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a b s t r a c t

Time series feature extraction is one of the preliminary steps of conventional machine learning
pipelines. Quite often, this process ends being a time consuming and complex task as data scien-
tists must consider a combination between a multitude of domain knowledge factors and coding
implementation. We present in this paper a Python package entitled Time Series Feature Extraction
Library (TSFEL), which computes over 60 different features extracted across temporal, statistical and
spectral domains. User customisation is achieved using either an online interface or a conventional
Python package for more flexibility and integration into real deployment scenarios. TSFEL is designed
to support the process of fast exploratory data analysis and feature extraction on time series with
computational cost evaluation.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Over the last years, the technological breakthroughs motivated
by the rise of Internet-of-Things led to the proliferation of sensors
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to measure a plethora of physical processes. Those observations
often result in the creation of large quantities of data in the form
of time series, which are described as sequences of numerical
observations ordered in time. The process of time series feature
extraction is one of the preliminary steps in conventional ma-
chine learning pipelines and aims to extract a set of properties
to characterise time series. The feature extraction is a time-
consuming and complex task, which poses challenges on such a
significant and important step of the machine learning stack: ‘‘At
the end of the day, some machine learning projects succeed and some
fail. What makes the difference? Easily the most important factor is
the features used’’ [1].

We present in this paper a Python package named Time Series
Feature Extraction Library (TSFEL), which provides support for
fast exploratory analysis supported by an automated process of
feature extraction on multidimensional time series.

In literature, there exist related packages dedicated to fea-
ture extraction, such as FATS [2], CESIUM [3], TSFRESH [4] and
HCTSA [5]. Those packages inspired the creation of TSFEL and
in the future they may be combined. TSFEL extends their scope
by integrating a more thorough analysis of the temporal com-
plexity of the features. This fact is relevant in scenarios where
feature extraction is computed in embedded devices such as
wearables, with limited computational resources. TSFEL is being
used to support feature extraction on inertial data acquired by
smartphones and wearables in the contexts of Human Activ-
ity Recognition (HAR) [6–9], rehabilitation [10–12] and anomaly
detection [13].

Users can interact with TSFEL in two forms: a backend built
upon a Python package aimed for advance users; a frontend
displayed in online spreadsheets aimed for beginners. For both
cases, TSFEL also provides a crucial aspect for the deployment of
machine learning algorithms in real scenarios - a comprehensive
evaluation of the computational complexity of each feature.

2. Software description

2.1. Software architecture

TSFEL is written in Python 3. Most of the implemented feature
extraction methods depend on Numpy and SciPy, which provide
efficient numerical routines for multi-dimensional data. TSFEL
output is standardised to be compatible with data science Python
packages, namely Pandas and scikit-learn.

The frontend is implemented using the Google Sheets API to
establish the interface to TSFEL backend. An online spreadsheet
is used to configure the feature extraction. Users can choose the
desired feature extraction methods, either by individual selection
or filtering based on defined criteria (e.g. domain or computa-
tional complexity). A tutorial with an illustrative example which
uses the online spreadsheet to configure TSFEL is available on a
Google Colab.2

Fig. 1 summarises the TSFEL processing pipeline. Time series
are passed as inputs for the main TSFEL extraction method either
as arrays previously loaded in memory or stored in files on a
dataset. Since TSFEL can handle multidimensional time series, a
set of preprocessing methods is afterwards applied to ensure that
not only the signal quality is adequate, but also, time series syn-
chronisation, so that the window calculation process is properly
achieved. After the feature extraction, the result is saved using a
standard schema ready to be digested by most of the classification
and data mining platforms. Each line corresponds to a window
with the results of the feature extraction methods stored along
the corresponding columns.

2 https://github.com/fraunhoferportugal/tsfel.

2.2. Software functionalities

When deploying machine learning applications, a proper set
of features can improve the performance of the algorithms and
reduce the computational complexity. In the signal windowing
step, time series are divided into user-defined fixed length time
windows (which can optionally have some overlap), from which
features are extracted.

2.2.1. Data ingestion and preprocessing
Before the feature extraction step, it is essential to ensure

adequate data quality. The time series can be passed to the
feature extraction method using two methods:

• dataset_features_extractor: receives a string con-
taining the dataset root_directory and the configura-
tion feature dictionary feat_dict. To ensure that unequal
length time series become synchronised, time-based pa-
rameters must be defined, namely the sampling frequency
in Hertz and the time_unit defining the temporal scale
of the dataset. This method might optionally receive as
input the output_directory where the extracted fea-
tures will be saved in a delimited text file format and the
search_criteria, which will be used to match and filter
the files which are the ones more relevant to the user.
• time_series_features_extractor: receives a multidi-

mensional structure with time series stored as variables in
memory, the configuration feature dictionary feat_dict
and the sampling frequency in Hertz.

Both methods receive additional parameters related to win-
dow metadata, defining the window parameters used for the
feature extraction, such as window size in the number of samples
and the overlap between windows, defined as a percentage value.

2.2.2. Feature extraction
The TSFEL features can be grouped into three categories ac-

cording to the domain where they are calculated: temporal, sta-
tistical and spectral domain. The listing of the available features
and detailed implementation containing mathematical formula-
tion, pseudo-code and references are available at Appendix.

All features implemented are classified by their time complex-
ity according to the following known models: O(n2), O(n log n),
O(n), O(log n) and O(1). Firstly, a set of time series with incremen-
tal length are synthetically generated from a sinusoidal model.
Secondly, the feature extraction runtime is calculated for each
incremental length time series. This process allows creating a
curve displaying the relationship between time series length and
execution time for each feature. Thirdly, we use a non-linear least
squares to fit the runtime results to the known models. For each
feature, we assign the time complexity which minimises the χ2

among all the time complexity models.

2.2.3. Unit tests
In order to properly maintain a significant number of different

feature extraction methods, it is necessary to systematically verify
the feature extraction implementation. A set of unit tests were
created for each feature. Those tests compare the values obtained
from TSFEL against a set of synthetic time series with a known
distribution. Different time series synthesis parameters are used
to cover a variety of properties (e.g. constant values, modulation
of amplitude offsets, periodicity and noise addition). The contri-
bution guidelines to incorporate new features in TSFEL require
the introduction of at least one unit test for the new feature.

2.2.4. Personalised features
TSFEL provides flexibility for users to add their personal fea-

tures to those already available on the library. Users are require
to write the feature extraction method and declare its domain.

https://github.com/fraunhoferportugal/tsfel
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Fig. 1. TSFEL pipeline: dataset analysis, signal preprocessing, feature extraction and output.

3. Illustrative examples

We now provide an illustrative example with a typical pipeline
to extract features in the context of HAR. We used a subset from
the dataset collected by [12], composed of time series retrieved
by accelerometer, gyroscope and goniometer sensors from two
subjects performing four activities: stand, sit, stand-to-sit and sit-
to-stand. Developers can accomplish the feature extraction using
two distinct methods: conduct the feature extraction on a time
series already loaded in memory or conduct the feature extraction
across an entire time series database organised in directories.
At line 4 of Fig. 2 the user loads a configuration setting which
is available as a template. The get_all_features() template
enables all the implemented features to be extracted. In line 7
a dataset composed of univariate time series from 3 different
sensors is loaded. At line 8 the feature extraction process is
accomplished. The method receives as inputs the configuration
settings, the time series passed as a pandas’ dataframe df, the
sampling frequency in Hertz, the window size defined as num-
ber of samples and no overlap percentage between consecutive
windows.

Fig. 3 summarises the interaction required to use TSFEL to
extract features from a dataset stored in files across system
directories. In line 4 we define the root directory of the dataset.
The configuration file is defined on line 5. The main method
is present on lines 7 to 13. The method receives as inputs the
root dataset directory, the configuration file, the search criteria
defined by keywords that will match the designated files for
feature extraction, the resample parameters (which will configure
the resampling methods to ensure the multivariate time series
are synchronised prior dividing data into windows), and the
parameters which define the window size and overlap.

Fig. 4 represents a set of the extracted features in the form
of a horizon plot. The x-axis contains three repetitions of the
following sequence of activities: sit, sit-to-stand, stand, stand-
to-sit. The y-axis corresponds to the extracted features, and the
range of y-axis to a third of the maximum value of each feature,
represented by the darkest values. The blue and red colours
correspond to positive and negative values, respectively. The go-
niometer and gyroscope sensors allow to discriminate between
static activities (sit and stand) and transitions (sit-to-stand and
stand-to-sit). The acc_x_Upper_Min and acc_z_Upper_Min clearly
distinguish between sit and stand. Finally, the goniometer_y_Slope
is an adequate feature to discriminate between sit-to-stand and
stand-to-sit.

4. Impact

While working with the analysis of heterogeneous time series
data from multiple sources, the process of feature engineering

(i.e. transforming raw data into features to enter as inputs for
machine learning models) is a time-consuming and complex task.
TSFEL helps data scientists by creating an abstraction layer com-
posed of a comprehensive list of time series feature extraction
techniques. Those methods were aggregated from several scien-
tific domains and previously validated on the context of HAR. The
output of the TSFEL is a standardised file format ready to be
digested by most of time series classification libraries like Orange,
Weka or scikit-learn. TSFEL also provides a systematic methodol-
ogy to record the inputs, the dataset metadata and the parameters
of feature extraction experiments, promoting openness and re-
producibility of the scientific method among researchers. TSFEL
relies on a master configuration file which stores the metadata
and can be easily edited thorough a spreadsheet configuration
manager.

With the proliferation of Cyber–Physical Systems, more data
and processes are being digitised across several sectors. Whilst
machine learning holds the promise to uncover hidden patterns
of big data to gain new insights on data-driven business, the
deployment of such systems might still be limited by scalability
concerns. For example, in the context of large manufacturing
plants, the anomaly detection on their products based on sensors
producing high data volume, requires a compromise between
high accuracy and low latency. Therefore, the complete pipeline
should be designed with a mindset of being able to run the
inference step in near real-time. The successful implementation
of this approach should be accomplished bottom-up, meaning
to have design concerns on the initial stages of the machine
learning stack. TSFEL helps mitigate these technology adoption
risks by providing the user with a comprehensive list of feature
extraction methods on time series with an associated estimate
of computational complexity, enabling to have an idea of the
computational cost of the feature extraction on the early stages
of the machine learning stack.

5. Conclusions

We have developed a Python package entitled Time Series
Feature Extraction Library, which provides a comprehensive list
of feature extraction methods for time series. Over 60 different
features are extracted across temporal, statistical and spectral do-
mains. TSFEL includes unit tests for every implemented feature
extraction method and proper code documentation. Besides these
strongly oriented coding guidelines, this project has three main
broad contributions to the scientific community:
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Fig. 2. Illustrative code example to extract features from a time series previously loaded in memory.

Fig. 3. Illustrative code example to extract features from a dataset organised in directories.

Fig. 4. Horizon plot representation from the most relevant features. The vertical lines correspond to groundtruth annotations to discriminate among different classes.

TSFEL can be used through a user interface built upon Google
Sheets, requiring no installation whatsoever, allowing rapid pro-
totyping and exploratory time series analysis, with reduced cod-
ing effort. More expert users can delve directly into TSFEL back-
end for more flexibility and integration with Python projects.
A master configuration file is used to record the experiment
parameters, emphasising traceability and reproducibility.

The feature extraction process is performed either on time
series already stored in the memory environment or using a
list of directories containing time series data files. The latter is
achieved using a search criteria which filters the files relevant to
the user. This process aims to reduce the time spent by the user
in preparing data aggregation code for every application.

This design of TSFEL is oriented to have from the early stage
of the machine learning pipeline an estimate regarding the com-
putational complexity of the features being extracted, aligned
with the ‘‘Edge artificial intelligence’’ strategy to empower the
deployment of machine learning applications in large scale en-
vironments.

Although multiple features are extracted across three different
domains, there is still room for improvement. Thus, as future
work, features regarding new domains such as nonlinear features
will be introduced.

TSFEL is open for contributions and invites users to extend the
library with new time series feature extraction methods across
different scientific disciplines.
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Appendix. Detailed implementation of available features

Let s represent the time series signal vector, ∆s the discrete
derivative of s, t the correspondent time vector, fs signal’s sam-
pling frequency, and N the length of s. Additionally, P(x) states
probability.

Domain transformations

Fast Fourier Transform

1: INPUT: s, t ← s is the signal and t the time
2: OUTPUT: frequency,magnitude
3: Computes the Fast Fourier Transform: fft(t, s)
4: Returns frequency and magnitude values
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Wavelet transform

1: INPUT: s, f , w ← f is Ricker function (default), w are the
scale widths

2: OUTPUT: matrix with size (len(w), len(s))
3: Computes the discrete wavelet transform: cwt(s, f , w)
4: Returns a matrix with size (len(w), len(s))

Temporal domain

Autocorrelation:
∑

n∈Z s(n)s(n− l), where s(n− l) is the complex
conjugate of s(n), and l is a lag.

Centroid:
∑N

i=0 ti×s2i∑N
i s2i

Mean absolute differences: mean(|∆s|)

Mean differences: mean(∆s)

Median absolute differences: median(|∆s|)

Median differences: median(∆s)

Distance:
∑N−1

i=0

√
1+∆si2

Sum of absolute differences:
∑N−1

i=0 |∆si|

Total energy:
∑N

i=0 s2

tN−t0

Entropy: −
∑

x∈s P(x) log2 P(x)

Peak to peak distance: |max(s)−min(s)|

Area under the curve:
∑N

i=0(ti − ti−1)×
si+si−1

2

Absolute energy:
∑N

i=0 si
2

Maximum peaks:

1: INPUT: s
2: OUTPUT: number of maximum peaks
3: ∆s = si+1 − si
4: for each i ∈ [0,N − 1] do
5: if ∆si+1 < 0 and ∆si > 0 then
6: Count one maximum peak
7: else
8: Go back to the next i
9: end if

10: end for

Minimum peaks:

1: INPUT: s
2: OUTPUT: number of minimum peaks
3: ∆s = si+1 − si
4: for each i ∈ [0,N − 1] do
5: if ∆si < 0 and ∆si+1 > 0 then
6: Count one minimum peak
7: else
8: Go back to the next i
9: end if

10: end for

Slope:

1: INPUT: s, t
2: OUTPUT: slope
3: Fits a linear equation to the observed data: y = mx+ b
4: Returns the m coefficient (slope)

Zero crossing rate:

1: INPUT: s
2: OUTPUT: zero crossing rate
3: sign = list of zeros with size N
4: zcr = list of zeros with size N
5: for each i ∈ [0,N] do
6: if si > 0 then
7: signi = 1
8: else if si < 0 then
9: signi = 0

10: end if
11: Go back to the next i
12: end for
13: ∆sign = signi+1 − signi
14: for each i ∈ [0,N] do
15: if ∆signi > 0 or ∆signi < 0 then
16: zcri = 1
17: else if ∆signi = 0 then
18: zcri = 0
19: end if
20: Go back to the next i
21: end for
22: zero crossing rate =

∑N
i zcri

Statistical domain

Histogram: n =
∑k

i=1 mi, where mi represents the histogram

in which n is the total number of observations and k the total

number of bins.

Interquartile range: Q3−Q1, where Q3 and Q1 represent the first

and third quartile, respectively.

Mean absolute deviation:
∑N

i=1 |s
2
i −mean(s)|
N

Median absolute deviation: median(|s−median(s)|)

Root mean square:
√

1
N

∑N
i=1 s

2
i

Standard deviation:
√

var

Variance: mean(|s−mean(s)|)2

ECDF percentile count:

1: INPUT: s, percentile value (p)
2: OUTPUT: Cumulative sum of samples that are less than the

percentile.
3: x = sorted s
4: y = ECDF values
5: percentilecount = length of x, where y < p

ECDF slope:

1: INPUT: s, two percentile values (pinit , pend)
2: OUTPUT: Slope of the ECDF between the two percentiles
3: xinit , xend = the s values for the given percentiles

4: slope =
pend − pinit
xend − xinit

The following features are implemented according to the fol-

lowing references: Kurtosis [14], Skewness [14], Maximum [15],
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Minimum [15], Mean [15], Median [15] and ECDF [16], ECDF
Percentile [16].

Spectral domain

FFT mean coefficient: mean(spectrogram(s))

Wavelet absolute mean: |mean(wavelet(s))|

Wavelet standard deviation: |std(wavelet(s))|

Wavelet variance: |var(wavelet(s))|

Spectral distance:

1: INPUT: s, t
2: OUTPUT: spectral distance
3: Computes the Fast Fourier Transform: freq, fmag = fft(t, s)
4: Cumulative sum of the magnitude (cumsumfmag )
5: Linear regression of the cumsumfmag (lrfmag )
6: Returns the spectral distance =

∑N
i=0 lrfmagi − cumsumfmagi

Fundamental frequency:

1: INPUT: s, t
2: OUTPUT: Fundamental Frequency (ff )
3: Computes the Fast Fourier Transform: freq, fmag = fft(t, s)
4: Finds the lowest frequency of vibration (ff )

Maximum frequency:

1: INPUT: s, fs
2: OUTPUT: Maximum Frequency (mf )
3: Computes the Fast Fourier Transform: freq, fmag = fft(t, s)
4: Cumulative sum of the magnitude (cumsumfmag )
5: Returns the frequency with 95% of the cumsumfmag (mf )

Median frequency:

1: INPUT: s, fs
2: OUTPUT: Median Frequency (medf )
3: Computes the Fast Fourier Transform: freq, fmag = fft(t, s)
4: Cumulative sum of the magnitude (cumsumfmag )
5: Returns the frequency with 50% of the cumsumfmag (medf )

Spectral maximum peaks:

1: INPUT: s, fs
2: OUTPUT: Number of maximum spectral peaks
3: Computes the Fast Fourier Transform: freq, fmag = fft(t, s)
4: Returns the maximum number of peaks of fmag

The following features are implemented according to the fol-
lowing references: Maximum Power Spectrum [17], Spectral
Centroid [18], Decrease [18], Kurtosis [18], Skewness [18],
Spread [18], Slope [18], Variation [18], Spectral Roll-off [7],
Roll-on [7], Human Range Energy, [19], MFCC [20], LPCC [20],
Power Bandwidth [21], Spectral Entropy [22],
Wavelet Entropy [23] and Wavelet Energy [24].
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