vapour pressure, the capillary flux is governed by the water content. 

The moisture storage curve is divided in three regions: hygroscopic, capillary (or super-hygroscopic 

depending on the literature [163]) and supersaturated (Figure 3.2). The hygroscopic region is composed 

by a molecular adsorption zone and a capillary condensation zone. Initially, the water molecules attach 

to the walls of the pores, thus forming a single layer of water molecules. When it reaches approximately 

a relative humidity of about 20 %, adjacent layers to the single layer are created, thus reducing the cross-

section of the pore channels. This behaviour is named multi-molecular adsorption and occurs until 

approximately 40 % of relative humidity. Depending on the material properties, concave menisci, in 

which condensation occurs for values inferior to 100 %RH; or convex menisci, in which condensation 

occurs for value higher than 100 %RH, are created within the pores. 

The hygroscopic region is characterized by the transport of moisture in the vapour phase, and its inferior 

limit is the water content of the material in dry state and its superior limit is the free water saturation (≈ 

95 %RH). On the other hand, the capillary region is mainly characterized by the transport of moisture 

in liquid state. Consequently, there is a gradual reduction of the cross-section of the pore channels until 

it reaches the free water saturation (≈ 100 %RH), and water-vapour diffusion stops occurring. 

The free water saturation corresponds to the maximum amount of moisture a building material can store 
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under normal conditions. Depending on the building material, there may be air pockets in its 

constitution, which can lead to a higher water content than the free water saturation. For example, the 

pores that are not interconnected are not filled with moisture under normal conditions, only in 

supersaturated region are these pores filled with moisture. This limit is only achieved under special 

conditions, i.e. when the building material is subject to an overpressure or when it is submerged for a 

considerable period of time. This domain is usually neglected in the moisture storage curve since it is 

not possible to establish a relationship between the increase in water content and a constant relative 

humidity.  

 

Figure 3.2 – Example of a moisture storage function for a building material (adapted from Ref. [115,123]) 

In the hygroscopic region (i.e. between the material in its dry state and approximately 93 %RH), the 

moisture storage curve is either determined by the desiccator method or by the climate chamber method 

[139]. Both methods obtain an adsorption curve, since they are based on the methodology of determining 

the mass of the specimen that is under controlled temperature and relative humidity conditions until the 

specimen reaches an equilibrium with the boundary climate. However, it is not possible to determine 

the moisture storage curve in the capillary region using either of these two methods, because both the 

salts and the climatic chamber cannot attain relative humidity above 93%.  

Hence, an alternative technique named pressure plate method [161,200], which was initially created to 

characterize soils, is used to determine the moisture storage curve in the capillary region. This technique 

consists on applying a pressure to saturated specimen until they reach the equilibrium, and, 

≈93 
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subsequently, determining the amount of expelled moisture. Based on Kelvin’s law it is possible to 

correspond the applied pressure to a certain relative humidity value, and with the amount of expelled 

moisture it is possible to determine the water content for each level of applied pressure (equation 3.8). 

Contrary to the procedures applied to determine the hygroscopic curve, which obtains an adsorption 

curve, the pressure plate method obtains a desorption curve.  

𝜑 = 𝑒
(−

𝑠∙𝑀𝑤
𝜌𝑤∙𝑅∙𝑇

)
 3.8 

where φ is the relative humidity (-), s is the capillary pressure (Pa), Mw is the molar mass of water 

(kg/mol), R is the gas constant (J/kg.mol) and T is the temperature (K). Alternatively, to the pressure 

plate method it is possible to use the mercury porosimetry method, which in spite of being faster, having 

a greater precision and covering a greater range of pore radius, depicts a picture far from the real 

situation, since it does not use water to perform the procedure as pressure plate method [161].  

3.2.2.2.2. Liquid transport coefficient 

In the hygroscopic region, the liquid conduction coefficient is obtained using the following equation: 

𝐷𝜑 = 𝑃𝑣,𝑠𝑎𝑡 ∙ 𝛿 ∙ (
1

𝜇∗(𝜑)
−
1

𝜇
) 3.9 

Where Dφ is the liquid conduction coefficient (kg/m.s), Pv,sat is the saturation vapour pressure (Pa), δ is 

the water vapour permeability of stagnant air (kg/m.s.Pa), µ* is the fictious water vapour diffusion 

resistance factor (-) and µ is the water vapour diffusion resistance factor of the building material in its 

dry state (-). The water-vapour diffusion resistance factor of the building material corresponds to 

material in its dry state (i.e. 3 to 50 % relative humidity), whilst the fictious water vapour diffusion 

resistance factor corresponds to high relative humidity values (i.e. 50 to 90 % relative humidity). 

In the capillary region, the liquid conduction coefficient is obtained using both the moisture storage 

curve and the liquid transport coefficient. In addition to the difficulty in determining the liquid transport 

coefficient, this parameter varies with the amount of moisture within the building material. Hence, 

WUFI uses a simplified method to determine the liquid transport coefficient based on the water 

absorption coefficient building material, on its free water content and water content. 

The liquid transport coefficient depends on the characteristics of the building material, but it also 

depends on the conditions of the boundary climates. WUFI uses one of two liquid transport coefficients 

depending on the conditions of the boundary climates, i.e. whether rain hits the building element or not. 

WUFI uses the liquid transport coefficient for suction when the building material is subjected to an 

interrupted supply of water and, consequently, the surface of the building material is completely wet. 

Suction will be dominated by the larger pores, since they have a minor resistance.  

On the other hand, when the building material is not subjected to an interrupted supply of water, the 
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moisture within the building material is redistributed and WUFI uses the liquid transport coefficient for 

redistribution. The redistribution process of moisture is dominated by the smaller pores, since there is 

no continuous supply of water, the amount of moisture within the building material will decrease, which 

means that the smaller pores (higher capillary pressure) will extract the moisture within the large pores 

(smaller capillary pressure).  

Since redistribution is governed by the smaller pores, which have a greater flux resistance, and suction 

is governed by the larger pores, which have a minor flux resistance, these processes will occur at 

different velocities. Normally, the redistribution coefficient is smaller than the suction coefficient [113]. 

Since the liquid transport coefficient has not been measured for a significant number of building 

materials, WUFI determines this coefficient for suction using the following equation [113]:  

𝐷𝑤𝑠 = 3.8 ∙ (
𝐴

𝑤𝑠𝑎𝑡
)
2

∙ 1000
(
𝑤
𝑤𝑠𝑎𝑡

)−1
 3.10 

Where Dws is the liquid transport coefficient for suction (m2/s), A is the water absorption coefficient 

(kg/m2s0.5), wsat is the free water content (kg/m3) and w is the water content (kg/m3).  

The liquid transport coefficient for suction increases with water content. However, the previously 

mentioned equation cannot be used in the supersaturated region, since there is no relationship between 

the water content and the liquid transport coefficient. On the other hand, the redistribution coefficient is 

assumed to be one decimal of the suction coefficient in the capillary domain [163].  

3.2.2.2.3. Thermal conductivity dependent on the moisture content  

Hygroscopic building materials have the capacity to store fluids within, such as moisture. The amount 

of moisture will affect the thermal conductivity of the building material, since its increase is associated 

to the replacement of the existing fluid within the building material. The replacement of air that has a 

thermal conductivity of 0.025 W/m.K [235] for moisture that has thermal conductivity of 0.6 W/m.K at 

10 ºC [235], will mean an increase of the thermal conductivity of the hygroscopic material.  

The thermal conductivity dependent on the moisture content is determined using the following linear 

equation, whose initial value is the thermal conductivity of the building material in its dry state: 

𝜆 = 𝜆0 ∙ (1 +
𝑏 ∙ 𝑤

𝜌𝑏𝑢𝑙𝑘
) 3.11 

Where λ is the thermal conductivity of the building material (W/m.K), λ0 is the thermal conductivity of 

the building material in its dry state (W/m.K), b is the thermal conductivity supplement (%/M.-%), w is 

the water content within the building material (kg/m3) and the ρbulk is the bulk density of the building 

material in its dry state (kg/m3). The thermal conductivity supplement accounts for the increase in 

percentage of the thermal conductivity in accordance to the percentual increase of the moisture mass. 
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The thermal conductivity supplement value depends on the characteristics of the building material [163]. 

3.2.2.2.4. Water vapour diffusion resistance factor dependent on moisture content  

In experimental measurements, the values referring to the diffusion of water vapour and those referring 

to the surface diffusion are not separated, which means there will be a reduction of the diffusion 

resistance, i.e. the water-vapour diffusion resistance factor will decrease accordingly. This reduction, 

which occurs at high relative humidity values, means that this factor is dependent on the moisture 

content [113]. 

WUFI has two methods to account for this dependency [113]: the first considers that this factor is 

constant and adjusts the liquid transport coefficients to account for the surface diffusion accordingly; 

the second uses a water-vapour diffusion resistance factor that depends on moisture. In both methods, 

and for water content values higher than the free water saturation, the water-vapour diffusion resistance 

factor decreases with the increase of water content until it reaches zero, which corresponds to the 

maximum water saturation [113]. This decrease of the water-vapour diffusion resistance factor shows 

the difficulty of vapour diffusion occurring at high relative humidity values, since even the larger pores 

are filled with moisture. 

3.2.3. Internal gains 

The indoor climate is influenced by many variables, such as the outdoor climate and the building 

envelope, as well as the occupants, lighting system and equipment (these last three variables are 

commonly referred to as internal gains) [6]. Internal gains can be responsible for an increase/decrease 

of the indoor heat load, moisture load or CO2 concentration. The effect that each source has on the indoor 

climate depends on the type of source. For instance, humans are responsible for the increase of 

temperature, humidity level and CO2 concentration, whereas a computer is solely responsible for the 

increase of the indoor temperature.  

The internal gains that are usually considered whilst developing hygrothermal/thermal models are 

human beings, lighting system and the building’s electric equipment. Since the focus of this research is 

historic building that exhibit/store artefacts, the contribution to the internal gains load of the electric 

equipment is almost non-existent when compared, for example, to an office. Thus, its contribution to 

the indoor climate of historic buildings will be neglected henceforth.  

3.2.3.1. People  

People have a key influence on the hygrothermal behaviour of buildings, as well as its indoor air quality, 

since each person produces sensible and latent heat, and CO2. In addition, a person can also be 

responsible for carrying air pollutants inside the building, which can accelerate the deterioration process 

of the artefacts [207].  

While the fraction of latent heat is responsible for the instantaneous increase of water-vapour 
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concentration in a space, the sensible heat fraction is absorbed and stored by the surrounding materials. 

It is estimated that between 20–60 % of the emitted sensible heat assumes the radiation form, which 

depends on several aspects, such as clothing, mean radiant temperature and air velocity [262]. This heat 

is dissipated by radiation from the body surface to the surrounding surfaces, convection from the body 

surface and respiratory act to the surrounding air, and moisture evaporation from the body surface and 

respiratory act to the surrounding air [56]. The sensible heat emitted by a person is split in its radiation 

and convection portion according to a person’s clothing, performed activity, mean radiant temperature 

and air velocity. 

The heat generated by a human body, which usually performs at ca. 37 ºC [56], varies according to a 

person’s characteristics – i.e. gender, diet, age and physical attributes, as well as the performed activity. 

It is usually referred to as metabolic rate, which can be presented in either met or W/m2 (1 met = 58.2 

W/m2 [180]). There are several standards worldwide that have metabolic rates for numerous activities, 

such as ASHRAE Fundamentals [7], ISO 8996 [140], ASHRAE 55 [4], EN 13779 [95] or ISO 7730 

[137]. 

However, there is no consensus in the scientific community concerning metabolic rates for museums 

and churches. The values used in literature differ substantially among authors and usually vary between 

1.0 and 2.0 met. For example, Bellia et al. [34], who analysed the operating costs of several HVAC 

systems using a computational model of a modern museum, assumed a total heat gain per person of 147 

W with 85 W being sensible heat and 62 W being latent heat (this corresponds to ca. 1.4 met considering 

a surface body area of 1.8 m2 [140]). Ascione et al. [24], who analysed air diffusion equipment resorting 

to computational modelling, adopted a metabolic rate of 1.5 met/person. Ferdyn-Grygierek [108,110], 

who studied the implications of the temperature scheme and several ventilation systems on a museum’s 

energy consumption, assumed that each visitor would be responsible for 75 W of sensible heat (50 % 

was emitted by convection and the other 50 % by radiation) and 55 W of latent heat, which means a 

total heat of 130 W (this corresponds to ca. 1.2 met considering a surface body area of 1.8 m2 [140]). 

Kramer et al. [154], who studied the energy-saving potential of several setpoint strategies using a 

simulation model of the Hermitage Amsterdam museum, assumed that each visitor was responsible for 

100 W (this corresponds to ca. 1 met considering a surface body area of 1.8 m2 [140]).  

Furthermore, Karyono et al. [148], who aimed at widening the scope of the typical thermal comfort 

studies, assumed that in the studied cathedral the visitors would have a metabolic rate of 1.0 met (which 

corresponds to seated, relaxed [140]) and in the museum it would vary between 1.0 (which corresponds 

to seated, relaxed [140]) and 1.2 met (which corresponds to standing, at rest [140]). Balocco et al. [29], 

who modelled an 11th century church in Florence, assumed that each visitor emitted 75 W of sensible 

heat and 55 W of latent heat, which means a total heat of 130 W (this corresponds to ca. 1.2 met 

considering a surface body area of 1.8 m2 [140]). Camuffo et al. [54], who tested a heating system in 

two churches in Italy, considered that the metabolic rate of a person varied from 1.0 met (seated, quiet 



56 

person [4]), 1.2 met (standing, relaxed person [4]), 1.5 met (singing [4]) and 2.0 met (walking [4]). 

Finally, Aste et al. [26], who studied several heating strategies for churches using the Basilica di 

Collemaggio as a case study, assumed a total heat load of 108 W per person (this corresponds to ca. 1 

met considering a surface body area of 1.8 m2 [140]). 

3.2.3.2. Light 

Light is a key environment factor in conservation, since it can cause irreversible damages to artefacts 

[96]. Light also plays a major role in the indoor climate stability and energy demand of buildings [210]. 

Nonetheless, light is a necessity for human beings, since it is necessary to have the appropriate 

illuminance in order to perform any activity adequately. This value differs according to the type of 

activity, as well as the person who is performing it and the space where the activity takes place.  

Indoor spaces can either be illuminated by daylight or by artificial sources. By combining the use of 

daylight, while its intensity is suitable for the activity that the person is performing, together with 

artificial light, when the daylight intensity is no longer suitable, is more energy efficient. The amount of 

daylight that manages to enter a building varies according to the building location, architecture, 

surroundings and also season and sky condition. Daylight is also preferable to artificial light due to 

health and comfort reasons [20]. 

However, in museums the use of daylight is limited by the collection conservation requirements. 

Artificial light is usually preferable to natural light since it is easier to control, thus decreasing the 

possibility of surface deterioration [264]. The lighting limits will greatly depend on the collection 

requirements, since the artefacts can either be sensitive (e.g. silk) or insensitive to light (e.g. stone 

sculpture) [264,136]. Nevertheless, the required light to observe an object differs according to the 

visitors’ characteristics (such as, age), the object’s characteristics (such as, luminance) and the 

surroundings [51].  

Lighting the indoor spaces is indeed one of the greatest conservation’s paradigm. It must be appropriate 

so that the visitors enjoy their visit, but at the same time it must be as low as possible to decrease the 

light damage magnitude [136]. It is not sufficient just to limit the light intensity to avoid any risk because 

surface damage is a cumulative process. The best course of action to preserve these objects is to 

illuminate them using the lowest lighting level necessary for viewing and only for the required period 

of time [51]. 

In the museum environment, the radiation spectrum that deteriorates artefacts consist of ultraviolet 

radiation (300–400 nm), visible radiation (400–760 nm) and infrared radiation (>760 nm). Whilst the 

first two types of radiation are a source of concern due to the photochemical damages, the latter can be 

responsible for heating artefacts, which can lead to internal stress.  

Ultraviolet radiation (UV), which corresponds to the highest levels of photon energy, can be responsible 

for the yellowing of the materials and even their disintegration (typically occurs for higher photon 
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energy than 3 eV [77]). On the other hand, visible light is responsible for the fading of colours (typically 

occurs between 2 and 3 eV [77]). Standard CEN/TS 16163:2014 [96] states that the intensity of UV in 

museums for display lighting has to be lower than 75 μW/lm. 

Radiant heating can also jeopardize the objects welfare, since the increase of the surface temperature 

will eventually lead to internal stress. This happens because the surface and subsequent layers are not at 

the same temperature, therefore, they will expand at different rates. On the other hand, when the object 

is no longer under the direct effect of the light beam, the surface temperature decreases and only later 

on does the subsequent layers’ temperature decrease, which causes internal stress. This 

expansion/contraction cycle is harmful to the object and its magnitude increases when the artefact is 

composed by two or more materials. Thus, to perverse the artefacts, it is necessary to reduce, as much 

as possible, the portion of UV, visible and IR radiation that manage to reach the artefacts.  

3.2.3.2.1. Indoor illumination 

The lighting level is either presented in terms of lighting power per area (W/m2) or by the level of 

lighting required for the space (lux). The recommended lighting power density (LPD) for museums is 

11.3 W/m2 for the exhibition area [8], 11.0 W/m2 for the restoration/conservation areas and 9.0 W/m2 

for the storage area [6].  

On the other hand, CIBSE Guide A [262] presents the recommended illuminance according to the type 

of building and the level of lighting required. The values are 200 lux for the display area and 50 lux for 

the storage area of museums. Standard EN 12464-1 [97] also presents the recommended illuminance for 

various types of buildings according to the developed activity. However, in the specific case of museums 

it is stated that illuminance must be determined according to the display requirements without presenting 

any single value. 

Museums have used many types of lamps to light their rooms due to the evolution of the light industry 

throughout time – incandescent (tungsten and halogen), metal halide, fluorescent and solid-state 

(namely, LED). Their properties are quite different (Table 3.1) and, consequently, the increase of surface 

temperature that they cause is also quite different. This is shown by Camuffo [51] by subjecting a black 

aluminium surface to four light beams with 500 lux for 80 minutes – ca. 0 ºC for a fluorescent lamp, ca. 

0.8 ºC for a metal halide lamp, ca. 2.1 ºC for a halogen incandescent lamp and ca. 3.1 ºC for a tungsten 

incandescent lamp.  

The colour rendering index (CRI) is the comparison of an object colour caused by the tested light source, 

to the object colour under a reference light source. It varies from 0 to 100, which means that the light 

emitted spectrum is continuous, just like daylight. In order to provide the visitors with the best colour 

experience in a museum, the lamps should produce a continuous spectrum, as close as possible to 

daylight [51]. Luminous efficacy is obtained through the quotient of luminous flux (lumens) by power 

(watt) and expresses how successfully a light source produces visible light. The correlated colour 
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temperature (CCT) quantifies the feeling transmitted by the light source to the human eye. A value 

below 3300 K gives the feeling of a warm light, between 3300 and 5300 K an intermediate light and 

above 5300 K gives the feeling of a cold light [97]. Visitors prefer a warm light in museums [77]. 

Table 3.1 – Comparison of the characteristics of each type of lamp used in museums throughout time 

Type of lamp Source 

Colour 

rendering index 

[-] 

Luminous 

efficacy [lm/W] 

Correlated colour 

temperature 

[K] 

Lifetime 

[h x 103] 

Tungsten 

incandescent  

[51] ≈ 100 10–15 2700 0.75–1.5 [77] 

Benefits: Continuous spectrum, warm tonality 

Drawbacks: Requires Anti-UV filter, large IR emission, large heat dissipation, high 

energy consumption 

Halogen 

incandescent 

[51] ≈ 100 20 3200 2–2.5 [77] 

Benefits: Continuous spectrum, warm tonality, slightly higher luminous efficacy and 

lifetime than tungsten incandescent lamps 

Drawbacks: Requires Anti-UV filter, large IR emission, large heat dissipation, high 

energy consumption 

Metal halide 

[51] ≈ 95 70–90 3000–6000 6–20 [120] 

Benefits: Continuous spectrum, wide range of colour temperature, greater luminous 

efficacy than incandescent lamps   

Drawbacks: Requires a warm-up period, uses mercury vapour to produce light 

Fluorescent 

[51] 80–98 50–90 3000–5000 [264] 6–12 [77] 

Benefits: Cold tonality, low IR dissipation, wide range of colour temperature 

Drawbacks: Requires Anti-UV filter, discontinuous spectrum; uses mercury vapour to 

produce light 

White LED  

[96] ≈ 80 70–95 3000-6000  50 

Benefits: High efficiency, low energy consumption, low UV and IR emission, long 

lifetime 

Drawbacks: Requires combination of lights to produce white light, discontinuous 

spectrum, initial cost 

LED lamps have a higher luminous efficacy than for example halogen lamps, which means that for the 

same amount of light, a lower electric power is used. In addition to this energy saving, the need for 

cooling also decreases since the process on which LED lamps are based attain lower temperatures. It is 

common to assume that for every 3 watts of saved energy in lighting, 1 watt of cooling energy is also 

saved [77]. 

The electric energy used by a luminaire is converted into light and heat. The amount of electric energy 

that is transformed into light differs according to the type of lamp [56,51], but the luminaire itself has a 
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key influence in this division, due to its effect on the radiant and convective heat ratio [262]. Heat is 

dissipated from the luminaire to the surrounding surfaces through radiation and convection, and to the 

adjacent materials through conduction. The emitted radiant heat, which can cause discomfort for visitors, 

is absorbed by the surrounding surfaces and stored by the materials, which means that it cannot be 

immediately considered in the cooling load [262]. 

3.2.3.2.2. Light conservation limits 

It is possible to divide materials in two groups in terms of light damage: sensitive (organic materials) 

and insensitive (mineral materials). The former group is divided in three classes: low sensitive (e.g. 

undyed leather), medium sensitive (e.g. tapestries) and high sensitive to light (e.g. silk). Hence, the 

requirements of the lighting system will differ according to the type of the displayed artefacts.  

CIE 157:2004 [136] and CEN/TS 16163:2014 [96] limit lighting system in terms of exposure, 

illuminance and exposure time according to the type of artefact (Table 3.2). Due to the reciprocity law, 

if the illuminance decreases, it is possible to increase the exposure time without overcoming the 

exposure limit. On the other hand, if the exposure time is reduced, the illuminance can be increased. 

Although mineral materials do not require a limit of illuminance, since they are insensitive to light, the 

illuminance of the rooms where they are displayed must not differ substantially from the illuminance of 

the rooms with sensitive materials. Otherwise, visitors will feel discomfort when moving from a room 

with light insensitive materials to a room with light sensitive materials. Thomson [264] states that for a 

room with light insensitive materials the maximum illuminance should be 300 lux. 

Table 3.2 – Exposure, illuminance and exposure time limits according to the type of object. Adapted from CIE 157 [136] 

Category 
Limiting exposure 

[lux.h/year] 

Limiting illuminance  

[lux] 

Limiting exposure time  

[h/year] 

1.Insensitive 

No limit No limit No limit 

Examples: Most metals, stone, most, stone, most glass, genuine ceramic, enamel, most 

minerals 

2. Low 

sensitive 

600 000 200 3 000 

Examples: Oil and tempera painting, fresco, undyed leather and wood, horn, bone, ivory, 

lacquer, some plastics 

3. Medium 

sensitive 

150 000 50 3 000 

Examples: Costumes, watercolours, pastels, tapestries, prints and drawings, manuscripts, 

miniatures, paintings in distemper media, wallpaper, gouache, dyed leather and most 

natural history objects, botanical specimens, fur and feathers 

4. High 

sensitive 

15 000 50 300 

Examples: Silk, colorants, newspaper 

Druzik and Michalski [77] present the rate of colour change in materials due to the light for each of the 
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four material categories and according to the illuminance. This parameter has a wide range of values 

within each material category, but it also varies substantially for different illuminance and between 

different material categories (Table 3.3). The rate of colour change due to light allows the evaluation of 

the indoor lighting conditions in terms of material’s conservation. For a low light sensitive material 

subject to an illuminance of 200 lux, the colour change will start to show in 77–1707 years with lighting 

being used during 8 hours a day for 7 days a week. 

However, limiting the exposure is not sufficient to guarantee the welfare of objects. It is also necessary 

to analyse the spectrum of the artificial light source [220]. CIE 157:2004 [136] presents the relative 

damage potential, which is based on the damage potential of the CIE Illuminant A, for different 

correlated colour temperature. The damage potential is the quotient between the effective irradiance and 

the illuminance. Additionally, CEN/TS 16163:2014 [96] presents the typical relative damage potential 

for specific light sources normally used in museums with and without filter. The lowest values are 

obtained for the LED lamp. The use of an edge filter reduces the relative damage potential for both the 

tungsten-halogen and fluorescent lamps. For fluorescent and LED lamps the lower the CCT, the lower 

the relative damage potential. This parameter helps deciding which type of lamp should be used in 

museums [283].  

Table 3.3 – Number of hours it takes for the materials to start showing noticeable fade according to the illuminance (adapted 

from [77]). 

Sensitivity 

level 

Number of years before "just noticeable fade" occurs 

50 lux 150 lux 500 lux 

Low 

sensitivity 
300 – 7000 years 100 – 2000 years 30 – 700 years 

Medium 

sensitivity 
20 – 700 years 7 – 200 years 2 – 70 years 

High 

sensitivity 
1.5 – 20 years 6 months – 7 years 52 days – 2 years 

3.2.3.2.3. Lighting power density in computational models 

In whole-building hygrothermal models, the internal gains due to lighting are taken into account by the 

lighting power density (LPD). This parameter has a key influence in the indoor conditions of building 

and, consequently, in the building’s energy consumption. 

Despite the importance of lighting in conservation and energy consumption in museums, there is no 

consensus in the scientific community. Ascione et al. [21] used a LPD of 20 W/m2 in a model of a 1200 

m2 modern museum to study several measures aiming to reduce the energy consumption of the 

building’s mechanical systems. Balocco et al. [30] developed a thermal model of a museum in Florence 

to guarantee the necessary temperature and relative humidity values for the conservation of the housed 

artefacts and thermal comfort using a constant air flow system coupled to radiant panels, several rooms 
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were modelled, which in turn had different internal gains and a LPD between 15 and 20 W/m2. Janssen 

et. al. [145] considered a LPD of 5 W/m2 for a hygrothermal model of a 3180 m2 museum storage in 

Vejle (Denmark) to analyse the applicability and efficiency of full passive conditioning for this type of 

buildings. Ferdyn-Grygierek [108] used a LPD of 40 W/m2  to study the influence of the temperature 

and relative humidity setpoints on the energy demand of a Polish museum. Sciurpi et. al. [243] used 

LPD of 7.02 and 9.5 W/m2 for two simulated room of the “La Specola” museum in Florence to study 

measures to reduce the overheating during the Summer.  

Kramer et al. [158], studied the thermal comfort in museums by taking into account the PMV-model 

and the adaptive comfort guidelines imposed conditions, as well as the building’s envelope 

characteristics. They analysed their effects on the building’s energy consumption using a LPD of 9 

W/m2. In a state-of-the-art museum installed in a 17th century building, Kramer et al. evaluated in [154] 

and in [156] the energy-saving potential of several setpoints strategies by taking into account 

degradation risks (using damage functions) and the thermal comfort (using an adaptive temperature 

guideline), and secondly on the capacity to predict energy accurately using an Integral Building Energy 

Simulation model and a Zone Air Building Energy Simulation model using the same 9 W/m2. 

3.3. Software validation 

A positive aspect about WUFI®Plus is the fact that it is a computational software that has been subject 

to several important updates in the past years [49,16,208] and it is continuously being subject to updates 

[295]. This is a crucial aspect for research because this makes the software up to date in terms of 

modelling. 

Another key aspect of this software was its validation. Normally the results obtained by the software are 

either compared against experimental results or against another software that has already been validated. 

Since the mathematical algorithm used by WUFI®Plus to calculate the hygrothermal behaviour of 

building assemblies is based on Künzel’s model, this section of the software is already validated because 

Künzel validated it in its PhD thesis [163].  

WUFI®Plus has additional models that also have to be validated when compared with WUFI®Pro [113]. 

Hence, in 2003 Holm et al. [126] compared the performance of WUFI®Plus against TRNSYS in terms 

of heating energy and indoor temperature using a two-story building made out of prefabricated AAC 

elements. The obtained results were similar, which validated the thermal part of WUFI®Plus. In addition, 

the authors also compared the performance of WUFI®Plus against an experimental setup to validate the 

hygric part of WUFI®Plus. The values calculated by WUFI®Plus were similar to the relative humidity 

values measured in the experimental setup, which validated the hygric part of WUFI®Plus.  

More recently, Antretter et al. [17] compared the performance of WUFI®Plus separately. Whilst the 

thermal part of WUFI®Plus was tested resorting to the cases presented in standard VDI Guideline 6020 

[277] and ASHRAE standard 140 [9]. The results obtained from WUFI®Plus were similar to the values 
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presented in these standards. The hygric part of WUFI®Plus was tested by comparison against the 

measured results from a moisture buffering experiment, in which a ceramic interior tile was analysed. 

A model of the climate chamber, which was used to test the specimen, was developed in WUFI®Plus. 

The comparison was divided in a two-step procedure in which the authors first compared the RH results 

without the specimen and then compared the results with the specimen. In both cases, the WUFI®Plus 

results were similar to the measured values.  

In addition, WUFI®Plus was included in the IEA Annex 41 project [227], which tested the performance 

of a set of whole-building hygrothermal software. Although, the authors of the project did not identify 

the results associated to each software, the overall results were quite good for all tested software. All 

these comparisons showed that WUFI®Plus simulates the hygrothermal behaviour of buildings reliably. 

WUFI®Plus performance was also compared with other software using buildings that house artefacts. 

For example, Schmidt et al. [242] compared the performance of a model developed in WUFI and 

TRNSYS based on measured data with the aim of thoroughly studying the retrofit project of Schack-

Gallery Munich. The obtained results showed that both software are appropriate tools for this kind of 

projects. Coelho et al. [68] developed the same model of St. Cristóvão church in both WUFI®Plus [292] 

and EnergyPlus [81] to see how much the results would differ. They compared each model outputs 

against the measured indoor conditions using four statistic indices: the coefficient of determination (R2), 

the coefficient of variation of the root mean square error (CV(RMSE)), the normalized mean bias error 

(NMBE) and the goodness of fit (fit). More details about these statistic indices are presented in 

subchapter 3.5. 

The obtained values show that both software appropriately model the hygrothermal behaviour of St. 

Cristóvão church. Table 3.4 summarizes the obtained values of the four selected indices concerning 

temperature and water-vapour pressure. In terms of goodness of fit the WUFI®Plus model attains a 

significantly higher temperature fit, as well as a higher water-vapour pressure fit when compared to the 

EnergyPlus model. Although the EnergyPlus model does not surpass the imposed limit, the obtained 

value is very close to the limit, which makes it acceptable. WUFI®Plus higher accuracy might be due to 

the fact that a sensitivity analysis to determine some of the inputs is carried out, something that is not 

done in EnergyPlus. The same inputs were used in both models since the aim of this subchapter is to 

test the same model in both software. 

The obtained CV(RMSE) and NMBE for both models are lower than the demand values by IPMVP [80] 

for the model to be validated (especially, CV(RMSE) which is ca. 4 times lower than the imposed limit). 

On the other hand, the R2 is not an appropriate index to compare both software, since the obtained values 

are very high.  

  

https://www.sciencedirect.com/topics/engineering/coefficient-of-variation
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
https://www.sciencedirect.com/topics/engineering/mean-bias-error
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Table 3.4 – R2, CV(RMSE), NMBE and goodness of fit for temperature (T) and water-vapour pressure (Pv) of the models 

developed in WUFI®Plus and EnergyPlus 

Software 
R2 [-] CV(RMSE) [%] NMBE [%] Fit [%] 

T Pv T Pv T Pv T Pv Avg. 

WUFI®Plus  0.99 0.97 3.2 4.4 2.7 3.4 84.8 81.7 83.2 

EnergyPlus  0.99 0.96 4.1 5.5 3.5 4.1 80.4 76.5 78.5 

Figure 3.3 displays the annual variation of the indoor temperature and water-vapour pressure of the 

monitoring campaign data and the simulated values for both models. Although the models’ outputs do 

not perfectly overlay the recorded data, they have a very similar variability, which shows that the 

obtained values from both models are acceptable.  

The model of St. Cristóvão church was developed in the hygrothermal mode of WUFI®Plus and using 

the Combine Heat and Moisture Transfer (HAMT) in EnergyPlus. It is noteworthy that both the 

hygrothermal mode and the HAMT mode are based on Künzel’s [163] governing equations for the 

simultaneous calculations of heat and moisture transfer in building materials [269]. 

 

Figure 3.3 – Simulated WUFI®Plus and EnergyPlus and measured indoor temperature (a) and water-vapour pressure (b) of 

St. Cristóvão church 

Both software have been extensively validated by their developing teams and also by independent 

studies. This fact is of extreme importance since it gives credibility to the software and, consequently, 

the obtained results. Plus, both software are continuously being updated to account for more 

thermal/hygric behaviours that influence buildings, but also to increase their accuracy and fix bugs. 

Nonetheless, some differences stand out between these software, which will influence the users’ choice 

when modelling the behaviour of a building.  

While WUFI®Plus has always been a hygrothermal software, i.e. calculates the simultaneous and 

coupled heat and moisture transport in building elements, whereas EnergyPlus was developed for energy 

simulations. EnergyPlus suffered an update to take into account the simultaneous heat and moisture 

transport with HAMT, which uses the same equations as WUFI [269]. The disadvantage is that 

hygrothermal simulations take more time to run in EnergyPlus than in WUFI®Plus.  
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Since EnergyPlus is a free software, that makes it much more used than WUFI®Plus. This means a 

greater number of Q&A forums (e.g. Unmet Hours [273]) and a greater number of tutorials (e.g. the Big 

ladder website [41], the manuals developed by the labEEE [165]). These documents, in addition to the 

very detailed documentation of the software itself [82] are fundamental when the user is leaning how to 

use the software. Among other parameters, EnergyPlus is much more complete in terms of climate 

control systems than WUFI®Plus, which only has five possible systems.  

Due to the difficulty of introducing the geometry of the case-study in EnergyPlus it is advisable to use 

other software, such as the free OpenStudio plug-in [2] or DesignBuilder [76]. WUFI®Plus also has this 

drawback when the user is using the vertices introducing methodology for complex building geometries, 

but it also has alternatives, such as the SketchUp plug-in or the Revit conversion software [292]. 

Ultimately, the choice between the two software will greatly depend on the aims of the study. If the 

thermal and hygric behaviour are important for the study (as it is for the study described in this thesis), 

then it is advisable to use WUFI®Plus. However, if the hygric behaviour is negligible and the climate 

control systems are important for the study, then it is advisable to use EnergyPlus. 

It is also possible to develop your own code, which has the great advantage of fitting to the purpose of 

the study more precisely than commercial software do. However, this can be a very time-consuming 

process, which will increase with complexity of the problem (e.g. if the simulation is only 1D or 

otherwise occurs in 2D/3D, or if the simulations only models the thermal behaviour of the case-study or 

otherwise if it also models its hygric behaviour). In addition, it is also of key importance to validate the 

code either against experimental data or standards provided values, so that the results are reliable. 

Another drawback is the fact that they cannot keep up with the development of commercial software, 

because they are usually developed by small teams, whereas commercial software are developed by 

much larger teams. 

3.4. Software disadvantages  

Although WUFI®Plus is a state-of-the-art hygrothermal simulation software, it cannot take all the factors 

that influence a building into account and, therefore, the following assumptions were made [14]: 

• In each zone both the temperature and relative humidity are constant. Therefore, when choosing 

the model’s zones, it is important to know how the indoor climate varies within the building 

• The simultaneous heat and moisture transfer in building components is based on Künzel’s model 

[163] and, consequently, has the same limitations as that model, namely: 

o The hysteresis in the moisture storage function is disregarded [290] 

o The software does not account for the following processes: convection in heat and in 

water vapor transport; rising damp due to gravity, hydraulic flow due to pressure 

differences, electrokinetic, and osmosis in the transport of moisture in the liquid phase 
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o Dependency between salts and moisture transport in liquid phase is not considered 

o The interface between two capillary active building materials is considered as ideally 

conducting, when in fact there is normally a transfer resistance in this zone [114] 

o The enthalpy flow that results from the transport of moisture in the liquid phase caused 

by a temperature differential is ignored, e.g. low temperature rainwater does not cool to 

surface of the building element 

o The heat transfer coefficients are either constant or are determined using a simple 

equation that depends on the wind characteristics 

• The radiation is equally distributed in the components’ surfaces 

• The materials’ aging process is not considered, since the software does not take the changes that 

properties suffer throughout the course of time into account 

• The outdoor climate is not influenced by the building  

3.5. Models’ accuracy 

Many hygrothermal models of historic buildings in literature evaluate the model’s accuracy by visual 

comparison between the simulated and the measured values for each of the selected hygrothermal 

variables (e.g. [40,152]). Although this visual comparison is of key importance in the validation process, 

the additional use of statistical parameters gives the model’s developers a quantitative notion of how 

well the model simulates the behaviour of the real building.  

Other authors use statistical parameters to assist the validation process of whole-building models. For 

example, in addition to the visual comparison Ferreira et al. [111] used the annual average, the standard 

deviation and the minimum and maximum of the difference between the measured and simulated values 

to validate an hygrothermal model of a museum at Oporto. Pisello et al. [213] and Pernetti et al. [212] 

used the statistical parameters proposed by ASHRAE guideline 14:2002 for the validation process of 

thermal models [10], with the coefficient of determination also being used in the latter paper. Kramer et 

al. [160] used the mean square error, mean absolute error and goodness of fit to validate several 

hygrothermal models of historical buildings.  

These statistical parameters were structured in three levels (Table 3.5), where Xi,meas is the measured 

value of the hygrothermal parameter at the time period i, Xi,sim the simulated value of the hygrothermal 

parameter at the time period i, n the total number of points across the studied period of time (i.e. 8760 

since it corresponds to one year worth of hourly values) and X̅meas the average of the measured values of 

the hygrothermal parameter during the studied time period.  
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Table 3.5 – Accuracy parameters used to validate the models found in literature. 

Level Designation Equation Example 

1st 

Annual average �̅� =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 

[111] 
Standard deviation 𝜎 = √

∑ (𝑋𝑖 − �̅�)
2𝑛

𝑖=1
𝑛⁄  

Minimum and maximum 

2nd 

Coefficient of 

determination 
𝑅2 = 1 − [

∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)
2𝑛

𝑖=1

∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − �̅�𝑚𝑒𝑎𝑠)
2𝑛

𝑖=1

⁄ ] 

[212,213] 

Coefficient of 

variation of the 

root mean square 

error 

𝐶𝑉(𝑅𝑀𝑆𝐸) = [[∑(𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)
2

𝑛

𝑖=1

(𝑛 − 𝑝)⁄ ]

1/2

�̅�𝑚𝑒𝑎𝑠⁄ ]

× 100 

Normalized mean 

bias error 
𝑁𝑀𝐵𝐸 = [∑(𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)

𝑛

𝑖=1

((𝑛 − 𝑝) × �̅�𝑚𝑒𝑎𝑠)⁄ ] × 100 

3th 

Mean square error 𝑚𝑠𝑒 =∑(𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)
2

𝑛

𝑖=1

𝑛⁄  

[195,160] 
Mean absolute 

error 
𝑚𝑎𝑒 =∑|𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚|

𝑛

𝑖=1

𝑛⁄  

Goodness of fit 𝑓𝑖𝑡 = [1 −
𝑛𝑜𝑟𝑚(𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)

𝑛𝑜𝑟𝑚(𝑋𝑖,𝑚𝑒𝑎𝑠 − �̅�𝑚𝑒𝑎𝑠)
] × 100 

The ASHRAE guideline 14:2002 [10], the IPMVP protocol [80] and the FEMP guideline [107] limit 

some of these statistical parameters for the validation of whole-building thermal/hygrothermal models 

with hourly data (Table 3.6). These are just guideline values and the lower the CV(RMSE) and NMBE 

are, the higher the accuracy of the developed model will be. 

Table 3.6 – Limits of the statistical parameters used to validate models  

Accuracy 

parameter 
Values Source 

R2 0.75 IPMVP [80] 

CV(RMSE) 
20 % IPMVP [80] 

30 % ASHRAE 14 [10] & FEMP [107] 

NMBE 
5 % IPMVP [80] 

10 % ASHRAE 14 [10] & FEMP [107] 
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3.6. Making large-sized hygrothermal simulation studies more time-efficient 

The emission of greenhouse gases (GHGs) into the atmosphere caused by anthropogenic activities is 

greatly responsible for the changes the outdoor climate will suffer in the future [196]. Climate change 

is one of the key challenges that mankind faces nowadays, since it will greatly influence the 

environment, human health and the world’s economy [284].  

The European Union (EU) has a key contribution to the overall GHGs emissions since it is responsible 

for more than one third of the GHGs emitted by the OECD members, i.e. 5,600,000 tonnes of CO2-equiv 

per year [201]. This amount has been steadily decreasing over the past years, mostly due to the efforts 

made by the EU Parliament in promoting a more environmentally friendly society by proposing 

demanding goals, which aim to reduce the GHGs emissions of the European Union [88].  

In Europe, the building sector has a significant contribution to the amount of GHGs emitted. Evidently, 

that this is due to construction of buildings, but also due to the several activities that are performed 

within the buildings [101]. In the scope of the CPA08 classification, the GHGs emitted by the 

construction sector corresponded to more than 3.3x108 tonnes of CO2-equiv in 2017 (7 % of the total 

emissions), while the energy sector corresponded to more than 4.0x108 tonnes of CO2-equiv (9 % of the 

total emissions) and the private households corresponded to more than 8.3x108 tonnes of CO2-equiv (19 

% of the total emissions). If the goals of the Paris Agreement are to be achieved [206], then it is necessary 

to reduce, as much as possible, the portion of the GHGs emitted by the building sector. 

One way of reducing the GHGs emissions caused by the building sector is to design more efficient 

buildings using, among other means, simulation software like EnergyPlus [81] or WUFI®Plus [292]. 

This kind of software allows to thoroughly assess the performance of each building assembly in new 

buildings or the impact of each retrofit measure for existing buildings [11], which allows to choose the 

best course of action for each case-study while taking into account the goal of reducing the GHGs 

emissions [119]. On the scope of buildings, climate change will have a negative effect on their durability 

[18]. 

Studies that use this kind of software have the drawback of requiring a large number of simulations so 

that the analysis is thorough and accurate. This situation is even more time-consuming if the study is 

performed using the hygrothermal mode. The choice between using the thermal mode or the 

hygrothermal mode will depend on the goals of the study. For example, Huijbregts et al. [128] developed 

hygrothermal computational models of two museums located in The Netherlands and in Belgium to 

study how artefacts will fare in the future. The use of these hygrothermal models coupled with future 

weather files allowed to obtain the future indoor conditions. Since the deterioration processes that affect 

the artefacts are dependent on both temperature and relative humidity [178], it is only natural that the 

authors developed hygrothermal models. 

Several studies that use either thermal or hygrothermal models to conduct a thorough analysis of the 



68 

indoor climate can be found in literature. For example, Muñoz-González et al. [193] constructed a model 

of San Francisco de Asís church based on the results of the monitoring campaign that they installed to 

study retrofit opportunities for Spanish churches while taking into account the building’s energy 

consumption, the occupants’ thermal comfort and the preservation of the artefacts; and Kramer et al. 

[155] that analysed the energy impact of four typologies of buildings among 20 European cities using a 

model that they developed for the Hermitage Amsterdam museum [154,156]. Nonetheless, the time 

needed to perform these studies is very substantial, and it will greatly increase with complexity of the 

analysis [69].  

The validation of these models, though a time-consuming process, is a crucial task if their outputs are 

to be reliable [66]. A prior task that can also be greatly time-consuming is the insertion of the building 

geometry in the simulation software. Fortunately, WUFI®Plus has three different options to introduce 

the geometry, namely: 3-D editor, SketchUp import and gbXML Import. The 3-D editor consists in 

inputting the vertices of each surface manually and then uniting them to build each surface. This is a 

very time-consuming way of introducing the geometry and gives way to inconsistencies for more 

complex geometries. On the other hand, the SketchUp import and gbXML import are a much more 

efficient way of introducing the geometry, since the case-study is designed in software that are aimed 

for that purpose. The gbXML import can have a key importance for new project, since it allows the use 

of building geometries developed in Revit by performing the proper conversion [292]. 

There are several software that simulate the thermal or/and the moisture behaviour of buildings in 

literature [227,74]. The Annex 41 project of the International Energy Agency (IEA) [227,286] assessed 

the performance of many of these software in its CE0 and CE1 exercises, namely: BSim, Clim2000, 

Delphin, EnergyPlus, ESP-r + NPI, IDA ICE, HAMFitPlus, HAMLab, HAM-Tools, PowerDomus, 

SPARK, TRNSYS, WUFI®Plus, and Xam. Most of these are commercial software that are available to 

the public [74]. The overall results were quite good for all tested software, both in terms of thermal and 

moisture modelling, which showed their great capacity in simulating the thermal and moisture behaviour 

of buildings.  

Among the many previously mentioned software, the simulations reported in this subchapter were run 

in WUFI®Plus since it is one of the most known software where studies concerning the hygrothermal 

behaviour of buildings have been developed, but mainly due to the fact that it has been extensively 

validated over the years, it has been continuously subjected to updates and because it accounts for 

several of the behaviours that affect the thermal and moisture behaviour of buildings [291,294].  

This subchapter presents a methodology that aims to decrease, as much as possible, the time required to 

develop large sized hygrothermal simulation studies, thus making this type of studies more time-

efficient. Several techniques were used to minimize the time required for the first three stages of 

simulation studies, i.e. simulation setup, simulation run and results processing. In order to show the 
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benefits of using this methodology, three examples in which it is applied are presented. The obtained 

time savings using this methodology are reported, whilst comparing with a more traditional way of 

performing simulations. 

3.6.1. Methodology 

The aim of this subchapter is to develop a methodology that may considerably reduce the time necessary 

to perform large sized hygrothermal simulations, thus making them more viable. Hence, a methodology 

was developed based in several techniques that aim to reduce the required time at three levels, namely 

in the simulation setup, the simulation run and the results processing. The methodology will be 

thoroughly explained in the following subchapter, and its benefits will be shown in three examples. 

Simulation studies can be divided in four steps (Figure 3.4): 1) setting up the simulations inputs; 2) 

performing the simulations; 3) processing the obtained results in figures or tables; 4) assessing the results 

and writing conclusions. The duration of each of these steps will greatly depend on the aim of the 

performed study. The purpose of this procedure is to minimize the time taken to perform each of the 

first three stages: 

Step 1 (Simulation setup) – The time spent on this step can be reduced drastically by automatically 

inserting the inputs, for example, using an external software, such as MATLAB or OCTAVE. In 

WUFI®Plus, the users can save the project as a mwp file (traditional way of saving files in 

WUFI®Plus), or as a xml file. This latter type of file allows to the change its parameters, such as 

the thickness of a material or the location of the outdoor climate weather file, by resorting, for 

example, to a code that is developed for that purpose [64]. This step has a very substantial time 

saving effect on simulation studies that are subdivided in several computers. In addition, this step 

also decreases the possibility of human error, since the inputs are automatically introduced, thus 

eradicating monotonous tasks. 

Step 2 (Simulation run) – The time spent on this step can be reduced by performing the simulations 

resorting to batch mode, which allows to run the simulations sequentially, and by dividing the 

simulations through several computers. This measure can lead to the increase of the individual 

simulation time, if the computers are not modern, but it ultimately decreases the overall 

simulation time. For example, Coelho et al. [69] initially used a computer equipped with Intel(R) 

Core(TM) i5-8500 CPU @ 3.00 GHz and 16 GB of RAM to perform the hygrothermal 

simulations (henceforth known as PC#1), which took between 1h to 1h30 to run depending on 

the outdoor climate. Alternatively, they used a set of 20 computers equipped with Intel(R) 

Core(TM) i5-650 CPU @ 3.20 GHz and 4 GB of RAM (henceforth known as PC#2) to run the 

same simulations and took at least 3h. However, the overall simulation time, i.e. the sum of all 

the individual simulation time, is much lower in the 20 PC#2 than in the PC#1. Taking into 

account the previously mentioned simulations run time for PC#1, and, if it is run, for example, 
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20 simulations in PC#1, this would mean that the overall simulation time would take between 

20 to 30h depending on the outdoor climate. On the other hand, if the same number of 

simulations are run divided between the 20 PC#2, the overall simulation time is around 3h, 

which means a reduction of 85-90% of the overall simulation time. 

Step 3 (Result processing) – The time spent on this step can be substantially decreased if instead of 

using the traditional excel spreadsheets, a software that is aimed for numerical calculation is 

used, as for example MATLAB or OCTAVE. Evidently, that the users will spend time 

developing the code for the analysis that they aim to perform. However, if the code is developed 

taking into consideration that it might be adapted to assess a larger number of simulations or a 

large number of inputs in the future, the time it takes to make this change is compensated when 

compared to perform the same task in excel spreadsheets. This step gains importance with the 

growing complexity of the analysis and decreases the time taken to perform the same analysis 

for other sets of simulations very considerably when compared to excel spreadsheets.  

 

Figure 3.4 – Scheme of the four stages of simulation studies  

Alternatively to using a set of several computers as mentioned previously, it is possible to use a single 

computer, but it has to be a rather powerful one to compensate the performance of the individual 

computers. With WUFI®Plus, which has the drawback of only performing the simulations sequentially, 

the computer has to be powerful enough to, at least, perform each simulation in 9 mins in order to 

compensate the performance of the set of computers used by Coelho et al. [69]. However, these powerful 

computers are considerably more expensive than the typical office/personal computers (e.g. [183]).  

3.6.2. Application of the time-saving methodology 

In order to show the benefits of this methodology, three examples of its application are presented below. 

The first determines the variation of the energy consumption in the future for historic buildings that 

house artefacts. The second determines the effect that a set of retrofit measure will have on the artefacts’ 

conservation requirements while considering climate change. The last example, which is the most 

complex, presents the results of a detailed analysis of retrofit measures for historic buildings that house 

artefacts. 

3.6.2.1. Case-study 

The examples that are presented in this subchapter are based in a case-study, i.e. St. Cristóvão church, 

which is a 13th century church that is located in the vicinity of St. Jorge Castle in Lisbon (Figure 3.5). 

The church has thick mortared limestone walls, single-glazed windows and a ceramic tile roof, and does 
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not have any type of climate control system [250]. The church, which is naturally ventilated, is 

composed by several compartments with the largest ones being the nave, the mortuary and the sacristy. 

Overall, the church has a volume of 5250 m3, and the window per floor area ratio is 0.12.  

 

Figure 3.5 – Location (a) and façade (b) of St. Cristóvão church, Lisbon 

The church was subjected to a long-term monitoring campaign from November 2011 to August 2013 

that used several sensors to determine the quality of the indoor climate in terms of artefacts conservation 

[250,251]. Subsequentially, the recorded data was used in the validation process of computational 

models of the church [66,68]. The outdoor temperature and relative humidity in the vicinity of the church 

were monitored to build an outdoor weather file, which was then used to run the church models [66]. 

More information about the campaign or the model can be found elsewhere [250,66]. 

St. Cristóvão model was calibrated using four statistical indices, and the measured temperature (T) and 

water-vapour pressure (Pυ), namely: coefficient of determination (R2 – 0.99 for T and 0.97 for Pυ [66]), 

normalized mean bias error (NMBE – 2.7% for T and 3.4% for Pυ [66]), coefficient of variation of the 

root mean square error (CV(RMSE) – 3.2% for T and 4.4% for Pυ [66]), and goodness-of-fit (fit – 84.8% 

for T and 81.7% for Pυ [66]). Considering the values that exist in the models published in literature, the 

obtained values for St. Cristóvão model are quite good, which validates this model [66]. The results of 

this validation can be seen in Figure 4.13, which presents the measured and simulated indoor 

temperature and water-vapour pressure for St. Cristóvão.  

3.6.2.2. Variation of the energy consumption in historic buildings that house artefacts while considering 

climate change 

In order to assess the energy consumption in historic buildings that house artefacts for the two types of 

climate control strategies that exist in literature [69], a total of 665 simulations were carried out in 

WUFI®Plus. The study included five climates (Figure 3.6) – Lisbon and Seville (Mediterranean 

climates), Prague and Oslo (Humid continental climate) and London (Oceanic climate); two IPCC 

scenarios – A1B (mid radiative forcing [134]) and A2 (high radiative forcing [134]); and three climate 
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control strategies – Thomson [264] (constant-value methodology), and ASHRAE [5] and FCT-UNL 

[250] (dynamic methodologies). In sum, there were nine weather files for each IPCC scenario plus one 

reference weather file, which allowed the comparison of the evolution of the energy consumption in 

historic buildings that house artefacts between the two IPCC scenarios. 

Running all those simulations in just PC#1 would take more than 730 hours – i.e. 30 days of continuous 

simulation, which would make it impractical timewise. Instead of performing this study on just PC#1, 

the simulations were divided among 20 computers. This resulted in the decrease of the overall time spent 

on step 3) by 62 %, i.e. it decreased from 730 to 280 hours. Each simulation that is run in a PC#2 will 

take more time than if it was run in PC#1, but what matters for the purpose of the study is the overall 

time, which is substantially reduced as was previously reported. 

In addition, instead of taking ca. 9 hours in processing the obtained data (which will greatly depend on 

the analysis that is perform), the data was assessed and presented in the form of the three figures shown 

in Ref. [69] in 20 seconds. Evidently it takes time to develop the original code, but it is rather easy to 

adapt code in programs like MATLAB. Moreover, if the code is initially built with the notion that it can 

be used for other analysis in the future, it is much easier to perform the necessary adaptations and, 

consequently, the time required to perform these adaptations will be rather low.  

 

Figure 3.6 – Scheme of the developed simulations to assess the variability of the energy consumption in the future for five 

climates, two IPCC scenarios and for three climate control strategies (Thomson, ASHRAE and FCT-UNL). Analysis 

developed in chapter 6. 

Lastly, it is also important to point out the time that is spent performing similar analysis. For instance, 

whilst assessing and presenting the data obtained for Thomson and ASHRAE guideline, MATLAB takes 

ca 4.5 seconds for each figure [69], which means a total of less than 10 seconds. If the traditional excel 

spreadsheet methodology were to be developed for the same purpose it would take 3 hours for each 

analysis, i.e. 6 hours in total. This is mostly due to the fact that because of the large amount of data that 

is generated and assessed (each of the figures presented in Ref. [69] corresponds to more than 800,000 

values), it will be necessary to subdivide the data in several spreadsheets, so that excel can manage this 
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amount of information straightforwardly. This procedure will require the manual update of the 

individual excel spreadsheet whenever new data is added, which will considerably increase the time 

necessary to sort out the data for analysis. 

3.6.2.3. Performance assessment of four representative retrofit measures in terms of artefacts 

conservation while considering climate change 

Due to the alterations that climate change will have in the indoor climate of historic buildings that house 

artefacts [67], a set of four representative passive retrofit measures were tested to see if they could 

mitigate the changes in the artefacts’ conservations metrics (Figure 3.7) – interior insulation system 

(R1), external thermal plaster (R2), insulation of the ceilings (R3) and replacement of the windows (R4) 

[69]. The two most demanding climates of the set of climates presented in the previous example were 

tested – i.e. Seville (Mediterranean climate) and Oslo (Humid continental climate), since the indoor 

climate is dependent on the outdoor climate; two IPCC scenarios were selected – A1B (mid radiative 

forcing [134]) and A2 (high radiative forcing [134]); and two climate control strategies – Thomson [264] 

(a constant-value methodology), and FCT-UNL [250] (a dynamic methodology), as representative of 

the two typologies of standards/guidelines that exist in literature [226].  

For each of the retrofit measures, nine weather files for each IPCC scenario plus one reference weather 

file were run, i.e. 19 simulations. In addition, a case without any retrofit measure for the same weather 

files was run. This allowed to identify the changes that the application of the selected retrofit measures 

had in the indoor climate in terms of artefacts conservation metrics – i.e. biological, chemical and 

mechanical decay [178]. In total, 760 simulations were run in WUFI®Plus to perform this analysis, 

which would take ca 950 hours to run in PC#1, i.e. almost 40 days of continuous simulation. Instead, 

the simulations were subdivided in the set of 20 PC#2, which resulted in a decrease of 34 % of the 

simulation run time, since it dropped from 950 to 627 hours, which although considerable, is lower than 

the example presented in subsection 3.6.2.2. This is mostly due to the weather files, which will influence 

the simulation run time due to the additional hygrothermal processes prompted in colder climates [14]. 

In this example, the stage of the results processing is even more important because the performed 

analysis is more complex than the one described in subsection 3.6.2.2. While the numerical process in 

3.6.2.2 boils down to the sum of the individual HVAC system needs – i.e. heating, cooling, 

humidification and dehumidification, which depends on the indoor climate and the climate control 

strategy preconized values; the numerical processes included in this example are much more complex. 

First, because instead of just performing one analysis to determine the energy consumed in the future 

like in subsection 3.6.2.2, in this example the indoor climate is assessed using three different analysis 

that assess the risk of decay in artefacts – i.e. biological decay using the isopleth method [244], chemical 

decay using the equivalent lifetime concept [186,251] and mechanical decay in which the method varies 

according to the material [181,44,144,45]. Second, because in subsection 3.6.2.2 the mathematical 
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operation just adds values, while in this example the obtained values are compared against sets of values 

for each timestep, which takes much more time to perform. 

 

Figure 3.7 – Scheme of the developed simulations to assess the performance in terms of artefacts conservation of four types 

of retrofit measures for historic buildings that house artefacts in two climates and for two climate control strategies. Analysis 

developed in chapter 6. 

Instead of taking ca. 19 hours in processing the obtained data using the traditional methodology (ca 9.5 

hours for each climate), the data was assessed and presented in the form of the figures shown in Ref. 

[69] under 9 hours (ca 4.5 hours for each climate) using MATLAB. The benefits of using this type of 

software is more obvious when performing similar analysis in which the necessary adaptations will only 

take a few minutes to perform, whereas in the traditional methodology this could take up to several 

hours, depending on the complexity of the analysis. In addition, the use of MATLAB has the advantage 

of performing the work independently from the user, contrary to the traditional methodology in which 

the updates have to be performed manually. This means that while MATLAB is assessing data, the user 

can develop other tasks. 

3.6.2.4. Detailed analysis of a set of retrofit measures for historic buildings that house artefacts  

The third example corresponds to the thorough analysis of the application of passive retrofit measures 

in historic buildings that house artefacts while considering climate change [64]. The effect of each of 

these passive retrofit measures was assessed in terms of artefacts’ conservation metrics to see if they 

could mitigate the changes caused by climate change – i.e. interior insulation systems, external thermal 

plaster, insulation systems of the ceilings/roofs, and the replacement of the window system [64]. The 

study included five climates – Lisbon and Seville (Mediterranean climates), Prague and Oslo (Humid 

continental climate) and London (Oceanic climate); two of the newest IPCC scenarios were selected – 

RCP 4.5 (intermediate GHG emissions [63]) and RCP 8.5 (high GHG emissions [63]). The future indoor 

conditions were obtained using the model of St. Cristóvão church coupled with the developed RCP 

weather files for two moments in time, i.e. near future and far future [64]. The historical values work as 

a reference for the future weather files. 

Overall, 1350 simulations were run in WUFI®Plus to perform this analysis (Figure 3.8), which would 
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take ca 1485 hours to run in PC#1, i.e. 62 days of continuous simulation. Instead, the simulations were 

once again subdivided for the set of 20 PC#2, which resulted in a decrease of 62 % of the simulation 

run time, since it dropped from 1485 to 567 hours. The saved-time in data processing is similar with 

what was presented in subsection 3.6.2.3, since the analysis are similar in nature, i.e. the same three 

analysis to assess the risk of decay in artefacts are used to assess the performance of each retrofit 

measure. 

Another problem that gained emphasis due to the subdivision of the simulations among several 

computers was the time taken to setup the simulations to run. This procedure is normally performed 

manually, which takes a considerable amount of time to perform and it will depend on the number of 

simulations that are assigned to each computer. For instance, if each of the 20 PC#2 were assigned 20 

simulations to run, then the time spent to setup all the 400 simulations would be almost 7 hours. It took 

around 20 minutes to set each computer in Ref. [64] since this included the inputting of the necessary 

data for the model to run properly, as well as to check if the inputs were well introduced in the model.  

 

Figure 3.8 – Scheme of the developed simulations to assess the performance of four types of retrofit measures in historic 

buildings that house artefacts for five climates and two IPCC scenarios in the near future and far future in terms of artefacts 

conservation metrics. Analysis developed in chapter 7. 

In order to decrease the amount of time taken by this procedure, an original code that automatically sets 

the inputs in the WUFI model was written in XML language. The WUFI model is saved as a xml file, 

instead of the typical mwp file, and then it is changed using either MATLAB or Octave. This procedure 

allows to save a large amount of time when performing changes in existing simulations, and facilitates 

the process of creating new simulations considerably, which is fundamental for large sized hygrothermal 

simulation studies. Furthermore, this development decreases the probability of human error, since the 

software user no longer has to perform the same monotonous procedure for a large number of 

simulations. 

Instead of taking the 20 minutes to set each computer, the simulations were setup in 2.5 seconds. The 
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time it would take to setup the 400 simulations will decrease from ca 7 hours to ca 50 seconds. Overall, 

this means that the time it would take to setup the 1350 simulations manually would be ca 23 hours, 

since the XML code cuts this time to seconds, the simulations overall run, and setup time would drop 

62%, i.e. from 1542 to 584 hours. The larger the number of simulations included in the performed 

analysis is, the more effective becomes this time-saving procedure. 

In order to show the advantages of the methodology presented herein more straightforwardly, the time 

savings discussed throughout this section were summarized in Table 3.7. Based on the values presented 

in this table it is visible that setting up the simulations becomes negligible in terms of time consumption. 

A task that takes, at least, half a day to perform manually, only takes at most 3 minutes to perform using 

a software like MATLAB.  

The data processing becomes almost non-time consuming, although the extent of the time savings will 

depend on the analysis that has been performed. By replacing the traditional way of processing the data 

for a software like MATLAB the data processing in subsection 3.6.2.2 drops from taking 9 hours to 

complete to only ca. 20 seconds (i.e. almost a 100 % drop), but on the other hand, the duration of the 

data processing task in subsection 3.6.2.3 only decreases ca 53%. Nonetheless, the data processing in 

this type of software is independent once it starts, so the time it takes to perform this task can be used to 

develop other tasks. Finally, the simulation run time also decreases substantially, i.e. varying from 34 

to 62 %, but this decrease will greatly depend on the aims of the analysis, more specifically, in terms of 

outdoor climates (subsection 3.6.2.3). 

Table 3.7 – Time savings achieved using the developed methodology for the examples presented in subsection 3.6.2.2, 

3.6.2.3 and 3.6.2.4, respectively 

Example 1 2 3 

Number of simulations 665 760 1350 

Step 1 
Simulation setup 

duration 

Manually 11 h 13h 23 h 

MATLAB 1 min 2 min 3 min 

Time savings 99.8% 99.7% 99.8% 

Step 2 
Simulation run 

time 

PC#1 730 h 950 h 1485 h 

20 PC#2 280 h 627 h 567 h 

Time savings 61.6% 34.0% 61.8% 

Step 3 
Data assessment 

duration 

Excel 9 h 19 h 34 h 

MATLAB 20 s 9 h 17 h 

Time savings 99.9% 52.6% 51.1% 

Overall duration 

Traditional 750 h 982 h 1542 h 

New 280 h 636 h 584 h 

Time savings 63% 35% 62% 
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4. VALIDATION OF HYGROTHERMAL MODELS OF HISTORIC 

BUILDINGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been partly published in the following reference: G.B.A. Coelho, H.E. Silva, F.M.A. 

Henriques, Calibrated hygrothermal simulation models for historical buildings, Building and 

Environment. 142 (2018) 439–450. doi:10.1016/j.buildenv.2018.06.034.
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4.1. Introduction  

Historic buildings are a living representation of our past and it is our duty to ensure that future 

generations have access to their heritage. Nowadays a substantial number of historic buildings house 

collections. Consequently, certain levels of temperature and relative humidity must be guaranteed in 

these buildings so that the artefacts are kept safe and at the same time to ensure human comfort. It is 

important to bear in mind that most of these buildings were not designed for this purpose, therefore it 

can be difficult to guarantee such indoor conditions.  

In order to guarantee such indoor conditions, powerful mechanical systems have traditionally been used. 

However, nowadays these systems are continually questioned owing to their high energy expenditure, 

and consequent high financial and environmental costs. This change of approach has opened the way to 

other solutions (such as, passive rehabilitation techniques [234]) that can lead to energy reduction. 

However, the potential of the passive system is largely dependent on the outdoor conditions, as well as 

the building’s characteristics (e.g. wall assemblies) [234]. In addition, hygrothermal improvements of 

heritage buildings are not always possible without sacrificing authenticity [203]. At the same time it is 

also important to study strategies for climate control, which are based on energy savings but also take 

the local climate, collections or comfort needs into account [253]. 

The first step to promote the safety of the housed artefacts is to conduct a thorough monitoring of the 

building’s indoor conditions, over a sufficient period of time, in order to assess if the present conditions 

are suitable or not for the preservation of the objects [251,241]. Should the conditions not be adequate 

for the preservation of the artefacts, the necessary changes will have to be implemented to ensure a more 

suitable environment. 

However, one of the downsides of using the monitored climate, which usually does not cover more than 

one year, is the fact that it cannot take into account years with different climates, to evaluate future 

scenarios of climate changes and the impact of hygrothermal improvement measures. The use of 

simulation models is an important tool for the microclimatic analysis of cultural heritage, since it allows 

to test possible retrofits and/or different climate control strategies with a high level of confidence, as in 

[108], for example. Additionally, computer simulations are non-intrusive for occupants and buildings 

[298], which is important for historic buildings. 

The models must be validated against the building’s indoor conditions so that they can reliably simulate 

its hygrothermal behaviour [173,224,57,168]. The combined use of several statistical parameters and 

the use of more than one compared variable (e.g. temperature and water-vapour pressure) should lead 

to a more reliable model [195,160]. Poorly calibrated or uncalibrated models assume an even greater 

importance for historic buildings, since any measurement based on such models may lead to irreparable 

damage to the building [224]. The more robust the hygrothermal model, the closer simulation outputs 

will be to reality. 
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The thermal and hygrothermal models of historic buildings found in literature are used for several 

different types of analysis, which shows how valuable this type of research tool is. For example, 

Huijbregts et al. [128] modelled and validated rooms in two museums in order to assess how the climate 

change would affect the artefacts’ welfare. Wang et al. [281] developed a thermal model of the National 

Gallery of Edinburgh to study several low energy solutions for its renovation project. Kramer et al. [154] 

analysed the potential for energy saving of several setpoints strategies using a validated hygrothermal 

model of a museum, damage functions and an adaptive temperature guideline. Ferdyn-Grygierek et al. 

[110] modelled a Polish museum to evaluate the impact of several ventilation systems in its energy 

consumption. Sciurpi et al. [243] developed a thermal model of the “La Specola” museum to evaluate 

the strategies of replacing windows and the use of different solar shadings. Kramer et al. [155] developed 

a setpoint calculation algorithm that takes into account both the collection´s and the visitors’ 

requirements and used the algorithm to analyse the energy demand in museums.  

However, there are also models that are not validated against the indoor conditions, or their accuracy is 

only assessed by visual comparison between the simulated and measured values for each of the 

hygrothermal variables. The use of statistical parameters gives the model’s developers a quantitative 

notion of how well the model simulates the behaviour of the real building. Some authors use statistical 

parameters to assist the validation process of whole-building models. For example, Ferreira et al. [111] 

used the annual average, the standard deviation and the minimum and maximum of the difference 

between the measured and simulated values to validate a hygrothermal model of a museum at Oporto in 

addition to the visual comparison. Pisello et al. [213] and Pernetti et al. [212] used the statistical 

parameters proposed by ASHRAE guideline 14:2002 for the validation process of thermal models [10], 

with the coefficient of determination also being used in the latter paper. Mustafaraj et al. [195] used 

simultaneously the goodness of fit, mean absolute error, mean squared error and coefficient of 

determination to validate thermal models of an office in London. Kramer et al. [160] also used the mean 

square error, mean absolute error and goodness of fit to validate several hygrothermal models of historic 

buildings.  

Although whole-building hygrothermal models are valuable as a research tool, it is quite difficult to 

develop them for historic buildings due to the lack of information about the building materials, as well 

as the techniques that were used in the building, the ventilation rates, occupancy schedules and soil/slab 

interface temperature. Most often, only the building’s architecture and surface materials are known, and 

due to their heritage value it is difficult to conduct the necessary characterization tests.  

A simulation model of a 13th century church in Lisbon – St. Cristóvão church, was developed using the 

software WUFI® Plus [292] with the aim of establishing a methodology for the calibration and validation 

process of hygrothermal models, specifically for historic buildings, based on annual indoor conditions. 

Hence, the whole-year indoor conditions monitored in the church [250,251] were used to validate the 

model against the measured data. The hygrothermal accuracy of the simulations was assessed by 
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comparing the measured and simulated temperature and water-vapour pressure using four statistic 

indices, namely the coefficient of determination (R2), the coefficient of variation of the root mean square 

error (CVRMSE), the normalized mean bias error (NMBE), and the goodness of fit (fit).  

To overcome the usual difficulties in simulation studies, the following parameters were studied the 

influence of the outdoor climate by testing four different weather files for Lisbon; and the temperature 

of the interface between the soil and slab by testing six different methodologies for determining such 

temperature. To calibrate the model, a sensitivity analysis was carried out for three parameters – air 

change rate, solar heat gain coefficient of windows and short-wave radiation absorption coefficient, 

performing a total of 48 simulations. Finally, four simplifications of the validated St. Cristóvão church 

model were tested to reduce the simulation time while guaranteeing the accuracy of the model. 

4.2. Methodology 

4.2.1. Case study 

For the purposes of the current study, a hygrothermal model of St. Cristóvão church in Lisbon was 

developed. The church is a 13th century building, classified as a national monument and is located on 

the slopes of St. Jorge’s Castle in Lisbon, Portugal. The church is approximately 5250 m3 in volume and 

it is made up of a nave (ca. 286 m2), a funeral home to the south (ca. 93 m2), a sacristy to the north (ca. 

71 m2), two towers (ca. 9 m2 each) and an annex at the end of the nave (ca. 11 m2). A photo of the 

southern façade and the horizontal plan of the church can be seen in Figure 4.1 and in Annex G. The 

church is naturally ventilated and does not have a climate control system. 

The building has been widely studied by Silva and Henriques [250,251], who conducted a microclimatic 

monitoring of the church from November 2011 to August 2013 in which the temperature and relative 

humidity were recorded with 10 minutes intervals. A set of 17 thermocouples type T with an accuracy 

of ± 0.5 ºC and a probe RHT2nl of Delta T with an accuracy of ± 0.1 ºC and ± 2% RH was connected 

to a Delta T data logger to monitor the indoor climate of the main room. In addition, two data loggers 

HOBO U12-013 with an accuracy of ± 0.35 ºC and ± 2.5 % RH were used: the first one installed on the 

northern pulpit and the other on the northern tower to measure the outdoor conditions. Owing to 

technical issues, some of the thermocouples did not record data during the whole period, which in 

parallel with the differences between the types of sensors and the manufacturers of the data loggers 

justified the use of the data collected by the two HOBO, as reported in [250,251]. The location of the 

devices is shown in Figure 4.1.  

The recorded data can be seen in Figure 4.2 for 2012 in which the light coloured lines represent the 10-

minute records and the bold lines the 30-day running average to evaluate the seasonal trends. The 

analysis of the graphs allows to conclude that the interior climate follows the fluctuations of the exterior, 

although the seasonal cycles evidenced a certain damping and delay caused by the thermal inertia of the 

building. These indoor data were used to validate the simulation results. Since the relative humidity is a 
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variable that depends on the partial-pressure of water vapour and temperature, in this work the analysis 

of the hygrometric state of the air was made using water-vapour pressures. As this is a simulation study, 

this approach avoids the error replication in the calibration process and in attesting the accuracy of the 

models. A detailed analysis of the interior climate of the building can be seen elsewhere [250,251]. 

 

Figure 4.1 – Southern façade of St. Cristóvão church (a) and horizontal plan with reference sensor (b) 

During the studied period, St. Cristóvão church was only open to the public for religious celebrations 

for six days, from 17:00 to 19:30 and mass was held in the last hour and a half, and on Sundays from 

11:00 to 13:30 and mass was also held in the last hour and a half. It was considered that during the 

religious celebrations approximately 55 people were in the church and that during the hour before each 

mass approximately 5 people visited the church. The church was closed on Mondays.  

 

Figure 4.2 – Indoor and outdoor climate of St. Cristóvão church in 2012. The indoor data is recorded by the HOBO installed 

on the northern pulpit. The dashed lines correspond to the 10-minute recorded data and the bold lines to the seasonal cycle 

obtained from a 30-day running average. This data was recorded by the monitoring campaign described in [250,251] 

4.2.2. Simulation settings 

The hygrothermal model of St. Cristóvão church was developed in WUFI®Plus [292], a powerful 

hygrothermal simulation software based on the model developed by Künzel [163] that determines the 

indoor temperature and relative humidity for each zone of the model by taking into consideration the 

heat and moisture transfer that occurs through components, the gains/losses due to natural and/or 

mechanical ventilation and the gains/losses due to internal heat or moisture sources/sinks (people, lights 

a) b)  
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and equipment). WUFI®Plus has been validated over the years by many studies against experimental 

setups and other software [126,227,17] and has been used by many authors to build hygrothermal models 

of historic buildings (e.g. [18,39,125,87,152,162,217,111]). 

4.2.2.1. Geometry and envelope 

The geometry of the building was based on existing blueprints and, when needed, visits to the building 

to conduct in-situ surveys. The building geometry was designed in SketchUp and afterwards imported 

to WUFI®Plus using SketchUp-Import plugin. The geometry used in WUFI®Plus can be seen in Figure 

4.3. 

 

Figure 4.3 – WUFI®Plus developed model for St. Cristóvão church (Lisbon, Portugal) 

The church has mortared limestone walls with a total thickness of 90 cm, rendered on both sides (1.5 

cm each). Despite the impossibility of measuring the slab thickness accurately, a value of 0.2 m was 

adopted in accordance with the range usually found in other churches in Lisbon. The ceilings are made 

up of a doubled wood layer (2.0 cm thick each) with a 20 cm air gap in the middle, the roof is made with 

ceramic tiles and the doors are 5 cm thick oak. It was assumed that the church’s windows had a thermal 

transmittance (Uw) of 5.1 W/m2K, a frame factor (Ff) of 0.85 and an emissivity (E) of 0.80.  

The adjacent buildings were also taken into account in the simulations. The ratio of window area per 

floor area is ca 11.6 %. The building’s elements assemblies and U-value, as well as the corresponding 

basic and advanced properties of the materials can be seen in Table 4.1 and Figure 4.4. The building 

materials used to develop this model correspond to the WUFI®Plus database [292]. 

It is important to bear in mind that the church’s eight compartments, one for each zone, were simulated 

with free-fluctuation indoor conditions and that the attic’s climate was considered to be outdoor, due to 

the roof assembly.  



84 

Table 4.1 – Simulated building element assemblies and U-value, materials’ thicknesses and basic hygrothermal proprieties.  

Element Assembly 
Thick-

ness  
(e, m) 

Bulk 

density  
(ρ, kg/m3) 

Porosity 
(ε, kg/m3) 

Specific 

heat 

capacity, 

Dry 
(cp, J/kg.K) 

Thermal 

conductivi

ty, Dry 
(λ0, 

W/m.K) 

Water 

vapour 

diffusion 

resistance 

factor  
(μ, -) 

U-value 
(W/m2K) 

Walls 

Lime 

mortar 

[292] 

0.03 1600 0.30 850 0.70 7 

1.36 

Mortared-

limestone 

[292] 

0.84 
2122 

[236] 
0.13 850 1.76 [236] 140 

Lime 

mortar 

[292] 

0.03 1600 0.30 850 0.70 7 

Ceilings 

Old oak 

[292] 
0.02 740 0.35 1400 0.15 223 

1.25 
Air gap 

[292] 
0.20 1.3 - 1000 0.59 0.13 

Old oak 

[292] 
0.02 740 0.35 1400 0.15 223 

Roof 

Ceramic 

tile 

[292]  

0.02 1670 0.20 840 0.20 16 5.26 

Doors 
Old oak 

[292]  
0.05 740 0.35 1400 0.15 223 2.01 

Slab 
Limestone 

[292] 
0.20 

2400 

[235] 
0.13 850 2.3 [235] 140 3.89 

Clay (Soil) [292] - 1500 - 880 1.50 - - 

Windows Single-glazed window frames Uw  = 5.1 W/m2K [235] Ff = 0.85 E = 0.80 

4.2.2.2. Internal loads 

For human occupancy a metabolic rate of 1.3 met was considered in accordance with [262]. Since 1 met 

corresponds to 58.2 W/m2 and allowing 1.8 m2 for the surface corporal area of a male adult [4], a total 

heat gain of around 136 W was obtained. As the heat gain varies with gender, assuming an occupation 

equally divided between men and women and a reduction factor of 0.85 for the latter, an average heat 

gain of 126 W/person was obtained [6]. The total heat gain was divided into sensible and latent by 

applying a polynomial equation used by the software EnergyPlus [270], which uses total metabolic rate 

in W and temperature in ºC as inputs. From this equation 92 W of sensible heat (60 % by radiation and 

40 % by convection in accordance to [6]) and 34 W of latent heat were obtained for a temperature of 19 

ºC (the indoor annual average temperature). Since WUFI®Plus takes into account the latent heat as 

moisture generation, this parameter was obtained by dividing the latent heat in W by the water enthalpy 

evaporation (2257 J/g) in accordance with [156], thus obtaining a value of 54 g/h. 

The church lighting is essentially guaranteed by halogen and tungsten lamps. According to [262] an 

illuminance of 200 lux was considered and it was assumed that 50% of the illumination is guaranteed 
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by halogen lamps with a luminous efficacy of 20 lm/W and the remaining 50% by tungsten lamps with 

a luminous efficacy of 15 lm/W [51]. The resulting lighting power density was obtained by dividing the 

illuminance by the luminous efficacy, which results in a value of 11.7 W/m2 (30 % radiant + 70 % 

convective [262]). 

 

Figure 4.4 – Advanced hygrothermal proprieties of the simulated materials: a) moisture storage function; b) moisture-

dependent thermal conductivity; c) moisture-dependent resistance factor; and d) liquid transport coefficient [292] 
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4.2.3. Model calibration 

4.2.3.1. Outdoor climate 

The weather files used in building simulation play a major role in its hygrothermal performance. The 

use of a generic local weather file to simulate a certain building and afterwards testing its accuracy 

against the indoor measured conditions may result in bad correlations. Even if the outdoor data is 

obtained for the same time period, if either different sensors are used or the datalogger is not installed 

in the vicinity of the building, the results may be unsatisfactory. 

In order to obtain realistic results and to test the influence of weather files on the model accuracy, four 

weather files were used: the first two obtained from the EnergyPlus and WUFI®Plus weather databases, 

developed by the late National Institute of Engineering, Technology and Innovation (INETI) and Faculty 

of Engineering-University of Porto (FEUP) respectively; a third file was generated based on air 

temperature and water-vapour pressure, atmospheric pressure, wind direction and velocity, rain and 

global radiation data provided by the Portuguese Institute for Sea and Atmosphere (IPMA) for 2012 

recorded by the Geofisico weather station (located 1.4 km from the church) and the fourth weather file 

was generated using the outdoor air temperature and water-vapour pressure recorded on the northern 

tower of the church, and using the remaining parameters from the Geofisico weather station. 

The last two weather files were generated using the EnergyPlus Weather Converter (a complete 

description of this application and examples of application can be found in [271]), which is a useful tool 

that allows to generate weather files that may be used in some simulation software, namely WUFI®Plus. 

The annual temperature and water-vapour pressure variations for each of these four weather files are 

presented in Figure 4.5, showing the variability between the four weather files.  

According to Klöppen-Geiger classification, Lisbon has a Mediterranean climate of class Csa, which 

stands for a temperate climate with rainy winters and hot summers [153]. This means that the outdoor 

temperature does not reach values below the freezing point, has a rather high annual temperature average 

(reaching highest values in summer) and it has a considerable precipitation, mainly during winter [65].  

 
Figure 4.5 – Annual outdoor temperature (a) and water-vapour pressure (b) variation for the four weather files – INETI, 

FEUP, Geofísico and St. Cristóvão’s. The seasonal cycles obtained from a 30-day running average for both variables is also 

shown in bold lines 
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4.2.3.2. Soil temperature 

The soil/slab interface temperature is an important input for hygrothermal simulations since the soil 

behaves like a temperature buffer due to its properties. However, this interface temperature is not easily 

monitored due to its location, especially in historic buildings, and therefore it is necessary to find 

alternative ways to obtain it.  

Although the soil/slab interface temperature is a key input in whole-building hygrothermal simulations, 

it is not very often mentioned in the models’ description. WUFI®Plus cannot determine this interface 

temperature. Therefore, the model was also developed in EnergyPlus [81], which can determine the 

interface temperature by the Slab pre-processor (through Detailed Ground Heat Transfer field) or 

Ground Domain (through one of the three available models to determine the undisturbed ground 

temperature). The interface temperature can also be rudimentarily determined by subtracting 2 ºC from 

the indoor monthly average [267]. The interface temperature was determined by the Slab pre-processor 

of EnergyPlus using the Detailed Ground Heat Transfer field, and the Ground Domain of EnergyPlus, 

with the undisturbed ground temperature being calculated by the Finite Difference, Kusuda-Achenbach 

and Xing models. A fully description of these models can be found in Ref. [164,170,296,268,297,270].  

The other option is to use a sine curve to simulate the soil/slab interface temperature by providing the 

mean annual temperature and its amplitude, as well as the day with the highest temperature. This option 

is better since the results can be fitted to the real case. However, since the model is tailored to these 

conditions it cannot be applied to other outdoor conditions, therefore it does not contribute to the general 

calibration. Additionally, the soil/slab interface temperature was also obtained using a sine curve and 

the simplification of subtracting 2 ºC from the indoor temperature. The output variables were the 

monthly average temperature, which is shown in Figure 4.6 for the four models of EnergyPlus, the sine 

curve with the annual average of 17.7 ºC (± 3.4 ºC) – highest temperature on September 15 – and the 

simplification of subtracting 2 ºC from the indoor temperature.  

 

Figure 4.6 – Annual soil and slab interface temperature variation determined by the Finite Difference, Kusuda-Achenbach 

and Xing models, the Detailed Ground Heat Transfer in EnergyPlus, the sine curve and the simplification of subtracting 2 ºC 

from the indoor temperature 
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4.2.3.3. Input uncertainties 

The construction of hygrothermal models of historic buildings has several gaps, and consequently 

various assumptions are needed. This problem increases when buildings are classified, since their 

preservation requirements and their opening to the public often makes it difficult to carry out destructive 

tests and the accurate determination of their characteristics. Some hygrothermal characteristics can be 

obtained locally or from literature, as presented in 4.2.2.1. However, sometimes doubts about the 

parameters that can influence the accuracy of the model cannot be clarified. 

A sensitivity study can be a good solution to determine the parameters that best contribute to the quality 

of the model, thus allowing to optimize their numeric values. In this particular case, there were clear 

doubts about the church air change rate (ACH, h-1), short-wave radiation absorption coefficient (α,-) of 

exterior walls and the solar heat gain coefficient of the windows (SHGC, -). 

Ventilation 

Some values of ACH for churches can be found in literature, namely: a mean ACH of 0.13 for a masonry 

basilica in Tarnow (Poland) [191,192]; an ACH between 0.08 and 0.12 for churches with stone vaults, 

and between 0.5 and 0.75 for churches with wooden vaults in the Netherlands [240]; an ACH of 0.17 

for a brick structure church in Cracow [233]; and an ACH of 0.13 for a church with no heating system 

in Italy [35]. 

Although CO2 measurements were not included in the church initial monitoring campaign, 

measurements for one week in September 2016 were carried out to determine the church’s ACH. The 

ACH was estimated through the release and subsequent monitoring of the concentration values of the 

CO2 generated by visitors, and fitting a decay curve to the gas concentration after the visitors leave, as 

reported in [240,191,192,156]. The CO2 was measured by a low-cost and open-source data logger 

equipped with a SenseAir K-30 10,000 ppm sensor constructed for that purpose in accordance with the 

model presented and tested in Ref. [1]. The ACH was obtained by applying the equation [27]:  

𝐴𝐶𝐻 = −𝑙𝑛 (
(𝑐𝑖𝑛𝑡,𝑡 − 𝑐𝑒𝑥𝑡)

(𝑐𝑖𝑛𝑡,0 − 𝑐𝑒𝑥𝑡)
) ×

1

𝑡
 4.1 

where ACH is the air change per hour (h-1), cint,t the internal gas concentration at the end of the slope 

(ppm), cint,0 the internal gas concentration at the beginning of the slope (ppm), cext  the external gas 

concentration (ppm) and t the time (s). Since only the indoor CO2 concentration was monitored, the 

outdoor concentration was calculated from the indoor data, adopting the concentration measured when 

the indoor concentration reaches a steady state after people had left, with changes not higher than 1% 

for at least 1 h, following a similar approach used in [156]. 

The CO2 concentration and the estimated ACH for the period immediately after the religious services 

and for a second period after the closing of doors and windows are provided in Figure 4.7. As expected, 
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higher values of ACH were obtained while the doors and windows were open, resulting in a mean value 

of 0.70. For the closed period, a mean ACH of 0.28 was obtained, resulting in a global weighted average 

of 0.32 by considering the period when the church was open and closed per week. 

As well as the above estimated ACH, the authors also decided to carry out a sensitivity study to obtain 

the value that allowed the best calibration. The short-analysed period and the low differences of the CO2 

concentrations also contributed to this decision. Thus, it was decided to test the ACH ranging from 0.1 

to 0.5, as shown in Figure 4.8. 

 
Figure 4.7 – CO2 concentration and ACH estimation for St. Cristóvão church for 3 days in September 2016: red dashed lines 

correspond to the ACH when people leave the church but the doors and windows remain open; green dashed lines 

corresponds to the period after closing the doors and windows 

Short-wave radiation absorption coefficient 

The materials used in the building envelope absorb the incident solar radiation as a function of the short-

wave radiation absorption coefficient that is directly related to the colour of the surfaces. This coefficient 

changes the way solar radiation is absorbed by the envelope and later propagated by conduction to the 

interior, having an influence on the interior hygrothermal balance [265]. 

Its choice may seem obvious as it is directly related to the colour, but old buildings sometimes have old 

paintings and plaster pathologies that make it difficult to choose an appropriate value. The church under 

study is mostly characterized by a light colour, but it presents various details in stone and defects in the 

plaster. Thus, the inclusion of this parameter in the sensitivity study was considered to obtain an average 

absorption coefficient that returns results closer to those measured, adopting a wide range from 0.2 

(white paint) to 0.8 (dark stone) [204,36], as shown in Figure 4.8. 

Solar heat gain coefficient 

The solar heat gain coefficient is the quotient between the incident solar radiation and the solar radiation 

that actually crosses the window. This coefficient plays an important role in the control of the indoor 

climate of buildings, in the definition of their energy needs and can be estimated from tabulated values 

[6] or according to calculation methodologies [100,98,99]. 
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The installed windows are single glazed and have wooden frames, usually characterised by SHGC of 

around 0.75. However, its definition is not always easy to obtain, given the difficulty of testing buildings 

in service, of getting access to all windows or because of the possible presence of randomly activated 

shading elements. Since in the present case it was not possible to obtain a reliable estimate for an average 

value, the authors decided to carry out a sensitivity study covering a range from 0.2 to 0.8 in order to 

obtain the most appropriate value through an equation of optimization. 

Afterwards, a complete sensitivity study was performed to account for the most appropriate values of 

the three parameters in discussion, performing a total of 48 simulations, as can be seen in Figure 4.8. 

 

Figure 4.8 – Developed sensitivity analysis for St. Cristóvão church based on the ACH, α and SHGC 

4.2.3.4. Accuracy assessment 

The accuracy of the developed hygrothermal model was attested by using four statistical indices: 

coefficient of determination (R2), normalized mean bias error (NMBE), coefficient of variation of the 

root mean square error (CVRMSE), and goodness-of-fit (fit) – for two hygrothermal variables – 

temperature (T, ºC) and water-vapour pressure (Pυ, Pa). The use of these four coefficients was based on 

the fact that calculating only one of them can produce an unreliable model. However, if the four 

parameters for the two variables are simultaneously considered, the obtained model will be much more 

robust. The R2, which describes the correlation between the measured and simulated values, was 

calculated using the following equation:  

𝑅2 =

(

 
∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅ ) ∙ (𝑋𝑖,𝑠𝑖𝑚 − 𝑋𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

√∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅ )
2
∙𝑁

𝑖=1 ∑ (𝑋𝑖,𝑠𝑖𝑚 − 𝑋𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1 )

 

2

 4.2 

The NMBE expresses the general normalized mean error and shows the influence of smaller errors [10]: 

𝑁𝑀𝐵𝐸 = 100 ∙
∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)
𝑁
𝑖=1

𝑋𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅ ∙ (𝑛 − 1)
 4.3 

The CVRMSE demonstrates how the model fits the measured data, overcoming possible compensation 

mistakes of the NMBE and it shows the influence of the higher errors [10]: 



91 

𝐶𝑉𝑅𝑀𝑆𝐸 = 100 ∙

√∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)
2𝑁

𝑖=1

(𝑛 − 1)

𝑋𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅
 

4.4 

The fit, which correlates the two data series and assesses their fluctuation, appears as a robust criterion 

to evaluate the level of fluctuation and, because it is presented in %, facilitates the comparison between 

the series [195]: 

𝑓𝑖𝑡 =

(

 1 −
√∑ (𝑋𝑖,𝑚𝑒𝑎𝑠 − 𝑋𝑖,𝑠𝑖𝑚)

2𝑁
𝑖=1

√∑ (𝑋𝑖,𝑠𝑖𝑚 − 𝑋𝑖,𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑖=1 )

 ∙ 100 4.5 

where Xi,meas is the measured value of the hygrothermal parameter at the time period i, Xi,sim the simulated 

value of the hygrothermal parameter at the time period i, n the total number of points across the studied 

period of time (i.e. 8760 since it corresponds to one year worth of hourly values) and X̅meas the average 

of the measured values of the hygrothermal parameter during the studied time period.  

The model is more robust when the R2 and Fit are higher, and CVRMSE and NMBE are lower. In this 

study, the model was considered validated if the R2 is higher than 0.75 [80], the NMBE and CVRME 

are lower than 5 % and 20 %, respectively [80] and the fit is higher than 80% for each variable as 

considered in [160]. 

4.3. Results and discussion  

In order to develop the first three studies (subchapter 4.3.1, 4.3.2 and 4.3.3) a start off-model was 

designed with a ACH of 0.20 h-1 (in all eight compartments), a short-wave radiation absorption 

coefficient for the exterior walls of 0.60 and a solar heat gain coefficient for the windows of 0.60. The 

soil/slab interface temperature was obtained using the simplification of subtracting 2 ºC to the indoor 

temperature [267]. The rest of the adopted parameters are described in 4.2.2.  

4.3.1. Outdoor climate 

Four different Lisbon weather files were simulated in order to demonstrate the importance of measuring 

the outdoor hygrothermal conditions as close as possible to the building in question. The obtained values 

for the accuracy coefficients demonstrate the importance of using the most appropriate outdoor weather 

file when validating a whole-building model.  

The obtained values demonstrate that the use of Typical Meteorological Year (TMY) or Test Reference 

Year (TRY) weather files (such as INETI and FEUP) may not be suitable to validate whole-buildings 

models against measured conditions. For example, while comparing the temperature goodness of fit of 

the INETI and FEUP simulations (ca 56.5 % and 48.8 %, respectively) against St. Cristóvão simulation, 

the importance of the outdoor weather file becomes obvious, since St. Cristóvão attains a substantially 

higher goodness of fit than both simulations – 77.7 %, as can be seen in Figure 4.9c. This also occurs 
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for the water-vapour pressure (St. Cristóvão simulation attains a higher goodness of fit – while St. 

Cristóvão’s attains 75.7 %, INETI attains 40.1 % and FEUP attains 33.5 %).  

 

Figure 4.9 – Impact of the weather file on the model’s accuracy: a) measured indoor temperature and model results for the 

FEUP and the St. Cristóvão’s simulations; b) water-vapour pressure for the same conditions as a); and c) temperature and 

water-vapour pressure goodness of fit for the four weather files 

What is even more interesting is the comparison between the simulation values of the Geofísico and the 

St. Cristóvão´s weather files since they correspond to the same year (both weather files data were 

registered in 2012) and also because the Geofísico station is only 1.4 km from the church. Although, the 

Geofísico simulation attains good values for both temperature and water-vapour pressure (ca 71.8 and 

71.5 %, respectively), the St. Cristóvão’s simulation attains higher goodness of fit for both the 

temperature and water-vapour pressure (77.7 and 75.7 %, respectively). 

The St. Cristóvão’s simulation attains lower CVRMSE and NMBE for both temperature and water-

vapour pressure than the limits imposed by the ASHRAE guideline [10]. Even the more stringent values 

of the IPMVP [80] are assured by this simulation as summarized in Table 4.2. The attained coefficient 

of determination, for both temperature and water-vapour pressure are very near to the maximum. 

However, the validation process must be carried out since the goodness of fit still has not reached the 

same range of values as those obtained by Kramer et al. [160] for both variables. Henceforward, the St. 

Cristóvão’s weather file is used as the outdoor weather file for the next steps. In Figure 4.9a) and b) the 

simulation results for the FEUP and the St. Cristóvão’s simulations and the measured data were 

presented, both for temperature and for water-vapour pressure. 
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4.3.2. Soil/slab interface temperature 

Although the model using the St. Cristóvão’s weather file already has acceptable values, its calibration 

can be improved. The next step is to study the interface temperature between the soil and the slab’s 

inferior surface. This was carried out by running the same model in WUFI®Plus for six different interface 

temperatures. The values obtained show the substantial importance of the soil/slab interface temperature 

on the indoor temperature and, consequently, the importance of obtaining this variable appropriately. 

On the other hand, the interface temperature does not cause a substantial variance in terms of indoor 

water-vapour pressure, therefore, this hygrothermal variable is disregarded in this subchapter.  

Table 4.2 shows the accuracy parameters for the six simulated soil/slab interface temperatures. Figure 

4.10 presents the measured indoor temperature, as well as the results for the interface temperature with 

the poorest model calibration (Finite Difference) and the best one (Detailed ground heat transfer) (a), 

and the temperature goodness of fit for the six soil/slab interface models (b). It can be seen that the first 

three EnergyPlus models worsen the accuracy values (e.g. the finite difference temperature causes the 

temperature goodness of fit to decrease from 77.5 to 72.6 %). However, it can also be seen that detailed 

ground heat transfer model achieves better accuracy values than the simplification of considering that 

the interface temperature is the indoor temperature minus 2 ºC (the CVRMSE decreases from 4.7 to 2.9 

%, the NMBE decreases from 4.1 to 2.5 %, and the goodness of fit increases from 77.7 to 86.0 %).  

 

Figure 4.10 – Impact of the interface soil/slab temperature: a) measured indoor temperature and the simulated indoor 

temperature obtained using the detailed ground heat transfer and the finite differences, and b) temperature goodness of fit  

Additionally, a fitted sine curve to the model with the St. Cristóvão’s weather file was also simulated. 

It can be seen that accuracy values are even better than the detailed ground heat transfer simulation, the 

goodness of fit reaches ca 91 %. However, the use of these curves means that the model cannot be used 

in other locations, for example as developed by Kramer et. al in [155], since it is fitted to that climate 

file. Here, the interface temperature obtained by the detailed ground heat transfer model was adopted 

instead of the sine curve. 

4.3.3. Sensitivity analysis  

Although the range of values within which each parameter varies is known, its exact value is not. Hence, 
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a sensitivity analysis was carried out to optimize the model accuracy. The selected factors were the ACH, 

α and SHGC. The simulated values for each of these three parameters were chosen according to the type 

of building and include 48 simulations.  

The goodness of fit coefficient was used for the model accuracy optimization since it proved to be the 

most demanding parameter. Figure 4.11 presents the temperature goodness of fit according to the ACH, 

α and SHGC, and Figure 4.12 presents the water-vapour pressure of goodness of fit according to the 

ACH. Based on this analysis it is possible to conclude that temperature is affected by the three 

parameters, while water-vapour pressure is only affected significantly by the ACH. 

 
Figure 4.11 – Values of goodness of fit for temperature according to the ACH, α and SHGC 

 
Figure 4.12 – Values of goodness of fit for the water-vapour pressure according to the ACH 

Based on the sensitivity analysis results and with the aim of optimizing the model accuracy, the 

following equations were determined in order to estimate the temperature and water-vapour goodness 

of fit, respectively. The equations obtained adequately describe the temperature and water-vapour 

pressure goodness of fit, since the obtained R2 is respectively 0.99 and 1.00. 

𝑓𝑖𝑡(𝑇) = [(−77.20 ∙ 𝐴𝐶𝐻 + 58.85) ∙ 𝑆𝐻𝐺𝐶2 + (65.43 ∙ 𝐴𝐶𝐻 − 58.06) ∙ 𝑆𝐻𝐺𝐶 +
(−20.63 ∙ 𝐴𝐶𝐻2 + 19.60 ∙ 𝐴𝐶𝐻 − 12.54)] ∙ 𝛼2 + [(68.90 ∙ 𝐴𝐶𝐻 − 58.23) ∙ 𝑆𝐻𝐺𝐶2 +
(−64.88 ∙ 𝐴𝐶𝐻2 + 8.45 ∙ 𝐴𝐶𝐻 + 17.95) ∙ 𝑆𝐻𝐺𝐶 + (23.75 ∙ 𝐴𝐶𝐻2 − 29.95 ∙ 𝐴𝐶𝐻 +

30.14)] ∙ 𝛼 + (−10.93 ∙ 𝐴𝐶𝐻 + 17.42) ∙ 𝑆𝐻𝐺𝐶+72.75 

R2=0.99 4.6 

𝑓𝑖𝑡(𝑃𝑣) = −171.17 ∙ 𝐴𝐶𝐻
2 + 146.71 ∙ 𝐴𝐶𝐻 + 51.47 R2=1.00 4.7 

The average of the temperature and water-vapour pressure goodness of fit (fit(T,Pv)) was used as the 

optimization function, thus allowing us to determine the ACH, α and SHGC that correspond to the 

highest statistical values. In addition, the individual goodness of fit for the temperature and water-vapour 

pressure was limited to a minimum value of 80 %. Because the fit(Pv) only depends on ACH values, a 
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range between 0.30 and 0.50 was directly obtained by imposing the 80 % limit to equation 4.7. The α-

value was limited between 0.20 and 0.80 since equation 4.6 is only validated for this range, and the 

SHGC was limited between 0.20 and 0.75 (the presence of SHGC-values higher than 0.75 is not 

plausible). The optimization criteria that return the maximum f(x) can be seen in the following equation: 

∫ (𝑥1, 𝑥2, 𝑥3) ≥ ∫ (𝑥) 

4.8 0.30 ≤ 𝑥1 ≤ 0.50 

0.20 ≤ 𝑥2 ≤ 0.80 

0.20 ≤ 𝑥3 ≤ 0.75 

where x1, x2 and x3 correspond to the ACH, α and SHGC, respectively and f(x) is the function fit(T,Pv).  

The solution of the optimization equation allows a value of 0.40 for the ACH, 0.40 for the α and 0.75 

for the SHGC. The obtained parameters are physically admissible. An ACH of 0.40 does not differ 

significantly from the estimated value (0.32 h-1) and from the values presented in literature (see 4.2.3.3). 

An α of 0.40 is acceptable for a light wall with some defects or some stone details and a SHGC of 0.75 

is common in single-glazed window. 

Figure 4.13 presents the annual variation of the indoor temperature and water-vapour pressure for both 

the simulated and measured values of the optimized model, where it can be seen that the simulated 

values acceptably overlay the measured ones.  

 

Figure 4.13 – Annual simulated and measured indoor temperature (a) and water-vapour pressure (b) variations for the 

optimized St. Cristóvão’s model 

In Table 4.2 the four statistic indices are summarized for the analysis of the impact of weather files (see 

subchapter 4.3.1), for the interface soil/slab temperature (see subchapter 4.3.2) and for the best accuracy 

model obtained from the sensitivity analysis (see subchapter 4.3.3).  
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Table 4.2 – Accuracy parameters for the four simulated weather files, the six simulated soil/slab interface temperature and the 

optimized St. Cristóvão model 

Analysis 

R2 CV(RMSE) NMBE Goodness 

[-] [%] [%] of fit [%] 

T Pv T Pv T Pv T Pv T,Pv 

Weather 

files 

INETI 0.95 0.65 9.1 14.3 7.9 11.2 56.5 40.1 48.3 

FEUP 0.95 0.59 10.7 15.9 9.5 12.9 48.8 33.5 41.2 

Geofísico 0.98 0.93 5.9 6.8 5.1 5.3 71.8 71.5 71.6 

St. 

Cristóvão 
0.99 0.94 4.7 5.8 4.1 4.3 77.7 75.7 76.7 

Soil/slab 

Interface 

Temp. 

Tint-2ºC 0.99 0.94 4.7 5.8 4.1 4.3 77.7 75.7 76.7 

Finite 

Difference 
0.99 0.94 5.9 5.8 4.8 4.4 71.8 75.6 73.7 

Kusuda-

Achenbach 
0.99 0.94 5.7 5.8 4.7 4.4 72.8 75.5 74.1 

Xing 0.99 0.94 5.9 5.8 4.8 4.4 71.9 75.6 73.7 

Det. Ground 

Heat Transf. 
0.99 0.94 2.9 5.7 2.5 4.2 86.0 76.1 81.0 

Sine curve 0.99 0.94 1.9 5.7 1.6 4.3 91.0 76.1 83.6 

Optimized model 0.99 0.97 3.2 4.4 2.7 3.4 84.8 81.7 83.2 

4.3.4. Model simplifications 

A whole-building validated hygrothermal model is a powerful asset for the study of such a building 

since it allows a thorough analysis of most of the variables that influence the building’s hygrothermal 

behaviour. However, the time that it takes to run a hygrothermal simulation is high and increases 

according to the complexity of the building geometry. Hence, the importance of studying model 

simplifications in hygrothermal simulation. 

Nevertheless, the model’s simplifications usually cause losses in the model’s accuracy, which can be 

quite significant, and therefore these simplifications must be carefully chosen. The simplifications to the 

present model considered the time it took to complete each simulation and the losses of accuracy they 

caused. Secondly, a simplified model of the church was developed using only suitable simplifications, 

thus reducing the simulation time while maintaining the model’s accuracy.  

The following four simplifications were analysed while keeping the floor area, volume and height of the 

original model. These four simplifications are independently analysed, only the simplified model was 

subjected to the selected simplifications simultaneously. 

Simplification 1 – Instead of considering two individual floors for the funeral home and sacristy 

(h1st= 3.5 m and h2nd= 3.0 m), only one floor with the same height was considered (htotal =6.5 m)  

Simplification 2 – The windows were grouped together for each floor and according to their 
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orientation 

Simplification 3 – The indoor walls that separate the balconies and the nave were discarded  

Simplification 4 – The main door was moved forward so that it would coincide with the rest of the 

façade 

Table 4.3 shows the time it takes to run the hygrothermal simulation and the goodness of fit for both the 

temperature and water-vapour pressure for the four simplifications and the final simplified model. The 

values of validated model subchapter 4.3.3 (i.e. optimized model) are also shown as a reference to see 

if a simplification is appropriate.  

Table 4.3 – Simulation time (minutes), temperature and water-vapour pressure goodness of fit for optimized model, the four 

simplifications and the final simplified model 

Simulation 

Hygrothermal mode 

Time 

[min] 
fit(T) [%] 

𝑓𝑖𝑡

𝑇𝑖𝑚𝑒
 

fit(Pv) 

[%] 

𝑓𝑖𝑡

𝑇𝑖𝑚𝑒
 

Optimized model 60 84.8 1.4 81.7 1.4 

Simpl. 1 51 83.5 1.6 81.9 1.6 

Simpl. 2 61 83.4 1.4 81.9 1.3 

Simpl. 3 66 82.3 1.3 81.9 1.2 

Simpl. 4 60 85.1 1.4 81.8 1.4 

Simplified model 44 81.2 1.9 81.7 1.9 

This table shows that the first and the fourth simplifications are adequate for the St. Cristóvão’s model. 

However, the other two simplifications are not suitable since their fit/time ratio is lower than those of 

the optimized model. Therefore, only the first and forth simplifications were adopted in the simplified 

model. In order to facilitate the replicability of the model, the compartments were transformed into 

rectangles while keeping the floor area, volume and height of the original model.  

The adopted simplifications had both negative (the fit(T) and fit(Pv) decreased) and positive 

consequences (the simulation time decreased). However, it is the author belief that the positive 

consequences outweigh the negative ones (both fit/time ratios of the simplified model are higher than 

the optimized model ratios) and since the accuracy parameters are still in the same range of values as 

the other models validated in the literature (see 4.2.3.4), the developed simplified model is also viable 

to study the hygrothermal behaviour of St. Cristóvão church. For example, if the sensitivity analysis 

developed in 4.3.3 were to be repeated using the simplified model it would take almost 13 hours less 

than using the standard-case (the sensitivity analysis takes ca. 48 hours to be completed with the 

standard-case and ca. 35 hours with the simplified model).  

Figure 4.14 presents the annual variation of the indoor temperature and water-vapour pressure measured 

in the church and the results obtained from the best accurate model (optimized model) and after the 
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simplifications (simplified model).  

 

Figure 4.14 – Annual measured indoor climate and the results for the best accuracy model (optimized model) and after its 

simplification (simplified model): a) temperature; b) water-vapour pressure 

4.4. Conclusions 

A hygrothermal model of St. Cristóvão church was developed using WUFI®Plus and validated against 

measured data using four different statistic indices (R2, CVRMSE, NMBE and Goodness of fit) for two 

hygrothermal variables (T and Pv) and its values were then compared with the limits present in literature 

and the existing standards/guidelines. The influence of weather files and the interface slab/soil 

temperature was analysed, and a sensitivity study was carried out to optimise the model accuracy for 

three undetermined variables – ACH, α and SHGC. 

The developed analysis of the influence of the outdoor conditions in the accuracy of the model led to 

the conclusion that the use of weather files for the same city and even files of which the data was 

monitored during the same year may not lead to the best results. In the developed simulations the best 

fit was attained by the weather file developed with the temperature and water-vapour pressure obtained 

by the monitoring campaign (i.e. the St. Cristóvão’s weather file, which attained a fit(T) of 77.7 % and 

fit(Pv) of 75.7 %). Using the weather file provided by IPMA for the same year and recorded by a 

meteorological station only 1.4 km from the church, a fit(T) of 71.8 % and fit(Pv) of 71.5 % were 

obtained, which, although they are lower values than St. Cristóvão’s values, already allow the validation 

of the model. On the other hand, the use of the weather files for Lisbon obtained from the WUFI and 

EnergyPlus database attain much lower fit(T) and fit(Pv) than the St. Cristóvão’s values: 48.8% and 33.5 

%, and 56.5 % and 40.1 %, respectively. 

The soil and slab interface temperature was also analysed although it is a parameter usually neglected 

or otherwise not mentioned in the description of many of the thermal and hygrothermal models found 

in literature. The simulations that were carried out showed the key influence that this parameter has on 

the hygrothermal behaviour of whole-building models, with the goodness of fit varying between 71.8 

and 86.0 % depending on the adopted method. For the developed model the best goodness of fit was 

obtained for the Detailed Ground Heat Transfer. The sine curves were not considered for the final phase 

of the model development since this method cannot be adapted to new simulation conditions (e.g. to use 
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the same model for other outdoor conditions). 

Another difficulty in a model validation is the uncertainties of the inputs. An optimization methodology 

for the model accuracy was developed based on three parameters, whose values could not be precisely 

determined: ACH, α and SHGC. The development of a sensitivity analysis which included 48 

simulations allowed us to develop an accuracy optimization equation based on the goodness of fit, since 

it proved to be the most demanding parameter. The optimized values thus obtained were 0.4 for the 

ACH, 0.40 for the α and 0.75 for the SHGC, which resulted in the maximum values for both the fit(T) 

and the fit(Pv). The optimized values are within the physical meaningful values of historic buildings. 

Simplifications to hygrothermal models might reduce the simulation time considerably, but at the same 

time substantially reduce the model’s accuracy. Hence, four different simplifications were analysed, but 

only two were found to be worthy of application, namely, considering a global floor for the funeral home 

and sacristy, and moving the main door forward. These simplifications allowed us to save 16 minutes 

per simulation while maintaining the model’s accuracy. This saving is meaningful when developing a 

study that includes a large number of simulations. For example, if the sensitivity analysis were to be 

developed using the simplified model this would mean a saving of 13 hours. 
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5. IMPACT OF CLIMATE CHANGE ON ARTEFACTS KEPT IN 

CULTURAL HERITAGE BUILDINGS AND THE THERMAL 

COMFORT OF THE VISITORS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been partly published in the following reference: Coelho, G. B. A., Silva, H. E., & 

Henriques, F. M. A. (2019). Impact of climate change on cultural heritage: a simulation study 

to assess the risks for conservation and thermal comfort. International Journal of Global 

Warming, 19(4), 382–406. https://doi.org/10.1504/IJGW.2019.104268. 
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5.1. Introduction  

The conservation of artefacts is highly dependent on the indoor conditions of the building in which they 

are kept, namely in terms of relative humidity and temperature [5]. The indoor relative humidity and 

temperature greatly influence the occurrence of chemical, biological and mechanical degradation [178]. 

On the other hand, it is also important to take into account the thermal comfort of the visitors [155], 

since they have a vital influence on the continuity of the stored artefacts collections and buildings.  

Both indoor conditions can be significantly affected by climate changes, which are ultimately caused by 

the emission of greenhouse gas (GHG) into the atmosphere. Climate change will endanger even more 

the welfare of artefacts and may affect the visitors’ thermal comfort. Hence, it is of key importance to 

perceive how the indoor climate of buildings without HVAC systems will react to changes, so that 

proper adaptive measures can be adopted.  

Nowadays climate change is one of the key challenges that mankind faces since it greatly influences the 

environment, human health, global and local economy, as well as the maintenance of the building stock 

[284]. The changes of the outdoor climate will affect the durability of the buildings [18]. However, due 

to the variability of all the factors that affect the emission of GHG and, consequently, the outdoor 

climate, it was necessary to describe the different ways in which the outdoor climate might evolve.  

For this purpose, the Intergovernmental Panel on Climate Change (IPCC) developed several scenarios 

that are based on different assumptions and, consequently, have different corresponding GHGs 

emissions of the several gases that contribute to the radiative forcing, e.g. CO2, CH4, N2O [196]. These 

scenarios were used by IPCC in its Fourth Assessment Report [302]. 

The dominant anthropogenic contributor is carbon dioxide (CO2), whose main sources of emission are 

the consumption of fossil fuel and the changes of land-use [196]. Furthermore, the building sector is 

also responsible for a large amount of CO2 emissions [284]. For this latter reason and also because of 

the importance of maintaining heritage buildings, there has been a great emphasis in studying the 

impacts of climate change on this type of building (e.g. the NOAH’s Ark project [229]).  

Furthermore, UNESCO World Heritage Report 22 [288] defines several physical impacts of climate 

change in heritage buildings. Among all impacts mentioned in this report the following standout: 

physical changes of porous building materials and corrosion of metals (i.e. due to the atmospheric 

moisture change), deterioration of facades due to thermal stress and freeze-thaw/frost damage (i.e. due 

to the temperature change), penetrative moisture into porous building materials and deterioration of 

surface due to erosion (i.e. due to the wind pattern changes). This list of impacts shows the major 

negative effect that climate will have on heritage buildings.  

More recently, and after the NOAH’s Ark project, another European research project was developed that 

focused on the study of the effects of climate change on the decay process of artefacts housed in historic 

buildings, named Climate for Culture project [172]. A methodology based on computational models of 



104 

the buildings, future outdoor weather files and damage functions was used to assess the future risks for 

the collections. This methodology has been used in several other studies that analyse the future indoor 

conditions using computational models of historic buildings (e.g. [18,129,128,130,131,218,266]). For 

instance, Huijbregts et al. [128] developed a model of an unheated Dutch museum room and a Belgium 

museum room to assess the conservation quality of the future indoor conditions and concluded that an 

increase of both the indoor temperature and relative humidity is expected, which might affect the 

artefacts mainly in terms of biological decay. Additionally, Huijbregts et al. [129,130] developed and 

validated a model of a 19th century church to develop risk maps for Europe and determined that both the 

indoor temperature and the humidity ratio will increase in the future, more significantly in the far future, 

and that in terms of the conservation of artefacts there is no location in Europe that is safe from some 

sort of increased decay with each zone having its respective risks.  

Recently, Rajčić et al. [218] developed and validated a model of the historic chapel named Barbara’s 

chapel in Croatia and determined that for the simulated location there is an increase of both the risk of 

mechanical and biological decay, while Turhan et al. [266] used the model of a historic library named 

Necip Paşa Library in Turkey and determined that an increase of the risk of chemical decay and a 

decrease of the thermal comfort are expected due to the increase of the indoor temperature. Hence, it 

can be said that climate change will increase the risks of biological, chemical and mechanical decay to 

a different extent depending on the location.  

The indoor climate can either be assessed from a conservation point-of-view; in terms of thermal 

comfort or even as a combination of both (e.g. [154,252,253,232]). In terms of the artefacts’ 

conservation, one of the most used methodology is the one developed by Martens [178], which is based 

on damage functions that evaluate the risk of chemical, biological and mechanical damage occurrence 

depending on the indoor temperature and relative humidity. These damage functions, adapted from 

literature, were used to assess the degradation risk of four types of artefacts [181,244,186,44,144,45]: 

books, panel paintings, furniture and wood sculpture. Several applications of this methodology can be 

found in literature (e.g. [38,218]). More recently, this methodology was adapted by Silva et al. [253] to 

develop an indoor climate classification system for historic buildings. 

In terms of thermal comfort, it is important that visitors have a pleasant experience while visiting the 

collection. Hence, it is necessary that the indoor temperature varies within an appropriated range of 

values, which can be assessed either using analytical models such as the Predicted Mean Vote [106], or 

an adaptive method such as the one developed in ASHRAE RP 884 (de Dear et al. [73]). In fact due to 

its simple approach to the thermal balance of the human body and also the fact that was updated by the 

authors through the years the Predicted Mean Vote was standardized in ASHRAE 55 [4] and ISO 7730 

[137]. On the other hand, the method developed within ASHARE RP 884 was adopted with some 

modifications in ASHRAE 55 [4]. While the analytical models were based on climate controlled and 

steady-state laboratory experiments, the adaptive methods are based on field campaigns of in-use 



105 

buildings that admit that the occupants can adapt to the indoor condition up to a certain extent [180].  

Normally, and due to high heritage value of many of the buildings that house these artefacts, the 

development of a computational model is based on a two-phase procedure: 1st) monitor the indoor 

conditions of the building (usually, temperature and relative humidity [250]), 2nd) develop and validate 

the computational model of the building against the measured indoor conditions (e.g. [66]). However, 

this procedure takes a considerable amount of time since both phases have several requirements. For 

example, the monitoring campaign must be long enough to record the indoor climate variability [51], 

whilst the validation of the model is based on the comparison of the annual simulated and the recorded 

indoor conditions [66]. 

The aim of this chapter is to determine how the quality of the indoor climate to preserve artefacts is 

going to change due to the climate change, which type of risks each selected climate will face in the 

future, as well as determining when it will be necessary to start implementing measures to counteract 

them. For this reason, a thoroughly validated whole hygrothermal model of a high thermal inertia church 

is used coupled to future weather files. The conservation quality of the indoor climate is assessed using 

a risk-based analysis that uses damage functions. Additionally, the thermal comfort of the visitors of the 

historic church is assessed by an adaptive thermal comfort method. The used methodology identifies not 

only the risks that each type of climate is more prone to, but also detects when these risks will occur 

more accurately, which allows a more adequate preparation.  

This study is developed for three types of climate in Europe – Mediterranean, Humid continental and 

Oceanic – to determine how the climate change influences the indoor climate quality in terms of the 

artefacts’ conservation and thermal comfort in each selected climate. The use of the validated model for 

different outdoor weather climates is possible due to the assumptions and the tools used in the model 

development. More precisely, in terms of the slab/soil interface temperature, which is neglected in most 

of the reviewed models in literature in spite of its key influence in the indoor climate [66]. 

The present chapter is subdivided in four subchapters, namely: 1)- Introduction, 2)- Methodology, 3)- 

Results and discussion and 4)-Conclusions. The first subchapter reviews the literature mainly dealing 

with the effects of climate change on the building heritage stock and artefacts conservation. The second 

subchapter addresses the hygrothermal model that is used coupled to the future outdoor weather files to 

obtain the future indoor climate. Additionally, the statistical indices, risk-based analysis and adaptive 

thermal comfort model used to analyse the simulated indoor climate are also addressed in this 

subchapter. The third subchapter presents and discusses the obtained results in terms of the variability 

of the simulated indoor climate, as well as the results of the risk-based analysis and the thermal comfort 

analysis. Finally, the main conclusions are presented in the last subchapter of this chapter. 

5.2. Methodology 

The following subchapter is organized in four subchapters in which the first summarizes the performed 
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study. The second briefly addresses the selected case-study, namely the performed monitoring campaign 

and the developed computational model. The third addresses the present and future outdoor conditions 

of the five selected climates. Finally, the fourth subchapter describes the methodologies used to analyse 

the indoor/outdoor climate. 

5.2.1. General considerations 

This subchapter studies the effect of climate change on artefacts based on the indoor conditions of the 

building. Hence, the future indoor conditions are obtained using an extensively validated hygrothermal 

model of a historic building (St. Cristóvão church in Lisbon) together with future weather files. 

Afterwards the indoor conditions are assessed in terms of chemical, biological and mechanical risks, as 

well as in terms of thermal comfort (using the optional model of standard ASHRAE 55 [4]). 

Additionally, the variability of the simulated indoor climate is also assessed using several statistical 

indices. This analysis was developed for three types of climate: Mediterranean (Lisbon, Portugal and 

Seville, Spain), Humid continental (Prague, Czech Republic and Oslo, Norway), and Oceanic (London, 

United Kingdom) [153]. The following subchapters briefly address the necessary tools to attain the 

proposed aims. 

5.2.2. Model simulation 

The selected case-study was a 13th century church located in Lisbon, Portugal, naturally ventilated and 

without any HVAC system (Figure 4.1 and Annex G). More precisely, the church is located in the slopes 

of St. Jorge’s castle and is a good example of a high thermal inertia building due to its thick mortared 

limestone walls and limestone slabs. The church has a ceramic tile roof, single glazed windows and 

doubled layered wood ceilings. The window area/floor area ratio is approximately 0.12 and has a volume 

of approximately 5250 m3. The church was recognized as a national monument in the 20th century [250]. 

In order to characterize the indoor climate of the church thoroughly, Silva and Henriques [250] installed 

adequately a multi-sensor temperature and relative humidity grid in the church [51]. The monitoring 

campaign lasted from November 2011 until August 2013 and had a recording frequency of 10 minutes. 

A detailed description of the monitoring campaign can be found elsewhere [250].  

Based on this monitoring campaign, a whole-building hygrothermal model of the church was developed 

in WUFI®Plus [292] and EnergyPlus [81]. The model was developed using EnergyPlus so that the 

slab/soil interface temperature could be calculated in accordance with the outdoor climate both 

geographically and temporally. The adopted inputs of the developed model of St. Cristóvão church are 

presented in Table 4.1 and Table 5.1. The selected windows are single glazed with a window thermal 

transmittance (Uw) of 5.1 W/m2K, a frame factor (Ff) of 0.85 and an emissivity (E) of 0.80. 
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Table 5.1 – Internal gains and ventilation for St. Cristóvão church model (adapted from Ref. [66]) 

Illumination 11.7 W/m2 (30% radiant and 70 % convective) 

People 

Metabolic rate – 1.3 met 

Heat – 126 W/person (92 W sensible heat and 34 W latent heat) 

Moisture – 54 g/h 

Occupation 

rate 

Tuesday to Saturday 
17h00–18h00 5 people (visits) 

18h00–19h30 55 people (mass) 

Sunday 
11h00–12h00 5 people (visits) 

12h00–13h30 55 people (mass) 

Ventilation 0.4 h-1 

Water-vapour pressure was used to calibrate the hygric behaviour of the building instead of relative 

humidity [66]. Additionally to the graphical comparison between the simulated and monitored annual 

variations four statistical indices were used to obtain a robust hygrothermal model: the coefficient of 

determination (R2, unitless), the coefficient of variation of the root mean square error (CV(RMSE), %), 

the normalized mean bias error (NMBE, %) and the goodness of fit (Fit, %). These indices were selected 

in accordance with literature, but also because they are either presented in percentage or are unitless, 

which allows the comparison between the performance of the thermal and hygric mode [160].  

The model was calibrated by developing a sensitivity analysis for three pre-determined parameters: air 

change rate, the short-wave radiation absorption coefficient for the exterior walls and the solar heat gain 

coefficient of the windows [66]. The simulated indoor temperature and water-vapour pressure were 

compared against the monitored indoor conditions using the previously mentioned statistical indices – 

R2, CV(RMSE), NMBE and Fit.  

Based on the obtained results an optimization function was developed and the conjugation of the three 

parameters with the highest fit was obtained. The results of this calibration process can be consulted in 

Table 5.2. These values are very good considering other models in literature [66]. Hence, the annual 

variation of the simulated indoor conditions very closely overlays the measured conditions (Figure 4.13). 

Table 5.2 – Statistical indices of St. Cristóvão church model after the validation process 

Statistical 

indices 
Temperature 

Water-vapour 

pressure 

CV(RMSE) 3.2 % 4.4 % 

NMBE 2.7 % 3.4 % 

Fit 84.8 % 81.7 % 

5.2.3. Future outdoor climate assessment 

The analysis performed in this subchapter was developed for three types of climates to identify how the 

artefacts’ conservation and occupants’ thermal comfort are going to change depending on the typology 

of climate. The chosen climate typologies according to Köppen classification were: Mediterranean 

https://www.sciencedirect.com/topics/engineering/coefficient-of-variation
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
https://www.sciencedirect.com/topics/engineering/mean-bias-error


108 

climate (Lisbon and Seville – Csa class); Humid continental climate (Prague and Oslo – Dfb class); and 

Oceanic climate (London – Cfb class) [153]. The Köppen classification was first introduced by Köppen 

[151], but it has suffered updates since then. In this subchapter an updated version of this classification 

is used, i.e. Kottek et al. [153]. 

Both Lisbon and Seville have mild and rainy winters, and hot and dry summers, but Lisbon has a higher 

annual precipitation and Seville reaches higher temperatures. On the other hand, Prague has cold winters 

with temperatures reaching values below the freezing point, hot summers, and low annual precipitation. 

Oslo also has warm summers and cold winters (reaching lower temperatures than Prague), but it has a 

higher annual precipitation than Prague. Finally, London has cold winters, warm summers and a 

moderate annual precipitation.  

For each of these five climates, a set of climate change weather files was used – starting in 2020 and 

finishing in 2100, as well as a near-past weather file. This latter weather file was adopted as the standard-

case for each selected climate (henceforth named 1990) to ease the comparison between different years 

of the same climate. These weather files were obtained from the widely used meteorological database 

Meteonorm [185]. This software is based on meteorological data from several international databases. 

Furthermore, the unavailable meteorological data is determined using literature validated methods [221].  

Out of the several scenarios designed by IPCC in the way how the world is going to evolve for the 

Fourth Assessment Report (AR4) two scenarios were selected, namely A1B (mid-radiative forcing 

scenario) and A2 (high-radiative forcing scenario) [302]. It is expected that the amount of CO2 emissions 

will depend on the total energy consumption and energy supply structure [196]. More recently, other 

scenarios named Representative Concentration Pathway (RCP) have been developed [303], in which 

scenario A1B of AR4 corresponds to RCP 6.0 and scenario A2 of AR4 corresponds to RCP 8.5 (Figure 

2.18). 

The A1B scenario is based on a rapid economic growth, an increase of the number of people until the 

mid-century and its decrease afterwards and a balanced development of both fossil and non-fossil energy 

source technologies [302]. These assumptions imply a substantial increase of the CO2 emissions in the 

beginning of the 21st-century. However, after 2050 and until 2100, the CO2 emissions will decrease 

steeply due to the structural changes of the energy sector [196]. On the other hand, the A2 scenario is 

based on heterogeneous world in which its population continuously increases and in the assumption that 

fossil fuels remain as the central source of energy [302]. These assumptions imply a significant increase 

of the CO2 emissions from the beginning of the 21st-century until 2100 [196]. Both scenarios were 

already used in European projects that address cultural heritage, while the A1B scenario was used in 

Climate for Culture project [172], the A2 scenario was used in Noah’s Ark project [229]. 

These two IPCC scenarios are based on certain scenarios drives that affect differently the outdoor 

conditions in Europe. In terms of temperature it is foreseen that the annual temperature will increase for 
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all Europe [302]. In contrast, the effect of climate change in precipitation will differ from region to 

region. For instance, both the annual precipitation and the number of precipitation days will decrease 

for the Mediterranean regions [302]. On the other hand, the precipitation will increase in winter and 

decrease in summer for central Europe [302]. However, the risk of drought in these two regions will 

increase in summer [302]. Distinctively, the annual precipitation and the extremes of daily precipitation 

will increase in the northern European regions [302]. The snow season is likely to shorten in all of 

Europe [302]. A detailed description of the effects of the climate change on the outdoor variables can 

be found in Ref. [302].  

For the selected climates, there is a generalized and significant increase of the annual average outdoor 

temperature due to climate change, but at different rates depending on the type of climate (Figure 5.1). 

The highest values of the annual average temperature are reached in the Mediterranean climates, 

followed by London and Prague (which tend to a similar situation in terms of temperature), and then 

Oslo. The annual average outdoor temperature increases from 18.2 to 22.4 ºC in Seville (i.e. a total 

increase of 4.2 K for scenario A2), from 16.8 to 19.8 ºC in Lisbon (i.e. a total increase of 3.0 K for 

scenario A2), from 9.6 to 12.6 ºC in London (i.e. a total increase of 3.0 K for scenario A2), from 8.7 to 

12.5 ºC in Prague (i.e. a total increase of 3.8 K for scenario A2) and from in 3.9 to 8.0 ºC in Oslo (i.e. a 

total increase of 4.1 K for scenario A2) for the selected period. The difference between the selected 

scenarios is only significant from 2070 onwards in which scenario A2 attains higher values (Figure 5.1). 

 

Figure 5.1 – Annual average of the outdoor temperature for Lisbon, Seville, Prague, London and Oslo for scenario A1B 

(dotted line) and A2 (solid line) between 1990 and 2100 

The annual average of the outdoor water-vapour pressure follows the same tendency of the previously 

described variance of the outdoor temperature in which there is a generalized and significant increase 

of the values, but at a different rate depending on the climate (Figure 5.2). Once again, the highest values 

are reached in the Mediterranean climates (namely, Seville and Lisbon), followed by London and then 

by the humid continental climates (namely, Prague and Oslo). The annual average of the outdoor water-

vapour pressure increases from 14.1 to 18.5 hPa in Seville (i.e. total increase of 4.3 hPa for scenario 
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A2), from 13.8 to 16.8 hPa in Lisbon (i.e. total increase of 3.0 hPa for scenario A2), from 9.5 to 11.6 

hPa in London (i.e. a total increase of 2.1 hPa for scenario A2), from 8.2 to 10.6 hPa in Prague (i.e. a 

total increase of 2.4 hPa for scenario A2) and from 6.3 to 8.4 hPa in Oslo (i.e. a total increase of 2.1 hPa 

for scenario A2) for the selected period. The difference between the selected IPCC scenarios is more 

significant from 2070 onwards in which scenario A2 attains higher values, especially for the 

Mediterranean climates (Figure 5.2). 

 

Figure 5.2 – Annual average of the outdoor water-vapour pressure for Lisbon, Seville, Prague, London and Oslo for scenario 

A1B (dotted line) and A2 (solid line) between 1990 and 2100 

The annual precipitation tends to increase for Oslo from ca 860 to 1010 mm/year (i.e. a total increase of 

150 mm for scenario A2) and for Prague from ca 521 to 551 mm/year (i.e. a total increase of 30 mm for 

scenario A1B) for the selected period (Figure 5.3). On the other hand, the annual precipitation decreases 

from ca 751 to 734 mm/year in London (i.e. a total decrease of ca 16 mm for scenario A1B), from ca 

753 to 595 mm/year in Lisbon (i.e. a total decrease of ca 158 mm for scenario A2) and from ca 600 to 

478 mm/year in Seville (i.e. a total decrease of ca 122 mm for scenario A2). Additionally, there is a 

significant difference between the two selected IPCC scenarios for Lisbon, Prague and Seville, which is 

more pronounced from 2050 onwards (Figure 5.3). 

Finally, in terms of global radiation there is a generalized slight increase with occasional differences 

between the two IPCC selected scenarios (Figure 5.4). For instance, the annual global radiation increases 

from 2429 to 2448 kWh/m2 in Seville (i.e. a total increase of ca 19 kWh/m2 for scenario A2), from 2328 

to 2364 kWh/m2 in Lisbon (i.e. a total increase of ca 36 kWh/m2 for scenario A1B), from 1595 to 1611 

kWh/m2 in Prague (i.e. a total increase of ca 16 kWh/m2 for scenario A1B) and from 1571 to 1604 

kWh/m2 in London (i.e. a total increase of ca 33 kWh/m2 for scenario A2). The only exception is Oslo 

in which the global sum decreases from 1379 to 1339 kWh/m2 (i.e. a total decrease of ca 40 kWh/m2 for 

both scenarios). 
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Figure 5.3 – Annual precipitation for Lisbon, Seville, Prague, London and Oslo for scenario A1B (dotted line) and A2 (solid 

line) between 1990 and 2100 

 
Figure 5.4 – Annual global radiation for Lisbon, Seville, Prague, London and Oslo for scenario A1B (dotted line) and A2 

(solid line) between 1990 and 2100 

5.2.4. Climate assessment tools 

5.2.4.1. Statistical analysis 

A methodology based on statistical indices was used to assess the future trend of the indoor conditions, 

namely in terms of temperature and relative humidity. This helps to perceive how the indoor climate is 

going to change throughout the years and to explain the results obtained from the risk-based analysis.  

The statistical indices used to assess the variability of the indoor climate were the standard (average, 

maximum and minimum), the percentiles (5º, 25º, median, 75º, 95º), the short-term fluctuations and 

seasonal amplitudes. These last two statistical indices were calculated using the methodologies 

described in EN 15757 [90], in which the seasonal fluctuation is obtained using a 30-day moving average 

and the short-term fluctuations are obtained through the subtraction of the moving average to the 

instantaneous values.  

5.2.4.2. Risk assessment  

The risk-based analysis assesses the risk of occurring chemical decay using the lifetime multiplier [186], 



112 

biological decay using the isopleth method [244], and mechanical decay in which the applied 

methodology varies with the artefact based on the building’s indoor conditions. Further information can 

be found in subchapter 2.2.2.2, but a detailed description of these methods is found in Ref. [178]. 

The isopleth method [244] is used for assessing the risk of biological decay, i.e. mould. The germination 

of mould occurs when the LIM – the Lowest Isopleth for Mould – is surpassed. This analysis is based 

on temperature and relative humidity, but also on the substrate since for mould to grow the substrate has 

to have nutrients [244]. The LIM curve is not constant and varies with temperature and relative humidity.  

The chemical risk is assessed using the lifetime multiplier concept [186], which represents the amount 

of time that a material remains usable whilst compared to standard conditions (20 ºC and 50% RH), and 

is obtained using the following equation: 
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where LMx is the lifetime multiplier at point x (-), RHx is the surface relative humidity at instant x (%), 

Ea is the material’s activation energy (100 kJ/mol for paper and 70 kJ/mol for the other materials), R is 

the gas constant (8.314 J/Kmol) and Tx is the temperature at instant x (ºC). Moreover, to obtain a single 

value that represents the whole studied period, Silva and Henriques [251] established an equivalent 

Lifetime Multiplier, which is obtained using the following equation: 
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where eLM is the equivalent Lifetime Multiplier [-], n is the number of data points in considered period 

[-] and LMx is the lifetime multiplier at instant x [-].  

All hygroscopic materials are subjected to mechanical decay, since this process is governed by relative 

humidity, which is continuously varying indoors and subsequently inside the materials due to several 

factors [6]. The methodology to assess the mechanical decay varies with the artefact. For instance, while 

in wood sculptures the risk is assessed using an updated version of Jakiela et al. [144] method, in 

furniture it is assessed using an updated version of Bratasz et al. [45] method. The panel paintings are a 

particular case since the method used to assess the risk of mechanical decay in the wood substrate 

(Mecklenburg’s et al. [181]) is different from the one used for the pictorial layer (Bratasz’s et al. [44]). 

These methodologies determine if the limits of deterioration are surpassed, thus leading to mechanical 

decay (Figure 2.2), and are based on the material’s response time (see subchapter 2.2.2.2). 

5.2.4.3. Thermal comfort 

Although the conservation requirements of artefacts are of the utmost importance while selecting the 

indoor conditions of the buildings, it is also necessary to consider the needs of the visitors, because 

without this source of income this type of buildings cannot exist. The thermal comfort was assessed 
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using the adaptive method of ASHRAE 55:2013 [4] for an 80 % acceptability limit. This method is valid 

for natural ventilated buildings without HVAC systems, in which occupants can adapt their clothing to 

the climate conditions, and the activity level is near-sedentary (varying between 1.0–1.3 met) [4]. 

Furthermore, this method accounts for local thermal discomfort effects, clothing adaptation and indoor 

air speed adaptation [4]. The outdoor air temperature is obtained using a 7-day exponential weighted 

running average of the daily averages of the outdoor temperature [4].  

5.3. Results and discussion  

5.3.1. Future indoor climate statistical analysis 

As it was previously mentioned, the indoor climate was subjected to a statistical analysis using three 

types of indices to perceive how the indoor conditions are going to change in the future.  

Based on Figure 5.5 it is visible that the indoor temperature is going to increase. This occurs for the five 

selected climates, but evidently at a different rate. For example, while the annual average indoor 

temperature in Seville increases from 19.1 ºC in 1990 to 21.8 ºC in 2100 (which means a total increase 

of 2.7 K for scenario A2), in Lisbon it increases from 18.3 to 20.2 ºC (i.e. a total increase of 1.9 K for 

scenario A2), in London it increases from 13.3 to 15.2 ºC (i.e. a total increase of 1.9 K for scenario A2), 

in Prague it increases from 12.7 to 15.1 ºC (i.e. a total increase of 2.4 K for scenario A2) and in Oslo it 

increases from 9.5 to 12.1 ºC (i.e. a total increase of 2.6 K for scenario A2). This generalized increase 

of indoor temperature is due to the increase of the outdoor temperature described by the IPCC scenarios 

(subchapter 5.2.3), and for the selected climates the indoor temperature of historic buildings increases 

around 2-3 K.  

It is also interesting to observe that the variability of the indoor climate increases for all analysed 

climates, except for Oslo in which it decreases. The variability increases since the amplitude between 

the minimum and maximum temperature increases, with Seville showing the greatest increase.  

Out of the selected climates, the indoor temperature is generally higher in the Mediterranean climates 

with Seville attaining the highest values. Both in terms of short-term fluctuations and of seasonal 

amplitude there is no significant variance during the study period – the seasonal amplitude average for 

Oslo is 17.6±0.4 ºC, 16.7±0.2 ºC for Prague, 15.1±0.4 ºC for Seville, 12.8±0.3 ºC for London, 11.8±0.2 

ºC for Lisbon; and the short-term fluctuations vary between -4.2/3.1 ºC for Oslo, -3.3/+3.3 ºC for Prague, 

-2.5/2.9 ºC for Seville, -2.7/2.6 ºC for London and -2.1/+2.5 ºC for Lisbon.  
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Figure 5.5 – Statistical analysis of the indoor temperature for Lisbon (a), Seville (b), Prague (c), Oslo (d) and London (e) 

In terms of relative humidity, there is an increase of the annual average for the five climates (Figure 

5.6). Lisbon has the highest values (the annual average increases from ca 66 to 71 %RH between 1990 

and 2100 for scenario A2), followed by Seville (the annual average increases from ca 63 to 69 %RH for 

scenario A2), London (the annual average increases from ca 63 to 68 %RH for scenario A2), Prague 

(the annual average increases from ca 56 to 62 %RH for scenario A2) and Oslo (the annual average 

increases from ca 53 to 60 %RH for both scenarios).  

On the other hand, there is a decrease of the variability of the indoor relative humidity for all select 

climates except for London. This occurs because both the maximum and minimum values of the indoor 

relative humidity increase, but the minimum indoor RH increases at a higher rate. For instance, the 

seasonal amplitude in Lisbon is 14.9 %RH in 1990 and it decreases to 12.7 %RH in 2100, whilst in 

Prague it decreases from 15.3 to 14.1 %RH, from 12.6 to 11.9 % in Seville, and from 12.3 to 7.8 %RH 

in Oslo during the same period. On the other hand, there is a slight increase of the variability for London 

since the seasonal amplitude increases from 6.5 to 8.2 %RH.  

In addition, the short-term fluctuations do not change significantly for the five selected climates. 
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Nevertheless, the obtained values are included within the typical range of values for this type of building 

[250]. For instance, the highest short-term fluctuations in Lisbon is 14.1 %RH in 2100. 

 

Figure 5.6 – Statistical analysis of the indoor relative humidity for Lisbon (a), Seville (b), Prague (c), Oslo (d) and London 

(e) 

5.3.2. Risk and thermal comfort assessment 

The quality of the indoor climate of historic buildings to preserve artefacts was assessed in terms of 

biological using the isopleth method, chemical using the equivalent lifetime multiplier, and mechanical 

using the four methods described in subchapter 5.2.4.2. The thermal comfort was analysed using the 

method described in subchapter 5.2.4.3. The weather files used correspond to the two previously 

addressed IPCC scenarios, i.e. A1B and A2.  

The occupants’ thermal comfort increases, more evidently for Oslo, London and Prague. This can be 

observed in Figure 5.7 which shows the percentage of time in a year where the limits of the adaptive 

model of ASHRAE 55:2013 [4] are guaranteed indoors for an acceptability limit of 80 %. This increase 

is due to the generalized increase of the indoor temperature (Figure 5.5), which is caused by the increase 

of outdoor temperature imposed by the IPCC scenarios. However, the attained values are low, for 

example for Lisbon the percentage of time that the indoor conditions can be classified as thermally 
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comfortable is 42 % in 1990 and reaches 46 % in 2100 (varying between 44–53% for Seville, 25–32 % 

for Prague, 20–29 % for London and 5–22 % for Oslo).  

Furthermore, the thermal comfort increases because the selected case-study is non-heated. Hence, the 

indoor temperature will increase in the cold months, thus leading to higher indoor temperatures. But if 

the building were to be mechanically climatized this increase of the indoor temperature could lead to a 

higher energy consumption since it would have to balance out the indoor temperature to guarantee the 

building’s indoor climate setpoints.  

 

Figure 5.7 – Percentage of the time in a year that the imposed thermal comfort conditions are guaranteed for the adaptive 

model of ASHRAE 55 with a 80 % acceptability limit [4] 

The performed analysis showed that the quality of the indoor climate to preserve artefacts worsens. In 

terms of biological decay there is a generalized increase of the amount of time the LIM is surpassed 

(Figure 5.8). As regard the chemical decay the equivalent lifetime multiplier greatly decreases (Figure 

5.9). The sculptures and the base layer of the paintings panels significantly deteriorate (Figure 5.10). 

Evidently, the rates of these decay processes vary according to the climate and the IPCC scenario.  

As regard the biological decay, it is visible that the quality of the indoor climate worsens since the 

amount of time that the indoor conditions surpass the LIM increases (Figure 5.8a). However, and 

contrary to the subsequent risk assessments, a considerable difference depending on the selected 

scenario is observable, especially for the Mediterranean climates (i.e. Lisbon and Seville). This means 

that a greater biological risk can be observed if the world evolves according to scenario A2, which in 

turn will lead to a more dangerous situation for the housed artefacts in this type of buildings.  

For instance, in Lisbon the indoor conditions that exceed the LIM amounts to ca 3 % of the year in 1990 

with this percentage increasing up to 18 % in 2100 (Figure 5.8b). The same magnitude of increase is 

visible in Seville (i.e. the number of hours in a year that the indoor conditions exceeds the LIM increases 

from 2 to 14 % between 1990-2100). Both these observations show that this type of climate is prone to 

mould germination and, consequently, it is necessary to take proper measures to mitigate this decay 

process. On the other hand, for the other three climates the biological decay is not a considerable risk, 
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especially for Oslo. The maximum amount of time that the LIM is exceeded in Prague is 3 % in 2100, 

whilst in London it is 4.6 % in 2090 and 0.6 % in Oslo in 2090. 

 

 

Figure 5.8 – Percentage of time that the indoor conditions overcome the LIM for the five selected climates and for the two 

IPCC scenarios A1B (dotted line) and A2 (solid line) (a) and spore germination for Lisbon and scenario A2 (b) 

Regarding the chemical decay, the quality of the indoor climate decreases significantly for both cellulose 

and varnish materials (Figure 5.9). This decrease is more evident for Oslo (e.g. the eLM for cellulose 

decreases from 2.60 to 1.69 for the A2 scenario between 1990 and 2100, which represents a decrease of 

91 %), but closely followed by Prague and London (e.g. the eLM for cellulose decreases respectively 

from 1.72 to 1.06 and from 1.59 to 1.07 for the A2 scenario between 2020 and 2100, which represents 

a decrease of 66 % and 52 %, respectively). On the other hand, and although Seville and Lisbon have 

the lowest decrease of quality, the obtained values for the present situation are critical for the 

preservation of artefacts and tend to aggravate (e.g. the eLM for cellulose in Seville is 0.69 in 1990, 

which is well below the ideal value – 1.0 [253], and decreases to 0.40 in 2100 for the A2 scenario, whilst 

in Lisbon it decreases from 0.80 to 0.54 for the same period), which shows that a special care has to be 

taken into account in this type of climate in terms of chemical decay.  

In terms of varnish both Seville’s, Lisbon’s and London’s climate are under the recommended limit in 

2100 (i.e. eLM of 0.49, 0.59 and 0.97 for scenario A2, respectively), and closely followed by Prague 

(i.e. eLM of 1.01 for scenario A2 in 2100). On the other hand, the Oslo climate is very appropriate to 

a) 

b) 
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house varnish materials since the distance to the eLM limit is very substantial in 1990 and it remains 

considerable in 2100 (i.e. the eLM is 2.06 and 1.44 for scenario A2 in 1990 and 2100, respectively). 

This is understandable since the chemical decay is largely influenced by temperature and Oslo has the 

lower indoor temperature values (Figure 5.5). Furthermore, no significant difference between the results 

of the two scenarios was observed, which reinforces the idea of a decrease of quality in the future that 

will cause artefacts to be more prone to chemical decay.  

 

Figure 5.9 – Equivalent lifetime multiplier (eLM) for cellulose (a) and varnish (b) for the five selected climates and for the 

two IPCC scenarios A1B (dotted line) and A2 (solid line) 

In terms of mechanical decay, three types of artefacts were evaluated using the respective method 

(subchapter 5.2.4.2): sculptures, furniture and panel paintings (in which the mechanical risk was 

assessed using a different method for the base and pictorial layer). For the carried-out simulations, 

furniture is not in danger of mechanical decay, either at the present, or in the future. This means that the 

yield strain is never crossed for this type of object and, therefore, its behaviour is solely elastic. Hence, 

this type of artefacts is not a limiting factor of the requirements of the indoor climate. 

However, the case is different for the base layer of painted panels (Figure 5.10a). Based on the obtained 

data, the most dangerous climate for these materials is Lisbon, followed by Seville, London, Prague and 

lastly by Oslo (respectively, the percentage of time wood is under elastic behaviour decreases from ca. 

86 to 68 %, 91 to 72%, 94 to 79 %, 99 to 91 % and 100 to 97 % of the year from 1990 to 2100). These 

ranges of values mean that the wood reaches plastic behaviour and, therefore, cannot revert to its original 

form. Seville is the one that has the most pronounced decrease of elastic behaviour with a decrease rate 
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of 0.20 %/year, followed by London with a decrease rate of 0.18 %/year and Lisbon with a decrease rate 

of 0.17 %/year and lastly by Prague with a decrease rate of 0.07 %/year. The decrease rate of Oslo is 

almost non-existent, only decreasing at the end of the century.  

On the other hand, in terms of the pictorial layer the imposed limit of 14 % is never surpassed for five 

simulated climates. Hence, this component of the panels paintings is not in danger. The closest value to 

reach the limit was 12.5 % and it was reached in 2080 for Prague climate and scenario A1B. In addition, 

sculptures are also not completely safe from mechanical decay. However, the extent to which this type 

of artefact is in danger is very low for any of the selected type of climate. 

 

Figure 5.10 – Mechanical risk assessment in the paintings panels: base layer (a) and pictorial layer (b) for the five selected 

climates and for the two IPCC scenarios A1B (dotted line) and A2 (solid line) 

5.4. Conclusions 

This chapter aims to quantify how the indoor climate of high thermal inertia buildings is going to change 

in terms of artefacts’ conservation and occupants’ thermal comfort considering climate changes. Hence, 

a whole hygrothermal model of a historic building, which was extensively validate against measured 

indoor conditions, coupled to climate change weather files is used to obtain the future indoor conditions. 

Then, the indoor climate is assessed using a thermal comfort model and a risk-based analysis that assess 

the indoor climate in terms of chemical, biological and mechanical risk. These analyses allow to assess 

the quality of the future indoor climate. This study was carried out for Mediterranean (i.e. Lisbon and 

Seville), Humid continental (i.e. Prague and Oslo) and Oceanic climates (i.e. London). 
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Based on the performed analysis, both IPCC’s selected scenarios point to a generalized increase of the 

indoor temperature as well as the indoor relative humidity, but at different rates depending on the type 

of climate. Their variability also increases at different rates, except for the indoor temperature of Oslo 

and the indoor relative humidity of London which decrease. In turn, these variances will lead to a change 

on the quality of the indoor climate of historic buildings to house artefacts and affect the thermal comfort 

of the building’ occupants. 

The use of risk-analysis led to the conclusion that the indoor climate quality to house artefacts worsens. 

The amount of time that the indoor climates conditions surpass the LIM curve increases in all tested 

climates. This behaviour is more significant for the Mediterranean climates – e.g. the LIM is surpassed 

ca 1/5 of the year in Lisbon in 2100. The equivalent lifetime multiplier significantly decreases for the 

three types of climate – e.g. the decrease varies between 0.3–0.9 for cellulose. In terms of mechanical 

decay, it was shown that the base layer of painting panels significantly deteriorates for the three types 

of climate. Sculptures will also be subjected to mechanical deterioration but to a lower extent. On the 

other hand, a slight increase of the thermal comfort conditions occurs, more evident for Oslo, London 

and Prague, since the indoor temperature also increases. These findings prove that there is an evident 

need to adopt appropriate changes in this type of buildings in order to safeguard the artefacts, but at the 

same time to take into account the requirements imposed by the building’s visitors. 

The use of a whole-building computational model has a lot of advantages in the study of the indoor 

climate. For instance, it allows to identify the influence that each parameter has on the building’s indoor 

climate or to test several measures that can improve the quality of indoor climate in terms of, for 

example, artefacts conservation. However, the simulations take a lot more time than the ones performed 

in simplified models (e.g. [167]). This is a limitation if the study is to be reproduced for several locations. 

Additionally, it would also increase this study relevance if other case-studies, for example with a 

different volume or of different building typology, were included in the study to see if the same 

conclusions would prevail.  



121 

6. THE IMPACT OF CLIMATE CHANGE IN CULTURAL 

HERITAGE: FROM ENERGY CONSUMPTION TO ARTEFACTS’ 

CONSERVATION AND BUILDING REHABILITATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been partly published in the following reference Coelho, G. B. A., Silva, H. E., & 

Henriques, F. M. A. Impact of climate change in cultural heritage: from energy consumption to artefacts’ 

conservation and building rehabilitation. Energy and Buildings, 224 (2020) 
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6.1. Introduction  

The main aim of buildings that house artefacts is to guarantee their safety, so that future generations 

may also have access to these objects. However, when addressing artefacts preservation it is necessary 

to analyse three types of decay, namely [178]: biological, chemical and mechanical, which can be 

accelerated by the existence of indoor air pollutants [5]. These three types of decay are governed, at 

different extents, by the indoor temperature and relative humidity, which vary due to several parameters, 

namely the building envelope, internal gains, climate control systems and outdoor meteorological 

conditions [5]. 

As in many other parts of society at the time, the industrial age brought a new beginning to climate 

control in cultural heritage buildings that house artefacts, such as museums, namely due to the 

development of air conditioning and humidity control systems. The major appeal of these systems was 

that they allowed to produce a uniform indoor climate or even a different indoor climate from the outdoor 

one. However, the setpoints to which many of the museums regulated their climate at the time were not 

based on concrete evidence that they really safeguarded the collections [171]. It is obvious that the 

awareness of this limitation led to the increase of studies focussed on the collections’ needs on the 

coming years. In time, this resulted in the creation of standards/guidelines that limit the indoor climate 

in order to keep the collections safe (e.g. Thomson [264], ASHRAE [5], UNI 10829 [84], EN 15757 

[90], among others). 

Due to the importance of maintaining historical artefacts safe many standards and guidelines that aim to 

mitigate the risk of deterioration by limiting the variance of the indoor temperature and relative humidity 

have been developed over the years. Thomson [264] suggested a guideline that is less stringent than the 

“magic numbers” (i.e. setpoint of 20 ºC and 50 %RH), but it still based on the variance of the indoor 

conditions within fixed limits. The guideline divides buildings into two major classes – class 1, which 

aims to mitigate the deterioration risks with the indoor conditions varying within a more stringent range 

and it is recommended for major museums, and class 2 that aims to avoid major deterioration risks whilst 

keeping costs to a minimum [264].  

Another important guideline was prepared by ASHRAE [5], which is centred in a five permissible class 

system in which the strictness in terms of indoor conditions lessens from the first class (class AA) to the 

last class (class D). In other words, the energy spent so that building complies with the setpoints 

preconized by the guideline decreases, but at the same time the risks of deterioration increase. In Europe, 

the standard that deals with the preservation of artefacts is EN 15757 [90]. This standard aims to reduce 

the mechanical risk induced by the indoor conditions to organic hygroscopic materials by maintaining 

the historical climate if the conditions are not harmful for the objects. If the climate is harmful, then it 

recommends the exclusion of the 14 % larger short-term fluctuations [51].  

More recently, Silva and Henriques [250,252] developed a two-class guideline that aims to mitigate the 
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risk of deterioration of artefacts housed in historic buildings for temperate climates. This guideline limits 

the variance of the indoor temperature and relative humidity in terms of seasonal and short-term 

fluctuations with a more stringent class 1, and a more flexible class 2. This guideline was partially based 

on the ASHRAE guideline [5] and on standard EN 15757 [90].  

In order to have the indoor climate varying within any of these ranges it is necessary that the buildings 

that house artefacts, such as, museums or galleries, are equipped with large mechanical systems. 

However, these systems can have a high energy consumption, which consequently leads to a high 

financial and environment costs. Additionally, due to climate change it is expected that the indoor 

climate of high inertia historic buildings is going to change in the future, which can result in higher 

energy consumptions. These changes will be translated in the increase of the free-floating indoor 

temperature and relative humidity in this type of buildings [128,67], but the magnitude of the changes 

will vary with the location [129,130,67]. Climate change is greatly due to the emission of large amounts 

of greenhouse gases into the atmosphere. These emissions are mainly due to anthropogenic activities, 

such as the use of fossil fuel and land-use changes [196].  

Nowadays one of the main challenges for both the scientific community and society in general is to find 

ways to mitigate the effects of climate change and even mitigate the climate change itself, since it will 

negatively affect the environment, and consequently, both the human health and the world’s economy 

[284]. Moreover, climate change will also have a negative effect on buildings [284]. According to 

UNESCO project 22 [288], which studied the effects of climate change in historic buildings, it is 

expected that the buildings’ facades will deteriorate due to thermal stress and freeze-thaw/frost cycles, 

that the porous materials will suffer physical changes due to rising damp and that the superficial layers 

will suffer crack, among many other effects described in this document.  

The high costs of energy associated with the stringent ranges of indoor temperature and relative humidity 

preconized by the mentioned standards and guidelines, and the changes that the indoor climate of high 

inertia historic buildings are going to suffer due to climate change will lead to an increase of the 

maintenance costs of these buildings, which might present a risk to their continuity. Hence, it is of great 

importance to study passive rehabilitation measures, active rehabilitation measures or combination of 

both types to decrease, as much as possible, the energy consumption of these buildings. For instance, 

Cornaro et al. [72] managed to achieve a 38 % reduction of the energy consumption for Villa 

Mondragone in Italy with the application of a high insulating plaster, while Muñoz-González et al. [193] 

managed to reduce the energy consumption of San Francisco de Asís church by 10–21 % combining 

active and passive measures.  

Hence, this chapter starts by quantifying the energy consumption associated to each of the referred 

standards and guidelines, as well as the associated financial cost and their future trend. Secondly, four 

passive retrofit measures that aim to reduce the building’s energy consumption are analysed. The retrofit 
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measures were a 10 cm interior calcium silicate board and an exterior 5 cm thermal plaster for the 

exterior walls, a 10 cm PUR-foam in-between the ceilings’ wood slabs and the replacement of the 

existing windows with double-glazing windows. These measures have been used in other studies that 

concern historic buildings and were analysed separately. 

A whole-building hygrothermal model of a historic building was used coupled to climate change weather 

files to obtain the future indoor conditions. This model was extensively validated against the measured 

indoor conditions [66,68], which were obtained through a long-term and multi-sensor campaign [250]. 

Since the outdoor climate plays a prominent role in the variance of the indoor climate, three different 

types of climate were simulated, namely: Mediterranean (Lisbon, Portugal and Seville, Spain), Humid 

continental (Prague, Czech Republic and Oslo, Norway) and Oceanic (London, United Kingdom).  

Furthermore, the current and future indoor conditions were assessed using a risk-based analysis that 

assesses the risk of biological decay using the isopleth method [244], the chemical decay using the 

lifetime multiplier [186] and the mechanical decay in which the method used varies depending on the 

type of object [178]. This methodology has been used in several other studies since its development (e.g. 

[128,253,218]). In a word, this chapter aims to quantify how the energy consumption and, consequently, 

the energy costs will evolve in the future for buildings that house artefacts, but at the same time show 

that passive rehabilitation measures can be used to mitigate the effects of climate change in the artefacts’ 

preservation. In order to develop this chapter more than 1400 hygrothermal simulations were run in 

WUFI®Plus [292], which corresponds to more than 1600 hours of simulations. 

6.2. Methodology 

This subchapter presents the tools that were used to achieve the chapter’s aims. It is divided into five 

subchapters: 6.2.1) presents the selected case-study, the monitoring campaign performed to record the 

yearly variance of the indoor climate and the subsequent developed hygrothermal model; 6.2.2) presents 

the passive rehabilitation measures that will be tested; 6.2.3) briefly addresses the outdoor temperature 

and water-vapour pressure for the selected climates while taking climate change into account; 6.2.4) 

presents the temperature and relative humidity setpoints for the previously mentioned 

standards/guidelines; 6.2.5) addresses the past and future trend of the electricity price in some European 

countries; 6.2.6) presents the risk-based analysis used to assess the indoor conditions. 

The term “artefact” refers to the movable cultural heritage definition specified by UNESCO [272], 

whilst the term “cultural heritage” encompasses both the architectural heritage buildings – i.e. the 

immovable cultural heritage [272] – and the historic collection –  i.e. the movable cultural heritage [272]. 

6.2.1. Case-study 

The case-study is the 13th-century church of St. Cristóvão, in Lisbon, Portugal (Figure 6.1 and Annex 

G). The church has a volume of ca 5250 m3 and includes a nave, a sacristy and a mortuary, among other 

smaller compartments. The building has thick mortared-limestone walls and limestone slabs, which 
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makes it a good example of a high thermal inertia building and, consequently, representative of historic 

buildings that house artefacts. The church is not equipped with any climate control system, it is naturally 

ventilated, and has a ceramic tile roof and wooden frame windows.  

The indoor climate of the church was monitored from November 2011 to August 2013 using a multi-

sensor grid that included 17 thermocouples type T, a probe RHT2nl of Delta T and two HOBO U12-

013 [250]. These sensors guarantee the accuracy limits imposed by the standards concerned with 

recording the indoor climate in historic buildings [91,92]. The monitoring campaign lasted for over a 

continuous year and had a recording frequency of 10 minutes, so that the indoor climate of the church 

was thoroughly characterized [51]. During the same period the outdoor temperature and relative 

humidity were monitored in the vicinity of the church. This allows to correlate the variance of the indoor 

climate with the respective variance of the outdoor conditions and, therefore, explain certain 

hygrothermal behaviours that occur indoors [248]. Further information can be consulted in Ref. [250].  

 

Figure 6.1 – St. Cristóvão church in Lisbon, Portugal 

Secondly, the recordings of the monitoring campaign were used to develop and extensively validate a 

whole-building hygrothermal model of the church in WUFI®Plus [292]. The model’s calibration was 

performed using four statistical indices that compared the error between the simulated and monitoring 

values for both temperature and water-vapour pressure [66]: the coefficient of determination (R2 - 0.99 

for T and 0.97 for Pv), the coefficient of variation of the root mean square error (CV(RMSE) - 3.2 % for 

T and 4.4 % for Pv), the normalized mean bias error (NMBE - 2.7 % for T and 3.4 % for Pv) and the 

goodness of fit (fit  - 84.8 % for T and 81.7 % for Pv). After the calibration process, the simulated values 

very accurately overlaid the campaign values [66].  

The key parameters of the whole-building hygrothermal model of St. Cristóvão church are presented in 

Table 6.1 and Table 6.2. The church was only open to the public for mass services, i.e. between 18h00–

19h30 from Tuesday to Saturday and between 12h00–13h30 on Sunday, and for one hour prior to each 

mass service. Further information can be consulted in Ref. [66]. 
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Table 6.1 – Adopted internal gains and ventilation rate for the model of St. Cristóvão church (adapted from Ref. [66]) 

Lighting 11.7 W/m2 (30% radiant and 70% convective heat gains) 

Person – 

internal loads 

Human activity – 1.3 met 

Heat load – 126 W (73% for sensible heat and 27% for latent heat) 

Moisture load – 54 g/h 

Ventilation 

rate 
0.4 h-1 

Table 6.2 – Hygrothermal properties of the building materials that compose the building envelopes of St. Cristóvão church 

(adapted from Ref. [66]) 

Building 

element 

Thickness  

(m) 

Sd-value 

(m) 

U-value 

(W/m2K) 

Walls 0.90 118 1.36 

Ceilings 0.24 8.9 1.25 

Roof 0.02 0.3 5.26 

Doors 0.05 11.2 2.01 

6.2.2. Rehabilitation measures 

The following four retrofit representative rehabilitation measures will be tested with the goal of 

decreasing the energy consumption in historic buildings that house artefacts (Uwalls, ref = 1.36 W/m2.K, 

Uceilings, ref = 1.25 W/m2.K and Uwindow, ref = 5.1 W/m2.K [66]): 

Retrofit 1 – Application of a 10 cm interior insulation system of calcium silicate board to the exterior 

walls (λ = 0.050 W/m.K [292] and Uwalls = 0.38 W/m2.K)  

Retrofit 2 – Application of exterior 5 cm thermal plaster to the exterior walls (λ = 0.045 W/m.K 

[292] and Uwalls = 0.59 W/m2.K) 

Retrofit 3 – Application of a 10 cm PUR-foam layer in-between the ceilings’ wood slabs (λ = 0.025 

W/m.K [292] and Uceilings = 0.22 W/m2.K) 

Retrofit 4 – Replacement of the existing window for a double-glazing window with a low emissivity 

glass (Uw = 1.4 W/m2.K [263]) 

These retrofit measures were selected since they have been used with positive outcomes in other studies 

that concern historic buildings [25,22,190,231,23,72,43,60,193,194] and each case is only representative 

of a type of retrofit, since the aim of this chapter is not to assess each retrofit measures, but to show the 

positive effect that their application has on the energy saving potential and in terms of improving the 

quality of the indoor climate to house historic artefacts. Hence, and though relevant, the materials’ 

properties and respective thickness of the selected retrofit measures will not be further examined. 
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6.2.3. Outdoor climates 

This subchapter is divided into two sections in which the first addresses the current outdoor conditions 

of the selected climates to perform the hygrothermal simulations using a 1990 weather file, which is 

henceforth known as reference climate for each climate. The second subchapter addresses how the 

outdoor conditions of these climates will evolve in the future in accordance with the IPCC scenarios: 

A1B and A2, from 2020 until 2100 using 10-year weather files.  

6.2.3.1. Current weather 

The outdoor climate has a very pronounced effect on the indoor climate of historic buildings [67], which 

means that if the same measure is applied in two different climates the result can be quite different. 

Hence, to determine how differently each of the selected standards/guidelines behaves in terms of energy 

consumption throughout Europe three types of climate were tested: Mediterranean (Lisbon and Seville), 

Humid continental (Prague and Oslo) and Oceanic (London).  

Lisbon has mild and rainy winters, and warm and dry summers. For instance, for Lisbon’s reference 

climate, the outdoor temperature varies between 4.5 and 19.4 ºC during winter, and between 12.4 and 

37.2 ºC during summer. The annual outdoor temperature average is approximately 16.8 ºC and has an 

annual precipitation of 753 mm with the major precipitation occurring during winter. On the other hand, 

during summer Seville reaches higher temperatures than Lisbon (for Seville’s reference climate the 

outdoor temperature varies between 11.6 and 40.1 ºC during summer), but it also has a mild winter like 

Lisbon’s. In terms of precipitation the trend is similar to what was described for Lisbon, but the annual 

sum is approximately 150 mm smaller than Lisbon’s (i.e. 600 mm). 

Prague has cold winters and hot summers, and a moderate annual precipitation. For instance, for 

Prague’s reference climate the outdoor temperature varies between -12.4 and 12.1 ºC during winter and 

between 4.1 and 32.9 ºC during summer. The annual average of the outdoor temperature is ca 8.7 ºC 

and has an annual precipitation of 521 mm with the major precipitation occurring during summer. On 

the other hand, Oslo attains lower temperatures than Prague both during winter (temperature varies 

between -21.9 and 5.5 ºC), as well as during summer (temperature varies between 2.6 and 25.2 ºC) with 

the annual average being 3.9 ºC. The major rainfalls in Oslo occur during summer in which the annual 

sum is approximately 338 mm higher than Prague’s (i.e. 859 mm). 

Finally, London also has a cold winter but not as severe as Prague’s (temperature varies between -7.8 

and 13.4 ºC), a warm summer between Prague’s and Oslo’s (the temperature varies between 3.6 and 27 

ºC) and it rains moderately all year long with the annual sum being 751 mm. These values correspond 

to London’s reference climate. 
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6.2.3.2. Climate change 

The effects of climate change are multiple and will occur at several levels, namely in terms of the 

environment, the global economy, which in turn will affect the local economy, and the human health 

[284]. Additionally, it has been reported that if proper measures are not applied, climate change will 

also have a significant effect on the envelope of historic buildings [288,18], which in turn will affect the 

indoor climate and might accelerate the deterioration processes of the housed artefacts.  

Hence, to ensure the continuity of artefacts it is of the utmost importance to study climate change. Over 

the years, the Intergovernmental Panel on Climate Change (IPCC) has developed several scenarios that 

translate how the climate might evolve in the future based on different assumptions which will mainly 

reflect on the amount of greenhouse gases (GHG) emitted into the atmosphere, namely CO2 [196].  

In this chapter, two IPCC scenarios from the Fourth Assessment Report (AR4) were used: scenario A1B 

(mid-radiative forcing scenario) and scenario A2 (high-radiative forcing scenario), which are based on 

different assumptions in how the world will evolve [302]. Both scenarios have been used in European 

projects that deal with historic buildings, namely Noah’s Ark project [229] used scenario A2 and Climate 

for culture [172] used scenario A1B. 

Whilst scenario A1B rests on assumptions that will lead to an increase of the CO2 emissions until 2050 

but its steeply decrease until 2100, scenario A2 is based on a continuous increase of the CO2 emissions 

throughout the 21st-century [196]. These assumptions will obviously cause the outdoor conditions to 

evolve differently. The outdoor temperature in Lisbon is expected to increase for both selected IPCC 

scenarios with the increase varying approximately 0.6–3.0 K for the annual average between 2020–2100 

in relation to 1990 (Figure 6.2a). However, the difference between both scenarios is only substantial 

from 2060 onward in which the outdoor temperature in the A2 scenario is almost 0.5 K higher than for 

A1B scenario. The same can be said for Seville, however, it is also visible that the increase of outdoor 

temperature is higher than in Lisbon’s, i.e. increase of 1.0–4.2 K from 2020-2100 (Figure 6.2a).  

In both climates the water-vapour pressure increases with the A2 scenario reaching higher values from 

2060 onward, but the increase is more significant for Seville than for Lisbon (Figure 6.2b). Whilst the 

water-vapour pressure increases between 103–460 Pa from 2020 to 2100 for Seville, it increases from 

62–305 Pa for Lisbon. In conclusion, the outdoor temperature and water-vapour pressure increase in 

both Mediterranean climates, but Seville has a higher increase for both conditions. 
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Figure 6.2 – Difference of the annual average of the outdoor temperature (a) and water-vapour pressure (b) for Lisbon (red) 

and Seville (orange) in relation to the 1990-value for scenario A1B and A2 

The outdoor temperature in Prague increases substantially for both IPCC scenarios (Figure 6.3a). The 

increase of temperature varies between 1.0–3.8 K and the highest value is attained in 2100 for scenario 

A2, i.e. more 0.4 K than scenario A1B. In terms of water-vapour pressure it is also visible an increase 

trend, which ranges from 58–264 Pa with the highest value being achieved in 2100 for scenario A2, i.e. 

ca 40 Pa higher than scenario A1B (Figure 6.3b). A similar behaviour occurs in Oslo in terms of 

temperature but reaching higher values, since the temperature increases between 1.2–4.2 K (Figure 

6.3a). In terms of water-vapour the increase is less substantial than Prague’s, i.e. varies between 50–206 

Pa (Figure 6.3b).  

 

Figure 6.3 – Difference of the annual average of the outdoor temperature (a), and water-vapour pressure (b) for Prague (blue) 

and Oslo (grey) in relation to the 1990-value for scenario A1B and A2 

Finally, both the outdoor temperature and the water-vapour pressure in London increase 0.7–3.0 K and 

41–220 Pa until 2100, respectively (Figure 6.4). Overall, there is an increase trend in terms of outdoor 

temperature and water-vapour pressure for the five selected climates and for both IPCC scenarios, with 

the highest increase being reached in the end of the century by scenario A2. The difference between 

both IPCC scenarios is only substantial from 2070 onward. 
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Figure 6.4 – Difference of the annual average of the outdoor temperature and water-vapour pressure for London (a and b, 

respectively) in relation to the 1990-value for scenario A1B and A2 

6.2.4. Indoor climate control 

The setpoints that the HVAC system must ensure depend on each standard/guideline (Table 6.3). Due 

to the large number of classes that some of these standards/guidelines have, it was decided to choose 

only one class for each, i.e. the most demanding in terms of indoor conditions. Since the case-study is a 

high thermal inertia building, ASHRAE’s recommended class is either B, C or D, and since its classes 

are organized in decreasing order of strictness, B-class was chosen.  

Table 6.3 – Temperature and relative humidity setpoints for each of the selected standard/guidelines 

Standard 

Guideline 
Temperature (ºC) Relative humidity (%) Comments 

Thomson 

[264] 

Winter: 19 ± 1ºC 

Summer: 24 ± 1ºC 
Range: 50 or 55 ± 5 % 

Class 1 – Major 

museums 

ASHRAE 

[5] 

Setpoint: 15–25 ºC 

Short fluctuations: ± 5 K 

Seasonal cycle: Up 10 K not 

above 30 ºC 

Setpoint: 50 % or historic annual 

average 

Short fluctuations: ± 10 %RH 

Seasonal cycle: Up 10 %RH and 

down 10 %RH 

Class B – Heavy 

masonry or 

composite walls 

with plaster 

FCT-UNL 

[250] 

Setpoint: historic annual average 

Short fluctuations: -5º/ +95º 

percentiles 

Seasonal cycle: -10º/ +90º 

percentiles 

Extra limits: |𝑇 − �̅�| up to 10ºC 

not above 30ºC 

Setpoint: historic annual average 

Short fluctuations: -5º/ +95º 

percentiles 

Seasonal cycle: -10º/ +90º 

percentiles 

Extra limits: |𝑅𝐻 − 𝑅𝐻̅̅ ̅̅ |≤15% and 

RHmax ≤75% 

Class 1 – Low 

risk of 

mechanical 

damage and 

biological attack.  

The range of values within which the indoor climate can vary according to ASHRAE class B and FCT-

UNL class 1 were determined using the methodology presented by Kramer et al. [159] for each year, 
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namely: 1)- simulate a free-floating indoor climate, 2)- determine the respective temperature setpoints, 

3)- simulate the indoor climate restrained by the temperature setpoints, 4)- determine the respective 

relative humidity setpoints, 5)- simulate the indoor climate restrained by temperature and relative 

humidity setpoints. Hence, the dynamic methodologies simulations were run three times. The analysed 

energy consumption for these cases correspond to the last simulation. This 5-step methodology allowed 

to account for the acclimatization behaviour of hygroscopic materials [84,90,51]. 

Since the aim of this chapter is to analyse the energy consumption associated to each of the standards 

and guidelines that limit the artefacts deterioration, rather than develop or optimize the HVAC system, 

the authors opted for an ideal HVAC system.  

6.2.5. Energy price trend  

The electricity prices in Europe have been increasing over the years. For example, the average electricity 

price for the European Union increased from 0.1805 €/kWh in 2007 to 0.2435 €/kWh in 2019 for band-

IA [102]. This corresponds to an increase of approximately 0.063 €/kWh over a period of 13 years. 

Since the aim of this chapter is buildings that house artefacts, which evidently are non-household, they 

are subjected to industrial energy prices according to Ref. [103].  

Hence, the price of energy varies according to the amount of energy consumed by the building. 

However, due to the liberalisation of the energy markets, the Eurostat energy price system was 

reorganized in 2007 from a 9 to a 7-level classification system that only takes the annual consumption 

of the building into account – band-IA (annual consumption below 20 MWh), band-IB (annual 

consumption between 20 and 500 MWh), band-IC (annual consumption between 500 and 2,000 MWh), 

band ID (annual consumption between 2,000 and 20,000 MWh), band-IE (annual consumption between 

20,000 and 70,000 MWh), band-IF (annual consumption between 70,000 and 150,000 MWh) and band-

IG (annual consumption higher than 150,000 MWh) [103].  

This system was used to determine the overall cost of maintaining the indoor climate according to each 

of the selected standards/guidelines. Figure 6.5 presents the energy prices for all bands in each of the 

five selected climates between 2007-2019. 

Additionally, it is expected that the electricity price will increase until 2030 and only after will it 

decrease (Table 6.4). From the selected countries only in Czech Republic will the electricity price not 

decrease after 2030. These annual changes for the electricity prices were taken from the “EU Reference 

Scenario 2016: Energy, transport and GHG emissions Trends to 2050” [79], which unfortunately does 

not include the annual changes for Norway. Hence, the electricity price between 2020-2100 was 

determined using a constant annual change for Norway depending on the annual consumption, which 

was based on the historical values of 2007 and 2019 [102] and varied between 0.1–0.2 % per year. 

Additionally, and since there is no annual change for the period 2050-2100, the same percentage as the 

one for the 2030-50 period was adopted for Czech republic, Portugal, Spain and the United Kingdom 
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(Table 6.4). 

 

Figure 6.5 – Electricity price (€/kWh) for industrial users that includes all taxes and levies between 2007 and 2019 [102] for 

Portugal (red), Spain (orange), Czech Republic (blue), Norway (grey) and United Kingdom (green) 

Table 6.4 – Annual change (%) of the electricity price for Czech Republic, Portugal, Spain and United Kingdom between 

2010-2050 [79] 

 Czech 

Republic 
Portugal Spain 

United 

Kingdom 

2010-20 -0.7 3.0 1.5 2.8 

2020-30 0.2 0.6 -0.3 0.6 

2030-50 0.1 -0.2 -0.2 -0.3 

6.2.6. Risk-based analysis  

A methodology that assesses the indoor conditions, namely the indoor temperature and relative 

humidity, in terms of artefacts conservation was developed by Martens [178], evaluating the risk of 

biological, chemical and mechanical decay using several methods. The risk of biological decay is 
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assessed using the isopleth method [244]. This method was developed by Sedlbaeur for his PhD thesis 

and determines the germination conditions depending on the temperature, the relative humidity and the 

substrate type. Mould grows if the Lowest Isopleth for Mould curve (LIM) is surpassed. The biological 

decay was analysed in terms of the amount of time the LIM curve is surpassed. 

The risk of chemical decay is assessed using the lifetime multiplier concept [186]. This concept, which 

was developed by Michalski [186], basically determines the amount of time the material stays usable 

when compared to standard conditions – 20 ºC for temperature and 50 % for relative humidity. Usually, 

two different materials are analysed since their activation energy differ [178]: 70 kJ/mol for varnish, and 

100 kJ/mol for cellulose. More recently, Silva and Henriques [251] introduced the equivalent lifetime 

multiplier, a concept which computes a representative value for the whole considered period. 
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where eLM is the equivalent Lifetime Multiplier (-), n is the number of time steps within the considered 

period (-), RHx is the surface relative humidity at instant x (%), Ea is the activation energy of the material 

(kJ/mol), R is the gas constant (8.314 J/Kmol) and Tx is the temperature at instant x (ºC).  

Lastly, the method used to assess the risk of mechanical decay varies according to the type of object: a) 

wood sculpture – uses an updated version of the Jakiela et al. method [144], b) wood furniture – uses an 

updated version of the Bratasz et al. method [44], c) wood substrate of the panel paintings – uses an 

updated version of the Mechlenburg et al. method [181], and d) pictoral layer of the panel paintings – 

uses an updated version of the Bratasz et al. method [45]. These methods determine if the yield strain 

of the materials is surpassed (Figure 2.2). Since the performed analysis includes a great number of years, 

the mechanical decay was analysed in terms of the amount of time the objects are under reversible 

conditions in each year [67].  

6.3. Results and discussion 

This subchapter starts by addressing the amount of energy necessary to guarantee the indoor conditions 

established by the three selected standards/guidelines. Furthermore, future trends and the respective 

financial cost are also assessed. Lastly, the energy saving potential of a set of passive retrofit measures 

is assessed, as well as its effect on the artefacts’ conservation metrics in historic buildings.  

In colder climates it is usual that the indoor climate of historic buildings that house artefacts is heated 

to ensure the thermal comfort of visitors [108,109,155,230]. However, due to the fact that the minimum 

temperature limit varies considerably from case- to case it was decided to choose a minimum 

temperature of 13 ºC for the methodologies that do not preconize temperature limits to guarantee that 

there is no embrittlement of the artefacts [182]. 
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In order to develop this chapter more than 1400 simulations were run in WUFI®Plus, which correspond 

to more than 1600 hours of simulation on a computer with an Intel(R) Core(TM) i5-8500 CPU @ 3.00 

GHz, 16 GB of RAM and a 64-bit operating system. However, to make this study time reasonable, the 

simulations were subdivided into 20 computers equipped with an Intel(R) Core(TM) i5-650 CPU @ 

3.20 GHz, 4 GB of RAM and a 64-bit operating system, which drastically reduced the overall time.  

6.3.1. Energy expenditure and financial cost evolution 

The energy spent to ensure a proper indoor climate for artefacts preservation will greatly depend on the 

adopted methodology (Figure 6.6). Furthermore, the effect of climate change on energy consumption 

will also depend on the climate, since it can either be responsible for its increase or decrease. The 

following subchapter first addresses the constant value methodology suggested by Gary Thomson (class 

1) and then the dynamic methodologies – namely ASHRAE class B and FCT-UNL class 1. In addition, 

the calculated heating, cooling, humidification and dehumidification energy demands are presented in 

tables at the annex section (Annex I). 

By limiting the indoor climate according to Thomson’s methodology, it is visible that climate change is 

responsible for an energy saving for all selected climates except for Seville (Figure 6.6a). The decrease 

of energy consumption in Prague, Oslo and London is easily understood by the fact that in these climates 

the HVAC needs are mostly heating, which correspond to 93–96 % of the total consumed energy (Table  

I.1), since the free-floating indoor temperature will be very often below the 18 ºC limit. Moreover, since 

climate change is responsible for the increase of the free-floating indoor temperature, this will lead to 

energy saving. The greatest savings at the end of the century correspond to scenario A2 (Figure 6.6a), 

since the free-floating indoor temperature reaches higher values for this IPCC scenario [67].  

On the other hand, Lisbon is an interesting case, because climate change is also responsible for an energy 

saving, but more substantially for scenario A1B. This occurs because the need to heat the room will 

decrease (Table  I.1). For instance, the number of hours that the HVAC system is operating to guarantee 

the 18 ºC-limit decreases 25% between 1990–2100 for scenario A1B. However, the free-floating indoor 

temperature will increase more for scenario A2 than for scenario A1B [67], which means that the upper 

limit will be overcome for a larger period of time. For instance, the number of hours that the HVAC 

system has to guarantee the 25 ºC-limit when compared to the reference climate is 6 and 8 times higher 

for scenario A1B and A2, respectively. Hence, the HVAC system has to decrease the free-floating indoor 

temperature to comply with Thomson’s methodology, thus increasing the cooling needs (Table  I.1) and, 

consequently, increasing the total energy consumption. The cooling needs increase from 0.4 to 6.8 MWh 

between 1990 and 2100 for scenario A2 (Table  I.1). The dehumidifying needs are also responsible for 

a substantial part of the total energy consumption (ranging between 7-25%) due to the increase of the 

indoor water-vapour pressure [67]. 
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Figure 6.6 – Assessment of the energy consumption to guarantee the indoor conditions according to Thomson class 1 (a), 

ASHRAE class B (b) and FCT-UNL class 1 (c) for the five selected climate and the two IPCC scenarios (A1B and A2) 

Finally, Seville is the only one of the selected climates in which the energy consumption increases with 

time (Figure 6.6a). Seville’s indoor climate is similar to Lisbon’s, however, since its free-floating indoor 

temperature is higher than Lisbon’s and because climate change increases the free-floating indoor 

temperature, this will lead to the overcome of the 25 ºC-limit much more often than in Lisbon (Figure 

6.7). Thus, increasing the cooling needs substantially (Table  I.1), which goes from corresponding to 12 

% of the total energy needs in 1990 to 43 % in 2100 for scenario A2, i.e. 10 % higher than heating needs 

for that year. This increase of the cooling needs will overshadow the decrease of heating needs (Table  

I.1), thus being responsible for the increase of the total energy consumption for Seville, while in the 

other climates the consumption decreases.  

Nevertheless, the energy consumption associated to each of these climates is still very significant, and 

this will lead to great financial costs (Table 6.5). Prague has the highest overall cost to maintain the 

indoor conditions suggested by Thomson, although it does not correspond to the highest energy 

consumption (Figure 6.6a). This is due to the fact that currently energy costs more in Prague than in 

Oslo and it is expected to remain so. The overall cost of energy in Prague is closely followed by 

London’s and Oslo’s, but the selected Mediterranean climates (i.e. Seville and Lisbon) present a much 
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lower overall energy cost.  

 

Figure 6.7 – Free-floating indoor temperature higher than the 25 ºC-limit for Lisbon (a) and Seville (b) in 1990 and 2100 

(scenario A2), and respective percentage of the year that the 25 ºC-limit is surpassed 

Both selected dynamic methodologies have a very similar energy consumption trend, i.e. the energy 

consumption decreases for all selected climates with the Mediterranean climates consuming a relatively 

smaller amount of energy (Figure 6.6b for ASHRAE and Figure 6.6c for FCT-UNT). Nonetheless, FCT-

UNL methodology attains higher overall costs than ASHRAE’s, which is more significantly for the 

Mediterranean climates (Table 6.5), since it preconizes a more stringent indoor climate range (Table 

6.3).  

The energy consumption necessary to limit the indoor climate according to these two methodologies is 

almost non-existent for the selected Mediterranean climates, i.e. Lisbon and Seville, due to their flexible 

ranges. For example, the annual consumption for Lisbon is 1.9 MWh in 1990 for the ASHRAE 

methodology, mainly heating needs, and tends to decrease with climate change (Table  I.2), since the 

free-floating indoor temperature will increase. The same behaviour is observed for Seville although the 

energy spent to ensure an indoor climate according to ASHRAE class B guideline is slightly higher, e.g. 

the annual consumption for Seville in 1990 is 3.9 MWh (Table  I.2). Whilst in terms of the FCT-UNL 

methodology the value for Lisbon in 1990 is 3.8 MWh and 5.7 MWh for Seville with the tendency to 

decrease on the subsequent years, but slightly increasing 2070-onwards until they reach respectively 3.4 

MWh and 4.1 MWh for scenario A2 in 2100 (Table  I.3).  

On the other hand, it is also easily understandable that the energy consumption in Prague, Oslo and 

London decreases substantially, since the key factor for energy consumption in this type of climates is 

to guarantee the minimum indoor temperature. Since climate change will increase the indoor free-

floating temperature, then it is evident that energy consumption will decrease. For example, the energy 

consumption for Oslo between 1990 and 2100 for scenario A2 decreases approximately 34 % for the 

ASHRAE methodology, i.e. from an energy consumption of ca 146 to 96 MWh (Table  I.2), and 34 % 

for the FCT-UNL methodology, i.e. from a consumption of ca 148 to 97 MWh (Table  I.3). 
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In terms of overall cost to guarantee the indoor climate according to ASHRAE Class B and FCT-UNL 

Class 1 it is obvious that for Mediterranean climates the cost is very small with climate change being 

responsible for its decrease, but for the other three climates the costs are much more substantial with 

Oslo having the highest cost, followed by Prague and then London (Table 6.5).  

Table 6.5 – Overall energy cost per square meter between 2020-2100 for each of the five selected climates and the change 

induced by climate change in the overall energy cost (in percentage). ↓ green – means decrease of the overall energy 

consumption and ↑ red – means increase 

 Lisbon Seville Prague Oslo London 

 A1B A2 A1B A2 A1B A2 A1B A2 A1B A2 

Thomson 

class 1 

2768 

€/m2 

2791 

€/m2 

3503 

€/m2  

3579 

€/m2 

8039 

€/m2 

8022 

€/m2 

7491 

€/m2 

7462 

€/m2 

7872 

€/m2 

7905 

€/m2 

↓ 13.4 % ↓ 12.7 % ↑ 6.8 % ↑ 9.1 % ↓ 17.8 % ↓ 18.0 % ↓ 17.5 % ↓ 17.8 % ↓ 16.2 % ↓ 15.8 % 

ASHRAE 

class B 

48 

€/m2 

46 

€/m2 

106  

€/m2 

112 

€/m2 

3180 

€/m2 

3169 

€/m2 

3795 

€/m2 

3785 

€/m2 

2389 

€/m2 

2411 

€/m2 

↓ 69.5 % ↓ 71 % ↓ 68.3 % ↓ 66.7 % ↓ 26.9 % ↓ 27.2 % ↓ 23.4 % ↓ 23.6 % ↓ 28.3 % ↓ 27.6 % 

FCT/UNL 

class 1 

267  

€/m2 

268  

€/m2 

321  

€/m2 

329  

€/m2 

3266 

€/m2 

3264 

€/m2 

3850 

€/m2 

3838 

€/m2 

2440 

€/m2 

2463 

€/m2 

↓ 16.7 % ↓ 16.5 % ↓ 34.3 % ↓ 32.7 % ↓ 26.7 % ↓ 26.7 % ↓ 23.3 % ↓ 23.6 % ↓ 27.9 % ↓ 27.2 % 

6.3.2. Passive rehabilitation measures 

Taking the previously obtained results for the tested standards/guidelines into account (Table 6.5), it is 

visible that there is a need to decrease the energy consumption if the aim is to substantially decrease the 

GHG emissions, which are directly related to energy consumption [196]. This behaviour is more 

substantial for the constant valued standards/guidelines, such as Thomson’s. Obviously, if a dynamic 

methodology is chosen (e.g. FCT-UNL), the energy consumption decreases considerably (Figure 6.6). 

Moreover, this energy saving can be heightened if a less stringent indoor climate methodology is 

combined with a proper set of passive retrofit measures.  

Hence, four retrofit measures were tested to determine their energy saving potential (see subchapter 

6.2.2). The indoor climate was limited according to a constant and a dynamic methodology to determine 

to which extent the energy saving potential would differ. Additionally, the simulations were run for the 

two most demanding climates of each climate type: Seville and Oslo.  

6.3.2.1. Energy saving potential  

Table 6.6 presents the energy consumption of the four retrofit measures for Seville and Oslo, and the 

respective saving potential, which is calculated based on the correspondent reference case, i.e. the case-

study that does not have any retrofit measure. Although the energy saving potential for the retrofit 

measures in the Mediterranean climates is in the same range of values as the ones described in Table 

6.6, its overall energy saving is small (see subchapter 6.3.1). Therefore, it was discarded from the 

analysis performed in this subchapter. 
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Based on this table it is clear that the four selected retrofit measures are responsible for a reasonable 

energy saving. Furthermore, it is also clear that both indoor climate limiting methodologies attain close 

energy saving potentials, although evidently Thomson attains much higher consumptions in both 

climates, since it is a constant value methodology with a much stringent indoor temperature/relative 

humidity range than those obtained with the FCT-UNL methodology (subchapter 6.2.4). 

The application of an interior insulation system (R1) reaches the highest energy saving potential – 

between ca 20 and 32 %, followed by the application of an exterior thermal plaster (R2) – between ca 

16 and 20 %, and then by the application of an insulation foam in the ceilings of the case-study (R3) – 

between ca 13 and 20 %. The replacement of the windows (R4) has the lowest energy saving potential 

– i.e. between ca 4 and 6 % – due to the low window/wall ratio of the case-study [251].  

Nonetheless, the obtained values demonstrate that a less stringent climate limiting methodology 

decreases the energy consumption considerably, but this effect can be heightened if an individual or a 

set of passive retrofit measures is applied to the building. However, the selected passive retrofit measures 

should take into account the special requirements of both historic buildings, since insufficient studied 

retrofit measures can lead to irrecuperable damages [224], and the artefacts housed on those buildings, 

which need that the indoor conditions vary within certain values for preservation purposes [5]. 

Table 6.6 – Total energy consumption (in MWh/m2) and energy saving potential (in percentage) between 2020-2100 for 

Seville and Oslo for the four retrofit measures: ↓ green – means decrease and ↑ red – means increase of the energy 

consumption compared to the reference case 

 

Total energy consumption (MWh/m2) 

Seville – Thomson Oslo –Thomson Oslo – FCT-UNL 

A1B A2 A1B A2 A1B A2 

Reference 21.0 21.5 69.3 69.1 35.7 35.5 

Retrofit #1 
16.8 

(↓ 20.8%) 

17.1 

(↓ 20.2%) 

51.4 

(↓ 25.8%) 

51.3 

(↓ 25.8%) 

24.2 

(↓ 32.2%) 

24.1 

(↓ 32.2%) 

Retrofit #2 
18.1 

(↓ 16.7%) 

18.5 

(↓ 16.7%) 

58.3 

(↓ 16.0%) 

58.1 

(↓ 16.0%) 

28.7 

(↓ 19.5%) 

28.6 

(↓ 19.6%) 

Retrofit #3 
18.2 

(↓ 13.5%) 

18.6 

(↓ 13.3%) 

58.3 

(↓ 15.9%) 

58.1 

(↓ 15.9%) 

28.7 

(↓ 19.5%) 

28.6 

(↓ 19.5%) 

Retrofit #4 
20.1 

(↓ 4.4%) 

20.6 

(↓ 4.4%) 

66.1 

(↓ 4.6%) 

65.9 

(↓ 4.6%) 

33.6 

(↓ 5.8%) 

33.5 

(↓ 5.8%) 

6.3.2.2. Risk-based analysis  

The effect of these retrofit measures in the artefacts’ conservation metrics was also assessed using the 

risk-based analysis presented in subchapter 6.2.6. Note that all figures presented in this subchapter have, 

as reference, a case without any retrofit measure but with the indoor climate limited by the corresponding 

standard/guideline, which are either named Ref-A1B and Ref-A2 depending on the IPCC scenario. This 
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reference allows to determine the effect that applying a certain rehabilitation measure has on the indoor 

climate of the case-study. 

It was observed that the risk of biological decay for Thomson is non-existent for both climates (Figure 

6.8a), since the recommended temperature and relative humidity setpoints do not surpass the LIM curve. 

For the temperature range preconized by Thomson – i.e. 18 to 25 ºC, the LIM curve varies between 80.5 

and 79.6 %RH. Since the highest allowed relative humidity in Thomson’s methodology is 60 % (Table 

6.3), then it is clear that for this methodology the LIM curve is never surpassed. 

The risk of biological decay is also non-existent for the FCT-UNL methodology. Although the 

preconized temperature ranges vary with the historical climate, the first class of this methodology limits 

superiorly the relative humidity (Table 6.3). Since the maximum admissible value is 75 %, the LIM is 

never surpassed because its minimum value is approximately 79.2 %RH for 30 ºC. This is the reason 

why Oslo does not have nor will it ever have a risk of biological decay for the adopted climate control 

strategy, which was also shown for free-floating conditions [67]; and why Seville, which substantially 

and gradually surpassed the LIM curve for free-floating conditions [67], now that is limited by the FCT-

UNL methodology, does not show risks of biological decay (Figure 6.8b).  

 

Figure 6.8 – Spore germination for the reference case of Seville between 2020 and 2100 for scenario A2 for Thomson’s 

methodology (a) and for FCT-UNL methodology (b) 

It is expected that the risk of chemical decay increases over the years for both IPCC scenarios [67], with 

the highest risks being reached at the end of the century by scenario A2. On the other hand, the 

application of retrofit measures to this kind of buildings can have two different effects, which are greatly 

dependent on the type of the outdoor climate. Whilst for Seville the application of the retrofit measures 

improves the quality of the indoor climate (Figure 6.9a and b), for Oslo it has the opposite effect, i.e. it 

decreases the quality of the indoor climate to preserve artefacts that are susceptible to chemical decay 

(Figure 6.10). In Seville, the application of the retrofit measures improves the quality of the indoor 

climate because they are able to reduce the increase of the free-floating temperature that occurs mainly 
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in summer significantly, which is the season that mainly limits the Mediterranean climates. This 

lowering of the indoor temperature is beneficial to avoid chemical decay, because chemical processes 

are slowed by lower temperatures [178]. On the other hand, in Oslo the retrofit measures are responsible 

for an overall increase of indoor free-floating temperature, but more significant during the spring and 

summer seasons. This higher temperature level will increase the risk of chemical decay [178]. 

In addition, the best performing retrofit measure for Seville is the application of the interior insulation 

system – R1 (Figure 6.9), followed by the application of the exterior thermal plaster – R2. The 

application of the PUR-foam layer in-between the ceilings’ wood slabs (R3) or the replacement of the 

existing window (R4) lead to a small improvement of the indoor conditions in terms of chemical risk, 

although a slightly more significant for the FCT-UNL methodology (e.g. Figure 6.9a and c). These 

observations show that the performance of each retrofit in terms of decreasing the risk of chemical decay 

is slightly affected by the methodology chosen to control climate. 

 

Figure 6.9 – Equivalent lifetime multiplier for the reference case and retrofits #1–4 following Thomson’ methodology for 

IPCC scenario A1B (a) and A2 (b), and following FCT-UNL methodology for IPCC scenario A1B (c) and A2 (d) between 

2020-2100 for cellulose in Seville climate 

Furthermore, it is also observable that whilst the Thomson methodology is responsible for a significant 

increase of the risk of chemical decay, the FCT-UNT methodology manages to maintain the same level 

of risk if the indoor climate was already appropriate to preserve artefacts susceptible to chemical decay. 
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This occurs, for example, for Oslo (Figure 6.10), whose free-floating conditions were already deemed 

appropriate to preserve artefacts susceptible to chemical decay [67]. This particularity of the FCT-UNT 

methodology and other dynamic methodologies (such as, ASHRAE [5] and EN 15757 [90]) is due to 

the fact that they are based on the acclimatization concept, which allows to obtain an indoor climate 

adequate for the preservation of the artefacts based on the historical climate. Note that since the 

previously described behaviours also occur for varnish, it was decided to leave it out so as not to 

duplicate the same analysis.  

 
Figure 6.10 – Equivalent lifetime multiplier for the reference case and retrofits #1–4 for IPCC scenario A1B (a) and A2 (b) 

between 2020–2100 for cellulose in Oslo climate and following the FCT-UNL methodology 

Thomson’s methodology will not lead to the mechanical decay of furniture, sculptures pieces or panel 

paintings in nowadays conditions nor will it lead to mechanical decay in the future. These observations 

are valid for both selected climates. In addition, the application of any of the four selected retrofit 

measures will not decrease the quality of the indoor climate to safeguard these artefacts.  

On the other hand, the FCT-UNL methodology can cause the mechanical decay of the base layer of 

panel paintings in Seville (Figure 6.11a and b) and the mechanical decay of the pictorial layer of panel 

paintings in Oslo (Figure 6.11c and d), since the 14%-limit is surpassed. Whilst the first observation 

worsens with time and it is heightened by the application of the retrofit measures, the second behaviour 

is attenuated by the application of these retrofit measures, since they manage to reduce the amplitude of 

the RH cycles.  

Regarding Seville, the application of the retrofit measures decreases the free-floating indoor temperature 

mainly during the summer and spring, as was previously mentioned. This decrease will increase the 

relative humidity values since the water-vapour pressure does not change significantly due to the rather 

low moisture impregnability capacity of the selected measures. This will inevitably increase the amount 

of time that the yield strain is surpassed. These observations show that the performance of retrofit 

measures is dependent on the climate. 
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Figure 6.11 – Risk of mechanical decay in the base layer of panel paintings according to FCT-UNL methodology for Seville 

for scenario A1B (a) and A2 (b), and the risk of mechanical decay in the pictorial layer of panel paintings according to FCT-

UNL methodology for Oslo for scenario A1B (c) and A2 (d) 

6.4. Conclusions 

The present chapter aimed to determine the energy consumption associated to three of the most used 

standards/guidelines to limit the indoor climate in buildings that house artefacts. It also aimed to 

determine how this consumption will evolve in the future due to climate change and how much it will 

cost to guarantee each standard/guideline for three types of climate in Europe. Additionally, four 

representative passive retrofit measures were tested to determine their energy saving potential.  

In order to achieve these aims a validated whole-building hygrothermal model of a historic building 

(Church of St. Cristóvão in Lisbon, Portugal) was used coupled to future weather files based on two 

IPCC scenarios – A1B and A2 – for five climates, namely: Lisbon (Portugal), Seville (Spain), Prague 

(Czech Republic), Oslo (Norway) and London (United Kingdom). Lastly, the indoor climates were also 

assessed in terms of biological, chemical and mechanical decay using a methodology based on several 

validated methods. 

This chapter intends to reinforce the idea that passive retrofit measures can be used to decrease the 

energy consumption of buildings that house artefacts considerably and, consequently, the financial and 

environmental costs, associated to guaranteeing the indoor climate adequate for artefacts in the future. 
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It was also shown, that if the passive retrofit measures are combined with a more adequate relative 

humidity and temperature setpoint strategy the energy savings are even higher. Hence, this chapter 

allowed to test the impact of a representative set of passive retrofit measures on conservation, which 

highlighted the potential of various rehabilitation strategies in the studied climates. 

Based on the shown data it is clear that some of the existing methodologies that aim to preserve artefacts 

will lead to high energy consumption in the future, but there are other methodologies in which the 

opposite occurs. Evidently, the magnitude of these behaviours varies with the methodology and the 

climate. For instance, the highest energy consumptions were attained by Oslo using Thomson’s 

methodology, ca 267 MWh in 1990, but it tends to decrease in the future. Whilst the lowest energy 

consumptions were attained by Lisbon and Seville using ASHRAE methodology, ca 0.2 and 0.5 MWh 

in 2100 for scenario A1B respectively, as well as the FCT-UNL methodology, ca 3.3 and 3.7 MWh in 

2100 for scenario A1B, respectively.  

It was also shown that for the constant valued methodologies the key factor for the colder climates is 

the minimum temperature limit, whilst for the Mediterranean climates is the maximum limit. However, 

this latter factor will gain even more importance in the future since it is expected that the indoor free-

floating temperature is going to increase substantially. In contrast, the overall energy costs for the 

dynamic methodologies will be quite significant for climates like Oslo, Prague and London mostly due 

to the minimum temperature limit.  

It was demonstrated the positive outcome of implementing retrofit measures in historic buildings for 

future conditions in terms of energy saving potential. The application of an interior insulation achieved 

the highest saving potential which varies between 20–32 %, followed by the application of an exterior 

thermal plaster which varies 16–20 %, application of a thermal insulation layer in the ceilings which 

varies 13–20 % and lastly by replacing the existing windows which varies 4–6 %.  

The energy saving potential of the case-study could be even higher if these retrofit measures would be 

properly combined. However, this is a complex challenge due to the large variability of the input 

parameters. Nonetheless, it is important to bear in mind that the energy saving potentials can vary 

significantly from case to case, since they are dependent on a large number of variables, such as the 

building’s volume, window/wall area ratio, among many others. 

The risk-based analysis showed that, although retrofit measures are an interesting tool to significantly 

decrease the energy consumption in historic buildings that house artefact, their choice must be 

thoroughly studied prior to application, since their improvement potential can greatly differ according 

to the outdoor conditions. Hence, a more detailed analysis concerning these measures need to be 

performed. 

In conclusion, it was shown that the standards/guidelines that buildings that house artefacts will lead to 

rather high financial costs for most of the tested cases, which shows the importance of studying ways to 
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counteract this trend. In addition, it was shown the positive potential that applying passive retrofit 

measures can have on the energy consumption of these buildings, but a risk-based analysis should be 

performed to assess if the indoor conditions in terms of artefacts conservation really improve.  
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7. PERFORMANCE OF PASSIVE RETROFIT MEASURES FOR 

HISTORIC BUILDINGS THAT HOUSE ARTEFACTS VIABLE FOR 

FUTURE CONDITIONS 
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7.1. Introduction 

Nowadays, one of the most important problems of society is the major effects of climate change in the 

world [284], namely in the environment, human health and global economy, but also in our building 

stock due to the likely impacts of climate change on buildings [288]. A substantial amount of the 

greenhouse emissions, which are greatly responsible for climate change, is due to buildings (for instance, 

in the OECD countries, buildings are responsible for a 25–40 % portion of the greenhouse emissions 

[284]), which in turn is largely due to operational energy use [284]. Hence, the importance of optimizing 

the use of energy in buildings by adopting appropriate improvement measures. However, these measures 

differ according to the type and the use of the building since their indoor climate requirements will also 

differ. 

This chapter addresses service buildings that house artefacts, such as museums and churches, since 

artefacts are the main source of conveying society’s history through generations. The primary mission 

of these buildings is extending, as much as possible, the lifetime of their artefacts [136]. Hence, it is 

necessary to ensure certain indoor conditions. This endeavour can be quite difficult, since the 

requirements vary according to the type of collection [84] and sometimes even within the collection 

itself. Furthermore, many of the museums are installed in historic buildings, which typically have very 

thick walls [248] and were not initially built to house them, thus making it harder to guarantee the proper 

indoor conditions.  

Due to their high heritage value, passive retrofit measures (such as, the application of a thermal 

insulation layer in the exterior walls) or the installation of mechanical systems always face a lot of 

adversities [203]. Hence, before application, these measures must be thoroughly studied, and their 

effects quantified. This is one of the reasons why the development of computational models is a very 

useful tool for historic buildings. In order to replicate reality accurately, these models have to be 

validated against the indoor conditions, which is a difficult task especially for historic buildings [66].  

Furthermore, due to the difficulty to implement this type of measures it is predictable that historic 

buildings are more susceptible to the effects of climate change [129,167]. As pointed out by Lucchi 

[175], preventive conservation is the best course of action to reduce the energy demand in a sustainable 

way without jeopardizing the artefacts welfare and human comfort. However, to develop proficient 

preventive conservation methodologies, climate change must be taken into account. 

The effects of climate change in cultural heritage have been studied throughout the years with two 

projects standing out: Noah’s ark [229] and Climate for Culture [172]. The Noah’s ark project mainly 

studied the several effects of climate change on the envelope of historic buildings throughout Europe 

[229]. On the other hand, the Climate for Culture project [172] focussed on assessing the effects of 

climate change on Europe’s cultural heritage stock using A1B and RCP 4.5 scenarios. Computational 

models of historic buildings were developed and validated against their measured indoor conditions. 
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The effects of climate change in the artefacts were assessed using damage functions, and the results 

were used to develop risk-based maps for all Europe.  

Several studies which take into account the effects of climate change in heritage have been developed 

using computational models of historic buildings to obtain the future indoor conditions 

[18,129,128,130,131,218]. Their common conclusion is that an increase of both the indoor temperature 

and humidity is expected in the future, but also the fact that each location in Europe will have some sort 

of conservation risk with a tendency to increase the more we go into the future. For instance, while 

Huijbregts et al. [129,128] identified that both the indoor temperature and relative humidity will 

increase, and determine that each location in Europe has its respective decay risks, and Rajčić et al. 

[218] showed that the risks of mechanical and biological decay in Croatia will worsen. These 

conclusions show that the adaptations this type of buildings must go through to mitigate the effects 

imposed by climate change will depend on their location.  

The artefacts welfare is affected by several environmental variables, such as relative humidity and 

temperature [207,5]. Martens [178] developed a methodology, based on several methods presented in 

literature, to assess the risk of chemical (using the Lifetime Multiplier concept [186]), biological (using 

the isopleth method [244]) and mechanical deterioration of four types of artefacts induced by the indoor 

conditions. The mechanical degradation is assessed using one of four methods depending on the type of 

artefact since they answer differently to the RH solicitations [178]. This methodology has been used in 

several studies (e.g. [128,253]). Another aspect that must be assessed in buildings that house artefacts 

is the visitors’ thermal comfort due to their importance in the building’s revenues. This can either be 

evaluated using an adaptive thermal comfort model, which is based on the concept that the building’s 

users can, up to a certain extent, adjust to the changes in the indoor climate (e.g. [4]), or an analytical 

thermal comfort model that recommends more narrow ranges for the indoor temperatures [137]. 

Sometimes, it is necessary to adopt passive or active measures or even a combination of both to achieve 

a proper indoor climate for the preservation of artefacts. For example, Muñoz-González et at. [194] 

studied several of these options to improve the indoor climate of a 17th-century church in Seville (Spain), 

and Sciurpi et al. [243] studied several windows replacing options and different solar shadings for “La 

Specola” Museum in Florence (Italy). Both these studies used computational models to assess the 

improvement measures performance. This type of analysis can be further developed if climate change 

and a risk assessment methodology are used to determine if the tested measures are adequate to preserve 

the artefacts in the future. 

This chapter aims to assess the viability of today’s retrofit measures in historic buildings while taking 

climate change into account. The future indoor conditions were obtained using a validated hygrothermal 

model and climate change weather files. The case-study selected for this chapter was St. Cristóvão 

church in Lisbon. Additionally, the hygrothermal model was artificially relocated using the outdoor 
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climates of different European cities to replicate this analysis throughout Europe, namely Seville 

(Spain), Prague (Czech Republic), Oslo (Norway) and London (United Kingdom). This relocation will 

allow to assess how differently the selected measures will perform in each climate. The indoor 

conditions were assessed using a risk-based analysis and an adaptative thermal comfort model.  

7.2. Methodology 

7.2.1. General considerations 

To achieve the aim of this chapter, a validated hygrothermal model (St. Cristóvão church), which meant 

a long-term monitoring campaign, coupled to climate change weather files were used to obtain the future 

indoor conditions. These conditions were assessed using a risk-based analysis, which evaluates the risk 

of mechanical, chemical, and biological degradation in artefacts, and a thermal comfort model. The set 

of selected retrofit measures and their limitations are addressed. For the purpose of this study, a total of 

1350 simulations were run in WUFI®Plus, which amounts to ca 1485 hours of simulation. 

7.2.2. Case-study 

St. Cristóvão church was built in the 13th-century and has approximately 5250 m3 (Figure 7.1a and 

Annex G). The church is composed by several compartments, namely: a nave, a mortuary, a sacristy, an 

annex and two towers (Figure 7.1b). The church has very thick mortared limestone walls (Uwall = 1.36 

W/m2K), a limestone slab (Uslab = 3.89 W/m2K), a ceiling composed by two wood slabs with a 20 cm 

air layer in-between (Uceiling = 1.25 W/m2K), a ceramic tile roof (Uroof = 5.26 W/m2K) and single-glazed 

windows (Uw = 5.1 W/m2K). Detailed description of all parameters can be consulted in Ref. [66,68]. 

The indoor conditions of the church were monitored using several sensors from November 2011 to 

August 2013 with a recording frequency of 10 minutes. During the same period, the outdoor conditions 

were monitored using a data logger in the north tower. The church was open to the public all week, 

except on Mondays, during specific periods of time. A detailed description of the monitoring campaign 

can be found in Ref. [250,251]. 

 
 

Figure 7.1 – St. Cristóvão church façade (a) and St. Cristóvão church plan (b) 
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A whole building hygrothermal model of St. Cristóvão church was developed using WUFI®Plus [292]. 

The adopted lighting power density was 11.7 W/m2, and each occupant had a metabolic rate of 1.3 met 

and produced 126 W of heat and 54 g/h of moisture. The model’s calibration was carried out using four 

statistic indices to compare the simulated indoor conditions against the measured conditions [66]: the 

coefficient of determination (R2), the coefficient of variation of the root mean square error 

(CV(RMSE)), the normalized mean bias error (NMBE) and the goodness of fit (fit). The optimized 

model attained a CV(RMSE) of 3.2 % for T and 4.4 % for Pv, a NMBE of 2.7 % for T and 3.4 % for Pv 

and a fit of 84.8 % for T and 81.7 % for Pv. The simulated conditions accurately overlay the monitored 

conditions [66].  

7.2.3. Outdoor climate 

7.2.3.1. Weather files 

The projections of the future outdoor conditions are based on the influence of several aspects on the 

environment, namely in terms of socio-economics, technological, energy use and land use, as well as 

the emissions of greenhouse gases (GHG) [278]. Due to the range of years considered in these 

projections and the variability of each of these aspects, there is a great number of scenarios that describe 

how the world’s climate is going to evolve. These scenarios are organized in four distinctive groups, 

named the Representative Concentration Pathways (RCP): 2.6, 4.5, 6.0 and 8.5 W/m2, whose value 

corresponds to their level of radiative forcing in 2100 [278].  

In this chapter, the simulations will be run using outdoor weather files built with meteorological data 

that correspond to RCP 4.5 and RCP 8.5 scenarios. Whilst the RCP 4.5 corresponds to a medium 

stabilization scenario, the RCP 8.5 attains higher GHGs emissions because it does not encompass future 

climate policies [303]. Out of the four groups, the RCP 4.5 attains the lowest world population 

throughout all the period, and it starts to substantially decrease in the final part of the century. RCP 4.5 

has the second highest Gross Domestic Product (GPD), only overcome by RCP 2.4 [278]. In terms of 

energy use, RCP 4.5 corresponds to a steady increase of primary energy consumption through the 

considered period with the non-fossil fuels gaining a great importance [278]. In terms of land use, which 

has a great influence on the GHG emissions, RCP 4.5 is based on a great change in the way how land is 

used, since the cropland area and grassland area greatly decrease through all considered period, whilst 

the vegetation area greatly increases [278]. Finally, in terms of CO2 emissions, RCP 4.5 corresponds the 

second lowest, only overcome by RCP 2.6 [278]. Both RCP 4.5 and RCP 8.5 have been used in studies 

that deal with the effects of climate change in historic buildings, Climate for Culture [172] or Ref. [237]. 

The climate change weather files were constructed using the CORDEX database [71], which is an 

international coordinated framework that aims to comprehend the variability of the meteorological 

variables at a regional level by downscaling global climate model (GCM) into regional climate models 

(RCM). The data used in this chapter corresponds to model HadGEM2-SMHI-RCA4, which accurately 

https://www.sciencedirect.com/topics/engineering/coefficient-of-variation
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
https://www.sciencedirect.com/topics/engineering/mean-bias-error
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simulates the Portuguese climate and has been used in two projects SIAM 1 and 2 [306,307] and 

ClimAdaPT project, which develop strategies to adapt the country to climate change in several regions 

of Portugal [62].  

In order to build the weather files that include the necessary meteorological data that allows WUFI®Plus 

to perform at its full capacity [293], the following meteorological variables were downloaded from the 

CORDEX database [70]: air temperature (ºC), relative humidity (%), atmospheric pressure (Pa), global 

radiation (W/m2), global counter radiation (W/m2), precipitation (mm/h), cloud index (%), wind speed 

(m/s) and direction (º).  

The global radiation was divided in its direct and diffuse components using Skartveit and Olseth model 

that was firstly developed in 1986 [254] and then updated in 1998 [255] in order to obtain more reliable 

values. This model has been compared against the other models that exist in literature by Lanini [166] 

and achieved one of the best performances of all analysed models. Kim et al. [150] used this model to 

split the global radiation to build weather files using the procedure described in EN 15927-4 [89] for 

several locations in South Korea to perform hygrothermal simulations.  

This building weather file procedure has been broadly used in hygrothermal simulations, e.g. Barreira 

et al. [32] used it to build weather files and run hygrothermal simulations for Oporto climate, Portugal. 

This chapter followed the same methodology to develop the future weather files. The code developed 

for Skartveit and Olseth model is validated by Figure  J.1, which shows the same results that are 

presented in figure 2), and figure 3a) and 3b) of Ref. [255] for three specific cases. 

7.2.3.2. Selected climates 

7.2.3.2.1. Present conditions 

Due to the key influence of the outdoor climate on a building’s indoor climate, this study was developed 

for five European cities, namely Lisbon (Portugal) and Seville (Spain) – Mediterranean climates, Prague 

(Czech Republic) and Oslo (Norway) – Humid continental climate, and London (United Kingdom) – 

Oceanic climate.  

Lisbon has a temperate climate with rainy winters and hot summers [153], the outdoor temperature does 

not reach values below the freezing point, it has a rather high annual temperature average and it is subject 

to a considerable amount of rain [121], mainly during winter [65]. Seville has a rather similar climate to 

Lisbon, but it reaches higher temperatures, mainly during summer, and has a lower annual precipitation 

than Lisbon. 

Prague is classified as a humid continental climate with cold winters, temperatures that reach below the 

freezing point values, hot summers, and an annual low precipitation. Oslo has a similar climate to 

Prague, but its temperature is lower than Prague’s all year round and it has a higher annual precipitation 

than Prague. Finally, London is classified as an oceanic climate with cold winters, warm summers, and 
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an annual moderate precipitation.  

7.2.3.2.2. Future conditions 

Climate change will significantly change the outdoor conditions. Its impact tends to worsen the further 

into the future we go, namely by the generalized increase of the outdoor air temperature and the water-

vapour pressure. Precipitation will decrease in the Mediterranean zone and increase in central and 

northern Europe. In terms of global radiation there is an increase in the Mediterranean zone and a 

decrease in the other zones of Europe.  

These changes occur to a different extent depending on the location and the scenario considered: Figure 

7.2 for RCP 4.5 and Figure 7.3 for RCP 8.5. The differences mentioned in this subchapter are relative 

to near-past values. The annual thirty-year normal and the water-vapour pressure were calculated using 

the methodology described in Ref. [289] and Ref. [92], respectively. 

In terms of temperature, the trend is similar in all selected climates for both scenarios, i.e. there is a 

substantial increase of the temperature across the 21st-century, but RCP 8.5 attains higher values in the 

far-future. The thirty-yearly average in Lisbon increases 1.4 ºC in the near-future and 2.5 ºC in the far-

future for RCP 4.5 relative to the near-past values, while for RCP 8.5 it increases 1.7 and 4.1 ºC. In 

Seville, it increases 1.7 and 3.0 ºC for RCP 4.5, and 2.0 and 5.0 ºC for RCP 8.5, respectively. In Prague, 

it increases 1.9 and 2.8 ºC for RCP 4.5, and 2.0 and 4.8 ºC for RCP 8.5, respectively. In Oslo, it increases 

2.3 ºC and 3.4 ºC for RCP 4.5, and 2.3 and 5.2 ºC for RCP 8.5, respectively. In London, it increases 1.5 

and 2.5 ºC for RCP 4.5, and 1.6 and 4.0 ºC for RCP 8.5, respectively. 

In terms of water-vapour pressure, the trend is similar in all selected climates for both scenarios, i.e. 

there is a substantial increase of the water-vapour pressure across the 21st-century. Although differences 

between both scenarios are detected in the near-future, the substantial differences occur in the far-future, 

with RCP 8.5 attaining higher values. The thirty-yearly average in Lisbon increases 100 Pa in the near-

future and 186 Pa in the far-future for RCP 4.5 relative to the near-past values, while it increases 123 Pa 

and 306 Pa for RCP 8.5. In Seville, it increases 97 and 168 Pa for RCP 4.5, and 115 and 281 Pa for RCP 

8.5, respectively. In Prague, it increases 102 Pa and 172 Pa for RCP 4.5, and 111 and 282 Pa for RCP 

8.5, respectively. In Oslo, it increases 107 Pa and 169 Pa for RCP 4.5, and 109 and 276 Pa for RCP 8.5. 

In London, it increases 92 Pa and 170 Pa for RCP 4.5, and 105 and 275 Pa for RCP 8.5, respectively. 

In terms of precipitation, two opposite behaviours occur which depend on the location, i.e. precipitation 

decreases for the Mediterranean climates, whilst it increases for the three remaining climates. The 

highest differences relative to the near-past values are reached in the far-future for scenario RCP 8.5. 

The precipitation decreases in Lisbon in the near-future – i.e. -69 mm for RCP 4.5 and -36 mm for RCP 

8.5, and in the far-future – i.e. -99 mm for RCP 4.5 and -235 mm for RCP 8.5 in relation to the near-

past values. The same behaviour occurs for Seville in both the near-future – i.e. -41 mm for RCP 4.5 

and -56 mm for RCP 8.5, and the far-future – i.e. -122 mm for RCP 4.5 and -202 mm for RCP 8.5. On 
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the other hand, it increases for Prague, Oslo and London for both the near-future – i.e. 119, 220 and 98 

mm for RCP 4.5, and 124, 162 and 89 mm for RCP 8.5, and the far-future – i.e. 124, 218 and 150 mm 

for RCP 4.5, and 160, 314 and 142 mm for RCP 8.5 in relation to the near-past values.  

In terms of global radiation, two behaviours of opposite nature also occur, i.e. the global radiation 

increases for the Mediterranean climates, whilst it decreases for the three remaining climates. The most 

substantial differences relative to the near-past values are obtained in the far-future. The global radiation 

increases for Lisbon – i.e. 21W/m2 in the near-future and 38 W/m2 in the far-future for RCP 4.5, and 21 

in the near-future and 61W/m2 in the near-future for RCP 8.5, and for Seville – i.e. 20 and 40 W/m2 

respectively for RCP 4.5, and 11 and 45 W/m2 respectively for RCP 8.5 in relation to the near-past 

values. On the other hand, it decrease for Prague – i.e. -27 and -44 W/m2 respectively for RCP 4.5, and 

-22 and -44 W/m2 respectively for RCP 8.5, for Oslo – i.e. -55 and -71 W/m2 respectively for RCP 4.5, 

and -46 and -95 W/m2 respectively for RCP 8.5, and for London – i.e. -2 and -33 W/m2 respectively for 

RCP 4.5, and -14 and -11 W/m2 respectively for RCP 8.5 in relation to the near-past values.   
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Figure 7.2 – Difference between the annual thirty-year normals of the outdoor temperature, water-vapour pressure, 

precipitation and global radiation between the near-future and near-past (2nd column), as well as the far-future and the near-

past (3rd column) in Europe for RCP 4.5 
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Figure 7.3 – Difference between the annual thirty-year normals of the outdoor temperature, water-vapour pressure, 

precipitation and global radiation between the near-future and near-past (2nd column), as well as the far-future and the near-

past (3rd column) in Europe for RCP 8.5  
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7.2.4. Risk assessment and thermal comfort 

As previously mentioned, this subchapter includes three distinctive materials risk assessments: 

chemical, biological, and mechanical for four different artefacts: paper, panel paintings, furniture, and 

wooden sculpture. The thermal comfort was assessed using an adaptive thermal comfort model 

developed for buildings without climate control systems. To assess the materials’ behaviour according 

to the variation of the indoor conditions it is necessary to calculate its response time. This parameter 

was developed by Martens [178] and it consists in the amount of time that an object takes to get to 95% 

of the end value in case of a RH step change, i.e. it reflects how fast a material reacts to the variation of 

the indoor climate. 

7.2.4.1. Chemical risk 

Although chemical decay is a slow process, all organic materials are vulnerable to it, especially paper. 

Its speed is proportional to temperature and relative humidity, i.e. the higher the temperature and relative 

humidity, the faster chemical decay will occur. The damage of the material is caused by chemical 

reactions, namely hydrolysis and oxidation, which take place within the material and depend primarily 

on the temperature and secondly on its moisture content. Michalski [186] states that for each 5 K drop, 

the chemical lifetime of most chemical sensitivity materials doubles. The life expectancy for the several 

types of chemical sensitivity materials can be consulted elsewhere [188,187]. 

The chemical decay can be assessed using the lifetime multiplier concept, which was developed by 

Michalski based on the Arrhenius equation [186], and reflects for how much time the object remains 

usable by comparison to standard conditions, i.e. 20 ºC and 50% RH. The activation energy necessary 

for the reactions to start occurring is 100 kJ/mol for paper (i.e. cellulose) and 70 kJ/mol for the other 

materials (i.e. varnish) [178]. The equivalent Lifetime Multiplier can be used to quantify the chemical 

risk under a single value [253]: 
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Where eLM is the equivalent Lifetime Multiplier [-], n is the number of data points in the considered 

period [-], RHx is the surface relative humidity at instant x [%], Ea is the activation energy [J/mol], R is 

the gas constant [8.314 J/Kmol] and Tx is the temperature at instant x [ºC]. The use of this concept is 

beneficial for this type of research because it enables to assess the risk of chemical decay throughout a 

large period much more easily. 

7.2.4.2. Biological risk  

Many of the artefacts that are housed in buildings, such as museums, are vulnerable to fungal growth, 

especially those that are composed by at least one organic material, but also inorganic materials with 
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organic films [197]. For fungal to grow it is necessary to attain certain values of relative humidity and 

temperature, but it is also necessary that the substrate has nutrients [244]. These three conditions must 

be met simultaneously and endure for a specific period of time for mould growth to occur. Due to the 

risk that mould presents to artefacts conservation it is of key importance to cease this process. This can 

be achieved by first knowing the conditions under which mould growth occurs and secondly by acting 

appropriately. 

Sedlbauer [244] developed a two phase method, known as isopleth model, that allows to study the mould 

growth based on relative humidity, temperature and substrate, firstly, by determining the time needed 

for the spores to became active and secondly, by determining the rate of the mould growth once they are 

active. For the first phase the Spore germination graph is used, in which spores became active fungi 

when the Lowest Isopleth for Mould (LIM) is surpassed. The germination time decreases as temperature 

and relative humidity increase. In the second phase, the speed of the fungi growth is determined using 

the Mycelium growth rate graph. If the active fungi die, the germination process has to start all over 

again. It is also important to bear in mind that the maximum RH in which there is no mould growth 

varies according to the type of climate, while in temperate regions the RH should remain below 70 %, 

higher values maybe acceptable in cold regions [51].  

The mould risk factor (MRF) was used in this chapter to quantify the biological risk under a single value. 

The MRF is the sum of the time contributions to spore germination of each set of temperature and 

relative humidity that overcomes the respective LIM. This is performed by adding the reciprocal of the 

corresponding germination time. The spores become active fungi when the MRF reaches 1.0. According 

to IPI metrics [197], if the MRF is lower than 0.5 there is little or no risk of mould growth. It is important 

to bear in mind that due to MRF restrictions (namely, the possibility of the active fungi dying), the MRF 

value can vary through the considered period. Hence, this assessment should be focussed on the 

maximum values and not necessarily in the final value. A key advantage of this factor is that it manages 

to reflect the risk of mould growth occurrence throughout a large period under a single value, which is 

vital for this specific research.  

7.2.4.3. Mechanical risk 

All hygroscopic organic materials are susceptible to mechanical decay, which is a process that is mainly 

governed by relative humidity. The variation of relative humidity will lead to the variation of the 

moisture content of these materials, which will cause the material to shrink if relative humidity decreases 

or to swell if it increases. Additionally, and if the material has internal or external restraints, it will cause 

stresses within itself, which may eventually result in its cracking. 

This chapter follows a validated methodology of mechanical decay assessment [178], and analyses the 

dimensional change of furniture, sculptures and panel paintings, whose constituents have to be analysed 

individually – i.e. wood substrate and pictorial layer (Figure 7.4). For furniture, the mechanical decay is 
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assessed using an adapted version of Bratasz et al. graph [44], in which the x-axis corresponds to the 

annual average of relative humidity and the y-axis corresponds to the surface response to relative 

humidity. For sculptures, the mechanical decay is assessed using an adapted version of Jakiela et al. 

graph [144], in which the x-axis corresponds to the sub surface response to relative humidity and the y-

axis corresponds to the surface response to relative humidity.  

The mechanical decay in the wood substrate and the pictorial layer of painted panels must be assessed 

using two different methods. The mechanical decay of the wood substrate is assessed using an adapted 

version of Mecklenburg’s et al. graph [181] in which the x-axis corresponds to the object full response 

to relative humidity and the y-axis corresponds to the surface response to relative humidity. On the other 

hand, the mechanical decay of the pictorial layer is assessed using Bratasz’s et al. graph [45]. A more 

detailed explanation of these methods can be found elsewhere [178]. 

 

Figure 7.4 – Mechanical decay assessment for: a) wood substrate of the panel painting [181], b) pictorial layer of the panel 

painting [45], c) wood furniture [44] and d) wood sculptures [144] 

7.2.4.4. Thermal comfort  

Due to the importance of visitors in maintaining this type of buildings, it is important to guarantee that 

the indoor climate is thermally comfortable for them, as well as to preserve the artefacts welfare. Hence, 

the indoor conditions obtained from the run simulations were assessed using the adaptive method of 

ASHRAE 55:2013 [4] for an acceptability limit of 80 %. This method is valid for buildings that are 

naturally ventilated that do not have any mechanical systems [4]. Further information about this method 

can be consulted in Ref. [4]. It was assumed that the building would be open from 10h00–18h00 with a 
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visitor frequency of six people per hour [249]. The artificial illumination was also taken into account 

during this period due to the preference for type of illumination in terms of artefacts preservation 

concerns [264]. 

7.2.5. Retrofit measures  

In the past few years, retrofit measures have been subject to a significant number of studies that test 

them in historic buildings due to today’s sustainability concerns (e.g. [25,22,190,231,72,193,225,194]), 

but also because they are a protective measure that ensures that these buildings are used in the future 

[282]. However, their viability is greatly dependent on the outdoor climate [205], which means that a 

thorough study of the effects of each measure has to be developed in each specific case to ensure that 

they lead to an improvement of the indoor climate quality and not the opposite.  

This type of study is even more important for historic buildings that house collections due to these 

buildings’ specific characteristics and the fact that most of them were not initially built to house 

artefacts. An inadequate retrofit measure might even threaten the collection welfare and might lead to 

irreparable damages in the building itself [224].  

A set of retrofit measures were selected with the aim of improving the indoor climate in terms of 

conservation and thermal comfort (Table 7.1). These measures were chosen due to their applicability in 

heritage buildings. Each one was applied individually to the model to study the corresponding effect. 

Three types of building elements were subjected to retrofit measures: a) walls, b) ceilings/roof and c) 

windows. To make this analysis as comprehensive as possible, the validated model of St. Cristóvão 

church was used without taking any type of constraint into account, such as high value interior wall 

surfaces that would not allow the application of an interior thermal insulation system.  

Based on literature, two types of retrofit were selected for walls: external thermal mortar and interior 

thermal insulation systems, despite the disadvantages usually associated to applying the thermal 

insulation internally [59]. The selected insulations were vapour-open insulation materials [42]: PUR-

boards, mineral wool, perlite boards and calcium silicate boards. The thermal mortar was also assessed, 

since this retrofit measure has recently been tested in several Refs. [25,22,72,176], despite the fact that 

this layer has to be rather thick to ensure a significant increase of the wall’s thermal resistance, which 

might lead to compatibility problems with the building’s exterior elements (such as the windows’ sills).  

In terms of windows, the single-glazed windows were replaced by double-glazed with clear float with 

or without low emissivity glass. Lastly, the insulation of the roof and insulation of the ceilings were 

individually tested. Each insulation system has the same orientation as the building element to which it 

corresponds. An expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation systems were 

tested on the roofs. A mineral wool insulation system and polyurethane projected foam (PUR) were 

tested on the ceilings. Retrofitting the roof/ceilings is the less intrusive measure in historic buildings 

with heritage value [231], which is why it is favoured for this type of building.   
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Table 7.1 – Selected retrofit measures and corresponding thickness, thermal conductivity (λ-value) and water-vapour 

diffusion resistance factor (µ-value). Data taken from WUFI®Plus database [292] and LG10:1999 [263] 

Element Retrofit measure Material 
Thickness 

[cm] 

λ-value 

[W/m.K] 

µ-value  

[-] 
Code 

Walls 

Awall – 1146 m2 

Interior thermal 

insulation system 

PUR boards 

2–10 & 20 

0.031 69 W1 

Mineral wool 0.035 1.3 W2 

Perlite board 0.042 3.1 W3 

Calcium silicate 

boards 
0.050 3.2 W4 

Exterior thermal insulation mortar 1.5/3/5 0.045 4.0 W5 

Roof/Ceiling 

Aroof – 543 m2 

Aceiling – 466 m2 

Thermal insulation 

system beneath the 

ceramic tiles 

XPS 

2–10 

0.030 100 R1 

EPS 0.040 30 R2 

Thermal insulation 

system between 

wood slabs (air layer) 

PUR foam 

2–10 

0.025 50 C1 

Mineral wool 0.035 1.3 C2 

Windows 

Awindows – 56 m2 

Double glazing with clear float Uw = 2.8 W/m2K 

Wd1 

Double glazing with low E glass Uw = 1.4 W/m2K 

7.3. Results and discussion  

7.3.1. General considerations  

The viability of retrofit measures for historic buildings in terms of artefacts conservation – biological, 

chemical, and mechanical decay –, and visitors’ thermal comfort was assessed for three different types 

of climate whilst considering climate change by means of scenario RCP 4.5 and 8.5, namely: 

mediterranean (Lisbon and Seville), humid continental (Prague and Oslo) and oceanic (London).  

This option is due to the fact that the performance of the selected retrofit measures can greatly differ 

with the location, and also because climate change will affect each region of Europe differently [305], 

which can also lead to different performances. The key results of the performed simulations are 

presented below, and all retrofit measures were tested individually. The MRF and eLM figures follow 

the colour code presented in table 2.3 of Ref. [247].  

In addition to the specified thicknesses in Table 7.1 for the walls’ interior insulations systems, an extra 

equivalent thickness, named lm*, that corresponds to a 30 cm layer was included in the walls’ figures 

to show the results for each performed assessment for thicknesses higher than 20 cm, which will show 

their tendency. This extra thickness was determined by running a simulation with a 50 cm insulation 

layer for each retrofit measure. Then, the respective value for the 30 cm layer was determined through 
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linear interpolation. 

7.3.2. Viability of retrofit measures for historic buildings for future conditions: Mediterranean climates 

Biological decay 

The results show that the selected retrofit measures can have a key effect in decreasing the damaging 

effects caused by climate change in Mediterranean climates, which are more pronounced for RCP 8.5 

in the far-future. A reduction of the risk of biological decay in Lisbon was detected for both selected 

climate change scenarios, as well as for both selected periods of time – i.e. near- and far-future, with the 

installation of the selected walls retrofits. However, the thickness from which it is worth performing the 

wall retrofit measures will differ according to the type of retrofit, the outdoor climate and the way in 

which the world will evolve (Table  L.1). This topic will be further discussed at the end of this 

subchapter.  

While mineral wool, calcium silicate board and the thermal mortar have a positive effect right from the 

beginning, the PUR-boards and perlite boards are only worth applying from a certain thickness onwards 

(Table  L.1). This last behaviour is more noticeable in the far-future, which means that retrofit measures 

that nowadays have a positive performance may not do so in the future. Figure 7.5a shows the 

performance of PUR-boards for Lisbon. For instance, for RCP 8.5 in the far-future, the PUR-boards 

only overcome the case without retrofit measures (WR) at 15 cm and never reach ideal conditions.  

In Seville, the effects of the retrofit measures are similar to what was reported for Lisbon. Nonetheless, 

the risk of occurring biology decay in this climate is lower than in Lisbon (Figure 7.5b), the only case 

that poses a real risk is RCP 8.5 in the far-future (i.e. MRF is above 1.0 [197]), but this risk is mitigated 

by the application of the retrofit measures. On the other hand, the WR occurs at a larger thickness in 

Seville than in Lisbon, for example, the WR for RCP 4.5 is 7 cm for Lisbon and 18 cm for Seville for 

PUR-boards (Table  L.1). The thermal mortar has an interesting effect for both climates, but mostly for 

Lisbon, since for example, a 5 cm layer has the same effect as 8 cm of calcium silicate boards for RCP 

8.5 in the far-future, but due to the thickness restrictions this solution should be accompanied by other 

retrofit measures. 

The roofs’ retrofit also has a very positive outcome for both Lisbon and Seville, i.e. it considerably 

decreases the risk of biological decay (Figure  L.1 and Figure  L.2, a and b). However, this reduction is 

only substantial for the first tested thickness, which means that this reduction is mainly due to the air 

tightening of the roof that results from applying the insulation system. On the other hand, the insulation 

of the ceilings leads to a smaller decrease of the risk of biological decay for the first tested thickness, 

but thereafter there is a gradual decrease of the risk, which leads to believe that higher thicknesses could 

be tested (Figure  L.1 and Figure  L.2, c and d). As it was reported for the walls, only the RCP 8.5 in the 

far-future is within the risk zone (i.e. MRF > 1.0 [197]) for both climates, with a higher extent for Lisbon, 

but the application of any of the four retrofit measures mitigates this situation. The only exception is 
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mineral wool that is only worth installing from a certain thickness onwards (Table  L.1).  

Lastly, the replacement of the windows leads to a slight improvement for both climates, which is more 

substantial in the far-future. However, if the windows are to be replaced, other retrofit measures must 

accompany their replacement if the indoor climate is to improve significantly. This near neglectable 

effect of windows is transversal to the other assessments. 

 

Figure 7.5 – Biological decay assessment using MRF for historical values, near-future and far-future for Lisbon and Seville 

for the case-study with PUR-boards ranging from 2 to 20 cm (W1), and for the case without any retrofit (dotted lines)  

Chemical decay 

Climate change also increases the odds of occurring chemical decay in both climates, more significantly 

in the far-future. However, the two mediterranean climates respond differently to the application of the 

retrofit measures in the walls. While in Lisbon the walls’ retrofit measures increase the risk of occurring 

chemical decay since eLM decreases [251], although less substantially in the far-future (Figure 7.6a), in 

Seville the walls’ retrofit measures decrease the risk of occurring chemical decay since eLM increases 

[251] and more substantially in the far-future (Figure 7.6b).  
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In Lisbon, the applications of the retrofit measures lead to the increase of the indoor temperature and 

the decrease of the relative humidity all year around except for summer, which will result in the decrease 

of the lifetime multiplier (LM). This behaviour will decrease with climate change. As pointed out by 

Silva et al. [251], the lifetime multiplier response in mediterranean climates is mainly governed by 

winter, since it is when the lifetime multiplier reaches its highest values. 

 

Figure 7.6 – Chemical decay assessment using the eLM for historical values, near-future and far-future for Lisbon and Seville 

for the case-study with PUR-boards ranging from 2 to 20 cm (W1), and for the case without any retrofit (dotted lines) 

On the other hand, the application of the retrofit measures in Seville will lead to the increase of the 

indoor temperature and relative humidity during winter and autumn, and the decrease of the indoor 

temperature during summer and spring. While the first behaviour will result in the decrease of the LM, 

the second behaviour will increase the LM. This behaviour gains importance with climate change, since 

the decrease of temperature during these two seasons is more prominent, which will lead to superseding 

the first behaviour impact, thus leading to the increase of the eLM.  

The replacement of the windows does not reduce the risk of occurring chemical decay, whilst the other 
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tested retrofits, i.e. the application of insulation layer in the ceilings and in the roofs, even worsens it 

(Table 7.2). These observations show that these measures are not very proficient in counteracting the 

increase of the probability of occurring chemical risk in historic buildings associated with climate 

change for Mediterranean climates. 

Mechanical decay 

Since furniture is not endangered of mechanical decay, nor will it be in the future, it will not be further 

addressed in this subchapter. In addition, sculptures are also only slightly affected by climate change, 

i.e. the maximum time that sculptures are not under elastic behaviour is only 2.3 % lower than the 

maximum limit for the worst-case scenario for Lisbon, i.e. RCP 8.5 in the far-future. However, these 

decreases are compensated, at a different extent, by the application of the wall’s retrofit measures in 

both climates (e.g. Figure 7.7 for PUR-boards). The remaining retrofits do not significantly decrease the 

risk of mechanical decay in sculptures and, in some cases, they even worsen it (Table 7.2). 

 

Figure 7.7 – Mechanical risk assessment of sculptures for historical values, near-future and far-future for Lisbon and Seville 

for the case-study with PUR-boards ranging from 2 to 20 cm (W1) and for the case without any retrofit (dotted lines) 
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The application of the retrofit measures decreases the risk of mechanical decay for the base layer of the 

panel paintings in both climates substantially – up to 3.5 % for Lisbon for calcium silicate boards in the 

near-future for RCP 4.5 and 4.6 % for Seville in the far-future for RCP 4.5, managing to counteract the 

negative effects of climate change to a certain extent.  

The risk of occurring this type of decay is greater in Lisbon than in Seville. In Lisbon, the time the 

indoor climate is within the elastic behaviour zone can range between 81–90 % for the case without 

retrofits (dotted lines in Figure 7.8a), while in Seville it varies between 92–95 % (dotted lines in Figure 

7.8b), depending on how the world will evolve in the future, i.e. either following the path described in 

scenario RCP 4.5 or in scenario RCP 8.5.  

The walls’ retrofits lead to the most prominent improvements with calcium silicate boards performing 

the best for both climates at the higher thicknesses (Figure 7.8). In fact, the application of the walls’ 

retrofit even enables the indoor climate to eventually reach the 100%-value for historical values in 

Seville (e.g. Figure 7.8b). Another interesting observation is the fact that whilst for Lisbon the two 

worst-case scenarios correspond to the far-future (both dash dotted lines in Figure 7.8a), for Seville the 

two worst-case scenarios correspond to RCP 8.5 in the far-future and in the near-future (both green lines 

in Figure 7.8b). This shows that scenario RCP 8.5 is more strongly felt in Seville than in Lisbon 

throughout the whole studied period.  

The thermal mortar has an interesting performance, since it is responsible for increasing the time that 

the indoor conditions are under elastic behaviour, i.e. 2.4 % for Lisbon and 2.7 % for Seville for 

historical values (Table 7.2), despite its thickness restrictions. 

The roof retrofits are interesting only due to the roof’s air tightening, since the time that the indoor 

climate is under elastic behaviour increases with the initial installation of the retrofit measures (i.e. 2 cm 

thick) but stagnates thereafter. On the other hand, the ceilings retrofit gradually increase the amount of 

time that the indoor climate is under elastic behaviour, thus leading to the belief that greater thicknesses 

could be tested. Finally, the windows replacement does not improve the indoor climate in terms of 

decreasing the risk of occurring mechanical decay in the base layer of panel paintings, but at the same 

time it does not exclude its application for other purposes. 
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Figure 7.8 – Mechanical risk assessment of base layer (panel paintings) for historical values, near-future and far-future for 

Lisbon and Seville for the case-study with calcium silicate boards ranging from 2 to 20 cm (W4), and for the case without 

any retrofits (dotted lines) 

The application of the retrofit measures has the effect of decreasing the indoor fluctuations in both 

climates (Figure 7.9). However, whilst in Lisbon the values are always below the 14%-limit (e.g. Figure 

7.9a), in Seville they are over this limit (e.g. Figure 7.9b), which is problematic for the preservation of 

the pictorial layer of panel paintings. It is also evident that climate change is responsible for decreasing 

the indoor fluctuations for both climates. The only exception occurs for Seville in the far-future for RCP 

8.5 in which there is an increase of the indoor fluctuations in relation to the historical values. 

Nonetheless, and like the other cases, this behaviour is mitigated by the application of the retrofit 

measures (e.g. Figure 7.9b).  

The ceilings’ retrofits have positive outcomes in both climates, but more substantially in Seville (Table 

7.2), and whilst the roof retrofit is not advisable for Lisbon, it has positive outcomes in Seville (Table 

7.2). Once again, the windows replacement does not improve the indoor climate in terms of decreasing 

the risk of occurring mechanical decay in the pictorial layer of panel paintings, but at the same time it 
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does not exclude its application if other purposes are pursued. 

 

Figure 7.9 – Mechanical risk assessment of the pictorial layer (panel paintings) for historic values, near-future and far-future 

for Lisbon and Seville for the case-study with calcium silicate board ranging from 2 to 20 cm (W4), and for the case without 

any retrofit (dotted lines) 

Thermal comfort 

In terms of thermal comfort, the application of the retrofit measures leads to the improvement of the 

indoors conditions for both climates (Figure 7.10), with the walls’ retrofits having the most prominent 

performance, followed by the roofs’ retrofits and then by the ceilings’ retrofits (Table 7.2). This is 

expected, since they will be responsible for the increase of the indoor temperature during the cold 

months and its decrease during the warm months, which evidently will increase the amount of time the 

indoor conditions are within the limits imposed by ASHRAE 55 [4]. However, there are some 

exceptions, namely for the walls’ retrofits in Seville for scenario RCP 8.5 in the far-future (Figure 

7.10b), in which the retrofits are responsible for decreasing the number of hours during which the indoor 

climate is within the imposed limits.  

The application of the thermal insulation system has the impact of decreasing the variation of the indoor 
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temperature, i.e. it increases the minimal temperatures in winter and decreases the maximal temperature 

in summer. For example, the seasonal fluctuations for the historical values in Seville is 17.2 ºC for the 

case-study without retrofit measures and 15.9 ºC if it is equipped with a 10 cm PUR-board layer.  

The difference for the RCP 8.5 is that since the outdoor climate will reach higher temperatures 

(subchapter 7.2.3.2.2), then the most distinctive effect will be the reduction of the maximum 

temperatures. This will also affect the in-between seasons – i.e. spring and autumn – causing the 

decrease of the indoor temperature, which will result in having more hours that fail the inferior limit of 

ASHRAE 55 [4], and consequently, the number of hours that the indoor climate is within the imposed 

limits will decrease. The limits imposed by ASHRAE 55 [4] for RCP 8.5 in the far-future are rather high 

because the outdoor temperatures are also the highest (subchapter 7.2.3.2.2).  

 

Figure 7.10 – Thermal comfort assessment for historical values, near-future and far-future for Lisbon and Seville for the case-

study with PUR-boards ranging from 2 to 20 cm (W4), and for the case-study without any retrofit (dotted lines) 

Retrofit performance comparison 

Table 7.2 compares the performance of each selected retrofit measures to the case-study without 
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retrofits. The tested retrofits have two different aims, namely: 1) the reduction of both the MRF and the 

maximum indoor fluctuations (i.e. pictorial layer), and 2) the increase of the eLM, the amount of time 

that the indoor climate is under elastic conditions (i.e. sculpture and base layer), and the amount of time 

that the indoor climate is defined as thermal comfortable. These two aims will introduce some 

differences. Whilst for MRF and the pictorial layer, the negative values, which are presented in green, 

mean the improvement of the indoor climate; for eLM, sculptures, the base layer and thermal comfort, 

the positive values, which are presented in green, mean the improvement of the indoor climate.  

The walls retrofit measures lead to the most important improvements of the indoor climate in terms of 

artefacts conservation and thermal comfort. Among them, the most beneficial in terms of artefacts’ 

conservation is the calcium silicate boards (W4), and the mineral wool retrofit (W2). The W2 is the one 

that decreases the most the risk of mechanical decay for base layers (i.e. 4.0 %) and the risk of 

mechanical decay for the pictorial layer (i.e. -2.7 %) for Seville and W4 is the one that decreases the 

most the risk of mechanical decay for pictorial layer for Lisbon (i.e. -0.94), despite they have a slightly 

lesser performance in terms of thermal comfort than, for example, PUR-boards. The remaining retrofits 

also lead to improvements, although less substantial. The tested retrofits do not decrease the risk of 

chemical decay substantially, and they do not decrease the risk of biological decay for Seville because 

it is already zero or close to zero for the historical values, but they will in the future (Figure 7.8b). 

Table 7.2 – Performance of 10 cm of W1-4, 10 cm of R1-2 and C1-2, and 5 cm of W5 in relation to the case without retrofit 

for the historical climate Lisbon and Seville 

Climate Assessment W1 W2 W3 W4 W5 R1 R2 C1 C2 Wd1 

Lisbon 

MRF -0.06 -0.14 -0.11 -0.15 -0.12 -0.12 -0.12 -0.11 -0.11 -0.03 

eLM -0.03 -0.03 -0.02 -0.02 -0.01 -0.03 -0.03 -0.02 -0.02 0.00 

Sculpture -0.65 -0.26 -0.50 -0.08 0.06 -0.03 -0.02 -0.09 -0.08 -0.05 

Base layer 3.14 3.32 3.07 2.99 2.39 2.29 2.28 2.09 2.02 0.79 

Pictorial layer -0.52 -0.84 -0.69 -0.94 -0.55 0.11 0.14 -0.12 -0.12 -0.13 

Thermal comfort 6.06 5.57 4.69 5.18 1.74 3.99 4.26 2.56 2.25 0.03 

Seville 

MRF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

eLM 0.00 0.00 0.01 0.00 0.01 -0.02 -0.02 -0.01 -0.01 0.00 

Sculpture -0.50 -0.19 -0.35 -0.19 0.00 0.02 0.02 0.02 0.01 0.00 

Base layer 3.08 4.00 3.23 3.78 2.72 2.76 2.76 2.68 2.65 0.86 

Pictorial layer -2.27 -2.67 -2.36 -2.39 -1.73 -1.20 -1.15 -1.24 -1.17 -0.39 

Thermal comfort 2.47 1.92 1.61 1.89 0.49 2.65 2.71 1.80 1.52 -0.43 

Thickness range recommendations 

Another aspect that is very important in building retrofit is to guarantee that the applied retrofit measures 

really improve the indoor climate. Hence, the effects of the selected retrofits on the indoor climate were 

assessed in terms of the artefacts’ conservation and the visitors’ thermal comfort requirements for future 

conditions relative to the case-study without retrofits.  
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Annex L tables reflect this analysis in terms of recommending ranges of thicknesses that improve the 

indoor climate whilst compared with the case without retrofits. For example, Table  L.1 presents the 

ranges of thicknesses that guarantee that retrofit measures have a positive effect on the indoor climate 

in terms of either artefacts’ conservation or thermal comfort for the mediterranean climates in the future. 

A zero value means that it is not worth performing the retrofit for that aim, and if the superior limit is 

equal to the inferior limit, then there is only one recommended thickness for that retrofit measure.  

Table  L.1 shows that the furniture assessment does not narrow the thickness range. Based on this table 

it is also visible that the highest radiative forcing of RCP 8.5 reflects on the thickness ranges, since more 

narrow ranges than RCP 4.5 are recommended in most cases.  

In addition, it is possible to perform the intersection of two or more of these ranges if the aim of the 

retrofit project is to protect more than one type of artefact, or if the thermal comfort requirements are 

also to be accounted for in the project. The limits imposed by the sculpture analysis should be considered 

carefully if they are to be taken into account when choosing the thickness for the retrofit measures, 

because for the worst-case scenario there is only a 2.3 % drop from the 100%-value, which is even 

compensated by the application of the retrofits (Figure 7.7). 

7.3.3. Viability of retrofit measures for historic buildings for future conditions: Humid continental 

climates 

Biological decay 

In general, this type of climate is not prone to biological decay due to the lower indoor temperature and 

relative humidity when compared to the mediterranean climates. The only exception to this behaviour 

is if the world evolves according to scenario RCP 8.5, namely in the far-future, in which the MRF 

amounts to values above 1.0. From the two analysed climates, Oslo presents the greater risk of biological 

decay in the far-future for scenario RCP 8.5 (Figure 7.11).  

Fortunately, the application of most of the selected retrofit measures mitigate this risk, but the extent of 

the mitigation will depend on the measure’s properties (Table 7.3). The more substantial impacts are 

observed for the walls’ retrofits, but the insulation of the roofs or the ceilings also lead to the reduction 

of the risk of biological decay, which is more substantial for Oslo. The fact that only scenario RCP 8.5 

has a MRF above 0.5 in the far-future, whilst all the other cases have a MRF below this limit, will reflect 

on the thickness range that each retrofit measures will have within ideal conditions (Table  L.4). 

The thermal mortar and the windows replacement do not reduce the risk of biological decay, in fact they 

even increase it (Table 7.3). This happens for the thermal mortar because its application decreases the 

temperature during the critical season for biological decay, i.e. spring, since the water-vapour pressure 

will not change significantly, the relative humidity increases. This RH rise will increase the time 

contributions, which in turn will increase the MRF. The windows’ replacement impact is not substantial, 

which enables its replacement if other aims are pursued, e.g. acoustic improvement. 
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The thickness from which it is worth implementing each select measure varies according to its 

properties, the outdoor climate and the IPCC scenario (Table  L.2). For example, whereas the mineral 

wool can be applied from 2 cm onwards in Prague if the world evolves as described in scenario RCP 

4.5, the perlite boards must be at least 6 cm thick to overcome the behaviour of the case without retrofits. 

This table limits the thicknesses ranges that can be applied, but on the other hand, it ensures that the 

applied retrofit measures really improve the indoor climate quality. 

 

Figure 7.11 – Biological decay assessment using MRF for historical values, near-future and far-future for Prague and Oslo 

for the case-study with calcium silicate boards ranging from 2 to 20 cm (W4), and for the case without any retrofit (dotted 

lines) 

Chemical decay 

In terms of chemical risk, both climates are within ideal conditions (i.e. eLM above 1.0). The application 

of the retrofit measures and the impact of climate change will worsen the situation, since they will be 

responsible for decreasing the eLM, but both climates will remain within ideal conditions (Figure 7.12). 

Ultimately, this means that although the retrofit measures cannot be applied with the purpose of 

decreasing chemical risk, they can be applied with other purposes, e.g. to improve the thermal comfort, 
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and still keep the indoor climate within ideal conditions in terms of chemical decay (Table  L.4).  

The performance of each type of retrofit is rather similar (Table 7.3), with Oslo attaining the most 

substantial decreases. Nonetheless, Oslo is also the climate in which the eLM can decrease more without 

compromising the welfare of the artefacts (Figure 7.12). This occurrence will reflect on the thicknesses 

recommended in Table  L.2 in which almost no retrofit is recommended to decrease the risk of chemical 

decay, but it does not limit its application if other purposes are pursued. 

 

Figure 7.12 – Chemical decay assessment using eLM for historical values, near-future and far-future for Prague and Oslo for 

the case-study with PUR-boards ranging from 2 to 20 cm (W1), and for the case without any retrofit (dotted lines) 

Mechanical decay 

The furniture mechanical risk assessment does not limit the thickness ranges for Prague and Oslo now, 

nor will it limit them in the future (Table  L.2). On the other hand, climate change slightly reduces the 

amount of time that the indoor climate is under elastic behaviour for sculptures. The minimum value is 

98.3 %, which is attained for Prague in the far-future if the world evolves as described in scenario RCP 

4.5 (Figure 7.13a). However, this occurrence is mitigated by the application of the walls’ retrofit to a 
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certain extent, which will vary according to the properties of the retrofit measures (Table 7.3). 

Consequently, this variance will limit the range of recommended thicknesses differently (Table  L.2).  

Contrary to what was reported for the walls, in the case of the roofs’ and ceilings’ retrofits, and the 

windows’ replacement, their application does not increase the number of hours that the indoor climate 

is under elastic behaviour conditions for sculptures. They are even responsible for worsening them. 

However, since it only worsens the indoor climate slightly (Figure 7.13b), it does not limit the 

application of these measures for other purposes. Nonetheless, this occurrence will have consequences 

on the recommended thicknesses in Table  L.2 for the roofs’ and ceilings’ retrofits. The recommended 

limits of thicknesses based on the mechanical risk assessment for sculptures should be considered 

carefully, and they should not condition the retrofitting of this type of buildings for other purposes, since 

they correspond to small decreases that can be endured. 

 

Figure 7.13 – Mechanical risk assessment of sculptures for historical values, near-future and far-future for Prague for the 

case-study with PUR-boards ranging from 2 to 20 cm (W1) and XPS ranging from 2 to 10 cm (R1), and for the case without 

any retrofit (dotted lines) 

One of the most important impacts of the retrofit measures concerns the mechanical risk assessment of 
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the base layers of panel paintings (Figure 7.14). The retrofits manage to counter the negative effect of 

climate change for both climates substantially, which decreases the number of hours in which the indoor 

climate in under elastic conditions for base layers. There are even cases in which the application of the 

retrofit measures manages to make the indoor climate within elastic behaviour conditions all-year round 

(e.g. Figure 7.14b for RCP 4.5 in the near-future, 8 cm onward). 

The most substantial impacts were detected for the walls’ retrofits, with mineral wool having the best 

performance, then followed by the roof and ceilings retrofits (Table 7.3). The windows’ replacement 

slightly increases the number of hours that the indoor climate is under elastic conditions for base layers. 

However, to improve the indoor climate in terms of decreasing the risk of mechanical decay for the base 

layers of panel paintings proficiently other measures will also have to be applied (Table 7.3). The 

recommended thickness ranges are only occasional narrowed (Table  L.2). This is due to the positive 

impact that the retrofit measures have in the conservation metrics of the base layers. 

 

Figure 7.14 – Mechanical risk assessment of base layer (panel paintings) for historical values, near-future and far-future for 

Prague and Oslo for the case-study with calcium silicate board ranging from 2 to 20 cm (W4), and for the case without any 

retrofits (dotted lines) 
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For most analysed cases in the two climates, the application of the retrofit measures leads to the increase 

of the maximum indoor fluctuations, but on the other hand the 14%-limit value is not reached (e.g. 

Figure 7.15 for PUR boards). This fact leads to the conclusion that the retrofit measures can be applied 

if other purposes are pursued. Their performance will vary according to the properties of each retrofit 

type (Table 7.3).  

The exceptions that were detected for the walls’ retrofit are RCP 8.5 in the far-future for both climates 

and scenario RCP 4.5 in the near-future for Prague. In fact, the most worrying cases are RCP 4.5 in the 

near-future for Prague (Figure 7.15a) and RCP 8.5 in the far-future for Oslo (Figure 7.15b) because the 

application of the retrofit measures leads to the increase of the indoor fluctuations, whereas for Prague 

in far-future of RCP 8.5, the application of the retrofit measures will eventually lead to the decrease of 

the indoor fluctuation (Figure 7.15a), which is due to the specificities of each analysed time frame and 

scenario.  

 

Figure 7.15 – Mechanical risk assessment of the pictorial layer (panel paintings) for historical values, near-future and far-

future for Prague and Oslo for the case-study with PUR-boards ranging from 2 to 20 cm (W4), and for the case without any 

retrofit (dotted lines) 
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Note that these exceptions and respective observations are also true for the roofs’ and ceilings’ retrofits, 

i.e. the worrying cases are RCP 4.5 in the near-future for Prague and RCP 8.5 in the far-future for Oslo, 

since the application of the retrofit measures will lead to the increase of the indoor fluctuations, which 

will eventually overcome the 14%-limit value. This means that special attention must be paid to these 

climates if the world evolves as described in the respective scenario. The application of the thermal 

mortar is not very advisable for reducing the indoor fluctuations in the studied cases. Considering all 

these observations it is obvious that the recommended thicknesses ranges are almost non-existent (Table  

L.2), but this should not limit the application of these retrofit measures in most cases. 

Thermal comfort 

The application of the retrofit measures has a very positive effect on the thermal comfort for both 

climates, but more substantially for Oslo (e.g. Table 7.3 shows the results for scenario RCP 8.5 in the 

far-future). With the application of the retrofit measures, the thermal resistance of the building will 

increase, which will lead to higher indoor temperatures during the in-between seasons. Consequently, 

the number of hours that the indoor climate is within the limits imposed by the ASHRAE standard [4] 

will also increase. PUR-boards have the best performance, which is understandable since it has the 

lowest thermal conductivity (Table 7.1). This positive effect reflects on the recommended thicknesses 

measures ranges, which are almost full range (Table  L.2). 

Table 7.3 – Performance of 10 cm of W1-4, 10 cm of R1-2 and C1-2, and 5 cm of W5 in relation to the case without retrofit 

for scenario RCP 8.5 in the far-future for Prague and Oslo 

Climate Assessment W1 W2 W3 W4 W5 R1 R2 C1 C2 Wd1 

Prague 

MRF 0.09 -0.01 0.12 -0.15 0.28 -0.18 -0.22 -0.04 -0.05 0.06 

eLM -0.01 -0.01 0.00 -0.01 0.00 -0.02 -0.02 -0.01 -0.01 0.00 

Sculpture -0.39 -0.02 -0.23 0.15 0.11 -0.08 -0.08 -0.09 -0.09 -0.01 

Base layer 3.76 3.85 3.61 3.74 1.00 1.76 1.78 1.51 1.45 0.30 

Pictorial layer -0.42 -0.54 -0.44 -0.98 -0.65 -0.86 -0.83 -0.93 -0.87 -0.29 

Thermal comfort 3.04 2.68 2.37 2.71 1.31 1.98 2.07 1.58 1.40 0.06 

Oslo 

MRF -0.27 -0.45 -0.20 -0.56 0.22 -0.37 -0.39 -0.20 -0.19 0.01 

eLM -0.08 -0.08 -0.07 -0.07 -0.03 -0.06 -0.06 -0.05 -0.05 -0.01 

Sculpture -0.66 -0.21 -0.53 -0.05 -0.06 -0.07 -0.07 -0.15 -0.11 0.00 

Base layer 2.48 2.47 2.25 2.40 1.59 2.02 2.01 1.86 1.80 0.56 

Pictorial layer 2.64 2.41 2.48 1.79 2.27 1.15 1.06 1.38 1.27 0.53 

Thermal comfort 10.59 10.08 8.83 9.32 3.14 8.01 8.07 6.30 5.88 0.21 

7.3.4. Viability of retrofit measures for historic buildings for future conditions: Oceanic climates 

Biological decay 

In London, the risk of biological decay is non-existent since the MRF is below 0.5 for every analysed 

case, i.e. RCP 4.5 and RCP 8.5 in the near- and far-future. The MRF will increase in the future since 

both the indoor temperature and relative humidity will increase [67], consequently, the LIM curve will 

be more easily overcome [244], but due to the climate characteristics, this increase is not sufficient to 
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make the indoor climate leave the ideal conditions zone (Table  L.4).  

In addition, the application of the retrofit measures has a positive impact since they are responsible for 

decreasing the MRF (Figure 7.16). As the values of MRF are rather low, it can be difficult to ascertain 

the differences of performance in-between each typology measure (Table 7.4). Nonetheless, their 

differences will be more substantial for lower thicknesses, since there is a minor limitation in the range 

of thickness for PUR-boards (W1), Perlite boards (W3) and mineral wool (C1) retrofits in both IPCC 

scenarios and the thermal mortar for scenario 8.5 (Table  L.3). 

 

Figure 7.16 – Biological decay assessment using MRF for historical values, near-future and far-future for London for the 

case-study with calcium silicate boards ranging from 2 to 20 cm (W4) and mineral wool ranging from 2 to 10 cm (C2), and 

for the case without any retrofit (dotted lines) 

Chemical decay 

Climate change has the negative impact of decreasing the eLM, this happens mainly due to the increase 

of the indoor temperature associated to climate change. In fact, the application of any of the selected 

retrofit measures will intensify this occurrence. However, neither behaviours manage to decrease the 

eLM enough so that the indoor climate leaves the ideal conditions (e.g. Figure 7.17a for PUR-boards). 
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This means that although the retrofit measures will not improve the indoor climate in terms of reducing 

the risk of chemical decay, they can be applied nonetheless, if other aims are pursued, such as increasing 

the thermal comfort, without endangering chemical susceptible artefacts. 

The only detected exception to the decrease of eLM corresponds to the application of mineral wool at 

lower thicknesses (Figure 7.17b, with the limit ranging from 2.3 to 2.8 cm depending on the analysed 

IPCC scenarios and time periods). This is belief to be because the insulation layer is still not thick 

enough to lead to the substantial increase of the indoor temperature, and the decrease of the eLM.   

The previously described behaviour will reflect on the recommended thickness in Table  L.3, since most 

cases will not overcome the case without retrofits. Nonetheless, since climate change and the application 

of the retrofit measures are not sufficient to take out the indoor climate from the ideal condition zone, 

Table  L.4 recommends the full range thicknesses for all cases. 

 

Figure 7.17 – Chemical decay assessment using eLM for historical values, near-future and far-future for London for the case-

study with PUR-boards ranging from 2 to 20 cm (W1) and with mineral wool ranging from 2 to 10 cm (C2), and for the case 

without any retrofit (dotted lines) 
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Mechanical decay 

As it was mentioned for the other types of climate, the furniture assessment does not reveal any risk of 

mechanical decay neither for present nor for future conditions, thus it will not be further discussed. In 

addition, climate change has a rather small negative impact on the risk of mechanical decay for 

sculptures, i.e. under 0.5% for all analysed cases, which is almost neglectable and should not limit the 

choice of thickness in case of installing any of the studied retrofit measures.  

Nonetheless, this impact is mitigated by the application of the selected wall retrofit measures (e.g. Figure 

7.18a for PUR-boards), except the thermal mortar that does not manage to increase the number of hours 

that the indoor climate is in elastic behaviour for RCP 4.5 in the far-future and RCP 8.5 in the near-

future (Figure 7.18b). The remaining measures, i.e. roof, ceilings, and windows retrofits, are also not 

appropriate to reduce this risk (Table 7.4). These occurrences will be reflected on the recommended 

thicknesses (Table  L.3), which are non-existent for RCP 8.5 since this is the most severe scenario.  

 

Figure 7.18 – Mechanical risk assessment of sculptures for historical values, near-future and far-future for London for the 

case-study with PUR-boards ranging from 2 to 20 cm (W1), and with thermal mortar ranging from 1.5 to 5 cm (W5) and for 

the case without any retrofit (dotted lines) 
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Climate change also has a substantial negative impact on the welfare of the base layer of panel paintings, 

since it reduces quite substantially the amount of time that the indoor climate corresponds to elastic 

behaviour, e.g. the time that the indoor climate corresponds to elastic behaviour for RCP 8.5 in the far-

future drops 15 % in relation to the historical values. Fortunately, this effect is also counteracted by the 

application of the selected retrofit measures (Figure 7.19).  

The performance of the selected retrofit measure will vary according to their characteristics. The walls’ 

retrofits have the highest mitigation impact, followed by the roofs’ and then the ceilings’ retrofits (Table 

7.4). The thermal mortar has an interesting mitigation impact since it corresponds to a rather slender 

layer when compared to the other wall retrofits. Table  L.3 recommended the full thickness range for 

both IPCC scenarios due to the positive outcome of applying the selected retrofits measures in terms of 

reducing the risk of mechanical decay in the base layer of panel paintings. The only exception is the 

thermal mortar that has its range of thickness slightly reduced in the near-future.  

 

Figure 7.19 – Mechanical risk assessment of base layer (panel paintings) for historic values, near-future and far-future for 

London for the case-study with calcium silicate board ranging from 2 to 20 cm (W4) and with mineral wool ranging from 2 

to 10 cm (C2), and for the case without retrofits (dotted lines) 
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Climate change also has the effect of increasing the indoor fluctuations in relation to the historical 

values. This occurs because climate change widens the amplitude between the minimum and maximum 

indoor temperature [67]. Yet, the application of the selected retrofit measures has the effect of decreasing 

the fluctuations for most analysed cases (Figure 7.20), which is reasonable since the application of these 

measures will make the indoor climate less dependent on the variations of the outdoor conditions. In 

addition, all the analysed cases are below the 14%-limit value, which enables the application of the 

retrofit measures even if they were responsible for increasing the indoor fluctuations. 

 

Figure 7.20 – Mechanical risk assessment of the pictorial layer (panel paintings) for historical values, near-future and far-

future for London for the case-study with calcium silicate board ranging from 2 to 20 cm (W4) and thermal mortar ranging 

from 1.5 to 5 cm (W5), and the case without any retrofit (dotted lines) 

The performance of each retrofit measure typology will be different. The highest decreases of the indoor 

fluctuations were obtained by the walls’ retrofits, with mineral wool achieving the best results, followed 

by the ceilings’ and then the roofs’ retrofits (Table 7.4). The performance of all retrofit measures at near-

future for scenario RCP 8.5 is rather worrying since the indoor fluctuations are higher than the case 
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without retrofits. However, this behaviour is overcome by the walls’ retrofits for the thicker layers. This 

does not occur for the other retrofits (e.g. Figure 7.20b for thermal mortar). This will have consequences 

in the recommended thicknesses presented in Table  L.3, more noticeably for RCP 8.5. 

Thermal comfort 

The application of the retrofit measures has the expected result in terms of thermal comfort, i.e. it 

considerably increases the time that the indoor climate is within the limits imposed by ASHRAE 55 

(Table 7.4). Consequently, this will reflect on the recommendation of the full range of analysed 

thicknesses (Table  L.3). The only two exceptions are the thermal mortar (W5) and the mineral wool 

(C2), which are only worth applying from a certain thickness onwards (Table  L.3).  

The application of the retrofit measures will decrease the variation of the indoor temperature, i.e. it will 

reduce the maximum temperatures, and increase the minimum temperatures. However, the application 

of a 2 cm mineral wool layer is not sufficient to compensate the temperature reductions in spring and 

autumn, which will increase the number of hours that the indoor climate fails to overcome the inferior 

limit. This does not occur for the PUR-foam since it has a higher thermal conductivity value than mineral 

wool (Table 7.1). For example, 10 cm of PUR foam has more 43 % thermal resistance than 10 cm of 

mineral wool.  

Table 7.4 – Performance of 10 cm of W1-4, 10 cm of R1-2 and C1-2, and 5 cm of W5 in relation to the case without retrofit 

for scenario RCP 4.5 in the far-future for London 

Climate Assessment W1 W2 W3 W4 W5 R1 R2 C1 C2 Wd1 

London 

MRF -0.02 -0.03 -0.02 -0.04 0.01 -0.03 -0.03 -0.02 -0.02 0.00 

eLM -0.05 -0.05 -0.04 -0.04 -0.02 -0.04 -0.04 -0.03 -0.03 0.00 

Sculpture -0.32 -0.07 -0.23 0.03 -0.05 -0.17 -0.16 -0.18 -0.16 -0.03 

Base layer 7.09 7.63 6.66 7.29 3.66 5.45 5.49 4.53 4.42 1.12 

Pictorial layer -1.05 -1.55 -1.18 -1.39 -1.06 -0.25 -0.22 -0.46 -0.47 -0.37 

Thermal comfort 6.51 6.12 4.81 5.48 1.77 5.42 5.57 4.32 3.99 0.15 

7.4. Conclusions 

The aim of this chapter was to test a set of retrofit measures adequate for historic buildings that aimed 

to improve the indoor climate in terms of conservation metrics whilst considering climate change. A 

validated whole-building hygrothermal model of a high thermal building was used coupled with outdoor 

weather files that take climate change into account. The obtained indoor conditions were assessed using 

a risk-based analysis. The thermal comfort of the visitors was also considered by means of an adaptive 

model. This study was performed for several climates, namely: Lisbon (Portugal) and Seville (Spain), 

Prague (Czech Republic) and Oslo (Norway), and London (United Kingdom). Ultimately, it was shown 

that measures that nowadays have a positive performance may not have one in the future. 

The outdoor weather files used in this chapter were created using the methodology recommended by 

standard EN 15927-4. Since WUFI®Plus needs the global radiation and its diffuse fraction to run 
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properly, the updated Skartveit and Olseth model was used to obtain the diffuse fraction. Lastly, the 

WAC weather files, i.e. the type of weather files typically used by WUFI®Plus, were created. All these 

processes were performed using MATLAB, which greatly reduced the amount of time it took to perform 

each individual activity and, at the same time, guaranteed the quality of the created weather files. 

For Mediterranean climates, the application of the selected retrofits measures manages to mitigate, to a 

certain extent, the negative effects imposed by climate change in terms of artefacts’ conservation 

requirements in historic buildings. The extent of these mitigations varies according to the retrofit 

measure. The application of calcium silicate board and mineral wool in walls achieved the most 

impressive results in terms of reducing the risk of biological decay, and mechanical decay in panel 

paintings – both in terms of the base layer and the pictorial layer. These retrofit measures also improved 

the thermal comfort. In addition, it was shown that furniture does not limit the building’s retrofit in any 

way, and that sculptures should not condition the building’s retrofit, since their drop from the maximum 

value is only minimal. Lastly, it was observed that the selected retrofit measures are not effective in 

decreasing the risk of chemical decay.  

For Humid continental climates, the main observation based on the several developed assessments was 

the fact that although the retrofits do not always improve the indoor climate in terms of artefacts 

conservation, there is a considerable margin for their application in contrast to the Mediterranean 

climates due to their colder climate. This margin enables the application of the retrofit measures even 

though they sometimes may reduce the conservation metrics. These retrofit measures will increase the 

indoor thermal comfort substantially, but they will also improve some of the artefacts’ conservation 

metrics. They will reduce the risk of biological decay, and mechanical decay in sculptures and in the 

base layer of panel paintings. On the other hand, the retrofit measures will be responsible for the decrease 

of the equivalent lifetime multiplier (i.e. they will increase the risk of chemical decay). However, this 

decrease is not sufficient to make the indoor climate leave the ideal conditions zone. In addition, the 

retrofit measures are also responsible for increasing the indoor fluctuations in most analysed cases. 

The oceanic climates also have a margin to implement the retrofits, even if these do not improve the 

indoor climate in terms of artefacts conservation. In fact, this margin in terms of chemical decay is even 

bigger than for the humid continental climates since they are not conditioned by the RCP 8.5 scenario 

in the far-future. The retrofit measures positive impacts will be the increase of the thermal comfort 

conditions, the reduction of the biological decay risk, the increase of time that the indoor climate 

corresponds to elastic behaviour for the base layers (panel paintings) and sculptures (for some cases), 

and the reduction of the indoor fluctuations in some cases. On the other hand, the retrofit measures will 

be responsible for the decrease of the eLM, but this will not be enough for the indoor climate to leave 

the ideal conditions zone. Some of these measures will be responsible for decreasing the amount of time 

that the indoor climate corresponds to elastic behaviour for sculptures, as well as the increase of the 

indoor fluctuations.  
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The exterior thermal mortar can be an interesting measure for historic buildings, since it works as a 

protection layer that limits the variation of the indoor climate. Due to its position it is also responsible 

for the storage of heat inside the wall, which will decrease the occurrence of interstitial condensation. 

However, due to the thickness limitation typical of this type of measure, it cannot be applied without 

additional retrofit measures if they are to reach the same level of proficiency as the other wall retrofit 

measures. To test the effects of replacing the windows more effectively, another case-study with a higher 

window/wall ratio should also be used. 
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8. CONCLUSIONS  

The present work consists in the analysis of the use of passive retrofit measures in historic buildings that 

house artefacts with the aim of mitigating the effects of climate change. The main conclusions of this 

thesis are presented in subchapter 8.1.The research topics that the author believes are also worth 

pursuing in the future are presented in subchapter 8.2. 

8.1. Final remarks 

Literature review 

Monitoring campaigns are of great importance since they enable the characterization of a building’s 

indoor climate by means of using sensors and dataloggers. Normally, the used sensors only monitor the 

indoor conditions (e.g. temperature, relative humidity, indoor pollutants), hence they are based on a non-

destructive assessment, which is vital for historic buildings due to their heritage value.  

The campaign should last at least one complete year, more if possible, and have a recording frequency 

of 10/15 minutes so that the indoor climate variability is thoroughly recorded. In addition to the 

minimum of 12 months recordings, it is advisable to monitor one extra month in order to calculate the 

seasonal fluctuations, which is based on the concept of the monthly moving average. 

A thorough monitoring campaign should use several sensors installed throughout the case-study in 

locations that are important for the specific study. A preliminary assessment based on a short-term 

monitorization can be performed to help deciding the locations of the sensors for the long-term 

monitoring campaign. The sensors should be installed in locations where recordings are not influenced 

by unwanted sources (e.g. a T&RH sensor should not be installed in the vicinity of a window or else it 

can be heated due to the radiation that comes through the window). The sensors have to guarantee certain 

minimum accuracies in accordance with the condition that they measure, so that their results are reliable 

enough. In addition, the sensors should go through a thorough calibration process prior to installation. 

The recorded indoor conditions can be assessed at several levels, namely in terms of thermal comfort 

(either using an analytical or an adaptive thermal comfort model), in terms of conservation metrics 

(through a risk-based analysis), or in terms of indoor pollutants, among others.  

Due to the key importance that preserving artefacts has in buildings such as museums, the use of a risk-

based analysis is of the utmost importance to assess the indoor climate. Usually, this type of analysis is 

based on damage functions that use the recorded indoor temperature and relative humidity values to 

determine if the indoor climate is adequate or not to safeguard artefacts. This analysis usually includes 

the assessment of the risk of biological, chemical and mechanical decay. At a second level of 

importance, it is also common to assess the indoor climate in terms of thermal comfort, due to the 

importance that visitors have on the revenues and, therefore, on the continuity of this type of buildings. 
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The indoor climate of buildings can be largely influenced by the outdoor climate, which is expected to 

change considerably due to climate change. The overall increase of the air temperature, the decrease of 

precipitation in the southern region and its increase in the northern region of Europe, the increase of 

droughts events and extreme precipitation events will significantly affect several regions of Europe.  

There is uncertainty on how the world’s climate will in fact evolve until the end of the century due to 

the variability of all parameters that are considered. To mitigate this situation, several scenarios have 

been developed to encompass the possible ways in which the world’s climate can evolve in the future. 

It is only natural that these changes will change the indoor climate of buildings, which might put the 

welfare of the artefacts in danger. Hence, it is necessary to find ways to counteract the negative effects 

that climate change might have inside buildings. A very useful tool, which allows a thorough analysis 

of the effects of the selected measures without compromising the building’s welfare, is to the develop a 

computational model based on the monitoring campaign data. As previously mentioned, this procedure 

is based on a non-destructive methodology, which is of the utmost importance for buildings of great 

heritage value, as the buildings where museums are usually installed.  

The computational model has to go through an extensive validation procedure, so that its results are 

reliable. Normally, this procedure is based on the comparison between the recorded conditions and the 

simulated conditions either solely by means of visual comparison, i.e. graphs, or also using several 

statistical parameters (e.g. coefficient of determination, coefficient of variation of the root mean square 

error, normalized mean bias error and goodness of fit). The use of several statistical parameters for more 

than one indoor condition will lead to a more robust validation of the computational model. 

In order to counteract the negative effects that climate change can have inside historic buildings that 

house artefacts several measures, such as the application of passive retrofit measures, can have a positive 

impact. Moreover, the application of this type of measures also has a very key impact in terms of energy 

saving potential, more substantial for constant climate control strategies, but also for dynamic strategies. 

Their effects have to be thoroughly examined prior to application, since untested measures can lead to 

irrecuperable damages, this being one of the key reasons for developing of computational models. 

Whole-building hygrothermal modelling using WUFI 

WUFI®Plus is a powerful hygrothermal simulation software that determines the indoor temperature and 

relative humidity for each zone of the model by taking into consideration the heat and moisture transfer 

that occurs through components, which is induced by the boundary conditions; the gains/losses due to 

natural and/or mechanical ventilation and the gains/losses due to internal heat or moisture sources/sinks.  

It is one of the most known software where studies concerning the hygrothermal behaviour of buildings 

have been developed. It has been extensively validated over the years, it is continuously subjected to 

updates and it accounts for several of the behaviours that affect the thermal and moisture behaviour of 



189 

buildings. In order to run a simulation to its fullest, WUFI®Plus needs: basic materials’ properties, as 

well as advanced materials’ properties; a complete outdoor weather file; as well as a detailed schedule 

for the internal sources. Nonetheless, it has same disadvantages, such as the fact that the temperature 

and relative humidity are constant in each zone or that the hysteresis in the moisture storage function is 

disregarded. 

Developing thorough and accurate hygrothermal studies in WUFI®Plus can be highly time consuming. 

Hence, several strategies that aim to reduce the amount of time needed to perform large-sized 

hygrothermal simulation studies were presented. Ultimately, all those strategies were organised in a 

methodology that makes this type of studies more time-efficient. This allows the use of powerful tools, 

such as simulation software, to optimize buildings more frequently and straightforwardly.  

The used methodology lead to substantial time savings at the several steps that incorporate the typical 

building simulation studies. By using MATLAB in the simulation setup, a task that would take between 

11 to 23 h to perform manually, only takes between 1-3 minutes, i.e. a time saving of almost 100 %. 

Secondly, dividing the simulations by 20 PCs, the overall simulation time decreased between 34-62 %. 

This decrease is of key importance since it corresponds to the task that conditions this type of studies, 

because it is the one that takes longer to complete. Lastly, the data processing using MATLAB also has 

a substantial time reduction that ranged from ca 51 to almost 100 %, transforming a task that would take 

hours to complete into a task that can be performed in a matter of seconds. This task duration is greatly 

dependent on the complexity of the performed analysis. However, since it performs independently from 

the user, the drawback of its longer duration associated to more complex analysis is somehow lessened. 

In addition, the automatic insertion of inputs in WUFI®Plus has a key advantage in simulation studies, 

i.e. it enables the algorithm to learn with the outputs of WUFI®Plus, and according to the outlined goals, 

it changes the inputs of the model and then runs more simulations until it overcomes the termination 

criteria selected by its authors. This procedure can have numerous applications in literature. 

Finally, it is the author’s belief that the development of hygrothermal simulation studies that include a 

great number of simulations, should be accompanied by a software that deals with numerical calculation. 

This is due to the ease that this type of software has in analysing large amounts of data, but also because 

this type of software can assist on the simulations’ setup stage proficiently. 

Validation of hygrothermal models of historic buildings 

A hygrothermal model of St. Cristóvão church was developed using WUFI®Plus and validated against 

measured data using four different statistic indices for temperature and water-vapour pressure. The 

obtained values were then compared with the limits presented in literature and the existing 

standards/guidelines. The influence of weather files and the interface slab/soil temperature was 

analysed, and a sensitivity study was carried out to optimise the model accuracy for three undetermined 

variables – ACH, α and SHGC. 
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• The developed analysis of the influence of the outdoor conditions in the accuracy of the model 

showed that the use of weather files for the same city and even files of which the data was 

monitored during the same year may not lead to the best results. In the developed simulations, 

the best fit was attained by the weather file that used the temperature and water-vapour pressure 

obtained by the monitoring campaign. 

• The soil and slab interface temperature was also analysed although it is a parameter usually 

neglected or otherwise not mentioned in the description of many of the thermal and 

hygrothermal models found in literature. The simulations that were carried out showed the key 

influence that this parameter has on the hygrothermal behaviour of whole-building models. 

• Another difficulty in a model validation is the uncertainties of the inputs. An optimization 

methodology for the model’s accuracy was developed based on three parameters, whose values 

could not be precisely determined: ACH, α and SHGC. The development of a sensitivity 

analysis which included 48 simulations allowed to develop an accuracy optimization equation 

based on the goodness of fit, since it proved to be the most demanding parameter.  

In addition, a set of simplifications to hygrothermal models, which might reduce the simulation time 

considerably, were tested. However, these simplifications can substantially reduce the model’s accuracy. 

Four different simplifications were analysed, but only two were found to be worthy of application, 

namely, considering a global floor for the funeral home and sacristy, and moving the main door forward. 

These simplifications allowed to save 16 minutes per simulation while maintaining the level of the 

model’s accuracy, which is quite meaningful when developing a study that includes a large number of 

simulations. 

Impact of climate change on artefacts kept in cultural heritage buildings and the thermal comfort 

of the visitors 

A whole hygrothermal model of a historic building, which was extensively validated against its 

measured indoor conditions, coupled to climate change weather files is used to quantify how the indoor 

climate of high thermal inertia buildings is going to change in terms of artefacts’ conservation and 

occupants’ thermal comfort due to climate change. The indoor climate was assessed using a thermal 

comfort model and a risk-based analysis for several types of climate in Europe, namely: Mediterranean, 

Continental and Oceanic climates. 

Based on the performed analysis, both IPCC’s selected scenarios (A1B and A2) point to a generalized 

increase of the indoor temperature, as well as the indoor relative humidity, but at different rates 

depending on the type of climate. Their variability also increases at different rates, except for the indoor 

temperature of Oslo and the indoor relative humidity of London which decrease. In turn, these variances 

will lead to a change in the quality of the indoor climate of historic buildings to house artefacts and they 
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will also affect the thermal comfort of the building’ occupants. The use of the risk based-analysis led to 

the conclusion that the indoor climate quality to house artefacts worsens:  

• The amount of time that the indoor climates conditions surpasses the LIM curve increases in all 

tested climates. This behaviour is more significant for the Mediterranean climates.  

• The equivalent lifetime multiplier significantly decreases for the three types of climate. 

• In terms of mechanical decay, it was shown that the base layer of painting panels significantly 

deteriorates for the three types of climate. Sculptures will also be subjected to mechanical 

deterioration but to a lower extent.  

On the other hand, a slight increase of the thermal comfort conditions occurs, more evident for Oslo, 

London and Prague, since the indoor temperature also increases. These findings prove that there is an 

urgent need to adopt appropriate changes in this type of buildings in order to safeguard artefacts, and at 

the same time to take into account the requirements imposed by the building’s visitors. 

The impact of climate change in cultural heritage: from energy consumption to artefacts’ 

conservation and building rehabilitation 

The energy consumption associated to three of the most used standards/guidelines to limit the indoor 

climate in buildings that house artefacts was calculated. It was also determined how this consumption 

will evolve in the future due to climate change and how much it will cost to guarantee each 

standard/guideline for three types of climate in Europe. 

Additionally, four representative passive retrofit measures were tested to determine their energy saving 

potential. A validated whole-building hygrothermal model of a historic building was used coupled to 

future weather files based on two IPCC scenarios (A1B and A2). Lastly, the indoor climates were also 

assessed using a risk-based analysis to assess the risk of artefacts’ decay. 

• Based on the shown data it is clear that some of the existing methodologies that aim to preserve 

artefacts will lead to high energy consumption in the future, but there are others in which the 

opposite occurs. The magnitude of these behaviours varies with the methodology and climate. 

• It was shown that for the constant valued methodologies, the key factor for the colder climates 

is the minimum temperature limit, whilst for the Mediterranean climates is the maximum limit. 

However, this latter factor will gain even more importance in the future since it is expected that 

the indoor temperature is going to increase substantially. In contrast, the overall energy costs 

for the dynamic methodologies will be quite significant for climates like Oslo, Prague and 

London, mostly due to the minimum temperature limit. 

• It was shown that there is a positive outcome of implementing retrofit measures in historic 

buildings for future conditions in terms of energy saving potential. The application of an interior 
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insulation achieved the highest saving potential, followed by the exterior thermal plaster, the 

thermal insulation layer in the ceilings and lastly by replacing the existing windows. 

• It was shown, that if passive retrofit measures are combined with a more adequate relative 

humidity and temperature setpoint strategy the energy savings are even higher.  

• The risk-based analysis showed that the retrofit must be thoroughly studied prior to application, 

since their improvement potential can greatly differ according to the outdoor conditions. 

Performance of passive retrofit measures for historic buildings that house artefacts viable for 

future conditions  

A set of retrofit measures adequate for historic buildings that aimed to improve the indoor climate in 

terms of conservation metrics whilst considering climate change were tested. A validated whole-

building hygrothermal model of a high thermal building was used coupled with outdoor weather files 

that take climate change into account to obtain the future indoor conditions, which were assessed using 

a risk-based analysis. The thermal comfort was also assessed by means of an adaptive model.  

The used outdoor weather files used were created using standard EN 15927-4 methodology. Since 

WUFI®Plus needs the global radiation and its diffuse fraction to run properly, the updated Skartveit and 

Olseth model was used to obtain the diffuse fraction. This study was performed for several climates, 

namely: Lisbon and Seville (Mediterranean climates), Prague and Oslo (Humid continental climates), 

and London (Oceanic climate). 

Ultimately, it was shown that measures that nowadays have a positive performance may not have one 

in the future and that the future risks that historic buildings are going to face in the future will differ in 

accordance with the climate typology: 

• For Mediterranean climates, the retrofits measures manage to mitigate, to a certain extent, the 

negative effects imposed by climate change in terms of artefacts’ conservation requirements. 

The application of calcium silicate board and mineral wool in walls achieved the most 

impressive results in terms of reducing the risk of biological decay, and mechanical decay in 

panel paintings. These retrofit measures also improved the thermal comfort. Furniture does not 

limit the building’s retrofit in any way, and that sculptures should not condition the building’s 

retrofit. The selected retrofit measures are not effective in decreasing the risk of chemical decay.  

• For Humid continental climates, the main observation was the fact that although the retrofits do 

not always improve the indoor climate in terms of artefacts conservation, there is a considerable 

margin for their application in contrast to the Mediterranean climates. This margin enables the 

application of the retrofit measures even though they sometimes may reduce the conservation 

metrics. These retrofit measures will increase the indoor thermal comfort substantially and 

reduce the risk of biological decay, and mechanical decay in sculptures and in the base layer of 
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panel paintings. On the other hand, the retrofit measures will be responsible for the decrease of 

the equivalent lifetime multiplier, but it is not sufficient to make the indoor climate leave the 

ideal conditions zone, and they will increase the indoor fluctuations in most cases. 

• The oceanic climates also have a margin to implement the retrofits. In fact, this margin in terms 

of chemical decay is even bigger than for the humid continental climates since they are not 

conditioned by the RCP 8.5 scenario in the far-future. The retrofit measures will increase the 

thermal comfort conditions, reduce the biological decay risk, increase the time that the indoor 

climate corresponds to elastic behaviour for the base layers (panel paintings) and sculptures (for 

some cases), and reduce the indoor fluctuations in some cases. In contrast, the retrofit measures 

will the decrease the eLM. Some measures will decrease the amount of time that the indoor 

climate corresponds to elastic behaviour for sculptures and increase the indoor fluctuations.  

Exterior thermal mortars can be an interesting measure for historic buildings, since it works as a 

protection layer that limits the variation of the indoor climate. Due to its position it is also responsible 

for the storage of heat inside the wall, which will decrease the occurrence of interstitial condensation. 

However, due to the thickness limitation typical of this type of measure, it cannot be applied without 

additional retrofit measures if they are to reach the same level of proficiency as the other wall measures.  

8.2. Future work  

Throughout this thesis there were topics that, due to time constraints, could not be fully addressed. 

Nonetheless, these topics have scientific relevance and it is the author’s belief that they are worthy being 

developed. The following list highlights some of these topics: 

• Multi-objective passive retrofit optimization of historic buildings considering the building’s 

energy consumption, artefacts’ conservation, and visitors’ thermal comfort requirements 

• The study of the influence of artificial lighting and daylight in historic buildings, which house 

artefacts, by installing a monitoring campaign, and the subsequent development and validation 

of computational models that account for their influence  

• The analysis of the effect of the outdoor pollutants in the indoor climate of historic buildings by 

installing a multi-sensor monitoring campaign, and the subsequent development and validation 

of computational models that account for their influence 

• The development of a thermal comfort model that include buildings that house artefacts, such 

as museums and galleries  

• The development of maps that present the geographical variance of the following variables: 

o Variance of the conservation metrics (chemical, biological and mechanical risk) of the 

indoor climate of historic buildings that house artefacts for future conditions 
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o Variance of the thermal comfort conditions in historic buildings that house artefacts for 

future conditions 

o Energy consumption of historic buildings to guarantee that the indoor climate is 

adequate for the conservation of artefacts in future conditions  

o Improvement potential of retrofit measures appropriate for historic buildings that house 

artefacts whilst considering climate change 

The work developed in this thesis would gain even more validation if this research included other 

historic buildings with different characteristics, namely size, occupation rates, among other. Hence, in 

the future additional case-studies should be included, so that this research can become more 

comprehensive. 
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- A.D. Trindade, G.B.A. Coelho, F.M.A. Henriques, Influence of the climatic conditions on the 

hygrothermal performance of autoclaved aerated concrete masonry walls, Journal of Building 

Engineering, 33 (2021). doi:10.1016/j.jobe.2020.101578 

- G. B. A. Coelho, H. E. Silva, F. M. A. Henriques. Impact of climate change in cultural heritage: 
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List buildings with low-cost data loggers: the case of the Jerónimos Monastery in Lisbon 

(Portugal), Journal of Building Engineering, 28 (2020). doi: 10.1016/j.jobe.2019.101029 

- G.B.A. Coelho, H.E. Silva, F.M.A. Henriques, Impact of climate change on cultural heritage: 

a simulation study to assess the risks for conservation and thermal comfort, International 

Journal of Global Warming, 19 (2019) 382–406. doi: 10.1504/IJGW.2019.104268 

- G.B.A. Coelho, H.E. Silva, F.M.A. Henriques, Calibrated hygrothermal simulation models for 

historical buildings, Building and Environment. 142 (2018) 439–450. 

doi:10.1016/j.buildenv.2018.06.034. 

- H.E. Silva, F.M.A. Henriques, T.A.S Henriques, G.B.A. Coelho. A sequential process to assess 

and optimize the indoor climate in museums. Building and Environment. 104 (2016) 21–34. 

doi:10.1016/j.buildenv.2016.04.023. 

- G.B.A. Coelho, F.M.A. Henriques. Influence of driving rain on the hygrothermal behavior of 

solid brick walls. Journal of Building Engineering (2016) doi:10.1016/j.jobe.2016.06.002. 

International conference: 

- G.B.A. Coelho, H.E. Silva, F.M.A. Henriques, Development of a hygrothermal model of a 

historic building in WUFI®Plus vs EnergyPlus, in: 4th Central European Symposium on 

Building Physics (CESBP 2019), Prague, Czech Republic, 2019. 

doi:10.1051/matecconf/201928202079. 

National journal: 

- G.B.A. Coelho, F.M.A. Henriques. A influência da chuva incidente no desempenho térmico de 
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paredes exteriores. Construção Magazine. 2017. 

- H.E. Silva, F.M.A. Henriques, T.A.S Henriques, G.B.A. Coelho. A análise climática na 

conservação e optimização energética de edifícios históricos: o caso do Museu Nacional de 

Arte Antiga. Construção Magazine. 2017. 

National conference: 

- H.E. Silva, G.B.A. Coelho, B. Rocha, F.M.A. Henriques, Impacto dos visitantes na 

conservação do património cultural em Portugal, in: Construção 2018 – Reabilitar e Construir 

de Forma Sustentável, Porto, Portugal, 2018: pp. 1432–1441. 

Reviews in Journals & Conferences: 

• Building and Environment – 10 reviews (2017 – 1; 2019 – 2; 2020 – 7) 

• Journal of Building Engineering – 4 reviews (2017 – 2; 2020 – 2) 

• Sustainable Cities and Society – 3 reviews in 2019  

• Journal of Building Pathology and Rehabilitation – 2 reviews in 2019  

• Journal of Cultural Heritage – 1 review in 2020 

• 4th Central European Symposium on Building Physics – 1 review in 2019 

Attended RILEM courses: 

• Computational Methods for Building Physics and Construction Materials, RILEM EAC and 

TUDa course (via Zoom), Technical University Darmstadt, 6-10 July 2020, addressed topics: 

steady state problems – discretization and implementation in Excel; transient problems – 

explicit & implicit heat and moisture flow – implementation in Octave/Matlab/FEM; coupled 

systems – heat and moisture flow, discretization and implementation in Octave/Matlab/FEM; 

particle structure formation and hydration kinetics of cementitious systems 

• Materials, Systems and Structures in Civil Engineering: Moisture in Materials and Structures, 

RILEM EAC course, Technical University of Denmark (DTU) in Lyngby, Denmark, 15-29 

August 2016, addressed topics: thermodynamics of moisture; moisture fixation in materials; 

moisture transport in materials and structures; experimental methods; moisture measuring 

methods; prediction methods; field applications and coupled transport phenomena 
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Annex B. Standards/guideline climate limits  

Table  B.1 – Thomson’s temperature (ºC) and relative humidity (%) ranges for class I - Major museums, and class II - 

remaining buildings (data taken from Ref. [264]) 

Class 
Temperature 

[ºC] 

Relative 

humidity [%] 

I 18–25 ºC 45–60 % 

II ≈ const. 40–70 % 

 

Table  B.2 – ASHRAE’s temperature (ºC) and relative humidity (%) ranges for class AA, As, Ad, B, C and D for general 

museums, art galleries, libraries and archives (table adapted from Ref. [5]) 

Setpoint or 

Annual 

Average 

Class 
Short-term 

fluctuations 

Seasonal 

fluctuations 
Collection risks and benefits 

50 %RH (or 

historic 

annual 

average for 

permanent 

collections 

 

 

Temperature 

set between 

15-25 ºC 

AA ± 5 %RH, ±2 K 

RH no change 

No risk of mechanical damage to 

most artefacts and paintings. Some 

metals and minerals may degrade if 

the 50 %RH exceeds a critical RH. 

Chemically unstable objects unusable 

within decades 
± 5 K 

A 

As ± 5 %RH, ±2 K 
± 10 %RH 

Small risk of mechanical decay to 

highly vulnerable artefacts. No 

mechanical risk to most artefacts. 

Chemically unstable objects unusable 

within decades. 

up 5 K; down 10 K 

Ad ± 10 %RH, ±2 K 
RH no change 

up 5 K; down 10 K 

B ± 10 %RH, ±2 K 

± 10 %RH 

Moderate risk of mechanical decay to 

highly vulnerable artefacts. Small 

risk to most paintings and 

photographs. No risk to most books.  

Chemically unstable objects unusable 

within decades, less if routinely at 30 

ºC, but cold winter periods double life 

up 10, but not 

above 30 ºC K 

C 

RH within 25-75 % year-round 

High risk of mechanical decay to 

highly vulnerable artefacts. Moderate 

risk to most paintings and 

photographs. Small risk to most 

books. Chemically unstable objects 

unusable within decades, less if 

routinely at 30 ºC, but cold winter 

periods double life 

Temperature rarely over 30 ºC, 

usually below 25 ºC 

D Reliably below 75 %RH 

High risk or cumulative mechanical 

damage to most artefacts and 

paintings due to low-humidity 

fracture but avoids high-humidity 

delamination and deformations. Mold 

growth and rapid corrosion avoided. 

Chemically unstable objects unusable 

within decades, less if routinely at 30 

ºC, but cold winter periods double life 
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Table  B.3 – FCT-UNL’s temperature (T, ºC) and relative humidity (RH, %) ranges for class I and II  (table adapted from 

Ref. [250]) 

Reference 

value 

Daily 

cyclesa 

Seasonal 

fluctuationsb 

Short-term 

fluctuationsc 

Extra  

limits 

Collection risks and 

benefits 

T and RH: 

Historic 

yearly 

average 

90º 

percentile 

(ΔT∩ΔRH) 

≥ UNI 

10829 limits 

T & RH:  

-10º/+90º 

percentiles 

T & RH:  

-5º/+95º 

percentiles 

|𝑅𝐻 − 𝑅𝐻̅̅ ̅̅ |≤15% 

and RHmax ≤75% 

 

|𝑇 − �̅�| up to 

10ºC not above 

30ºC 

Class I – Low risk of 

mechanical and 

biological decay. 

Applicable to buildings 

that house materials that 

require tight indoor 

climate control. Example: 

museums 

- 

Class II – Moderate risk 

of mechanical decay. The 

biological risk is not a 

major factor and there is 

no need for an indoor 

climate constant as for 

class I. Example: 

churches 
a The values defined by the 90th percentile of the recorded daily cycles if higher than the UNI 10829 limits. 
b A seasonal cycle is determined by calculating a monthly moving average (equation 2.1). Then, subtracting to the maximum 

value of the annual moving average, the minimum value of the annual moving average (equations 2.2 and 2.3). 
c The short-term fluctuations are calculated as the difference between the current value and the monthly moving average value 

(equations 2.4 and 2.5). Then, the short-term fluctuations are limited at the bottom and at the top by its 5th and 95th percentiles, 

respectively. 
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Annex C. Greenhouse emissions 

Table  C.1 – Air pollutants footprints for each product and service performed in the European Union in 2017 (data taken from 

Ref. [101]) 

Activities  2017 

Products of agriculture, hunting and related services 66 483 843 

Products of forestry, logging and related services 2 727 643 

Fish and other fishing products; aquaculture products; support services to fishing 6 660 384 

Mining and quarrying 29 518 939 

Food, beverages and tobacco products 233 725 635 

Textiles, wearing apparel, leather and related products 55 767 718 

Wood and of products of wood and cork, except furniture; articles of straw and 

plaiting materials 
8 783 188 

Paper and paper products 27 114 272 

Printing and recording services 1 776 360 

Coke and refined petroleum products 238 168 257 

Chemicals and chemical products 140 538 740 

Basic pharmaceutical products and pharmaceutical preparations 39 690 072 

Rubber and plastic products 24 517 674 

Other non-metallic mineral products 54 729 417 

Basic metals 81 493 096 

Fabricated metal products, except machinery and equipment 45 844 281 

Computer, electronic and optical products 47 356 337 

Electrical equipment 43 821 244 

Machinery and equipment n.e.c. 116 366 875 

Motor vehicles, trailers and semi-trailers 133 787 393 

Other transport equipment 44 176 170 

Furniture and other manufactured goods 49 244 666 

Repair and installation services of machinery and equipment 20 005 677 

Electricity, gas, steam and air conditioning 403 439 549 

Natural water; water treatment and supply services 14 308 377 

Sewerage services; sewage sludge; waste collection, treatment and disposal 

services; materials recovery services; remediation services and other waste 

management services 

28 439 435 

Constructions and construction works 332 679 454 

Wholesale and retail trade and repair services of motor vehicles and motorcycles 40 881 286 

Wholesale trade services, except of motor vehicles and motorcycles 115 829 813 

Retail trade services, except of motor vehicles and motorcycles 102 489 389 

Land transport services and transport services via pipelines 117 372 041 

Water transport services 109 796 969 

Air transport services 136 357 771 

Warehousing and support services for transportation 24 745 819 

Postal and courier services 2 684 447 

Accommodation and food services 107 461 657 
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Publishing services 13 849 417 

Motion picture, video and television programme production services, sound 

recording and music publishing; programming and broadcasting services 
10 790 641 

Telecommunications services 18 681 504 

Computer programming, consultancy and related services; Information services 30 017 321 

Financial services, except insurance and pension funding 15 188 436 

Insurance, reinsurance and pension funding services, except compulsory social 

security 
18 933 270 

Services auxiliary to financial services and insurance services 3 462 438 

Real estate services 90 268 992 

Legal and accounting services; services of head offices; management consultancy 

services 
10 688 129 

Architectural and engineering services; technical testing and analysis services 16 362 107 

Scientific research and development services 56 886 231 

Advertising and market research services 1 964 869 

Other professional, scientific and technical services and veterinary services 5 271 327 

Rental and leasing services 15 875 806 

Employment services 542 787 

Travel agency, tour operator and other reservation services and related services 13 760 698 

Security and investigation services; services to buildings and landscape; office 

administrative, office support and other business support services 
10 846 494 

Public administration and defence services; compulsory social security services 103 846 698 

Education services 51 343 205 

Human health services 88 416 860 

Residential care services; social work services without accommodation 36 812 012 

Creative, arts, entertainment, library, archive, museum, other cultural services; 

gambling and betting services 
17 295 841 

Sporting services and amusement and recreation services 15 713 007 

Services furnished by membership organisations 11 338 163 

Repair services of computers and personal and household goods 2 749 842 

Other personal services 19 506 865 

Services of households as employers; undifferentiated goods and services produced 

by households for own use 
385 627 

Services provided by extraterritorial organisations and bodies 22 

Direct emissions by private households 877 300 298 
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Annex D. Outdoor and indoor anthropogenic sources of the artefacts’ key damaging pollutants, and their negative effects 

Table  D.1 – Outdoor and indoor anthropogenic sources of the artefacts’ key damaging pollutants, and their respective negative effects (table adapted from Ref. [5] and [260]) 

Pollutants Anthropogenic sources  Potential damage 

Acetic acid 

(CH3COOH) 
O

u
ts

id
e • Results from atmospheric reactions with industrial 

and vehicle pollutants  

• Gases concentrated in fog, rain and snow 

• Corrodes non-noble metals (e.g. leaded-bronzes and copper 

alloys) and base metals (e.g. lead, copper and silver) 

• Attacks calcareous materials and low-fire ceramics 

• Reacts with enamel and glass 

• Corrodes lead joints in stained glass In
si

d
e • Gas-phase reactions 

• Floor materials (e.g. carpets) and other materials 

(e.g. furniture, varnishes, paper, among others) 

Hydrogen sulphide 

(H2S) 

O
u
ts

id
e • Fuel and coal combustion  

• Pulp-and-paper industry 

• Petroleum refineries  

• Destroys immature plant tissue  

• Tarnishes silver and copper 

• Darkens lead pigments  

• Blackens copper, damages silver, reacts with bronze and lead, 

and corrodes zinc (synergetic effect with NO2)  

• Damages ceramics, stone and leather  In
si

d
e • Mineral specimens that contain pyrite 

• Adhesives and wool carpets  

Nitrogen dioxide 

(NO2) 

O
u

ts
id

e • Combustion of fuels by vehicles, power plants and 

industrial activities 

• Fireworks 

• Enhances deterioration effects of sulphur dioxide on leather, 

metals and stone, among others 

• Corrodes copper-rich silver 

• Fades dyestuffs, certain inks and organic pigments 

• Degrades fibres made from rayon, silk, wool, and nylon by 

causing its yellowing and embrittlement 

• Corrodes zinc and affects the tarnishing of copper and silver 

In
si

d
e 

• Stoves, heaters, fireplaces, among others 

• Tobacco smoke 

• Dry-process photocopiers  

• Degradation of cellulose nitrate objects 

• Formation of acids 
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Ozone 

(O3) 

O
u
ts

id
e 

• Photochemical smog   
• Fades dyes and piments  

• Embrittles fabrics, textiles and cellulose materials  

• Enhance the tarnishing of silver 

• Affects animal skins  

• Discolours photographies In
si

d
e 

• Building’s electronical equipment 

Sulphur dioxide 

(SO2) 

O
u
ts

id
e 

• Combustion of fossil fuels that contain sulphur, 

such as coal, gasoline and diesel fuel 

• Pulp-and-paper, cement and petroleum industries 

• Fireworks 

• Hydrolyses to H2SO4 when absorbed by cellulose materials 

• Breaks the molecular structure of animal skins, e.g. leather and 

parchment 

• Non-reversible colour changes of acid-sensitive pigments and 

dyestuffs fading 

• Corrodes most metals 

• Photography’s darkening due to the attacks to the silver salts 

• Attacks carbonate rocks, as well as calcareous materials  

In
si

d
e 

• Combustion of fuels containing sulphur for cooking 

and heating 

• Firewood used to cook and heat 

• Propane or gasoline powered machines 

Water-vapour  

(H2O)* 

O
u

ts
id

e 

• Atmosphere 

• Bodies of water 

• Causes damage to cellulose-based materials, e.g. books and 

paper artworks, and other organic objects, since it increases 

hydrolysis reactions 

• Increases the effect of nitrogen oxides on photographies 

• Increases hydrogen sulphide corrosion of copper and silver  

• Main parameter that governs the “bronze disease” 

• Increases the deterioration of materials 

• Increases fading of dyestuffs  

In
si

d
e 

• Fountains  

• Humidifiers  

• People  

• Cleaning activities 
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Fine (PM2.5) and 

coarse (PM2.5) 

particles 

General: Atomizing humidifier, burning candles, cooking, laser 

printers, spray cans, shedding from clothing, carpets, industrial 

activities, outdoor building construction and soil, among others 

Biological and organic compounds: microorganisms, degradation 

of materials and objects, visitors and construction activities 

Soot: burning candles and incense, fires, coal combustion and 

vehicle exhaustion 

Ammonium salts: reaction of ammonia with SO2 or NO2 inside or 

outside or on solid surfaces 

General: 

• Abrasion of surfaces 

• Disfiguration of objects  

• Can initiate or increase corrosion processes  

• Can initiate catalysis with the forming of reactive gases 

Soot: 

• Soil of porous surfaces (e.g. paintings, frescos, statues, books, 

textiles) 

• Increase of metals corrosion rates 

*- Although several guidelines recommend ranges of RH with the purpose of mitigating the physical damages caused by RH, water-vapour is also considered as a pollutant due to its capacity to 

increase both corrosion and other decay rates, as well as because it is involved in most chemical reactions [5]. 
 





225 

Annex E. Airborne pollutants limit-values and target-values 

Table  E.1 – Limit values for Sulphur dioxide (SO2), Nitrogen dioxide (NO2), Coarse particle matter (PM10) and Fine particle 

matter (PM2.5). Note that the 20 µg/m3 limit value for PM2.5 is only from 2020 onward [202]. Table adapted from Ref. [202] 

Pollutant Period Limit-value 

Sulphur dioxide 

(SO2) 

1 hour 
350 µg/m3, which must not be exceeded more than 24 times 

in each calendar year 

1 day 
125 µg/m3, which must not be exceeded more than 3 times in 

each calendar year 

Nitrogen dioxide 

(NO2) 

1 hour 
200 µg/m3, which must not be exceeded more than 18 times 

in each calendar year 

1 year 40 µg/m3 

Coarse particle 

matter (PM10) 

1 day 
50 µg/m3, which must not be exceeded more than 35 times in 

each calendar year 

1 year 40 µg/m3 

Fine particle 

matter (PM2.5) 
1 year 25 µg/m3 

 

Table  E.2 – Target-value for Ozone (O3). Table adapted from Ref. [202] 

Pollutant Period Target-value 

Ozone (O3) 
Maximum daily 

eight-hour mean 

1250 µg/m3, which must not be exceeded more than 25 days 

per calendar year averaged over three years 
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Annex F. Emissions and concentrations GHGs for AR4 and AR5 

 

Figure  F.1 – CO2 (a) and CH4 (b) emissions for the three SRES scenarios – A1B, A2 and B1 – and the four RCPs scenarios – 

RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 [219,135] 

 

Figure  F.2 – CO2 (a) and CH4 (b) atmospheric concentrations for the three SRES scenarios – A1B, A2 and B1 – and the four 

RCPs scenarios – RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 [219,135] 
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Annex G. St. Cristóvão church plan and photographs for each zone of the building 

 

Figure  G.1 – St. Cristóvão church plan with photographs for each zone of the building





231 

Annex H. Electricity price for industrial users  

The following tables present the electricity price (€/kWh) for industrial users that includes all taxes and 

levies between 2007-2019 for the 7 bands with different consumptions, namely: band-IA with an annual 

consumption below 20 MWh, band-IB with an annual consumption between 20 and 500 MWh, band-

IC with an annual consumption between 500 and 2,000 MWh, band ID with an annual consumption 

between 2,000 and 20,000 MWh, band-IE with an annual consumption between 20,000 and 70,000 

MWh, band-IF with an annual consumption between 70,000 and 150,000 MWh and band-IG with an 

annual consumption higher than 150,000 MWh [103]. This information is also present in Figure 6.5. 

Table  H.1 – Electricity price (€/kWh) for industrial users that includes all taxes and levies between 2007-2019 for Czech 

Republic for band IA, IB, IC, ID, IE, IF and IG [102] 

Czech Republic – Electricity price (€/kWh) 

 Band IA Band IB Band IC Band ID Band IE Band IF Band IG 

2007S2 0.141 0.109 0.095 0.078 0.067 0.067  

2008S1 0.164 0.131 0.110 0.091 0.081 0.083  

2008S2 0.167 0.134 0.111 0.093 0.083 0.084  

2009S1 0.162 0.132 0.106 0.093 0.086 0.086  

2009S2 0.171 0.139 0.111 0.097 0.090 0.091  

2010S1 0.170 0.134 0.102 0.093 0.089 0.089  

2010S2 0.176 0.138 0.107 0.096 0.092 0.092  

2011S1 0.184 0.145 0.110 0.098 0.101 0.096  

2011S2 0.180 0.141 0.107 0.096 0.098 0.094  

2012S1 0.187 0.144 0.103 0.096 0.093 0.098  

2012S2 0.187 0.145 0.102 0.096 0.092 0.099  

2013S1 0.185 0.147 0.101 0.096 0.095 0.100  

2013S2 0.182 0.146 0.098 0.094 0.093 0.097  

2014S1 0.158 0.124 0.082 0.077 0.079 0.079  

2014S2 0.157 0.124 0.081 0.076 0.079 0.078  

2015S1 0.154 0.120 0.076 0.071 0.073 0.075  

2015S2 0.157 0.121 0.077 0.071 0.074 0.076  

2016S1 0.160 0.116 0.072 0.063 0.065 0.067  

2016S2 0.160 0.116 0.072 0.062 0.064 0.067  

2017S1 0.162 0.111 0.068 0.061 0.060 0.063  

2017S2 0.168 0.118 0.070 0.062 0.061 0.064  

2018S1 0.177 0.124 0.072 0.063 0.062 0.063 0.062 

2018S2 0.177 0.128 0.071 0.063 0.064 0.063  

2019S1 0.188 0.136 0.076 0.072 0.073 0.069  
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Table  H.2 – Electricity price (€/kWh) for industrial users that includes all taxes and levies between 2007-2019 for Spain for 

band IA, IB, IC, ID, IE, IF and IG [102] 

Spain – Electricity price (€/kWh) 

 Band IA Band IB Band IC Band ID Band IE Band IF Band IG 

2007S2 0.151 0.111 0.091 0.079 0.066 0.053 0.039 

2008S1 0.131 0.111 0.092 0.080 0.068 0.057 0.042 

2008S2 0.131 0.120 0.102 0.085 0.074 0.069 0.049 

2009S1 0.158 0.125 0.110 0.091 0.079 0.069 0.051 

2009S2 0.168 0.127 0.107 0.089 0.078 0.068 0.048 

2010S1 0.172 0.133 0.111 0.088 0.072 0.064 0.049 

2010S2 0.178 0.132 0.104 0.085 0.073 0.064 0.049 

2011S1 0.164 0.131 0.108 0.087 0.075 0.068 0.050 

2011S2 0.192 0.139 0.110 0.089 0.077 0.069 0.050 

2012S1 0.195 0.146 0.116 0.097 0.083 0.072 0.053 

2012S2 0.204 0.148 0.114 0.095 0.084 0.073 0.054 

2013S1 0.223 0.143 0.117 0.100 0.082 0.066 0.054 

2013S2 0.238 0.146 0.114 0.103 0.083 0.072 0.063 

2014S1 0.261 0.152 0.119 0.099 0.075 0.068 0.051 

2014S2 0.278 0.148 0.111 0.098 0.079 0.074 0.065 

2015S1 0.260 0.150 0.112 0.092 0.079 0.072 0.064 

2015S2 0.257 0.144 0.108 0.091 0.078 0.076 0.072 

2016S1 0.236 0.140 0.105 0.086 0.070 0.064 0.052 

2016S2 0.235 0.134 0.098 0.082 0.072 0.067 0.059 

2017S1 0.244 0.130 0.101 0.084 0.075 0.069 0.066 

2017S2 0.198 0.132 0.098 0.082 0.073 0.067 0.064 

2018S1 0.271 0.114 0.101 0.094 0.087 0.069 0.063 

2018S2 0.233 0.135 0.105 0.090 0.081 0.079 0.074 

2019S1 0.228 0.141 0.109 0.092 0.082 0.074 0.065 
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Table  H.3 – Electricity price (€/kWh) for industrial users that includes all taxes and levies between 2007-2019 for Portugal 

for band IA, IB, IC, ID, IE, IF and IG [102] 

Portugal – Electricity price (€/kWh) 

 
Band IA Band IB Band IC Band ID Band IE Band IF Band IG 

2007S2 0.095 0.090 0.073 0.064 0.055 0.050   

2008S1 0.111 0.083 0.078 0.070 0.057 0.050   

2008S2 0.114 0.083 0.078 0.070 0.058 0.051   

2009S1 0.137 0.103 0.092 0.083 0.067 0.064   

2009S2 0.147 0.106 0.093 0.082 0.068 0.052   

2010S1 0.112 0.095 0.090 0.076 0.065 0.050   

2010S2 0.108 0.092 0.087 0.076 0.065 0.056   

2011S1 0.106 0.092 0.090 0.084 0.066 0.061   

2011S2 0.108 0.094 0.090 0.083 0.068 0.060   

2012S1 0.121 0.102 0.105 0.099 0.082 0.079   

2012S2 0.125 0.105 0.099 0.090 0.080 0.075   

2013S1 0.128 0.115 0.102 0.091 0.080 0.075   

2013S2 0.127 0.112 0.101 0.097 0.082 0.077   

2014S1 0.160 0.129 0.103 0.089 0.073 0.063   

2014S2 0.159 0.127 0.105 0.089 0.077 0.070   

2015S1 0.170 0.125 0.099 0.090 0.074 0.066   

2015S2 0.168 0.123 0.100 0.091 0.075 0.071   

2016S1 0.159 0.124 0.094 0.086 0.068 0.049   

2016S2 0.158 0.124 0.095 0.086 0.070 0.060   

2017S1 0.129 0.108 0.084 0.077 0.067 0.064 0.060 

2017S2 0.129 0.106 0.084 0.078 0.067 0.065 0.058 

2018S1 0.123 0.100 0.078 0.074 0.064 0.059 0.051 

2018S2 0.119 0.100 0.081 0.077 0.069 0.063 0.059 

2019S1 0.105 0.100 0.087 0.078 0.071 0.063 0.060 
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Table  H.4 – Electricity price (€/kWh) for industrial users that includes all taxes and levies between 2007-2019 for United 

Kingdom for band IA, IB, IC, ID, IE, IF and IG [102] 

United Kingdom – Electricity price (€/kWh) 

 Band IA Band IB Band IC Band ID Band IE Band IF Band IG 

2007S1 0.140 0.113 0.106 0.098 0.093 0.087 0.082 

2007S2 0.143 0.121 0.108 0.094 0.089 0.085 0.071 

2008S1 0.127 0.107 0.094 0.084 0.083 0.086 0.076 

2008S2 0.131 0.113 0.105 0.098 0.095 0.097 0.085 

2009S1 0.132 0.114 0.108 0.099 0.097 0.095 0.082 

2009S2 0.134 0.112 0.097 0.087 0.084 0.084 0.077 

2010S1 0.138 0.112 0.095 0.084 0.081 0.079 0.082 

2010S2 0.142 0.115 0.096 0.085 0.077 0.077 0.077 

2011S1 0.129 0.111 0.094 0.086 0.082 0.081 0.078 

2011S2 0.144 0.115 0.100 0.089 0.083 0.079 0.082 

2012S1 0.147 0.125 0.110 0.099 0.098 0.089 0.095 

2012S2 0.155 0.130 0.115 0.105 0.103 0.100 0.101 

2013S1 0.142 0.125 0.112 0.103 0.103 0.103 0.097 

2013S2 0.159 0.130 0.116 0.108 0.105 0.102 0.101 

2014S1 0.162 0.139 0.125 0.114 0.115 0.111 0.108 

2014S2 0.173 0.145 0.129 0.118 0.118 0.115 0.113 

2015S1 0.151 0.133 0.118 0.110 0.107 0.105 0.101 

2015S2 0.147 0.135 0.121 0.111 0.108 0.106 0.103 

2016S1 0.128 0.116 0.104 0.095 0.093 0.091 0.089 

2016S2 0.114 0.108 0.097 0.088 0.086 0.085 0.083 

2017S1 0.130 0.114 0.094 0.096 0.100 0.100 0.089 

2017S2 0.127 0.109 0.089 0.091 0.096 0.095 0.085 

2018S1 0.136 0.118 0.097 0.099 0.095 0.092 0.086 

2018S2 0.143 0.121 0.101 0.102 0.098 0.092 0.091 

2019S1 0.136 0.122 0.100 0.093 0.087 0.083 0.080 
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Table  H.5 – Electricity price (€/kWh) for industrial users that includes all taxes and levies between 2007-2019 for United 

Kingdom for band IA, IB, IC, ID, IE, IF and IG [102] 

Norway – Electricity price (€/kWh) 

 Band IA Band IB Band IC Band ID Band IE Band IF Band IG 

2007S2 0.071 0.064 0.063 0.051 0.041 0.020  

2008S1 0.074 0.066 0.065 0.053 0.040 0.023  

2008S2 0.085 0.075 0.075 0.055 0.051 0.034  

2009S1 0.070 0.068 0.067 0.057 0.047 0.030  

2009S2 0.071 0.067 0.067 0.055 0.044 0.031  

2010S1 0.105 0.093 0.089 0.075 0.068 0.046  

2010S2 0.092 0.081 0.080 0.065 0.057 0.033  

2011S1 0.105 0.099 0.096 0.082 0.071 0.045  

2011S2 0.082 0.077 0.076 0.062 0.049 0.041  

2012S1 0.078 0.079 0.077 0.059 0.046 0.035  

2012S2 0.073 0.071 0.071 0.054 0.044 0.036  

2013S1 0.079 0.083 0.081 0.063 0.051 0.042  

2013S2 0.073 0.073 0.072 0.057 0.046 0.042  

2014S1 0.068 0.066 0.065 0.050 0.037 0.032  

2014S2 0.068 0.067 0.066 0.051 0.040 0.036  

2015S1 0.063 0.062 0.061 0.046 0.034 0.028  

2015S2 0.053 0.054 0.053 0.039 0.030 0.028  

2016S1 0.057 0.058 0.057 0.044 0.035 0.031  

2016S2 0.063 0.064 0.064 0.051 0.040 0.036  

2017S1 0.066 0.062 0.061 0.049 0.040 0.036 0.0403 

2017S2 0.065 0.061 0.060 0.048 0.040 0.036  

2018S1 0.073 0.069 0.068 0.056 0.049 0.041  

2018S2 0.084 0.079 0.077 0.065 0.060 0.051  

2019S1 0.086 0.074 0.073 0.062 0.054 0.046  
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Annex I. Heating, cooling, humidification and dehumidification energy demands 

In these three tables, the green colour means that the energy consumption diminishes, whilst the red 

colour means that the energy consumption increases. Plus, the value of the colour translates the 

magnitude of the decrease or increase in relation to the respective reference value, i.e. the light green 

means that the decrease is small and the dark green means that the decrease is substantial, while the light 

red means that the increase is small and the dark red means that the increase is substantial. 

Table  I.1 – Heating, cooling, humidification and dehumidification energy demand (kWh) for Thomson’s methodology for 

IPCC scenario A1B and A2 between 1990 (reference case) and 2100 for Lisbon, Seville, Prague, Oslo and London 

Climate Ref 2020 2030 2040 2050 2060 2070 2080 2090 2100 

Lisbon 

Heat 48,897 
43,958 40,940 39,080 36,245 34,844 32,599 31,755 29,708 29,713 

43,736 41,064 39,512 36,830 35,133 32,033 30,054 27,174 27,522 

Cooling 392 
915 1,437 1,694 2,272 2,565 3,287 3,862 4,716 4,841 

934 1,278 1,647 2,071 2,732 3,840 4,937 6,542 6,762 

Humid. 15 
3 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Dehumid 3,627 
4,862 5,524 6,176 6,945 7,563 8,372 8,879 9,647 9,916 

4,671 5,436 5,977 6,934 7,439 8,657 10,031 11,447 11,446 

Seville 

Heat 49,958 
43,723 40,356 38,250 34,856 33,397 30,943 30,043 27,720 28,206 

43,134 40,125 38,469 35,728 33,900 30,357 28,466 25,389 25,809 

Cooling 7,655 
12,452 14,407 16,615 18,820 21,161 23,188 25,752 27,919 28,464 

12,381 14,088 16,220 18,174 20,990 24,414 28,549 32,459 33,688 

Humid. 345 
81 80 50 31 23 3 1 2 2 

55 75 54 35 15 7 1 1 0 

Dehumid 4,343 
6,636 7,730 8,793 10,653 11,655 12,973 14,193 15,589 15,537 

6,923 8,080 8,999 9,933 11,686 13,601 15,691 18,124 18,570 

Prague 

Heat 
170,30

5 

155,830 151,078 146,907 142,198 138,805 135,164 132,054 128,344 128,341 

156,803 152,320 148,641 143,761 139,712 134,463 130,289 125,088 124,869 

Cooling 0 
0 0 0 0 0 0 5 13 20 

0 0 0 0 0 3 20 97 171 

Humid. 9,495 
8,272 7,856 7,410 6,906 6,551 6,213 5,821 5,486 5,445 

8,338 7,920 7,469 7,093 6,607 6,206 5,583 5,083 5,172 

Dehumid 1,139 
1,820 1,965 1,869 2,258 2,739 2,507 3,137 3,522 3,166 

1,290 1,715 1,937 2,304 2,523 2,906 3,284 3,736 3,851 

Oslo 

Heat 
251,31

6 

229,359 223,466 218,024 212,166 207,005 202,130 197,765 192,944 191,864 

232,738 226,234 219,372 212,996 206,889 200,392 194,626 188,213 187,556 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 14,963 
12,970 12,400 11,947 11,380 10,869 10,377 9,810 9,518 9,462 

13,273 12,652 12,115 11,311 10,886 10,346 9,700 9,072 8,902 

Dehumid 425 
411 693 734 799 1,083 1,193 1,433 1,691 1,581 

655 474 909 747 778 1,168 1,081 1,554 1,173 
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London 

Heat 
145,90

3 

134,247 130,422 127,220 123,645 121,020 117,484 115,276 111,913 111,555 

136,019 132,150 129,018 125,215 121,960 117,682 114,343 109,942 109,938 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 4,927 
3,961 3,743 3,385 3,137 2,841 2,486 2,266 2,023 1,914 

4,168 3,768 3,502 3,220 2,999 2,616 2,331 1,974 2,028 

Dehumid 1,503 
2,043 2,426 2,670 2,858 3,084 3,747 3,821 4,093 4,346 

1,882 2,403 2,569 2,759 2,936 3,436 4,035 4,638 4,413 

Table  I.2 – Heating, cooling, humidification and dehumidification energy demand (kWh) for ASHRAE’s methodology for 

IPCC scenario A1B and A2 between 1990 (reference case) and 2100 for Lisbon, Seville, Prague, Oslo and London 

Climate Ref 2020 2030 2040 2050 2060 2070 2080 2090 2100 

Lisbon 

Heat 1,770 
1,120 859 589 443 273 254 153 118 93 

1,091 839 600 482 271 204 111 62 29 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 13 
15 19 8 27 8 20 12 4 5 

0 22 3 42 9 4 3 9 5 

Dehumid 124 
68 166 123 214 139 122 140 150 82 

108 126 92 168 55 144 156 172 170 

Seville 

Heat 3,362 
2,067 1,442 1,117 754 535 396 278 224 191 

1,968 1,321 1,210 844 613 386 235 100 129 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 127 
77 77 74 154 187 131 135 87 50 

114 154 166 80 163 140 120 143 130 

Dehumid 425 
286 224 309 464 359 330 448 291 221 

507 317 466 260 504 268 416 386 312 

Prague 

Heat 80,037 
69,977 66,245 63,537 60,128 57,675 55,042 53,057 50,312 50,235 

70,704 67,309 64,496 61,377 58,554 54,800 51,921 47,873 48,049 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 208 
208 269 177 208 236 214 257 273 202 

258 226 201 279 204 261 227 276 229 

Dehumid 290 
353 439 240 266 526 223 540 348 370 

294 380 324 316 345 301 304 219 398 

Oslo 

Heat 144,827 
127,626 122,828 118,698 113,952 110,165 106,150 102,827 99,093 98,306 

130,689 125,085 120,121 114,751 110,454 105,115 100,606 95,432 95,167 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 330 
298 344 289 309 286 335 313 392 359 

279 313 301 325 293 316 309 392 324 

Dehumid 478 
226 322 249 220 378 248 244 358 234 

398 156 386 197 132 296 253 363 134 
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London 

Heat 53,933 
46,768 44,100 42,220 39,688 38,140 35,789 34,591 32,287 32,331 

47,731 45,054 43,382 40,750 38,855 36,120 34,284 31,331 31,593 

Cooling 0 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Humid. 13 
13 44 21 21 29 35 38 33 100 

38 52 21 39 51 36 79 52 53 

Dehumid 104 
92 164 186 156 141 182 157 197 193 

92 174 81 125 119 96 180 128 137 

Table  I.3 – Heating, cooling, humidification and dehumidification energy demand (kWh) for FCT-UNL methodology for 

IPCC scenario A1B and A2 between 1990 (reference case) and 2100 for Lisbon, Seville, Prague, Oslo and London 

Climate Ref 2020 2030 2040 2050 2060 2070 2080 2090 2100 

Lisbon 

Heat 2,011 
1,260 1,150 764 738 468 549 373 443 314 

1,272 1,109 850 719 480 560 413 504 362 

Cooling 1,176 
1,326 1,172 1,299 1,129 1,254 1,183 1,447 1,187 1,373 

1,269 1,079 1,258 1,290 1,340 1,155 1,324 1,207 1,243 

Humid. 161 
153 81 153 161 116 130 213 152 163 

33 139 107 165 168 91 90 83 101 

Dehumid 525 
694 880 978 1,071 1,283 1,191 1,377 1,382 1,456 

819 783 967 919 1,032 1,239 1,564 1,683 1,731 

Seville 

Heat 4,046 
2,712 2,201 1,654 1,383 1,063 1,106 826 896 835 

2,587 2,083 1,808 1,535 1,258 1,035 738 883 852 

Cooling 951 
1,013 916 1,241 870 1,144 1,019 1,165 1,045 1,166 

999 852 1,162 1,012 1,167 1,017 1,318 963 1,094 

Humid. 71 
145 119 135 160 243 184 234 232 173 

81 327 241 170 220 252 111 227 286 

Dehumid 636 
609 613 731 1,148 1,071 1,134 1,423 1,564 1,491 

662 566 781 816 1,101 1,177 1,518 1,766 1,855 

Prague 

Heat 80,231 
70,143 66,384 63,726 60,362 57,850 55,242 53,179 50,474 50,324 

70,812 67,498 64,770 61,495 58,695 54,932 52,134 48,056 48,170 

Cooling 329 
268 313 424 354 393 355 656 343 613 

564 416 492 373 493 520 528 561 891 

Humid. 815 
735 815 653 721 614 660 673 702 578 

795 768 674 804 619 745 675 771 664 

Dehumid 1,027 
1,018 1,099 790 765 1,115 761 1,078 951 825 

777 966 886 1,006 1,027 877 813 730 975 

Oslo 

Heat 144,809 
127,641 122,849 118,689 113,947 110,166 106,200 102,877 99,197 98,409 

130,729 125,092 120,108 114,744 110,446 105,117 100,709 95,633 95,293 

Cooling 161 
149 70 77 55 73 59 87 32 88 

123 94 76 40 113 16 163 31 83 

Humid. 1,182 
1,024 1,098 1,031 1,030 955 1,036 1,012 1,079 1,036 

1,058 1,105 1,055 997 974 966 945 1,021 941 

Dehumid 1,438 
1,045 1,125 1,085 998 1,091 1,077 1,111 1,176 995 

1,275 1,024 1,281 956 863 995 804 996 732 
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London 

Heat 54,026 
46,811 44,159 42,334 39,738 38,177 35,925 34,627 32,394 32,358 

47,772 45,103 43,476 40,829 38,897 36,172 34,349 31,496 31,662 

Cooling 275 
347 345 241 262 356 250 328 372 360 

328 291 375 319 438 235 292 322 432 

Humid. 221 
259 238 199 164 209 227 202 188 229 

229 236 197 226 228 237 204 261 203 

Dehumid 383 
309 387 434 383 378 453 469 542 504 

279 397 299 321 313 350 502 512 512 
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Annex J. Skartveit and Olseth model 

There are several models in literature that split the global radiation into direct and diffuse radiation – 

e.g. BRL model [223], Perez model [211] and Skartveit and Olseth model [255]. Lanini [166] compared 

the performance of several of these models and determined that the best performance was achieved by 

the Skartveit and Olseth model. Hence, this annex describes the methodology behind this model. 

The Skartveit and Olseth model was firstly developed in 1986 [254] and then updated in 1998 [255]. 

This model splits the direct and diffuse components based on the diffuse faction and solar elevation 

concepts. However, since it was found to overestimate the diffuse faction under cloudless sky 

conditions, the 1998 update brought two new parameters, the regional surface albedo and the hourly 

variability index (σ3), which is obtained through the following equations: 

𝜎3 = (
(𝜌𝑖 − 𝜌𝑖−1)

2 + (𝜌𝑖 − 𝜌𝑖+1)
2

2
)

0.5

 J.1 

Where σ3 is the hourly variability index, ρi is the clear sky index for timestep i, ρi–1 is the clear sky index 

for the timestep prior to i and ρi+1 is the clear sky index for the timestep after i. Note that for the initial 

and last values, equation J.1 is simplified to the following form: 

𝜎3 = |𝜌𝑖 − 𝜌𝑖±1| J.2 

Where σ3 is the hourly variability index, ρi is the clear sky index for timestep i, ρi±1 is the clear sky index 

for the timestep prior or after timestep i dependent to which σ3 refers to. Equation J.2 is dependent on 

the data that is missing, which means that for the initial value the hourly variability index is ρi –ρi+1, 

whilst for the last value the hourly variability index is ρi –ρi–1. The clear sky index is determined using 

the following equation:  

𝜌𝑖 =
𝑘

𝑘1
 J.3 

Where ρi is the clear sky index for timestep i, k is the clearness index and k1 is the cloudless clearness 

index (which is obtained using equation J.10). The clearness index is obtained using the following 

equation:  

𝑘 =
𝐻𝑔

𝐻𝑒𝑥
 J.4 

Where k is the clearness index, Hg is the surface global irradiance and Hex is the extraterrestrial global 

irradiance (which is obtained using equation I.24). A low σ3 is associated either with overcast (ρi ≈ 0) or 

nearly cloudless sky (0.9 < ρi <1.0). Consequently, the model is subdivided into the four situations 

depending on the clearness index (k). For low variability index values (σ3 ≈ 0), the diffuse fraction d is 
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calculated using the following equation system:  

𝑑 = 1.00 𝑘 ≤ 0.22 J.5 

𝑑 = ∫ (𝑘, ℎ) = 1.00 − (1.00 − 𝑑1) ∙ (0.11 ∙ √𝐾 + 0.15 ⋅ 𝐾 + 0.74 ⋅ 𝐾
2) 0.22 ≤ 𝑘 ≤ 𝑘2 J.6 

𝑑 = 𝑑2 ∙ 𝑘2 ∙
(1 − 𝑘)

(𝑘 ∙ (1 − 𝑘2))
 𝑘2 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 

J.7 

𝑑 = 1.00 − 𝑘𝑚𝑎𝑥 ∙
(1 − 𝑑𝑚𝑎𝑥)

𝑘
 𝑘 ≥ 𝑘𝑚𝑎𝑥 

J.8 

K in equation J.6 is calculated using the following equation system: 

𝐾 = 0.5 ∙ (1 + 𝑠𝑖𝑛 (
(𝑘 − 0.22)

(𝑘1 − 0.22)
∙ 𝜋 −

𝜋

2
)) J.9 

𝑘1 = 0.83 − 0.56 ∙ 𝑒𝑥𝑝(−0.06 ∙ ℎ) J.10 

𝑘2 = 0.95 ∙ 𝑘1 J.11 

𝑑1 = 0.07 + 0.046 ∙
(90 − ℎ)

(ℎ + 3)
 J.12 

Where h is the solar elevation (º). Note that d1 has a unitary value if h ≤ 1.4º [255]. The d2 = ∫(k2,h) in 

equation J.7 is calculated using J.6, J.9, J.10, J.11 and J.12. In turn, the kmax is calculated using the 

following equation system:  

𝑘𝑚𝑎𝑥 =
(𝑘𝑏,𝑚𝑎𝑥 +

𝑑2 ∙ 𝑘2
(1 − 𝑘2)

)

(1 +
𝑑2 ∙ 𝑘2
(1 − 𝑘2)

)
 J.13 

𝑘𝑏,𝑚𝑎𝑥 = 0.81
𝛼 J.14 

𝛼 = (
1

sin(ℎ)
)
0.6

 
J.15 

Where h is the solar elevation (º). In turn, the dmax is calculated using the following equation: 

𝑑𝑚𝑎𝑥 = 𝑑2 ∙ 𝑘2 (
(1 − 𝑘𝑚𝑎𝑥)

𝑘𝑚𝑎𝑥 ∙ (1 − 𝑘2)
) J.16 

On the other hand, for higher variability index values (σ3 > 0) it is necessary to add a Δ(k, h, σ3) term to 

equation J.5, J.6, J.7 and J.8 so that the effect of variable/inhomogeneous clouds is accounted for [255]: 
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𝛥(𝑘, ℎ, 𝜎3) = 0 𝑘 ≤ 0.14 J.17 

𝛥(𝑘, ℎ, 𝜎3) = −3𝑘𝐿
2 ∙ (1 − 𝑘𝐿) ∙ 𝜎3

1.3 0.14 ≤ 𝑘 ≤ 𝑘𝑥 J.18 

𝛥(𝑘, ℎ, 𝜎3) = 3𝑘𝑅 ∙ (1 − 𝑘𝑅)
2 ∙ 𝜎3

0.6 𝑘𝑥 ≤ 𝑘 ≤ 𝑘𝑥 + 0.71 J.19 

𝛥(𝑘, ℎ, 𝜎3) = 0 𝑘 ≥ 𝑘𝑥 + 0.71 J.20 

Where the kx, kL and kR are calculated using equation J.21, J.22 and J.23, respectively:  

𝑘𝑥 = 0.56 − 0.32 ∙ 𝑒𝑥𝑝(−0.06 ∙ ℎ) J.21 

𝑘𝐿 =
(𝑘 − 0.14)

(𝑘𝑥 − 0.14)
 

J.22 

𝑘𝑅 =
(𝑘 − 𝑘𝑥)

0.71
 

J.23 

Where h is the solar elevation (º) and k is the clearness index. Figure 2, figure 3a and figure 3b of Ref. 

[255] were recreated using the code developed for this thesis to validate the developed code. Figure  J.1 

presents the obtained results that, when compared with the respective figures in Ref. [255], show that 

the obtained results perfectly overlay the values presented in Ref. [255], thus validating the code. 

 

Figure  J.1 – Diffuse fraction vs clearness index for four variability indices for solar elevation of 10º (a) and 60º (b), and 
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diffuse fraction vs clearness index for six solar elevations for invariable hours (c) 

The extraterrestrial solar radiation (Hex, W/m2) variance can be obtained using the following equation:  

𝐻𝑒𝑥 = 𝐺𝑠𝑐 (1 + 0.033 cos
360 ∙ 𝑛

365
) J.24 

Gsc is the solar constant (1367 w/m2 [78]) and n is the nth day of the year. The application of this equation 

results in the variance depicted in Figure  J.2. According to Duffie and Beckman [78], this equation is 

suitable to determine the variance of the extraterrestrial radiation throughout the year for most 

engineering problems, but for a more accurate analysis Iqbal [143] supports the use of the equation 

developed by Spencer [257].  

 

Figure  J.2 – Variance of the extreterrestrial solar radiation through the year  

The solar elevation (h,º) was obtained using the MATLAB code developed by Mikofski [189], which 

suffered adaptations to serve the aims of this thesis more adequately. This code is based on the equations 

that calculate the solar zenith angle and the solar azimuth angle depending on the angle of incidence, 

the declination and the hour angle, which is described for example in Duffie and Beckman [78] by 

equations 1.6.5 and 1.6.6, respectively. For the code to run it is necessary to input the location (latitude 

and longitude, in degrees), timezone (offset relative to the UTC in hours) and rotation (in degrees). Its 

outputs are the solar zenith and azimuth for the selected location throughout the selected period of time. 

Solar elevation angle (h) and the solar zenith angle (z)  are complementary angles (Figure  J.3).  

 

Figure  J.3 – Graphical representation of the solar elevation angle (h), solar zenith angle (z) and solar azimuth angle (A) 

(figure adapted from Ref. [198]) 
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This code’s performance can easily be compared with, for example, a reliably online solar position 

calculator [199]. This was performed for Lisbon – i.e. longitude: -9.13333º, latitude: 38.71667º, 

timezone: 0 h and rotation: 0º. The presented results show that the values obtained from the MATLAB 

code are very similar to the values obtained from NOAA ESRL’s solar position calculator (Table  J.1). 

Table  J.1 – Solar zenith (º), solar elevation (º) and sun azimuth (º) values for Lisbon in 16/6/2019 between 6h00–19h00, 

which were obtained using NOAA ESRL calculator [199] and the MATLAB code [189]  

Date 

NOAA ESRL MATLAB code 

Solar 

zenith [º] 

Solar 

elevation [º] 

Sun 

azimuth [º] 

Solar 

zenith [º] 

Solar 

elevation [º] 

Sun 

azimuth [º] 

16/6/19 6:00 82.292 7.708 66.092 82.362 7.638 66.114 

16/6/19 7:00 71.345 18.655 74.585 71.347 18.653 74.608 

16/6/19 8:00 59.896 30.104 82.964 59.877 30.123 82.989 

16/6/19 9:00 48.227 41.773 92.003 48.197 41.803 92.035 

16/6/19 10:00 36.643 53.357 103.099 36.607 53.393 103.146 

16/6/19 11:00 25.733 64.268 119.560 25.697 64.303 119.646 

16/6/19 12:00 17.285 72.715 150.060 17.264 72.736 150.239 

16/6/19 13:00 16.114 73.886 199.176 16.137 73.863 199.386 

16/6/19 14:00 23.358 66.642 234.911 23.410 66.590 235.021 

16/6/19 15:00 33.925 56.075 253.653 33.992 56.008 253.715 

16/6/19 16:00 45.421 44.579 265.612 45.497 44.503 265.656 

16/6/19 17:00 57.101 32.899 274.979 57.188 32.812 275.016 

16/6/19 18:00 68.624 21.376 283.433 68.728 21.272 283.469 

16/6/19 19:00 79.722 10.278 291.844 79.871 10.129 291.882 
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Annex K. Reference year weather files  

Standard EN 15927-4 [89] describes a two-step procedure to construct a representative year that is based 

on multi-year records of, at least, four meteorological variables. The following four meteorological 

variables in hourly values are used to develop such representative years: 

• Temperature (ºC) 

• Relative humidity (%) 

• Global radiation (W/m2) 

• Wind speed at a height of 10 m above ground (m/s) 

Note that this standard also accounts for the use of more than these four meteorological variables, which 

is normal in most cases of hygrothermal simulations (see subchapter 3.2.1). The following steps 

thoroughly describe this procedure: 

1st step: Select the best representative month from the multi-year records. Perform this selection for each 

of the twelve months that compose a year, i.e. January, February, March, April, May, June, July, August, 

September, October, November and December; which is based, at least, on a 10-year worth of records. 

The temperature, relative humidity and global radiation are designated as primary parameters (ρ) and 

the wind speed is designated as secondary parameter, which is used in step f of this procedure: 

a. Determine the daily means for each of the three primary parameters 

b. For each month determine the cumulative distribution function of the daily means of all years of 

the selected dataset by sorting all values in increasing order. Lastly, the following equation is 

used: 

Φ(𝑝,𝑚, 𝑖) =
𝐾(𝑖)

𝑁 + 1
 K.1 

Where Φ(p,m,i) is the cumulative distribution function, K(i) is the rank of the i value of the daily 

mean for the respective primary parameter within that calendar month in the whole data set, and 

N is the number of days in each calendar month in the whole data set (e.g. for a 10-year data set 

January has an overall day count of 310 days) 

c. Determine the cumulative distribution function of the daily means within each calendar month 

for each year of the dataset by sorting all the values for that month and that year in increasing 

order. Lastly, the following equation is used: 

F(𝑝, 𝑦,𝑚, 𝑖) =
𝐽(𝑖)

𝑛 + 1
 K.2 

Where F(p,y,m,i) is the cumulative distribution function of the daily means within each calendar 
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month for each year, J(i) is the rank of the i value of the daily mean for the respective primary 

parameter within that calendar month and that year, and n number of days in each month.  

d. Determine the Finkelstein-Schafer statistic for each calendar month of each year using the 

following equation:  

𝐹𝑆(𝑝, 𝑦,𝑚) =∑|F(𝑝, 𝑦,𝑚, 𝑖) − Φ(𝑝,𝑚, 𝑖)|

𝑛

𝑖=1

 K.3 

Where Fs(p,y,m) is the Finkelstein-Schafer statistic, F(p,y,m,i) is the cumulative distribution 

function of the daily means within each calendar month for each year, and Φ(p,m,i) is the 

cumulative distribution function 

e. Rank each month from the data set in increase order according to its Finkelstein-Schafer 

statistic. This procedure is performed for each of the twelve calendar months, i.e. January, …, 

December 

f. Sum the three rankings for each calendar month. For the three-lowest overall ranking months 

calculate the deviation between the monthly mean wind speed and the multi-year calendar-

month mean. Lastly, select the month with the lowest wind speed deviation 

2nd step: In order to smooth the transaction between the selected months, submit the last eight hours of 

the prior month and the first eight hours of the posterior month to an interpolation process. Note that 

December and January should also be submitted to this interpolation process since hygrothermal 

simulation tend to be run for more than one year 
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Annex L. Recommend thicknesses ranges and MRF for ceilings/roofs for Lisbon and Seville 

Table  L.1 – Thickness range (cm) that outperforms the case-study without any retrofit measure (WR) for Lisbon and Seville 

for future conditions – RCP 4.5 and RCP 8.5 

Climate Scenario Parameter 
W1 

(2-20) 

W2 

(2-20) 

W3 

(2-20) 

W4 

(2-20) 

W5 

(1.5-5.0) 

R1 

(2-10) 

R2 

(2-10) 

C1 

(2-10) 

C2 

(2-10) 

Lisbon 

RCP 4.5 

MRF 7 20 2 20 4 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 1.5 3.0 0 0 0 0 0 0 2 3 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 0 0 2 10 2 10 2 10 4 10 

Base layer 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 

Pictorial layer 2 20 2 20 2 20 2 20 1.5 5.0 8 10 0 0 2 10 2 10 

Thermal comfort 2 20 2 20 2 20 2 20 2.2 5.0 2 10 2 10 2 10 4 10 

RCP 8.5 

MRF 15 20 2 20 6 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 1.5 3.5 0 0 0 0 0 0 2 3 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 0 0 2 10 2 10 0 0 0 0 

Base layer 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 

Pictorial layer 3 20 2 20 2 20 2 20 1.5 5.0 0 0 0 0 2 10 2 10 

Thermal comfort 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 4 10 

Seville 

RCP 4.5 

MRF 18 20 7 20 11 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 0 0 0 0 2 10 2 7 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 1.5 5.0 2 10 2 10 2 10 4 10 

Base layer 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Pictorial layer 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Thermal comfort 2 20 2 6 2 8 2 20 0 0.0 2 10 2 10 2 10 4 9 

RCP 8.5 

MRF 0 0 10 20 0 0 2 20 1.5 5.0 2 10 2 10 2 10 4 10 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 0 0 0 0 2 10 2 6 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Base layer 4 20 2 20 2 20 2 20 1.6 5.0 2 10 2 10 2 10 3 10 

Pictorial layer 2 20 2 20 2 20 2 20 1.5 5.0 4 10 5 10 2 10 2 10 

Thermal comfort 0 0 0 0 0 0 0 0 0 0 2 10 2 10 0 0 0 0 
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Table  L.2 – Thickness range (cm) that outperforms the case-study without any retrofit measure (WR) for Prague and Oslo 

for future conditions – RCP 4.5 and RCP 8.5 

Climate Scenario Parameter 
W1 

(2-20) 

W2 

(2-20) 

W3 

(2-20) 

W4 

(2-20) 

W5 

(1.5-5) 

R1 

(2-10) 

R2 

(2-10) 

C1 

(2-10) 

C2 

(2-10) 

Prague 

RCP 4.5 

MRF 8 20 2 20 6 20 2 20 0 0 0 0 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 1.5 1.6 0 0 0 0 0 0 2 2 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 8 20 0 0 7 20 2.0 5.0 2 4 4 4 0 0 0 0 

Base layer 2 20 2 20 2 20 2 20 0 0 2 10 2 10 2 10 3 10 

Pictorial layer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thermal comfort 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 

RCP 8.5 

MRF 0 0 10 20 0 0 4 20 0 0 2 10 2 10 2 10 4 10 

eLM 0 0 0 0 0 0 0 0 1.5 2.0 0 0 0 0 0 0 2 2 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Base layer 3 20 2 20 2 20 2 20 0 0 2 10 2 10 2 10 3 10 

Pictorial layer 0 0 0 0 0 0 0 0 0 0 2 2 2 3 0 0 0 0 

Thermal comfort 2 20 2 20 2 20 2 20 2.2 3.4 2 10 2 10 2 10 3 10 

Oslo 

RCP 4.5 

MRF 4 20 2 20 3 20 2 20 0 0 0 0 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 2.0 2.0 0 0 0 0 0 0 0 0 

Base layer 2 20 2 20 2 20 2 20 2.3 5.0 2 10 2 10 2 10 2 10 

Pictorial layer 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 

Thermal comfort 2 20 2 20 2 20 2 20 1.7 5.0 2 10 2 10 2 10 3 10 

RCP 8.5 

MRF 5 20 2 20 3 20 2 20 0 0 2 10 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 2.0 2.0 0 0 0 0 0 0 0 0 

Base layer 2 20 2 20 2 20 2 20 1.8 5.0 2 10 2 10 2 10 2 10 

Pictorial layer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thermal comfort 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10 
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Table  L.3 – Thickness range (cm) that outperforms the case-study without any retrofit measure (WR) for London for future 

conditions – RCP 4.5 and RCP 8.5 

Climate Scenario Parameter 
W1 

(2-20) 

W2 

(2-20) 

W3 

(2-20) 

W4 

(2-20) 

W5  

(1.5-5) 

R1 

(2-10) 

R2 

(2-10) 

C1 

(2-10) 

C2 

(2-10) 

London 

RCP 4.5 

MRF 7 20 2 20 5 20 2 20 0 0 2 10 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 2 20 0 0 0 0 0 0 0 0 0 0 

Base layer 2 20 2 20 2 20 2 20 1.7 5.0 2 10 2 10 2 10 2 10 

Pictorial layer 2 20 2 20 2 20 2 20 0 0 3 10 3 10 2 10 2 10 

Thermal comfort 2 20 2 20 2 20 2 20 2.0 5.0 2 10 2 10 2 10 3 10 

RCP 8.5 

MRF 5 20 2 20 3 20 2 20 2.7 5.0 2 10 2 10 2 10 3 10 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Sculpture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Base layer 2 20 2 20 2 20 2 20 1.8 5.0 2 10 2 10 2 10 2 10 

Pictorial layer 0 0 0 0 0 0 20 20 0 0 0 0 0 0 0 0 0 0 

Thermal comfort 2 20 2 20 2 20 2 20 3.0 5.0 2 10 2 10 2 10 3 10 

 

Table  L.4 – Thickness range (cm) in which the indoor climate is in ideal conditions (IC) for the five climates in future 

conditions – RCP 4.5 and RCP 8.5 

Climate Scenario Parameter 
W1 

(2-20) 

W2 

(2-20) 

W3 

(2-20) 

W4 

(2-20) 

W5 

(1.5-5) 

R1 

(2-10) 

R2 

(2-10) 

C1 

(2-10) 

C2 

(2-10) 

Lisbon 

RCP 4.5 
MRF 0 0 8 20 0 0 4 20 4.0 5.0 2 10 2 10 0 0 0 0 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RCP 8.5 
MRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Seville 

RCP 4.5 
MRF 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

RCP 8.5 
MRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prague 

RCP 4.5 
MRF 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

RCP 8.5 
MRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

Oslo 

RCP 4.5 
MRF 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

RCP 8.5 
MRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

London 

RCP 4.5 
MRF 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

RCP 8.5 
MRF 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 

eLM 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10 
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Figure  L.1 – Mould risk factor (MRF) assessment for the ceilings/roofs retrofits for Lisbon  

 

Figure  L.2 – Mould risk factor (MRF) assessment for the ceilings/roofs retrofits for Seville 
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