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1 Introduction

A Latin square of order n is an n-by-n grid filled with n symbols so that
each symbol appears once in each row and in each column. We use the integers
1, . . . , n for the symbols. Latin squares have a long history, and their applica-
tions can be found in many areas. In cryptography, the multiplication table
of a finite group or of a quasigroup are Latin squares that encode features of
algebraic structures.

One notion very important in the study of Latin squares is the notion of
transversal. A transversal of a Latin square is a list of n distinct symbols, one
from each row and each column. The question regarding the existence of a
transversal in Latin squares that encode the Cayley tables of finite groups is an
area of active investigation, [1, 3, 20, 21].

Let A = [aij ] and B = [bij ] be two Latin squares of order n. We say that A
is orthogonal to B if

{(aij , bij) : (i, j) ∈ {1, . . . , n} × {1, . . . , n}} = {1, . . . , n} × {1, . . . , n}.

It is known that if a Latin square A is orthogonal to another Latin square
then A has, at least, n transversals. In [1] the author proved that if A is a
Latin square of even order then A has an even number of transversals and a
stronger version of the theorem from [1] appears in [2]. If A is a Latin square
of odd order, Ryser, in [21], conjectured that A has, at least, one transversal.
This conjecture remains unproven in general, but relatively recent, aided by a
computer, the authors of [20] proved that the conjecture holds for Latin squares
of order less than 10.

The Bruhat order is a partial order relation firstly defined on permutation
matrices, but latter extended, by Brualdi and Hwang, to matrices whose all
entries are zeros and ones, the (0, 1)-matrices, [4]. If A = [aij ] and C are two
m-by-n (0, 1)-matrices, then A precedes C by the Bruhat order, and we write
A ¹B C, if by the entrywise order, Σ(A) ≥ Σ(C), where Σ(A) = [σrs(A)] is the
m-by-n matrix whose (r, s)-entry is

σr,s(A) =
r∑

i=1

s∑

j=1

aij , for 1 ≤ r ≤ m, 1 ≤ s ≤ n,

and Σ(C) is defined similarly.
The Bruhat order on (0, 1)-matrices is receiving the attention of many re-

searchers, [4, 6, 10, 11, 12, 13, 15, 16, 17, 18, 19]. In the recent years several
authors have taken Brualdi and Hwang’s ideas, and extended the Bruhat order
to other classes of matrices than (0, 1)-matrices: the Bruhat order has been
studied on the class of tournament matrices with a given score vector, [8], on
the class of alternating sign matrices, [9], and on the class of doubly stochastic
matrices, [7]. In [14], the authors, followed this new branch of investigation,
studied the Bruhat order on the class of Latin squares of order n. This partial
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order relation is defined similarly as it is defined on other classes of matrices,
that is, by using the matrices Σ(.) defined above.

Let A and C = [cij ] be two Latin squares of order n. If α is a permutation
of {1, . . . , n}, this is, α ∈ Sn, we denote by α(C) the Latin square of order
n whose (i, j) entry is α(cij). We say that A and C are isotopic if one can be
turned into the other by permuting rows, columns and symbols, this is, there are
permutation matrices R, Q, and a permutation α ∈ Sn such that RAQ = α(C).

Note that, RAQ = α(C) is equivalent to α−1(RAQ) = C. Sometimes we
will write the permutations associated with the permutation matrices R and Q,
π and ρ, respectively, instead of the matrices. So, R and Q will be written by
P (π) and P (ρ), respectively. Moreover, the entry (i, j) of P (π) is

P (π)ij =
{

1 if π(j) = i
0 otherwise ,

similarly we define the entry (i, j) of P (ρ).
For instance, let

A =




1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


 and D =




3 2 1 4
1 4 3 2
2 3 4 1
4 1 2 3


 .

If R is the permutation matrix associated with the permutation π = (23) and,
α = (13) then

RA =




1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1


 =




α(3) α(2) α(1) α(4)
α(1) α(4) α(3) α(2)
α(2) α(3) α(4) α(1)
α(4) α(1) α(2) α(3)


 = α(D).

So, A and D are isotopic Latin squares.
Let

A =




1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


 and C =




1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2


 .

Then A and C are not isotopic. In fact, in the first row of A, the symbol 1
appears before 2 and the symbol 3 before 4, and in all other rows of A we have

1 before 2, and 3 before 4,

or
2 before 1, and 4 before 3.

When we interchange the rows, the columns and the symbols of A we obtain a
matrix which is a Latin square isotopic to A, and it satisfies the following:
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if in the first row, the symbol x appears before y, with x, y ∈ {1, 2}, and the
symbol z before w, with z, w ∈ {3, 4}, then in all other rows we have

x before y, and z before w,

or
y before x, and w before z.

The isotopy relation is an equivalence relation in the class of Latin squares
of order n. The equivalence classes are called isotopic classes. The aim of this
paper is to proceed the work of [14], and study the restriction of the Bruhat
order to an isotopic class of Latin squares.

The paper is organized as follows: In Section 2, we state conditions for two
isotopic Latin squares, one obtained from the other by rows or/and columns
interchanges be related by the Bruhat order. In Section 3, we make a similar
study but when one of the Latin squares is obtained from the other by permu-
tation of symbols. The cover relation between two isotopic Latin squares for
the Bruhat order is the purpose of Section 4. In Section 5, we study isotopic or-
thogonal Latin squares that are related by the Bruhat order. Finally, in Section
6 we give some concluding remarks.

Let (X,¹) be a finite partially order set and a, b ∈ X. If a 6= b and a ¹ b
then we write a ≺ b.

Note that if A and D are two Latin squares of order n and D is obtained
from A by interchanging different rows or columns or symbols then A 6= D.
Consequently, A ≺B D or D ≺B A or A and D are not related by the Bruhat
order.

As we are going to see, in a class of isotopic Latin squares the Bruhat order
can, in some cases, be described using the majorization order on vectors. We
recall the definition here:

Definition 1.1 [5] Let a = (a1, . . . , an), and b = (b1, . . . , bn) be two sequences
of nonnegative integers with the same sum. We say that the sequence b is ma-
jorized by the sequence a, and we write b ¹M a, if

t∑

l=1

bl ≤
t∑

l=l

al, t = 1, . . . , n.

The sum of two integral vectors is the usual sum, and is denoted by ⊕.

2 Rows or/and Columns Interchange

In this section, we begin the study of isotopic Latin squares related by the
Bruhat order. Here, the isotopic relation only allows the interchange of rows or
columns. However, we will show a result involving the interchange of two rows
and two columns, simultaneously.
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Theorem 2.1 Let A = [ai,j ] be a Latin square of order n, and let π ∈ Sn\{id}.
Let G = {i : 1 ≤ i ≤ n, π(i) 6= i}, and let s1 < s2 < . . . < s|G| be the ordered
elements of G. Then A ≺B P (π)A if and only if

⊕p
t=1(aπ−1(st),1, . . . , aπ−1(st),n) ¹M ⊕p

t=1(ast,1, . . . , ast,n),

for p = 1, . . . , |G| − 1.

Proof. If l ∈ {1, . . . , n} then the π(l)th row of P (π)A is the lth row of A.
For all r ∈ {1, . . . , n} − {s1, s1 + 1, . . . , s|G| − 1}, and for h ∈ {1, . . . , n},

σr,h(A) = σr,h(P (π)A).

Let r ∈ {s1, s1 + 1, . . . , s|G| − 1}, and h ∈ {1, . . . , n}. If sp ≤ r < sp+1, with
1 ≤ p ≤ |G| − 1, then

σr,h(P (π)A) = σr,h(A) +
p∑

t=1

h∑

k=1

aπ−1(st),k −
p∑

t=1

h∑

k=1

ast,k.

So, if we assume that A ≺B P (π)A, then σr,h(A) ≥ σr,h(P (π)A), for r ∈
{s1, s1 + 1, . . . , s|G| − 1} and h ∈ {1, . . . , n}. Consequently,

p∑
t=1

h∑

k=1

aπ−1(st),k ≤
p∑

t=1

h∑

k=1

ast,k,

for h = 1, . . . , n. Therefore,

⊕p
t=1(aπ−1(st),1, . . . , aπ−1(st),n) ¹M ⊕p

t=1(ast,1, . . . , ast,n),

for p = 1, . . . , |G| − 1. The converse is analogous.

The following corollary is an immediate consequence of last theorem when
the permutation π is a transposition.

Corollary 2.2 Let A = [ai,j ] be a Latin square of order n, and let i, j ∈
{1, . . . , n}, i < j. Let D be the Latin square obtained from A by interchanging
rows i and j. Then A ≺B D if and only if (aj,1, . . . , aj,n) ¹M (ai,1, . . . , ai,n).

Remark 2.3 1. Using last result we conclude that if rows i and j of A are
not related by the majorization order and D is the matrix obtained from
A interchanging rows i and j then A and D are not related by the Bruhat
order.

2. By Theorem 2.1, last remark can be generalized: So, if the sum of the
rows s1, . . . , sp and the sum of the rows sπ(1), . . . , sπ(p) of A, with 1 ≤ p ≤
|G| − 1, are not related by the majorization order then A and P (π)A are
not related by the Bruhat order.
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Another consequence of Theorem 2.1 involves a permutation that is a cycle
of length three.

Corollary 2.4 Let A = [ai,j ] be a Latin square of order n, with n ≥ 3. Let
π = (ijk) ∈ Sn be a cycle of length three, with 1 ≤ i < j < k ≤ n. If

(aπ−1(i),1, . . . , aπ−1(i),n) ¹M (ai,1, . . . , ai,n),

and
(aπ−1(j),1, . . . , aπ−1(j),n) ¹M (aj,1, . . . , aj,n),

then A ≺B P (π)A.

Proof. Let θ ∈ Sn be the transposition (ik). So, θ(i) = π−1(i). Since
(aπ−1(i),1, . . . , aπ−1(i),n) ¹M (ai,1, . . . , ai,n), by Corollary 2.2, A ≺B P (θ)A.

Since π−1(j) = i and the row k of P (θ)A is the row i of A, let ξ be the
transposition (jk) of Sn. So, ξ(j) = k. Note that the row j of P (θ)A is the row
j of A. Since

((P (θ)A)ξ−1(j),1, . . . , (P (θ)A)ξ−1(j),n) ¹M ((P (θ)A)j,1, . . . , (P (θ)A)j,n),

by Corollary 2.2, P (θ)A ≺B P (ξ)P (θ)A. Because P (ξ)P (θ) = P (π) we conclude
the result.

The converse of last result does not hold as we can see in the next example.

Example 2.5 Let

A =




4 2 1 3
2 4 3 1
3 1 4 2
1 3 2 4


 and π = (124) ∈ Sn.

Since

(1, 3, 2, 4) = (aπ−1(1),1, . . . , aπ−1(1),4) ¹M (a1,1, . . . , a1,4) = (4, 2, 1, 3),

(a1,1, . . . , a1,4)⊕ (a2,1, . . . , a2,4) = (4, 2, 1, 3)⊕ (2, 4, 3, 1) = (6, 6, 4, 4),

(aπ−1(1),1, . . . , aπ−1(1),4)⊕ (aπ−1(2),1, . . . , aπ−1(2),4) = (1, 3, 2, 4)⊕ (4, 2, 1, 3)
= (5, 5, 3, 7),

and
(5, 5, 3, 7) ¹M (6, 6, 4, 4),

by Theorem 2.1, A ≺B (P (π)A).
However, (4, 2, 1, 3) = (aπ−1(2),1, . . . , aπ−1(2),4) 6¹M (a2,1, . . . , a2,4) = (2, 4, 3, 1).
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With similar arguments, we can prove analogous results to the Theorem
2.1 and its corollaries when the two isotopic Latin squares are obtained by
interchanging columns instead of rows.

We finish this section with a result that involves a simultaneous interchange
of two rows and two columns. When we interchange only rows (or only columns)
in a fixed Latin square A, the Bruhat order is equivalent to the majorization
order of the sum of the rows (of the columns) interchanged in A. This simplicity
disappears when we interchange rows and columns simultaneously.

Theorem 2.6 Let A = [ai,j ] be a Latin square of order n, and let k, l, p, q ∈
{1, . . . , n}, k < l, and p < q. Let D be the Latin square obtained from A by
interchanging rows k and l and columns p and q. Then A ≺B D if and only if
the following three conditions hold:

1. If t1 ∈ {1, . . . , n} is such that
t1∑

u=1

(au,p − au,q) < 0, then k ≤ t1 < l;

2. If t2 ∈ {1, . . . , n} is such that
t2∑

v=1

(ak,v − al,v) < 0, then p ≤ t2 < q;

3. If k ≤ t1 < l and p ≤ t2 < q, then

ak,p − al,q ≥
t1∑

u=1
u6=k

(au,q − au,p) +
t2∑

v=1
v 6=p

(al,v − ak,v).

Proof. Assume that A ≺B D. Let t1 ∈ {1, . . . , n} such that

t1∑
u=1

(au,p − au,q) < 0,

and assume that t1 /∈ {k, . . . , l − 1}. Then

σt1,p(A−D) =
t1∑

u=1

(au,p − au,q) < 0,

that is
σt1,p(A) < σt1,p(D).

Hence we cannot have A ≺B D. With similar arguments we prove that the
condition 2. holds. Finally if t1, t2 ∈ {1, . . . , n}, k ≤ t1 < l, p ≤ t2 < q, since
σt1,t2(A−D) ≥ 0 then

ak,p − al,q ≥
t1∑

u=1
u6=k

(au,q − au,p) +
t2∑

v=1
v 6=p

(al,v − ak,v),
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and the condition 3. holds.
Assume now that the three conditions hold. Let i, j ∈ {1, . . . , n}.

Case 1: Assume that i < k. If j < p or j ≥ q, then

σi,j(A) = σi,j(D),

and if p ≤ j < q, then by condition 1.,

σi,j(A−D) =
i∑

u=1

(au,p − au,q) ≥ 0,

and then σi,j(A) ≥ σi,j(D).
Case 2: Assume that k ≤ i < l. If j < p or j ≥ q, then by condition 2.,

σi,j(A−D) =
j∑

v=1

(ak,v − al,v) ≥ 0,

and then σi,j(A) ≥ σi,j(D). If p ≤ j < q, then by condition 3.,

σi,j(A−D) =
j∑

v=1
v 6=p

(ak,v − al,v) +
i∑

u=1
u6=k

(au,q − au,p) + (ak,p − al,q) ≥ 0,

and consequently, σi,j(A) ≥ σi,j(D).
Case 3: Assume that i ≥ l. If j < p or j ≥ q, then

σi,j(A) = σi,j(D),

and if p ≤ j < q, then by condition 1.,

σi,j(A−D) =
i∑

u=1

(au,p − au,q) ≥ 0,

and consequently, σi,j(A) ≥ σi,j(D).

3 Permutation of Symbols

An alternative description of the Bruhat order between two Latin squares
that are obtained one from the other by the permutation of symbols is the
purpose of this section. In [14], the authors proved some results on this matter
(see Section 2 of [14]). So, in this section the isotopic relation is only given by
the permutation of symbols.

We begin with a crucial vector obtained from a Latin square that will be
necessary to relate two isotopic Latin squares by the Bruhat order.

Given a matrix A, we denote by A[{i1, . . . , it}|{j1, . . . , jl}] the submatrix of
A that lies in rows i1, . . . , it, and columns j1, . . . jl.

8



Definition 3.1 Let A = [ai,j ] be a Latin square of order n, and let k ∈
{1, . . . , n}. We denote by Sk(A) the sequence of length n2,

Sk(A) = (s(k)
1,1(A), . . . , s(k)

1,n(A), s(k)
2,1(A), . . . , s(k)

2,n(A), . . . , s(k)
n,1(A), . . . , s(k)

n,n(A)),

where s
(k)
i,j (A) is the number of entries equal to k in the submatrix A[{1, . . . , i}|

{1, . . . , j}].

Example 3.2 Let A =




1 3 2
2 1 3
3 2 1


 . Then

S2(A) = (s(2)
11 (A), s(2)

12 (A), s(2)
13 (A), s(2)

21 (A), s(2)
22 (A), s(2)

23 (A), s(2)
31 (A), s(2)

32 (A),
s
(2)
33 (A))

= (0, 0, 1, 1, 1, 2, 1, 2, 3).

Note that, since A is a Latin square of order n and k ∈ {1, . . . , n} then
Sk(A) is not a zero vector. Moreover, all coordinates of Sk(A) are nonnegative
integers.

Recall that the sum of two integral vectors is the usual sum, denoted by ⊕.
The product of an integer by an integral vector is the usual product. We denote
by 0 the zero vector.

Lemma 3.3 Let A be a Latin square of order n and α ∈ Sn. Then for r, s ∈
{1, . . . , n},

σr,s(α(A)) = σr,s(A)−
(

n∑

i=1

s(i)
rs (A)(i− α(i))

)
,

Proof. Since α(A) is obtained from A by interchanging the symbol i by α(i)
then the result follows.

Theorem 3.4 Let A be a Latin square of order n, and let α ∈ Sn \ {id}. Then
A ≺B α(A) if and only if ⊕n

i=1Si(A)(i− α(i)) ≥ 0 by the entrywise order.

Proof. Assume that A ≺B α(A), and assume that there exist r, s ∈ {1, . . . , n}
such that

n∑

i=1

s(i)
rs (A)(i− α(i)) < 0. By Lemma 3.3,

σr,s(α(A)) = σr,s(A)−
(

n∑

i=1

s(i)
rs (A)(i− α(i))

)
.

Consequently, σr,s(α(A)) > σr,s(A), which is impossible.
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Conversely, assume that ⊕n
i=1Si(A)(i − α(i)) ≥ 0 by the entrywise order,

and let r, s ∈ {1, . . . , n}. By Lemma 3.3,

σr,s(α(A)) = σr,s(A)−
(

n∑

i=1

s(i)
rs (A)(i− α(i))

)
.

So,
σr,s(A) ≥ σr,s(α(A)).

Since α ∈ Sn \ {id} then A 6= α(A) and A ≺B α(A).

The following corollary is an immediate consequence of last theorem when
the permutation α is a transposition.

Corollary 3.5 Let A be a Latin square of order n, and let k, l ∈ {1, . . . , n}, k <
l. Let D be the Latin square obtained from A by interchanging symbols k and l.
Then A ≺B D if and only if Sl(A) ≥ Sk(A) by the entrywise order.

Another consequence of Theorem 3.4 involves a permutation that is a com-
position of transpositions in the conditions of last corollary.

Corollary 3.6 Let A be a Latin square of order n, and let α ∈ Sn \ {id}
such that α = βh ◦ βh−1 ◦ . . . ◦ β1, where βj = (kj lj) is a transposition and
1 ≤ (βj ◦ βj−1 ◦ . . . ◦ β1)(lj) = kj < lj ≤ n, for j = 1, . . . , h. If

S(βj−1◦...◦β1)(lj)(A) ≥ S(βj−1◦...◦β1)(kj)(A),

for j = 1, . . . , h, by the entrywise order then A ≺B α(A).

Proof. Since Sl1(A) ≥ Sk1(A) and k1 < l1, by Corollary 3.5 we have A ≺B

β1(A). Because Su(β1(A)) = Sβ1(u)(A), for u = 1, . . . , n, using the hypothesis
and by Corollary 3.5 we have β1(A) ≺B (β2 ◦ β1)(A). Consequently, A ≺B

(β2 ◦ β1)(A). Repeating these arguments, we get the result.

The converse of the last result does not hold as we can see in the next
example.

Example 3.7 Let A =




4 3 2 1
1 2 4 3
3 4 1 2
2 1 3 4


 and θ = (23)(14) ∈ S4.

So, θ(A) =




1 2 3 4
4 3 1 2
2 1 4 3
3 4 2 1


 , and by calculations we get A ≺B θ(A).

Moreover,

S1(A) = (0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 3, 4),
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S2(A) = (0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 3, 1, 2, 3, 4),

S3(A) = (0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 3, 4),

S4(A) = (1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 4).

Consequently, S1, S2 and S3 are not related by the entrywise order, and S4 ≥ S1,
S4 ≥ S2, S4 ≥ S3. To get α in the conditions of Corollary 3.5 we must have
β1(14) or β1 = (24) or β1 = (34). This implies that the only way to change
all integers between 1 and 4 using transpositions in the conditions of Corollary
3.5 is when α = β3 ◦ β2 ◦ β1, where β1 = (34), β2 = (23) and β3 = (12). So,
α = (1234) 6= θ.

4 The Cover Relation

Let (X,¹) be a finite partially order set and a, b ∈ X. We say that b covers
a if a ≺ b and there is not c ∈ X with a ≺ c ≺ b.

This section is about the cover relation for the Bruhat order on the class
of isotopic Latin squares. In [14], Section 2, appeared some results about the
cover relation between Latin squares related by the permutation of symbols.
Now, using the permutation of two rows, the next result shows when the matrix
obtained by this operation does not cover the initial matrix.

Theorem 4.1 Let A = [ai,j ] be a Latin square of order n, and let i, j ∈
{1, . . . , n}, i < j, such that (aj,1, . . . , aj,n) ¹M (ai,1, . . . , ai,n). Let D be the
Latin square obtained from A by permuting the rows i and j. If D covers A
in the Bruhat order then for all k, l, with i ≤ k < l ≤ j, {i, j} 6= {k, l} and
(al,1, . . . , al,n) ¹M (ak,1, . . . , ak,n), there is a t ∈ {1, . . . , n} such that

t∑
v=1

(ai,v − aj,v) <

t∑
v=1

(ak,v − al,v).

Proof. Assume that D covers A. Then A ≺B D and by Proposition 2.2,
(aj,1, . . . , aj,n) ¹M (ai,1, . . . , ai,n). Suppose that there are k, l such that i ≤ k <
l ≤ j, {i, j} 6= {k, l}, (al,1, . . . , al,n) ¹M (ak,1, . . . , ak,n), and

t∑
v=1

(ai,v − aj,v) ≥
t∑

v=1

(ak,v − al,v),

for all t ∈ {1, . . . , n}.
Let C = [ci,j ] be the Latin square obtained from A by permuting rows k

and l. Since (al,1, . . . , al,n) ¹M (ak,1, . . . , ak,n), by Proposition 2.2, A ≺B C. If
we prove that C ≺B D, as D covers A we get a contradiction. First note that
C 6= D because {i, j} 6= {k, l} and we are dealing with Latin squares.

As D = [dij ] results from A by permuting rows i and j, and C results
from A by permuting rows k and l, with i ≤ k < l ≤ j, we have, for r ∈
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{1, . . . , n} − {i, k, l, j} and t ∈ {1, . . . , n}, ar,t = cr,t = dr,t. Therefore, for
r ∈ {1, . . . , i− 1},

σr,t(A) = σr,t(C) = σr,t(D), for t = 1, . . . , n.

If r ∈ {i, . . . , k − 1}, as cr,t = ar,t, for t = 1, . . . , n we have

σr,t(C) = σr,t(A) ≥ σr,t(D), for t = 1, . . . , n.

Let r ∈ {k, . . . , l − 1}. Since

σr,t(A− C) =
t∑

v=1

(ak,v − ck,v) =
t∑

v=1

(ak,v − al,v),

and

σr,t(A−D) =
t∑

v=1

(ak,v − ck,v) =
t∑

v=1

(ai,v − aj,v),

we conclude that

σr,t(A−D) ≥ σr,t(A− C), for t = 1, . . . , n.

Then, for r ∈ {k, . . . , l − 1} and t ∈ {1, . . . , n} we get

σr,t(C) ≥ σr,t(D), for t = 1, . . . , n.

If r ≥ l, then

σr,t(C) = σr,t(A) ≥ σr,t(D), for t = 1, . . . , n.

Then A ≺B C ≺B D, which is a contradiction.

The converse of last theorem does not hold as we can see in the following
example.

Example 4.2 Let

A =




1 2 5 4 3
5 3 4 2 1
4 5 1 3 2
3 1 2 5 4
2 4 3 1 5




.

Then

ΣA =




1 3 8 12 15
6 11 20 26 30
10 20 30 39 45
13 24 36 50 60
15 30 45 60 75




.
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Since rows 2 and 5 of A verify

(2, 4, 3, 1, 5) ¹M (5, 3, 4, 2, 1),

by Proposition 2.2, the matrix D obtained from A interchanging rows 2 and 5
satisfies A ≺B D. Observe that

D =




1 2 5 4 3
2 4 3 1 5
4 5 1 3 2
3 1 2 5 4
5 3 4 2 1




,

and

ΣD =




1 3 8 12 15
3 9 17 22 30
7 18 27 35 45
10 22 33 46 60
15 30 45 60 75




.

Let C be the Latin square obtained by applying the permutations (2435),
(345) and (2453) to the symbols, rows and columns of A, respectively. Then
A, C, D are isotopic Latin squares,

C =




1 2 5 4 3
3 5 4 1 2
4 3 1 2 5
5 1 2 3 4
2 4 3 5 1




and ΣC =




1 3 8 12 15
4 11 20 25 30
8 18 28 35 45
13 24 36 46 60
15 30 45 60 75




.

So, A ≺B C ≺B D and D does not cover A.
On the other hand, denoting by ri the ith row of A = [aij ], for i = 1, 2, 3, 4,

we have r3 6¹M r2, r4 ¹M r2, and

(a21 − a51) + (a22 − a52) = 2 < 4 = (a21 − a41) + (a22 − a42),

r4 ¹M r3and (a21 − a51) + (a22 − a52) = 2 < 5 = (a31 − a41) + (a32 − a42),
r5 ¹M r3and (a21 − a51) + (a22 − a52) = 2 < 3 = (a31 − a51) + (a32 − a52),

r5 6¹M r4.

So, A and D verify the conditions of last proposition.

An easy consequence of Theorem 4.1 is the next corollary.

Corollary 4.3 Let A = [ai,j ] be a Latin square of order n, and let i, s, j ∈
{1, . . . , n}, with i < s < j, such that (aj,1, . . . , aj,n) ¹M (as,1, . . . , as,n) ¹M

(ai,1, . . . , ai,n). Let D be the Latin square obtained from A by permuting rows i
and j. Then D does not cover A.

With the same arguments we can prove similar results for the interchange
of columns.
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5 Orthogonal isotopic Latin squares

As we mentioned in the Introduction, Ryser’s conjectured that if A is a Latin
square of odd order then A has, at least, one transversal. Since this conjecture
remains unproven in general, the purpose of this section is to describe Latin
squares of order 3k, with k ≥ 1, that have transversals. For this we describe two
Latin squares of order 3k that are orthogonal and related by the Bruhat order.

We begin this section with the notation of some matrices that are needed in
the next results:

Let Jh be the matrix of order h whose all entries are equal to one, 0h be
the matrix of order h whose all entries are equal to zero, and Ih be the identity
matrix of order h.

For p a positive integer and p ≥ 2, let

Rp =




(2× 3p−1)J3p−1 03p−1 3p−1J3p−1

3p−1J3p−1 (2× 3p−1)J3p−1 03p−1

03p−1 3p−1J3p−1 (2× 3p−1)J3p−1


 ,

and

Tp =




03p−1 (2× 3p−1)J3p−1 3p−1J3p−1

(2× 3p−1)J3p−1 3p−1J3p−1 03p−1

3p−1J3p−1 03p−1 (2× 3p−1)J3p−1


 .

Remark 5.1 1. The matrix Tp is obtained from Rp interchanging columns.
In fact,

Rp




03p−1 I3p−1 03p−1

I3p−1 03p−1 03p−1

03p−1 03p−1 I3p−1




= Tp.

2. Let p ≥ 2 and ρ be a permutation of S3p such that for each a ∈ {0, 3p−1, 2×
3p−1} there is ba ∈ {0, 3p−1, 2× 3p−1} satisfying the condition:

if i ∈ {a + 1, . . . , a + 3p−1} then ρ−1(i) ∈ {ba + 1, . . . , ba + 3p−1}.

Then, TpP (ρ) = Tp.
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Lemma 5.2 Let p be a positive integer with p ≥ 2. Let Rp and Tp be the
matrices described before. Then Rp ≺B Tp.

Proof. Let i, j ∈ {1, . . . , 3p}. To simplify we will write c instead of 3p−1. Then,

σij(Rp) =





2cij if 1 ≤ i, j ≤ c

2c2i if 1 ≤ i ≤ c, c + 1 ≤ j ≤ 2c

2c2i + c(j − 2c)i if 1 ≤ i ≤ c, 2c + 1 ≤ j ≤ 3c

2c2j + cj(i− c) if c + 1 ≤ i ≤ 2c, 1 ≤ j ≤ c

2c3 + c2(i− c) + 2c(j − c)(i− c) if c + 1 ≤ i, j ≤ 2c

2c3 + c2(i− c)+
2c2(i− c) + c2(j − 2c) if c + 1 ≤ i ≤ 2c < j ≤ 3c

2c2j + c2j if i > 2c + 1, 1 ≤ j ≤ c

2c3 + c3 + 2c2(j − c)+ if i > 2c + 1,
c(j − c)(i− 2c) c + 1 ≤ j ≤ 2c

4c3 + c3 + c2(j − 2c)+
c2(i− 2c) + 2c(j − 2c)(i− 2c) if i, j > 2c + 1

and

σij(Tp) =





0 if 1 ≤ i, j ≤ c

2c(j − c)i if 1 ≤ i ≤ c, c + 1 ≤ j ≤ 2c

2c2i + c(j − 2c)i if 1 ≤ i ≤ c, 2c + 1 ≤ j ≤ 3c

2c(i− c)j if c + 1 ≤ i ≤ 2c, 1 ≤ j ≤ c

2c2(j − c) + 2c2(i− c) + c(j − c)(i− c) if c + 1 ≤ i, j ≤ 2c

2c3 + 2c2(i− c)+
c2(i− c) + c2(j − 2c) if c + 1 ≤ i ≤ 2c < j ≤ 3c

2c2j + c(i− 2c)j if i > 2c + 1, 1 ≤ j ≤ c

2c3 + c2(i− 2c) + 2c2(j − c)+ if i > 2c + 1,
c2(j − c) c + 1 ≤ j ≤ 2c

4c3 + c3 + c2(j − 2c) + c2(i− 2c)+
2c(j − 2c)(i− 2c) if i, j > 2c + 1
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So, if we prove that σij(Rp) ≥ σij(Tp), for c+1 ≤ i, j ≤ 2c and for i ≥ 2c, c+1 ≤
j ≤ 2c then we will conclude that Rp ≺B Tp.
Case 1 Suppose that c + 1 ≤ i, j ≤ 2c.

Let a = i− c and b = j − c. Then 1 ≤ a, b ≤ c and
σij(Rp)− σij(Tp) ≥ 0 if and only if

2c(c− (a + b)) + a(c + b) ≥ 0.

If a + b ≤ c then 2c(c− (a + b)) + a(c + b) ≥ 0.
Suppose that a+b = c+r, with 1 ≤ r ≤ c. If a < r then c+r = a+b < r+b.

Consequently, b > c, which is impossible. So, a ≥ r.
Therefore,

2c(c− (a + b)) + a(c + b) = (a− r)(2c− a) ≥ 0.

Case 2 Suppose that i ≥ 2c, c + 1 ≤ j ≤ 2c.
Let a = i− 2c and b = j − c. Then 1 ≤ a, b ≤ c and
σij(Rp)− σij(Tp) ≥ 0 if and only if

(a− c)(b− c) ≥ 0.

In [14], Section 4, we can see the Hasse diagram of the class of Latin squares
of order 3 for ¹B
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C6

C1 C2 C3 C4

C5
C7 C8

C9 C10 C11 C12

where

C1 =




1 2 3
2 3 1
3 1 2


 , C2 =




1 2 3
3 1 2
2 3 1


 , C3 =




1 3 2
2 1 3
3 2 1


 , C4 =




2 1 3
1 3 2
3 2 1


 ,

C5 =




1 3 2
3 2 1
2 1 3


 , C6 =




2 1 3
3 2 1
1 3 2


 , C7 =




2 3 1
1 2 3
3 1 2


 , C8 =




3 1 2
1 2 3
2 3 1


 ,

C9 =




3 1 2
2 3 1
1 2 3


 , C10 =




3 2 1
1 3 2
2 1 3


 , C11 =




2 3 1
3 1 2
1 2 3


 , C12 =




3 2 1
2 1 3
1 3 2


 .

So, by the Hasse diagram and using the matrices, we get 8 hypothesis:
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• C9 ≺B C5, they are isotopic (interchange columns 1 and 2) and orthogonal.

• C10 ≺B C8, they are isotopic (interchange columns 2, 3) and orthogonal.

• C11 ≺B C6, they are isotopic (interchange columns 2, 3) and orthogonal.

• C12 ≺B C7, they are isotopic (interchange columns 1, 2) and orthogonal.

• C9 ≺B C4, they are isotopic (interchange columns 1 and 3) and orthogonal.

• C10 ≺B C1, they are isotopic (interchange columns 1, 3) and orthogonal.

• C11 ≺B C3, they are isotopic (interchange columns 1, 3) and orthogonal.

• C12 ≺B C2, they are isotopic (interchange columns 1, 3) and orthogonal.

Denote by D1 and E1 the two Latin squares of order 3 which are the matrices
that appear in one of the 8 hypothesis described before, with D1 ≺B E1.

Recursively, for p ≥ 2, let

Dp = Rp +




Dp−1 Dp−1 Dp−1

Dp−1 Dp−1 Dp−1

Dp−1 Dp−1 Dp−1


 ,

and

Ep = Tp +




Ep−1 Ep−1 Ep−1

Ep−1 Ep−1 Ep−1

Ep−1 Ep−1 Ep−1


 .

Now, we can prove the main result of this section.

Theorem 5.3 Let p be a positive integer and let Dp and Ep be the matrices
described before. Then Dp and Ep are isotopic orthogonal Latin squares and
Dp ≺B Ep. Moreover, Ep is obtained from Dp only interchanging columns.

Proof. The proof is by induction in p.
For p = 1, since D1 and E1 are in the conditions of one of last items, with

D1 ≺B E1, the result follows.
Suppose that for some positive integer p−1, with p−1 ≥ 1, Dp−1 and Ep−1

are isotopic orthogonal Latin squares and Dp−1 ≺B Ep−1. By construction, Dp

and Ep are Latin squares.
Using Remark 5.1,

Dp




03p−1 I3p−1 03p−1

I3p−1 03p−1 03p−1

03p−1 03p−1 I3p−1




= Tp +




Dp−1 Dp−1 Dp−1

Dp−1 Dp−1 Dp−1

Dp−1 Dp−1 Dp−1




.
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Since Ep−1 is obtained from Dp−1 interchanging columns, by Remark 5.1, Dp

and Ep are isotopic using only the interchange of columns.
On the other hand, since Dp−1 and Ep−1 are orthogonal matrices and, Rp

and Tp are orthogonal by blocks then Dp and Ep are orthogonal matrices.
Because Dp−1 ≺B Ep−1, using Lemma 5.2 we conclude that Dp ≺B Ep.

Therefore, the result follows.

6 Conclusions

We have studied the Bruhat order on the class of isotopic Latin squares.
In particular, we have established necessary and sufficient conditions for two
Latin squares, of the same order and isotopic, to be related by this order.More
precisely, in this study the isotopic relation only was allowed by the interchange
of rows or of columns or of symbols.

The cover relation in the Bruhat order was also studied but only in the case
when the two Latin squares were related by a permutation of two rows or of
two columns.

We have finished this paper studying the conjecture of Ryser “All Latin
squares of odd order have, at least, one transversal”. So, we have presented
Latin squares of order 3k, where k is an integer greater than or equal to one,
that are orthogonal and related by the Bruhat order.

It is an interesting problem to describe all Latin squares of odd order that
are orthogonal and related by the Bruhat order.

Acknowledgements

We thank the anonymous referees for many useful suggestions.

References

[1] K. Balasubramanian, On transversals in latin squares, Linear Algebra
Appl., 131 (1990) 125-129.

[2] D. Best and I.M. Wanless, Parity of transversals of Latin Squares,
arXiv.org>math>arXiv.1912.11230.

[3] J.N. Bray, Q. Cai, P.J. Cameron, P.Spiga and H. Zhang, The Hall-Page
conjecture, and Synchronization for affine and diagonal groups, Journal of
Algebra, 545 (2020) 27-42.

[4] R.A. Brualdi and S.-G. Hwang, A Bruhat order for the class of (0, 1)-
matrices with row sum vector R and column sum vector S, Electronic
Journal of Linear Algebra, 12 (2004) 6-16.

18



[5] R.A. Brualdi, Combinatorial Matrix Classes, Encyclopedia of Mathemat-
ics and its Applications, vol. 108, Cambridge University Press, Cambridge
(2006).

[6] R.A. Brualdi and L. Deaett, More on the Bruhat order for (0, 1)-matrices,
Linear Algebra Appl., 421 (2007) 219-232.

[7] R.A. Brualdi and G. Dahl, Doubly stochastic matrices and the Bruhat
order, Czechoslovak Mathematical Journal, 66 (141) (2016) 681-700.

[8] R.A. Brualdi and E. Fritscher, Bruhat order of tournaments, Linear Algebra
Appl., 458 (2014) 261-279.

[9] R.A. Brualdi and M. W.Schroeder, Alternating sign matrices and their
Bruhat order, Discrete Mathematics, 340, Issue 8 (2017) 1996-2019.

[10] R.A. Brualdi, R. Fernandes and S. Furtado, On the Bruhat order of labeled
graphs, Discrete Applied Mathematics, 258 (2019) 49-64.

[11] A. Conflitti, C.M. Fonseca and R. Mamede, The maximal lenght of a chain
in the Bruhat order for a class of binary matrices, Linear Algebra Appl.,
436 (2012), 753-757.

[12] A. Conflitti, C.M. da Fonseca and R. Mamede, On the largest size of an
antichain in the Bruhat order for A(2k, k), Order, 30 (2013), 255-260

[13] H.F. Cruz, R. Fernandes and S. Furtado, Minimal matrices in the Bruhat
order for symmetric (0, 1)-matrices, Linear Algebra Appl., 530 (2017) 160-
184.

[14] R. Fernandes, H.F. da Cruz and D. Salomão, Latin Squares and their
Bruhat order, Contributions to Discrete Mathematics, 15 (2020) 102-120.

[15] R. Fernandes, H.F. da Cruz and D. Salomão, Classes of (0,1)-matrices
where the Bruhat order and the Secondary Bruhat order coincide, Order.

https://doi.org/10.1007/s11083-019-09500-8

[16] R. Fernandes and S. Furtado, Extremal matrices for the Bruhat-graph or-
der, Linear and Multilinear Algebra,

https://doi.org/10.1080/03081087.2020.1749540

[17] R. Fernandes, H.F. da Cruz and D. Salomão, On a conjecture concerning
the Bruhat order, Linear Algebra Appl., 600 (2020) 82-95.

[18] M. Ghebleh, On maximum chains in the Bruhat order of A(n, 2),Linear
Algebra Appl., 446 (2014), 377-387.

[19] M. Ghebleh, Antichains on (0, 1)-matrices through inversions, Linear Al-
gebra Appl.,458 (2014), 503-511

19



[20] B.D. McKay, J.C. McLeod, and I.M. Wanless, The number of transversals
in a latin square, Designs, Codes and Cryptography, 40 (2006) 269-284.

[21] H.J. Ryser. Neuere probleme der kombinatorik, Vorträge über Kombina-
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